]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Fix bug with character enumeration literal
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "gdbsupport/function-view.h"
64 #include "gdbsupport/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
150 int, int);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
191
192 static int equiv_types (struct type *, struct type *);
193
194 static int is_name_suffix (const char *);
195
196 static int advance_wild_match (const char **, const char *, int);
197
198 static bool wild_match (const char *name, const char *patn);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (const char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (const char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static int ada_resolve_function (struct block_symbol *, int,
221 struct value **, int, const char *,
222 struct type *, int);
223
224 static int ada_is_direct_array_type (struct type *);
225
226 static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
228
229 static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232 static struct value *assign_aggregate (struct value *, struct value *,
233 struct expression *,
234 int *, enum noside);
235
236 static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241 static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247 static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258 static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
260
261 static struct type *ada_find_any_type (const char *name);
262
263 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
266 \f
267
268 /* The result of a symbol lookup to be stored in our symbol cache. */
269
270 struct cache_entry
271 {
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
275 domain_enum domain;
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284 };
285
286 /* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295 #define HASH_SIZE 1009
296
297 struct ada_symbol_cache
298 {
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304 };
305
306 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
307
308 /* Maximum-sized dynamic type. */
309 static unsigned int varsize_limit;
310
311 static const char ada_completer_word_break_characters[] =
312 #ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314 #else
315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
316 #endif
317
318 /* The name of the symbol to use to get the name of the main subprogram. */
319 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
320 = "__gnat_ada_main_program_name";
321
322 /* Limit on the number of warnings to raise per expression evaluation. */
323 static int warning_limit = 2;
324
325 /* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327 static int warnings_issued = 0;
328
329 static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331 };
332
333 static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335 };
336
337 /* Maintenance-related settings for this module. */
338
339 static struct cmd_list_element *maint_set_ada_cmdlist;
340 static struct cmd_list_element *maint_show_ada_cmdlist;
341
342 /* Implement the "maintenance set ada" (prefix) command. */
343
344 static void
345 maint_set_ada_cmd (const char *args, int from_tty)
346 {
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
349 }
350
351 /* Implement the "maintenance show ada" (prefix) command. */
352
353 static void
354 maint_show_ada_cmd (const char *args, int from_tty)
355 {
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357 }
358
359 /* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361 static int ada_ignore_descriptive_types_p = 0;
362
363 /* Inferior-specific data. */
364
365 /* Per-inferior data for this module. */
366
367 struct ada_inferior_data
368 {
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
373 struct type *tsd_type = nullptr;
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
378 const struct exception_support_info *exception_info = nullptr;
379 };
380
381 /* Our key to this module's inferior data. */
382 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
383
384 /* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392 static struct ada_inferior_data *
393 get_ada_inferior_data (struct inferior *inf)
394 {
395 struct ada_inferior_data *data;
396
397 data = ada_inferior_data.get (inf);
398 if (data == NULL)
399 data = ada_inferior_data.emplace (inf);
400
401 return data;
402 }
403
404 /* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407 static void
408 ada_inferior_exit (struct inferior *inf)
409 {
410 ada_inferior_data.clear (inf);
411 }
412
413
414 /* program-space-specific data. */
415
416 /* This module's per-program-space data. */
417 struct ada_pspace_data
418 {
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
425 /* The Ada symbol cache. */
426 struct ada_symbol_cache *sym_cache = nullptr;
427 };
428
429 /* Key to our per-program-space data. */
430 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
431
432 /* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437 static struct ada_pspace_data *
438 get_ada_pspace_data (struct program_space *pspace)
439 {
440 struct ada_pspace_data *data;
441
442 data = ada_pspace_data_handle.get (pspace);
443 if (data == NULL)
444 data = ada_pspace_data_handle.emplace (pspace);
445
446 return data;
447 }
448
449 /* Utilities */
450
451 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
452 all typedef layers have been peeled. Otherwise, return TYPE.
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478 static struct type *
479 ada_typedef_target_type (struct type *type)
480 {
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484 }
485
486 /* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490 static const char *
491 ada_unqualified_name (const char *decoded_name)
492 {
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509 }
510
511 /* Return a string starting with '<', followed by STR, and '>'. */
512
513 static std::string
514 add_angle_brackets (const char *str)
515 {
516 return string_printf ("<%s>", str);
517 }
518
519 static const char *
520 ada_get_gdb_completer_word_break_characters (void)
521 {
522 return ada_completer_word_break_characters;
523 }
524
525 /* Print an array element index using the Ada syntax. */
526
527 static void
528 ada_print_array_index (struct value *index_value, struct ui_file *stream,
529 const struct value_print_options *options)
530 {
531 LA_VALUE_PRINT (index_value, stream, options);
532 fprintf_filtered (stream, " => ");
533 }
534
535 /* la_watch_location_expression for Ada. */
536
537 gdb::unique_xmalloc_ptr<char>
538 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539 {
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544 }
545
546 /* Assuming VECT points to an array of *SIZE objects of size
547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
548 updating *SIZE as necessary and returning the (new) array. */
549
550 void *
551 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
552 {
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
557 *size = min_size;
558 vect = xrealloc (vect, *size * element_size);
559 }
560 return vect;
561 }
562
563 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
564 suffix of FIELD_NAME beginning "___". */
565
566 static int
567 field_name_match (const char *field_name, const char *target)
568 {
569 int len = strlen (target);
570
571 return
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
574 || (startswith (field_name + len, "___")
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
577 }
578
579
580 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
587
588 int
589 ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591 {
592 int fieldno;
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
597 return fieldno;
598
599 if (!maybe_missing)
600 error (_("Unable to find field %s in struct %s. Aborting"),
601 field_name, TYPE_NAME (struct_type));
602
603 return -1;
604 }
605
606 /* The length of the prefix of NAME prior to any "___" suffix. */
607
608 int
609 ada_name_prefix_len (const char *name)
610 {
611 if (name == NULL)
612 return 0;
613 else
614 {
615 const char *p = strstr (name, "___");
616
617 if (p == NULL)
618 return strlen (name);
619 else
620 return p - name;
621 }
622 }
623
624 /* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
627 static int
628 is_suffix (const char *str, const char *suffix)
629 {
630 int len1, len2;
631
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
637 }
638
639 /* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
641
642 static struct value *
643 coerce_unspec_val_to_type (struct value *val, struct type *type)
644 {
645 type = ada_check_typedef (type);
646 if (value_type (val) == type)
647 return val;
648 else
649 {
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
654 ada_ensure_varsize_limit (type);
655
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
663 }
664 set_value_component_location (result, val);
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
669 return result;
670 }
671 }
672
673 static const gdb_byte *
674 cond_offset_host (const gdb_byte *valaddr, long offset)
675 {
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680 }
681
682 static CORE_ADDR
683 cond_offset_target (CORE_ADDR address, long offset)
684 {
685 if (address == 0)
686 return 0;
687 else
688 return address + offset;
689 }
690
691 /* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
695
696 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
698 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
699
700 static void
701 lim_warning (const char *format, ...)
702 {
703 va_list args;
704
705 va_start (args, format);
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
708 vwarning (format, args);
709
710 va_end (args);
711 }
712
713 /* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
717 void
718 ada_ensure_varsize_limit (const struct type *type)
719 {
720 if (TYPE_LENGTH (type) > varsize_limit)
721 error (_("object size is larger than varsize-limit"));
722 }
723
724 /* Maximum value of a SIZE-byte signed integer type. */
725 static LONGEST
726 max_of_size (int size)
727 {
728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
729
730 return top_bit | (top_bit - 1);
731 }
732
733 /* Minimum value of a SIZE-byte signed integer type. */
734 static LONGEST
735 min_of_size (int size)
736 {
737 return -max_of_size (size) - 1;
738 }
739
740 /* Maximum value of a SIZE-byte unsigned integer type. */
741 static ULONGEST
742 umax_of_size (int size)
743 {
744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
745
746 return top_bit | (top_bit - 1);
747 }
748
749 /* Maximum value of integral type T, as a signed quantity. */
750 static LONGEST
751 max_of_type (struct type *t)
752 {
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757 }
758
759 /* Minimum value of integral type T, as a signed quantity. */
760 static LONGEST
761 min_of_type (struct type *t)
762 {
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
767 }
768
769 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_high_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, NULL, 0);
774 switch (TYPE_CODE (type))
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_HIGH_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return max_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_high_bound."));
787 }
788 }
789
790 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_low_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_LOW_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, 0);
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return min_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_low_bound."));
808 }
809 }
810
811 /* The identity on non-range types. For range types, the underlying
812 non-range scalar type. */
813
814 static struct type *
815 get_base_type (struct type *type)
816 {
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
824 }
825
826 /* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831 struct value *
832 ada_get_decoded_value (struct value *value)
833 {
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849 }
850
851 /* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856 struct type *
857 ada_get_decoded_type (struct type *type)
858 {
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863 }
864
865 \f
866
867 /* Language Selection */
868
869 /* If the main program is in Ada, return language_ada, otherwise return LANG
870 (the main program is in Ada iif the adainit symbol is found). */
871
872 enum language
873 ada_update_initial_language (enum language lang)
874 {
875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
876 return language_ada;
877
878 return lang;
879 }
880
881 /* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885 char *
886 ada_main_name (void)
887 {
888 struct bound_minimal_symbol msym;
889 static gdb::unique_xmalloc_ptr<char> main_program_name;
890
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
898 if (msym.minsym != NULL)
899 {
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
904 if (main_program_name_addr == 0)
905 error (_("Invalid address for Ada main program name."));
906
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
912 return main_program_name.get ();
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917 }
918 \f
919 /* Symbols */
920
921 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
923
924 const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
947 };
948
949 /* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
953
954 static char *
955 ada_encode_1 (const char *decoded, bool throw_errors)
956 {
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
959 const char *p;
960 int k;
961
962 if (decoded == NULL)
963 return NULL;
964
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
967
968 k = 0;
969 for (p = decoded; *p != '\0'; p += 1)
970 {
971 if (*p == '.')
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
976 else if (*p == '"')
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
981 mapping->encoded != NULL
982 && !startswith (p, mapping->decoded); mapping += 1)
983 ;
984 if (mapping->encoded == NULL)
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
995 else
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
1000 }
1001
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
1004 }
1005
1006 /* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009 char *
1010 ada_encode (const char *decoded)
1011 {
1012 return ada_encode_1 (decoded, true);
1013 }
1014
1015 /* Return NAME folded to lower case, or, if surrounded by single
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
1019 char *
1020 ada_fold_name (const char *name)
1021 {
1022 static char *fold_buffer = NULL;
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1027
1028 if (name[0] == '\'')
1029 {
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
1032 }
1033 else
1034 {
1035 int i;
1036
1037 for (i = 0; i <= len; i += 1)
1038 fold_buffer[i] = tolower (name[i]);
1039 }
1040
1041 return fold_buffer;
1042 }
1043
1044 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046 static int
1047 is_lower_alphanum (const char c)
1048 {
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050 }
1051
1052 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
1059
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064 static void
1065 ada_remove_trailing_digits (const char *encoded, int *len)
1066 {
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
1070
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1078 *len = i - 2;
1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1080 *len = i - 1;
1081 }
1082 }
1083
1084 /* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087 static void
1088 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089 {
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
1095 the 'P' suffix. The second calls the first one after handling
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104 }
1105
1106 /* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
1109
1110 The resulting string is valid until the next call of ada_decode.
1111 If the string is unchanged by decoding, the original string pointer
1112 is returned. */
1113
1114 const char *
1115 ada_decode (const char *encoded)
1116 {
1117 int i, j;
1118 int len0;
1119 const char *p;
1120 char *decoded;
1121 int at_start_name;
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
1124
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
1133 if (startswith (encoded, "_ada_"))
1134 encoded += 5;
1135
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
1139 if (encoded[0] == '_' || encoded[0] == '<')
1140 goto Suppress;
1141
1142 len0 = strlen (encoded);
1143
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
1146
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
1153 {
1154 if (p[3] == 'X')
1155 len0 = p - encoded;
1156 else
1157 goto Suppress;
1158 }
1159
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1165 len0 -= 3;
1166
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1172 len0 -= 2;
1173
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1178 len0 -= 1;
1179
1180 /* Make decoded big enough for possible expansion by operator name. */
1181
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
1184
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1188 {
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
1197 }
1198
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
1208 /* Is this a symbol function? */
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
1212
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
1230 at_start_name = 0;
1231
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1236 i += 2;
1237
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
1260 of subprograms created by the compiler for each entry. The first
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1325 {
1326 /* Replace '__' by '.'. */
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
1332 else
1333 {
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
1340 }
1341 decoded[j] = '\000';
1342
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
1348 goto Suppress;
1349
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
1354
1355 Suppress:
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
1360 else
1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1362 return decoded;
1363
1364 }
1365
1366 /* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371 static struct htab *decoded_names_store;
1372
1373 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
1378 GSYMBOL).
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
1381 when a decoded name is cached in it. */
1382
1383 const char *
1384 ada_decode_symbol (const struct general_symbol_info *arg)
1385 {
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
1388 &gsymbol->language_specific.demangled_name;
1389
1390 if (!gsymbol->ada_mangled)
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
1393 struct obstack *obstack = gsymbol->language_specific.obstack;
1394
1395 gsymbol->ada_mangled = 1;
1396
1397 if (obstack != NULL)
1398 *resultp = obstack_strdup (obstack, decoded);
1399 else
1400 {
1401 /* Sometimes, we can't find a corresponding objfile, in
1402 which case, we put the result on the heap. Since we only
1403 decode when needed, we hope this usually does not cause a
1404 significant memory leak (FIXME). */
1405
1406 char **slot = (char **) htab_find_slot (decoded_names_store,
1407 decoded, INSERT);
1408
1409 if (*slot == NULL)
1410 *slot = xstrdup (decoded);
1411 *resultp = *slot;
1412 }
1413 }
1414
1415 return *resultp;
1416 }
1417
1418 static char *
1419 ada_la_decode (const char *encoded, int options)
1420 {
1421 return xstrdup (ada_decode (encoded));
1422 }
1423
1424 /* Implement la_sniff_from_mangled_name for Ada. */
1425
1426 static int
1427 ada_sniff_from_mangled_name (const char *mangled, char **out)
1428 {
1429 const char *demangled = ada_decode (mangled);
1430
1431 *out = NULL;
1432
1433 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1434 {
1435 /* Set the gsymbol language to Ada, but still return 0.
1436 Two reasons for that:
1437
1438 1. For Ada, we prefer computing the symbol's decoded name
1439 on the fly rather than pre-compute it, in order to save
1440 memory (Ada projects are typically very large).
1441
1442 2. There are some areas in the definition of the GNAT
1443 encoding where, with a bit of bad luck, we might be able
1444 to decode a non-Ada symbol, generating an incorrect
1445 demangled name (Eg: names ending with "TB" for instance
1446 are identified as task bodies and so stripped from
1447 the decoded name returned).
1448
1449 Returning 1, here, but not setting *DEMANGLED, helps us get a
1450 little bit of the best of both worlds. Because we're last,
1451 we should not affect any of the other languages that were
1452 able to demangle the symbol before us; we get to correctly
1453 tag Ada symbols as such; and even if we incorrectly tagged a
1454 non-Ada symbol, which should be rare, any routing through the
1455 Ada language should be transparent (Ada tries to behave much
1456 like C/C++ with non-Ada symbols). */
1457 return 1;
1458 }
1459
1460 return 0;
1461 }
1462
1463 \f
1464
1465 /* Arrays */
1466
1467 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1468 generated by the GNAT compiler to describe the index type used
1469 for each dimension of an array, check whether it follows the latest
1470 known encoding. If not, fix it up to conform to the latest encoding.
1471 Otherwise, do nothing. This function also does nothing if
1472 INDEX_DESC_TYPE is NULL.
1473
1474 The GNAT encoding used to describle the array index type evolved a bit.
1475 Initially, the information would be provided through the name of each
1476 field of the structure type only, while the type of these fields was
1477 described as unspecified and irrelevant. The debugger was then expected
1478 to perform a global type lookup using the name of that field in order
1479 to get access to the full index type description. Because these global
1480 lookups can be very expensive, the encoding was later enhanced to make
1481 the global lookup unnecessary by defining the field type as being
1482 the full index type description.
1483
1484 The purpose of this routine is to allow us to support older versions
1485 of the compiler by detecting the use of the older encoding, and by
1486 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1487 we essentially replace each field's meaningless type by the associated
1488 index subtype). */
1489
1490 void
1491 ada_fixup_array_indexes_type (struct type *index_desc_type)
1492 {
1493 int i;
1494
1495 if (index_desc_type == NULL)
1496 return;
1497 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1498
1499 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1500 to check one field only, no need to check them all). If not, return
1501 now.
1502
1503 If our INDEX_DESC_TYPE was generated using the older encoding,
1504 the field type should be a meaningless integer type whose name
1505 is not equal to the field name. */
1506 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1507 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1508 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1509 return;
1510
1511 /* Fixup each field of INDEX_DESC_TYPE. */
1512 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1513 {
1514 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1515 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1516
1517 if (raw_type)
1518 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1519 }
1520 }
1521
1522 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1523
1524 static const char *bound_name[] = {
1525 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1526 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1527 };
1528
1529 /* Maximum number of array dimensions we are prepared to handle. */
1530
1531 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1532
1533
1534 /* The desc_* routines return primitive portions of array descriptors
1535 (fat pointers). */
1536
1537 /* The descriptor or array type, if any, indicated by TYPE; removes
1538 level of indirection, if needed. */
1539
1540 static struct type *
1541 desc_base_type (struct type *type)
1542 {
1543 if (type == NULL)
1544 return NULL;
1545 type = ada_check_typedef (type);
1546 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1547 type = ada_typedef_target_type (type);
1548
1549 if (type != NULL
1550 && (TYPE_CODE (type) == TYPE_CODE_PTR
1551 || TYPE_CODE (type) == TYPE_CODE_REF))
1552 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1553 else
1554 return type;
1555 }
1556
1557 /* True iff TYPE indicates a "thin" array pointer type. */
1558
1559 static int
1560 is_thin_pntr (struct type *type)
1561 {
1562 return
1563 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1564 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1565 }
1566
1567 /* The descriptor type for thin pointer type TYPE. */
1568
1569 static struct type *
1570 thin_descriptor_type (struct type *type)
1571 {
1572 struct type *base_type = desc_base_type (type);
1573
1574 if (base_type == NULL)
1575 return NULL;
1576 if (is_suffix (ada_type_name (base_type), "___XVE"))
1577 return base_type;
1578 else
1579 {
1580 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1581
1582 if (alt_type == NULL)
1583 return base_type;
1584 else
1585 return alt_type;
1586 }
1587 }
1588
1589 /* A pointer to the array data for thin-pointer value VAL. */
1590
1591 static struct value *
1592 thin_data_pntr (struct value *val)
1593 {
1594 struct type *type = ada_check_typedef (value_type (val));
1595 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1596
1597 data_type = lookup_pointer_type (data_type);
1598
1599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1600 return value_cast (data_type, value_copy (val));
1601 else
1602 return value_from_longest (data_type, value_address (val));
1603 }
1604
1605 /* True iff TYPE indicates a "thick" array pointer type. */
1606
1607 static int
1608 is_thick_pntr (struct type *type)
1609 {
1610 type = desc_base_type (type);
1611 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1612 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1613 }
1614
1615 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its bounds data; otherwise, NULL. */
1617
1618 static struct type *
1619 desc_bounds_type (struct type *type)
1620 {
1621 struct type *r;
1622
1623 type = desc_base_type (type);
1624
1625 if (type == NULL)
1626 return NULL;
1627 else if (is_thin_pntr (type))
1628 {
1629 type = thin_descriptor_type (type);
1630 if (type == NULL)
1631 return NULL;
1632 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1633 if (r != NULL)
1634 return ada_check_typedef (r);
1635 }
1636 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1637 {
1638 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1639 if (r != NULL)
1640 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1641 }
1642 return NULL;
1643 }
1644
1645 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1646 one, a pointer to its bounds data. Otherwise NULL. */
1647
1648 static struct value *
1649 desc_bounds (struct value *arr)
1650 {
1651 struct type *type = ada_check_typedef (value_type (arr));
1652
1653 if (is_thin_pntr (type))
1654 {
1655 struct type *bounds_type =
1656 desc_bounds_type (thin_descriptor_type (type));
1657 LONGEST addr;
1658
1659 if (bounds_type == NULL)
1660 error (_("Bad GNAT array descriptor"));
1661
1662 /* NOTE: The following calculation is not really kosher, but
1663 since desc_type is an XVE-encoded type (and shouldn't be),
1664 the correct calculation is a real pain. FIXME (and fix GCC). */
1665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1666 addr = value_as_long (arr);
1667 else
1668 addr = value_address (arr);
1669
1670 return
1671 value_from_longest (lookup_pointer_type (bounds_type),
1672 addr - TYPE_LENGTH (bounds_type));
1673 }
1674
1675 else if (is_thick_pntr (type))
1676 {
1677 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1678 _("Bad GNAT array descriptor"));
1679 struct type *p_bounds_type = value_type (p_bounds);
1680
1681 if (p_bounds_type
1682 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1683 {
1684 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1685
1686 if (TYPE_STUB (target_type))
1687 p_bounds = value_cast (lookup_pointer_type
1688 (ada_check_typedef (target_type)),
1689 p_bounds);
1690 }
1691 else
1692 error (_("Bad GNAT array descriptor"));
1693
1694 return p_bounds;
1695 }
1696 else
1697 return NULL;
1698 }
1699
1700 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1701 position of the field containing the address of the bounds data. */
1702
1703 static int
1704 fat_pntr_bounds_bitpos (struct type *type)
1705 {
1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1707 }
1708
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 size of the field containing the address of the bounds data. */
1711
1712 static int
1713 fat_pntr_bounds_bitsize (struct type *type)
1714 {
1715 type = desc_base_type (type);
1716
1717 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1718 return TYPE_FIELD_BITSIZE (type, 1);
1719 else
1720 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1721 }
1722
1723 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1724 pointer to one, the type of its array data (a array-with-no-bounds type);
1725 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1726 data. */
1727
1728 static struct type *
1729 desc_data_target_type (struct type *type)
1730 {
1731 type = desc_base_type (type);
1732
1733 /* NOTE: The following is bogus; see comment in desc_bounds. */
1734 if (is_thin_pntr (type))
1735 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1736 else if (is_thick_pntr (type))
1737 {
1738 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1739
1740 if (data_type
1741 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1742 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1743 }
1744
1745 return NULL;
1746 }
1747
1748 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1749 its array data. */
1750
1751 static struct value *
1752 desc_data (struct value *arr)
1753 {
1754 struct type *type = value_type (arr);
1755
1756 if (is_thin_pntr (type))
1757 return thin_data_pntr (arr);
1758 else if (is_thick_pntr (type))
1759 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1760 _("Bad GNAT array descriptor"));
1761 else
1762 return NULL;
1763 }
1764
1765
1766 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1767 position of the field containing the address of the data. */
1768
1769 static int
1770 fat_pntr_data_bitpos (struct type *type)
1771 {
1772 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1773 }
1774
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 size of the field containing the address of the data. */
1777
1778 static int
1779 fat_pntr_data_bitsize (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1784 return TYPE_FIELD_BITSIZE (type, 0);
1785 else
1786 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1787 }
1788
1789 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1790 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
1793 static struct value *
1794 desc_one_bound (struct value *bounds, int i, int which)
1795 {
1796 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1797 _("Bad GNAT array descriptor bounds"));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure type, return the bit position
1801 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static int
1805 desc_bound_bitpos (struct type *type, int i, int which)
1806 {
1807 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1808 }
1809
1810 /* If BOUNDS is an array-bounds structure type, return the bit field size
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1812 bound, if WHICH is 1. The first bound is I=1. */
1813
1814 static int
1815 desc_bound_bitsize (struct type *type, int i, int which)
1816 {
1817 type = desc_base_type (type);
1818
1819 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1820 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1821 else
1822 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1823 }
1824
1825 /* If TYPE is the type of an array-bounds structure, the type of its
1826 Ith bound (numbering from 1). Otherwise, NULL. */
1827
1828 static struct type *
1829 desc_index_type (struct type *type, int i)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1834 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1835 else
1836 return NULL;
1837 }
1838
1839 /* The number of index positions in the array-bounds type TYPE.
1840 Return 0 if TYPE is NULL. */
1841
1842 static int
1843 desc_arity (struct type *type)
1844 {
1845 type = desc_base_type (type);
1846
1847 if (type != NULL)
1848 return TYPE_NFIELDS (type) / 2;
1849 return 0;
1850 }
1851
1852 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1853 an array descriptor type (representing an unconstrained array
1854 type). */
1855
1856 static int
1857 ada_is_direct_array_type (struct type *type)
1858 {
1859 if (type == NULL)
1860 return 0;
1861 type = ada_check_typedef (type);
1862 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1863 || ada_is_array_descriptor_type (type));
1864 }
1865
1866 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1867 * to one. */
1868
1869 static int
1870 ada_is_array_type (struct type *type)
1871 {
1872 while (type != NULL
1873 && (TYPE_CODE (type) == TYPE_CODE_PTR
1874 || TYPE_CODE (type) == TYPE_CODE_REF))
1875 type = TYPE_TARGET_TYPE (type);
1876 return ada_is_direct_array_type (type);
1877 }
1878
1879 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1880
1881 int
1882 ada_is_simple_array_type (struct type *type)
1883 {
1884 if (type == NULL)
1885 return 0;
1886 type = ada_check_typedef (type);
1887 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1888 || (TYPE_CODE (type) == TYPE_CODE_PTR
1889 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1890 == TYPE_CODE_ARRAY));
1891 }
1892
1893 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1894
1895 int
1896 ada_is_array_descriptor_type (struct type *type)
1897 {
1898 struct type *data_type = desc_data_target_type (type);
1899
1900 if (type == NULL)
1901 return 0;
1902 type = ada_check_typedef (type);
1903 return (data_type != NULL
1904 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1905 && desc_arity (desc_bounds_type (type)) > 0);
1906 }
1907
1908 /* Non-zero iff type is a partially mal-formed GNAT array
1909 descriptor. FIXME: This is to compensate for some problems with
1910 debugging output from GNAT. Re-examine periodically to see if it
1911 is still needed. */
1912
1913 int
1914 ada_is_bogus_array_descriptor (struct type *type)
1915 {
1916 return
1917 type != NULL
1918 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1919 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1920 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1921 && !ada_is_array_descriptor_type (type);
1922 }
1923
1924
1925 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1926 (fat pointer) returns the type of the array data described---specifically,
1927 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1928 in from the descriptor; otherwise, they are left unspecified. If
1929 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1930 returns NULL. The result is simply the type of ARR if ARR is not
1931 a descriptor. */
1932 struct type *
1933 ada_type_of_array (struct value *arr, int bounds)
1934 {
1935 if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array_type (value_type (arr));
1937
1938 if (!ada_is_array_descriptor_type (value_type (arr)))
1939 return value_type (arr);
1940
1941 if (!bounds)
1942 {
1943 struct type *array_type =
1944 ada_check_typedef (desc_data_target_type (value_type (arr)));
1945
1946 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1947 TYPE_FIELD_BITSIZE (array_type, 0) =
1948 decode_packed_array_bitsize (value_type (arr));
1949
1950 return array_type;
1951 }
1952 else
1953 {
1954 struct type *elt_type;
1955 int arity;
1956 struct value *descriptor;
1957
1958 elt_type = ada_array_element_type (value_type (arr), -1);
1959 arity = ada_array_arity (value_type (arr));
1960
1961 if (elt_type == NULL || arity == 0)
1962 return ada_check_typedef (value_type (arr));
1963
1964 descriptor = desc_bounds (arr);
1965 if (value_as_long (descriptor) == 0)
1966 return NULL;
1967 while (arity > 0)
1968 {
1969 struct type *range_type = alloc_type_copy (value_type (arr));
1970 struct type *array_type = alloc_type_copy (value_type (arr));
1971 struct value *low = desc_one_bound (descriptor, arity, 0);
1972 struct value *high = desc_one_bound (descriptor, arity, 1);
1973
1974 arity -= 1;
1975 create_static_range_type (range_type, value_type (low),
1976 longest_to_int (value_as_long (low)),
1977 longest_to_int (value_as_long (high)));
1978 elt_type = create_array_type (array_type, elt_type, range_type);
1979
1980 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1981 {
1982 /* We need to store the element packed bitsize, as well as
1983 recompute the array size, because it was previously
1984 computed based on the unpacked element size. */
1985 LONGEST lo = value_as_long (low);
1986 LONGEST hi = value_as_long (high);
1987
1988 TYPE_FIELD_BITSIZE (elt_type, 0) =
1989 decode_packed_array_bitsize (value_type (arr));
1990 /* If the array has no element, then the size is already
1991 zero, and does not need to be recomputed. */
1992 if (lo < hi)
1993 {
1994 int array_bitsize =
1995 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1996
1997 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1998 }
1999 }
2000 }
2001
2002 return lookup_pointer_type (elt_type);
2003 }
2004 }
2005
2006 /* If ARR does not represent an array, returns ARR unchanged.
2007 Otherwise, returns either a standard GDB array with bounds set
2008 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2009 GDB array. Returns NULL if ARR is a null fat pointer. */
2010
2011 struct value *
2012 ada_coerce_to_simple_array_ptr (struct value *arr)
2013 {
2014 if (ada_is_array_descriptor_type (value_type (arr)))
2015 {
2016 struct type *arrType = ada_type_of_array (arr, 1);
2017
2018 if (arrType == NULL)
2019 return NULL;
2020 return value_cast (arrType, value_copy (desc_data (arr)));
2021 }
2022 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2023 return decode_constrained_packed_array (arr);
2024 else
2025 return arr;
2026 }
2027
2028 /* If ARR does not represent an array, returns ARR unchanged.
2029 Otherwise, returns a standard GDB array describing ARR (which may
2030 be ARR itself if it already is in the proper form). */
2031
2032 struct value *
2033 ada_coerce_to_simple_array (struct value *arr)
2034 {
2035 if (ada_is_array_descriptor_type (value_type (arr)))
2036 {
2037 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2038
2039 if (arrVal == NULL)
2040 error (_("Bounds unavailable for null array pointer."));
2041 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2042 return value_ind (arrVal);
2043 }
2044 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2045 return decode_constrained_packed_array (arr);
2046 else
2047 return arr;
2048 }
2049
2050 /* If TYPE represents a GNAT array type, return it translated to an
2051 ordinary GDB array type (possibly with BITSIZE fields indicating
2052 packing). For other types, is the identity. */
2053
2054 struct type *
2055 ada_coerce_to_simple_array_type (struct type *type)
2056 {
2057 if (ada_is_constrained_packed_array_type (type))
2058 return decode_constrained_packed_array_type (type);
2059
2060 if (ada_is_array_descriptor_type (type))
2061 return ada_check_typedef (desc_data_target_type (type));
2062
2063 return type;
2064 }
2065
2066 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2067
2068 static int
2069 ada_is_packed_array_type (struct type *type)
2070 {
2071 if (type == NULL)
2072 return 0;
2073 type = desc_base_type (type);
2074 type = ada_check_typedef (type);
2075 return
2076 ada_type_name (type) != NULL
2077 && strstr (ada_type_name (type), "___XP") != NULL;
2078 }
2079
2080 /* Non-zero iff TYPE represents a standard GNAT constrained
2081 packed-array type. */
2082
2083 int
2084 ada_is_constrained_packed_array_type (struct type *type)
2085 {
2086 return ada_is_packed_array_type (type)
2087 && !ada_is_array_descriptor_type (type);
2088 }
2089
2090 /* Non-zero iff TYPE represents an array descriptor for a
2091 unconstrained packed-array type. */
2092
2093 static int
2094 ada_is_unconstrained_packed_array_type (struct type *type)
2095 {
2096 return ada_is_packed_array_type (type)
2097 && ada_is_array_descriptor_type (type);
2098 }
2099
2100 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2101 return the size of its elements in bits. */
2102
2103 static long
2104 decode_packed_array_bitsize (struct type *type)
2105 {
2106 const char *raw_name;
2107 const char *tail;
2108 long bits;
2109
2110 /* Access to arrays implemented as fat pointers are encoded as a typedef
2111 of the fat pointer type. We need the name of the fat pointer type
2112 to do the decoding, so strip the typedef layer. */
2113 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2114 type = ada_typedef_target_type (type);
2115
2116 raw_name = ada_type_name (ada_check_typedef (type));
2117 if (!raw_name)
2118 raw_name = ada_type_name (desc_base_type (type));
2119
2120 if (!raw_name)
2121 return 0;
2122
2123 tail = strstr (raw_name, "___XP");
2124 gdb_assert (tail != NULL);
2125
2126 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2127 {
2128 lim_warning
2129 (_("could not understand bit size information on packed array"));
2130 return 0;
2131 }
2132
2133 return bits;
2134 }
2135
2136 /* Given that TYPE is a standard GDB array type with all bounds filled
2137 in, and that the element size of its ultimate scalar constituents
2138 (that is, either its elements, or, if it is an array of arrays, its
2139 elements' elements, etc.) is *ELT_BITS, return an identical type,
2140 but with the bit sizes of its elements (and those of any
2141 constituent arrays) recorded in the BITSIZE components of its
2142 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2143 in bits.
2144
2145 Note that, for arrays whose index type has an XA encoding where
2146 a bound references a record discriminant, getting that discriminant,
2147 and therefore the actual value of that bound, is not possible
2148 because none of the given parameters gives us access to the record.
2149 This function assumes that it is OK in the context where it is being
2150 used to return an array whose bounds are still dynamic and where
2151 the length is arbitrary. */
2152
2153 static struct type *
2154 constrained_packed_array_type (struct type *type, long *elt_bits)
2155 {
2156 struct type *new_elt_type;
2157 struct type *new_type;
2158 struct type *index_type_desc;
2159 struct type *index_type;
2160 LONGEST low_bound, high_bound;
2161
2162 type = ada_check_typedef (type);
2163 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2164 return type;
2165
2166 index_type_desc = ada_find_parallel_type (type, "___XA");
2167 if (index_type_desc)
2168 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2169 NULL);
2170 else
2171 index_type = TYPE_INDEX_TYPE (type);
2172
2173 new_type = alloc_type_copy (type);
2174 new_elt_type =
2175 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2176 elt_bits);
2177 create_array_type (new_type, new_elt_type, index_type);
2178 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2179 TYPE_NAME (new_type) = ada_type_name (type);
2180
2181 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2182 && is_dynamic_type (check_typedef (index_type)))
2183 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
2187 else
2188 {
2189 *elt_bits *= (high_bound - low_bound + 1);
2190 TYPE_LENGTH (new_type) =
2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2192 }
2193
2194 TYPE_FIXED_INSTANCE (new_type) = 1;
2195 return new_type;
2196 }
2197
2198 /* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
2200
2201 static struct type *
2202 decode_constrained_packed_array_type (struct type *type)
2203 {
2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
2205 char *name;
2206 const char *tail;
2207 struct type *shadow_type;
2208 long bits;
2209
2210 if (!raw_name)
2211 raw_name = ada_type_name (desc_base_type (type));
2212
2213 if (!raw_name)
2214 return NULL;
2215
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
2218 type = desc_base_type (type);
2219
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2222
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2224
2225 if (shadow_type == NULL)
2226 {
2227 lim_warning (_("could not find bounds information on packed array"));
2228 return NULL;
2229 }
2230 shadow_type = check_typedef (shadow_type);
2231
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2233 {
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
2236 return NULL;
2237 }
2238
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
2241 }
2242
2243 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
2247 type length is set appropriately. */
2248
2249 static struct value *
2250 decode_constrained_packed_array (struct value *arr)
2251 {
2252 struct type *type;
2253
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2263 arr = value_ind (arr);
2264
2265 type = decode_constrained_packed_array_type (value_type (arr));
2266 if (type == NULL)
2267 {
2268 error (_("can't unpack array"));
2269 return NULL;
2270 }
2271
2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2273 && ada_is_modular_type (value_type (arr)))
2274 {
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2280 ULONGEST mod;
2281
2282 mod = ada_modulus (value_type (arr)) - 1;
2283 bit_size = 0;
2284 while (mod > 0)
2285 {
2286 bit_size += 1;
2287 mod >>= 1;
2288 }
2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2293 bit_size,
2294 type);
2295 }
2296
2297 return coerce_unspec_val_to_type (arr, type);
2298 }
2299
2300
2301 /* The value of the element of packed array ARR at the ARITY indices
2302 given in IND. ARR must be a simple array. */
2303
2304 static struct value *
2305 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2306 {
2307 int i;
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
2310 struct type *elt_type;
2311 struct value *v;
2312
2313 bits = 0;
2314 elt_total_bit_offset = 0;
2315 elt_type = ada_check_typedef (value_type (arr));
2316 for (i = 0; i < arity; i += 1)
2317 {
2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2320 error
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
2323 else
2324 {
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2327 LONGEST idx;
2328
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2330 {
2331 lim_warning (_("don't know bounds of array"));
2332 lowerbound = upperbound = 0;
2333 }
2334
2335 idx = pos_atr (ind[i]);
2336 if (idx < lowerbound || idx > upperbound)
2337 lim_warning (_("packed array index %ld out of bounds"),
2338 (long) idx);
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2342 }
2343 }
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2346
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2348 bits, elt_type);
2349 return v;
2350 }
2351
2352 /* Non-zero iff TYPE includes negative integer values. */
2353
2354 static int
2355 has_negatives (struct type *type)
2356 {
2357 switch (TYPE_CODE (type))
2358 {
2359 default:
2360 return 0;
2361 case TYPE_CODE_INT:
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
2364 return TYPE_LOW_BOUND (type) < 0;
2365 }
2366 }
2367
2368 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2369 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2370 the unpacked buffer.
2371
2372 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2373 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2374
2375 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2376 zero otherwise.
2377
2378 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2379
2380 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2381
2382 static void
2383 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2384 gdb_byte *unpacked, int unpacked_len,
2385 int is_big_endian, int is_signed_type,
2386 int is_scalar)
2387 {
2388 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2389 int src_idx; /* Index into the source area */
2390 int src_bytes_left; /* Number of source bytes left to process. */
2391 int srcBitsLeft; /* Number of source bits left to move */
2392 int unusedLS; /* Number of bits in next significant
2393 byte of source that are unused */
2394
2395 int unpacked_idx; /* Index into the unpacked buffer */
2396 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2397
2398 unsigned long accum; /* Staging area for bits being transferred */
2399 int accumSize; /* Number of meaningful bits in accum */
2400 unsigned char sign;
2401
2402 /* Transmit bytes from least to most significant; delta is the direction
2403 the indices move. */
2404 int delta = is_big_endian ? -1 : 1;
2405
2406 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2407 bits from SRC. .*/
2408 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2409 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2410 bit_size, unpacked_len);
2411
2412 srcBitsLeft = bit_size;
2413 src_bytes_left = src_len;
2414 unpacked_bytes_left = unpacked_len;
2415 sign = 0;
2416
2417 if (is_big_endian)
2418 {
2419 src_idx = src_len - 1;
2420 if (is_signed_type
2421 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2422 sign = ~0;
2423
2424 unusedLS =
2425 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2426 % HOST_CHAR_BIT;
2427
2428 if (is_scalar)
2429 {
2430 accumSize = 0;
2431 unpacked_idx = unpacked_len - 1;
2432 }
2433 else
2434 {
2435 /* Non-scalar values must be aligned at a byte boundary... */
2436 accumSize =
2437 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2438 /* ... And are placed at the beginning (most-significant) bytes
2439 of the target. */
2440 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2441 unpacked_bytes_left = unpacked_idx + 1;
2442 }
2443 }
2444 else
2445 {
2446 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2447
2448 src_idx = unpacked_idx = 0;
2449 unusedLS = bit_offset;
2450 accumSize = 0;
2451
2452 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2453 sign = ~0;
2454 }
2455
2456 accum = 0;
2457 while (src_bytes_left > 0)
2458 {
2459 /* Mask for removing bits of the next source byte that are not
2460 part of the value. */
2461 unsigned int unusedMSMask =
2462 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2463 1;
2464 /* Sign-extend bits for this byte. */
2465 unsigned int signMask = sign & ~unusedMSMask;
2466
2467 accum |=
2468 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2469 accumSize += HOST_CHAR_BIT - unusedLS;
2470 if (accumSize >= HOST_CHAR_BIT)
2471 {
2472 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2473 accumSize -= HOST_CHAR_BIT;
2474 accum >>= HOST_CHAR_BIT;
2475 unpacked_bytes_left -= 1;
2476 unpacked_idx += delta;
2477 }
2478 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2479 unusedLS = 0;
2480 src_bytes_left -= 1;
2481 src_idx += delta;
2482 }
2483 while (unpacked_bytes_left > 0)
2484 {
2485 accum |= sign << accumSize;
2486 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2487 accumSize -= HOST_CHAR_BIT;
2488 if (accumSize < 0)
2489 accumSize = 0;
2490 accum >>= HOST_CHAR_BIT;
2491 unpacked_bytes_left -= 1;
2492 unpacked_idx += delta;
2493 }
2494 }
2495
2496 /* Create a new value of type TYPE from the contents of OBJ starting
2497 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2498 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2499 assigning through the result will set the field fetched from.
2500 VALADDR is ignored unless OBJ is NULL, in which case,
2501 VALADDR+OFFSET must address the start of storage containing the
2502 packed value. The value returned in this case is never an lval.
2503 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2504
2505 struct value *
2506 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2507 long offset, int bit_offset, int bit_size,
2508 struct type *type)
2509 {
2510 struct value *v;
2511 const gdb_byte *src; /* First byte containing data to unpack */
2512 gdb_byte *unpacked;
2513 const int is_scalar = is_scalar_type (type);
2514 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2515 gdb::byte_vector staging;
2516
2517 type = ada_check_typedef (type);
2518
2519 if (obj == NULL)
2520 src = valaddr + offset;
2521 else
2522 src = value_contents (obj) + offset;
2523
2524 if (is_dynamic_type (type))
2525 {
2526 /* The length of TYPE might by dynamic, so we need to resolve
2527 TYPE in order to know its actual size, which we then use
2528 to create the contents buffer of the value we return.
2529 The difficulty is that the data containing our object is
2530 packed, and therefore maybe not at a byte boundary. So, what
2531 we do, is unpack the data into a byte-aligned buffer, and then
2532 use that buffer as our object's value for resolving the type. */
2533 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2534 staging.resize (staging_len);
2535
2536 ada_unpack_from_contents (src, bit_offset, bit_size,
2537 staging.data (), staging.size (),
2538 is_big_endian, has_negatives (type),
2539 is_scalar);
2540 type = resolve_dynamic_type (type, staging.data (), 0);
2541 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2542 {
2543 /* This happens when the length of the object is dynamic,
2544 and is actually smaller than the space reserved for it.
2545 For instance, in an array of variant records, the bit_size
2546 we're given is the array stride, which is constant and
2547 normally equal to the maximum size of its element.
2548 But, in reality, each element only actually spans a portion
2549 of that stride. */
2550 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2551 }
2552 }
2553
2554 if (obj == NULL)
2555 {
2556 v = allocate_value (type);
2557 src = valaddr + offset;
2558 }
2559 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2560 {
2561 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2562 gdb_byte *buf;
2563
2564 v = value_at (type, value_address (obj) + offset);
2565 buf = (gdb_byte *) alloca (src_len);
2566 read_memory (value_address (v), buf, src_len);
2567 src = buf;
2568 }
2569 else
2570 {
2571 v = allocate_value (type);
2572 src = value_contents (obj) + offset;
2573 }
2574
2575 if (obj != NULL)
2576 {
2577 long new_offset = offset;
2578
2579 set_value_component_location (v, obj);
2580 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2581 set_value_bitsize (v, bit_size);
2582 if (value_bitpos (v) >= HOST_CHAR_BIT)
2583 {
2584 ++new_offset;
2585 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2586 }
2587 set_value_offset (v, new_offset);
2588
2589 /* Also set the parent value. This is needed when trying to
2590 assign a new value (in inferior memory). */
2591 set_value_parent (v, obj);
2592 }
2593 else
2594 set_value_bitsize (v, bit_size);
2595 unpacked = value_contents_writeable (v);
2596
2597 if (bit_size == 0)
2598 {
2599 memset (unpacked, 0, TYPE_LENGTH (type));
2600 return v;
2601 }
2602
2603 if (staging.size () == TYPE_LENGTH (type))
2604 {
2605 /* Small short-cut: If we've unpacked the data into a buffer
2606 of the same size as TYPE's length, then we can reuse that,
2607 instead of doing the unpacking again. */
2608 memcpy (unpacked, staging.data (), staging.size ());
2609 }
2610 else
2611 ada_unpack_from_contents (src, bit_offset, bit_size,
2612 unpacked, TYPE_LENGTH (type),
2613 is_big_endian, has_negatives (type), is_scalar);
2614
2615 return v;
2616 }
2617
2618 /* Store the contents of FROMVAL into the location of TOVAL.
2619 Return a new value with the location of TOVAL and contents of
2620 FROMVAL. Handles assignment into packed fields that have
2621 floating-point or non-scalar types. */
2622
2623 static struct value *
2624 ada_value_assign (struct value *toval, struct value *fromval)
2625 {
2626 struct type *type = value_type (toval);
2627 int bits = value_bitsize (toval);
2628
2629 toval = ada_coerce_ref (toval);
2630 fromval = ada_coerce_ref (fromval);
2631
2632 if (ada_is_direct_array_type (value_type (toval)))
2633 toval = ada_coerce_to_simple_array (toval);
2634 if (ada_is_direct_array_type (value_type (fromval)))
2635 fromval = ada_coerce_to_simple_array (fromval);
2636
2637 if (!deprecated_value_modifiable (toval))
2638 error (_("Left operand of assignment is not a modifiable lvalue."));
2639
2640 if (VALUE_LVAL (toval) == lval_memory
2641 && bits > 0
2642 && (TYPE_CODE (type) == TYPE_CODE_FLT
2643 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2644 {
2645 int len = (value_bitpos (toval)
2646 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2647 int from_size;
2648 gdb_byte *buffer = (gdb_byte *) alloca (len);
2649 struct value *val;
2650 CORE_ADDR to_addr = value_address (toval);
2651
2652 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2653 fromval = value_cast (type, fromval);
2654
2655 read_memory (to_addr, buffer, len);
2656 from_size = value_bitsize (fromval);
2657 if (from_size == 0)
2658 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2659
2660 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2661 ULONGEST from_offset = 0;
2662 if (is_big_endian && is_scalar_type (value_type (fromval)))
2663 from_offset = from_size - bits;
2664 copy_bitwise (buffer, value_bitpos (toval),
2665 value_contents (fromval), from_offset,
2666 bits, is_big_endian);
2667 write_memory_with_notification (to_addr, buffer, len);
2668
2669 val = value_copy (toval);
2670 memcpy (value_contents_raw (val), value_contents (fromval),
2671 TYPE_LENGTH (type));
2672 deprecated_set_value_type (val, type);
2673
2674 return val;
2675 }
2676
2677 return value_assign (toval, fromval);
2678 }
2679
2680
2681 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2682 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2683 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2684 COMPONENT, and not the inferior's memory. The current contents
2685 of COMPONENT are ignored.
2686
2687 Although not part of the initial design, this function also works
2688 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2689 had a null address, and COMPONENT had an address which is equal to
2690 its offset inside CONTAINER. */
2691
2692 static void
2693 value_assign_to_component (struct value *container, struct value *component,
2694 struct value *val)
2695 {
2696 LONGEST offset_in_container =
2697 (LONGEST) (value_address (component) - value_address (container));
2698 int bit_offset_in_container =
2699 value_bitpos (component) - value_bitpos (container);
2700 int bits;
2701
2702 val = value_cast (value_type (component), val);
2703
2704 if (value_bitsize (component) == 0)
2705 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2706 else
2707 bits = value_bitsize (component);
2708
2709 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2710 {
2711 int src_offset;
2712
2713 if (is_scalar_type (check_typedef (value_type (component))))
2714 src_offset
2715 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2716 else
2717 src_offset = 0;
2718 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2719 value_bitpos (container) + bit_offset_in_container,
2720 value_contents (val), src_offset, bits, 1);
2721 }
2722 else
2723 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2724 value_bitpos (container) + bit_offset_in_container,
2725 value_contents (val), 0, bits, 0);
2726 }
2727
2728 /* Determine if TYPE is an access to an unconstrained array. */
2729
2730 bool
2731 ada_is_access_to_unconstrained_array (struct type *type)
2732 {
2733 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2734 && is_thick_pntr (ada_typedef_target_type (type)));
2735 }
2736
2737 /* The value of the element of array ARR at the ARITY indices given in IND.
2738 ARR may be either a simple array, GNAT array descriptor, or pointer
2739 thereto. */
2740
2741 struct value *
2742 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2743 {
2744 int k;
2745 struct value *elt;
2746 struct type *elt_type;
2747
2748 elt = ada_coerce_to_simple_array (arr);
2749
2750 elt_type = ada_check_typedef (value_type (elt));
2751 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2752 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2753 return value_subscript_packed (elt, arity, ind);
2754
2755 for (k = 0; k < arity; k += 1)
2756 {
2757 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2758
2759 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2760 error (_("too many subscripts (%d expected)"), k);
2761
2762 elt = value_subscript (elt, pos_atr (ind[k]));
2763
2764 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2765 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2766 {
2767 /* The element is a typedef to an unconstrained array,
2768 except that the value_subscript call stripped the
2769 typedef layer. The typedef layer is GNAT's way to
2770 specify that the element is, at the source level, an
2771 access to the unconstrained array, rather than the
2772 unconstrained array. So, we need to restore that
2773 typedef layer, which we can do by forcing the element's
2774 type back to its original type. Otherwise, the returned
2775 value is going to be printed as the array, rather
2776 than as an access. Another symptom of the same issue
2777 would be that an expression trying to dereference the
2778 element would also be improperly rejected. */
2779 deprecated_set_value_type (elt, saved_elt_type);
2780 }
2781
2782 elt_type = ada_check_typedef (value_type (elt));
2783 }
2784
2785 return elt;
2786 }
2787
2788 /* Assuming ARR is a pointer to a GDB array, the value of the element
2789 of *ARR at the ARITY indices given in IND.
2790 Does not read the entire array into memory.
2791
2792 Note: Unlike what one would expect, this function is used instead of
2793 ada_value_subscript for basically all non-packed array types. The reason
2794 for this is that a side effect of doing our own pointer arithmetics instead
2795 of relying on value_subscript is that there is no implicit typedef peeling.
2796 This is important for arrays of array accesses, where it allows us to
2797 preserve the fact that the array's element is an array access, where the
2798 access part os encoded in a typedef layer. */
2799
2800 static struct value *
2801 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2802 {
2803 int k;
2804 struct value *array_ind = ada_value_ind (arr);
2805 struct type *type
2806 = check_typedef (value_enclosing_type (array_ind));
2807
2808 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2809 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2810 return value_subscript_packed (array_ind, arity, ind);
2811
2812 for (k = 0; k < arity; k += 1)
2813 {
2814 LONGEST lwb, upb;
2815 struct value *lwb_value;
2816
2817 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2818 error (_("too many subscripts (%d expected)"), k);
2819 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2820 value_copy (arr));
2821 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2822 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2823 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2824 type = TYPE_TARGET_TYPE (type);
2825 }
2826
2827 return value_ind (arr);
2828 }
2829
2830 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2831 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2832 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2833 this array is LOW, as per Ada rules. */
2834 static struct value *
2835 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2836 int low, int high)
2837 {
2838 struct type *type0 = ada_check_typedef (type);
2839 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2840 struct type *index_type
2841 = create_static_range_type (NULL, base_index_type, low, high);
2842 struct type *slice_type = create_array_type_with_stride
2843 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2844 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2845 TYPE_FIELD_BITSIZE (type0, 0));
2846 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2847 LONGEST base_low_pos, low_pos;
2848 CORE_ADDR base;
2849
2850 if (!discrete_position (base_index_type, low, &low_pos)
2851 || !discrete_position (base_index_type, base_low, &base_low_pos))
2852 {
2853 warning (_("unable to get positions in slice, use bounds instead"));
2854 low_pos = low;
2855 base_low_pos = base_low;
2856 }
2857
2858 base = value_as_address (array_ptr)
2859 + ((low_pos - base_low_pos)
2860 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2861 return value_at_lazy (slice_type, base);
2862 }
2863
2864
2865 static struct value *
2866 ada_value_slice (struct value *array, int low, int high)
2867 {
2868 struct type *type = ada_check_typedef (value_type (array));
2869 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2870 struct type *index_type
2871 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2872 struct type *slice_type = create_array_type_with_stride
2873 (NULL, TYPE_TARGET_TYPE (type), index_type,
2874 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2875 TYPE_FIELD_BITSIZE (type, 0));
2876 LONGEST low_pos, high_pos;
2877
2878 if (!discrete_position (base_index_type, low, &low_pos)
2879 || !discrete_position (base_index_type, high, &high_pos))
2880 {
2881 warning (_("unable to get positions in slice, use bounds instead"));
2882 low_pos = low;
2883 high_pos = high;
2884 }
2885
2886 return value_cast (slice_type,
2887 value_slice (array, low, high_pos - low_pos + 1));
2888 }
2889
2890 /* If type is a record type in the form of a standard GNAT array
2891 descriptor, returns the number of dimensions for type. If arr is a
2892 simple array, returns the number of "array of"s that prefix its
2893 type designation. Otherwise, returns 0. */
2894
2895 int
2896 ada_array_arity (struct type *type)
2897 {
2898 int arity;
2899
2900 if (type == NULL)
2901 return 0;
2902
2903 type = desc_base_type (type);
2904
2905 arity = 0;
2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2907 return desc_arity (desc_bounds_type (type));
2908 else
2909 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2910 {
2911 arity += 1;
2912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2913 }
2914
2915 return arity;
2916 }
2917
2918 /* If TYPE is a record type in the form of a standard GNAT array
2919 descriptor or a simple array type, returns the element type for
2920 TYPE after indexing by NINDICES indices, or by all indices if
2921 NINDICES is -1. Otherwise, returns NULL. */
2922
2923 struct type *
2924 ada_array_element_type (struct type *type, int nindices)
2925 {
2926 type = desc_base_type (type);
2927
2928 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2929 {
2930 int k;
2931 struct type *p_array_type;
2932
2933 p_array_type = desc_data_target_type (type);
2934
2935 k = ada_array_arity (type);
2936 if (k == 0)
2937 return NULL;
2938
2939 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2940 if (nindices >= 0 && k > nindices)
2941 k = nindices;
2942 while (k > 0 && p_array_type != NULL)
2943 {
2944 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2945 k -= 1;
2946 }
2947 return p_array_type;
2948 }
2949 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2950 {
2951 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2952 {
2953 type = TYPE_TARGET_TYPE (type);
2954 nindices -= 1;
2955 }
2956 return type;
2957 }
2958
2959 return NULL;
2960 }
2961
2962 /* The type of nth index in arrays of given type (n numbering from 1).
2963 Does not examine memory. Throws an error if N is invalid or TYPE
2964 is not an array type. NAME is the name of the Ada attribute being
2965 evaluated ('range, 'first, 'last, or 'length); it is used in building
2966 the error message. */
2967
2968 static struct type *
2969 ada_index_type (struct type *type, int n, const char *name)
2970 {
2971 struct type *result_type;
2972
2973 type = desc_base_type (type);
2974
2975 if (n < 0 || n > ada_array_arity (type))
2976 error (_("invalid dimension number to '%s"), name);
2977
2978 if (ada_is_simple_array_type (type))
2979 {
2980 int i;
2981
2982 for (i = 1; i < n; i += 1)
2983 type = TYPE_TARGET_TYPE (type);
2984 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2985 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2986 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2987 perhaps stabsread.c would make more sense. */
2988 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2989 result_type = NULL;
2990 }
2991 else
2992 {
2993 result_type = desc_index_type (desc_bounds_type (type), n);
2994 if (result_type == NULL)
2995 error (_("attempt to take bound of something that is not an array"));
2996 }
2997
2998 return result_type;
2999 }
3000
3001 /* Given that arr is an array type, returns the lower bound of the
3002 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3003 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3004 array-descriptor type. It works for other arrays with bounds supplied
3005 by run-time quantities other than discriminants. */
3006
3007 static LONGEST
3008 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3009 {
3010 struct type *type, *index_type_desc, *index_type;
3011 int i;
3012
3013 gdb_assert (which == 0 || which == 1);
3014
3015 if (ada_is_constrained_packed_array_type (arr_type))
3016 arr_type = decode_constrained_packed_array_type (arr_type);
3017
3018 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3019 return (LONGEST) - which;
3020
3021 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3022 type = TYPE_TARGET_TYPE (arr_type);
3023 else
3024 type = arr_type;
3025
3026 if (TYPE_FIXED_INSTANCE (type))
3027 {
3028 /* The array has already been fixed, so we do not need to
3029 check the parallel ___XA type again. That encoding has
3030 already been applied, so ignore it now. */
3031 index_type_desc = NULL;
3032 }
3033 else
3034 {
3035 index_type_desc = ada_find_parallel_type (type, "___XA");
3036 ada_fixup_array_indexes_type (index_type_desc);
3037 }
3038
3039 if (index_type_desc != NULL)
3040 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3041 NULL);
3042 else
3043 {
3044 struct type *elt_type = check_typedef (type);
3045
3046 for (i = 1; i < n; i++)
3047 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3048
3049 index_type = TYPE_INDEX_TYPE (elt_type);
3050 }
3051
3052 return
3053 (LONGEST) (which == 0
3054 ? ada_discrete_type_low_bound (index_type)
3055 : ada_discrete_type_high_bound (index_type));
3056 }
3057
3058 /* Given that arr is an array value, returns the lower bound of the
3059 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3060 WHICH is 1. This routine will also work for arrays with bounds
3061 supplied by run-time quantities other than discriminants. */
3062
3063 static LONGEST
3064 ada_array_bound (struct value *arr, int n, int which)
3065 {
3066 struct type *arr_type;
3067
3068 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3069 arr = value_ind (arr);
3070 arr_type = value_enclosing_type (arr);
3071
3072 if (ada_is_constrained_packed_array_type (arr_type))
3073 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3074 else if (ada_is_simple_array_type (arr_type))
3075 return ada_array_bound_from_type (arr_type, n, which);
3076 else
3077 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3078 }
3079
3080 /* Given that arr is an array value, returns the length of the
3081 nth index. This routine will also work for arrays with bounds
3082 supplied by run-time quantities other than discriminants.
3083 Does not work for arrays indexed by enumeration types with representation
3084 clauses at the moment. */
3085
3086 static LONGEST
3087 ada_array_length (struct value *arr, int n)
3088 {
3089 struct type *arr_type, *index_type;
3090 int low, high;
3091
3092 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3093 arr = value_ind (arr);
3094 arr_type = value_enclosing_type (arr);
3095
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 return ada_array_length (decode_constrained_packed_array (arr), n);
3098
3099 if (ada_is_simple_array_type (arr_type))
3100 {
3101 low = ada_array_bound_from_type (arr_type, n, 0);
3102 high = ada_array_bound_from_type (arr_type, n, 1);
3103 }
3104 else
3105 {
3106 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3107 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3108 }
3109
3110 arr_type = check_typedef (arr_type);
3111 index_type = ada_index_type (arr_type, n, "length");
3112 if (index_type != NULL)
3113 {
3114 struct type *base_type;
3115 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3116 base_type = TYPE_TARGET_TYPE (index_type);
3117 else
3118 base_type = index_type;
3119
3120 low = pos_atr (value_from_longest (base_type, low));
3121 high = pos_atr (value_from_longest (base_type, high));
3122 }
3123 return high - low + 1;
3124 }
3125
3126 /* An array whose type is that of ARR_TYPE (an array type), with
3127 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3128 less than LOW, then LOW-1 is used. */
3129
3130 static struct value *
3131 empty_array (struct type *arr_type, int low, int high)
3132 {
3133 struct type *arr_type0 = ada_check_typedef (arr_type);
3134 struct type *index_type
3135 = create_static_range_type
3136 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3137 high < low ? low - 1 : high);
3138 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3139
3140 return allocate_value (create_array_type (NULL, elt_type, index_type));
3141 }
3142 \f
3143
3144 /* Name resolution */
3145
3146 /* The "decoded" name for the user-definable Ada operator corresponding
3147 to OP. */
3148
3149 static const char *
3150 ada_decoded_op_name (enum exp_opcode op)
3151 {
3152 int i;
3153
3154 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3155 {
3156 if (ada_opname_table[i].op == op)
3157 return ada_opname_table[i].decoded;
3158 }
3159 error (_("Could not find operator name for opcode"));
3160 }
3161
3162
3163 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3164 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3165 undefined namespace) and converts operators that are
3166 user-defined into appropriate function calls. If CONTEXT_TYPE is
3167 non-null, it provides a preferred result type [at the moment, only
3168 type void has any effect---causing procedures to be preferred over
3169 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3170 return type is preferred. May change (expand) *EXP. */
3171
3172 static void
3173 resolve (expression_up *expp, int void_context_p, int parse_completion,
3174 innermost_block_tracker *tracker)
3175 {
3176 struct type *context_type = NULL;
3177 int pc = 0;
3178
3179 if (void_context_p)
3180 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3181
3182 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3183 }
3184
3185 /* Resolve the operator of the subexpression beginning at
3186 position *POS of *EXPP. "Resolving" consists of replacing
3187 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3188 with their resolutions, replacing built-in operators with
3189 function calls to user-defined operators, where appropriate, and,
3190 when DEPROCEDURE_P is non-zero, converting function-valued variables
3191 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3192 are as in ada_resolve, above. */
3193
3194 static struct value *
3195 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3196 struct type *context_type, int parse_completion,
3197 innermost_block_tracker *tracker)
3198 {
3199 int pc = *pos;
3200 int i;
3201 struct expression *exp; /* Convenience: == *expp. */
3202 enum exp_opcode op = (*expp)->elts[pc].opcode;
3203 struct value **argvec; /* Vector of operand types (alloca'ed). */
3204 int nargs; /* Number of operands. */
3205 int oplen;
3206
3207 argvec = NULL;
3208 nargs = 0;
3209 exp = expp->get ();
3210
3211 /* Pass one: resolve operands, saving their types and updating *pos,
3212 if needed. */
3213 switch (op)
3214 {
3215 case OP_FUNCALL:
3216 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3218 *pos += 7;
3219 else
3220 {
3221 *pos += 3;
3222 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3223 }
3224 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3225 break;
3226
3227 case UNOP_ADDR:
3228 *pos += 1;
3229 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3230 break;
3231
3232 case UNOP_QUAL:
3233 *pos += 3;
3234 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3235 parse_completion, tracker);
3236 break;
3237
3238 case OP_ATR_MODULUS:
3239 case OP_ATR_SIZE:
3240 case OP_ATR_TAG:
3241 case OP_ATR_FIRST:
3242 case OP_ATR_LAST:
3243 case OP_ATR_LENGTH:
3244 case OP_ATR_POS:
3245 case OP_ATR_VAL:
3246 case OP_ATR_MIN:
3247 case OP_ATR_MAX:
3248 case TERNOP_IN_RANGE:
3249 case BINOP_IN_BOUNDS:
3250 case UNOP_IN_RANGE:
3251 case OP_AGGREGATE:
3252 case OP_OTHERS:
3253 case OP_CHOICES:
3254 case OP_POSITIONAL:
3255 case OP_DISCRETE_RANGE:
3256 case OP_NAME:
3257 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3258 *pos += oplen;
3259 break;
3260
3261 case BINOP_ASSIGN:
3262 {
3263 struct value *arg1;
3264
3265 *pos += 1;
3266 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3267 if (arg1 == NULL)
3268 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3269 else
3270 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3271 tracker);
3272 break;
3273 }
3274
3275 case UNOP_CAST:
3276 *pos += 3;
3277 nargs = 1;
3278 break;
3279
3280 case BINOP_ADD:
3281 case BINOP_SUB:
3282 case BINOP_MUL:
3283 case BINOP_DIV:
3284 case BINOP_REM:
3285 case BINOP_MOD:
3286 case BINOP_EXP:
3287 case BINOP_CONCAT:
3288 case BINOP_LOGICAL_AND:
3289 case BINOP_LOGICAL_OR:
3290 case BINOP_BITWISE_AND:
3291 case BINOP_BITWISE_IOR:
3292 case BINOP_BITWISE_XOR:
3293
3294 case BINOP_EQUAL:
3295 case BINOP_NOTEQUAL:
3296 case BINOP_LESS:
3297 case BINOP_GTR:
3298 case BINOP_LEQ:
3299 case BINOP_GEQ:
3300
3301 case BINOP_REPEAT:
3302 case BINOP_SUBSCRIPT:
3303 case BINOP_COMMA:
3304 *pos += 1;
3305 nargs = 2;
3306 break;
3307
3308 case UNOP_NEG:
3309 case UNOP_PLUS:
3310 case UNOP_LOGICAL_NOT:
3311 case UNOP_ABS:
3312 case UNOP_IND:
3313 *pos += 1;
3314 nargs = 1;
3315 break;
3316
3317 case OP_LONG:
3318 case OP_FLOAT:
3319 case OP_VAR_VALUE:
3320 case OP_VAR_MSYM_VALUE:
3321 *pos += 4;
3322 break;
3323
3324 case OP_TYPE:
3325 case OP_BOOL:
3326 case OP_LAST:
3327 case OP_INTERNALVAR:
3328 *pos += 3;
3329 break;
3330
3331 case UNOP_MEMVAL:
3332 *pos += 3;
3333 nargs = 1;
3334 break;
3335
3336 case OP_REGISTER:
3337 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3338 break;
3339
3340 case STRUCTOP_STRUCT:
3341 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3342 nargs = 1;
3343 break;
3344
3345 case TERNOP_SLICE:
3346 *pos += 1;
3347 nargs = 3;
3348 break;
3349
3350 case OP_STRING:
3351 break;
3352
3353 default:
3354 error (_("Unexpected operator during name resolution"));
3355 }
3356
3357 argvec = XALLOCAVEC (struct value *, nargs + 1);
3358 for (i = 0; i < nargs; i += 1)
3359 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3360 tracker);
3361 argvec[i] = NULL;
3362 exp = expp->get ();
3363
3364 /* Pass two: perform any resolution on principal operator. */
3365 switch (op)
3366 {
3367 default:
3368 break;
3369
3370 case OP_VAR_VALUE:
3371 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3372 {
3373 std::vector<struct block_symbol> candidates;
3374 int n_candidates;
3375
3376 n_candidates =
3377 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3378 (exp->elts[pc + 2].symbol),
3379 exp->elts[pc + 1].block, VAR_DOMAIN,
3380 &candidates);
3381
3382 if (n_candidates > 1)
3383 {
3384 /* Types tend to get re-introduced locally, so if there
3385 are any local symbols that are not types, first filter
3386 out all types. */
3387 int j;
3388 for (j = 0; j < n_candidates; j += 1)
3389 switch (SYMBOL_CLASS (candidates[j].symbol))
3390 {
3391 case LOC_REGISTER:
3392 case LOC_ARG:
3393 case LOC_REF_ARG:
3394 case LOC_REGPARM_ADDR:
3395 case LOC_LOCAL:
3396 case LOC_COMPUTED:
3397 goto FoundNonType;
3398 default:
3399 break;
3400 }
3401 FoundNonType:
3402 if (j < n_candidates)
3403 {
3404 j = 0;
3405 while (j < n_candidates)
3406 {
3407 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3408 {
3409 candidates[j] = candidates[n_candidates - 1];
3410 n_candidates -= 1;
3411 }
3412 else
3413 j += 1;
3414 }
3415 }
3416 }
3417
3418 if (n_candidates == 0)
3419 error (_("No definition found for %s"),
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 else if (n_candidates == 1)
3422 i = 0;
3423 else if (deprocedure_p
3424 && !is_nonfunction (candidates.data (), n_candidates))
3425 {
3426 i = ada_resolve_function
3427 (candidates.data (), n_candidates, NULL, 0,
3428 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3429 context_type, parse_completion);
3430 if (i < 0)
3431 error (_("Could not find a match for %s"),
3432 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3433 }
3434 else
3435 {
3436 printf_filtered (_("Multiple matches for %s\n"),
3437 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3438 user_select_syms (candidates.data (), n_candidates, 1);
3439 i = 0;
3440 }
3441
3442 exp->elts[pc + 1].block = candidates[i].block;
3443 exp->elts[pc + 2].symbol = candidates[i].symbol;
3444 tracker->update (candidates[i]);
3445 }
3446
3447 if (deprocedure_p
3448 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3449 == TYPE_CODE_FUNC))
3450 {
3451 replace_operator_with_call (expp, pc, 0, 4,
3452 exp->elts[pc + 2].symbol,
3453 exp->elts[pc + 1].block);
3454 exp = expp->get ();
3455 }
3456 break;
3457
3458 case OP_FUNCALL:
3459 {
3460 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3461 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3462 {
3463 std::vector<struct block_symbol> candidates;
3464 int n_candidates;
3465
3466 n_candidates =
3467 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3468 (exp->elts[pc + 5].symbol),
3469 exp->elts[pc + 4].block, VAR_DOMAIN,
3470 &candidates);
3471
3472 if (n_candidates == 1)
3473 i = 0;
3474 else
3475 {
3476 i = ada_resolve_function
3477 (candidates.data (), n_candidates,
3478 argvec, nargs,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3484 }
3485
3486 exp->elts[pc + 4].block = candidates[i].block;
3487 exp->elts[pc + 5].symbol = candidates[i].symbol;
3488 tracker->update (candidates[i]);
3489 }
3490 }
3491 break;
3492 case BINOP_ADD:
3493 case BINOP_SUB:
3494 case BINOP_MUL:
3495 case BINOP_DIV:
3496 case BINOP_REM:
3497 case BINOP_MOD:
3498 case BINOP_CONCAT:
3499 case BINOP_BITWISE_AND:
3500 case BINOP_BITWISE_IOR:
3501 case BINOP_BITWISE_XOR:
3502 case BINOP_EQUAL:
3503 case BINOP_NOTEQUAL:
3504 case BINOP_LESS:
3505 case BINOP_GTR:
3506 case BINOP_LEQ:
3507 case BINOP_GEQ:
3508 case BINOP_EXP:
3509 case UNOP_NEG:
3510 case UNOP_PLUS:
3511 case UNOP_LOGICAL_NOT:
3512 case UNOP_ABS:
3513 if (possible_user_operator_p (op, argvec))
3514 {
3515 std::vector<struct block_symbol> candidates;
3516 int n_candidates;
3517
3518 n_candidates =
3519 ada_lookup_symbol_list (ada_decoded_op_name (op),
3520 NULL, VAR_DOMAIN,
3521 &candidates);
3522
3523 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3524 nargs, ada_decoded_op_name (op), NULL,
3525 parse_completion);
3526 if (i < 0)
3527 break;
3528
3529 replace_operator_with_call (expp, pc, nargs, 1,
3530 candidates[i].symbol,
3531 candidates[i].block);
3532 exp = expp->get ();
3533 }
3534 break;
3535
3536 case OP_TYPE:
3537 case OP_REGISTER:
3538 return NULL;
3539 }
3540
3541 *pos = pc;
3542 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3543 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3544 exp->elts[pc + 1].objfile,
3545 exp->elts[pc + 2].msymbol);
3546 else
3547 return evaluate_subexp_type (exp, pos);
3548 }
3549
3550 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3551 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3552 a non-pointer. */
3553 /* The term "match" here is rather loose. The match is heuristic and
3554 liberal. */
3555
3556 static int
3557 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3558 {
3559 ftype = ada_check_typedef (ftype);
3560 atype = ada_check_typedef (atype);
3561
3562 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3563 ftype = TYPE_TARGET_TYPE (ftype);
3564 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3565 atype = TYPE_TARGET_TYPE (atype);
3566
3567 switch (TYPE_CODE (ftype))
3568 {
3569 default:
3570 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3571 case TYPE_CODE_PTR:
3572 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3573 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3574 TYPE_TARGET_TYPE (atype), 0);
3575 else
3576 return (may_deref
3577 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3578 case TYPE_CODE_INT:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_RANGE:
3581 switch (TYPE_CODE (atype))
3582 {
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_ENUM:
3585 case TYPE_CODE_RANGE:
3586 return 1;
3587 default:
3588 return 0;
3589 }
3590
3591 case TYPE_CODE_ARRAY:
3592 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3593 || ada_is_array_descriptor_type (atype));
3594
3595 case TYPE_CODE_STRUCT:
3596 if (ada_is_array_descriptor_type (ftype))
3597 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3598 || ada_is_array_descriptor_type (atype));
3599 else
3600 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3601 && !ada_is_array_descriptor_type (atype));
3602
3603 case TYPE_CODE_UNION:
3604 case TYPE_CODE_FLT:
3605 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3606 }
3607 }
3608
3609 /* Return non-zero if the formals of FUNC "sufficiently match" the
3610 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3611 may also be an enumeral, in which case it is treated as a 0-
3612 argument function. */
3613
3614 static int
3615 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3616 {
3617 int i;
3618 struct type *func_type = SYMBOL_TYPE (func);
3619
3620 if (SYMBOL_CLASS (func) == LOC_CONST
3621 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3622 return (n_actuals == 0);
3623 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3624 return 0;
3625
3626 if (TYPE_NFIELDS (func_type) != n_actuals)
3627 return 0;
3628
3629 for (i = 0; i < n_actuals; i += 1)
3630 {
3631 if (actuals[i] == NULL)
3632 return 0;
3633 else
3634 {
3635 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3636 i));
3637 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3638
3639 if (!ada_type_match (ftype, atype, 1))
3640 return 0;
3641 }
3642 }
3643 return 1;
3644 }
3645
3646 /* False iff function type FUNC_TYPE definitely does not produce a value
3647 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3648 FUNC_TYPE is not a valid function type with a non-null return type
3649 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3650
3651 static int
3652 return_match (struct type *func_type, struct type *context_type)
3653 {
3654 struct type *return_type;
3655
3656 if (func_type == NULL)
3657 return 1;
3658
3659 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3660 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3661 else
3662 return_type = get_base_type (func_type);
3663 if (return_type == NULL)
3664 return 1;
3665
3666 context_type = get_base_type (context_type);
3667
3668 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3669 return context_type == NULL || return_type == context_type;
3670 else if (context_type == NULL)
3671 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3672 else
3673 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3674 }
3675
3676
3677 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3678 function (if any) that matches the types of the NARGS arguments in
3679 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3680 that returns that type, then eliminate matches that don't. If
3681 CONTEXT_TYPE is void and there is at least one match that does not
3682 return void, eliminate all matches that do.
3683
3684 Asks the user if there is more than one match remaining. Returns -1
3685 if there is no such symbol or none is selected. NAME is used
3686 solely for messages. May re-arrange and modify SYMS in
3687 the process; the index returned is for the modified vector. */
3688
3689 static int
3690 ada_resolve_function (struct block_symbol syms[],
3691 int nsyms, struct value **args, int nargs,
3692 const char *name, struct type *context_type,
3693 int parse_completion)
3694 {
3695 int fallback;
3696 int k;
3697 int m; /* Number of hits */
3698
3699 m = 0;
3700 /* In the first pass of the loop, we only accept functions matching
3701 context_type. If none are found, we add a second pass of the loop
3702 where every function is accepted. */
3703 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3704 {
3705 for (k = 0; k < nsyms; k += 1)
3706 {
3707 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3708
3709 if (ada_args_match (syms[k].symbol, args, nargs)
3710 && (fallback || return_match (type, context_type)))
3711 {
3712 syms[m] = syms[k];
3713 m += 1;
3714 }
3715 }
3716 }
3717
3718 /* If we got multiple matches, ask the user which one to use. Don't do this
3719 interactive thing during completion, though, as the purpose of the
3720 completion is providing a list of all possible matches. Prompting the
3721 user to filter it down would be completely unexpected in this case. */
3722 if (m == 0)
3723 return -1;
3724 else if (m > 1 && !parse_completion)
3725 {
3726 printf_filtered (_("Multiple matches for %s\n"), name);
3727 user_select_syms (syms, m, 1);
3728 return 0;
3729 }
3730 return 0;
3731 }
3732
3733 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3734 in a listing of choices during disambiguation (see sort_choices, below).
3735 The idea is that overloadings of a subprogram name from the
3736 same package should sort in their source order. We settle for ordering
3737 such symbols by their trailing number (__N or $N). */
3738
3739 static int
3740 encoded_ordered_before (const char *N0, const char *N1)
3741 {
3742 if (N1 == NULL)
3743 return 0;
3744 else if (N0 == NULL)
3745 return 1;
3746 else
3747 {
3748 int k0, k1;
3749
3750 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3751 ;
3752 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3753 ;
3754 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3755 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3756 {
3757 int n0, n1;
3758
3759 n0 = k0;
3760 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3761 n0 -= 1;
3762 n1 = k1;
3763 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3764 n1 -= 1;
3765 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3766 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3767 }
3768 return (strcmp (N0, N1) < 0);
3769 }
3770 }
3771
3772 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3773 encoded names. */
3774
3775 static void
3776 sort_choices (struct block_symbol syms[], int nsyms)
3777 {
3778 int i;
3779
3780 for (i = 1; i < nsyms; i += 1)
3781 {
3782 struct block_symbol sym = syms[i];
3783 int j;
3784
3785 for (j = i - 1; j >= 0; j -= 1)
3786 {
3787 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3788 SYMBOL_LINKAGE_NAME (sym.symbol)))
3789 break;
3790 syms[j + 1] = syms[j];
3791 }
3792 syms[j + 1] = sym;
3793 }
3794 }
3795
3796 /* Whether GDB should display formals and return types for functions in the
3797 overloads selection menu. */
3798 static int print_signatures = 1;
3799
3800 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3801 all but functions, the signature is just the name of the symbol. For
3802 functions, this is the name of the function, the list of types for formals
3803 and the return type (if any). */
3804
3805 static void
3806 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3807 const struct type_print_options *flags)
3808 {
3809 struct type *type = SYMBOL_TYPE (sym);
3810
3811 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3812 if (!print_signatures
3813 || type == NULL
3814 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3815 return;
3816
3817 if (TYPE_NFIELDS (type) > 0)
3818 {
3819 int i;
3820
3821 fprintf_filtered (stream, " (");
3822 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3823 {
3824 if (i > 0)
3825 fprintf_filtered (stream, "; ");
3826 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3827 flags);
3828 }
3829 fprintf_filtered (stream, ")");
3830 }
3831 if (TYPE_TARGET_TYPE (type) != NULL
3832 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3833 {
3834 fprintf_filtered (stream, " return ");
3835 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3836 }
3837 }
3838
3839 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3840 by asking the user (if necessary), returning the number selected,
3841 and setting the first elements of SYMS items. Error if no symbols
3842 selected. */
3843
3844 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3845 to be re-integrated one of these days. */
3846
3847 int
3848 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3849 {
3850 int i;
3851 int *chosen = XALLOCAVEC (int , nsyms);
3852 int n_chosen;
3853 int first_choice = (max_results == 1) ? 1 : 2;
3854 const char *select_mode = multiple_symbols_select_mode ();
3855
3856 if (max_results < 1)
3857 error (_("Request to select 0 symbols!"));
3858 if (nsyms <= 1)
3859 return nsyms;
3860
3861 if (select_mode == multiple_symbols_cancel)
3862 error (_("\
3863 canceled because the command is ambiguous\n\
3864 See set/show multiple-symbol."));
3865
3866 /* If select_mode is "all", then return all possible symbols.
3867 Only do that if more than one symbol can be selected, of course.
3868 Otherwise, display the menu as usual. */
3869 if (select_mode == multiple_symbols_all && max_results > 1)
3870 return nsyms;
3871
3872 printf_filtered (_("[0] cancel\n"));
3873 if (max_results > 1)
3874 printf_filtered (_("[1] all\n"));
3875
3876 sort_choices (syms, nsyms);
3877
3878 for (i = 0; i < nsyms; i += 1)
3879 {
3880 if (syms[i].symbol == NULL)
3881 continue;
3882
3883 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3884 {
3885 struct symtab_and_line sal =
3886 find_function_start_sal (syms[i].symbol, 1);
3887
3888 printf_filtered ("[%d] ", i + first_choice);
3889 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3890 &type_print_raw_options);
3891 if (sal.symtab == NULL)
3892 printf_filtered (_(" at <no source file available>:%d\n"),
3893 sal.line);
3894 else
3895 printf_filtered (_(" at %s:%d\n"),
3896 symtab_to_filename_for_display (sal.symtab),
3897 sal.line);
3898 continue;
3899 }
3900 else
3901 {
3902 int is_enumeral =
3903 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3904 && SYMBOL_TYPE (syms[i].symbol) != NULL
3905 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3906 struct symtab *symtab = NULL;
3907
3908 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3909 symtab = symbol_symtab (syms[i].symbol);
3910
3911 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3912 {
3913 printf_filtered ("[%d] ", i + first_choice);
3914 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3915 &type_print_raw_options);
3916 printf_filtered (_(" at %s:%d\n"),
3917 symtab_to_filename_for_display (symtab),
3918 SYMBOL_LINE (syms[i].symbol));
3919 }
3920 else if (is_enumeral
3921 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3922 {
3923 printf_filtered (("[%d] "), i + first_choice);
3924 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3925 gdb_stdout, -1, 0, &type_print_raw_options);
3926 printf_filtered (_("'(%s) (enumeral)\n"),
3927 SYMBOL_PRINT_NAME (syms[i].symbol));
3928 }
3929 else
3930 {
3931 printf_filtered ("[%d] ", i + first_choice);
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934
3935 if (symtab != NULL)
3936 printf_filtered (is_enumeral
3937 ? _(" in %s (enumeral)\n")
3938 : _(" at %s:?\n"),
3939 symtab_to_filename_for_display (symtab));
3940 else
3941 printf_filtered (is_enumeral
3942 ? _(" (enumeral)\n")
3943 : _(" at ?\n"));
3944 }
3945 }
3946 }
3947
3948 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3949 "overload-choice");
3950
3951 for (i = 0; i < n_chosen; i += 1)
3952 syms[i] = syms[chosen[i]];
3953
3954 return n_chosen;
3955 }
3956
3957 /* Read and validate a set of numeric choices from the user in the
3958 range 0 .. N_CHOICES-1. Place the results in increasing
3959 order in CHOICES[0 .. N-1], and return N.
3960
3961 The user types choices as a sequence of numbers on one line
3962 separated by blanks, encoding them as follows:
3963
3964 + A choice of 0 means to cancel the selection, throwing an error.
3965 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3966 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3967
3968 The user is not allowed to choose more than MAX_RESULTS values.
3969
3970 ANNOTATION_SUFFIX, if present, is used to annotate the input
3971 prompts (for use with the -f switch). */
3972
3973 int
3974 get_selections (int *choices, int n_choices, int max_results,
3975 int is_all_choice, const char *annotation_suffix)
3976 {
3977 char *args;
3978 const char *prompt;
3979 int n_chosen;
3980 int first_choice = is_all_choice ? 2 : 1;
3981
3982 prompt = getenv ("PS2");
3983 if (prompt == NULL)
3984 prompt = "> ";
3985
3986 args = command_line_input (prompt, annotation_suffix);
3987
3988 if (args == NULL)
3989 error_no_arg (_("one or more choice numbers"));
3990
3991 n_chosen = 0;
3992
3993 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3994 order, as given in args. Choices are validated. */
3995 while (1)
3996 {
3997 char *args2;
3998 int choice, j;
3999
4000 args = skip_spaces (args);
4001 if (*args == '\0' && n_chosen == 0)
4002 error_no_arg (_("one or more choice numbers"));
4003 else if (*args == '\0')
4004 break;
4005
4006 choice = strtol (args, &args2, 10);
4007 if (args == args2 || choice < 0
4008 || choice > n_choices + first_choice - 1)
4009 error (_("Argument must be choice number"));
4010 args = args2;
4011
4012 if (choice == 0)
4013 error (_("cancelled"));
4014
4015 if (choice < first_choice)
4016 {
4017 n_chosen = n_choices;
4018 for (j = 0; j < n_choices; j += 1)
4019 choices[j] = j;
4020 break;
4021 }
4022 choice -= first_choice;
4023
4024 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4025 {
4026 }
4027
4028 if (j < 0 || choice != choices[j])
4029 {
4030 int k;
4031
4032 for (k = n_chosen - 1; k > j; k -= 1)
4033 choices[k + 1] = choices[k];
4034 choices[j + 1] = choice;
4035 n_chosen += 1;
4036 }
4037 }
4038
4039 if (n_chosen > max_results)
4040 error (_("Select no more than %d of the above"), max_results);
4041
4042 return n_chosen;
4043 }
4044
4045 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4046 on the function identified by SYM and BLOCK, and taking NARGS
4047 arguments. Update *EXPP as needed to hold more space. */
4048
4049 static void
4050 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4051 int oplen, struct symbol *sym,
4052 const struct block *block)
4053 {
4054 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4055 symbol, -oplen for operator being replaced). */
4056 struct expression *newexp = (struct expression *)
4057 xzalloc (sizeof (struct expression)
4058 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4059 struct expression *exp = expp->get ();
4060
4061 newexp->nelts = exp->nelts + 7 - oplen;
4062 newexp->language_defn = exp->language_defn;
4063 newexp->gdbarch = exp->gdbarch;
4064 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4065 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4066 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4067
4068 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4069 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4070
4071 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4072 newexp->elts[pc + 4].block = block;
4073 newexp->elts[pc + 5].symbol = sym;
4074
4075 expp->reset (newexp);
4076 }
4077
4078 /* Type-class predicates */
4079
4080 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4081 or FLOAT). */
4082
4083 static int
4084 numeric_type_p (struct type *type)
4085 {
4086 if (type == NULL)
4087 return 0;
4088 else
4089 {
4090 switch (TYPE_CODE (type))
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_FLT:
4094 return 1;
4095 case TYPE_CODE_RANGE:
4096 return (type == TYPE_TARGET_TYPE (type)
4097 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4098 default:
4099 return 0;
4100 }
4101 }
4102 }
4103
4104 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4105
4106 static int
4107 integer_type_p (struct type *type)
4108 {
4109 if (type == NULL)
4110 return 0;
4111 else
4112 {
4113 switch (TYPE_CODE (type))
4114 {
4115 case TYPE_CODE_INT:
4116 return 1;
4117 case TYPE_CODE_RANGE:
4118 return (type == TYPE_TARGET_TYPE (type)
4119 || integer_type_p (TYPE_TARGET_TYPE (type)));
4120 default:
4121 return 0;
4122 }
4123 }
4124 }
4125
4126 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4127
4128 static int
4129 scalar_type_p (struct type *type)
4130 {
4131 if (type == NULL)
4132 return 0;
4133 else
4134 {
4135 switch (TYPE_CODE (type))
4136 {
4137 case TYPE_CODE_INT:
4138 case TYPE_CODE_RANGE:
4139 case TYPE_CODE_ENUM:
4140 case TYPE_CODE_FLT:
4141 return 1;
4142 default:
4143 return 0;
4144 }
4145 }
4146 }
4147
4148 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4149
4150 static int
4151 discrete_type_p (struct type *type)
4152 {
4153 if (type == NULL)
4154 return 0;
4155 else
4156 {
4157 switch (TYPE_CODE (type))
4158 {
4159 case TYPE_CODE_INT:
4160 case TYPE_CODE_RANGE:
4161 case TYPE_CODE_ENUM:
4162 case TYPE_CODE_BOOL:
4163 return 1;
4164 default:
4165 return 0;
4166 }
4167 }
4168 }
4169
4170 /* Returns non-zero if OP with operands in the vector ARGS could be
4171 a user-defined function. Errs on the side of pre-defined operators
4172 (i.e., result 0). */
4173
4174 static int
4175 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4176 {
4177 struct type *type0 =
4178 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4179 struct type *type1 =
4180 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4181
4182 if (type0 == NULL)
4183 return 0;
4184
4185 switch (op)
4186 {
4187 default:
4188 return 0;
4189
4190 case BINOP_ADD:
4191 case BINOP_SUB:
4192 case BINOP_MUL:
4193 case BINOP_DIV:
4194 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4195
4196 case BINOP_REM:
4197 case BINOP_MOD:
4198 case BINOP_BITWISE_AND:
4199 case BINOP_BITWISE_IOR:
4200 case BINOP_BITWISE_XOR:
4201 return (!(integer_type_p (type0) && integer_type_p (type1)));
4202
4203 case BINOP_EQUAL:
4204 case BINOP_NOTEQUAL:
4205 case BINOP_LESS:
4206 case BINOP_GTR:
4207 case BINOP_LEQ:
4208 case BINOP_GEQ:
4209 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4210
4211 case BINOP_CONCAT:
4212 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4213
4214 case BINOP_EXP:
4215 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4216
4217 case UNOP_NEG:
4218 case UNOP_PLUS:
4219 case UNOP_LOGICAL_NOT:
4220 case UNOP_ABS:
4221 return (!numeric_type_p (type0));
4222
4223 }
4224 }
4225 \f
4226 /* Renaming */
4227
4228 /* NOTES:
4229
4230 1. In the following, we assume that a renaming type's name may
4231 have an ___XD suffix. It would be nice if this went away at some
4232 point.
4233 2. We handle both the (old) purely type-based representation of
4234 renamings and the (new) variable-based encoding. At some point,
4235 it is devoutly to be hoped that the former goes away
4236 (FIXME: hilfinger-2007-07-09).
4237 3. Subprogram renamings are not implemented, although the XRS
4238 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4239
4240 /* If SYM encodes a renaming,
4241
4242 <renaming> renames <renamed entity>,
4243
4244 sets *LEN to the length of the renamed entity's name,
4245 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4246 the string describing the subcomponent selected from the renamed
4247 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4248 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4249 are undefined). Otherwise, returns a value indicating the category
4250 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4251 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4252 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4253 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4254 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4255 may be NULL, in which case they are not assigned.
4256
4257 [Currently, however, GCC does not generate subprogram renamings.] */
4258
4259 enum ada_renaming_category
4260 ada_parse_renaming (struct symbol *sym,
4261 const char **renamed_entity, int *len,
4262 const char **renaming_expr)
4263 {
4264 enum ada_renaming_category kind;
4265 const char *info;
4266 const char *suffix;
4267
4268 if (sym == NULL)
4269 return ADA_NOT_RENAMING;
4270 switch (SYMBOL_CLASS (sym))
4271 {
4272 default:
4273 return ADA_NOT_RENAMING;
4274 case LOC_LOCAL:
4275 case LOC_STATIC:
4276 case LOC_COMPUTED:
4277 case LOC_OPTIMIZED_OUT:
4278 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4279 if (info == NULL)
4280 return ADA_NOT_RENAMING;
4281 switch (info[5])
4282 {
4283 case '_':
4284 kind = ADA_OBJECT_RENAMING;
4285 info += 6;
4286 break;
4287 case 'E':
4288 kind = ADA_EXCEPTION_RENAMING;
4289 info += 7;
4290 break;
4291 case 'P':
4292 kind = ADA_PACKAGE_RENAMING;
4293 info += 7;
4294 break;
4295 case 'S':
4296 kind = ADA_SUBPROGRAM_RENAMING;
4297 info += 7;
4298 break;
4299 default:
4300 return ADA_NOT_RENAMING;
4301 }
4302 }
4303
4304 if (renamed_entity != NULL)
4305 *renamed_entity = info;
4306 suffix = strstr (info, "___XE");
4307 if (suffix == NULL || suffix == info)
4308 return ADA_NOT_RENAMING;
4309 if (len != NULL)
4310 *len = strlen (info) - strlen (suffix);
4311 suffix += 5;
4312 if (renaming_expr != NULL)
4313 *renaming_expr = suffix;
4314 return kind;
4315 }
4316
4317 /* Compute the value of the given RENAMING_SYM, which is expected to
4318 be a symbol encoding a renaming expression. BLOCK is the block
4319 used to evaluate the renaming. */
4320
4321 static struct value *
4322 ada_read_renaming_var_value (struct symbol *renaming_sym,
4323 const struct block *block)
4324 {
4325 const char *sym_name;
4326
4327 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4328 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4329 return evaluate_expression (expr.get ());
4330 }
4331 \f
4332
4333 /* Evaluation: Function Calls */
4334
4335 /* Return an lvalue containing the value VAL. This is the identity on
4336 lvalues, and otherwise has the side-effect of allocating memory
4337 in the inferior where a copy of the value contents is copied. */
4338
4339 static struct value *
4340 ensure_lval (struct value *val)
4341 {
4342 if (VALUE_LVAL (val) == not_lval
4343 || VALUE_LVAL (val) == lval_internalvar)
4344 {
4345 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4346 const CORE_ADDR addr =
4347 value_as_long (value_allocate_space_in_inferior (len));
4348
4349 VALUE_LVAL (val) = lval_memory;
4350 set_value_address (val, addr);
4351 write_memory (addr, value_contents (val), len);
4352 }
4353
4354 return val;
4355 }
4356
4357 /* Return the value ACTUAL, converted to be an appropriate value for a
4358 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4359 allocating any necessary descriptors (fat pointers), or copies of
4360 values not residing in memory, updating it as needed. */
4361
4362 struct value *
4363 ada_convert_actual (struct value *actual, struct type *formal_type0)
4364 {
4365 struct type *actual_type = ada_check_typedef (value_type (actual));
4366 struct type *formal_type = ada_check_typedef (formal_type0);
4367 struct type *formal_target =
4368 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4370 struct type *actual_target =
4371 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4372 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4373
4374 if (ada_is_array_descriptor_type (formal_target)
4375 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4376 return make_array_descriptor (formal_type, actual);
4377 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4378 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4379 {
4380 struct value *result;
4381
4382 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4383 && ada_is_array_descriptor_type (actual_target))
4384 result = desc_data (actual);
4385 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4386 {
4387 if (VALUE_LVAL (actual) != lval_memory)
4388 {
4389 struct value *val;
4390
4391 actual_type = ada_check_typedef (value_type (actual));
4392 val = allocate_value (actual_type);
4393 memcpy ((char *) value_contents_raw (val),
4394 (char *) value_contents (actual),
4395 TYPE_LENGTH (actual_type));
4396 actual = ensure_lval (val);
4397 }
4398 result = value_addr (actual);
4399 }
4400 else
4401 return actual;
4402 return value_cast_pointers (formal_type, result, 0);
4403 }
4404 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4405 return ada_value_ind (actual);
4406 else if (ada_is_aligner_type (formal_type))
4407 {
4408 /* We need to turn this parameter into an aligner type
4409 as well. */
4410 struct value *aligner = allocate_value (formal_type);
4411 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4412
4413 value_assign_to_component (aligner, component, actual);
4414 return aligner;
4415 }
4416
4417 return actual;
4418 }
4419
4420 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4421 type TYPE. This is usually an inefficient no-op except on some targets
4422 (such as AVR) where the representation of a pointer and an address
4423 differs. */
4424
4425 static CORE_ADDR
4426 value_pointer (struct value *value, struct type *type)
4427 {
4428 struct gdbarch *gdbarch = get_type_arch (type);
4429 unsigned len = TYPE_LENGTH (type);
4430 gdb_byte *buf = (gdb_byte *) alloca (len);
4431 CORE_ADDR addr;
4432
4433 addr = value_address (value);
4434 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4435 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4436 return addr;
4437 }
4438
4439
4440 /* Push a descriptor of type TYPE for array value ARR on the stack at
4441 *SP, updating *SP to reflect the new descriptor. Return either
4442 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4443 to-descriptor type rather than a descriptor type), a struct value *
4444 representing a pointer to this descriptor. */
4445
4446 static struct value *
4447 make_array_descriptor (struct type *type, struct value *arr)
4448 {
4449 struct type *bounds_type = desc_bounds_type (type);
4450 struct type *desc_type = desc_base_type (type);
4451 struct value *descriptor = allocate_value (desc_type);
4452 struct value *bounds = allocate_value (bounds_type);
4453 int i;
4454
4455 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4456 i > 0; i -= 1)
4457 {
4458 modify_field (value_type (bounds), value_contents_writeable (bounds),
4459 ada_array_bound (arr, i, 0),
4460 desc_bound_bitpos (bounds_type, i, 0),
4461 desc_bound_bitsize (bounds_type, i, 0));
4462 modify_field (value_type (bounds), value_contents_writeable (bounds),
4463 ada_array_bound (arr, i, 1),
4464 desc_bound_bitpos (bounds_type, i, 1),
4465 desc_bound_bitsize (bounds_type, i, 1));
4466 }
4467
4468 bounds = ensure_lval (bounds);
4469
4470 modify_field (value_type (descriptor),
4471 value_contents_writeable (descriptor),
4472 value_pointer (ensure_lval (arr),
4473 TYPE_FIELD_TYPE (desc_type, 0)),
4474 fat_pntr_data_bitpos (desc_type),
4475 fat_pntr_data_bitsize (desc_type));
4476
4477 modify_field (value_type (descriptor),
4478 value_contents_writeable (descriptor),
4479 value_pointer (bounds,
4480 TYPE_FIELD_TYPE (desc_type, 1)),
4481 fat_pntr_bounds_bitpos (desc_type),
4482 fat_pntr_bounds_bitsize (desc_type));
4483
4484 descriptor = ensure_lval (descriptor);
4485
4486 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4487 return value_addr (descriptor);
4488 else
4489 return descriptor;
4490 }
4491 \f
4492 /* Symbol Cache Module */
4493
4494 /* Performance measurements made as of 2010-01-15 indicate that
4495 this cache does bring some noticeable improvements. Depending
4496 on the type of entity being printed, the cache can make it as much
4497 as an order of magnitude faster than without it.
4498
4499 The descriptive type DWARF extension has significantly reduced
4500 the need for this cache, at least when DWARF is being used. However,
4501 even in this case, some expensive name-based symbol searches are still
4502 sometimes necessary - to find an XVZ variable, mostly. */
4503
4504 /* Initialize the contents of SYM_CACHE. */
4505
4506 static void
4507 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4508 {
4509 obstack_init (&sym_cache->cache_space);
4510 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4511 }
4512
4513 /* Free the memory used by SYM_CACHE. */
4514
4515 static void
4516 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4517 {
4518 obstack_free (&sym_cache->cache_space, NULL);
4519 xfree (sym_cache);
4520 }
4521
4522 /* Return the symbol cache associated to the given program space PSPACE.
4523 If not allocated for this PSPACE yet, allocate and initialize one. */
4524
4525 static struct ada_symbol_cache *
4526 ada_get_symbol_cache (struct program_space *pspace)
4527 {
4528 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4529
4530 if (pspace_data->sym_cache == NULL)
4531 {
4532 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4533 ada_init_symbol_cache (pspace_data->sym_cache);
4534 }
4535
4536 return pspace_data->sym_cache;
4537 }
4538
4539 /* Clear all entries from the symbol cache. */
4540
4541 static void
4542 ada_clear_symbol_cache (void)
4543 {
4544 struct ada_symbol_cache *sym_cache
4545 = ada_get_symbol_cache (current_program_space);
4546
4547 obstack_free (&sym_cache->cache_space, NULL);
4548 ada_init_symbol_cache (sym_cache);
4549 }
4550
4551 /* Search our cache for an entry matching NAME and DOMAIN.
4552 Return it if found, or NULL otherwise. */
4553
4554 static struct cache_entry **
4555 find_entry (const char *name, domain_enum domain)
4556 {
4557 struct ada_symbol_cache *sym_cache
4558 = ada_get_symbol_cache (current_program_space);
4559 int h = msymbol_hash (name) % HASH_SIZE;
4560 struct cache_entry **e;
4561
4562 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4563 {
4564 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4565 return e;
4566 }
4567 return NULL;
4568 }
4569
4570 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4571 Return 1 if found, 0 otherwise.
4572
4573 If an entry was found and SYM is not NULL, set *SYM to the entry's
4574 SYM. Same principle for BLOCK if not NULL. */
4575
4576 static int
4577 lookup_cached_symbol (const char *name, domain_enum domain,
4578 struct symbol **sym, const struct block **block)
4579 {
4580 struct cache_entry **e = find_entry (name, domain);
4581
4582 if (e == NULL)
4583 return 0;
4584 if (sym != NULL)
4585 *sym = (*e)->sym;
4586 if (block != NULL)
4587 *block = (*e)->block;
4588 return 1;
4589 }
4590
4591 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4592 in domain DOMAIN, save this result in our symbol cache. */
4593
4594 static void
4595 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4596 const struct block *block)
4597 {
4598 struct ada_symbol_cache *sym_cache
4599 = ada_get_symbol_cache (current_program_space);
4600 int h;
4601 char *copy;
4602 struct cache_entry *e;
4603
4604 /* Symbols for builtin types don't have a block.
4605 For now don't cache such symbols. */
4606 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4607 return;
4608
4609 /* If the symbol is a local symbol, then do not cache it, as a search
4610 for that symbol depends on the context. To determine whether
4611 the symbol is local or not, we check the block where we found it
4612 against the global and static blocks of its associated symtab. */
4613 if (sym
4614 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4615 GLOBAL_BLOCK) != block
4616 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4617 STATIC_BLOCK) != block)
4618 return;
4619
4620 h = msymbol_hash (name) % HASH_SIZE;
4621 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4622 e->next = sym_cache->root[h];
4623 sym_cache->root[h] = e;
4624 e->name = copy
4625 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4626 strcpy (copy, name);
4627 e->sym = sym;
4628 e->domain = domain;
4629 e->block = block;
4630 }
4631 \f
4632 /* Symbol Lookup */
4633
4634 /* Return the symbol name match type that should be used used when
4635 searching for all symbols matching LOOKUP_NAME.
4636
4637 LOOKUP_NAME is expected to be a symbol name after transformation
4638 for Ada lookups. */
4639
4640 static symbol_name_match_type
4641 name_match_type_from_name (const char *lookup_name)
4642 {
4643 return (strstr (lookup_name, "__") == NULL
4644 ? symbol_name_match_type::WILD
4645 : symbol_name_match_type::FULL);
4646 }
4647
4648 /* Return the result of a standard (literal, C-like) lookup of NAME in
4649 given DOMAIN, visible from lexical block BLOCK. */
4650
4651 static struct symbol *
4652 standard_lookup (const char *name, const struct block *block,
4653 domain_enum domain)
4654 {
4655 /* Initialize it just to avoid a GCC false warning. */
4656 struct block_symbol sym = {};
4657
4658 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4659 return sym.symbol;
4660 ada_lookup_encoded_symbol (name, block, domain, &sym);
4661 cache_symbol (name, domain, sym.symbol, sym.block);
4662 return sym.symbol;
4663 }
4664
4665
4666 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4667 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4668 since they contend in overloading in the same way. */
4669 static int
4670 is_nonfunction (struct block_symbol syms[], int n)
4671 {
4672 int i;
4673
4674 for (i = 0; i < n; i += 1)
4675 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4676 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4677 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4678 return 1;
4679
4680 return 0;
4681 }
4682
4683 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4684 struct types. Otherwise, they may not. */
4685
4686 static int
4687 equiv_types (struct type *type0, struct type *type1)
4688 {
4689 if (type0 == type1)
4690 return 1;
4691 if (type0 == NULL || type1 == NULL
4692 || TYPE_CODE (type0) != TYPE_CODE (type1))
4693 return 0;
4694 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4695 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4696 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4697 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4698 return 1;
4699
4700 return 0;
4701 }
4702
4703 /* True iff SYM0 represents the same entity as SYM1, or one that is
4704 no more defined than that of SYM1. */
4705
4706 static int
4707 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4708 {
4709 if (sym0 == sym1)
4710 return 1;
4711 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4712 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4713 return 0;
4714
4715 switch (SYMBOL_CLASS (sym0))
4716 {
4717 case LOC_UNDEF:
4718 return 1;
4719 case LOC_TYPEDEF:
4720 {
4721 struct type *type0 = SYMBOL_TYPE (sym0);
4722 struct type *type1 = SYMBOL_TYPE (sym1);
4723 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4724 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4725 int len0 = strlen (name0);
4726
4727 return
4728 TYPE_CODE (type0) == TYPE_CODE (type1)
4729 && (equiv_types (type0, type1)
4730 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4731 && startswith (name1 + len0, "___XV")));
4732 }
4733 case LOC_CONST:
4734 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4735 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4736 default:
4737 return 0;
4738 }
4739 }
4740
4741 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4743
4744 static void
4745 add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
4747 const struct block *block)
4748 {
4749 int i;
4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4751
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4764 return;
4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4766 {
4767 prevDefns[i].symbol = sym;
4768 prevDefns[i].block = block;
4769 return;
4770 }
4771 }
4772
4773 {
4774 struct block_symbol info;
4775
4776 info.symbol = sym;
4777 info.block = block;
4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4779 }
4780 }
4781
4782 /* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4784
4785 static int
4786 num_defns_collected (struct obstack *obstackp)
4787 {
4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4789 }
4790
4791 /* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4793
4794 static struct block_symbol *
4795 defns_collected (struct obstack *obstackp, int finish)
4796 {
4797 if (finish)
4798 return (struct block_symbol *) obstack_finish (obstackp);
4799 else
4800 return (struct block_symbol *) obstack_base (obstackp);
4801 }
4802
4803 /* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4808
4809 struct bound_minimal_symbol
4810 ada_lookup_simple_minsym (const char *name)
4811 {
4812 struct bound_minimal_symbol result;
4813
4814 memset (&result, 0, sizeof (result));
4815
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4821
4822 for (objfile *objfile : current_program_space->objfiles ())
4823 {
4824 for (minimal_symbol *msymbol : objfile->msymbols ())
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4835
4836 return result;
4837 }
4838
4839 /* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4844
4845 static std::vector<struct bound_minimal_symbol>
4846 ada_lookup_simple_minsyms (const char *name)
4847 {
4848 std::vector<struct bound_minimal_symbol> result;
4849
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4852
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4855
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 {
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4859 {
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4863 }
4864 }
4865
4866 return result;
4867 }
4868
4869 /* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4874
4875 static void
4876 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4877 const lookup_name_info &lookup_name,
4878 domain_enum domain)
4879 {
4880 }
4881
4882 /* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
4884
4885 static int
4886 is_nondebugging_type (struct type *type)
4887 {
4888 const char *name = ada_type_name (type);
4889
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4891 }
4892
4893 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4895
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4899
4900 static int
4901 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4902 {
4903 int i;
4904
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4909
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4913 return 0;
4914
4915 /* All enumerals should also have the same name (modulo any numerical
4916 suffix). */
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4918 {
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4923
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4926 if (len_1 != len_2
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4929 len_1) != 0)
4930 return 0;
4931 }
4932
4933 return 1;
4934 }
4935
4936 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4940
4941 For instance, consider the following code:
4942
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4945
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4955
4956 static int
4957 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4958 {
4959 int i;
4960
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4967
4968 /* Quick check: All symbols should have an enum type. */
4969 for (i = 0; i < syms.size (); i++)
4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4971 return 0;
4972
4973 /* Quick check: They should all have the same value. */
4974 for (i = 1; i < syms.size (); i++)
4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4976 return 0;
4977
4978 /* Quick check: They should all have the same number of enumerals. */
4979 for (i = 1; i < syms.size (); i++)
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4982 return 0;
4983
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
4987 for (i = 1; i < syms.size (); i++)
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
4990 return 0;
4991
4992 return 1;
4993 }
4994
4995 /* Remove any non-debugging symbols in SYMS that definitely
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
5001
5002 static int
5003 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5004 {
5005 int i, j;
5006
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
5010 if (syms->size () < 2)
5011 return syms->size ();
5012
5013 i = 0;
5014 while (i < syms->size ())
5015 {
5016 int remove_p = 0;
5017
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5020
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5023 {
5024 for (j = 0; j < syms->size (); j++)
5025 {
5026 if (j != i
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5031 remove_p = 1;
5032 }
5033 }
5034
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5037
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5041 {
5042 for (j = 0; j < syms->size (); j += 1)
5043 {
5044 if (i != j
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5052 remove_p = 1;
5053 }
5054 }
5055
5056 if (remove_p)
5057 syms->erase (syms->begin () + i);
5058
5059 i += 1;
5060 }
5061
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5064
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
5074 if (symbols_are_identical_enums (*syms))
5075 syms->resize (1);
5076
5077 return syms->size ();
5078 }
5079
5080 /* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
5083 defined. */
5084
5085 static std::string
5086 xget_renaming_scope (struct type *renaming_type)
5087 {
5088 /* The renaming types adhere to the following convention:
5089 <scope>__<rename>___<XR extension>.
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
5092
5093 const char *name = TYPE_NAME (renaming_type);
5094 const char *suffix = strstr (name, "___XR");
5095 const char *last;
5096
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
5099
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5102 break;
5103
5104 /* Make a copy of scope and return it. */
5105 return std::string (name, last);
5106 }
5107
5108 /* Return nonzero if NAME corresponds to a package name. */
5109
5110 static int
5111 is_package_name (const char *name)
5112 {
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
5118
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5122 return 0;
5123
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
5126
5127 /* Do a quick check that NAME does not contain "__", since library-level
5128 functions names cannot contain "__" in them. */
5129 if (strstr (name, "__") != NULL)
5130 return 0;
5131
5132 std::string fun_name = string_printf ("_ada_%s", name);
5133
5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5135 }
5136
5137 /* Return nonzero if SYM corresponds to a renaming entity that is
5138 not visible from FUNCTION_NAME. */
5139
5140 static int
5141 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5142 {
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5144 return 0;
5145
5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5147
5148 /* If the rename has been defined in a package, then it is visible. */
5149 if (is_package_name (scope.c_str ()))
5150 return 0;
5151
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
5154
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5158 this prefix. */
5159 if (startswith (function_name, "_ada_"))
5160 function_name += 5;
5161
5162 return !startswith (function_name, scope.c_str ());
5163 }
5164
5165 /* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
5170
5171 Rationale:
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5175 latter.
5176
5177 Second, GNAT emits a type following a specified encoding for each renaming
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
5184
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5190
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5196
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
5201
5202 static int
5203 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
5205 {
5206 struct symbol *current_function;
5207 const char *current_function_name;
5208 int i;
5209 int is_new_style_renaming;
5210
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
5213 First, zero out such symbols, then compress. */
5214 is_new_style_renaming = 0;
5215 for (i = 0; i < syms->size (); i += 1)
5216 {
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
5219 const char *name;
5220 const char *suffix;
5221
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5223 continue;
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5226
5227 if (suffix != NULL)
5228 {
5229 int name_len = suffix - name;
5230 int j;
5231
5232 is_new_style_renaming = 1;
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5236 name_len) == 0
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
5239 }
5240 }
5241 if (is_new_style_renaming)
5242 {
5243 int j, k;
5244
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
5247 {
5248 (*syms)[k] = (*syms)[j];
5249 k += 1;
5250 }
5251 return k;
5252 }
5253
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
5256
5257 if (current_block == NULL)
5258 return syms->size ();
5259
5260 current_function = block_linkage_function (current_block);
5261 if (current_function == NULL)
5262 return syms->size ();
5263
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
5266 return syms->size ();
5267
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5271
5272 i = 0;
5273 while (i < syms->size ())
5274 {
5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5276 == ADA_OBJECT_RENAMING
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
5280 else
5281 i += 1;
5282 }
5283
5284 return syms->size ();
5285 }
5286
5287 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
5294
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5296
5297 static void
5298 ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
5301 {
5302 int block_depth = 0;
5303
5304 while (block != NULL)
5305 {
5306 block_depth += 1;
5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5308
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5312 return;
5313
5314 block = BLOCK_SUPERBLOCK (block);
5315 }
5316
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5321 }
5322
5323 /* An object of this type is used as the user_data argument when
5324 calling the map_matching_symbols method. */
5325
5326 struct match_data
5327 {
5328 struct objfile *objfile;
5329 struct obstack *obstackp;
5330 struct symbol *arg_sym;
5331 int found_sym;
5332 };
5333
5334 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5335 to a list of symbols. DATA0 is a pointer to a struct match_data *
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
5342
5343 static int
5344 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5345 void *data0)
5346 {
5347 struct match_data *data = (struct match_data *) data0;
5348
5349 if (sym == NULL)
5350 {
5351 if (!data->found_sym && data->arg_sym != NULL)
5352 add_defn_to_vec (data->obstackp,
5353 fixup_symbol_section (data->arg_sym, data->objfile),
5354 block);
5355 data->found_sym = 0;
5356 data->arg_sym = NULL;
5357 }
5358 else
5359 {
5360 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5361 return 0;
5362 else if (SYMBOL_IS_ARGUMENT (sym))
5363 data->arg_sym = sym;
5364 else
5365 {
5366 data->found_sym = 1;
5367 add_defn_to_vec (data->obstackp,
5368 fixup_symbol_section (sym, data->objfile),
5369 block);
5370 }
5371 }
5372 return 0;
5373 }
5374
5375 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5376 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5377 symbols to OBSTACKP. Return whether we found such symbols. */
5378
5379 static int
5380 ada_add_block_renamings (struct obstack *obstackp,
5381 const struct block *block,
5382 const lookup_name_info &lookup_name,
5383 domain_enum domain)
5384 {
5385 struct using_direct *renaming;
5386 int defns_mark = num_defns_collected (obstackp);
5387
5388 symbol_name_matcher_ftype *name_match
5389 = ada_get_symbol_name_matcher (lookup_name);
5390
5391 for (renaming = block_using (block);
5392 renaming != NULL;
5393 renaming = renaming->next)
5394 {
5395 const char *r_name;
5396
5397 /* Avoid infinite recursions: skip this renaming if we are actually
5398 already traversing it.
5399
5400 Currently, symbol lookup in Ada don't use the namespace machinery from
5401 C++/Fortran support: skip namespace imports that use them. */
5402 if (renaming->searched
5403 || (renaming->import_src != NULL
5404 && renaming->import_src[0] != '\0')
5405 || (renaming->import_dest != NULL
5406 && renaming->import_dest[0] != '\0'))
5407 continue;
5408 renaming->searched = 1;
5409
5410 /* TODO: here, we perform another name-based symbol lookup, which can
5411 pull its own multiple overloads. In theory, we should be able to do
5412 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5413 not a simple name. But in order to do this, we would need to enhance
5414 the DWARF reader to associate a symbol to this renaming, instead of a
5415 name. So, for now, we do something simpler: re-use the C++/Fortran
5416 namespace machinery. */
5417 r_name = (renaming->alias != NULL
5418 ? renaming->alias
5419 : renaming->declaration);
5420 if (name_match (r_name, lookup_name, NULL))
5421 {
5422 lookup_name_info decl_lookup_name (renaming->declaration,
5423 lookup_name.match_type ());
5424 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5425 1, NULL);
5426 }
5427 renaming->searched = 0;
5428 }
5429 return num_defns_collected (obstackp) != defns_mark;
5430 }
5431
5432 /* Implements compare_names, but only applying the comparision using
5433 the given CASING. */
5434
5435 static int
5436 compare_names_with_case (const char *string1, const char *string2,
5437 enum case_sensitivity casing)
5438 {
5439 while (*string1 != '\0' && *string2 != '\0')
5440 {
5441 char c1, c2;
5442
5443 if (isspace (*string1) || isspace (*string2))
5444 return strcmp_iw_ordered (string1, string2);
5445
5446 if (casing == case_sensitive_off)
5447 {
5448 c1 = tolower (*string1);
5449 c2 = tolower (*string2);
5450 }
5451 else
5452 {
5453 c1 = *string1;
5454 c2 = *string2;
5455 }
5456 if (c1 != c2)
5457 break;
5458
5459 string1 += 1;
5460 string2 += 1;
5461 }
5462
5463 switch (*string1)
5464 {
5465 case '(':
5466 return strcmp_iw_ordered (string1, string2);
5467 case '_':
5468 if (*string2 == '\0')
5469 {
5470 if (is_name_suffix (string1))
5471 return 0;
5472 else
5473 return 1;
5474 }
5475 /* FALLTHROUGH */
5476 default:
5477 if (*string2 == '(')
5478 return strcmp_iw_ordered (string1, string2);
5479 else
5480 {
5481 if (casing == case_sensitive_off)
5482 return tolower (*string1) - tolower (*string2);
5483 else
5484 return *string1 - *string2;
5485 }
5486 }
5487 }
5488
5489 /* Compare STRING1 to STRING2, with results as for strcmp.
5490 Compatible with strcmp_iw_ordered in that...
5491
5492 strcmp_iw_ordered (STRING1, STRING2) <= 0
5493
5494 ... implies...
5495
5496 compare_names (STRING1, STRING2) <= 0
5497
5498 (they may differ as to what symbols compare equal). */
5499
5500 static int
5501 compare_names (const char *string1, const char *string2)
5502 {
5503 int result;
5504
5505 /* Similar to what strcmp_iw_ordered does, we need to perform
5506 a case-insensitive comparison first, and only resort to
5507 a second, case-sensitive, comparison if the first one was
5508 not sufficient to differentiate the two strings. */
5509
5510 result = compare_names_with_case (string1, string2, case_sensitive_off);
5511 if (result == 0)
5512 result = compare_names_with_case (string1, string2, case_sensitive_on);
5513
5514 return result;
5515 }
5516
5517 /* Convenience function to get at the Ada encoded lookup name for
5518 LOOKUP_NAME, as a C string. */
5519
5520 static const char *
5521 ada_lookup_name (const lookup_name_info &lookup_name)
5522 {
5523 return lookup_name.ada ().lookup_name ().c_str ();
5524 }
5525
5526 /* Add to OBSTACKP all non-local symbols whose name and domain match
5527 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5528 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5529 symbols otherwise. */
5530
5531 static void
5532 add_nonlocal_symbols (struct obstack *obstackp,
5533 const lookup_name_info &lookup_name,
5534 domain_enum domain, int global)
5535 {
5536 struct match_data data;
5537
5538 memset (&data, 0, sizeof data);
5539 data.obstackp = obstackp;
5540
5541 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5542
5543 for (objfile *objfile : current_program_space->objfiles ())
5544 {
5545 data.objfile = objfile;
5546
5547 if (is_wild_match)
5548 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5549 domain, global,
5550 aux_add_nonlocal_symbols, &data,
5551 symbol_name_match_type::WILD,
5552 NULL);
5553 else
5554 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5555 domain, global,
5556 aux_add_nonlocal_symbols, &data,
5557 symbol_name_match_type::FULL,
5558 compare_names);
5559
5560 for (compunit_symtab *cu : objfile->compunits ())
5561 {
5562 const struct block *global_block
5563 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5564
5565 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5566 domain))
5567 data.found_sym = 1;
5568 }
5569 }
5570
5571 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5572 {
5573 const char *name = ada_lookup_name (lookup_name);
5574 std::string name1 = std::string ("<_ada_") + name + '>';
5575
5576 for (objfile *objfile : current_program_space->objfiles ())
5577 {
5578 data.objfile = objfile;
5579 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5580 domain, global,
5581 aux_add_nonlocal_symbols,
5582 &data,
5583 symbol_name_match_type::FULL,
5584 compare_names);
5585 }
5586 }
5587 }
5588
5589 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5590 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5591 returning the number of matches. Add these to OBSTACKP.
5592
5593 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5594 symbol match within the nest of blocks whose innermost member is BLOCK,
5595 is the one match returned (no other matches in that or
5596 enclosing blocks is returned). If there are any matches in or
5597 surrounding BLOCK, then these alone are returned.
5598
5599 Names prefixed with "standard__" are handled specially:
5600 "standard__" is first stripped off (by the lookup_name
5601 constructor), and only static and global symbols are searched.
5602
5603 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5604 to lookup global symbols. */
5605
5606 static void
5607 ada_add_all_symbols (struct obstack *obstackp,
5608 const struct block *block,
5609 const lookup_name_info &lookup_name,
5610 domain_enum domain,
5611 int full_search,
5612 int *made_global_lookup_p)
5613 {
5614 struct symbol *sym;
5615
5616 if (made_global_lookup_p)
5617 *made_global_lookup_p = 0;
5618
5619 /* Special case: If the user specifies a symbol name inside package
5620 Standard, do a non-wild matching of the symbol name without
5621 the "standard__" prefix. This was primarily introduced in order
5622 to allow the user to specifically access the standard exceptions
5623 using, for instance, Standard.Constraint_Error when Constraint_Error
5624 is ambiguous (due to the user defining its own Constraint_Error
5625 entity inside its program). */
5626 if (lookup_name.ada ().standard_p ())
5627 block = NULL;
5628
5629 /* Check the non-global symbols. If we have ANY match, then we're done. */
5630
5631 if (block != NULL)
5632 {
5633 if (full_search)
5634 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5635 else
5636 {
5637 /* In the !full_search case we're are being called by
5638 ada_iterate_over_symbols, and we don't want to search
5639 superblocks. */
5640 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5641 }
5642 if (num_defns_collected (obstackp) > 0 || !full_search)
5643 return;
5644 }
5645
5646 /* No non-global symbols found. Check our cache to see if we have
5647 already performed this search before. If we have, then return
5648 the same result. */
5649
5650 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5651 domain, &sym, &block))
5652 {
5653 if (sym != NULL)
5654 add_defn_to_vec (obstackp, sym, block);
5655 return;
5656 }
5657
5658 if (made_global_lookup_p)
5659 *made_global_lookup_p = 1;
5660
5661 /* Search symbols from all global blocks. */
5662
5663 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5664
5665 /* Now add symbols from all per-file blocks if we've gotten no hits
5666 (not strictly correct, but perhaps better than an error). */
5667
5668 if (num_defns_collected (obstackp) == 0)
5669 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5670 }
5671
5672 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5673 is non-zero, enclosing scope and in global scopes, returning the number of
5674 matches.
5675 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5676 found and the blocks and symbol tables (if any) in which they were
5677 found.
5678
5679 When full_search is non-zero, any non-function/non-enumeral
5680 symbol match within the nest of blocks whose innermost member is BLOCK,
5681 is the one match returned (no other matches in that or
5682 enclosing blocks is returned). If there are any matches in or
5683 surrounding BLOCK, then these alone are returned.
5684
5685 Names prefixed with "standard__" are handled specially: "standard__"
5686 is first stripped off, and only static and global symbols are searched. */
5687
5688 static int
5689 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5690 const struct block *block,
5691 domain_enum domain,
5692 std::vector<struct block_symbol> *results,
5693 int full_search)
5694 {
5695 int syms_from_global_search;
5696 int ndefns;
5697 auto_obstack obstack;
5698
5699 ada_add_all_symbols (&obstack, block, lookup_name,
5700 domain, full_search, &syms_from_global_search);
5701
5702 ndefns = num_defns_collected (&obstack);
5703
5704 struct block_symbol *base = defns_collected (&obstack, 1);
5705 for (int i = 0; i < ndefns; ++i)
5706 results->push_back (base[i]);
5707
5708 ndefns = remove_extra_symbols (results);
5709
5710 if (ndefns == 0 && full_search && syms_from_global_search)
5711 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5712
5713 if (ndefns == 1 && full_search && syms_from_global_search)
5714 cache_symbol (ada_lookup_name (lookup_name), domain,
5715 (*results)[0].symbol, (*results)[0].block);
5716
5717 ndefns = remove_irrelevant_renamings (results, block);
5718
5719 return ndefns;
5720 }
5721
5722 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5723 in global scopes, returning the number of matches, and filling *RESULTS
5724 with (SYM,BLOCK) tuples.
5725
5726 See ada_lookup_symbol_list_worker for further details. */
5727
5728 int
5729 ada_lookup_symbol_list (const char *name, const struct block *block,
5730 domain_enum domain,
5731 std::vector<struct block_symbol> *results)
5732 {
5733 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5734 lookup_name_info lookup_name (name, name_match_type);
5735
5736 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5737 }
5738
5739 /* Implementation of the la_iterate_over_symbols method. */
5740
5741 static void
5742 ada_iterate_over_symbols
5743 (const struct block *block, const lookup_name_info &name,
5744 domain_enum domain,
5745 gdb::function_view<symbol_found_callback_ftype> callback)
5746 {
5747 int ndefs, i;
5748 std::vector<struct block_symbol> results;
5749
5750 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5751
5752 for (i = 0; i < ndefs; ++i)
5753 {
5754 if (!callback (&results[i]))
5755 break;
5756 }
5757 }
5758
5759 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5760 to 1, but choosing the first symbol found if there are multiple
5761 choices.
5762
5763 The result is stored in *INFO, which must be non-NULL.
5764 If no match is found, INFO->SYM is set to NULL. */
5765
5766 void
5767 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5768 domain_enum domain,
5769 struct block_symbol *info)
5770 {
5771 /* Since we already have an encoded name, wrap it in '<>' to force a
5772 verbatim match. Otherwise, if the name happens to not look like
5773 an encoded name (because it doesn't include a "__"),
5774 ada_lookup_name_info would re-encode/fold it again, and that
5775 would e.g., incorrectly lowercase object renaming names like
5776 "R28b" -> "r28b". */
5777 std::string verbatim = std::string ("<") + name + '>';
5778
5779 gdb_assert (info != NULL);
5780 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5781 }
5782
5783 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5784 scope and in global scopes, or NULL if none. NAME is folded and
5785 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5786 choosing the first symbol if there are multiple choices. */
5787
5788 struct block_symbol
5789 ada_lookup_symbol (const char *name, const struct block *block0,
5790 domain_enum domain)
5791 {
5792 std::vector<struct block_symbol> candidates;
5793 int n_candidates;
5794
5795 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5796
5797 if (n_candidates == 0)
5798 return {};
5799
5800 block_symbol info = candidates[0];
5801 info.symbol = fixup_symbol_section (info.symbol, NULL);
5802 return info;
5803 }
5804
5805 static struct block_symbol
5806 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5807 const char *name,
5808 const struct block *block,
5809 const domain_enum domain)
5810 {
5811 struct block_symbol sym;
5812
5813 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5814 if (sym.symbol != NULL)
5815 return sym;
5816
5817 /* If we haven't found a match at this point, try the primitive
5818 types. In other languages, this search is performed before
5819 searching for global symbols in order to short-circuit that
5820 global-symbol search if it happens that the name corresponds
5821 to a primitive type. But we cannot do the same in Ada, because
5822 it is perfectly legitimate for a program to declare a type which
5823 has the same name as a standard type. If looking up a type in
5824 that situation, we have traditionally ignored the primitive type
5825 in favor of user-defined types. This is why, unlike most other
5826 languages, we search the primitive types this late and only after
5827 having searched the global symbols without success. */
5828
5829 if (domain == VAR_DOMAIN)
5830 {
5831 struct gdbarch *gdbarch;
5832
5833 if (block == NULL)
5834 gdbarch = target_gdbarch ();
5835 else
5836 gdbarch = block_gdbarch (block);
5837 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5838 if (sym.symbol != NULL)
5839 return sym;
5840 }
5841
5842 return {};
5843 }
5844
5845
5846 /* True iff STR is a possible encoded suffix of a normal Ada name
5847 that is to be ignored for matching purposes. Suffixes of parallel
5848 names (e.g., XVE) are not included here. Currently, the possible suffixes
5849 are given by any of the regular expressions:
5850
5851 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5852 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5853 TKB [subprogram suffix for task bodies]
5854 _E[0-9]+[bs]$ [protected object entry suffixes]
5855 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5856
5857 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5858 match is performed. This sequence is used to differentiate homonyms,
5859 is an optional part of a valid name suffix. */
5860
5861 static int
5862 is_name_suffix (const char *str)
5863 {
5864 int k;
5865 const char *matching;
5866 const int len = strlen (str);
5867
5868 /* Skip optional leading __[0-9]+. */
5869
5870 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5871 {
5872 str += 3;
5873 while (isdigit (str[0]))
5874 str += 1;
5875 }
5876
5877 /* [.$][0-9]+ */
5878
5879 if (str[0] == '.' || str[0] == '$')
5880 {
5881 matching = str + 1;
5882 while (isdigit (matching[0]))
5883 matching += 1;
5884 if (matching[0] == '\0')
5885 return 1;
5886 }
5887
5888 /* ___[0-9]+ */
5889
5890 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5891 {
5892 matching = str + 3;
5893 while (isdigit (matching[0]))
5894 matching += 1;
5895 if (matching[0] == '\0')
5896 return 1;
5897 }
5898
5899 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5900
5901 if (strcmp (str, "TKB") == 0)
5902 return 1;
5903
5904 #if 0
5905 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5906 with a N at the end. Unfortunately, the compiler uses the same
5907 convention for other internal types it creates. So treating
5908 all entity names that end with an "N" as a name suffix causes
5909 some regressions. For instance, consider the case of an enumerated
5910 type. To support the 'Image attribute, it creates an array whose
5911 name ends with N.
5912 Having a single character like this as a suffix carrying some
5913 information is a bit risky. Perhaps we should change the encoding
5914 to be something like "_N" instead. In the meantime, do not do
5915 the following check. */
5916 /* Protected Object Subprograms */
5917 if (len == 1 && str [0] == 'N')
5918 return 1;
5919 #endif
5920
5921 /* _E[0-9]+[bs]$ */
5922 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5923 {
5924 matching = str + 3;
5925 while (isdigit (matching[0]))
5926 matching += 1;
5927 if ((matching[0] == 'b' || matching[0] == 's')
5928 && matching [1] == '\0')
5929 return 1;
5930 }
5931
5932 /* ??? We should not modify STR directly, as we are doing below. This
5933 is fine in this case, but may become problematic later if we find
5934 that this alternative did not work, and want to try matching
5935 another one from the begining of STR. Since we modified it, we
5936 won't be able to find the begining of the string anymore! */
5937 if (str[0] == 'X')
5938 {
5939 str += 1;
5940 while (str[0] != '_' && str[0] != '\0')
5941 {
5942 if (str[0] != 'n' && str[0] != 'b')
5943 return 0;
5944 str += 1;
5945 }
5946 }
5947
5948 if (str[0] == '\000')
5949 return 1;
5950
5951 if (str[0] == '_')
5952 {
5953 if (str[1] != '_' || str[2] == '\000')
5954 return 0;
5955 if (str[2] == '_')
5956 {
5957 if (strcmp (str + 3, "JM") == 0)
5958 return 1;
5959 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5960 the LJM suffix in favor of the JM one. But we will
5961 still accept LJM as a valid suffix for a reasonable
5962 amount of time, just to allow ourselves to debug programs
5963 compiled using an older version of GNAT. */
5964 if (strcmp (str + 3, "LJM") == 0)
5965 return 1;
5966 if (str[3] != 'X')
5967 return 0;
5968 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5969 || str[4] == 'U' || str[4] == 'P')
5970 return 1;
5971 if (str[4] == 'R' && str[5] != 'T')
5972 return 1;
5973 return 0;
5974 }
5975 if (!isdigit (str[2]))
5976 return 0;
5977 for (k = 3; str[k] != '\0'; k += 1)
5978 if (!isdigit (str[k]) && str[k] != '_')
5979 return 0;
5980 return 1;
5981 }
5982 if (str[0] == '$' && isdigit (str[1]))
5983 {
5984 for (k = 2; str[k] != '\0'; k += 1)
5985 if (!isdigit (str[k]) && str[k] != '_')
5986 return 0;
5987 return 1;
5988 }
5989 return 0;
5990 }
5991
5992 /* Return non-zero if the string starting at NAME and ending before
5993 NAME_END contains no capital letters. */
5994
5995 static int
5996 is_valid_name_for_wild_match (const char *name0)
5997 {
5998 const char *decoded_name = ada_decode (name0);
5999 int i;
6000
6001 /* If the decoded name starts with an angle bracket, it means that
6002 NAME0 does not follow the GNAT encoding format. It should then
6003 not be allowed as a possible wild match. */
6004 if (decoded_name[0] == '<')
6005 return 0;
6006
6007 for (i=0; decoded_name[i] != '\0'; i++)
6008 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6009 return 0;
6010
6011 return 1;
6012 }
6013
6014 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6015 that could start a simple name. Assumes that *NAMEP points into
6016 the string beginning at NAME0. */
6017
6018 static int
6019 advance_wild_match (const char **namep, const char *name0, int target0)
6020 {
6021 const char *name = *namep;
6022
6023 while (1)
6024 {
6025 int t0, t1;
6026
6027 t0 = *name;
6028 if (t0 == '_')
6029 {
6030 t1 = name[1];
6031 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6032 {
6033 name += 1;
6034 if (name == name0 + 5 && startswith (name0, "_ada"))
6035 break;
6036 else
6037 name += 1;
6038 }
6039 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6040 || name[2] == target0))
6041 {
6042 name += 2;
6043 break;
6044 }
6045 else
6046 return 0;
6047 }
6048 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6049 name += 1;
6050 else
6051 return 0;
6052 }
6053
6054 *namep = name;
6055 return 1;
6056 }
6057
6058 /* Return true iff NAME encodes a name of the form prefix.PATN.
6059 Ignores any informational suffixes of NAME (i.e., for which
6060 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6061 simple name. */
6062
6063 static bool
6064 wild_match (const char *name, const char *patn)
6065 {
6066 const char *p;
6067 const char *name0 = name;
6068
6069 while (1)
6070 {
6071 const char *match = name;
6072
6073 if (*name == *patn)
6074 {
6075 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6076 if (*p != *name)
6077 break;
6078 if (*p == '\0' && is_name_suffix (name))
6079 return match == name0 || is_valid_name_for_wild_match (name0);
6080
6081 if (name[-1] == '_')
6082 name -= 1;
6083 }
6084 if (!advance_wild_match (&name, name0, *patn))
6085 return false;
6086 }
6087 }
6088
6089 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6090 any trailing suffixes that encode debugging information or leading
6091 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6092 information that is ignored). */
6093
6094 static bool
6095 full_match (const char *sym_name, const char *search_name)
6096 {
6097 size_t search_name_len = strlen (search_name);
6098
6099 if (strncmp (sym_name, search_name, search_name_len) == 0
6100 && is_name_suffix (sym_name + search_name_len))
6101 return true;
6102
6103 if (startswith (sym_name, "_ada_")
6104 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6105 && is_name_suffix (sym_name + search_name_len + 5))
6106 return true;
6107
6108 return false;
6109 }
6110
6111 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6112 *defn_symbols, updating the list of symbols in OBSTACKP (if
6113 necessary). OBJFILE is the section containing BLOCK. */
6114
6115 static void
6116 ada_add_block_symbols (struct obstack *obstackp,
6117 const struct block *block,
6118 const lookup_name_info &lookup_name,
6119 domain_enum domain, struct objfile *objfile)
6120 {
6121 struct block_iterator iter;
6122 /* A matching argument symbol, if any. */
6123 struct symbol *arg_sym;
6124 /* Set true when we find a matching non-argument symbol. */
6125 int found_sym;
6126 struct symbol *sym;
6127
6128 arg_sym = NULL;
6129 found_sym = 0;
6130 for (sym = block_iter_match_first (block, lookup_name, &iter);
6131 sym != NULL;
6132 sym = block_iter_match_next (lookup_name, &iter))
6133 {
6134 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6135 SYMBOL_DOMAIN (sym), domain))
6136 {
6137 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6138 {
6139 if (SYMBOL_IS_ARGUMENT (sym))
6140 arg_sym = sym;
6141 else
6142 {
6143 found_sym = 1;
6144 add_defn_to_vec (obstackp,
6145 fixup_symbol_section (sym, objfile),
6146 block);
6147 }
6148 }
6149 }
6150 }
6151
6152 /* Handle renamings. */
6153
6154 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6155 found_sym = 1;
6156
6157 if (!found_sym && arg_sym != NULL)
6158 {
6159 add_defn_to_vec (obstackp,
6160 fixup_symbol_section (arg_sym, objfile),
6161 block);
6162 }
6163
6164 if (!lookup_name.ada ().wild_match_p ())
6165 {
6166 arg_sym = NULL;
6167 found_sym = 0;
6168 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6169 const char *name = ada_lookup_name.c_str ();
6170 size_t name_len = ada_lookup_name.size ();
6171
6172 ALL_BLOCK_SYMBOLS (block, iter, sym)
6173 {
6174 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6175 SYMBOL_DOMAIN (sym), domain))
6176 {
6177 int cmp;
6178
6179 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6180 if (cmp == 0)
6181 {
6182 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6183 if (cmp == 0)
6184 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6185 name_len);
6186 }
6187
6188 if (cmp == 0
6189 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6190 {
6191 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6192 {
6193 if (SYMBOL_IS_ARGUMENT (sym))
6194 arg_sym = sym;
6195 else
6196 {
6197 found_sym = 1;
6198 add_defn_to_vec (obstackp,
6199 fixup_symbol_section (sym, objfile),
6200 block);
6201 }
6202 }
6203 }
6204 }
6205 }
6206
6207 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6208 They aren't parameters, right? */
6209 if (!found_sym && arg_sym != NULL)
6210 {
6211 add_defn_to_vec (obstackp,
6212 fixup_symbol_section (arg_sym, objfile),
6213 block);
6214 }
6215 }
6216 }
6217 \f
6218
6219 /* Symbol Completion */
6220
6221 /* See symtab.h. */
6222
6223 bool
6224 ada_lookup_name_info::matches
6225 (const char *sym_name,
6226 symbol_name_match_type match_type,
6227 completion_match_result *comp_match_res) const
6228 {
6229 bool match = false;
6230 const char *text = m_encoded_name.c_str ();
6231 size_t text_len = m_encoded_name.size ();
6232
6233 /* First, test against the fully qualified name of the symbol. */
6234
6235 if (strncmp (sym_name, text, text_len) == 0)
6236 match = true;
6237
6238 if (match && !m_encoded_p)
6239 {
6240 /* One needed check before declaring a positive match is to verify
6241 that iff we are doing a verbatim match, the decoded version
6242 of the symbol name starts with '<'. Otherwise, this symbol name
6243 is not a suitable completion. */
6244 const char *sym_name_copy = sym_name;
6245 bool has_angle_bracket;
6246
6247 sym_name = ada_decode (sym_name);
6248 has_angle_bracket = (sym_name[0] == '<');
6249 match = (has_angle_bracket == m_verbatim_p);
6250 sym_name = sym_name_copy;
6251 }
6252
6253 if (match && !m_verbatim_p)
6254 {
6255 /* When doing non-verbatim match, another check that needs to
6256 be done is to verify that the potentially matching symbol name
6257 does not include capital letters, because the ada-mode would
6258 not be able to understand these symbol names without the
6259 angle bracket notation. */
6260 const char *tmp;
6261
6262 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6263 if (*tmp != '\0')
6264 match = false;
6265 }
6266
6267 /* Second: Try wild matching... */
6268
6269 if (!match && m_wild_match_p)
6270 {
6271 /* Since we are doing wild matching, this means that TEXT
6272 may represent an unqualified symbol name. We therefore must
6273 also compare TEXT against the unqualified name of the symbol. */
6274 sym_name = ada_unqualified_name (ada_decode (sym_name));
6275
6276 if (strncmp (sym_name, text, text_len) == 0)
6277 match = true;
6278 }
6279
6280 /* Finally: If we found a match, prepare the result to return. */
6281
6282 if (!match)
6283 return false;
6284
6285 if (comp_match_res != NULL)
6286 {
6287 std::string &match_str = comp_match_res->match.storage ();
6288
6289 if (!m_encoded_p)
6290 match_str = ada_decode (sym_name);
6291 else
6292 {
6293 if (m_verbatim_p)
6294 match_str = add_angle_brackets (sym_name);
6295 else
6296 match_str = sym_name;
6297
6298 }
6299
6300 comp_match_res->set_match (match_str.c_str ());
6301 }
6302
6303 return true;
6304 }
6305
6306 /* Add the list of possible symbol names completing TEXT to TRACKER.
6307 WORD is the entire command on which completion is made. */
6308
6309 static void
6310 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6311 complete_symbol_mode mode,
6312 symbol_name_match_type name_match_type,
6313 const char *text, const char *word,
6314 enum type_code code)
6315 {
6316 struct symbol *sym;
6317 const struct block *b, *surrounding_static_block = 0;
6318 struct block_iterator iter;
6319
6320 gdb_assert (code == TYPE_CODE_UNDEF);
6321
6322 lookup_name_info lookup_name (text, name_match_type, true);
6323
6324 /* First, look at the partial symtab symbols. */
6325 expand_symtabs_matching (NULL,
6326 lookup_name,
6327 NULL,
6328 NULL,
6329 ALL_DOMAIN);
6330
6331 /* At this point scan through the misc symbol vectors and add each
6332 symbol you find to the list. Eventually we want to ignore
6333 anything that isn't a text symbol (everything else will be
6334 handled by the psymtab code above). */
6335
6336 for (objfile *objfile : current_program_space->objfiles ())
6337 {
6338 for (minimal_symbol *msymbol : objfile->msymbols ())
6339 {
6340 QUIT;
6341
6342 if (completion_skip_symbol (mode, msymbol))
6343 continue;
6344
6345 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6346
6347 /* Ada minimal symbols won't have their language set to Ada. If
6348 we let completion_list_add_name compare using the
6349 default/C-like matcher, then when completing e.g., symbols in a
6350 package named "pck", we'd match internal Ada symbols like
6351 "pckS", which are invalid in an Ada expression, unless you wrap
6352 them in '<' '>' to request a verbatim match.
6353
6354 Unfortunately, some Ada encoded names successfully demangle as
6355 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6356 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6357 with the wrong language set. Paper over that issue here. */
6358 if (symbol_language == language_auto
6359 || symbol_language == language_cplus)
6360 symbol_language = language_ada;
6361
6362 completion_list_add_name (tracker,
6363 symbol_language,
6364 MSYMBOL_LINKAGE_NAME (msymbol),
6365 lookup_name, text, word);
6366 }
6367 }
6368
6369 /* Search upwards from currently selected frame (so that we can
6370 complete on local vars. */
6371
6372 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6373 {
6374 if (!BLOCK_SUPERBLOCK (b))
6375 surrounding_static_block = b; /* For elmin of dups */
6376
6377 ALL_BLOCK_SYMBOLS (b, iter, sym)
6378 {
6379 if (completion_skip_symbol (mode, sym))
6380 continue;
6381
6382 completion_list_add_name (tracker,
6383 SYMBOL_LANGUAGE (sym),
6384 SYMBOL_LINKAGE_NAME (sym),
6385 lookup_name, text, word);
6386 }
6387 }
6388
6389 /* Go through the symtabs and check the externs and statics for
6390 symbols which match. */
6391
6392 for (objfile *objfile : current_program_space->objfiles ())
6393 {
6394 for (compunit_symtab *s : objfile->compunits ())
6395 {
6396 QUIT;
6397 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6398 ALL_BLOCK_SYMBOLS (b, iter, sym)
6399 {
6400 if (completion_skip_symbol (mode, sym))
6401 continue;
6402
6403 completion_list_add_name (tracker,
6404 SYMBOL_LANGUAGE (sym),
6405 SYMBOL_LINKAGE_NAME (sym),
6406 lookup_name, text, word);
6407 }
6408 }
6409 }
6410
6411 for (objfile *objfile : current_program_space->objfiles ())
6412 {
6413 for (compunit_symtab *s : objfile->compunits ())
6414 {
6415 QUIT;
6416 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6417 /* Don't do this block twice. */
6418 if (b == surrounding_static_block)
6419 continue;
6420 ALL_BLOCK_SYMBOLS (b, iter, sym)
6421 {
6422 if (completion_skip_symbol (mode, sym))
6423 continue;
6424
6425 completion_list_add_name (tracker,
6426 SYMBOL_LANGUAGE (sym),
6427 SYMBOL_LINKAGE_NAME (sym),
6428 lookup_name, text, word);
6429 }
6430 }
6431 }
6432 }
6433
6434 /* Field Access */
6435
6436 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6437 for tagged types. */
6438
6439 static int
6440 ada_is_dispatch_table_ptr_type (struct type *type)
6441 {
6442 const char *name;
6443
6444 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6445 return 0;
6446
6447 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6448 if (name == NULL)
6449 return 0;
6450
6451 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6452 }
6453
6454 /* Return non-zero if TYPE is an interface tag. */
6455
6456 static int
6457 ada_is_interface_tag (struct type *type)
6458 {
6459 const char *name = TYPE_NAME (type);
6460
6461 if (name == NULL)
6462 return 0;
6463
6464 return (strcmp (name, "ada__tags__interface_tag") == 0);
6465 }
6466
6467 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6468 to be invisible to users. */
6469
6470 int
6471 ada_is_ignored_field (struct type *type, int field_num)
6472 {
6473 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6474 return 1;
6475
6476 /* Check the name of that field. */
6477 {
6478 const char *name = TYPE_FIELD_NAME (type, field_num);
6479
6480 /* Anonymous field names should not be printed.
6481 brobecker/2007-02-20: I don't think this can actually happen
6482 but we don't want to print the value of annonymous fields anyway. */
6483 if (name == NULL)
6484 return 1;
6485
6486 /* Normally, fields whose name start with an underscore ("_")
6487 are fields that have been internally generated by the compiler,
6488 and thus should not be printed. The "_parent" field is special,
6489 however: This is a field internally generated by the compiler
6490 for tagged types, and it contains the components inherited from
6491 the parent type. This field should not be printed as is, but
6492 should not be ignored either. */
6493 if (name[0] == '_' && !startswith (name, "_parent"))
6494 return 1;
6495 }
6496
6497 /* If this is the dispatch table of a tagged type or an interface tag,
6498 then ignore. */
6499 if (ada_is_tagged_type (type, 1)
6500 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6501 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6502 return 1;
6503
6504 /* Not a special field, so it should not be ignored. */
6505 return 0;
6506 }
6507
6508 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6509 pointer or reference type whose ultimate target has a tag field. */
6510
6511 int
6512 ada_is_tagged_type (struct type *type, int refok)
6513 {
6514 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6515 }
6516
6517 /* True iff TYPE represents the type of X'Tag */
6518
6519 int
6520 ada_is_tag_type (struct type *type)
6521 {
6522 type = ada_check_typedef (type);
6523
6524 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6525 return 0;
6526 else
6527 {
6528 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6529
6530 return (name != NULL
6531 && strcmp (name, "ada__tags__dispatch_table") == 0);
6532 }
6533 }
6534
6535 /* The type of the tag on VAL. */
6536
6537 struct type *
6538 ada_tag_type (struct value *val)
6539 {
6540 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6541 }
6542
6543 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6544 retired at Ada 05). */
6545
6546 static int
6547 is_ada95_tag (struct value *tag)
6548 {
6549 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6550 }
6551
6552 /* The value of the tag on VAL. */
6553
6554 struct value *
6555 ada_value_tag (struct value *val)
6556 {
6557 return ada_value_struct_elt (val, "_tag", 0);
6558 }
6559
6560 /* The value of the tag on the object of type TYPE whose contents are
6561 saved at VALADDR, if it is non-null, or is at memory address
6562 ADDRESS. */
6563
6564 static struct value *
6565 value_tag_from_contents_and_address (struct type *type,
6566 const gdb_byte *valaddr,
6567 CORE_ADDR address)
6568 {
6569 int tag_byte_offset;
6570 struct type *tag_type;
6571
6572 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6573 NULL, NULL, NULL))
6574 {
6575 const gdb_byte *valaddr1 = ((valaddr == NULL)
6576 ? NULL
6577 : valaddr + tag_byte_offset);
6578 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6579
6580 return value_from_contents_and_address (tag_type, valaddr1, address1);
6581 }
6582 return NULL;
6583 }
6584
6585 static struct type *
6586 type_from_tag (struct value *tag)
6587 {
6588 const char *type_name = ada_tag_name (tag);
6589
6590 if (type_name != NULL)
6591 return ada_find_any_type (ada_encode (type_name));
6592 return NULL;
6593 }
6594
6595 /* Given a value OBJ of a tagged type, return a value of this
6596 type at the base address of the object. The base address, as
6597 defined in Ada.Tags, it is the address of the primary tag of
6598 the object, and therefore where the field values of its full
6599 view can be fetched. */
6600
6601 struct value *
6602 ada_tag_value_at_base_address (struct value *obj)
6603 {
6604 struct value *val;
6605 LONGEST offset_to_top = 0;
6606 struct type *ptr_type, *obj_type;
6607 struct value *tag;
6608 CORE_ADDR base_address;
6609
6610 obj_type = value_type (obj);
6611
6612 /* It is the responsability of the caller to deref pointers. */
6613
6614 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6615 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6616 return obj;
6617
6618 tag = ada_value_tag (obj);
6619 if (!tag)
6620 return obj;
6621
6622 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6623
6624 if (is_ada95_tag (tag))
6625 return obj;
6626
6627 ptr_type = language_lookup_primitive_type
6628 (language_def (language_ada), target_gdbarch(), "storage_offset");
6629 ptr_type = lookup_pointer_type (ptr_type);
6630 val = value_cast (ptr_type, tag);
6631 if (!val)
6632 return obj;
6633
6634 /* It is perfectly possible that an exception be raised while
6635 trying to determine the base address, just like for the tag;
6636 see ada_tag_name for more details. We do not print the error
6637 message for the same reason. */
6638
6639 try
6640 {
6641 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6642 }
6643
6644 catch (const gdb_exception_error &e)
6645 {
6646 return obj;
6647 }
6648
6649 /* If offset is null, nothing to do. */
6650
6651 if (offset_to_top == 0)
6652 return obj;
6653
6654 /* -1 is a special case in Ada.Tags; however, what should be done
6655 is not quite clear from the documentation. So do nothing for
6656 now. */
6657
6658 if (offset_to_top == -1)
6659 return obj;
6660
6661 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6662 from the base address. This was however incompatible with
6663 C++ dispatch table: C++ uses a *negative* value to *add*
6664 to the base address. Ada's convention has therefore been
6665 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6666 use the same convention. Here, we support both cases by
6667 checking the sign of OFFSET_TO_TOP. */
6668
6669 if (offset_to_top > 0)
6670 offset_to_top = -offset_to_top;
6671
6672 base_address = value_address (obj) + offset_to_top;
6673 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6674
6675 /* Make sure that we have a proper tag at the new address.
6676 Otherwise, offset_to_top is bogus (which can happen when
6677 the object is not initialized yet). */
6678
6679 if (!tag)
6680 return obj;
6681
6682 obj_type = type_from_tag (tag);
6683
6684 if (!obj_type)
6685 return obj;
6686
6687 return value_from_contents_and_address (obj_type, NULL, base_address);
6688 }
6689
6690 /* Return the "ada__tags__type_specific_data" type. */
6691
6692 static struct type *
6693 ada_get_tsd_type (struct inferior *inf)
6694 {
6695 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6696
6697 if (data->tsd_type == 0)
6698 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6699 return data->tsd_type;
6700 }
6701
6702 /* Return the TSD (type-specific data) associated to the given TAG.
6703 TAG is assumed to be the tag of a tagged-type entity.
6704
6705 May return NULL if we are unable to get the TSD. */
6706
6707 static struct value *
6708 ada_get_tsd_from_tag (struct value *tag)
6709 {
6710 struct value *val;
6711 struct type *type;
6712
6713 /* First option: The TSD is simply stored as a field of our TAG.
6714 Only older versions of GNAT would use this format, but we have
6715 to test it first, because there are no visible markers for
6716 the current approach except the absence of that field. */
6717
6718 val = ada_value_struct_elt (tag, "tsd", 1);
6719 if (val)
6720 return val;
6721
6722 /* Try the second representation for the dispatch table (in which
6723 there is no explicit 'tsd' field in the referent of the tag pointer,
6724 and instead the tsd pointer is stored just before the dispatch
6725 table. */
6726
6727 type = ada_get_tsd_type (current_inferior());
6728 if (type == NULL)
6729 return NULL;
6730 type = lookup_pointer_type (lookup_pointer_type (type));
6731 val = value_cast (type, tag);
6732 if (val == NULL)
6733 return NULL;
6734 return value_ind (value_ptradd (val, -1));
6735 }
6736
6737 /* Given the TSD of a tag (type-specific data), return a string
6738 containing the name of the associated type.
6739
6740 The returned value is good until the next call. May return NULL
6741 if we are unable to determine the tag name. */
6742
6743 static char *
6744 ada_tag_name_from_tsd (struct value *tsd)
6745 {
6746 static char name[1024];
6747 char *p;
6748 struct value *val;
6749
6750 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6751 if (val == NULL)
6752 return NULL;
6753 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6754 for (p = name; *p != '\0'; p += 1)
6755 if (isalpha (*p))
6756 *p = tolower (*p);
6757 return name;
6758 }
6759
6760 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6761 a C string.
6762
6763 Return NULL if the TAG is not an Ada tag, or if we were unable to
6764 determine the name of that tag. The result is good until the next
6765 call. */
6766
6767 const char *
6768 ada_tag_name (struct value *tag)
6769 {
6770 char *name = NULL;
6771
6772 if (!ada_is_tag_type (value_type (tag)))
6773 return NULL;
6774
6775 /* It is perfectly possible that an exception be raised while trying
6776 to determine the TAG's name, even under normal circumstances:
6777 The associated variable may be uninitialized or corrupted, for
6778 instance. We do not let any exception propagate past this point.
6779 instead we return NULL.
6780
6781 We also do not print the error message either (which often is very
6782 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6783 the caller print a more meaningful message if necessary. */
6784 try
6785 {
6786 struct value *tsd = ada_get_tsd_from_tag (tag);
6787
6788 if (tsd != NULL)
6789 name = ada_tag_name_from_tsd (tsd);
6790 }
6791 catch (const gdb_exception_error &e)
6792 {
6793 }
6794
6795 return name;
6796 }
6797
6798 /* The parent type of TYPE, or NULL if none. */
6799
6800 struct type *
6801 ada_parent_type (struct type *type)
6802 {
6803 int i;
6804
6805 type = ada_check_typedef (type);
6806
6807 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6808 return NULL;
6809
6810 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6811 if (ada_is_parent_field (type, i))
6812 {
6813 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6814
6815 /* If the _parent field is a pointer, then dereference it. */
6816 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6817 parent_type = TYPE_TARGET_TYPE (parent_type);
6818 /* If there is a parallel XVS type, get the actual base type. */
6819 parent_type = ada_get_base_type (parent_type);
6820
6821 return ada_check_typedef (parent_type);
6822 }
6823
6824 return NULL;
6825 }
6826
6827 /* True iff field number FIELD_NUM of structure type TYPE contains the
6828 parent-type (inherited) fields of a derived type. Assumes TYPE is
6829 a structure type with at least FIELD_NUM+1 fields. */
6830
6831 int
6832 ada_is_parent_field (struct type *type, int field_num)
6833 {
6834 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6835
6836 return (name != NULL
6837 && (startswith (name, "PARENT")
6838 || startswith (name, "_parent")));
6839 }
6840
6841 /* True iff field number FIELD_NUM of structure type TYPE is a
6842 transparent wrapper field (which should be silently traversed when doing
6843 field selection and flattened when printing). Assumes TYPE is a
6844 structure type with at least FIELD_NUM+1 fields. Such fields are always
6845 structures. */
6846
6847 int
6848 ada_is_wrapper_field (struct type *type, int field_num)
6849 {
6850 const char *name = TYPE_FIELD_NAME (type, field_num);
6851
6852 if (name != NULL && strcmp (name, "RETVAL") == 0)
6853 {
6854 /* This happens in functions with "out" or "in out" parameters
6855 which are passed by copy. For such functions, GNAT describes
6856 the function's return type as being a struct where the return
6857 value is in a field called RETVAL, and where the other "out"
6858 or "in out" parameters are fields of that struct. This is not
6859 a wrapper. */
6860 return 0;
6861 }
6862
6863 return (name != NULL
6864 && (startswith (name, "PARENT")
6865 || strcmp (name, "REP") == 0
6866 || startswith (name, "_parent")
6867 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6868 }
6869
6870 /* True iff field number FIELD_NUM of structure or union type TYPE
6871 is a variant wrapper. Assumes TYPE is a structure type with at least
6872 FIELD_NUM+1 fields. */
6873
6874 int
6875 ada_is_variant_part (struct type *type, int field_num)
6876 {
6877 /* Only Ada types are eligible. */
6878 if (!ADA_TYPE_P (type))
6879 return 0;
6880
6881 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6882
6883 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6884 || (is_dynamic_field (type, field_num)
6885 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6886 == TYPE_CODE_UNION)));
6887 }
6888
6889 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6890 whose discriminants are contained in the record type OUTER_TYPE,
6891 returns the type of the controlling discriminant for the variant.
6892 May return NULL if the type could not be found. */
6893
6894 struct type *
6895 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6896 {
6897 const char *name = ada_variant_discrim_name (var_type);
6898
6899 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6900 }
6901
6902 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6903 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6904 represents a 'when others' clause; otherwise 0. */
6905
6906 int
6907 ada_is_others_clause (struct type *type, int field_num)
6908 {
6909 const char *name = TYPE_FIELD_NAME (type, field_num);
6910
6911 return (name != NULL && name[0] == 'O');
6912 }
6913
6914 /* Assuming that TYPE0 is the type of the variant part of a record,
6915 returns the name of the discriminant controlling the variant.
6916 The value is valid until the next call to ada_variant_discrim_name. */
6917
6918 const char *
6919 ada_variant_discrim_name (struct type *type0)
6920 {
6921 static char *result = NULL;
6922 static size_t result_len = 0;
6923 struct type *type;
6924 const char *name;
6925 const char *discrim_end;
6926 const char *discrim_start;
6927
6928 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6929 type = TYPE_TARGET_TYPE (type0);
6930 else
6931 type = type0;
6932
6933 name = ada_type_name (type);
6934
6935 if (name == NULL || name[0] == '\000')
6936 return "";
6937
6938 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6939 discrim_end -= 1)
6940 {
6941 if (startswith (discrim_end, "___XVN"))
6942 break;
6943 }
6944 if (discrim_end == name)
6945 return "";
6946
6947 for (discrim_start = discrim_end; discrim_start != name + 3;
6948 discrim_start -= 1)
6949 {
6950 if (discrim_start == name + 1)
6951 return "";
6952 if ((discrim_start > name + 3
6953 && startswith (discrim_start - 3, "___"))
6954 || discrim_start[-1] == '.')
6955 break;
6956 }
6957
6958 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6959 strncpy (result, discrim_start, discrim_end - discrim_start);
6960 result[discrim_end - discrim_start] = '\0';
6961 return result;
6962 }
6963
6964 /* Scan STR for a subtype-encoded number, beginning at position K.
6965 Put the position of the character just past the number scanned in
6966 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6967 Return 1 if there was a valid number at the given position, and 0
6968 otherwise. A "subtype-encoded" number consists of the absolute value
6969 in decimal, followed by the letter 'm' to indicate a negative number.
6970 Assumes 0m does not occur. */
6971
6972 int
6973 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6974 {
6975 ULONGEST RU;
6976
6977 if (!isdigit (str[k]))
6978 return 0;
6979
6980 /* Do it the hard way so as not to make any assumption about
6981 the relationship of unsigned long (%lu scan format code) and
6982 LONGEST. */
6983 RU = 0;
6984 while (isdigit (str[k]))
6985 {
6986 RU = RU * 10 + (str[k] - '0');
6987 k += 1;
6988 }
6989
6990 if (str[k] == 'm')
6991 {
6992 if (R != NULL)
6993 *R = (-(LONGEST) (RU - 1)) - 1;
6994 k += 1;
6995 }
6996 else if (R != NULL)
6997 *R = (LONGEST) RU;
6998
6999 /* NOTE on the above: Technically, C does not say what the results of
7000 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7001 number representable as a LONGEST (although either would probably work
7002 in most implementations). When RU>0, the locution in the then branch
7003 above is always equivalent to the negative of RU. */
7004
7005 if (new_k != NULL)
7006 *new_k = k;
7007 return 1;
7008 }
7009
7010 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7011 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7012 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7013
7014 int
7015 ada_in_variant (LONGEST val, struct type *type, int field_num)
7016 {
7017 const char *name = TYPE_FIELD_NAME (type, field_num);
7018 int p;
7019
7020 p = 0;
7021 while (1)
7022 {
7023 switch (name[p])
7024 {
7025 case '\0':
7026 return 0;
7027 case 'S':
7028 {
7029 LONGEST W;
7030
7031 if (!ada_scan_number (name, p + 1, &W, &p))
7032 return 0;
7033 if (val == W)
7034 return 1;
7035 break;
7036 }
7037 case 'R':
7038 {
7039 LONGEST L, U;
7040
7041 if (!ada_scan_number (name, p + 1, &L, &p)
7042 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7043 return 0;
7044 if (val >= L && val <= U)
7045 return 1;
7046 break;
7047 }
7048 case 'O':
7049 return 1;
7050 default:
7051 return 0;
7052 }
7053 }
7054 }
7055
7056 /* FIXME: Lots of redundancy below. Try to consolidate. */
7057
7058 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7059 ARG_TYPE, extract and return the value of one of its (non-static)
7060 fields. FIELDNO says which field. Differs from value_primitive_field
7061 only in that it can handle packed values of arbitrary type. */
7062
7063 static struct value *
7064 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7065 struct type *arg_type)
7066 {
7067 struct type *type;
7068
7069 arg_type = ada_check_typedef (arg_type);
7070 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7071
7072 /* Handle packed fields. It might be that the field is not packed
7073 relative to its containing structure, but the structure itself is
7074 packed; in this case we must take the bit-field path. */
7075 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7076 {
7077 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7078 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7079
7080 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7081 offset + bit_pos / 8,
7082 bit_pos % 8, bit_size, type);
7083 }
7084 else
7085 return value_primitive_field (arg1, offset, fieldno, arg_type);
7086 }
7087
7088 /* Find field with name NAME in object of type TYPE. If found,
7089 set the following for each argument that is non-null:
7090 - *FIELD_TYPE_P to the field's type;
7091 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7092 an object of that type;
7093 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7094 - *BIT_SIZE_P to its size in bits if the field is packed, and
7095 0 otherwise;
7096 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7097 fields up to but not including the desired field, or by the total
7098 number of fields if not found. A NULL value of NAME never
7099 matches; the function just counts visible fields in this case.
7100
7101 Notice that we need to handle when a tagged record hierarchy
7102 has some components with the same name, like in this scenario:
7103
7104 type Top_T is tagged record
7105 N : Integer := 1;
7106 U : Integer := 974;
7107 A : Integer := 48;
7108 end record;
7109
7110 type Middle_T is new Top.Top_T with record
7111 N : Character := 'a';
7112 C : Integer := 3;
7113 end record;
7114
7115 type Bottom_T is new Middle.Middle_T with record
7116 N : Float := 4.0;
7117 C : Character := '5';
7118 X : Integer := 6;
7119 A : Character := 'J';
7120 end record;
7121
7122 Let's say we now have a variable declared and initialized as follow:
7123
7124 TC : Top_A := new Bottom_T;
7125
7126 And then we use this variable to call this function
7127
7128 procedure Assign (Obj: in out Top_T; TV : Integer);
7129
7130 as follow:
7131
7132 Assign (Top_T (B), 12);
7133
7134 Now, we're in the debugger, and we're inside that procedure
7135 then and we want to print the value of obj.c:
7136
7137 Usually, the tagged record or one of the parent type owns the
7138 component to print and there's no issue but in this particular
7139 case, what does it mean to ask for Obj.C? Since the actual
7140 type for object is type Bottom_T, it could mean two things: type
7141 component C from the Middle_T view, but also component C from
7142 Bottom_T. So in that "undefined" case, when the component is
7143 not found in the non-resolved type (which includes all the
7144 components of the parent type), then resolve it and see if we
7145 get better luck once expanded.
7146
7147 In the case of homonyms in the derived tagged type, we don't
7148 guaranty anything, and pick the one that's easiest for us
7149 to program.
7150
7151 Returns 1 if found, 0 otherwise. */
7152
7153 static int
7154 find_struct_field (const char *name, struct type *type, int offset,
7155 struct type **field_type_p,
7156 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7157 int *index_p)
7158 {
7159 int i;
7160 int parent_offset = -1;
7161
7162 type = ada_check_typedef (type);
7163
7164 if (field_type_p != NULL)
7165 *field_type_p = NULL;
7166 if (byte_offset_p != NULL)
7167 *byte_offset_p = 0;
7168 if (bit_offset_p != NULL)
7169 *bit_offset_p = 0;
7170 if (bit_size_p != NULL)
7171 *bit_size_p = 0;
7172
7173 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7174 {
7175 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7176 int fld_offset = offset + bit_pos / 8;
7177 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7178
7179 if (t_field_name == NULL)
7180 continue;
7181
7182 else if (ada_is_parent_field (type, i))
7183 {
7184 /* This is a field pointing us to the parent type of a tagged
7185 type. As hinted in this function's documentation, we give
7186 preference to fields in the current record first, so what
7187 we do here is just record the index of this field before
7188 we skip it. If it turns out we couldn't find our field
7189 in the current record, then we'll get back to it and search
7190 inside it whether the field might exist in the parent. */
7191
7192 parent_offset = i;
7193 continue;
7194 }
7195
7196 else if (name != NULL && field_name_match (t_field_name, name))
7197 {
7198 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7199
7200 if (field_type_p != NULL)
7201 *field_type_p = TYPE_FIELD_TYPE (type, i);
7202 if (byte_offset_p != NULL)
7203 *byte_offset_p = fld_offset;
7204 if (bit_offset_p != NULL)
7205 *bit_offset_p = bit_pos % 8;
7206 if (bit_size_p != NULL)
7207 *bit_size_p = bit_size;
7208 return 1;
7209 }
7210 else if (ada_is_wrapper_field (type, i))
7211 {
7212 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7213 field_type_p, byte_offset_p, bit_offset_p,
7214 bit_size_p, index_p))
7215 return 1;
7216 }
7217 else if (ada_is_variant_part (type, i))
7218 {
7219 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7220 fixed type?? */
7221 int j;
7222 struct type *field_type
7223 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7224
7225 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7226 {
7227 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7228 fld_offset
7229 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7230 field_type_p, byte_offset_p,
7231 bit_offset_p, bit_size_p, index_p))
7232 return 1;
7233 }
7234 }
7235 else if (index_p != NULL)
7236 *index_p += 1;
7237 }
7238
7239 /* Field not found so far. If this is a tagged type which
7240 has a parent, try finding that field in the parent now. */
7241
7242 if (parent_offset != -1)
7243 {
7244 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7245 int fld_offset = offset + bit_pos / 8;
7246
7247 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7248 fld_offset, field_type_p, byte_offset_p,
7249 bit_offset_p, bit_size_p, index_p))
7250 return 1;
7251 }
7252
7253 return 0;
7254 }
7255
7256 /* Number of user-visible fields in record type TYPE. */
7257
7258 static int
7259 num_visible_fields (struct type *type)
7260 {
7261 int n;
7262
7263 n = 0;
7264 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7265 return n;
7266 }
7267
7268 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7269 and search in it assuming it has (class) type TYPE.
7270 If found, return value, else return NULL.
7271
7272 Searches recursively through wrapper fields (e.g., '_parent').
7273
7274 In the case of homonyms in the tagged types, please refer to the
7275 long explanation in find_struct_field's function documentation. */
7276
7277 static struct value *
7278 ada_search_struct_field (const char *name, struct value *arg, int offset,
7279 struct type *type)
7280 {
7281 int i;
7282 int parent_offset = -1;
7283
7284 type = ada_check_typedef (type);
7285 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7286 {
7287 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7288
7289 if (t_field_name == NULL)
7290 continue;
7291
7292 else if (ada_is_parent_field (type, i))
7293 {
7294 /* This is a field pointing us to the parent type of a tagged
7295 type. As hinted in this function's documentation, we give
7296 preference to fields in the current record first, so what
7297 we do here is just record the index of this field before
7298 we skip it. If it turns out we couldn't find our field
7299 in the current record, then we'll get back to it and search
7300 inside it whether the field might exist in the parent. */
7301
7302 parent_offset = i;
7303 continue;
7304 }
7305
7306 else if (field_name_match (t_field_name, name))
7307 return ada_value_primitive_field (arg, offset, i, type);
7308
7309 else if (ada_is_wrapper_field (type, i))
7310 {
7311 struct value *v = /* Do not let indent join lines here. */
7312 ada_search_struct_field (name, arg,
7313 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7314 TYPE_FIELD_TYPE (type, i));
7315
7316 if (v != NULL)
7317 return v;
7318 }
7319
7320 else if (ada_is_variant_part (type, i))
7321 {
7322 /* PNH: Do we ever get here? See find_struct_field. */
7323 int j;
7324 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7325 i));
7326 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7327
7328 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7329 {
7330 struct value *v = ada_search_struct_field /* Force line
7331 break. */
7332 (name, arg,
7333 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7334 TYPE_FIELD_TYPE (field_type, j));
7335
7336 if (v != NULL)
7337 return v;
7338 }
7339 }
7340 }
7341
7342 /* Field not found so far. If this is a tagged type which
7343 has a parent, try finding that field in the parent now. */
7344
7345 if (parent_offset != -1)
7346 {
7347 struct value *v = ada_search_struct_field (
7348 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7349 TYPE_FIELD_TYPE (type, parent_offset));
7350
7351 if (v != NULL)
7352 return v;
7353 }
7354
7355 return NULL;
7356 }
7357
7358 static struct value *ada_index_struct_field_1 (int *, struct value *,
7359 int, struct type *);
7360
7361
7362 /* Return field #INDEX in ARG, where the index is that returned by
7363 * find_struct_field through its INDEX_P argument. Adjust the address
7364 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7365 * If found, return value, else return NULL. */
7366
7367 static struct value *
7368 ada_index_struct_field (int index, struct value *arg, int offset,
7369 struct type *type)
7370 {
7371 return ada_index_struct_field_1 (&index, arg, offset, type);
7372 }
7373
7374
7375 /* Auxiliary function for ada_index_struct_field. Like
7376 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7377 * *INDEX_P. */
7378
7379 static struct value *
7380 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7381 struct type *type)
7382 {
7383 int i;
7384 type = ada_check_typedef (type);
7385
7386 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7387 {
7388 if (TYPE_FIELD_NAME (type, i) == NULL)
7389 continue;
7390 else if (ada_is_wrapper_field (type, i))
7391 {
7392 struct value *v = /* Do not let indent join lines here. */
7393 ada_index_struct_field_1 (index_p, arg,
7394 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7395 TYPE_FIELD_TYPE (type, i));
7396
7397 if (v != NULL)
7398 return v;
7399 }
7400
7401 else if (ada_is_variant_part (type, i))
7402 {
7403 /* PNH: Do we ever get here? See ada_search_struct_field,
7404 find_struct_field. */
7405 error (_("Cannot assign this kind of variant record"));
7406 }
7407 else if (*index_p == 0)
7408 return ada_value_primitive_field (arg, offset, i, type);
7409 else
7410 *index_p -= 1;
7411 }
7412 return NULL;
7413 }
7414
7415 /* Given ARG, a value of type (pointer or reference to a)*
7416 structure/union, extract the component named NAME from the ultimate
7417 target structure/union and return it as a value with its
7418 appropriate type.
7419
7420 The routine searches for NAME among all members of the structure itself
7421 and (recursively) among all members of any wrapper members
7422 (e.g., '_parent').
7423
7424 If NO_ERR, then simply return NULL in case of error, rather than
7425 calling error. */
7426
7427 struct value *
7428 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7429 {
7430 struct type *t, *t1;
7431 struct value *v;
7432 int check_tag;
7433
7434 v = NULL;
7435 t1 = t = ada_check_typedef (value_type (arg));
7436 if (TYPE_CODE (t) == TYPE_CODE_REF)
7437 {
7438 t1 = TYPE_TARGET_TYPE (t);
7439 if (t1 == NULL)
7440 goto BadValue;
7441 t1 = ada_check_typedef (t1);
7442 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7443 {
7444 arg = coerce_ref (arg);
7445 t = t1;
7446 }
7447 }
7448
7449 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7450 {
7451 t1 = TYPE_TARGET_TYPE (t);
7452 if (t1 == NULL)
7453 goto BadValue;
7454 t1 = ada_check_typedef (t1);
7455 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7456 {
7457 arg = value_ind (arg);
7458 t = t1;
7459 }
7460 else
7461 break;
7462 }
7463
7464 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7465 goto BadValue;
7466
7467 if (t1 == t)
7468 v = ada_search_struct_field (name, arg, 0, t);
7469 else
7470 {
7471 int bit_offset, bit_size, byte_offset;
7472 struct type *field_type;
7473 CORE_ADDR address;
7474
7475 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7476 address = value_address (ada_value_ind (arg));
7477 else
7478 address = value_address (ada_coerce_ref (arg));
7479
7480 /* Check to see if this is a tagged type. We also need to handle
7481 the case where the type is a reference to a tagged type, but
7482 we have to be careful to exclude pointers to tagged types.
7483 The latter should be shown as usual (as a pointer), whereas
7484 a reference should mostly be transparent to the user. */
7485
7486 if (ada_is_tagged_type (t1, 0)
7487 || (TYPE_CODE (t1) == TYPE_CODE_REF
7488 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7489 {
7490 /* We first try to find the searched field in the current type.
7491 If not found then let's look in the fixed type. */
7492
7493 if (!find_struct_field (name, t1, 0,
7494 &field_type, &byte_offset, &bit_offset,
7495 &bit_size, NULL))
7496 check_tag = 1;
7497 else
7498 check_tag = 0;
7499 }
7500 else
7501 check_tag = 0;
7502
7503 /* Convert to fixed type in all cases, so that we have proper
7504 offsets to each field in unconstrained record types. */
7505 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7506 address, NULL, check_tag);
7507
7508 if (find_struct_field (name, t1, 0,
7509 &field_type, &byte_offset, &bit_offset,
7510 &bit_size, NULL))
7511 {
7512 if (bit_size != 0)
7513 {
7514 if (TYPE_CODE (t) == TYPE_CODE_REF)
7515 arg = ada_coerce_ref (arg);
7516 else
7517 arg = ada_value_ind (arg);
7518 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7519 bit_offset, bit_size,
7520 field_type);
7521 }
7522 else
7523 v = value_at_lazy (field_type, address + byte_offset);
7524 }
7525 }
7526
7527 if (v != NULL || no_err)
7528 return v;
7529 else
7530 error (_("There is no member named %s."), name);
7531
7532 BadValue:
7533 if (no_err)
7534 return NULL;
7535 else
7536 error (_("Attempt to extract a component of "
7537 "a value that is not a record."));
7538 }
7539
7540 /* Return a string representation of type TYPE. */
7541
7542 static std::string
7543 type_as_string (struct type *type)
7544 {
7545 string_file tmp_stream;
7546
7547 type_print (type, "", &tmp_stream, -1);
7548
7549 return std::move (tmp_stream.string ());
7550 }
7551
7552 /* Given a type TYPE, look up the type of the component of type named NAME.
7553 If DISPP is non-null, add its byte displacement from the beginning of a
7554 structure (pointed to by a value) of type TYPE to *DISPP (does not
7555 work for packed fields).
7556
7557 Matches any field whose name has NAME as a prefix, possibly
7558 followed by "___".
7559
7560 TYPE can be either a struct or union. If REFOK, TYPE may also
7561 be a (pointer or reference)+ to a struct or union, and the
7562 ultimate target type will be searched.
7563
7564 Looks recursively into variant clauses and parent types.
7565
7566 In the case of homonyms in the tagged types, please refer to the
7567 long explanation in find_struct_field's function documentation.
7568
7569 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7570 TYPE is not a type of the right kind. */
7571
7572 static struct type *
7573 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7574 int noerr)
7575 {
7576 int i;
7577 int parent_offset = -1;
7578
7579 if (name == NULL)
7580 goto BadName;
7581
7582 if (refok && type != NULL)
7583 while (1)
7584 {
7585 type = ada_check_typedef (type);
7586 if (TYPE_CODE (type) != TYPE_CODE_PTR
7587 && TYPE_CODE (type) != TYPE_CODE_REF)
7588 break;
7589 type = TYPE_TARGET_TYPE (type);
7590 }
7591
7592 if (type == NULL
7593 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7594 && TYPE_CODE (type) != TYPE_CODE_UNION))
7595 {
7596 if (noerr)
7597 return NULL;
7598
7599 error (_("Type %s is not a structure or union type"),
7600 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7601 }
7602
7603 type = to_static_fixed_type (type);
7604
7605 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7606 {
7607 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7608 struct type *t;
7609
7610 if (t_field_name == NULL)
7611 continue;
7612
7613 else if (ada_is_parent_field (type, i))
7614 {
7615 /* This is a field pointing us to the parent type of a tagged
7616 type. As hinted in this function's documentation, we give
7617 preference to fields in the current record first, so what
7618 we do here is just record the index of this field before
7619 we skip it. If it turns out we couldn't find our field
7620 in the current record, then we'll get back to it and search
7621 inside it whether the field might exist in the parent. */
7622
7623 parent_offset = i;
7624 continue;
7625 }
7626
7627 else if (field_name_match (t_field_name, name))
7628 return TYPE_FIELD_TYPE (type, i);
7629
7630 else if (ada_is_wrapper_field (type, i))
7631 {
7632 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7633 0, 1);
7634 if (t != NULL)
7635 return t;
7636 }
7637
7638 else if (ada_is_variant_part (type, i))
7639 {
7640 int j;
7641 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7642 i));
7643
7644 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7645 {
7646 /* FIXME pnh 2008/01/26: We check for a field that is
7647 NOT wrapped in a struct, since the compiler sometimes
7648 generates these for unchecked variant types. Revisit
7649 if the compiler changes this practice. */
7650 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7651
7652 if (v_field_name != NULL
7653 && field_name_match (v_field_name, name))
7654 t = TYPE_FIELD_TYPE (field_type, j);
7655 else
7656 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7657 j),
7658 name, 0, 1);
7659
7660 if (t != NULL)
7661 return t;
7662 }
7663 }
7664
7665 }
7666
7667 /* Field not found so far. If this is a tagged type which
7668 has a parent, try finding that field in the parent now. */
7669
7670 if (parent_offset != -1)
7671 {
7672 struct type *t;
7673
7674 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7675 name, 0, 1);
7676 if (t != NULL)
7677 return t;
7678 }
7679
7680 BadName:
7681 if (!noerr)
7682 {
7683 const char *name_str = name != NULL ? name : _("<null>");
7684
7685 error (_("Type %s has no component named %s"),
7686 type_as_string (type).c_str (), name_str);
7687 }
7688
7689 return NULL;
7690 }
7691
7692 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7693 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7694 represents an unchecked union (that is, the variant part of a
7695 record that is named in an Unchecked_Union pragma). */
7696
7697 static int
7698 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7699 {
7700 const char *discrim_name = ada_variant_discrim_name (var_type);
7701
7702 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7703 }
7704
7705
7706 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7707 within a value of type OUTER_TYPE that is stored in GDB at
7708 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7709 numbering from 0) is applicable. Returns -1 if none are. */
7710
7711 int
7712 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7713 const gdb_byte *outer_valaddr)
7714 {
7715 int others_clause;
7716 int i;
7717 const char *discrim_name = ada_variant_discrim_name (var_type);
7718 struct value *outer;
7719 struct value *discrim;
7720 LONGEST discrim_val;
7721
7722 /* Using plain value_from_contents_and_address here causes problems
7723 because we will end up trying to resolve a type that is currently
7724 being constructed. */
7725 outer = value_from_contents_and_address_unresolved (outer_type,
7726 outer_valaddr, 0);
7727 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7728 if (discrim == NULL)
7729 return -1;
7730 discrim_val = value_as_long (discrim);
7731
7732 others_clause = -1;
7733 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7734 {
7735 if (ada_is_others_clause (var_type, i))
7736 others_clause = i;
7737 else if (ada_in_variant (discrim_val, var_type, i))
7738 return i;
7739 }
7740
7741 return others_clause;
7742 }
7743 \f
7744
7745
7746 /* Dynamic-Sized Records */
7747
7748 /* Strategy: The type ostensibly attached to a value with dynamic size
7749 (i.e., a size that is not statically recorded in the debugging
7750 data) does not accurately reflect the size or layout of the value.
7751 Our strategy is to convert these values to values with accurate,
7752 conventional types that are constructed on the fly. */
7753
7754 /* There is a subtle and tricky problem here. In general, we cannot
7755 determine the size of dynamic records without its data. However,
7756 the 'struct value' data structure, which GDB uses to represent
7757 quantities in the inferior process (the target), requires the size
7758 of the type at the time of its allocation in order to reserve space
7759 for GDB's internal copy of the data. That's why the
7760 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7761 rather than struct value*s.
7762
7763 However, GDB's internal history variables ($1, $2, etc.) are
7764 struct value*s containing internal copies of the data that are not, in
7765 general, the same as the data at their corresponding addresses in
7766 the target. Fortunately, the types we give to these values are all
7767 conventional, fixed-size types (as per the strategy described
7768 above), so that we don't usually have to perform the
7769 'to_fixed_xxx_type' conversions to look at their values.
7770 Unfortunately, there is one exception: if one of the internal
7771 history variables is an array whose elements are unconstrained
7772 records, then we will need to create distinct fixed types for each
7773 element selected. */
7774
7775 /* The upshot of all of this is that many routines take a (type, host
7776 address, target address) triple as arguments to represent a value.
7777 The host address, if non-null, is supposed to contain an internal
7778 copy of the relevant data; otherwise, the program is to consult the
7779 target at the target address. */
7780
7781 /* Assuming that VAL0 represents a pointer value, the result of
7782 dereferencing it. Differs from value_ind in its treatment of
7783 dynamic-sized types. */
7784
7785 struct value *
7786 ada_value_ind (struct value *val0)
7787 {
7788 struct value *val = value_ind (val0);
7789
7790 if (ada_is_tagged_type (value_type (val), 0))
7791 val = ada_tag_value_at_base_address (val);
7792
7793 return ada_to_fixed_value (val);
7794 }
7795
7796 /* The value resulting from dereferencing any "reference to"
7797 qualifiers on VAL0. */
7798
7799 static struct value *
7800 ada_coerce_ref (struct value *val0)
7801 {
7802 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7803 {
7804 struct value *val = val0;
7805
7806 val = coerce_ref (val);
7807
7808 if (ada_is_tagged_type (value_type (val), 0))
7809 val = ada_tag_value_at_base_address (val);
7810
7811 return ada_to_fixed_value (val);
7812 }
7813 else
7814 return val0;
7815 }
7816
7817 /* Return OFF rounded upward if necessary to a multiple of
7818 ALIGNMENT (a power of 2). */
7819
7820 static unsigned int
7821 align_value (unsigned int off, unsigned int alignment)
7822 {
7823 return (off + alignment - 1) & ~(alignment - 1);
7824 }
7825
7826 /* Return the bit alignment required for field #F of template type TYPE. */
7827
7828 static unsigned int
7829 field_alignment (struct type *type, int f)
7830 {
7831 const char *name = TYPE_FIELD_NAME (type, f);
7832 int len;
7833 int align_offset;
7834
7835 /* The field name should never be null, unless the debugging information
7836 is somehow malformed. In this case, we assume the field does not
7837 require any alignment. */
7838 if (name == NULL)
7839 return 1;
7840
7841 len = strlen (name);
7842
7843 if (!isdigit (name[len - 1]))
7844 return 1;
7845
7846 if (isdigit (name[len - 2]))
7847 align_offset = len - 2;
7848 else
7849 align_offset = len - 1;
7850
7851 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7852 return TARGET_CHAR_BIT;
7853
7854 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7855 }
7856
7857 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7858
7859 static struct symbol *
7860 ada_find_any_type_symbol (const char *name)
7861 {
7862 struct symbol *sym;
7863
7864 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7865 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7866 return sym;
7867
7868 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7869 return sym;
7870 }
7871
7872 /* Find a type named NAME. Ignores ambiguity. This routine will look
7873 solely for types defined by debug info, it will not search the GDB
7874 primitive types. */
7875
7876 static struct type *
7877 ada_find_any_type (const char *name)
7878 {
7879 struct symbol *sym = ada_find_any_type_symbol (name);
7880
7881 if (sym != NULL)
7882 return SYMBOL_TYPE (sym);
7883
7884 return NULL;
7885 }
7886
7887 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7888 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7889 symbol, in which case it is returned. Otherwise, this looks for
7890 symbols whose name is that of NAME_SYM suffixed with "___XR".
7891 Return symbol if found, and NULL otherwise. */
7892
7893 static bool
7894 ada_is_renaming_symbol (struct symbol *name_sym)
7895 {
7896 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7897 return strstr (name, "___XR") != NULL;
7898 }
7899
7900 /* Because of GNAT encoding conventions, several GDB symbols may match a
7901 given type name. If the type denoted by TYPE0 is to be preferred to
7902 that of TYPE1 for purposes of type printing, return non-zero;
7903 otherwise return 0. */
7904
7905 int
7906 ada_prefer_type (struct type *type0, struct type *type1)
7907 {
7908 if (type1 == NULL)
7909 return 1;
7910 else if (type0 == NULL)
7911 return 0;
7912 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7913 return 1;
7914 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7915 return 0;
7916 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7917 return 1;
7918 else if (ada_is_constrained_packed_array_type (type0))
7919 return 1;
7920 else if (ada_is_array_descriptor_type (type0)
7921 && !ada_is_array_descriptor_type (type1))
7922 return 1;
7923 else
7924 {
7925 const char *type0_name = TYPE_NAME (type0);
7926 const char *type1_name = TYPE_NAME (type1);
7927
7928 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7929 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7930 return 1;
7931 }
7932 return 0;
7933 }
7934
7935 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7936 null. */
7937
7938 const char *
7939 ada_type_name (struct type *type)
7940 {
7941 if (type == NULL)
7942 return NULL;
7943 return TYPE_NAME (type);
7944 }
7945
7946 /* Search the list of "descriptive" types associated to TYPE for a type
7947 whose name is NAME. */
7948
7949 static struct type *
7950 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7951 {
7952 struct type *result, *tmp;
7953
7954 if (ada_ignore_descriptive_types_p)
7955 return NULL;
7956
7957 /* If there no descriptive-type info, then there is no parallel type
7958 to be found. */
7959 if (!HAVE_GNAT_AUX_INFO (type))
7960 return NULL;
7961
7962 result = TYPE_DESCRIPTIVE_TYPE (type);
7963 while (result != NULL)
7964 {
7965 const char *result_name = ada_type_name (result);
7966
7967 if (result_name == NULL)
7968 {
7969 warning (_("unexpected null name on descriptive type"));
7970 return NULL;
7971 }
7972
7973 /* If the names match, stop. */
7974 if (strcmp (result_name, name) == 0)
7975 break;
7976
7977 /* Otherwise, look at the next item on the list, if any. */
7978 if (HAVE_GNAT_AUX_INFO (result))
7979 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7980 else
7981 tmp = NULL;
7982
7983 /* If not found either, try after having resolved the typedef. */
7984 if (tmp != NULL)
7985 result = tmp;
7986 else
7987 {
7988 result = check_typedef (result);
7989 if (HAVE_GNAT_AUX_INFO (result))
7990 result = TYPE_DESCRIPTIVE_TYPE (result);
7991 else
7992 result = NULL;
7993 }
7994 }
7995
7996 /* If we didn't find a match, see whether this is a packed array. With
7997 older compilers, the descriptive type information is either absent or
7998 irrelevant when it comes to packed arrays so the above lookup fails.
7999 Fall back to using a parallel lookup by name in this case. */
8000 if (result == NULL && ada_is_constrained_packed_array_type (type))
8001 return ada_find_any_type (name);
8002
8003 return result;
8004 }
8005
8006 /* Find a parallel type to TYPE with the specified NAME, using the
8007 descriptive type taken from the debugging information, if available,
8008 and otherwise using the (slower) name-based method. */
8009
8010 static struct type *
8011 ada_find_parallel_type_with_name (struct type *type, const char *name)
8012 {
8013 struct type *result = NULL;
8014
8015 if (HAVE_GNAT_AUX_INFO (type))
8016 result = find_parallel_type_by_descriptive_type (type, name);
8017 else
8018 result = ada_find_any_type (name);
8019
8020 return result;
8021 }
8022
8023 /* Same as above, but specify the name of the parallel type by appending
8024 SUFFIX to the name of TYPE. */
8025
8026 struct type *
8027 ada_find_parallel_type (struct type *type, const char *suffix)
8028 {
8029 char *name;
8030 const char *type_name = ada_type_name (type);
8031 int len;
8032
8033 if (type_name == NULL)
8034 return NULL;
8035
8036 len = strlen (type_name);
8037
8038 name = (char *) alloca (len + strlen (suffix) + 1);
8039
8040 strcpy (name, type_name);
8041 strcpy (name + len, suffix);
8042
8043 return ada_find_parallel_type_with_name (type, name);
8044 }
8045
8046 /* If TYPE is a variable-size record type, return the corresponding template
8047 type describing its fields. Otherwise, return NULL. */
8048
8049 static struct type *
8050 dynamic_template_type (struct type *type)
8051 {
8052 type = ada_check_typedef (type);
8053
8054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8055 || ada_type_name (type) == NULL)
8056 return NULL;
8057 else
8058 {
8059 int len = strlen (ada_type_name (type));
8060
8061 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8062 return type;
8063 else
8064 return ada_find_parallel_type (type, "___XVE");
8065 }
8066 }
8067
8068 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8069 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8070
8071 static int
8072 is_dynamic_field (struct type *templ_type, int field_num)
8073 {
8074 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8075
8076 return name != NULL
8077 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8078 && strstr (name, "___XVL") != NULL;
8079 }
8080
8081 /* The index of the variant field of TYPE, or -1 if TYPE does not
8082 represent a variant record type. */
8083
8084 static int
8085 variant_field_index (struct type *type)
8086 {
8087 int f;
8088
8089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8090 return -1;
8091
8092 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8093 {
8094 if (ada_is_variant_part (type, f))
8095 return f;
8096 }
8097 return -1;
8098 }
8099
8100 /* A record type with no fields. */
8101
8102 static struct type *
8103 empty_record (struct type *templ)
8104 {
8105 struct type *type = alloc_type_copy (templ);
8106
8107 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8108 TYPE_NFIELDS (type) = 0;
8109 TYPE_FIELDS (type) = NULL;
8110 INIT_NONE_SPECIFIC (type);
8111 TYPE_NAME (type) = "<empty>";
8112 TYPE_LENGTH (type) = 0;
8113 return type;
8114 }
8115
8116 /* An ordinary record type (with fixed-length fields) that describes
8117 the value of type TYPE at VALADDR or ADDRESS (see comments at
8118 the beginning of this section) VAL according to GNAT conventions.
8119 DVAL0 should describe the (portion of a) record that contains any
8120 necessary discriminants. It should be NULL if value_type (VAL) is
8121 an outer-level type (i.e., as opposed to a branch of a variant.) A
8122 variant field (unless unchecked) is replaced by a particular branch
8123 of the variant.
8124
8125 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8126 length are not statically known are discarded. As a consequence,
8127 VALADDR, ADDRESS and DVAL0 are ignored.
8128
8129 NOTE: Limitations: For now, we assume that dynamic fields and
8130 variants occupy whole numbers of bytes. However, they need not be
8131 byte-aligned. */
8132
8133 struct type *
8134 ada_template_to_fixed_record_type_1 (struct type *type,
8135 const gdb_byte *valaddr,
8136 CORE_ADDR address, struct value *dval0,
8137 int keep_dynamic_fields)
8138 {
8139 struct value *mark = value_mark ();
8140 struct value *dval;
8141 struct type *rtype;
8142 int nfields, bit_len;
8143 int variant_field;
8144 long off;
8145 int fld_bit_len;
8146 int f;
8147
8148 /* Compute the number of fields in this record type that are going
8149 to be processed: unless keep_dynamic_fields, this includes only
8150 fields whose position and length are static will be processed. */
8151 if (keep_dynamic_fields)
8152 nfields = TYPE_NFIELDS (type);
8153 else
8154 {
8155 nfields = 0;
8156 while (nfields < TYPE_NFIELDS (type)
8157 && !ada_is_variant_part (type, nfields)
8158 && !is_dynamic_field (type, nfields))
8159 nfields++;
8160 }
8161
8162 rtype = alloc_type_copy (type);
8163 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8164 INIT_NONE_SPECIFIC (rtype);
8165 TYPE_NFIELDS (rtype) = nfields;
8166 TYPE_FIELDS (rtype) = (struct field *)
8167 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8168 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8169 TYPE_NAME (rtype) = ada_type_name (type);
8170 TYPE_FIXED_INSTANCE (rtype) = 1;
8171
8172 off = 0;
8173 bit_len = 0;
8174 variant_field = -1;
8175
8176 for (f = 0; f < nfields; f += 1)
8177 {
8178 off = align_value (off, field_alignment (type, f))
8179 + TYPE_FIELD_BITPOS (type, f);
8180 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8181 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8182
8183 if (ada_is_variant_part (type, f))
8184 {
8185 variant_field = f;
8186 fld_bit_len = 0;
8187 }
8188 else if (is_dynamic_field (type, f))
8189 {
8190 const gdb_byte *field_valaddr = valaddr;
8191 CORE_ADDR field_address = address;
8192 struct type *field_type =
8193 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8194
8195 if (dval0 == NULL)
8196 {
8197 /* rtype's length is computed based on the run-time
8198 value of discriminants. If the discriminants are not
8199 initialized, the type size may be completely bogus and
8200 GDB may fail to allocate a value for it. So check the
8201 size first before creating the value. */
8202 ada_ensure_varsize_limit (rtype);
8203 /* Using plain value_from_contents_and_address here
8204 causes problems because we will end up trying to
8205 resolve a type that is currently being
8206 constructed. */
8207 dval = value_from_contents_and_address_unresolved (rtype,
8208 valaddr,
8209 address);
8210 rtype = value_type (dval);
8211 }
8212 else
8213 dval = dval0;
8214
8215 /* If the type referenced by this field is an aligner type, we need
8216 to unwrap that aligner type, because its size might not be set.
8217 Keeping the aligner type would cause us to compute the wrong
8218 size for this field, impacting the offset of the all the fields
8219 that follow this one. */
8220 if (ada_is_aligner_type (field_type))
8221 {
8222 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8223
8224 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8225 field_address = cond_offset_target (field_address, field_offset);
8226 field_type = ada_aligned_type (field_type);
8227 }
8228
8229 field_valaddr = cond_offset_host (field_valaddr,
8230 off / TARGET_CHAR_BIT);
8231 field_address = cond_offset_target (field_address,
8232 off / TARGET_CHAR_BIT);
8233
8234 /* Get the fixed type of the field. Note that, in this case,
8235 we do not want to get the real type out of the tag: if
8236 the current field is the parent part of a tagged record,
8237 we will get the tag of the object. Clearly wrong: the real
8238 type of the parent is not the real type of the child. We
8239 would end up in an infinite loop. */
8240 field_type = ada_get_base_type (field_type);
8241 field_type = ada_to_fixed_type (field_type, field_valaddr,
8242 field_address, dval, 0);
8243 /* If the field size is already larger than the maximum
8244 object size, then the record itself will necessarily
8245 be larger than the maximum object size. We need to make
8246 this check now, because the size might be so ridiculously
8247 large (due to an uninitialized variable in the inferior)
8248 that it would cause an overflow when adding it to the
8249 record size. */
8250 ada_ensure_varsize_limit (field_type);
8251
8252 TYPE_FIELD_TYPE (rtype, f) = field_type;
8253 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8254 /* The multiplication can potentially overflow. But because
8255 the field length has been size-checked just above, and
8256 assuming that the maximum size is a reasonable value,
8257 an overflow should not happen in practice. So rather than
8258 adding overflow recovery code to this already complex code,
8259 we just assume that it's not going to happen. */
8260 fld_bit_len =
8261 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8262 }
8263 else
8264 {
8265 /* Note: If this field's type is a typedef, it is important
8266 to preserve the typedef layer.
8267
8268 Otherwise, we might be transforming a typedef to a fat
8269 pointer (encoding a pointer to an unconstrained array),
8270 into a basic fat pointer (encoding an unconstrained
8271 array). As both types are implemented using the same
8272 structure, the typedef is the only clue which allows us
8273 to distinguish between the two options. Stripping it
8274 would prevent us from printing this field appropriately. */
8275 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8276 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8277 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8278 fld_bit_len =
8279 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8280 else
8281 {
8282 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8283
8284 /* We need to be careful of typedefs when computing
8285 the length of our field. If this is a typedef,
8286 get the length of the target type, not the length
8287 of the typedef. */
8288 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8289 field_type = ada_typedef_target_type (field_type);
8290
8291 fld_bit_len =
8292 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8293 }
8294 }
8295 if (off + fld_bit_len > bit_len)
8296 bit_len = off + fld_bit_len;
8297 off += fld_bit_len;
8298 TYPE_LENGTH (rtype) =
8299 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8300 }
8301
8302 /* We handle the variant part, if any, at the end because of certain
8303 odd cases in which it is re-ordered so as NOT to be the last field of
8304 the record. This can happen in the presence of representation
8305 clauses. */
8306 if (variant_field >= 0)
8307 {
8308 struct type *branch_type;
8309
8310 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8311
8312 if (dval0 == NULL)
8313 {
8314 /* Using plain value_from_contents_and_address here causes
8315 problems because we will end up trying to resolve a type
8316 that is currently being constructed. */
8317 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8318 address);
8319 rtype = value_type (dval);
8320 }
8321 else
8322 dval = dval0;
8323
8324 branch_type =
8325 to_fixed_variant_branch_type
8326 (TYPE_FIELD_TYPE (type, variant_field),
8327 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8328 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8329 if (branch_type == NULL)
8330 {
8331 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8332 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8333 TYPE_NFIELDS (rtype) -= 1;
8334 }
8335 else
8336 {
8337 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8338 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8339 fld_bit_len =
8340 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8341 TARGET_CHAR_BIT;
8342 if (off + fld_bit_len > bit_len)
8343 bit_len = off + fld_bit_len;
8344 TYPE_LENGTH (rtype) =
8345 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8346 }
8347 }
8348
8349 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8350 should contain the alignment of that record, which should be a strictly
8351 positive value. If null or negative, then something is wrong, most
8352 probably in the debug info. In that case, we don't round up the size
8353 of the resulting type. If this record is not part of another structure,
8354 the current RTYPE length might be good enough for our purposes. */
8355 if (TYPE_LENGTH (type) <= 0)
8356 {
8357 if (TYPE_NAME (rtype))
8358 warning (_("Invalid type size for `%s' detected: %s."),
8359 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8360 else
8361 warning (_("Invalid type size for <unnamed> detected: %s."),
8362 pulongest (TYPE_LENGTH (type)));
8363 }
8364 else
8365 {
8366 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8367 TYPE_LENGTH (type));
8368 }
8369
8370 value_free_to_mark (mark);
8371 if (TYPE_LENGTH (rtype) > varsize_limit)
8372 error (_("record type with dynamic size is larger than varsize-limit"));
8373 return rtype;
8374 }
8375
8376 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8377 of 1. */
8378
8379 static struct type *
8380 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8381 CORE_ADDR address, struct value *dval0)
8382 {
8383 return ada_template_to_fixed_record_type_1 (type, valaddr,
8384 address, dval0, 1);
8385 }
8386
8387 /* An ordinary record type in which ___XVL-convention fields and
8388 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8389 static approximations, containing all possible fields. Uses
8390 no runtime values. Useless for use in values, but that's OK,
8391 since the results are used only for type determinations. Works on both
8392 structs and unions. Representation note: to save space, we memorize
8393 the result of this function in the TYPE_TARGET_TYPE of the
8394 template type. */
8395
8396 static struct type *
8397 template_to_static_fixed_type (struct type *type0)
8398 {
8399 struct type *type;
8400 int nfields;
8401 int f;
8402
8403 /* No need no do anything if the input type is already fixed. */
8404 if (TYPE_FIXED_INSTANCE (type0))
8405 return type0;
8406
8407 /* Likewise if we already have computed the static approximation. */
8408 if (TYPE_TARGET_TYPE (type0) != NULL)
8409 return TYPE_TARGET_TYPE (type0);
8410
8411 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8412 type = type0;
8413 nfields = TYPE_NFIELDS (type0);
8414
8415 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8416 recompute all over next time. */
8417 TYPE_TARGET_TYPE (type0) = type;
8418
8419 for (f = 0; f < nfields; f += 1)
8420 {
8421 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8422 struct type *new_type;
8423
8424 if (is_dynamic_field (type0, f))
8425 {
8426 field_type = ada_check_typedef (field_type);
8427 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8428 }
8429 else
8430 new_type = static_unwrap_type (field_type);
8431
8432 if (new_type != field_type)
8433 {
8434 /* Clone TYPE0 only the first time we get a new field type. */
8435 if (type == type0)
8436 {
8437 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8438 TYPE_CODE (type) = TYPE_CODE (type0);
8439 INIT_NONE_SPECIFIC (type);
8440 TYPE_NFIELDS (type) = nfields;
8441 TYPE_FIELDS (type) = (struct field *)
8442 TYPE_ALLOC (type, nfields * sizeof (struct field));
8443 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8444 sizeof (struct field) * nfields);
8445 TYPE_NAME (type) = ada_type_name (type0);
8446 TYPE_FIXED_INSTANCE (type) = 1;
8447 TYPE_LENGTH (type) = 0;
8448 }
8449 TYPE_FIELD_TYPE (type, f) = new_type;
8450 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8451 }
8452 }
8453
8454 return type;
8455 }
8456
8457 /* Given an object of type TYPE whose contents are at VALADDR and
8458 whose address in memory is ADDRESS, returns a revision of TYPE,
8459 which should be a non-dynamic-sized record, in which the variant
8460 part, if any, is replaced with the appropriate branch. Looks
8461 for discriminant values in DVAL0, which can be NULL if the record
8462 contains the necessary discriminant values. */
8463
8464 static struct type *
8465 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8466 CORE_ADDR address, struct value *dval0)
8467 {
8468 struct value *mark = value_mark ();
8469 struct value *dval;
8470 struct type *rtype;
8471 struct type *branch_type;
8472 int nfields = TYPE_NFIELDS (type);
8473 int variant_field = variant_field_index (type);
8474
8475 if (variant_field == -1)
8476 return type;
8477
8478 if (dval0 == NULL)
8479 {
8480 dval = value_from_contents_and_address (type, valaddr, address);
8481 type = value_type (dval);
8482 }
8483 else
8484 dval = dval0;
8485
8486 rtype = alloc_type_copy (type);
8487 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8488 INIT_NONE_SPECIFIC (rtype);
8489 TYPE_NFIELDS (rtype) = nfields;
8490 TYPE_FIELDS (rtype) =
8491 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8492 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8493 sizeof (struct field) * nfields);
8494 TYPE_NAME (rtype) = ada_type_name (type);
8495 TYPE_FIXED_INSTANCE (rtype) = 1;
8496 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8497
8498 branch_type = to_fixed_variant_branch_type
8499 (TYPE_FIELD_TYPE (type, variant_field),
8500 cond_offset_host (valaddr,
8501 TYPE_FIELD_BITPOS (type, variant_field)
8502 / TARGET_CHAR_BIT),
8503 cond_offset_target (address,
8504 TYPE_FIELD_BITPOS (type, variant_field)
8505 / TARGET_CHAR_BIT), dval);
8506 if (branch_type == NULL)
8507 {
8508 int f;
8509
8510 for (f = variant_field + 1; f < nfields; f += 1)
8511 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8512 TYPE_NFIELDS (rtype) -= 1;
8513 }
8514 else
8515 {
8516 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8517 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8518 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8519 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8520 }
8521 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8522
8523 value_free_to_mark (mark);
8524 return rtype;
8525 }
8526
8527 /* An ordinary record type (with fixed-length fields) that describes
8528 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8529 beginning of this section]. Any necessary discriminants' values
8530 should be in DVAL, a record value; it may be NULL if the object
8531 at ADDR itself contains any necessary discriminant values.
8532 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8533 values from the record are needed. Except in the case that DVAL,
8534 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8535 unchecked) is replaced by a particular branch of the variant.
8536
8537 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8538 is questionable and may be removed. It can arise during the
8539 processing of an unconstrained-array-of-record type where all the
8540 variant branches have exactly the same size. This is because in
8541 such cases, the compiler does not bother to use the XVS convention
8542 when encoding the record. I am currently dubious of this
8543 shortcut and suspect the compiler should be altered. FIXME. */
8544
8545 static struct type *
8546 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8547 CORE_ADDR address, struct value *dval)
8548 {
8549 struct type *templ_type;
8550
8551 if (TYPE_FIXED_INSTANCE (type0))
8552 return type0;
8553
8554 templ_type = dynamic_template_type (type0);
8555
8556 if (templ_type != NULL)
8557 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8558 else if (variant_field_index (type0) >= 0)
8559 {
8560 if (dval == NULL && valaddr == NULL && address == 0)
8561 return type0;
8562 return to_record_with_fixed_variant_part (type0, valaddr, address,
8563 dval);
8564 }
8565 else
8566 {
8567 TYPE_FIXED_INSTANCE (type0) = 1;
8568 return type0;
8569 }
8570
8571 }
8572
8573 /* An ordinary record type (with fixed-length fields) that describes
8574 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8575 union type. Any necessary discriminants' values should be in DVAL,
8576 a record value. That is, this routine selects the appropriate
8577 branch of the union at ADDR according to the discriminant value
8578 indicated in the union's type name. Returns VAR_TYPE0 itself if
8579 it represents a variant subject to a pragma Unchecked_Union. */
8580
8581 static struct type *
8582 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8583 CORE_ADDR address, struct value *dval)
8584 {
8585 int which;
8586 struct type *templ_type;
8587 struct type *var_type;
8588
8589 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8590 var_type = TYPE_TARGET_TYPE (var_type0);
8591 else
8592 var_type = var_type0;
8593
8594 templ_type = ada_find_parallel_type (var_type, "___XVU");
8595
8596 if (templ_type != NULL)
8597 var_type = templ_type;
8598
8599 if (is_unchecked_variant (var_type, value_type (dval)))
8600 return var_type0;
8601 which =
8602 ada_which_variant_applies (var_type,
8603 value_type (dval), value_contents (dval));
8604
8605 if (which < 0)
8606 return empty_record (var_type);
8607 else if (is_dynamic_field (var_type, which))
8608 return to_fixed_record_type
8609 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8610 valaddr, address, dval);
8611 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8612 return
8613 to_fixed_record_type
8614 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8615 else
8616 return TYPE_FIELD_TYPE (var_type, which);
8617 }
8618
8619 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8620 ENCODING_TYPE, a type following the GNAT conventions for discrete
8621 type encodings, only carries redundant information. */
8622
8623 static int
8624 ada_is_redundant_range_encoding (struct type *range_type,
8625 struct type *encoding_type)
8626 {
8627 const char *bounds_str;
8628 int n;
8629 LONGEST lo, hi;
8630
8631 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8632
8633 if (TYPE_CODE (get_base_type (range_type))
8634 != TYPE_CODE (get_base_type (encoding_type)))
8635 {
8636 /* The compiler probably used a simple base type to describe
8637 the range type instead of the range's actual base type,
8638 expecting us to get the real base type from the encoding
8639 anyway. In this situation, the encoding cannot be ignored
8640 as redundant. */
8641 return 0;
8642 }
8643
8644 if (is_dynamic_type (range_type))
8645 return 0;
8646
8647 if (TYPE_NAME (encoding_type) == NULL)
8648 return 0;
8649
8650 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8651 if (bounds_str == NULL)
8652 return 0;
8653
8654 n = 8; /* Skip "___XDLU_". */
8655 if (!ada_scan_number (bounds_str, n, &lo, &n))
8656 return 0;
8657 if (TYPE_LOW_BOUND (range_type) != lo)
8658 return 0;
8659
8660 n += 2; /* Skip the "__" separator between the two bounds. */
8661 if (!ada_scan_number (bounds_str, n, &hi, &n))
8662 return 0;
8663 if (TYPE_HIGH_BOUND (range_type) != hi)
8664 return 0;
8665
8666 return 1;
8667 }
8668
8669 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8670 a type following the GNAT encoding for describing array type
8671 indices, only carries redundant information. */
8672
8673 static int
8674 ada_is_redundant_index_type_desc (struct type *array_type,
8675 struct type *desc_type)
8676 {
8677 struct type *this_layer = check_typedef (array_type);
8678 int i;
8679
8680 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8681 {
8682 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8683 TYPE_FIELD_TYPE (desc_type, i)))
8684 return 0;
8685 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8686 }
8687
8688 return 1;
8689 }
8690
8691 /* Assuming that TYPE0 is an array type describing the type of a value
8692 at ADDR, and that DVAL describes a record containing any
8693 discriminants used in TYPE0, returns a type for the value that
8694 contains no dynamic components (that is, no components whose sizes
8695 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8696 true, gives an error message if the resulting type's size is over
8697 varsize_limit. */
8698
8699 static struct type *
8700 to_fixed_array_type (struct type *type0, struct value *dval,
8701 int ignore_too_big)
8702 {
8703 struct type *index_type_desc;
8704 struct type *result;
8705 int constrained_packed_array_p;
8706 static const char *xa_suffix = "___XA";
8707
8708 type0 = ada_check_typedef (type0);
8709 if (TYPE_FIXED_INSTANCE (type0))
8710 return type0;
8711
8712 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8713 if (constrained_packed_array_p)
8714 type0 = decode_constrained_packed_array_type (type0);
8715
8716 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8717
8718 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8719 encoding suffixed with 'P' may still be generated. If so,
8720 it should be used to find the XA type. */
8721
8722 if (index_type_desc == NULL)
8723 {
8724 const char *type_name = ada_type_name (type0);
8725
8726 if (type_name != NULL)
8727 {
8728 const int len = strlen (type_name);
8729 char *name = (char *) alloca (len + strlen (xa_suffix));
8730
8731 if (type_name[len - 1] == 'P')
8732 {
8733 strcpy (name, type_name);
8734 strcpy (name + len - 1, xa_suffix);
8735 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8736 }
8737 }
8738 }
8739
8740 ada_fixup_array_indexes_type (index_type_desc);
8741 if (index_type_desc != NULL
8742 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8743 {
8744 /* Ignore this ___XA parallel type, as it does not bring any
8745 useful information. This allows us to avoid creating fixed
8746 versions of the array's index types, which would be identical
8747 to the original ones. This, in turn, can also help avoid
8748 the creation of fixed versions of the array itself. */
8749 index_type_desc = NULL;
8750 }
8751
8752 if (index_type_desc == NULL)
8753 {
8754 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8755
8756 /* NOTE: elt_type---the fixed version of elt_type0---should never
8757 depend on the contents of the array in properly constructed
8758 debugging data. */
8759 /* Create a fixed version of the array element type.
8760 We're not providing the address of an element here,
8761 and thus the actual object value cannot be inspected to do
8762 the conversion. This should not be a problem, since arrays of
8763 unconstrained objects are not allowed. In particular, all
8764 the elements of an array of a tagged type should all be of
8765 the same type specified in the debugging info. No need to
8766 consult the object tag. */
8767 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8768
8769 /* Make sure we always create a new array type when dealing with
8770 packed array types, since we're going to fix-up the array
8771 type length and element bitsize a little further down. */
8772 if (elt_type0 == elt_type && !constrained_packed_array_p)
8773 result = type0;
8774 else
8775 result = create_array_type (alloc_type_copy (type0),
8776 elt_type, TYPE_INDEX_TYPE (type0));
8777 }
8778 else
8779 {
8780 int i;
8781 struct type *elt_type0;
8782
8783 elt_type0 = type0;
8784 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8785 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8786
8787 /* NOTE: result---the fixed version of elt_type0---should never
8788 depend on the contents of the array in properly constructed
8789 debugging data. */
8790 /* Create a fixed version of the array element type.
8791 We're not providing the address of an element here,
8792 and thus the actual object value cannot be inspected to do
8793 the conversion. This should not be a problem, since arrays of
8794 unconstrained objects are not allowed. In particular, all
8795 the elements of an array of a tagged type should all be of
8796 the same type specified in the debugging info. No need to
8797 consult the object tag. */
8798 result =
8799 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8800
8801 elt_type0 = type0;
8802 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8803 {
8804 struct type *range_type =
8805 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8806
8807 result = create_array_type (alloc_type_copy (elt_type0),
8808 result, range_type);
8809 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8810 }
8811 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8812 error (_("array type with dynamic size is larger than varsize-limit"));
8813 }
8814
8815 /* We want to preserve the type name. This can be useful when
8816 trying to get the type name of a value that has already been
8817 printed (for instance, if the user did "print VAR; whatis $". */
8818 TYPE_NAME (result) = TYPE_NAME (type0);
8819
8820 if (constrained_packed_array_p)
8821 {
8822 /* So far, the resulting type has been created as if the original
8823 type was a regular (non-packed) array type. As a result, the
8824 bitsize of the array elements needs to be set again, and the array
8825 length needs to be recomputed based on that bitsize. */
8826 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8827 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8828
8829 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8830 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8831 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8832 TYPE_LENGTH (result)++;
8833 }
8834
8835 TYPE_FIXED_INSTANCE (result) = 1;
8836 return result;
8837 }
8838
8839
8840 /* A standard type (containing no dynamically sized components)
8841 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8842 DVAL describes a record containing any discriminants used in TYPE0,
8843 and may be NULL if there are none, or if the object of type TYPE at
8844 ADDRESS or in VALADDR contains these discriminants.
8845
8846 If CHECK_TAG is not null, in the case of tagged types, this function
8847 attempts to locate the object's tag and use it to compute the actual
8848 type. However, when ADDRESS is null, we cannot use it to determine the
8849 location of the tag, and therefore compute the tagged type's actual type.
8850 So we return the tagged type without consulting the tag. */
8851
8852 static struct type *
8853 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8854 CORE_ADDR address, struct value *dval, int check_tag)
8855 {
8856 type = ada_check_typedef (type);
8857
8858 /* Only un-fixed types need to be handled here. */
8859 if (!HAVE_GNAT_AUX_INFO (type))
8860 return type;
8861
8862 switch (TYPE_CODE (type))
8863 {
8864 default:
8865 return type;
8866 case TYPE_CODE_STRUCT:
8867 {
8868 struct type *static_type = to_static_fixed_type (type);
8869 struct type *fixed_record_type =
8870 to_fixed_record_type (type, valaddr, address, NULL);
8871
8872 /* If STATIC_TYPE is a tagged type and we know the object's address,
8873 then we can determine its tag, and compute the object's actual
8874 type from there. Note that we have to use the fixed record
8875 type (the parent part of the record may have dynamic fields
8876 and the way the location of _tag is expressed may depend on
8877 them). */
8878
8879 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8880 {
8881 struct value *tag =
8882 value_tag_from_contents_and_address
8883 (fixed_record_type,
8884 valaddr,
8885 address);
8886 struct type *real_type = type_from_tag (tag);
8887 struct value *obj =
8888 value_from_contents_and_address (fixed_record_type,
8889 valaddr,
8890 address);
8891 fixed_record_type = value_type (obj);
8892 if (real_type != NULL)
8893 return to_fixed_record_type
8894 (real_type, NULL,
8895 value_address (ada_tag_value_at_base_address (obj)), NULL);
8896 }
8897
8898 /* Check to see if there is a parallel ___XVZ variable.
8899 If there is, then it provides the actual size of our type. */
8900 else if (ada_type_name (fixed_record_type) != NULL)
8901 {
8902 const char *name = ada_type_name (fixed_record_type);
8903 char *xvz_name
8904 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8905 bool xvz_found = false;
8906 LONGEST size;
8907
8908 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8909 try
8910 {
8911 xvz_found = get_int_var_value (xvz_name, size);
8912 }
8913 catch (const gdb_exception_error &except)
8914 {
8915 /* We found the variable, but somehow failed to read
8916 its value. Rethrow the same error, but with a little
8917 bit more information, to help the user understand
8918 what went wrong (Eg: the variable might have been
8919 optimized out). */
8920 throw_error (except.error,
8921 _("unable to read value of %s (%s)"),
8922 xvz_name, except.what ());
8923 }
8924
8925 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8926 {
8927 fixed_record_type = copy_type (fixed_record_type);
8928 TYPE_LENGTH (fixed_record_type) = size;
8929
8930 /* The FIXED_RECORD_TYPE may have be a stub. We have
8931 observed this when the debugging info is STABS, and
8932 apparently it is something that is hard to fix.
8933
8934 In practice, we don't need the actual type definition
8935 at all, because the presence of the XVZ variable allows us
8936 to assume that there must be a XVS type as well, which we
8937 should be able to use later, when we need the actual type
8938 definition.
8939
8940 In the meantime, pretend that the "fixed" type we are
8941 returning is NOT a stub, because this can cause trouble
8942 when using this type to create new types targeting it.
8943 Indeed, the associated creation routines often check
8944 whether the target type is a stub and will try to replace
8945 it, thus using a type with the wrong size. This, in turn,
8946 might cause the new type to have the wrong size too.
8947 Consider the case of an array, for instance, where the size
8948 of the array is computed from the number of elements in
8949 our array multiplied by the size of its element. */
8950 TYPE_STUB (fixed_record_type) = 0;
8951 }
8952 }
8953 return fixed_record_type;
8954 }
8955 case TYPE_CODE_ARRAY:
8956 return to_fixed_array_type (type, dval, 1);
8957 case TYPE_CODE_UNION:
8958 if (dval == NULL)
8959 return type;
8960 else
8961 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8962 }
8963 }
8964
8965 /* The same as ada_to_fixed_type_1, except that it preserves the type
8966 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8967
8968 The typedef layer needs be preserved in order to differentiate between
8969 arrays and array pointers when both types are implemented using the same
8970 fat pointer. In the array pointer case, the pointer is encoded as
8971 a typedef of the pointer type. For instance, considering:
8972
8973 type String_Access is access String;
8974 S1 : String_Access := null;
8975
8976 To the debugger, S1 is defined as a typedef of type String. But
8977 to the user, it is a pointer. So if the user tries to print S1,
8978 we should not dereference the array, but print the array address
8979 instead.
8980
8981 If we didn't preserve the typedef layer, we would lose the fact that
8982 the type is to be presented as a pointer (needs de-reference before
8983 being printed). And we would also use the source-level type name. */
8984
8985 struct type *
8986 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8987 CORE_ADDR address, struct value *dval, int check_tag)
8988
8989 {
8990 struct type *fixed_type =
8991 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8992
8993 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8994 then preserve the typedef layer.
8995
8996 Implementation note: We can only check the main-type portion of
8997 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8998 from TYPE now returns a type that has the same instance flags
8999 as TYPE. For instance, if TYPE is a "typedef const", and its
9000 target type is a "struct", then the typedef elimination will return
9001 a "const" version of the target type. See check_typedef for more
9002 details about how the typedef layer elimination is done.
9003
9004 brobecker/2010-11-19: It seems to me that the only case where it is
9005 useful to preserve the typedef layer is when dealing with fat pointers.
9006 Perhaps, we could add a check for that and preserve the typedef layer
9007 only in that situation. But this seems unecessary so far, probably
9008 because we call check_typedef/ada_check_typedef pretty much everywhere.
9009 */
9010 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9011 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9012 == TYPE_MAIN_TYPE (fixed_type)))
9013 return type;
9014
9015 return fixed_type;
9016 }
9017
9018 /* A standard (static-sized) type corresponding as well as possible to
9019 TYPE0, but based on no runtime data. */
9020
9021 static struct type *
9022 to_static_fixed_type (struct type *type0)
9023 {
9024 struct type *type;
9025
9026 if (type0 == NULL)
9027 return NULL;
9028
9029 if (TYPE_FIXED_INSTANCE (type0))
9030 return type0;
9031
9032 type0 = ada_check_typedef (type0);
9033
9034 switch (TYPE_CODE (type0))
9035 {
9036 default:
9037 return type0;
9038 case TYPE_CODE_STRUCT:
9039 type = dynamic_template_type (type0);
9040 if (type != NULL)
9041 return template_to_static_fixed_type (type);
9042 else
9043 return template_to_static_fixed_type (type0);
9044 case TYPE_CODE_UNION:
9045 type = ada_find_parallel_type (type0, "___XVU");
9046 if (type != NULL)
9047 return template_to_static_fixed_type (type);
9048 else
9049 return template_to_static_fixed_type (type0);
9050 }
9051 }
9052
9053 /* A static approximation of TYPE with all type wrappers removed. */
9054
9055 static struct type *
9056 static_unwrap_type (struct type *type)
9057 {
9058 if (ada_is_aligner_type (type))
9059 {
9060 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9061 if (ada_type_name (type1) == NULL)
9062 TYPE_NAME (type1) = ada_type_name (type);
9063
9064 return static_unwrap_type (type1);
9065 }
9066 else
9067 {
9068 struct type *raw_real_type = ada_get_base_type (type);
9069
9070 if (raw_real_type == type)
9071 return type;
9072 else
9073 return to_static_fixed_type (raw_real_type);
9074 }
9075 }
9076
9077 /* In some cases, incomplete and private types require
9078 cross-references that are not resolved as records (for example,
9079 type Foo;
9080 type FooP is access Foo;
9081 V: FooP;
9082 type Foo is array ...;
9083 ). In these cases, since there is no mechanism for producing
9084 cross-references to such types, we instead substitute for FooP a
9085 stub enumeration type that is nowhere resolved, and whose tag is
9086 the name of the actual type. Call these types "non-record stubs". */
9087
9088 /* A type equivalent to TYPE that is not a non-record stub, if one
9089 exists, otherwise TYPE. */
9090
9091 struct type *
9092 ada_check_typedef (struct type *type)
9093 {
9094 if (type == NULL)
9095 return NULL;
9096
9097 /* If our type is an access to an unconstrained array, which is encoded
9098 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9099 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9100 what allows us to distinguish between fat pointers that represent
9101 array types, and fat pointers that represent array access types
9102 (in both cases, the compiler implements them as fat pointers). */
9103 if (ada_is_access_to_unconstrained_array (type))
9104 return type;
9105
9106 type = check_typedef (type);
9107 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9108 || !TYPE_STUB (type)
9109 || TYPE_NAME (type) == NULL)
9110 return type;
9111 else
9112 {
9113 const char *name = TYPE_NAME (type);
9114 struct type *type1 = ada_find_any_type (name);
9115
9116 if (type1 == NULL)
9117 return type;
9118
9119 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9120 stubs pointing to arrays, as we don't create symbols for array
9121 types, only for the typedef-to-array types). If that's the case,
9122 strip the typedef layer. */
9123 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9124 type1 = ada_check_typedef (type1);
9125
9126 return type1;
9127 }
9128 }
9129
9130 /* A value representing the data at VALADDR/ADDRESS as described by
9131 type TYPE0, but with a standard (static-sized) type that correctly
9132 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9133 type, then return VAL0 [this feature is simply to avoid redundant
9134 creation of struct values]. */
9135
9136 static struct value *
9137 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9138 struct value *val0)
9139 {
9140 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9141
9142 if (type == type0 && val0 != NULL)
9143 return val0;
9144
9145 if (VALUE_LVAL (val0) != lval_memory)
9146 {
9147 /* Our value does not live in memory; it could be a convenience
9148 variable, for instance. Create a not_lval value using val0's
9149 contents. */
9150 return value_from_contents (type, value_contents (val0));
9151 }
9152
9153 return value_from_contents_and_address (type, 0, address);
9154 }
9155
9156 /* A value representing VAL, but with a standard (static-sized) type
9157 that correctly describes it. Does not necessarily create a new
9158 value. */
9159
9160 struct value *
9161 ada_to_fixed_value (struct value *val)
9162 {
9163 val = unwrap_value (val);
9164 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9165 return val;
9166 }
9167 \f
9168
9169 /* Attributes */
9170
9171 /* Table mapping attribute numbers to names.
9172 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9173
9174 static const char *attribute_names[] = {
9175 "<?>",
9176
9177 "first",
9178 "last",
9179 "length",
9180 "image",
9181 "max",
9182 "min",
9183 "modulus",
9184 "pos",
9185 "size",
9186 "tag",
9187 "val",
9188 0
9189 };
9190
9191 const char *
9192 ada_attribute_name (enum exp_opcode n)
9193 {
9194 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9195 return attribute_names[n - OP_ATR_FIRST + 1];
9196 else
9197 return attribute_names[0];
9198 }
9199
9200 /* Evaluate the 'POS attribute applied to ARG. */
9201
9202 static LONGEST
9203 pos_atr (struct value *arg)
9204 {
9205 struct value *val = coerce_ref (arg);
9206 struct type *type = value_type (val);
9207 LONGEST result;
9208
9209 if (!discrete_type_p (type))
9210 error (_("'POS only defined on discrete types"));
9211
9212 if (!discrete_position (type, value_as_long (val), &result))
9213 error (_("enumeration value is invalid: can't find 'POS"));
9214
9215 return result;
9216 }
9217
9218 static struct value *
9219 value_pos_atr (struct type *type, struct value *arg)
9220 {
9221 return value_from_longest (type, pos_atr (arg));
9222 }
9223
9224 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9225
9226 static struct value *
9227 value_val_atr (struct type *type, struct value *arg)
9228 {
9229 if (!discrete_type_p (type))
9230 error (_("'VAL only defined on discrete types"));
9231 if (!integer_type_p (value_type (arg)))
9232 error (_("'VAL requires integral argument"));
9233
9234 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9235 {
9236 long pos = value_as_long (arg);
9237
9238 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9239 error (_("argument to 'VAL out of range"));
9240 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9241 }
9242 else
9243 return value_from_longest (type, value_as_long (arg));
9244 }
9245 \f
9246
9247 /* Evaluation */
9248
9249 /* True if TYPE appears to be an Ada character type.
9250 [At the moment, this is true only for Character and Wide_Character;
9251 It is a heuristic test that could stand improvement]. */
9252
9253 bool
9254 ada_is_character_type (struct type *type)
9255 {
9256 const char *name;
9257
9258 /* If the type code says it's a character, then assume it really is,
9259 and don't check any further. */
9260 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9261 return true;
9262
9263 /* Otherwise, assume it's a character type iff it is a discrete type
9264 with a known character type name. */
9265 name = ada_type_name (type);
9266 return (name != NULL
9267 && (TYPE_CODE (type) == TYPE_CODE_INT
9268 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9269 && (strcmp (name, "character") == 0
9270 || strcmp (name, "wide_character") == 0
9271 || strcmp (name, "wide_wide_character") == 0
9272 || strcmp (name, "unsigned char") == 0));
9273 }
9274
9275 /* True if TYPE appears to be an Ada string type. */
9276
9277 bool
9278 ada_is_string_type (struct type *type)
9279 {
9280 type = ada_check_typedef (type);
9281 if (type != NULL
9282 && TYPE_CODE (type) != TYPE_CODE_PTR
9283 && (ada_is_simple_array_type (type)
9284 || ada_is_array_descriptor_type (type))
9285 && ada_array_arity (type) == 1)
9286 {
9287 struct type *elttype = ada_array_element_type (type, 1);
9288
9289 return ada_is_character_type (elttype);
9290 }
9291 else
9292 return false;
9293 }
9294
9295 /* The compiler sometimes provides a parallel XVS type for a given
9296 PAD type. Normally, it is safe to follow the PAD type directly,
9297 but older versions of the compiler have a bug that causes the offset
9298 of its "F" field to be wrong. Following that field in that case
9299 would lead to incorrect results, but this can be worked around
9300 by ignoring the PAD type and using the associated XVS type instead.
9301
9302 Set to True if the debugger should trust the contents of PAD types.
9303 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9304 static int trust_pad_over_xvs = 1;
9305
9306 /* True if TYPE is a struct type introduced by the compiler to force the
9307 alignment of a value. Such types have a single field with a
9308 distinctive name. */
9309
9310 int
9311 ada_is_aligner_type (struct type *type)
9312 {
9313 type = ada_check_typedef (type);
9314
9315 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9316 return 0;
9317
9318 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9319 && TYPE_NFIELDS (type) == 1
9320 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9321 }
9322
9323 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9324 the parallel type. */
9325
9326 struct type *
9327 ada_get_base_type (struct type *raw_type)
9328 {
9329 struct type *real_type_namer;
9330 struct type *raw_real_type;
9331
9332 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9333 return raw_type;
9334
9335 if (ada_is_aligner_type (raw_type))
9336 /* The encoding specifies that we should always use the aligner type.
9337 So, even if this aligner type has an associated XVS type, we should
9338 simply ignore it.
9339
9340 According to the compiler gurus, an XVS type parallel to an aligner
9341 type may exist because of a stabs limitation. In stabs, aligner
9342 types are empty because the field has a variable-sized type, and
9343 thus cannot actually be used as an aligner type. As a result,
9344 we need the associated parallel XVS type to decode the type.
9345 Since the policy in the compiler is to not change the internal
9346 representation based on the debugging info format, we sometimes
9347 end up having a redundant XVS type parallel to the aligner type. */
9348 return raw_type;
9349
9350 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9351 if (real_type_namer == NULL
9352 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9353 || TYPE_NFIELDS (real_type_namer) != 1)
9354 return raw_type;
9355
9356 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9357 {
9358 /* This is an older encoding form where the base type needs to be
9359 looked up by name. We prefer the newer enconding because it is
9360 more efficient. */
9361 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9362 if (raw_real_type == NULL)
9363 return raw_type;
9364 else
9365 return raw_real_type;
9366 }
9367
9368 /* The field in our XVS type is a reference to the base type. */
9369 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9370 }
9371
9372 /* The type of value designated by TYPE, with all aligners removed. */
9373
9374 struct type *
9375 ada_aligned_type (struct type *type)
9376 {
9377 if (ada_is_aligner_type (type))
9378 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9379 else
9380 return ada_get_base_type (type);
9381 }
9382
9383
9384 /* The address of the aligned value in an object at address VALADDR
9385 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9386
9387 const gdb_byte *
9388 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9389 {
9390 if (ada_is_aligner_type (type))
9391 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9392 valaddr +
9393 TYPE_FIELD_BITPOS (type,
9394 0) / TARGET_CHAR_BIT);
9395 else
9396 return valaddr;
9397 }
9398
9399
9400
9401 /* The printed representation of an enumeration literal with encoded
9402 name NAME. The value is good to the next call of ada_enum_name. */
9403 const char *
9404 ada_enum_name (const char *name)
9405 {
9406 static char *result;
9407 static size_t result_len = 0;
9408 const char *tmp;
9409
9410 /* First, unqualify the enumeration name:
9411 1. Search for the last '.' character. If we find one, then skip
9412 all the preceding characters, the unqualified name starts
9413 right after that dot.
9414 2. Otherwise, we may be debugging on a target where the compiler
9415 translates dots into "__". Search forward for double underscores,
9416 but stop searching when we hit an overloading suffix, which is
9417 of the form "__" followed by digits. */
9418
9419 tmp = strrchr (name, '.');
9420 if (tmp != NULL)
9421 name = tmp + 1;
9422 else
9423 {
9424 while ((tmp = strstr (name, "__")) != NULL)
9425 {
9426 if (isdigit (tmp[2]))
9427 break;
9428 else
9429 name = tmp + 2;
9430 }
9431 }
9432
9433 if (name[0] == 'Q')
9434 {
9435 int v;
9436
9437 if (name[1] == 'U' || name[1] == 'W')
9438 {
9439 if (sscanf (name + 2, "%x", &v) != 1)
9440 return name;
9441 }
9442 else if (((name[1] >= '0' && name[1] <= '9')
9443 || (name[1] >= 'a' && name[1] <= 'z'))
9444 && name[2] == '\0')
9445 {
9446 GROW_VECT (result, result_len, 4);
9447 xsnprintf (result, result_len, "'%c'", name[1]);
9448 return result;
9449 }
9450 else
9451 return name;
9452
9453 GROW_VECT (result, result_len, 16);
9454 if (isascii (v) && isprint (v))
9455 xsnprintf (result, result_len, "'%c'", v);
9456 else if (name[1] == 'U')
9457 xsnprintf (result, result_len, "[\"%02x\"]", v);
9458 else
9459 xsnprintf (result, result_len, "[\"%04x\"]", v);
9460
9461 return result;
9462 }
9463 else
9464 {
9465 tmp = strstr (name, "__");
9466 if (tmp == NULL)
9467 tmp = strstr (name, "$");
9468 if (tmp != NULL)
9469 {
9470 GROW_VECT (result, result_len, tmp - name + 1);
9471 strncpy (result, name, tmp - name);
9472 result[tmp - name] = '\0';
9473 return result;
9474 }
9475
9476 return name;
9477 }
9478 }
9479
9480 /* Evaluate the subexpression of EXP starting at *POS as for
9481 evaluate_type, updating *POS to point just past the evaluated
9482 expression. */
9483
9484 static struct value *
9485 evaluate_subexp_type (struct expression *exp, int *pos)
9486 {
9487 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9488 }
9489
9490 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9491 value it wraps. */
9492
9493 static struct value *
9494 unwrap_value (struct value *val)
9495 {
9496 struct type *type = ada_check_typedef (value_type (val));
9497
9498 if (ada_is_aligner_type (type))
9499 {
9500 struct value *v = ada_value_struct_elt (val, "F", 0);
9501 struct type *val_type = ada_check_typedef (value_type (v));
9502
9503 if (ada_type_name (val_type) == NULL)
9504 TYPE_NAME (val_type) = ada_type_name (type);
9505
9506 return unwrap_value (v);
9507 }
9508 else
9509 {
9510 struct type *raw_real_type =
9511 ada_check_typedef (ada_get_base_type (type));
9512
9513 /* If there is no parallel XVS or XVE type, then the value is
9514 already unwrapped. Return it without further modification. */
9515 if ((type == raw_real_type)
9516 && ada_find_parallel_type (type, "___XVE") == NULL)
9517 return val;
9518
9519 return
9520 coerce_unspec_val_to_type
9521 (val, ada_to_fixed_type (raw_real_type, 0,
9522 value_address (val),
9523 NULL, 1));
9524 }
9525 }
9526
9527 static struct value *
9528 cast_from_fixed (struct type *type, struct value *arg)
9529 {
9530 struct value *scale = ada_scaling_factor (value_type (arg));
9531 arg = value_cast (value_type (scale), arg);
9532
9533 arg = value_binop (arg, scale, BINOP_MUL);
9534 return value_cast (type, arg);
9535 }
9536
9537 static struct value *
9538 cast_to_fixed (struct type *type, struct value *arg)
9539 {
9540 if (type == value_type (arg))
9541 return arg;
9542
9543 struct value *scale = ada_scaling_factor (type);
9544 if (ada_is_fixed_point_type (value_type (arg)))
9545 arg = cast_from_fixed (value_type (scale), arg);
9546 else
9547 arg = value_cast (value_type (scale), arg);
9548
9549 arg = value_binop (arg, scale, BINOP_DIV);
9550 return value_cast (type, arg);
9551 }
9552
9553 /* Given two array types T1 and T2, return nonzero iff both arrays
9554 contain the same number of elements. */
9555
9556 static int
9557 ada_same_array_size_p (struct type *t1, struct type *t2)
9558 {
9559 LONGEST lo1, hi1, lo2, hi2;
9560
9561 /* Get the array bounds in order to verify that the size of
9562 the two arrays match. */
9563 if (!get_array_bounds (t1, &lo1, &hi1)
9564 || !get_array_bounds (t2, &lo2, &hi2))
9565 error (_("unable to determine array bounds"));
9566
9567 /* To make things easier for size comparison, normalize a bit
9568 the case of empty arrays by making sure that the difference
9569 between upper bound and lower bound is always -1. */
9570 if (lo1 > hi1)
9571 hi1 = lo1 - 1;
9572 if (lo2 > hi2)
9573 hi2 = lo2 - 1;
9574
9575 return (hi1 - lo1 == hi2 - lo2);
9576 }
9577
9578 /* Assuming that VAL is an array of integrals, and TYPE represents
9579 an array with the same number of elements, but with wider integral
9580 elements, return an array "casted" to TYPE. In practice, this
9581 means that the returned array is built by casting each element
9582 of the original array into TYPE's (wider) element type. */
9583
9584 static struct value *
9585 ada_promote_array_of_integrals (struct type *type, struct value *val)
9586 {
9587 struct type *elt_type = TYPE_TARGET_TYPE (type);
9588 LONGEST lo, hi;
9589 struct value *res;
9590 LONGEST i;
9591
9592 /* Verify that both val and type are arrays of scalars, and
9593 that the size of val's elements is smaller than the size
9594 of type's element. */
9595 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9596 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9597 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9598 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9599 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9600 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9601
9602 if (!get_array_bounds (type, &lo, &hi))
9603 error (_("unable to determine array bounds"));
9604
9605 res = allocate_value (type);
9606
9607 /* Promote each array element. */
9608 for (i = 0; i < hi - lo + 1; i++)
9609 {
9610 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9611
9612 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9613 value_contents_all (elt), TYPE_LENGTH (elt_type));
9614 }
9615
9616 return res;
9617 }
9618
9619 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9620 return the converted value. */
9621
9622 static struct value *
9623 coerce_for_assign (struct type *type, struct value *val)
9624 {
9625 struct type *type2 = value_type (val);
9626
9627 if (type == type2)
9628 return val;
9629
9630 type2 = ada_check_typedef (type2);
9631 type = ada_check_typedef (type);
9632
9633 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9634 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9635 {
9636 val = ada_value_ind (val);
9637 type2 = value_type (val);
9638 }
9639
9640 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9641 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9642 {
9643 if (!ada_same_array_size_p (type, type2))
9644 error (_("cannot assign arrays of different length"));
9645
9646 if (is_integral_type (TYPE_TARGET_TYPE (type))
9647 && is_integral_type (TYPE_TARGET_TYPE (type2))
9648 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9649 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9650 {
9651 /* Allow implicit promotion of the array elements to
9652 a wider type. */
9653 return ada_promote_array_of_integrals (type, val);
9654 }
9655
9656 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9657 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9658 error (_("Incompatible types in assignment"));
9659 deprecated_set_value_type (val, type);
9660 }
9661 return val;
9662 }
9663
9664 static struct value *
9665 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9666 {
9667 struct value *val;
9668 struct type *type1, *type2;
9669 LONGEST v, v1, v2;
9670
9671 arg1 = coerce_ref (arg1);
9672 arg2 = coerce_ref (arg2);
9673 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9674 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9675
9676 if (TYPE_CODE (type1) != TYPE_CODE_INT
9677 || TYPE_CODE (type2) != TYPE_CODE_INT)
9678 return value_binop (arg1, arg2, op);
9679
9680 switch (op)
9681 {
9682 case BINOP_MOD:
9683 case BINOP_DIV:
9684 case BINOP_REM:
9685 break;
9686 default:
9687 return value_binop (arg1, arg2, op);
9688 }
9689
9690 v2 = value_as_long (arg2);
9691 if (v2 == 0)
9692 error (_("second operand of %s must not be zero."), op_string (op));
9693
9694 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9695 return value_binop (arg1, arg2, op);
9696
9697 v1 = value_as_long (arg1);
9698 switch (op)
9699 {
9700 case BINOP_DIV:
9701 v = v1 / v2;
9702 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9703 v += v > 0 ? -1 : 1;
9704 break;
9705 case BINOP_REM:
9706 v = v1 % v2;
9707 if (v * v1 < 0)
9708 v -= v2;
9709 break;
9710 default:
9711 /* Should not reach this point. */
9712 v = 0;
9713 }
9714
9715 val = allocate_value (type1);
9716 store_unsigned_integer (value_contents_raw (val),
9717 TYPE_LENGTH (value_type (val)),
9718 gdbarch_byte_order (get_type_arch (type1)), v);
9719 return val;
9720 }
9721
9722 static int
9723 ada_value_equal (struct value *arg1, struct value *arg2)
9724 {
9725 if (ada_is_direct_array_type (value_type (arg1))
9726 || ada_is_direct_array_type (value_type (arg2)))
9727 {
9728 struct type *arg1_type, *arg2_type;
9729
9730 /* Automatically dereference any array reference before
9731 we attempt to perform the comparison. */
9732 arg1 = ada_coerce_ref (arg1);
9733 arg2 = ada_coerce_ref (arg2);
9734
9735 arg1 = ada_coerce_to_simple_array (arg1);
9736 arg2 = ada_coerce_to_simple_array (arg2);
9737
9738 arg1_type = ada_check_typedef (value_type (arg1));
9739 arg2_type = ada_check_typedef (value_type (arg2));
9740
9741 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9742 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9743 error (_("Attempt to compare array with non-array"));
9744 /* FIXME: The following works only for types whose
9745 representations use all bits (no padding or undefined bits)
9746 and do not have user-defined equality. */
9747 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9748 && memcmp (value_contents (arg1), value_contents (arg2),
9749 TYPE_LENGTH (arg1_type)) == 0);
9750 }
9751 return value_equal (arg1, arg2);
9752 }
9753
9754 /* Total number of component associations in the aggregate starting at
9755 index PC in EXP. Assumes that index PC is the start of an
9756 OP_AGGREGATE. */
9757
9758 static int
9759 num_component_specs (struct expression *exp, int pc)
9760 {
9761 int n, m, i;
9762
9763 m = exp->elts[pc + 1].longconst;
9764 pc += 3;
9765 n = 0;
9766 for (i = 0; i < m; i += 1)
9767 {
9768 switch (exp->elts[pc].opcode)
9769 {
9770 default:
9771 n += 1;
9772 break;
9773 case OP_CHOICES:
9774 n += exp->elts[pc + 1].longconst;
9775 break;
9776 }
9777 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9778 }
9779 return n;
9780 }
9781
9782 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9783 component of LHS (a simple array or a record), updating *POS past
9784 the expression, assuming that LHS is contained in CONTAINER. Does
9785 not modify the inferior's memory, nor does it modify LHS (unless
9786 LHS == CONTAINER). */
9787
9788 static void
9789 assign_component (struct value *container, struct value *lhs, LONGEST index,
9790 struct expression *exp, int *pos)
9791 {
9792 struct value *mark = value_mark ();
9793 struct value *elt;
9794 struct type *lhs_type = check_typedef (value_type (lhs));
9795
9796 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9797 {
9798 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9799 struct value *index_val = value_from_longest (index_type, index);
9800
9801 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9802 }
9803 else
9804 {
9805 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9806 elt = ada_to_fixed_value (elt);
9807 }
9808
9809 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9810 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9811 else
9812 value_assign_to_component (container, elt,
9813 ada_evaluate_subexp (NULL, exp, pos,
9814 EVAL_NORMAL));
9815
9816 value_free_to_mark (mark);
9817 }
9818
9819 /* Assuming that LHS represents an lvalue having a record or array
9820 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9821 of that aggregate's value to LHS, advancing *POS past the
9822 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9823 lvalue containing LHS (possibly LHS itself). Does not modify
9824 the inferior's memory, nor does it modify the contents of
9825 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9826
9827 static struct value *
9828 assign_aggregate (struct value *container,
9829 struct value *lhs, struct expression *exp,
9830 int *pos, enum noside noside)
9831 {
9832 struct type *lhs_type;
9833 int n = exp->elts[*pos+1].longconst;
9834 LONGEST low_index, high_index;
9835 int num_specs;
9836 LONGEST *indices;
9837 int max_indices, num_indices;
9838 int i;
9839
9840 *pos += 3;
9841 if (noside != EVAL_NORMAL)
9842 {
9843 for (i = 0; i < n; i += 1)
9844 ada_evaluate_subexp (NULL, exp, pos, noside);
9845 return container;
9846 }
9847
9848 container = ada_coerce_ref (container);
9849 if (ada_is_direct_array_type (value_type (container)))
9850 container = ada_coerce_to_simple_array (container);
9851 lhs = ada_coerce_ref (lhs);
9852 if (!deprecated_value_modifiable (lhs))
9853 error (_("Left operand of assignment is not a modifiable lvalue."));
9854
9855 lhs_type = check_typedef (value_type (lhs));
9856 if (ada_is_direct_array_type (lhs_type))
9857 {
9858 lhs = ada_coerce_to_simple_array (lhs);
9859 lhs_type = check_typedef (value_type (lhs));
9860 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9861 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9862 }
9863 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9864 {
9865 low_index = 0;
9866 high_index = num_visible_fields (lhs_type) - 1;
9867 }
9868 else
9869 error (_("Left-hand side must be array or record."));
9870
9871 num_specs = num_component_specs (exp, *pos - 3);
9872 max_indices = 4 * num_specs + 4;
9873 indices = XALLOCAVEC (LONGEST, max_indices);
9874 indices[0] = indices[1] = low_index - 1;
9875 indices[2] = indices[3] = high_index + 1;
9876 num_indices = 4;
9877
9878 for (i = 0; i < n; i += 1)
9879 {
9880 switch (exp->elts[*pos].opcode)
9881 {
9882 case OP_CHOICES:
9883 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9884 &num_indices, max_indices,
9885 low_index, high_index);
9886 break;
9887 case OP_POSITIONAL:
9888 aggregate_assign_positional (container, lhs, exp, pos, indices,
9889 &num_indices, max_indices,
9890 low_index, high_index);
9891 break;
9892 case OP_OTHERS:
9893 if (i != n-1)
9894 error (_("Misplaced 'others' clause"));
9895 aggregate_assign_others (container, lhs, exp, pos, indices,
9896 num_indices, low_index, high_index);
9897 break;
9898 default:
9899 error (_("Internal error: bad aggregate clause"));
9900 }
9901 }
9902
9903 return container;
9904 }
9905
9906 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9907 construct at *POS, updating *POS past the construct, given that
9908 the positions are relative to lower bound LOW, where HIGH is the
9909 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9910 updating *NUM_INDICES as needed. CONTAINER is as for
9911 assign_aggregate. */
9912 static void
9913 aggregate_assign_positional (struct value *container,
9914 struct value *lhs, struct expression *exp,
9915 int *pos, LONGEST *indices, int *num_indices,
9916 int max_indices, LONGEST low, LONGEST high)
9917 {
9918 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9919
9920 if (ind - 1 == high)
9921 warning (_("Extra components in aggregate ignored."));
9922 if (ind <= high)
9923 {
9924 add_component_interval (ind, ind, indices, num_indices, max_indices);
9925 *pos += 3;
9926 assign_component (container, lhs, ind, exp, pos);
9927 }
9928 else
9929 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9930 }
9931
9932 /* Assign into the components of LHS indexed by the OP_CHOICES
9933 construct at *POS, updating *POS past the construct, given that
9934 the allowable indices are LOW..HIGH. Record the indices assigned
9935 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9936 needed. CONTAINER is as for assign_aggregate. */
9937 static void
9938 aggregate_assign_from_choices (struct value *container,
9939 struct value *lhs, struct expression *exp,
9940 int *pos, LONGEST *indices, int *num_indices,
9941 int max_indices, LONGEST low, LONGEST high)
9942 {
9943 int j;
9944 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9945 int choice_pos, expr_pc;
9946 int is_array = ada_is_direct_array_type (value_type (lhs));
9947
9948 choice_pos = *pos += 3;
9949
9950 for (j = 0; j < n_choices; j += 1)
9951 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9952 expr_pc = *pos;
9953 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9954
9955 for (j = 0; j < n_choices; j += 1)
9956 {
9957 LONGEST lower, upper;
9958 enum exp_opcode op = exp->elts[choice_pos].opcode;
9959
9960 if (op == OP_DISCRETE_RANGE)
9961 {
9962 choice_pos += 1;
9963 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9964 EVAL_NORMAL));
9965 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9966 EVAL_NORMAL));
9967 }
9968 else if (is_array)
9969 {
9970 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9971 EVAL_NORMAL));
9972 upper = lower;
9973 }
9974 else
9975 {
9976 int ind;
9977 const char *name;
9978
9979 switch (op)
9980 {
9981 case OP_NAME:
9982 name = &exp->elts[choice_pos + 2].string;
9983 break;
9984 case OP_VAR_VALUE:
9985 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9986 break;
9987 default:
9988 error (_("Invalid record component association."));
9989 }
9990 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9991 ind = 0;
9992 if (! find_struct_field (name, value_type (lhs), 0,
9993 NULL, NULL, NULL, NULL, &ind))
9994 error (_("Unknown component name: %s."), name);
9995 lower = upper = ind;
9996 }
9997
9998 if (lower <= upper && (lower < low || upper > high))
9999 error (_("Index in component association out of bounds."));
10000
10001 add_component_interval (lower, upper, indices, num_indices,
10002 max_indices);
10003 while (lower <= upper)
10004 {
10005 int pos1;
10006
10007 pos1 = expr_pc;
10008 assign_component (container, lhs, lower, exp, &pos1);
10009 lower += 1;
10010 }
10011 }
10012 }
10013
10014 /* Assign the value of the expression in the OP_OTHERS construct in
10015 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10016 have not been previously assigned. The index intervals already assigned
10017 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10018 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10019 static void
10020 aggregate_assign_others (struct value *container,
10021 struct value *lhs, struct expression *exp,
10022 int *pos, LONGEST *indices, int num_indices,
10023 LONGEST low, LONGEST high)
10024 {
10025 int i;
10026 int expr_pc = *pos + 1;
10027
10028 for (i = 0; i < num_indices - 2; i += 2)
10029 {
10030 LONGEST ind;
10031
10032 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10033 {
10034 int localpos;
10035
10036 localpos = expr_pc;
10037 assign_component (container, lhs, ind, exp, &localpos);
10038 }
10039 }
10040 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10041 }
10042
10043 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10044 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10045 modifying *SIZE as needed. It is an error if *SIZE exceeds
10046 MAX_SIZE. The resulting intervals do not overlap. */
10047 static void
10048 add_component_interval (LONGEST low, LONGEST high,
10049 LONGEST* indices, int *size, int max_size)
10050 {
10051 int i, j;
10052
10053 for (i = 0; i < *size; i += 2) {
10054 if (high >= indices[i] && low <= indices[i + 1])
10055 {
10056 int kh;
10057
10058 for (kh = i + 2; kh < *size; kh += 2)
10059 if (high < indices[kh])
10060 break;
10061 if (low < indices[i])
10062 indices[i] = low;
10063 indices[i + 1] = indices[kh - 1];
10064 if (high > indices[i + 1])
10065 indices[i + 1] = high;
10066 memcpy (indices + i + 2, indices + kh, *size - kh);
10067 *size -= kh - i - 2;
10068 return;
10069 }
10070 else if (high < indices[i])
10071 break;
10072 }
10073
10074 if (*size == max_size)
10075 error (_("Internal error: miscounted aggregate components."));
10076 *size += 2;
10077 for (j = *size-1; j >= i+2; j -= 1)
10078 indices[j] = indices[j - 2];
10079 indices[i] = low;
10080 indices[i + 1] = high;
10081 }
10082
10083 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10084 is different. */
10085
10086 static struct value *
10087 ada_value_cast (struct type *type, struct value *arg2)
10088 {
10089 if (type == ada_check_typedef (value_type (arg2)))
10090 return arg2;
10091
10092 if (ada_is_fixed_point_type (type))
10093 return cast_to_fixed (type, arg2);
10094
10095 if (ada_is_fixed_point_type (value_type (arg2)))
10096 return cast_from_fixed (type, arg2);
10097
10098 return value_cast (type, arg2);
10099 }
10100
10101 /* Evaluating Ada expressions, and printing their result.
10102 ------------------------------------------------------
10103
10104 1. Introduction:
10105 ----------------
10106
10107 We usually evaluate an Ada expression in order to print its value.
10108 We also evaluate an expression in order to print its type, which
10109 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10110 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10111 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10112 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10113 similar.
10114
10115 Evaluating expressions is a little more complicated for Ada entities
10116 than it is for entities in languages such as C. The main reason for
10117 this is that Ada provides types whose definition might be dynamic.
10118 One example of such types is variant records. Or another example
10119 would be an array whose bounds can only be known at run time.
10120
10121 The following description is a general guide as to what should be
10122 done (and what should NOT be done) in order to evaluate an expression
10123 involving such types, and when. This does not cover how the semantic
10124 information is encoded by GNAT as this is covered separatly. For the
10125 document used as the reference for the GNAT encoding, see exp_dbug.ads
10126 in the GNAT sources.
10127
10128 Ideally, we should embed each part of this description next to its
10129 associated code. Unfortunately, the amount of code is so vast right
10130 now that it's hard to see whether the code handling a particular
10131 situation might be duplicated or not. One day, when the code is
10132 cleaned up, this guide might become redundant with the comments
10133 inserted in the code, and we might want to remove it.
10134
10135 2. ``Fixing'' an Entity, the Simple Case:
10136 -----------------------------------------
10137
10138 When evaluating Ada expressions, the tricky issue is that they may
10139 reference entities whose type contents and size are not statically
10140 known. Consider for instance a variant record:
10141
10142 type Rec (Empty : Boolean := True) is record
10143 case Empty is
10144 when True => null;
10145 when False => Value : Integer;
10146 end case;
10147 end record;
10148 Yes : Rec := (Empty => False, Value => 1);
10149 No : Rec := (empty => True);
10150
10151 The size and contents of that record depends on the value of the
10152 descriminant (Rec.Empty). At this point, neither the debugging
10153 information nor the associated type structure in GDB are able to
10154 express such dynamic types. So what the debugger does is to create
10155 "fixed" versions of the type that applies to the specific object.
10156 We also informally refer to this opperation as "fixing" an object,
10157 which means creating its associated fixed type.
10158
10159 Example: when printing the value of variable "Yes" above, its fixed
10160 type would look like this:
10161
10162 type Rec is record
10163 Empty : Boolean;
10164 Value : Integer;
10165 end record;
10166
10167 On the other hand, if we printed the value of "No", its fixed type
10168 would become:
10169
10170 type Rec is record
10171 Empty : Boolean;
10172 end record;
10173
10174 Things become a little more complicated when trying to fix an entity
10175 with a dynamic type that directly contains another dynamic type,
10176 such as an array of variant records, for instance. There are
10177 two possible cases: Arrays, and records.
10178
10179 3. ``Fixing'' Arrays:
10180 ---------------------
10181
10182 The type structure in GDB describes an array in terms of its bounds,
10183 and the type of its elements. By design, all elements in the array
10184 have the same type and we cannot represent an array of variant elements
10185 using the current type structure in GDB. When fixing an array,
10186 we cannot fix the array element, as we would potentially need one
10187 fixed type per element of the array. As a result, the best we can do
10188 when fixing an array is to produce an array whose bounds and size
10189 are correct (allowing us to read it from memory), but without having
10190 touched its element type. Fixing each element will be done later,
10191 when (if) necessary.
10192
10193 Arrays are a little simpler to handle than records, because the same
10194 amount of memory is allocated for each element of the array, even if
10195 the amount of space actually used by each element differs from element
10196 to element. Consider for instance the following array of type Rec:
10197
10198 type Rec_Array is array (1 .. 2) of Rec;
10199
10200 The actual amount of memory occupied by each element might be different
10201 from element to element, depending on the value of their discriminant.
10202 But the amount of space reserved for each element in the array remains
10203 fixed regardless. So we simply need to compute that size using
10204 the debugging information available, from which we can then determine
10205 the array size (we multiply the number of elements of the array by
10206 the size of each element).
10207
10208 The simplest case is when we have an array of a constrained element
10209 type. For instance, consider the following type declarations:
10210
10211 type Bounded_String (Max_Size : Integer) is
10212 Length : Integer;
10213 Buffer : String (1 .. Max_Size);
10214 end record;
10215 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10216
10217 In this case, the compiler describes the array as an array of
10218 variable-size elements (identified by its XVS suffix) for which
10219 the size can be read in the parallel XVZ variable.
10220
10221 In the case of an array of an unconstrained element type, the compiler
10222 wraps the array element inside a private PAD type. This type should not
10223 be shown to the user, and must be "unwrap"'ed before printing. Note
10224 that we also use the adjective "aligner" in our code to designate
10225 these wrapper types.
10226
10227 In some cases, the size allocated for each element is statically
10228 known. In that case, the PAD type already has the correct size,
10229 and the array element should remain unfixed.
10230
10231 But there are cases when this size is not statically known.
10232 For instance, assuming that "Five" is an integer variable:
10233
10234 type Dynamic is array (1 .. Five) of Integer;
10235 type Wrapper (Has_Length : Boolean := False) is record
10236 Data : Dynamic;
10237 case Has_Length is
10238 when True => Length : Integer;
10239 when False => null;
10240 end case;
10241 end record;
10242 type Wrapper_Array is array (1 .. 2) of Wrapper;
10243
10244 Hello : Wrapper_Array := (others => (Has_Length => True,
10245 Data => (others => 17),
10246 Length => 1));
10247
10248
10249 The debugging info would describe variable Hello as being an
10250 array of a PAD type. The size of that PAD type is not statically
10251 known, but can be determined using a parallel XVZ variable.
10252 In that case, a copy of the PAD type with the correct size should
10253 be used for the fixed array.
10254
10255 3. ``Fixing'' record type objects:
10256 ----------------------------------
10257
10258 Things are slightly different from arrays in the case of dynamic
10259 record types. In this case, in order to compute the associated
10260 fixed type, we need to determine the size and offset of each of
10261 its components. This, in turn, requires us to compute the fixed
10262 type of each of these components.
10263
10264 Consider for instance the example:
10265
10266 type Bounded_String (Max_Size : Natural) is record
10267 Str : String (1 .. Max_Size);
10268 Length : Natural;
10269 end record;
10270 My_String : Bounded_String (Max_Size => 10);
10271
10272 In that case, the position of field "Length" depends on the size
10273 of field Str, which itself depends on the value of the Max_Size
10274 discriminant. In order to fix the type of variable My_String,
10275 we need to fix the type of field Str. Therefore, fixing a variant
10276 record requires us to fix each of its components.
10277
10278 However, if a component does not have a dynamic size, the component
10279 should not be fixed. In particular, fields that use a PAD type
10280 should not fixed. Here is an example where this might happen
10281 (assuming type Rec above):
10282
10283 type Container (Big : Boolean) is record
10284 First : Rec;
10285 After : Integer;
10286 case Big is
10287 when True => Another : Integer;
10288 when False => null;
10289 end case;
10290 end record;
10291 My_Container : Container := (Big => False,
10292 First => (Empty => True),
10293 After => 42);
10294
10295 In that example, the compiler creates a PAD type for component First,
10296 whose size is constant, and then positions the component After just
10297 right after it. The offset of component After is therefore constant
10298 in this case.
10299
10300 The debugger computes the position of each field based on an algorithm
10301 that uses, among other things, the actual position and size of the field
10302 preceding it. Let's now imagine that the user is trying to print
10303 the value of My_Container. If the type fixing was recursive, we would
10304 end up computing the offset of field After based on the size of the
10305 fixed version of field First. And since in our example First has
10306 only one actual field, the size of the fixed type is actually smaller
10307 than the amount of space allocated to that field, and thus we would
10308 compute the wrong offset of field After.
10309
10310 To make things more complicated, we need to watch out for dynamic
10311 components of variant records (identified by the ___XVL suffix in
10312 the component name). Even if the target type is a PAD type, the size
10313 of that type might not be statically known. So the PAD type needs
10314 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10315 we might end up with the wrong size for our component. This can be
10316 observed with the following type declarations:
10317
10318 type Octal is new Integer range 0 .. 7;
10319 type Octal_Array is array (Positive range <>) of Octal;
10320 pragma Pack (Octal_Array);
10321
10322 type Octal_Buffer (Size : Positive) is record
10323 Buffer : Octal_Array (1 .. Size);
10324 Length : Integer;
10325 end record;
10326
10327 In that case, Buffer is a PAD type whose size is unset and needs
10328 to be computed by fixing the unwrapped type.
10329
10330 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10331 ----------------------------------------------------------
10332
10333 Lastly, when should the sub-elements of an entity that remained unfixed
10334 thus far, be actually fixed?
10335
10336 The answer is: Only when referencing that element. For instance
10337 when selecting one component of a record, this specific component
10338 should be fixed at that point in time. Or when printing the value
10339 of a record, each component should be fixed before its value gets
10340 printed. Similarly for arrays, the element of the array should be
10341 fixed when printing each element of the array, or when extracting
10342 one element out of that array. On the other hand, fixing should
10343 not be performed on the elements when taking a slice of an array!
10344
10345 Note that one of the side effects of miscomputing the offset and
10346 size of each field is that we end up also miscomputing the size
10347 of the containing type. This can have adverse results when computing
10348 the value of an entity. GDB fetches the value of an entity based
10349 on the size of its type, and thus a wrong size causes GDB to fetch
10350 the wrong amount of memory. In the case where the computed size is
10351 too small, GDB fetches too little data to print the value of our
10352 entity. Results in this case are unpredictable, as we usually read
10353 past the buffer containing the data =:-o. */
10354
10355 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10356 for that subexpression cast to TO_TYPE. Advance *POS over the
10357 subexpression. */
10358
10359 static value *
10360 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10361 enum noside noside, struct type *to_type)
10362 {
10363 int pc = *pos;
10364
10365 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10366 || exp->elts[pc].opcode == OP_VAR_VALUE)
10367 {
10368 (*pos) += 4;
10369
10370 value *val;
10371 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10372 {
10373 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10374 return value_zero (to_type, not_lval);
10375
10376 val = evaluate_var_msym_value (noside,
10377 exp->elts[pc + 1].objfile,
10378 exp->elts[pc + 2].msymbol);
10379 }
10380 else
10381 val = evaluate_var_value (noside,
10382 exp->elts[pc + 1].block,
10383 exp->elts[pc + 2].symbol);
10384
10385 if (noside == EVAL_SKIP)
10386 return eval_skip_value (exp);
10387
10388 val = ada_value_cast (to_type, val);
10389
10390 /* Follow the Ada language semantics that do not allow taking
10391 an address of the result of a cast (view conversion in Ada). */
10392 if (VALUE_LVAL (val) == lval_memory)
10393 {
10394 if (value_lazy (val))
10395 value_fetch_lazy (val);
10396 VALUE_LVAL (val) = not_lval;
10397 }
10398 return val;
10399 }
10400
10401 value *val = evaluate_subexp (to_type, exp, pos, noside);
10402 if (noside == EVAL_SKIP)
10403 return eval_skip_value (exp);
10404 return ada_value_cast (to_type, val);
10405 }
10406
10407 /* Implement the evaluate_exp routine in the exp_descriptor structure
10408 for the Ada language. */
10409
10410 static struct value *
10411 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10412 int *pos, enum noside noside)
10413 {
10414 enum exp_opcode op;
10415 int tem;
10416 int pc;
10417 int preeval_pos;
10418 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10419 struct type *type;
10420 int nargs, oplen;
10421 struct value **argvec;
10422
10423 pc = *pos;
10424 *pos += 1;
10425 op = exp->elts[pc].opcode;
10426
10427 switch (op)
10428 {
10429 default:
10430 *pos -= 1;
10431 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10432
10433 if (noside == EVAL_NORMAL)
10434 arg1 = unwrap_value (arg1);
10435
10436 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10437 then we need to perform the conversion manually, because
10438 evaluate_subexp_standard doesn't do it. This conversion is
10439 necessary in Ada because the different kinds of float/fixed
10440 types in Ada have different representations.
10441
10442 Similarly, we need to perform the conversion from OP_LONG
10443 ourselves. */
10444 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10445 arg1 = ada_value_cast (expect_type, arg1);
10446
10447 return arg1;
10448
10449 case OP_STRING:
10450 {
10451 struct value *result;
10452
10453 *pos -= 1;
10454 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10455 /* The result type will have code OP_STRING, bashed there from
10456 OP_ARRAY. Bash it back. */
10457 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10458 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10459 return result;
10460 }
10461
10462 case UNOP_CAST:
10463 (*pos) += 2;
10464 type = exp->elts[pc + 1].type;
10465 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10466
10467 case UNOP_QUAL:
10468 (*pos) += 2;
10469 type = exp->elts[pc + 1].type;
10470 return ada_evaluate_subexp (type, exp, pos, noside);
10471
10472 case BINOP_ASSIGN:
10473 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10474 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10475 {
10476 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10477 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10478 return arg1;
10479 return ada_value_assign (arg1, arg1);
10480 }
10481 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10482 except if the lhs of our assignment is a convenience variable.
10483 In the case of assigning to a convenience variable, the lhs
10484 should be exactly the result of the evaluation of the rhs. */
10485 type = value_type (arg1);
10486 if (VALUE_LVAL (arg1) == lval_internalvar)
10487 type = NULL;
10488 arg2 = evaluate_subexp (type, exp, pos, noside);
10489 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10490 return arg1;
10491 if (VALUE_LVAL (arg1) == lval_internalvar)
10492 {
10493 /* Nothing. */
10494 }
10495 else if (ada_is_fixed_point_type (value_type (arg1)))
10496 arg2 = cast_to_fixed (value_type (arg1), arg2);
10497 else if (ada_is_fixed_point_type (value_type (arg2)))
10498 error
10499 (_("Fixed-point values must be assigned to fixed-point variables"));
10500 else
10501 arg2 = coerce_for_assign (value_type (arg1), arg2);
10502 return ada_value_assign (arg1, arg2);
10503
10504 case BINOP_ADD:
10505 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10506 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10507 if (noside == EVAL_SKIP)
10508 goto nosideret;
10509 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10510 return (value_from_longest
10511 (value_type (arg1),
10512 value_as_long (arg1) + value_as_long (arg2)));
10513 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10514 return (value_from_longest
10515 (value_type (arg2),
10516 value_as_long (arg1) + value_as_long (arg2)));
10517 if ((ada_is_fixed_point_type (value_type (arg1))
10518 || ada_is_fixed_point_type (value_type (arg2)))
10519 && value_type (arg1) != value_type (arg2))
10520 error (_("Operands of fixed-point addition must have the same type"));
10521 /* Do the addition, and cast the result to the type of the first
10522 argument. We cannot cast the result to a reference type, so if
10523 ARG1 is a reference type, find its underlying type. */
10524 type = value_type (arg1);
10525 while (TYPE_CODE (type) == TYPE_CODE_REF)
10526 type = TYPE_TARGET_TYPE (type);
10527 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10528 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10529
10530 case BINOP_SUB:
10531 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10532 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10533 if (noside == EVAL_SKIP)
10534 goto nosideret;
10535 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10536 return (value_from_longest
10537 (value_type (arg1),
10538 value_as_long (arg1) - value_as_long (arg2)));
10539 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10540 return (value_from_longest
10541 (value_type (arg2),
10542 value_as_long (arg1) - value_as_long (arg2)));
10543 if ((ada_is_fixed_point_type (value_type (arg1))
10544 || ada_is_fixed_point_type (value_type (arg2)))
10545 && value_type (arg1) != value_type (arg2))
10546 error (_("Operands of fixed-point subtraction "
10547 "must have the same type"));
10548 /* Do the substraction, and cast the result to the type of the first
10549 argument. We cannot cast the result to a reference type, so if
10550 ARG1 is a reference type, find its underlying type. */
10551 type = value_type (arg1);
10552 while (TYPE_CODE (type) == TYPE_CODE_REF)
10553 type = TYPE_TARGET_TYPE (type);
10554 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10555 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10556
10557 case BINOP_MUL:
10558 case BINOP_DIV:
10559 case BINOP_REM:
10560 case BINOP_MOD:
10561 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10562 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10563 if (noside == EVAL_SKIP)
10564 goto nosideret;
10565 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10566 {
10567 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10568 return value_zero (value_type (arg1), not_lval);
10569 }
10570 else
10571 {
10572 type = builtin_type (exp->gdbarch)->builtin_double;
10573 if (ada_is_fixed_point_type (value_type (arg1)))
10574 arg1 = cast_from_fixed (type, arg1);
10575 if (ada_is_fixed_point_type (value_type (arg2)))
10576 arg2 = cast_from_fixed (type, arg2);
10577 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10578 return ada_value_binop (arg1, arg2, op);
10579 }
10580
10581 case BINOP_EQUAL:
10582 case BINOP_NOTEQUAL:
10583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10584 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10585 if (noside == EVAL_SKIP)
10586 goto nosideret;
10587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10588 tem = 0;
10589 else
10590 {
10591 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10592 tem = ada_value_equal (arg1, arg2);
10593 }
10594 if (op == BINOP_NOTEQUAL)
10595 tem = !tem;
10596 type = language_bool_type (exp->language_defn, exp->gdbarch);
10597 return value_from_longest (type, (LONGEST) tem);
10598
10599 case UNOP_NEG:
10600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10601 if (noside == EVAL_SKIP)
10602 goto nosideret;
10603 else if (ada_is_fixed_point_type (value_type (arg1)))
10604 return value_cast (value_type (arg1), value_neg (arg1));
10605 else
10606 {
10607 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10608 return value_neg (arg1);
10609 }
10610
10611 case BINOP_LOGICAL_AND:
10612 case BINOP_LOGICAL_OR:
10613 case UNOP_LOGICAL_NOT:
10614 {
10615 struct value *val;
10616
10617 *pos -= 1;
10618 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10619 type = language_bool_type (exp->language_defn, exp->gdbarch);
10620 return value_cast (type, val);
10621 }
10622
10623 case BINOP_BITWISE_AND:
10624 case BINOP_BITWISE_IOR:
10625 case BINOP_BITWISE_XOR:
10626 {
10627 struct value *val;
10628
10629 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10630 *pos = pc;
10631 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10632
10633 return value_cast (value_type (arg1), val);
10634 }
10635
10636 case OP_VAR_VALUE:
10637 *pos -= 1;
10638
10639 if (noside == EVAL_SKIP)
10640 {
10641 *pos += 4;
10642 goto nosideret;
10643 }
10644
10645 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10646 /* Only encountered when an unresolved symbol occurs in a
10647 context other than a function call, in which case, it is
10648 invalid. */
10649 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10650 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10651
10652 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10653 {
10654 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10655 /* Check to see if this is a tagged type. We also need to handle
10656 the case where the type is a reference to a tagged type, but
10657 we have to be careful to exclude pointers to tagged types.
10658 The latter should be shown as usual (as a pointer), whereas
10659 a reference should mostly be transparent to the user. */
10660 if (ada_is_tagged_type (type, 0)
10661 || (TYPE_CODE (type) == TYPE_CODE_REF
10662 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10663 {
10664 /* Tagged types are a little special in the fact that the real
10665 type is dynamic and can only be determined by inspecting the
10666 object's tag. This means that we need to get the object's
10667 value first (EVAL_NORMAL) and then extract the actual object
10668 type from its tag.
10669
10670 Note that we cannot skip the final step where we extract
10671 the object type from its tag, because the EVAL_NORMAL phase
10672 results in dynamic components being resolved into fixed ones.
10673 This can cause problems when trying to print the type
10674 description of tagged types whose parent has a dynamic size:
10675 We use the type name of the "_parent" component in order
10676 to print the name of the ancestor type in the type description.
10677 If that component had a dynamic size, the resolution into
10678 a fixed type would result in the loss of that type name,
10679 thus preventing us from printing the name of the ancestor
10680 type in the type description. */
10681 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10682
10683 if (TYPE_CODE (type) != TYPE_CODE_REF)
10684 {
10685 struct type *actual_type;
10686
10687 actual_type = type_from_tag (ada_value_tag (arg1));
10688 if (actual_type == NULL)
10689 /* If, for some reason, we were unable to determine
10690 the actual type from the tag, then use the static
10691 approximation that we just computed as a fallback.
10692 This can happen if the debugging information is
10693 incomplete, for instance. */
10694 actual_type = type;
10695 return value_zero (actual_type, not_lval);
10696 }
10697 else
10698 {
10699 /* In the case of a ref, ada_coerce_ref takes care
10700 of determining the actual type. But the evaluation
10701 should return a ref as it should be valid to ask
10702 for its address; so rebuild a ref after coerce. */
10703 arg1 = ada_coerce_ref (arg1);
10704 return value_ref (arg1, TYPE_CODE_REF);
10705 }
10706 }
10707
10708 /* Records and unions for which GNAT encodings have been
10709 generated need to be statically fixed as well.
10710 Otherwise, non-static fixing produces a type where
10711 all dynamic properties are removed, which prevents "ptype"
10712 from being able to completely describe the type.
10713 For instance, a case statement in a variant record would be
10714 replaced by the relevant components based on the actual
10715 value of the discriminants. */
10716 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10717 && dynamic_template_type (type) != NULL)
10718 || (TYPE_CODE (type) == TYPE_CODE_UNION
10719 && ada_find_parallel_type (type, "___XVU") != NULL))
10720 {
10721 *pos += 4;
10722 return value_zero (to_static_fixed_type (type), not_lval);
10723 }
10724 }
10725
10726 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10727 return ada_to_fixed_value (arg1);
10728
10729 case OP_FUNCALL:
10730 (*pos) += 2;
10731
10732 /* Allocate arg vector, including space for the function to be
10733 called in argvec[0] and a terminating NULL. */
10734 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10735 argvec = XALLOCAVEC (struct value *, nargs + 2);
10736
10737 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10738 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10739 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10740 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10741 else
10742 {
10743 for (tem = 0; tem <= nargs; tem += 1)
10744 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10745 argvec[tem] = 0;
10746
10747 if (noside == EVAL_SKIP)
10748 goto nosideret;
10749 }
10750
10751 if (ada_is_constrained_packed_array_type
10752 (desc_base_type (value_type (argvec[0]))))
10753 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10754 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10755 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10756 /* This is a packed array that has already been fixed, and
10757 therefore already coerced to a simple array. Nothing further
10758 to do. */
10759 ;
10760 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10761 {
10762 /* Make sure we dereference references so that all the code below
10763 feels like it's really handling the referenced value. Wrapping
10764 types (for alignment) may be there, so make sure we strip them as
10765 well. */
10766 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10767 }
10768 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10769 && VALUE_LVAL (argvec[0]) == lval_memory)
10770 argvec[0] = value_addr (argvec[0]);
10771
10772 type = ada_check_typedef (value_type (argvec[0]));
10773
10774 /* Ada allows us to implicitly dereference arrays when subscripting
10775 them. So, if this is an array typedef (encoding use for array
10776 access types encoded as fat pointers), strip it now. */
10777 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10778 type = ada_typedef_target_type (type);
10779
10780 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10781 {
10782 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10783 {
10784 case TYPE_CODE_FUNC:
10785 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10786 break;
10787 case TYPE_CODE_ARRAY:
10788 break;
10789 case TYPE_CODE_STRUCT:
10790 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10791 argvec[0] = ada_value_ind (argvec[0]);
10792 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10793 break;
10794 default:
10795 error (_("cannot subscript or call something of type `%s'"),
10796 ada_type_name (value_type (argvec[0])));
10797 break;
10798 }
10799 }
10800
10801 switch (TYPE_CODE (type))
10802 {
10803 case TYPE_CODE_FUNC:
10804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10805 {
10806 if (TYPE_TARGET_TYPE (type) == NULL)
10807 error_call_unknown_return_type (NULL);
10808 return allocate_value (TYPE_TARGET_TYPE (type));
10809 }
10810 return call_function_by_hand (argvec[0], NULL,
10811 gdb::make_array_view (argvec + 1,
10812 nargs));
10813 case TYPE_CODE_INTERNAL_FUNCTION:
10814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10815 /* We don't know anything about what the internal
10816 function might return, but we have to return
10817 something. */
10818 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10819 not_lval);
10820 else
10821 return call_internal_function (exp->gdbarch, exp->language_defn,
10822 argvec[0], nargs, argvec + 1);
10823
10824 case TYPE_CODE_STRUCT:
10825 {
10826 int arity;
10827
10828 arity = ada_array_arity (type);
10829 type = ada_array_element_type (type, nargs);
10830 if (type == NULL)
10831 error (_("cannot subscript or call a record"));
10832 if (arity != nargs)
10833 error (_("wrong number of subscripts; expecting %d"), arity);
10834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10835 return value_zero (ada_aligned_type (type), lval_memory);
10836 return
10837 unwrap_value (ada_value_subscript
10838 (argvec[0], nargs, argvec + 1));
10839 }
10840 case TYPE_CODE_ARRAY:
10841 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10842 {
10843 type = ada_array_element_type (type, nargs);
10844 if (type == NULL)
10845 error (_("element type of array unknown"));
10846 else
10847 return value_zero (ada_aligned_type (type), lval_memory);
10848 }
10849 return
10850 unwrap_value (ada_value_subscript
10851 (ada_coerce_to_simple_array (argvec[0]),
10852 nargs, argvec + 1));
10853 case TYPE_CODE_PTR: /* Pointer to array */
10854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10855 {
10856 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10857 type = ada_array_element_type (type, nargs);
10858 if (type == NULL)
10859 error (_("element type of array unknown"));
10860 else
10861 return value_zero (ada_aligned_type (type), lval_memory);
10862 }
10863 return
10864 unwrap_value (ada_value_ptr_subscript (argvec[0],
10865 nargs, argvec + 1));
10866
10867 default:
10868 error (_("Attempt to index or call something other than an "
10869 "array or function"));
10870 }
10871
10872 case TERNOP_SLICE:
10873 {
10874 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10875 struct value *low_bound_val =
10876 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 struct value *high_bound_val =
10878 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 LONGEST low_bound;
10880 LONGEST high_bound;
10881
10882 low_bound_val = coerce_ref (low_bound_val);
10883 high_bound_val = coerce_ref (high_bound_val);
10884 low_bound = value_as_long (low_bound_val);
10885 high_bound = value_as_long (high_bound_val);
10886
10887 if (noside == EVAL_SKIP)
10888 goto nosideret;
10889
10890 /* If this is a reference to an aligner type, then remove all
10891 the aligners. */
10892 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10893 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10894 TYPE_TARGET_TYPE (value_type (array)) =
10895 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10896
10897 if (ada_is_constrained_packed_array_type (value_type (array)))
10898 error (_("cannot slice a packed array"));
10899
10900 /* If this is a reference to an array or an array lvalue,
10901 convert to a pointer. */
10902 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10903 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10904 && VALUE_LVAL (array) == lval_memory))
10905 array = value_addr (array);
10906
10907 if (noside == EVAL_AVOID_SIDE_EFFECTS
10908 && ada_is_array_descriptor_type (ada_check_typedef
10909 (value_type (array))))
10910 return empty_array (ada_type_of_array (array, 0), low_bound,
10911 high_bound);
10912
10913 array = ada_coerce_to_simple_array_ptr (array);
10914
10915 /* If we have more than one level of pointer indirection,
10916 dereference the value until we get only one level. */
10917 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10918 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10919 == TYPE_CODE_PTR))
10920 array = value_ind (array);
10921
10922 /* Make sure we really do have an array type before going further,
10923 to avoid a SEGV when trying to get the index type or the target
10924 type later down the road if the debug info generated by
10925 the compiler is incorrect or incomplete. */
10926 if (!ada_is_simple_array_type (value_type (array)))
10927 error (_("cannot take slice of non-array"));
10928
10929 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10930 == TYPE_CODE_PTR)
10931 {
10932 struct type *type0 = ada_check_typedef (value_type (array));
10933
10934 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10935 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10936 else
10937 {
10938 struct type *arr_type0 =
10939 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10940
10941 return ada_value_slice_from_ptr (array, arr_type0,
10942 longest_to_int (low_bound),
10943 longest_to_int (high_bound));
10944 }
10945 }
10946 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10947 return array;
10948 else if (high_bound < low_bound)
10949 return empty_array (value_type (array), low_bound, high_bound);
10950 else
10951 return ada_value_slice (array, longest_to_int (low_bound),
10952 longest_to_int (high_bound));
10953 }
10954
10955 case UNOP_IN_RANGE:
10956 (*pos) += 2;
10957 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10958 type = check_typedef (exp->elts[pc + 1].type);
10959
10960 if (noside == EVAL_SKIP)
10961 goto nosideret;
10962
10963 switch (TYPE_CODE (type))
10964 {
10965 default:
10966 lim_warning (_("Membership test incompletely implemented; "
10967 "always returns true"));
10968 type = language_bool_type (exp->language_defn, exp->gdbarch);
10969 return value_from_longest (type, (LONGEST) 1);
10970
10971 case TYPE_CODE_RANGE:
10972 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10973 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10974 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10975 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10976 type = language_bool_type (exp->language_defn, exp->gdbarch);
10977 return
10978 value_from_longest (type,
10979 (value_less (arg1, arg3)
10980 || value_equal (arg1, arg3))
10981 && (value_less (arg2, arg1)
10982 || value_equal (arg2, arg1)));
10983 }
10984
10985 case BINOP_IN_BOUNDS:
10986 (*pos) += 2;
10987 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10988 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10989
10990 if (noside == EVAL_SKIP)
10991 goto nosideret;
10992
10993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10994 {
10995 type = language_bool_type (exp->language_defn, exp->gdbarch);
10996 return value_zero (type, not_lval);
10997 }
10998
10999 tem = longest_to_int (exp->elts[pc + 1].longconst);
11000
11001 type = ada_index_type (value_type (arg2), tem, "range");
11002 if (!type)
11003 type = value_type (arg1);
11004
11005 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11006 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11007
11008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11010 type = language_bool_type (exp->language_defn, exp->gdbarch);
11011 return
11012 value_from_longest (type,
11013 (value_less (arg1, arg3)
11014 || value_equal (arg1, arg3))
11015 && (value_less (arg2, arg1)
11016 || value_equal (arg2, arg1)));
11017
11018 case TERNOP_IN_RANGE:
11019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11021 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11022
11023 if (noside == EVAL_SKIP)
11024 goto nosideret;
11025
11026 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11027 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11028 type = language_bool_type (exp->language_defn, exp->gdbarch);
11029 return
11030 value_from_longest (type,
11031 (value_less (arg1, arg3)
11032 || value_equal (arg1, arg3))
11033 && (value_less (arg2, arg1)
11034 || value_equal (arg2, arg1)));
11035
11036 case OP_ATR_FIRST:
11037 case OP_ATR_LAST:
11038 case OP_ATR_LENGTH:
11039 {
11040 struct type *type_arg;
11041
11042 if (exp->elts[*pos].opcode == OP_TYPE)
11043 {
11044 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11045 arg1 = NULL;
11046 type_arg = check_typedef (exp->elts[pc + 2].type);
11047 }
11048 else
11049 {
11050 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11051 type_arg = NULL;
11052 }
11053
11054 if (exp->elts[*pos].opcode != OP_LONG)
11055 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11056 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11057 *pos += 4;
11058
11059 if (noside == EVAL_SKIP)
11060 goto nosideret;
11061 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11062 {
11063 if (type_arg == NULL)
11064 type_arg = value_type (arg1);
11065
11066 if (ada_is_constrained_packed_array_type (type_arg))
11067 type_arg = decode_constrained_packed_array_type (type_arg);
11068
11069 if (!discrete_type_p (type_arg))
11070 {
11071 switch (op)
11072 {
11073 default: /* Should never happen. */
11074 error (_("unexpected attribute encountered"));
11075 case OP_ATR_FIRST:
11076 case OP_ATR_LAST:
11077 type_arg = ada_index_type (type_arg, tem,
11078 ada_attribute_name (op));
11079 break;
11080 case OP_ATR_LENGTH:
11081 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11082 break;
11083 }
11084 }
11085
11086 return value_zero (type_arg, not_lval);
11087 }
11088 else if (type_arg == NULL)
11089 {
11090 arg1 = ada_coerce_ref (arg1);
11091
11092 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11093 arg1 = ada_coerce_to_simple_array (arg1);
11094
11095 if (op == OP_ATR_LENGTH)
11096 type = builtin_type (exp->gdbarch)->builtin_int;
11097 else
11098 {
11099 type = ada_index_type (value_type (arg1), tem,
11100 ada_attribute_name (op));
11101 if (type == NULL)
11102 type = builtin_type (exp->gdbarch)->builtin_int;
11103 }
11104
11105 switch (op)
11106 {
11107 default: /* Should never happen. */
11108 error (_("unexpected attribute encountered"));
11109 case OP_ATR_FIRST:
11110 return value_from_longest
11111 (type, ada_array_bound (arg1, tem, 0));
11112 case OP_ATR_LAST:
11113 return value_from_longest
11114 (type, ada_array_bound (arg1, tem, 1));
11115 case OP_ATR_LENGTH:
11116 return value_from_longest
11117 (type, ada_array_length (arg1, tem));
11118 }
11119 }
11120 else if (discrete_type_p (type_arg))
11121 {
11122 struct type *range_type;
11123 const char *name = ada_type_name (type_arg);
11124
11125 range_type = NULL;
11126 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11127 range_type = to_fixed_range_type (type_arg, NULL);
11128 if (range_type == NULL)
11129 range_type = type_arg;
11130 switch (op)
11131 {
11132 default:
11133 error (_("unexpected attribute encountered"));
11134 case OP_ATR_FIRST:
11135 return value_from_longest
11136 (range_type, ada_discrete_type_low_bound (range_type));
11137 case OP_ATR_LAST:
11138 return value_from_longest
11139 (range_type, ada_discrete_type_high_bound (range_type));
11140 case OP_ATR_LENGTH:
11141 error (_("the 'length attribute applies only to array types"));
11142 }
11143 }
11144 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11145 error (_("unimplemented type attribute"));
11146 else
11147 {
11148 LONGEST low, high;
11149
11150 if (ada_is_constrained_packed_array_type (type_arg))
11151 type_arg = decode_constrained_packed_array_type (type_arg);
11152
11153 if (op == OP_ATR_LENGTH)
11154 type = builtin_type (exp->gdbarch)->builtin_int;
11155 else
11156 {
11157 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11158 if (type == NULL)
11159 type = builtin_type (exp->gdbarch)->builtin_int;
11160 }
11161
11162 switch (op)
11163 {
11164 default:
11165 error (_("unexpected attribute encountered"));
11166 case OP_ATR_FIRST:
11167 low = ada_array_bound_from_type (type_arg, tem, 0);
11168 return value_from_longest (type, low);
11169 case OP_ATR_LAST:
11170 high = ada_array_bound_from_type (type_arg, tem, 1);
11171 return value_from_longest (type, high);
11172 case OP_ATR_LENGTH:
11173 low = ada_array_bound_from_type (type_arg, tem, 0);
11174 high = ada_array_bound_from_type (type_arg, tem, 1);
11175 return value_from_longest (type, high - low + 1);
11176 }
11177 }
11178 }
11179
11180 case OP_ATR_TAG:
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 if (noside == EVAL_SKIP)
11183 goto nosideret;
11184
11185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11186 return value_zero (ada_tag_type (arg1), not_lval);
11187
11188 return ada_value_tag (arg1);
11189
11190 case OP_ATR_MIN:
11191 case OP_ATR_MAX:
11192 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 if (noside == EVAL_SKIP)
11196 goto nosideret;
11197 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11198 return value_zero (value_type (arg1), not_lval);
11199 else
11200 {
11201 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11202 return value_binop (arg1, arg2,
11203 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11204 }
11205
11206 case OP_ATR_MODULUS:
11207 {
11208 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11209
11210 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11211 if (noside == EVAL_SKIP)
11212 goto nosideret;
11213
11214 if (!ada_is_modular_type (type_arg))
11215 error (_("'modulus must be applied to modular type"));
11216
11217 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11218 ada_modulus (type_arg));
11219 }
11220
11221
11222 case OP_ATR_POS:
11223 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11225 if (noside == EVAL_SKIP)
11226 goto nosideret;
11227 type = builtin_type (exp->gdbarch)->builtin_int;
11228 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229 return value_zero (type, not_lval);
11230 else
11231 return value_pos_atr (type, arg1);
11232
11233 case OP_ATR_SIZE:
11234 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11235 type = value_type (arg1);
11236
11237 /* If the argument is a reference, then dereference its type, since
11238 the user is really asking for the size of the actual object,
11239 not the size of the pointer. */
11240 if (TYPE_CODE (type) == TYPE_CODE_REF)
11241 type = TYPE_TARGET_TYPE (type);
11242
11243 if (noside == EVAL_SKIP)
11244 goto nosideret;
11245 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11246 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11247 else
11248 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11249 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11250
11251 case OP_ATR_VAL:
11252 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11254 type = exp->elts[pc + 2].type;
11255 if (noside == EVAL_SKIP)
11256 goto nosideret;
11257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11258 return value_zero (type, not_lval);
11259 else
11260 return value_val_atr (type, arg1);
11261
11262 case BINOP_EXP:
11263 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11264 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11265 if (noside == EVAL_SKIP)
11266 goto nosideret;
11267 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11268 return value_zero (value_type (arg1), not_lval);
11269 else
11270 {
11271 /* For integer exponentiation operations,
11272 only promote the first argument. */
11273 if (is_integral_type (value_type (arg2)))
11274 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11275 else
11276 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11277
11278 return value_binop (arg1, arg2, op);
11279 }
11280
11281 case UNOP_PLUS:
11282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11283 if (noside == EVAL_SKIP)
11284 goto nosideret;
11285 else
11286 return arg1;
11287
11288 case UNOP_ABS:
11289 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11290 if (noside == EVAL_SKIP)
11291 goto nosideret;
11292 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11293 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11294 return value_neg (arg1);
11295 else
11296 return arg1;
11297
11298 case UNOP_IND:
11299 preeval_pos = *pos;
11300 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11301 if (noside == EVAL_SKIP)
11302 goto nosideret;
11303 type = ada_check_typedef (value_type (arg1));
11304 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11305 {
11306 if (ada_is_array_descriptor_type (type))
11307 /* GDB allows dereferencing GNAT array descriptors. */
11308 {
11309 struct type *arrType = ada_type_of_array (arg1, 0);
11310
11311 if (arrType == NULL)
11312 error (_("Attempt to dereference null array pointer."));
11313 return value_at_lazy (arrType, 0);
11314 }
11315 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11316 || TYPE_CODE (type) == TYPE_CODE_REF
11317 /* In C you can dereference an array to get the 1st elt. */
11318 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11319 {
11320 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11321 only be determined by inspecting the object's tag.
11322 This means that we need to evaluate completely the
11323 expression in order to get its type. */
11324
11325 if ((TYPE_CODE (type) == TYPE_CODE_REF
11326 || TYPE_CODE (type) == TYPE_CODE_PTR)
11327 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11328 {
11329 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11330 EVAL_NORMAL);
11331 type = value_type (ada_value_ind (arg1));
11332 }
11333 else
11334 {
11335 type = to_static_fixed_type
11336 (ada_aligned_type
11337 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11338 }
11339 ada_ensure_varsize_limit (type);
11340 return value_zero (type, lval_memory);
11341 }
11342 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11343 {
11344 /* GDB allows dereferencing an int. */
11345 if (expect_type == NULL)
11346 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11347 lval_memory);
11348 else
11349 {
11350 expect_type =
11351 to_static_fixed_type (ada_aligned_type (expect_type));
11352 return value_zero (expect_type, lval_memory);
11353 }
11354 }
11355 else
11356 error (_("Attempt to take contents of a non-pointer value."));
11357 }
11358 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11359 type = ada_check_typedef (value_type (arg1));
11360
11361 if (TYPE_CODE (type) == TYPE_CODE_INT)
11362 /* GDB allows dereferencing an int. If we were given
11363 the expect_type, then use that as the target type.
11364 Otherwise, assume that the target type is an int. */
11365 {
11366 if (expect_type != NULL)
11367 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11368 arg1));
11369 else
11370 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11371 (CORE_ADDR) value_as_address (arg1));
11372 }
11373
11374 if (ada_is_array_descriptor_type (type))
11375 /* GDB allows dereferencing GNAT array descriptors. */
11376 return ada_coerce_to_simple_array (arg1);
11377 else
11378 return ada_value_ind (arg1);
11379
11380 case STRUCTOP_STRUCT:
11381 tem = longest_to_int (exp->elts[pc + 1].longconst);
11382 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11383 preeval_pos = *pos;
11384 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11385 if (noside == EVAL_SKIP)
11386 goto nosideret;
11387 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11388 {
11389 struct type *type1 = value_type (arg1);
11390
11391 if (ada_is_tagged_type (type1, 1))
11392 {
11393 type = ada_lookup_struct_elt_type (type1,
11394 &exp->elts[pc + 2].string,
11395 1, 1);
11396
11397 /* If the field is not found, check if it exists in the
11398 extension of this object's type. This means that we
11399 need to evaluate completely the expression. */
11400
11401 if (type == NULL)
11402 {
11403 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11404 EVAL_NORMAL);
11405 arg1 = ada_value_struct_elt (arg1,
11406 &exp->elts[pc + 2].string,
11407 0);
11408 arg1 = unwrap_value (arg1);
11409 type = value_type (ada_to_fixed_value (arg1));
11410 }
11411 }
11412 else
11413 type =
11414 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11415 0);
11416
11417 return value_zero (ada_aligned_type (type), lval_memory);
11418 }
11419 else
11420 {
11421 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11422 arg1 = unwrap_value (arg1);
11423 return ada_to_fixed_value (arg1);
11424 }
11425
11426 case OP_TYPE:
11427 /* The value is not supposed to be used. This is here to make it
11428 easier to accommodate expressions that contain types. */
11429 (*pos) += 2;
11430 if (noside == EVAL_SKIP)
11431 goto nosideret;
11432 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11433 return allocate_value (exp->elts[pc + 1].type);
11434 else
11435 error (_("Attempt to use a type name as an expression"));
11436
11437 case OP_AGGREGATE:
11438 case OP_CHOICES:
11439 case OP_OTHERS:
11440 case OP_DISCRETE_RANGE:
11441 case OP_POSITIONAL:
11442 case OP_NAME:
11443 if (noside == EVAL_NORMAL)
11444 switch (op)
11445 {
11446 case OP_NAME:
11447 error (_("Undefined name, ambiguous name, or renaming used in "
11448 "component association: %s."), &exp->elts[pc+2].string);
11449 case OP_AGGREGATE:
11450 error (_("Aggregates only allowed on the right of an assignment"));
11451 default:
11452 internal_error (__FILE__, __LINE__,
11453 _("aggregate apparently mangled"));
11454 }
11455
11456 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11457 *pos += oplen - 1;
11458 for (tem = 0; tem < nargs; tem += 1)
11459 ada_evaluate_subexp (NULL, exp, pos, noside);
11460 goto nosideret;
11461 }
11462
11463 nosideret:
11464 return eval_skip_value (exp);
11465 }
11466 \f
11467
11468 /* Fixed point */
11469
11470 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11471 type name that encodes the 'small and 'delta information.
11472 Otherwise, return NULL. */
11473
11474 static const char *
11475 fixed_type_info (struct type *type)
11476 {
11477 const char *name = ada_type_name (type);
11478 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11479
11480 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11481 {
11482 const char *tail = strstr (name, "___XF_");
11483
11484 if (tail == NULL)
11485 return NULL;
11486 else
11487 return tail + 5;
11488 }
11489 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11490 return fixed_type_info (TYPE_TARGET_TYPE (type));
11491 else
11492 return NULL;
11493 }
11494
11495 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11496
11497 int
11498 ada_is_fixed_point_type (struct type *type)
11499 {
11500 return fixed_type_info (type) != NULL;
11501 }
11502
11503 /* Return non-zero iff TYPE represents a System.Address type. */
11504
11505 int
11506 ada_is_system_address_type (struct type *type)
11507 {
11508 return (TYPE_NAME (type)
11509 && strcmp (TYPE_NAME (type), "system__address") == 0);
11510 }
11511
11512 /* Assuming that TYPE is the representation of an Ada fixed-point
11513 type, return the target floating-point type to be used to represent
11514 of this type during internal computation. */
11515
11516 static struct type *
11517 ada_scaling_type (struct type *type)
11518 {
11519 return builtin_type (get_type_arch (type))->builtin_long_double;
11520 }
11521
11522 /* Assuming that TYPE is the representation of an Ada fixed-point
11523 type, return its delta, or NULL if the type is malformed and the
11524 delta cannot be determined. */
11525
11526 struct value *
11527 ada_delta (struct type *type)
11528 {
11529 const char *encoding = fixed_type_info (type);
11530 struct type *scale_type = ada_scaling_type (type);
11531
11532 long long num, den;
11533
11534 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11535 return nullptr;
11536 else
11537 return value_binop (value_from_longest (scale_type, num),
11538 value_from_longest (scale_type, den), BINOP_DIV);
11539 }
11540
11541 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11542 factor ('SMALL value) associated with the type. */
11543
11544 struct value *
11545 ada_scaling_factor (struct type *type)
11546 {
11547 const char *encoding = fixed_type_info (type);
11548 struct type *scale_type = ada_scaling_type (type);
11549
11550 long long num0, den0, num1, den1;
11551 int n;
11552
11553 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11554 &num0, &den0, &num1, &den1);
11555
11556 if (n < 2)
11557 return value_from_longest (scale_type, 1);
11558 else if (n == 4)
11559 return value_binop (value_from_longest (scale_type, num1),
11560 value_from_longest (scale_type, den1), BINOP_DIV);
11561 else
11562 return value_binop (value_from_longest (scale_type, num0),
11563 value_from_longest (scale_type, den0), BINOP_DIV);
11564 }
11565
11566 \f
11567
11568 /* Range types */
11569
11570 /* Scan STR beginning at position K for a discriminant name, and
11571 return the value of that discriminant field of DVAL in *PX. If
11572 PNEW_K is not null, put the position of the character beyond the
11573 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11574 not alter *PX and *PNEW_K if unsuccessful. */
11575
11576 static int
11577 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11578 int *pnew_k)
11579 {
11580 static char *bound_buffer = NULL;
11581 static size_t bound_buffer_len = 0;
11582 const char *pstart, *pend, *bound;
11583 struct value *bound_val;
11584
11585 if (dval == NULL || str == NULL || str[k] == '\0')
11586 return 0;
11587
11588 pstart = str + k;
11589 pend = strstr (pstart, "__");
11590 if (pend == NULL)
11591 {
11592 bound = pstart;
11593 k += strlen (bound);
11594 }
11595 else
11596 {
11597 int len = pend - pstart;
11598
11599 /* Strip __ and beyond. */
11600 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11601 strncpy (bound_buffer, pstart, len);
11602 bound_buffer[len] = '\0';
11603
11604 bound = bound_buffer;
11605 k = pend - str;
11606 }
11607
11608 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11609 if (bound_val == NULL)
11610 return 0;
11611
11612 *px = value_as_long (bound_val);
11613 if (pnew_k != NULL)
11614 *pnew_k = k;
11615 return 1;
11616 }
11617
11618 /* Value of variable named NAME in the current environment. If
11619 no such variable found, then if ERR_MSG is null, returns 0, and
11620 otherwise causes an error with message ERR_MSG. */
11621
11622 static struct value *
11623 get_var_value (const char *name, const char *err_msg)
11624 {
11625 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11626
11627 std::vector<struct block_symbol> syms;
11628 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11629 get_selected_block (0),
11630 VAR_DOMAIN, &syms, 1);
11631
11632 if (nsyms != 1)
11633 {
11634 if (err_msg == NULL)
11635 return 0;
11636 else
11637 error (("%s"), err_msg);
11638 }
11639
11640 return value_of_variable (syms[0].symbol, syms[0].block);
11641 }
11642
11643 /* Value of integer variable named NAME in the current environment.
11644 If no such variable is found, returns false. Otherwise, sets VALUE
11645 to the variable's value and returns true. */
11646
11647 bool
11648 get_int_var_value (const char *name, LONGEST &value)
11649 {
11650 struct value *var_val = get_var_value (name, 0);
11651
11652 if (var_val == 0)
11653 return false;
11654
11655 value = value_as_long (var_val);
11656 return true;
11657 }
11658
11659
11660 /* Return a range type whose base type is that of the range type named
11661 NAME in the current environment, and whose bounds are calculated
11662 from NAME according to the GNAT range encoding conventions.
11663 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11664 corresponding range type from debug information; fall back to using it
11665 if symbol lookup fails. If a new type must be created, allocate it
11666 like ORIG_TYPE was. The bounds information, in general, is encoded
11667 in NAME, the base type given in the named range type. */
11668
11669 static struct type *
11670 to_fixed_range_type (struct type *raw_type, struct value *dval)
11671 {
11672 const char *name;
11673 struct type *base_type;
11674 const char *subtype_info;
11675
11676 gdb_assert (raw_type != NULL);
11677 gdb_assert (TYPE_NAME (raw_type) != NULL);
11678
11679 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11680 base_type = TYPE_TARGET_TYPE (raw_type);
11681 else
11682 base_type = raw_type;
11683
11684 name = TYPE_NAME (raw_type);
11685 subtype_info = strstr (name, "___XD");
11686 if (subtype_info == NULL)
11687 {
11688 LONGEST L = ada_discrete_type_low_bound (raw_type);
11689 LONGEST U = ada_discrete_type_high_bound (raw_type);
11690
11691 if (L < INT_MIN || U > INT_MAX)
11692 return raw_type;
11693 else
11694 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11695 L, U);
11696 }
11697 else
11698 {
11699 static char *name_buf = NULL;
11700 static size_t name_len = 0;
11701 int prefix_len = subtype_info - name;
11702 LONGEST L, U;
11703 struct type *type;
11704 const char *bounds_str;
11705 int n;
11706
11707 GROW_VECT (name_buf, name_len, prefix_len + 5);
11708 strncpy (name_buf, name, prefix_len);
11709 name_buf[prefix_len] = '\0';
11710
11711 subtype_info += 5;
11712 bounds_str = strchr (subtype_info, '_');
11713 n = 1;
11714
11715 if (*subtype_info == 'L')
11716 {
11717 if (!ada_scan_number (bounds_str, n, &L, &n)
11718 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11719 return raw_type;
11720 if (bounds_str[n] == '_')
11721 n += 2;
11722 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11723 n += 1;
11724 subtype_info += 1;
11725 }
11726 else
11727 {
11728 strcpy (name_buf + prefix_len, "___L");
11729 if (!get_int_var_value (name_buf, L))
11730 {
11731 lim_warning (_("Unknown lower bound, using 1."));
11732 L = 1;
11733 }
11734 }
11735
11736 if (*subtype_info == 'U')
11737 {
11738 if (!ada_scan_number (bounds_str, n, &U, &n)
11739 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11740 return raw_type;
11741 }
11742 else
11743 {
11744 strcpy (name_buf + prefix_len, "___U");
11745 if (!get_int_var_value (name_buf, U))
11746 {
11747 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11748 U = L;
11749 }
11750 }
11751
11752 type = create_static_range_type (alloc_type_copy (raw_type),
11753 base_type, L, U);
11754 /* create_static_range_type alters the resulting type's length
11755 to match the size of the base_type, which is not what we want.
11756 Set it back to the original range type's length. */
11757 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11758 TYPE_NAME (type) = name;
11759 return type;
11760 }
11761 }
11762
11763 /* True iff NAME is the name of a range type. */
11764
11765 int
11766 ada_is_range_type_name (const char *name)
11767 {
11768 return (name != NULL && strstr (name, "___XD"));
11769 }
11770 \f
11771
11772 /* Modular types */
11773
11774 /* True iff TYPE is an Ada modular type. */
11775
11776 int
11777 ada_is_modular_type (struct type *type)
11778 {
11779 struct type *subranged_type = get_base_type (type);
11780
11781 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11782 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11783 && TYPE_UNSIGNED (subranged_type));
11784 }
11785
11786 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11787
11788 ULONGEST
11789 ada_modulus (struct type *type)
11790 {
11791 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11792 }
11793 \f
11794
11795 /* Ada exception catchpoint support:
11796 ---------------------------------
11797
11798 We support 3 kinds of exception catchpoints:
11799 . catchpoints on Ada exceptions
11800 . catchpoints on unhandled Ada exceptions
11801 . catchpoints on failed assertions
11802
11803 Exceptions raised during failed assertions, or unhandled exceptions
11804 could perfectly be caught with the general catchpoint on Ada exceptions.
11805 However, we can easily differentiate these two special cases, and having
11806 the option to distinguish these two cases from the rest can be useful
11807 to zero-in on certain situations.
11808
11809 Exception catchpoints are a specialized form of breakpoint,
11810 since they rely on inserting breakpoints inside known routines
11811 of the GNAT runtime. The implementation therefore uses a standard
11812 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11813 of breakpoint_ops.
11814
11815 Support in the runtime for exception catchpoints have been changed
11816 a few times already, and these changes affect the implementation
11817 of these catchpoints. In order to be able to support several
11818 variants of the runtime, we use a sniffer that will determine
11819 the runtime variant used by the program being debugged. */
11820
11821 /* Ada's standard exceptions.
11822
11823 The Ada 83 standard also defined Numeric_Error. But there so many
11824 situations where it was unclear from the Ada 83 Reference Manual
11825 (RM) whether Constraint_Error or Numeric_Error should be raised,
11826 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11827 Interpretation saying that anytime the RM says that Numeric_Error
11828 should be raised, the implementation may raise Constraint_Error.
11829 Ada 95 went one step further and pretty much removed Numeric_Error
11830 from the list of standard exceptions (it made it a renaming of
11831 Constraint_Error, to help preserve compatibility when compiling
11832 an Ada83 compiler). As such, we do not include Numeric_Error from
11833 this list of standard exceptions. */
11834
11835 static const char *standard_exc[] = {
11836 "constraint_error",
11837 "program_error",
11838 "storage_error",
11839 "tasking_error"
11840 };
11841
11842 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11843
11844 /* A structure that describes how to support exception catchpoints
11845 for a given executable. */
11846
11847 struct exception_support_info
11848 {
11849 /* The name of the symbol to break on in order to insert
11850 a catchpoint on exceptions. */
11851 const char *catch_exception_sym;
11852
11853 /* The name of the symbol to break on in order to insert
11854 a catchpoint on unhandled exceptions. */
11855 const char *catch_exception_unhandled_sym;
11856
11857 /* The name of the symbol to break on in order to insert
11858 a catchpoint on failed assertions. */
11859 const char *catch_assert_sym;
11860
11861 /* The name of the symbol to break on in order to insert
11862 a catchpoint on exception handling. */
11863 const char *catch_handlers_sym;
11864
11865 /* Assuming that the inferior just triggered an unhandled exception
11866 catchpoint, this function is responsible for returning the address
11867 in inferior memory where the name of that exception is stored.
11868 Return zero if the address could not be computed. */
11869 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11870 };
11871
11872 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11873 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11874
11875 /* The following exception support info structure describes how to
11876 implement exception catchpoints with the latest version of the
11877 Ada runtime (as of 2019-08-??). */
11878
11879 static const struct exception_support_info default_exception_support_info =
11880 {
11881 "__gnat_debug_raise_exception", /* catch_exception_sym */
11882 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11883 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11884 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11885 ada_unhandled_exception_name_addr
11886 };
11887
11888 /* The following exception support info structure describes how to
11889 implement exception catchpoints with an earlier version of the
11890 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11891
11892 static const struct exception_support_info exception_support_info_v0 =
11893 {
11894 "__gnat_debug_raise_exception", /* catch_exception_sym */
11895 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11896 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11897 "__gnat_begin_handler", /* catch_handlers_sym */
11898 ada_unhandled_exception_name_addr
11899 };
11900
11901 /* The following exception support info structure describes how to
11902 implement exception catchpoints with a slightly older version
11903 of the Ada runtime. */
11904
11905 static const struct exception_support_info exception_support_info_fallback =
11906 {
11907 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11908 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11909 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11910 "__gnat_begin_handler", /* catch_handlers_sym */
11911 ada_unhandled_exception_name_addr_from_raise
11912 };
11913
11914 /* Return nonzero if we can detect the exception support routines
11915 described in EINFO.
11916
11917 This function errors out if an abnormal situation is detected
11918 (for instance, if we find the exception support routines, but
11919 that support is found to be incomplete). */
11920
11921 static int
11922 ada_has_this_exception_support (const struct exception_support_info *einfo)
11923 {
11924 struct symbol *sym;
11925
11926 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11927 that should be compiled with debugging information. As a result, we
11928 expect to find that symbol in the symtabs. */
11929
11930 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11931 if (sym == NULL)
11932 {
11933 /* Perhaps we did not find our symbol because the Ada runtime was
11934 compiled without debugging info, or simply stripped of it.
11935 It happens on some GNU/Linux distributions for instance, where
11936 users have to install a separate debug package in order to get
11937 the runtime's debugging info. In that situation, let the user
11938 know why we cannot insert an Ada exception catchpoint.
11939
11940 Note: Just for the purpose of inserting our Ada exception
11941 catchpoint, we could rely purely on the associated minimal symbol.
11942 But we would be operating in degraded mode anyway, since we are
11943 still lacking the debugging info needed later on to extract
11944 the name of the exception being raised (this name is printed in
11945 the catchpoint message, and is also used when trying to catch
11946 a specific exception). We do not handle this case for now. */
11947 struct bound_minimal_symbol msym
11948 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11949
11950 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11951 error (_("Your Ada runtime appears to be missing some debugging "
11952 "information.\nCannot insert Ada exception catchpoint "
11953 "in this configuration."));
11954
11955 return 0;
11956 }
11957
11958 /* Make sure that the symbol we found corresponds to a function. */
11959
11960 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11961 {
11962 error (_("Symbol \"%s\" is not a function (class = %d)"),
11963 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11964 return 0;
11965 }
11966
11967 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11968 if (sym == NULL)
11969 {
11970 struct bound_minimal_symbol msym
11971 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11972
11973 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11974 error (_("Your Ada runtime appears to be missing some debugging "
11975 "information.\nCannot insert Ada exception catchpoint "
11976 "in this configuration."));
11977
11978 return 0;
11979 }
11980
11981 /* Make sure that the symbol we found corresponds to a function. */
11982
11983 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11984 {
11985 error (_("Symbol \"%s\" is not a function (class = %d)"),
11986 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11987 return 0;
11988 }
11989
11990 return 1;
11991 }
11992
11993 /* Inspect the Ada runtime and determine which exception info structure
11994 should be used to provide support for exception catchpoints.
11995
11996 This function will always set the per-inferior exception_info,
11997 or raise an error. */
11998
11999 static void
12000 ada_exception_support_info_sniffer (void)
12001 {
12002 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12003
12004 /* If the exception info is already known, then no need to recompute it. */
12005 if (data->exception_info != NULL)
12006 return;
12007
12008 /* Check the latest (default) exception support info. */
12009 if (ada_has_this_exception_support (&default_exception_support_info))
12010 {
12011 data->exception_info = &default_exception_support_info;
12012 return;
12013 }
12014
12015 /* Try the v0 exception suport info. */
12016 if (ada_has_this_exception_support (&exception_support_info_v0))
12017 {
12018 data->exception_info = &exception_support_info_v0;
12019 return;
12020 }
12021
12022 /* Try our fallback exception suport info. */
12023 if (ada_has_this_exception_support (&exception_support_info_fallback))
12024 {
12025 data->exception_info = &exception_support_info_fallback;
12026 return;
12027 }
12028
12029 /* Sometimes, it is normal for us to not be able to find the routine
12030 we are looking for. This happens when the program is linked with
12031 the shared version of the GNAT runtime, and the program has not been
12032 started yet. Inform the user of these two possible causes if
12033 applicable. */
12034
12035 if (ada_update_initial_language (language_unknown) != language_ada)
12036 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12037
12038 /* If the symbol does not exist, then check that the program is
12039 already started, to make sure that shared libraries have been
12040 loaded. If it is not started, this may mean that the symbol is
12041 in a shared library. */
12042
12043 if (inferior_ptid.pid () == 0)
12044 error (_("Unable to insert catchpoint. Try to start the program first."));
12045
12046 /* At this point, we know that we are debugging an Ada program and
12047 that the inferior has been started, but we still are not able to
12048 find the run-time symbols. That can mean that we are in
12049 configurable run time mode, or that a-except as been optimized
12050 out by the linker... In any case, at this point it is not worth
12051 supporting this feature. */
12052
12053 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12054 }
12055
12056 /* True iff FRAME is very likely to be that of a function that is
12057 part of the runtime system. This is all very heuristic, but is
12058 intended to be used as advice as to what frames are uninteresting
12059 to most users. */
12060
12061 static int
12062 is_known_support_routine (struct frame_info *frame)
12063 {
12064 enum language func_lang;
12065 int i;
12066 const char *fullname;
12067
12068 /* If this code does not have any debugging information (no symtab),
12069 This cannot be any user code. */
12070
12071 symtab_and_line sal = find_frame_sal (frame);
12072 if (sal.symtab == NULL)
12073 return 1;
12074
12075 /* If there is a symtab, but the associated source file cannot be
12076 located, then assume this is not user code: Selecting a frame
12077 for which we cannot display the code would not be very helpful
12078 for the user. This should also take care of case such as VxWorks
12079 where the kernel has some debugging info provided for a few units. */
12080
12081 fullname = symtab_to_fullname (sal.symtab);
12082 if (access (fullname, R_OK) != 0)
12083 return 1;
12084
12085 /* Check the unit filename againt the Ada runtime file naming.
12086 We also check the name of the objfile against the name of some
12087 known system libraries that sometimes come with debugging info
12088 too. */
12089
12090 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12091 {
12092 re_comp (known_runtime_file_name_patterns[i]);
12093 if (re_exec (lbasename (sal.symtab->filename)))
12094 return 1;
12095 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12096 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12097 return 1;
12098 }
12099
12100 /* Check whether the function is a GNAT-generated entity. */
12101
12102 gdb::unique_xmalloc_ptr<char> func_name
12103 = find_frame_funname (frame, &func_lang, NULL);
12104 if (func_name == NULL)
12105 return 1;
12106
12107 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12108 {
12109 re_comp (known_auxiliary_function_name_patterns[i]);
12110 if (re_exec (func_name.get ()))
12111 return 1;
12112 }
12113
12114 return 0;
12115 }
12116
12117 /* Find the first frame that contains debugging information and that is not
12118 part of the Ada run-time, starting from FI and moving upward. */
12119
12120 void
12121 ada_find_printable_frame (struct frame_info *fi)
12122 {
12123 for (; fi != NULL; fi = get_prev_frame (fi))
12124 {
12125 if (!is_known_support_routine (fi))
12126 {
12127 select_frame (fi);
12128 break;
12129 }
12130 }
12131
12132 }
12133
12134 /* Assuming that the inferior just triggered an unhandled exception
12135 catchpoint, return the address in inferior memory where the name
12136 of the exception is stored.
12137
12138 Return zero if the address could not be computed. */
12139
12140 static CORE_ADDR
12141 ada_unhandled_exception_name_addr (void)
12142 {
12143 return parse_and_eval_address ("e.full_name");
12144 }
12145
12146 /* Same as ada_unhandled_exception_name_addr, except that this function
12147 should be used when the inferior uses an older version of the runtime,
12148 where the exception name needs to be extracted from a specific frame
12149 several frames up in the callstack. */
12150
12151 static CORE_ADDR
12152 ada_unhandled_exception_name_addr_from_raise (void)
12153 {
12154 int frame_level;
12155 struct frame_info *fi;
12156 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12157
12158 /* To determine the name of this exception, we need to select
12159 the frame corresponding to RAISE_SYM_NAME. This frame is
12160 at least 3 levels up, so we simply skip the first 3 frames
12161 without checking the name of their associated function. */
12162 fi = get_current_frame ();
12163 for (frame_level = 0; frame_level < 3; frame_level += 1)
12164 if (fi != NULL)
12165 fi = get_prev_frame (fi);
12166
12167 while (fi != NULL)
12168 {
12169 enum language func_lang;
12170
12171 gdb::unique_xmalloc_ptr<char> func_name
12172 = find_frame_funname (fi, &func_lang, NULL);
12173 if (func_name != NULL)
12174 {
12175 if (strcmp (func_name.get (),
12176 data->exception_info->catch_exception_sym) == 0)
12177 break; /* We found the frame we were looking for... */
12178 }
12179 fi = get_prev_frame (fi);
12180 }
12181
12182 if (fi == NULL)
12183 return 0;
12184
12185 select_frame (fi);
12186 return parse_and_eval_address ("id.full_name");
12187 }
12188
12189 /* Assuming the inferior just triggered an Ada exception catchpoint
12190 (of any type), return the address in inferior memory where the name
12191 of the exception is stored, if applicable.
12192
12193 Assumes the selected frame is the current frame.
12194
12195 Return zero if the address could not be computed, or if not relevant. */
12196
12197 static CORE_ADDR
12198 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12199 struct breakpoint *b)
12200 {
12201 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12202
12203 switch (ex)
12204 {
12205 case ada_catch_exception:
12206 return (parse_and_eval_address ("e.full_name"));
12207 break;
12208
12209 case ada_catch_exception_unhandled:
12210 return data->exception_info->unhandled_exception_name_addr ();
12211 break;
12212
12213 case ada_catch_handlers:
12214 return 0; /* The runtimes does not provide access to the exception
12215 name. */
12216 break;
12217
12218 case ada_catch_assert:
12219 return 0; /* Exception name is not relevant in this case. */
12220 break;
12221
12222 default:
12223 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12224 break;
12225 }
12226
12227 return 0; /* Should never be reached. */
12228 }
12229
12230 /* Assuming the inferior is stopped at an exception catchpoint,
12231 return the message which was associated to the exception, if
12232 available. Return NULL if the message could not be retrieved.
12233
12234 Note: The exception message can be associated to an exception
12235 either through the use of the Raise_Exception function, or
12236 more simply (Ada 2005 and later), via:
12237
12238 raise Exception_Name with "exception message";
12239
12240 */
12241
12242 static gdb::unique_xmalloc_ptr<char>
12243 ada_exception_message_1 (void)
12244 {
12245 struct value *e_msg_val;
12246 int e_msg_len;
12247
12248 /* For runtimes that support this feature, the exception message
12249 is passed as an unbounded string argument called "message". */
12250 e_msg_val = parse_and_eval ("message");
12251 if (e_msg_val == NULL)
12252 return NULL; /* Exception message not supported. */
12253
12254 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12255 gdb_assert (e_msg_val != NULL);
12256 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12257
12258 /* If the message string is empty, then treat it as if there was
12259 no exception message. */
12260 if (e_msg_len <= 0)
12261 return NULL;
12262
12263 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12264 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12265 e_msg.get ()[e_msg_len] = '\0';
12266
12267 return e_msg;
12268 }
12269
12270 /* Same as ada_exception_message_1, except that all exceptions are
12271 contained here (returning NULL instead). */
12272
12273 static gdb::unique_xmalloc_ptr<char>
12274 ada_exception_message (void)
12275 {
12276 gdb::unique_xmalloc_ptr<char> e_msg;
12277
12278 try
12279 {
12280 e_msg = ada_exception_message_1 ();
12281 }
12282 catch (const gdb_exception_error &e)
12283 {
12284 e_msg.reset (nullptr);
12285 }
12286
12287 return e_msg;
12288 }
12289
12290 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12291 any error that ada_exception_name_addr_1 might cause to be thrown.
12292 When an error is intercepted, a warning with the error message is printed,
12293 and zero is returned. */
12294
12295 static CORE_ADDR
12296 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12297 struct breakpoint *b)
12298 {
12299 CORE_ADDR result = 0;
12300
12301 try
12302 {
12303 result = ada_exception_name_addr_1 (ex, b);
12304 }
12305
12306 catch (const gdb_exception_error &e)
12307 {
12308 warning (_("failed to get exception name: %s"), e.what ());
12309 return 0;
12310 }
12311
12312 return result;
12313 }
12314
12315 static std::string ada_exception_catchpoint_cond_string
12316 (const char *excep_string,
12317 enum ada_exception_catchpoint_kind ex);
12318
12319 /* Ada catchpoints.
12320
12321 In the case of catchpoints on Ada exceptions, the catchpoint will
12322 stop the target on every exception the program throws. When a user
12323 specifies the name of a specific exception, we translate this
12324 request into a condition expression (in text form), and then parse
12325 it into an expression stored in each of the catchpoint's locations.
12326 We then use this condition to check whether the exception that was
12327 raised is the one the user is interested in. If not, then the
12328 target is resumed again. We store the name of the requested
12329 exception, in order to be able to re-set the condition expression
12330 when symbols change. */
12331
12332 /* An instance of this type is used to represent an Ada catchpoint
12333 breakpoint location. */
12334
12335 class ada_catchpoint_location : public bp_location
12336 {
12337 public:
12338 ada_catchpoint_location (breakpoint *owner)
12339 : bp_location (owner, bp_loc_software_breakpoint)
12340 {}
12341
12342 /* The condition that checks whether the exception that was raised
12343 is the specific exception the user specified on catchpoint
12344 creation. */
12345 expression_up excep_cond_expr;
12346 };
12347
12348 /* An instance of this type is used to represent an Ada catchpoint. */
12349
12350 struct ada_catchpoint : public breakpoint
12351 {
12352 /* The name of the specific exception the user specified. */
12353 std::string excep_string;
12354 };
12355
12356 /* Parse the exception condition string in the context of each of the
12357 catchpoint's locations, and store them for later evaluation. */
12358
12359 static void
12360 create_excep_cond_exprs (struct ada_catchpoint *c,
12361 enum ada_exception_catchpoint_kind ex)
12362 {
12363 /* Nothing to do if there's no specific exception to catch. */
12364 if (c->excep_string.empty ())
12365 return;
12366
12367 /* Same if there are no locations... */
12368 if (c->loc == NULL)
12369 return;
12370
12371 /* We have to compute the expression once for each program space,
12372 because the expression may hold the addresses of multiple symbols
12373 in some cases. */
12374 std::multimap<program_space *, struct bp_location *> loc_map;
12375 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12376 loc_map.emplace (bl->pspace, bl);
12377
12378 scoped_restore_current_program_space save_pspace;
12379
12380 std::string cond_string;
12381 program_space *last_ps = nullptr;
12382 for (auto iter : loc_map)
12383 {
12384 struct ada_catchpoint_location *ada_loc
12385 = (struct ada_catchpoint_location *) iter.second;
12386
12387 if (ada_loc->pspace != last_ps)
12388 {
12389 last_ps = ada_loc->pspace;
12390 set_current_program_space (last_ps);
12391
12392 /* Compute the condition expression in text form, from the
12393 specific expection we want to catch. */
12394 cond_string
12395 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12396 ex);
12397 }
12398
12399 expression_up exp;
12400
12401 if (!ada_loc->shlib_disabled)
12402 {
12403 const char *s;
12404
12405 s = cond_string.c_str ();
12406 try
12407 {
12408 exp = parse_exp_1 (&s, ada_loc->address,
12409 block_for_pc (ada_loc->address),
12410 0);
12411 }
12412 catch (const gdb_exception_error &e)
12413 {
12414 warning (_("failed to reevaluate internal exception condition "
12415 "for catchpoint %d: %s"),
12416 c->number, e.what ());
12417 }
12418 }
12419
12420 ada_loc->excep_cond_expr = std::move (exp);
12421 }
12422 }
12423
12424 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12425 structure for all exception catchpoint kinds. */
12426
12427 static struct bp_location *
12428 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12429 struct breakpoint *self)
12430 {
12431 return new ada_catchpoint_location (self);
12432 }
12433
12434 /* Implement the RE_SET method in the breakpoint_ops structure for all
12435 exception catchpoint kinds. */
12436
12437 static void
12438 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12439 {
12440 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12441
12442 /* Call the base class's method. This updates the catchpoint's
12443 locations. */
12444 bkpt_breakpoint_ops.re_set (b);
12445
12446 /* Reparse the exception conditional expressions. One for each
12447 location. */
12448 create_excep_cond_exprs (c, ex);
12449 }
12450
12451 /* Returns true if we should stop for this breakpoint hit. If the
12452 user specified a specific exception, we only want to cause a stop
12453 if the program thrown that exception. */
12454
12455 static int
12456 should_stop_exception (const struct bp_location *bl)
12457 {
12458 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12459 const struct ada_catchpoint_location *ada_loc
12460 = (const struct ada_catchpoint_location *) bl;
12461 int stop;
12462
12463 /* With no specific exception, should always stop. */
12464 if (c->excep_string.empty ())
12465 return 1;
12466
12467 if (ada_loc->excep_cond_expr == NULL)
12468 {
12469 /* We will have a NULL expression if back when we were creating
12470 the expressions, this location's had failed to parse. */
12471 return 1;
12472 }
12473
12474 stop = 1;
12475 try
12476 {
12477 struct value *mark;
12478
12479 mark = value_mark ();
12480 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12481 value_free_to_mark (mark);
12482 }
12483 catch (const gdb_exception &ex)
12484 {
12485 exception_fprintf (gdb_stderr, ex,
12486 _("Error in testing exception condition:\n"));
12487 }
12488
12489 return stop;
12490 }
12491
12492 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12493 for all exception catchpoint kinds. */
12494
12495 static void
12496 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12497 {
12498 bs->stop = should_stop_exception (bs->bp_location_at);
12499 }
12500
12501 /* Implement the PRINT_IT method in the breakpoint_ops structure
12502 for all exception catchpoint kinds. */
12503
12504 static enum print_stop_action
12505 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12506 {
12507 struct ui_out *uiout = current_uiout;
12508 struct breakpoint *b = bs->breakpoint_at;
12509
12510 annotate_catchpoint (b->number);
12511
12512 if (uiout->is_mi_like_p ())
12513 {
12514 uiout->field_string ("reason",
12515 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12516 uiout->field_string ("disp", bpdisp_text (b->disposition));
12517 }
12518
12519 uiout->text (b->disposition == disp_del
12520 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12521 uiout->field_signed ("bkptno", b->number);
12522 uiout->text (", ");
12523
12524 /* ada_exception_name_addr relies on the selected frame being the
12525 current frame. Need to do this here because this function may be
12526 called more than once when printing a stop, and below, we'll
12527 select the first frame past the Ada run-time (see
12528 ada_find_printable_frame). */
12529 select_frame (get_current_frame ());
12530
12531 switch (ex)
12532 {
12533 case ada_catch_exception:
12534 case ada_catch_exception_unhandled:
12535 case ada_catch_handlers:
12536 {
12537 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12538 char exception_name[256];
12539
12540 if (addr != 0)
12541 {
12542 read_memory (addr, (gdb_byte *) exception_name,
12543 sizeof (exception_name) - 1);
12544 exception_name [sizeof (exception_name) - 1] = '\0';
12545 }
12546 else
12547 {
12548 /* For some reason, we were unable to read the exception
12549 name. This could happen if the Runtime was compiled
12550 without debugging info, for instance. In that case,
12551 just replace the exception name by the generic string
12552 "exception" - it will read as "an exception" in the
12553 notification we are about to print. */
12554 memcpy (exception_name, "exception", sizeof ("exception"));
12555 }
12556 /* In the case of unhandled exception breakpoints, we print
12557 the exception name as "unhandled EXCEPTION_NAME", to make
12558 it clearer to the user which kind of catchpoint just got
12559 hit. We used ui_out_text to make sure that this extra
12560 info does not pollute the exception name in the MI case. */
12561 if (ex == ada_catch_exception_unhandled)
12562 uiout->text ("unhandled ");
12563 uiout->field_string ("exception-name", exception_name);
12564 }
12565 break;
12566 case ada_catch_assert:
12567 /* In this case, the name of the exception is not really
12568 important. Just print "failed assertion" to make it clearer
12569 that his program just hit an assertion-failure catchpoint.
12570 We used ui_out_text because this info does not belong in
12571 the MI output. */
12572 uiout->text ("failed assertion");
12573 break;
12574 }
12575
12576 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12577 if (exception_message != NULL)
12578 {
12579 uiout->text (" (");
12580 uiout->field_string ("exception-message", exception_message.get ());
12581 uiout->text (")");
12582 }
12583
12584 uiout->text (" at ");
12585 ada_find_printable_frame (get_current_frame ());
12586
12587 return PRINT_SRC_AND_LOC;
12588 }
12589
12590 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12591 for all exception catchpoint kinds. */
12592
12593 static void
12594 print_one_exception (enum ada_exception_catchpoint_kind ex,
12595 struct breakpoint *b, struct bp_location **last_loc)
12596 {
12597 struct ui_out *uiout = current_uiout;
12598 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12599 struct value_print_options opts;
12600
12601 get_user_print_options (&opts);
12602
12603 if (opts.addressprint)
12604 uiout->field_skip ("addr");
12605
12606 annotate_field (5);
12607 switch (ex)
12608 {
12609 case ada_catch_exception:
12610 if (!c->excep_string.empty ())
12611 {
12612 std::string msg = string_printf (_("`%s' Ada exception"),
12613 c->excep_string.c_str ());
12614
12615 uiout->field_string ("what", msg);
12616 }
12617 else
12618 uiout->field_string ("what", "all Ada exceptions");
12619
12620 break;
12621
12622 case ada_catch_exception_unhandled:
12623 uiout->field_string ("what", "unhandled Ada exceptions");
12624 break;
12625
12626 case ada_catch_handlers:
12627 if (!c->excep_string.empty ())
12628 {
12629 uiout->field_fmt ("what",
12630 _("`%s' Ada exception handlers"),
12631 c->excep_string.c_str ());
12632 }
12633 else
12634 uiout->field_string ("what", "all Ada exceptions handlers");
12635 break;
12636
12637 case ada_catch_assert:
12638 uiout->field_string ("what", "failed Ada assertions");
12639 break;
12640
12641 default:
12642 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12643 break;
12644 }
12645 }
12646
12647 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12648 for all exception catchpoint kinds. */
12649
12650 static void
12651 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12652 struct breakpoint *b)
12653 {
12654 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12655 struct ui_out *uiout = current_uiout;
12656
12657 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12658 : _("Catchpoint "));
12659 uiout->field_signed ("bkptno", b->number);
12660 uiout->text (": ");
12661
12662 switch (ex)
12663 {
12664 case ada_catch_exception:
12665 if (!c->excep_string.empty ())
12666 {
12667 std::string info = string_printf (_("`%s' Ada exception"),
12668 c->excep_string.c_str ());
12669 uiout->text (info.c_str ());
12670 }
12671 else
12672 uiout->text (_("all Ada exceptions"));
12673 break;
12674
12675 case ada_catch_exception_unhandled:
12676 uiout->text (_("unhandled Ada exceptions"));
12677 break;
12678
12679 case ada_catch_handlers:
12680 if (!c->excep_string.empty ())
12681 {
12682 std::string info
12683 = string_printf (_("`%s' Ada exception handlers"),
12684 c->excep_string.c_str ());
12685 uiout->text (info.c_str ());
12686 }
12687 else
12688 uiout->text (_("all Ada exceptions handlers"));
12689 break;
12690
12691 case ada_catch_assert:
12692 uiout->text (_("failed Ada assertions"));
12693 break;
12694
12695 default:
12696 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12697 break;
12698 }
12699 }
12700
12701 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12702 for all exception catchpoint kinds. */
12703
12704 static void
12705 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12706 struct breakpoint *b, struct ui_file *fp)
12707 {
12708 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12709
12710 switch (ex)
12711 {
12712 case ada_catch_exception:
12713 fprintf_filtered (fp, "catch exception");
12714 if (!c->excep_string.empty ())
12715 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12716 break;
12717
12718 case ada_catch_exception_unhandled:
12719 fprintf_filtered (fp, "catch exception unhandled");
12720 break;
12721
12722 case ada_catch_handlers:
12723 fprintf_filtered (fp, "catch handlers");
12724 break;
12725
12726 case ada_catch_assert:
12727 fprintf_filtered (fp, "catch assert");
12728 break;
12729
12730 default:
12731 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12732 }
12733 print_recreate_thread (b, fp);
12734 }
12735
12736 /* Virtual table for "catch exception" breakpoints. */
12737
12738 static struct bp_location *
12739 allocate_location_catch_exception (struct breakpoint *self)
12740 {
12741 return allocate_location_exception (ada_catch_exception, self);
12742 }
12743
12744 static void
12745 re_set_catch_exception (struct breakpoint *b)
12746 {
12747 re_set_exception (ada_catch_exception, b);
12748 }
12749
12750 static void
12751 check_status_catch_exception (bpstat bs)
12752 {
12753 check_status_exception (ada_catch_exception, bs);
12754 }
12755
12756 static enum print_stop_action
12757 print_it_catch_exception (bpstat bs)
12758 {
12759 return print_it_exception (ada_catch_exception, bs);
12760 }
12761
12762 static void
12763 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12764 {
12765 print_one_exception (ada_catch_exception, b, last_loc);
12766 }
12767
12768 static void
12769 print_mention_catch_exception (struct breakpoint *b)
12770 {
12771 print_mention_exception (ada_catch_exception, b);
12772 }
12773
12774 static void
12775 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12776 {
12777 print_recreate_exception (ada_catch_exception, b, fp);
12778 }
12779
12780 static struct breakpoint_ops catch_exception_breakpoint_ops;
12781
12782 /* Virtual table for "catch exception unhandled" breakpoints. */
12783
12784 static struct bp_location *
12785 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12786 {
12787 return allocate_location_exception (ada_catch_exception_unhandled, self);
12788 }
12789
12790 static void
12791 re_set_catch_exception_unhandled (struct breakpoint *b)
12792 {
12793 re_set_exception (ada_catch_exception_unhandled, b);
12794 }
12795
12796 static void
12797 check_status_catch_exception_unhandled (bpstat bs)
12798 {
12799 check_status_exception (ada_catch_exception_unhandled, bs);
12800 }
12801
12802 static enum print_stop_action
12803 print_it_catch_exception_unhandled (bpstat bs)
12804 {
12805 return print_it_exception (ada_catch_exception_unhandled, bs);
12806 }
12807
12808 static void
12809 print_one_catch_exception_unhandled (struct breakpoint *b,
12810 struct bp_location **last_loc)
12811 {
12812 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12813 }
12814
12815 static void
12816 print_mention_catch_exception_unhandled (struct breakpoint *b)
12817 {
12818 print_mention_exception (ada_catch_exception_unhandled, b);
12819 }
12820
12821 static void
12822 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12823 struct ui_file *fp)
12824 {
12825 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12826 }
12827
12828 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12829
12830 /* Virtual table for "catch assert" breakpoints. */
12831
12832 static struct bp_location *
12833 allocate_location_catch_assert (struct breakpoint *self)
12834 {
12835 return allocate_location_exception (ada_catch_assert, self);
12836 }
12837
12838 static void
12839 re_set_catch_assert (struct breakpoint *b)
12840 {
12841 re_set_exception (ada_catch_assert, b);
12842 }
12843
12844 static void
12845 check_status_catch_assert (bpstat bs)
12846 {
12847 check_status_exception (ada_catch_assert, bs);
12848 }
12849
12850 static enum print_stop_action
12851 print_it_catch_assert (bpstat bs)
12852 {
12853 return print_it_exception (ada_catch_assert, bs);
12854 }
12855
12856 static void
12857 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12858 {
12859 print_one_exception (ada_catch_assert, b, last_loc);
12860 }
12861
12862 static void
12863 print_mention_catch_assert (struct breakpoint *b)
12864 {
12865 print_mention_exception (ada_catch_assert, b);
12866 }
12867
12868 static void
12869 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12870 {
12871 print_recreate_exception (ada_catch_assert, b, fp);
12872 }
12873
12874 static struct breakpoint_ops catch_assert_breakpoint_ops;
12875
12876 /* Virtual table for "catch handlers" breakpoints. */
12877
12878 static struct bp_location *
12879 allocate_location_catch_handlers (struct breakpoint *self)
12880 {
12881 return allocate_location_exception (ada_catch_handlers, self);
12882 }
12883
12884 static void
12885 re_set_catch_handlers (struct breakpoint *b)
12886 {
12887 re_set_exception (ada_catch_handlers, b);
12888 }
12889
12890 static void
12891 check_status_catch_handlers (bpstat bs)
12892 {
12893 check_status_exception (ada_catch_handlers, bs);
12894 }
12895
12896 static enum print_stop_action
12897 print_it_catch_handlers (bpstat bs)
12898 {
12899 return print_it_exception (ada_catch_handlers, bs);
12900 }
12901
12902 static void
12903 print_one_catch_handlers (struct breakpoint *b,
12904 struct bp_location **last_loc)
12905 {
12906 print_one_exception (ada_catch_handlers, b, last_loc);
12907 }
12908
12909 static void
12910 print_mention_catch_handlers (struct breakpoint *b)
12911 {
12912 print_mention_exception (ada_catch_handlers, b);
12913 }
12914
12915 static void
12916 print_recreate_catch_handlers (struct breakpoint *b,
12917 struct ui_file *fp)
12918 {
12919 print_recreate_exception (ada_catch_handlers, b, fp);
12920 }
12921
12922 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12923
12924 /* See ada-lang.h. */
12925
12926 bool
12927 is_ada_exception_catchpoint (breakpoint *bp)
12928 {
12929 return (bp->ops == &catch_exception_breakpoint_ops
12930 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12931 || bp->ops == &catch_assert_breakpoint_ops
12932 || bp->ops == &catch_handlers_breakpoint_ops);
12933 }
12934
12935 /* Split the arguments specified in a "catch exception" command.
12936 Set EX to the appropriate catchpoint type.
12937 Set EXCEP_STRING to the name of the specific exception if
12938 specified by the user.
12939 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12940 "catch handlers" command. False otherwise.
12941 If a condition is found at the end of the arguments, the condition
12942 expression is stored in COND_STRING (memory must be deallocated
12943 after use). Otherwise COND_STRING is set to NULL. */
12944
12945 static void
12946 catch_ada_exception_command_split (const char *args,
12947 bool is_catch_handlers_cmd,
12948 enum ada_exception_catchpoint_kind *ex,
12949 std::string *excep_string,
12950 std::string *cond_string)
12951 {
12952 std::string exception_name;
12953
12954 exception_name = extract_arg (&args);
12955 if (exception_name == "if")
12956 {
12957 /* This is not an exception name; this is the start of a condition
12958 expression for a catchpoint on all exceptions. So, "un-get"
12959 this token, and set exception_name to NULL. */
12960 exception_name.clear ();
12961 args -= 2;
12962 }
12963
12964 /* Check to see if we have a condition. */
12965
12966 args = skip_spaces (args);
12967 if (startswith (args, "if")
12968 && (isspace (args[2]) || args[2] == '\0'))
12969 {
12970 args += 2;
12971 args = skip_spaces (args);
12972
12973 if (args[0] == '\0')
12974 error (_("Condition missing after `if' keyword"));
12975 *cond_string = args;
12976
12977 args += strlen (args);
12978 }
12979
12980 /* Check that we do not have any more arguments. Anything else
12981 is unexpected. */
12982
12983 if (args[0] != '\0')
12984 error (_("Junk at end of expression"));
12985
12986 if (is_catch_handlers_cmd)
12987 {
12988 /* Catch handling of exceptions. */
12989 *ex = ada_catch_handlers;
12990 *excep_string = exception_name;
12991 }
12992 else if (exception_name.empty ())
12993 {
12994 /* Catch all exceptions. */
12995 *ex = ada_catch_exception;
12996 excep_string->clear ();
12997 }
12998 else if (exception_name == "unhandled")
12999 {
13000 /* Catch unhandled exceptions. */
13001 *ex = ada_catch_exception_unhandled;
13002 excep_string->clear ();
13003 }
13004 else
13005 {
13006 /* Catch a specific exception. */
13007 *ex = ada_catch_exception;
13008 *excep_string = exception_name;
13009 }
13010 }
13011
13012 /* Return the name of the symbol on which we should break in order to
13013 implement a catchpoint of the EX kind. */
13014
13015 static const char *
13016 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13017 {
13018 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13019
13020 gdb_assert (data->exception_info != NULL);
13021
13022 switch (ex)
13023 {
13024 case ada_catch_exception:
13025 return (data->exception_info->catch_exception_sym);
13026 break;
13027 case ada_catch_exception_unhandled:
13028 return (data->exception_info->catch_exception_unhandled_sym);
13029 break;
13030 case ada_catch_assert:
13031 return (data->exception_info->catch_assert_sym);
13032 break;
13033 case ada_catch_handlers:
13034 return (data->exception_info->catch_handlers_sym);
13035 break;
13036 default:
13037 internal_error (__FILE__, __LINE__,
13038 _("unexpected catchpoint kind (%d)"), ex);
13039 }
13040 }
13041
13042 /* Return the breakpoint ops "virtual table" used for catchpoints
13043 of the EX kind. */
13044
13045 static const struct breakpoint_ops *
13046 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13047 {
13048 switch (ex)
13049 {
13050 case ada_catch_exception:
13051 return (&catch_exception_breakpoint_ops);
13052 break;
13053 case ada_catch_exception_unhandled:
13054 return (&catch_exception_unhandled_breakpoint_ops);
13055 break;
13056 case ada_catch_assert:
13057 return (&catch_assert_breakpoint_ops);
13058 break;
13059 case ada_catch_handlers:
13060 return (&catch_handlers_breakpoint_ops);
13061 break;
13062 default:
13063 internal_error (__FILE__, __LINE__,
13064 _("unexpected catchpoint kind (%d)"), ex);
13065 }
13066 }
13067
13068 /* Return the condition that will be used to match the current exception
13069 being raised with the exception that the user wants to catch. This
13070 assumes that this condition is used when the inferior just triggered
13071 an exception catchpoint.
13072 EX: the type of catchpoints used for catching Ada exceptions. */
13073
13074 static std::string
13075 ada_exception_catchpoint_cond_string (const char *excep_string,
13076 enum ada_exception_catchpoint_kind ex)
13077 {
13078 int i;
13079 std::string result;
13080 const char *name;
13081
13082 if (ex == ada_catch_handlers)
13083 {
13084 /* For exception handlers catchpoints, the condition string does
13085 not use the same parameter as for the other exceptions. */
13086 name = ("long_integer (GNAT_GCC_exception_Access"
13087 "(gcc_exception).all.occurrence.id)");
13088 }
13089 else
13090 name = "long_integer (e)";
13091
13092 /* The standard exceptions are a special case. They are defined in
13093 runtime units that have been compiled without debugging info; if
13094 EXCEP_STRING is the not-fully-qualified name of a standard
13095 exception (e.g. "constraint_error") then, during the evaluation
13096 of the condition expression, the symbol lookup on this name would
13097 *not* return this standard exception. The catchpoint condition
13098 may then be set only on user-defined exceptions which have the
13099 same not-fully-qualified name (e.g. my_package.constraint_error).
13100
13101 To avoid this unexcepted behavior, these standard exceptions are
13102 systematically prefixed by "standard". This means that "catch
13103 exception constraint_error" is rewritten into "catch exception
13104 standard.constraint_error".
13105
13106 If an exception named contraint_error is defined in another package of
13107 the inferior program, then the only way to specify this exception as a
13108 breakpoint condition is to use its fully-qualified named:
13109 e.g. my_package.constraint_error.
13110
13111 Furthermore, in some situations a standard exception's symbol may
13112 be present in more than one objfile, because the compiler may
13113 choose to emit copy relocations for them. So, we have to compare
13114 against all the possible addresses. */
13115
13116 /* Storage for a rewritten symbol name. */
13117 std::string std_name;
13118 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13119 {
13120 if (strcmp (standard_exc [i], excep_string) == 0)
13121 {
13122 std_name = std::string ("standard.") + excep_string;
13123 excep_string = std_name.c_str ();
13124 break;
13125 }
13126 }
13127
13128 excep_string = ada_encode (excep_string);
13129 std::vector<struct bound_minimal_symbol> symbols
13130 = ada_lookup_simple_minsyms (excep_string);
13131 for (const bound_minimal_symbol &msym : symbols)
13132 {
13133 if (!result.empty ())
13134 result += " or ";
13135 string_appendf (result, "%s = %s", name,
13136 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13137 }
13138
13139 return result;
13140 }
13141
13142 /* Return the symtab_and_line that should be used to insert an exception
13143 catchpoint of the TYPE kind.
13144
13145 ADDR_STRING returns the name of the function where the real
13146 breakpoint that implements the catchpoints is set, depending on the
13147 type of catchpoint we need to create. */
13148
13149 static struct symtab_and_line
13150 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13151 std::string *addr_string, const struct breakpoint_ops **ops)
13152 {
13153 const char *sym_name;
13154 struct symbol *sym;
13155
13156 /* First, find out which exception support info to use. */
13157 ada_exception_support_info_sniffer ();
13158
13159 /* Then lookup the function on which we will break in order to catch
13160 the Ada exceptions requested by the user. */
13161 sym_name = ada_exception_sym_name (ex);
13162 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13163
13164 if (sym == NULL)
13165 error (_("Catchpoint symbol not found: %s"), sym_name);
13166
13167 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13168 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13169
13170 /* Set ADDR_STRING. */
13171 *addr_string = sym_name;
13172
13173 /* Set OPS. */
13174 *ops = ada_exception_breakpoint_ops (ex);
13175
13176 return find_function_start_sal (sym, 1);
13177 }
13178
13179 /* Create an Ada exception catchpoint.
13180
13181 EX_KIND is the kind of exception catchpoint to be created.
13182
13183 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13184 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13185 of the exception to which this catchpoint applies.
13186
13187 COND_STRING, if not empty, is the catchpoint condition.
13188
13189 TEMPFLAG, if nonzero, means that the underlying breakpoint
13190 should be temporary.
13191
13192 FROM_TTY is the usual argument passed to all commands implementations. */
13193
13194 void
13195 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13196 enum ada_exception_catchpoint_kind ex_kind,
13197 const std::string &excep_string,
13198 const std::string &cond_string,
13199 int tempflag,
13200 int disabled,
13201 int from_tty)
13202 {
13203 std::string addr_string;
13204 const struct breakpoint_ops *ops = NULL;
13205 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13206
13207 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13208 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13209 ops, tempflag, disabled, from_tty);
13210 c->excep_string = excep_string;
13211 create_excep_cond_exprs (c.get (), ex_kind);
13212 if (!cond_string.empty ())
13213 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13214 install_breakpoint (0, std::move (c), 1);
13215 }
13216
13217 /* Implement the "catch exception" command. */
13218
13219 static void
13220 catch_ada_exception_command (const char *arg_entry, int from_tty,
13221 struct cmd_list_element *command)
13222 {
13223 const char *arg = arg_entry;
13224 struct gdbarch *gdbarch = get_current_arch ();
13225 int tempflag;
13226 enum ada_exception_catchpoint_kind ex_kind;
13227 std::string excep_string;
13228 std::string cond_string;
13229
13230 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13231
13232 if (!arg)
13233 arg = "";
13234 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13235 &cond_string);
13236 create_ada_exception_catchpoint (gdbarch, ex_kind,
13237 excep_string, cond_string,
13238 tempflag, 1 /* enabled */,
13239 from_tty);
13240 }
13241
13242 /* Implement the "catch handlers" command. */
13243
13244 static void
13245 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13246 struct cmd_list_element *command)
13247 {
13248 const char *arg = arg_entry;
13249 struct gdbarch *gdbarch = get_current_arch ();
13250 int tempflag;
13251 enum ada_exception_catchpoint_kind ex_kind;
13252 std::string excep_string;
13253 std::string cond_string;
13254
13255 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13256
13257 if (!arg)
13258 arg = "";
13259 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13260 &cond_string);
13261 create_ada_exception_catchpoint (gdbarch, ex_kind,
13262 excep_string, cond_string,
13263 tempflag, 1 /* enabled */,
13264 from_tty);
13265 }
13266
13267 /* Completion function for the Ada "catch" commands. */
13268
13269 static void
13270 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13271 const char *text, const char *word)
13272 {
13273 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13274
13275 for (const ada_exc_info &info : exceptions)
13276 {
13277 if (startswith (info.name, word))
13278 tracker.add_completion (make_unique_xstrdup (info.name));
13279 }
13280 }
13281
13282 /* Split the arguments specified in a "catch assert" command.
13283
13284 ARGS contains the command's arguments (or the empty string if
13285 no arguments were passed).
13286
13287 If ARGS contains a condition, set COND_STRING to that condition
13288 (the memory needs to be deallocated after use). */
13289
13290 static void
13291 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13292 {
13293 args = skip_spaces (args);
13294
13295 /* Check whether a condition was provided. */
13296 if (startswith (args, "if")
13297 && (isspace (args[2]) || args[2] == '\0'))
13298 {
13299 args += 2;
13300 args = skip_spaces (args);
13301 if (args[0] == '\0')
13302 error (_("condition missing after `if' keyword"));
13303 cond_string.assign (args);
13304 }
13305
13306 /* Otherwise, there should be no other argument at the end of
13307 the command. */
13308 else if (args[0] != '\0')
13309 error (_("Junk at end of arguments."));
13310 }
13311
13312 /* Implement the "catch assert" command. */
13313
13314 static void
13315 catch_assert_command (const char *arg_entry, int from_tty,
13316 struct cmd_list_element *command)
13317 {
13318 const char *arg = arg_entry;
13319 struct gdbarch *gdbarch = get_current_arch ();
13320 int tempflag;
13321 std::string cond_string;
13322
13323 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13324
13325 if (!arg)
13326 arg = "";
13327 catch_ada_assert_command_split (arg, cond_string);
13328 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13329 "", cond_string,
13330 tempflag, 1 /* enabled */,
13331 from_tty);
13332 }
13333
13334 /* Return non-zero if the symbol SYM is an Ada exception object. */
13335
13336 static int
13337 ada_is_exception_sym (struct symbol *sym)
13338 {
13339 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13340
13341 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13342 && SYMBOL_CLASS (sym) != LOC_BLOCK
13343 && SYMBOL_CLASS (sym) != LOC_CONST
13344 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13345 && type_name != NULL && strcmp (type_name, "exception") == 0);
13346 }
13347
13348 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13349 Ada exception object. This matches all exceptions except the ones
13350 defined by the Ada language. */
13351
13352 static int
13353 ada_is_non_standard_exception_sym (struct symbol *sym)
13354 {
13355 int i;
13356
13357 if (!ada_is_exception_sym (sym))
13358 return 0;
13359
13360 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13361 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13362 return 0; /* A standard exception. */
13363
13364 /* Numeric_Error is also a standard exception, so exclude it.
13365 See the STANDARD_EXC description for more details as to why
13366 this exception is not listed in that array. */
13367 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13368 return 0;
13369
13370 return 1;
13371 }
13372
13373 /* A helper function for std::sort, comparing two struct ada_exc_info
13374 objects.
13375
13376 The comparison is determined first by exception name, and then
13377 by exception address. */
13378
13379 bool
13380 ada_exc_info::operator< (const ada_exc_info &other) const
13381 {
13382 int result;
13383
13384 result = strcmp (name, other.name);
13385 if (result < 0)
13386 return true;
13387 if (result == 0 && addr < other.addr)
13388 return true;
13389 return false;
13390 }
13391
13392 bool
13393 ada_exc_info::operator== (const ada_exc_info &other) const
13394 {
13395 return addr == other.addr && strcmp (name, other.name) == 0;
13396 }
13397
13398 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13399 routine, but keeping the first SKIP elements untouched.
13400
13401 All duplicates are also removed. */
13402
13403 static void
13404 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13405 int skip)
13406 {
13407 std::sort (exceptions->begin () + skip, exceptions->end ());
13408 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13409 exceptions->end ());
13410 }
13411
13412 /* Add all exceptions defined by the Ada standard whose name match
13413 a regular expression.
13414
13415 If PREG is not NULL, then this regexp_t object is used to
13416 perform the symbol name matching. Otherwise, no name-based
13417 filtering is performed.
13418
13419 EXCEPTIONS is a vector of exceptions to which matching exceptions
13420 gets pushed. */
13421
13422 static void
13423 ada_add_standard_exceptions (compiled_regex *preg,
13424 std::vector<ada_exc_info> *exceptions)
13425 {
13426 int i;
13427
13428 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13429 {
13430 if (preg == NULL
13431 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13432 {
13433 struct bound_minimal_symbol msymbol
13434 = ada_lookup_simple_minsym (standard_exc[i]);
13435
13436 if (msymbol.minsym != NULL)
13437 {
13438 struct ada_exc_info info
13439 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13440
13441 exceptions->push_back (info);
13442 }
13443 }
13444 }
13445 }
13446
13447 /* Add all Ada exceptions defined locally and accessible from the given
13448 FRAME.
13449
13450 If PREG is not NULL, then this regexp_t object is used to
13451 perform the symbol name matching. Otherwise, no name-based
13452 filtering is performed.
13453
13454 EXCEPTIONS is a vector of exceptions to which matching exceptions
13455 gets pushed. */
13456
13457 static void
13458 ada_add_exceptions_from_frame (compiled_regex *preg,
13459 struct frame_info *frame,
13460 std::vector<ada_exc_info> *exceptions)
13461 {
13462 const struct block *block = get_frame_block (frame, 0);
13463
13464 while (block != 0)
13465 {
13466 struct block_iterator iter;
13467 struct symbol *sym;
13468
13469 ALL_BLOCK_SYMBOLS (block, iter, sym)
13470 {
13471 switch (SYMBOL_CLASS (sym))
13472 {
13473 case LOC_TYPEDEF:
13474 case LOC_BLOCK:
13475 case LOC_CONST:
13476 break;
13477 default:
13478 if (ada_is_exception_sym (sym))
13479 {
13480 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13481 SYMBOL_VALUE_ADDRESS (sym)};
13482
13483 exceptions->push_back (info);
13484 }
13485 }
13486 }
13487 if (BLOCK_FUNCTION (block) != NULL)
13488 break;
13489 block = BLOCK_SUPERBLOCK (block);
13490 }
13491 }
13492
13493 /* Return true if NAME matches PREG or if PREG is NULL. */
13494
13495 static bool
13496 name_matches_regex (const char *name, compiled_regex *preg)
13497 {
13498 return (preg == NULL
13499 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13500 }
13501
13502 /* Add all exceptions defined globally whose name name match
13503 a regular expression, excluding standard exceptions.
13504
13505 The reason we exclude standard exceptions is that they need
13506 to be handled separately: Standard exceptions are defined inside
13507 a runtime unit which is normally not compiled with debugging info,
13508 and thus usually do not show up in our symbol search. However,
13509 if the unit was in fact built with debugging info, we need to
13510 exclude them because they would duplicate the entry we found
13511 during the special loop that specifically searches for those
13512 standard exceptions.
13513
13514 If PREG is not NULL, then this regexp_t object is used to
13515 perform the symbol name matching. Otherwise, no name-based
13516 filtering is performed.
13517
13518 EXCEPTIONS is a vector of exceptions to which matching exceptions
13519 gets pushed. */
13520
13521 static void
13522 ada_add_global_exceptions (compiled_regex *preg,
13523 std::vector<ada_exc_info> *exceptions)
13524 {
13525 /* In Ada, the symbol "search name" is a linkage name, whereas the
13526 regular expression used to do the matching refers to the natural
13527 name. So match against the decoded name. */
13528 expand_symtabs_matching (NULL,
13529 lookup_name_info::match_any (),
13530 [&] (const char *search_name)
13531 {
13532 const char *decoded = ada_decode (search_name);
13533 return name_matches_regex (decoded, preg);
13534 },
13535 NULL,
13536 VARIABLES_DOMAIN);
13537
13538 for (objfile *objfile : current_program_space->objfiles ())
13539 {
13540 for (compunit_symtab *s : objfile->compunits ())
13541 {
13542 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13543 int i;
13544
13545 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13546 {
13547 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13548 struct block_iterator iter;
13549 struct symbol *sym;
13550
13551 ALL_BLOCK_SYMBOLS (b, iter, sym)
13552 if (ada_is_non_standard_exception_sym (sym)
13553 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13554 {
13555 struct ada_exc_info info
13556 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13557
13558 exceptions->push_back (info);
13559 }
13560 }
13561 }
13562 }
13563 }
13564
13565 /* Implements ada_exceptions_list with the regular expression passed
13566 as a regex_t, rather than a string.
13567
13568 If not NULL, PREG is used to filter out exceptions whose names
13569 do not match. Otherwise, all exceptions are listed. */
13570
13571 static std::vector<ada_exc_info>
13572 ada_exceptions_list_1 (compiled_regex *preg)
13573 {
13574 std::vector<ada_exc_info> result;
13575 int prev_len;
13576
13577 /* First, list the known standard exceptions. These exceptions
13578 need to be handled separately, as they are usually defined in
13579 runtime units that have been compiled without debugging info. */
13580
13581 ada_add_standard_exceptions (preg, &result);
13582
13583 /* Next, find all exceptions whose scope is local and accessible
13584 from the currently selected frame. */
13585
13586 if (has_stack_frames ())
13587 {
13588 prev_len = result.size ();
13589 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13590 &result);
13591 if (result.size () > prev_len)
13592 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13593 }
13594
13595 /* Add all exceptions whose scope is global. */
13596
13597 prev_len = result.size ();
13598 ada_add_global_exceptions (preg, &result);
13599 if (result.size () > prev_len)
13600 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13601
13602 return result;
13603 }
13604
13605 /* Return a vector of ada_exc_info.
13606
13607 If REGEXP is NULL, all exceptions are included in the result.
13608 Otherwise, it should contain a valid regular expression,
13609 and only the exceptions whose names match that regular expression
13610 are included in the result.
13611
13612 The exceptions are sorted in the following order:
13613 - Standard exceptions (defined by the Ada language), in
13614 alphabetical order;
13615 - Exceptions only visible from the current frame, in
13616 alphabetical order;
13617 - Exceptions whose scope is global, in alphabetical order. */
13618
13619 std::vector<ada_exc_info>
13620 ada_exceptions_list (const char *regexp)
13621 {
13622 if (regexp == NULL)
13623 return ada_exceptions_list_1 (NULL);
13624
13625 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13626 return ada_exceptions_list_1 (&reg);
13627 }
13628
13629 /* Implement the "info exceptions" command. */
13630
13631 static void
13632 info_exceptions_command (const char *regexp, int from_tty)
13633 {
13634 struct gdbarch *gdbarch = get_current_arch ();
13635
13636 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13637
13638 if (regexp != NULL)
13639 printf_filtered
13640 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13641 else
13642 printf_filtered (_("All defined Ada exceptions:\n"));
13643
13644 for (const ada_exc_info &info : exceptions)
13645 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13646 }
13647
13648 /* Operators */
13649 /* Information about operators given special treatment in functions
13650 below. */
13651 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13652
13653 #define ADA_OPERATORS \
13654 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13655 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13656 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13657 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13658 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13659 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13660 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13661 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13662 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13663 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13664 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13665 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13666 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13667 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13668 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13669 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13670 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13671 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13672 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13673
13674 static void
13675 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13676 int *argsp)
13677 {
13678 switch (exp->elts[pc - 1].opcode)
13679 {
13680 default:
13681 operator_length_standard (exp, pc, oplenp, argsp);
13682 break;
13683
13684 #define OP_DEFN(op, len, args, binop) \
13685 case op: *oplenp = len; *argsp = args; break;
13686 ADA_OPERATORS;
13687 #undef OP_DEFN
13688
13689 case OP_AGGREGATE:
13690 *oplenp = 3;
13691 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13692 break;
13693
13694 case OP_CHOICES:
13695 *oplenp = 3;
13696 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13697 break;
13698 }
13699 }
13700
13701 /* Implementation of the exp_descriptor method operator_check. */
13702
13703 static int
13704 ada_operator_check (struct expression *exp, int pos,
13705 int (*objfile_func) (struct objfile *objfile, void *data),
13706 void *data)
13707 {
13708 const union exp_element *const elts = exp->elts;
13709 struct type *type = NULL;
13710
13711 switch (elts[pos].opcode)
13712 {
13713 case UNOP_IN_RANGE:
13714 case UNOP_QUAL:
13715 type = elts[pos + 1].type;
13716 break;
13717
13718 default:
13719 return operator_check_standard (exp, pos, objfile_func, data);
13720 }
13721
13722 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13723
13724 if (type && TYPE_OBJFILE (type)
13725 && (*objfile_func) (TYPE_OBJFILE (type), data))
13726 return 1;
13727
13728 return 0;
13729 }
13730
13731 static const char *
13732 ada_op_name (enum exp_opcode opcode)
13733 {
13734 switch (opcode)
13735 {
13736 default:
13737 return op_name_standard (opcode);
13738
13739 #define OP_DEFN(op, len, args, binop) case op: return #op;
13740 ADA_OPERATORS;
13741 #undef OP_DEFN
13742
13743 case OP_AGGREGATE:
13744 return "OP_AGGREGATE";
13745 case OP_CHOICES:
13746 return "OP_CHOICES";
13747 case OP_NAME:
13748 return "OP_NAME";
13749 }
13750 }
13751
13752 /* As for operator_length, but assumes PC is pointing at the first
13753 element of the operator, and gives meaningful results only for the
13754 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13755
13756 static void
13757 ada_forward_operator_length (struct expression *exp, int pc,
13758 int *oplenp, int *argsp)
13759 {
13760 switch (exp->elts[pc].opcode)
13761 {
13762 default:
13763 *oplenp = *argsp = 0;
13764 break;
13765
13766 #define OP_DEFN(op, len, args, binop) \
13767 case op: *oplenp = len; *argsp = args; break;
13768 ADA_OPERATORS;
13769 #undef OP_DEFN
13770
13771 case OP_AGGREGATE:
13772 *oplenp = 3;
13773 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13774 break;
13775
13776 case OP_CHOICES:
13777 *oplenp = 3;
13778 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13779 break;
13780
13781 case OP_STRING:
13782 case OP_NAME:
13783 {
13784 int len = longest_to_int (exp->elts[pc + 1].longconst);
13785
13786 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13787 *argsp = 0;
13788 break;
13789 }
13790 }
13791 }
13792
13793 static int
13794 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13795 {
13796 enum exp_opcode op = exp->elts[elt].opcode;
13797 int oplen, nargs;
13798 int pc = elt;
13799 int i;
13800
13801 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13802
13803 switch (op)
13804 {
13805 /* Ada attributes ('Foo). */
13806 case OP_ATR_FIRST:
13807 case OP_ATR_LAST:
13808 case OP_ATR_LENGTH:
13809 case OP_ATR_IMAGE:
13810 case OP_ATR_MAX:
13811 case OP_ATR_MIN:
13812 case OP_ATR_MODULUS:
13813 case OP_ATR_POS:
13814 case OP_ATR_SIZE:
13815 case OP_ATR_TAG:
13816 case OP_ATR_VAL:
13817 break;
13818
13819 case UNOP_IN_RANGE:
13820 case UNOP_QUAL:
13821 /* XXX: gdb_sprint_host_address, type_sprint */
13822 fprintf_filtered (stream, _("Type @"));
13823 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13824 fprintf_filtered (stream, " (");
13825 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13826 fprintf_filtered (stream, ")");
13827 break;
13828 case BINOP_IN_BOUNDS:
13829 fprintf_filtered (stream, " (%d)",
13830 longest_to_int (exp->elts[pc + 2].longconst));
13831 break;
13832 case TERNOP_IN_RANGE:
13833 break;
13834
13835 case OP_AGGREGATE:
13836 case OP_OTHERS:
13837 case OP_DISCRETE_RANGE:
13838 case OP_POSITIONAL:
13839 case OP_CHOICES:
13840 break;
13841
13842 case OP_NAME:
13843 case OP_STRING:
13844 {
13845 char *name = &exp->elts[elt + 2].string;
13846 int len = longest_to_int (exp->elts[elt + 1].longconst);
13847
13848 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13849 break;
13850 }
13851
13852 default:
13853 return dump_subexp_body_standard (exp, stream, elt);
13854 }
13855
13856 elt += oplen;
13857 for (i = 0; i < nargs; i += 1)
13858 elt = dump_subexp (exp, stream, elt);
13859
13860 return elt;
13861 }
13862
13863 /* The Ada extension of print_subexp (q.v.). */
13864
13865 static void
13866 ada_print_subexp (struct expression *exp, int *pos,
13867 struct ui_file *stream, enum precedence prec)
13868 {
13869 int oplen, nargs, i;
13870 int pc = *pos;
13871 enum exp_opcode op = exp->elts[pc].opcode;
13872
13873 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13874
13875 *pos += oplen;
13876 switch (op)
13877 {
13878 default:
13879 *pos -= oplen;
13880 print_subexp_standard (exp, pos, stream, prec);
13881 return;
13882
13883 case OP_VAR_VALUE:
13884 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13885 return;
13886
13887 case BINOP_IN_BOUNDS:
13888 /* XXX: sprint_subexp */
13889 print_subexp (exp, pos, stream, PREC_SUFFIX);
13890 fputs_filtered (" in ", stream);
13891 print_subexp (exp, pos, stream, PREC_SUFFIX);
13892 fputs_filtered ("'range", stream);
13893 if (exp->elts[pc + 1].longconst > 1)
13894 fprintf_filtered (stream, "(%ld)",
13895 (long) exp->elts[pc + 1].longconst);
13896 return;
13897
13898 case TERNOP_IN_RANGE:
13899 if (prec >= PREC_EQUAL)
13900 fputs_filtered ("(", stream);
13901 /* XXX: sprint_subexp */
13902 print_subexp (exp, pos, stream, PREC_SUFFIX);
13903 fputs_filtered (" in ", stream);
13904 print_subexp (exp, pos, stream, PREC_EQUAL);
13905 fputs_filtered (" .. ", stream);
13906 print_subexp (exp, pos, stream, PREC_EQUAL);
13907 if (prec >= PREC_EQUAL)
13908 fputs_filtered (")", stream);
13909 return;
13910
13911 case OP_ATR_FIRST:
13912 case OP_ATR_LAST:
13913 case OP_ATR_LENGTH:
13914 case OP_ATR_IMAGE:
13915 case OP_ATR_MAX:
13916 case OP_ATR_MIN:
13917 case OP_ATR_MODULUS:
13918 case OP_ATR_POS:
13919 case OP_ATR_SIZE:
13920 case OP_ATR_TAG:
13921 case OP_ATR_VAL:
13922 if (exp->elts[*pos].opcode == OP_TYPE)
13923 {
13924 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13925 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13926 &type_print_raw_options);
13927 *pos += 3;
13928 }
13929 else
13930 print_subexp (exp, pos, stream, PREC_SUFFIX);
13931 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13932 if (nargs > 1)
13933 {
13934 int tem;
13935
13936 for (tem = 1; tem < nargs; tem += 1)
13937 {
13938 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13939 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13940 }
13941 fputs_filtered (")", stream);
13942 }
13943 return;
13944
13945 case UNOP_QUAL:
13946 type_print (exp->elts[pc + 1].type, "", stream, 0);
13947 fputs_filtered ("'(", stream);
13948 print_subexp (exp, pos, stream, PREC_PREFIX);
13949 fputs_filtered (")", stream);
13950 return;
13951
13952 case UNOP_IN_RANGE:
13953 /* XXX: sprint_subexp */
13954 print_subexp (exp, pos, stream, PREC_SUFFIX);
13955 fputs_filtered (" in ", stream);
13956 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13957 &type_print_raw_options);
13958 return;
13959
13960 case OP_DISCRETE_RANGE:
13961 print_subexp (exp, pos, stream, PREC_SUFFIX);
13962 fputs_filtered ("..", stream);
13963 print_subexp (exp, pos, stream, PREC_SUFFIX);
13964 return;
13965
13966 case OP_OTHERS:
13967 fputs_filtered ("others => ", stream);
13968 print_subexp (exp, pos, stream, PREC_SUFFIX);
13969 return;
13970
13971 case OP_CHOICES:
13972 for (i = 0; i < nargs-1; i += 1)
13973 {
13974 if (i > 0)
13975 fputs_filtered ("|", stream);
13976 print_subexp (exp, pos, stream, PREC_SUFFIX);
13977 }
13978 fputs_filtered (" => ", stream);
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 return;
13981
13982 case OP_POSITIONAL:
13983 print_subexp (exp, pos, stream, PREC_SUFFIX);
13984 return;
13985
13986 case OP_AGGREGATE:
13987 fputs_filtered ("(", stream);
13988 for (i = 0; i < nargs; i += 1)
13989 {
13990 if (i > 0)
13991 fputs_filtered (", ", stream);
13992 print_subexp (exp, pos, stream, PREC_SUFFIX);
13993 }
13994 fputs_filtered (")", stream);
13995 return;
13996 }
13997 }
13998
13999 /* Table mapping opcodes into strings for printing operators
14000 and precedences of the operators. */
14001
14002 static const struct op_print ada_op_print_tab[] = {
14003 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14004 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14005 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14006 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14007 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14008 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14009 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14010 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14011 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14012 {">=", BINOP_GEQ, PREC_ORDER, 0},
14013 {">", BINOP_GTR, PREC_ORDER, 0},
14014 {"<", BINOP_LESS, PREC_ORDER, 0},
14015 {">>", BINOP_RSH, PREC_SHIFT, 0},
14016 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14017 {"+", BINOP_ADD, PREC_ADD, 0},
14018 {"-", BINOP_SUB, PREC_ADD, 0},
14019 {"&", BINOP_CONCAT, PREC_ADD, 0},
14020 {"*", BINOP_MUL, PREC_MUL, 0},
14021 {"/", BINOP_DIV, PREC_MUL, 0},
14022 {"rem", BINOP_REM, PREC_MUL, 0},
14023 {"mod", BINOP_MOD, PREC_MUL, 0},
14024 {"**", BINOP_EXP, PREC_REPEAT, 0},
14025 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14026 {"-", UNOP_NEG, PREC_PREFIX, 0},
14027 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14028 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14029 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14030 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14031 {".all", UNOP_IND, PREC_SUFFIX, 1},
14032 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14033 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14034 {NULL, OP_NULL, PREC_SUFFIX, 0}
14035 };
14036 \f
14037 enum ada_primitive_types {
14038 ada_primitive_type_int,
14039 ada_primitive_type_long,
14040 ada_primitive_type_short,
14041 ada_primitive_type_char,
14042 ada_primitive_type_float,
14043 ada_primitive_type_double,
14044 ada_primitive_type_void,
14045 ada_primitive_type_long_long,
14046 ada_primitive_type_long_double,
14047 ada_primitive_type_natural,
14048 ada_primitive_type_positive,
14049 ada_primitive_type_system_address,
14050 ada_primitive_type_storage_offset,
14051 nr_ada_primitive_types
14052 };
14053
14054 static void
14055 ada_language_arch_info (struct gdbarch *gdbarch,
14056 struct language_arch_info *lai)
14057 {
14058 const struct builtin_type *builtin = builtin_type (gdbarch);
14059
14060 lai->primitive_type_vector
14061 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14062 struct type *);
14063
14064 lai->primitive_type_vector [ada_primitive_type_int]
14065 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14066 0, "integer");
14067 lai->primitive_type_vector [ada_primitive_type_long]
14068 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14069 0, "long_integer");
14070 lai->primitive_type_vector [ada_primitive_type_short]
14071 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14072 0, "short_integer");
14073 lai->string_char_type
14074 = lai->primitive_type_vector [ada_primitive_type_char]
14075 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14076 lai->primitive_type_vector [ada_primitive_type_float]
14077 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14078 "float", gdbarch_float_format (gdbarch));
14079 lai->primitive_type_vector [ada_primitive_type_double]
14080 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14081 "long_float", gdbarch_double_format (gdbarch));
14082 lai->primitive_type_vector [ada_primitive_type_long_long]
14083 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14084 0, "long_long_integer");
14085 lai->primitive_type_vector [ada_primitive_type_long_double]
14086 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14087 "long_long_float", gdbarch_long_double_format (gdbarch));
14088 lai->primitive_type_vector [ada_primitive_type_natural]
14089 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14090 0, "natural");
14091 lai->primitive_type_vector [ada_primitive_type_positive]
14092 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14093 0, "positive");
14094 lai->primitive_type_vector [ada_primitive_type_void]
14095 = builtin->builtin_void;
14096
14097 lai->primitive_type_vector [ada_primitive_type_system_address]
14098 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14099 "void"));
14100 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14101 = "system__address";
14102
14103 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14104 type. This is a signed integral type whose size is the same as
14105 the size of addresses. */
14106 {
14107 unsigned int addr_length = TYPE_LENGTH
14108 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14109
14110 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14111 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14112 "storage_offset");
14113 }
14114
14115 lai->bool_type_symbol = NULL;
14116 lai->bool_type_default = builtin->builtin_bool;
14117 }
14118 \f
14119 /* Language vector */
14120
14121 /* Not really used, but needed in the ada_language_defn. */
14122
14123 static void
14124 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14125 {
14126 ada_emit_char (c, type, stream, quoter, 1);
14127 }
14128
14129 static int
14130 parse (struct parser_state *ps)
14131 {
14132 warnings_issued = 0;
14133 return ada_parse (ps);
14134 }
14135
14136 static const struct exp_descriptor ada_exp_descriptor = {
14137 ada_print_subexp,
14138 ada_operator_length,
14139 ada_operator_check,
14140 ada_op_name,
14141 ada_dump_subexp_body,
14142 ada_evaluate_subexp
14143 };
14144
14145 /* symbol_name_matcher_ftype adapter for wild_match. */
14146
14147 static bool
14148 do_wild_match (const char *symbol_search_name,
14149 const lookup_name_info &lookup_name,
14150 completion_match_result *comp_match_res)
14151 {
14152 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14153 }
14154
14155 /* symbol_name_matcher_ftype adapter for full_match. */
14156
14157 static bool
14158 do_full_match (const char *symbol_search_name,
14159 const lookup_name_info &lookup_name,
14160 completion_match_result *comp_match_res)
14161 {
14162 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14163 }
14164
14165 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14166
14167 static bool
14168 do_exact_match (const char *symbol_search_name,
14169 const lookup_name_info &lookup_name,
14170 completion_match_result *comp_match_res)
14171 {
14172 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14173 }
14174
14175 /* Build the Ada lookup name for LOOKUP_NAME. */
14176
14177 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14178 {
14179 const std::string &user_name = lookup_name.name ();
14180
14181 if (user_name[0] == '<')
14182 {
14183 if (user_name.back () == '>')
14184 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14185 else
14186 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14187 m_encoded_p = true;
14188 m_verbatim_p = true;
14189 m_wild_match_p = false;
14190 m_standard_p = false;
14191 }
14192 else
14193 {
14194 m_verbatim_p = false;
14195
14196 m_encoded_p = user_name.find ("__") != std::string::npos;
14197
14198 if (!m_encoded_p)
14199 {
14200 const char *folded = ada_fold_name (user_name.c_str ());
14201 const char *encoded = ada_encode_1 (folded, false);
14202 if (encoded != NULL)
14203 m_encoded_name = encoded;
14204 else
14205 m_encoded_name = user_name;
14206 }
14207 else
14208 m_encoded_name = user_name;
14209
14210 /* Handle the 'package Standard' special case. See description
14211 of m_standard_p. */
14212 if (startswith (m_encoded_name.c_str (), "standard__"))
14213 {
14214 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14215 m_standard_p = true;
14216 }
14217 else
14218 m_standard_p = false;
14219
14220 /* If the name contains a ".", then the user is entering a fully
14221 qualified entity name, and the match must not be done in wild
14222 mode. Similarly, if the user wants to complete what looks
14223 like an encoded name, the match must not be done in wild
14224 mode. Also, in the standard__ special case always do
14225 non-wild matching. */
14226 m_wild_match_p
14227 = (lookup_name.match_type () != symbol_name_match_type::FULL
14228 && !m_encoded_p
14229 && !m_standard_p
14230 && user_name.find ('.') == std::string::npos);
14231 }
14232 }
14233
14234 /* symbol_name_matcher_ftype method for Ada. This only handles
14235 completion mode. */
14236
14237 static bool
14238 ada_symbol_name_matches (const char *symbol_search_name,
14239 const lookup_name_info &lookup_name,
14240 completion_match_result *comp_match_res)
14241 {
14242 return lookup_name.ada ().matches (symbol_search_name,
14243 lookup_name.match_type (),
14244 comp_match_res);
14245 }
14246
14247 /* A name matcher that matches the symbol name exactly, with
14248 strcmp. */
14249
14250 static bool
14251 literal_symbol_name_matcher (const char *symbol_search_name,
14252 const lookup_name_info &lookup_name,
14253 completion_match_result *comp_match_res)
14254 {
14255 const std::string &name = lookup_name.name ();
14256
14257 int cmp = (lookup_name.completion_mode ()
14258 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14259 : strcmp (symbol_search_name, name.c_str ()));
14260 if (cmp == 0)
14261 {
14262 if (comp_match_res != NULL)
14263 comp_match_res->set_match (symbol_search_name);
14264 return true;
14265 }
14266 else
14267 return false;
14268 }
14269
14270 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14271 Ada. */
14272
14273 static symbol_name_matcher_ftype *
14274 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14275 {
14276 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14277 return literal_symbol_name_matcher;
14278
14279 if (lookup_name.completion_mode ())
14280 return ada_symbol_name_matches;
14281 else
14282 {
14283 if (lookup_name.ada ().wild_match_p ())
14284 return do_wild_match;
14285 else if (lookup_name.ada ().verbatim_p ())
14286 return do_exact_match;
14287 else
14288 return do_full_match;
14289 }
14290 }
14291
14292 /* Implement the "la_read_var_value" language_defn method for Ada. */
14293
14294 static struct value *
14295 ada_read_var_value (struct symbol *var, const struct block *var_block,
14296 struct frame_info *frame)
14297 {
14298 /* The only case where default_read_var_value is not sufficient
14299 is when VAR is a renaming... */
14300 if (frame != nullptr)
14301 {
14302 const struct block *frame_block = get_frame_block (frame, NULL);
14303 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14304 return ada_read_renaming_var_value (var, frame_block);
14305 }
14306
14307 /* This is a typical case where we expect the default_read_var_value
14308 function to work. */
14309 return default_read_var_value (var, var_block, frame);
14310 }
14311
14312 static const char *ada_extensions[] =
14313 {
14314 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14315 };
14316
14317 extern const struct language_defn ada_language_defn = {
14318 "ada", /* Language name */
14319 "Ada",
14320 language_ada,
14321 range_check_off,
14322 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14323 that's not quite what this means. */
14324 array_row_major,
14325 macro_expansion_no,
14326 ada_extensions,
14327 &ada_exp_descriptor,
14328 parse,
14329 resolve,
14330 ada_printchar, /* Print a character constant */
14331 ada_printstr, /* Function to print string constant */
14332 emit_char, /* Function to print single char (not used) */
14333 ada_print_type, /* Print a type using appropriate syntax */
14334 ada_print_typedef, /* Print a typedef using appropriate syntax */
14335 ada_val_print, /* Print a value using appropriate syntax */
14336 ada_value_print, /* Print a top-level value */
14337 ada_read_var_value, /* la_read_var_value */
14338 NULL, /* Language specific skip_trampoline */
14339 NULL, /* name_of_this */
14340 true, /* la_store_sym_names_in_linkage_form_p */
14341 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14342 basic_lookup_transparent_type, /* lookup_transparent_type */
14343 ada_la_decode, /* Language specific symbol demangler */
14344 ada_sniff_from_mangled_name,
14345 NULL, /* Language specific
14346 class_name_from_physname */
14347 ada_op_print_tab, /* expression operators for printing */
14348 0, /* c-style arrays */
14349 1, /* String lower bound */
14350 ada_get_gdb_completer_word_break_characters,
14351 ada_collect_symbol_completion_matches,
14352 ada_language_arch_info,
14353 ada_print_array_index,
14354 default_pass_by_reference,
14355 c_get_string,
14356 ada_watch_location_expression,
14357 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14358 ada_iterate_over_symbols,
14359 default_search_name_hash,
14360 &ada_varobj_ops,
14361 NULL,
14362 NULL,
14363 ada_is_string_type,
14364 "(...)" /* la_struct_too_deep_ellipsis */
14365 };
14366
14367 /* Command-list for the "set/show ada" prefix command. */
14368 static struct cmd_list_element *set_ada_list;
14369 static struct cmd_list_element *show_ada_list;
14370
14371 /* Implement the "set ada" prefix command. */
14372
14373 static void
14374 set_ada_command (const char *arg, int from_tty)
14375 {
14376 printf_unfiltered (_(\
14377 "\"set ada\" must be followed by the name of a setting.\n"));
14378 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14379 }
14380
14381 /* Implement the "show ada" prefix command. */
14382
14383 static void
14384 show_ada_command (const char *args, int from_tty)
14385 {
14386 cmd_show_list (show_ada_list, from_tty, "");
14387 }
14388
14389 static void
14390 initialize_ada_catchpoint_ops (void)
14391 {
14392 struct breakpoint_ops *ops;
14393
14394 initialize_breakpoint_ops ();
14395
14396 ops = &catch_exception_breakpoint_ops;
14397 *ops = bkpt_breakpoint_ops;
14398 ops->allocate_location = allocate_location_catch_exception;
14399 ops->re_set = re_set_catch_exception;
14400 ops->check_status = check_status_catch_exception;
14401 ops->print_it = print_it_catch_exception;
14402 ops->print_one = print_one_catch_exception;
14403 ops->print_mention = print_mention_catch_exception;
14404 ops->print_recreate = print_recreate_catch_exception;
14405
14406 ops = &catch_exception_unhandled_breakpoint_ops;
14407 *ops = bkpt_breakpoint_ops;
14408 ops->allocate_location = allocate_location_catch_exception_unhandled;
14409 ops->re_set = re_set_catch_exception_unhandled;
14410 ops->check_status = check_status_catch_exception_unhandled;
14411 ops->print_it = print_it_catch_exception_unhandled;
14412 ops->print_one = print_one_catch_exception_unhandled;
14413 ops->print_mention = print_mention_catch_exception_unhandled;
14414 ops->print_recreate = print_recreate_catch_exception_unhandled;
14415
14416 ops = &catch_assert_breakpoint_ops;
14417 *ops = bkpt_breakpoint_ops;
14418 ops->allocate_location = allocate_location_catch_assert;
14419 ops->re_set = re_set_catch_assert;
14420 ops->check_status = check_status_catch_assert;
14421 ops->print_it = print_it_catch_assert;
14422 ops->print_one = print_one_catch_assert;
14423 ops->print_mention = print_mention_catch_assert;
14424 ops->print_recreate = print_recreate_catch_assert;
14425
14426 ops = &catch_handlers_breakpoint_ops;
14427 *ops = bkpt_breakpoint_ops;
14428 ops->allocate_location = allocate_location_catch_handlers;
14429 ops->re_set = re_set_catch_handlers;
14430 ops->check_status = check_status_catch_handlers;
14431 ops->print_it = print_it_catch_handlers;
14432 ops->print_one = print_one_catch_handlers;
14433 ops->print_mention = print_mention_catch_handlers;
14434 ops->print_recreate = print_recreate_catch_handlers;
14435 }
14436
14437 /* This module's 'new_objfile' observer. */
14438
14439 static void
14440 ada_new_objfile_observer (struct objfile *objfile)
14441 {
14442 ada_clear_symbol_cache ();
14443 }
14444
14445 /* This module's 'free_objfile' observer. */
14446
14447 static void
14448 ada_free_objfile_observer (struct objfile *objfile)
14449 {
14450 ada_clear_symbol_cache ();
14451 }
14452
14453 void
14454 _initialize_ada_language (void)
14455 {
14456 initialize_ada_catchpoint_ops ();
14457
14458 add_prefix_cmd ("ada", no_class, set_ada_command,
14459 _("Prefix command for changing Ada-specific settings."),
14460 &set_ada_list, "set ada ", 0, &setlist);
14461
14462 add_prefix_cmd ("ada", no_class, show_ada_command,
14463 _("Generic command for showing Ada-specific settings."),
14464 &show_ada_list, "show ada ", 0, &showlist);
14465
14466 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14467 &trust_pad_over_xvs, _("\
14468 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14469 Show whether an optimization trusting PAD types over XVS types is activated."),
14470 _("\
14471 This is related to the encoding used by the GNAT compiler. The debugger\n\
14472 should normally trust the contents of PAD types, but certain older versions\n\
14473 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14474 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14475 work around this bug. It is always safe to turn this option \"off\", but\n\
14476 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14477 this option to \"off\" unless necessary."),
14478 NULL, NULL, &set_ada_list, &show_ada_list);
14479
14480 add_setshow_boolean_cmd ("print-signatures", class_vars,
14481 &print_signatures, _("\
14482 Enable or disable the output of formal and return types for functions in the \
14483 overloads selection menu."), _("\
14484 Show whether the output of formal and return types for functions in the \
14485 overloads selection menu is activated."),
14486 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14487
14488 add_catch_command ("exception", _("\
14489 Catch Ada exceptions, when raised.\n\
14490 Usage: catch exception [ARG] [if CONDITION]\n\
14491 Without any argument, stop when any Ada exception is raised.\n\
14492 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14493 being raised does not have a handler (and will therefore lead to the task's\n\
14494 termination).\n\
14495 Otherwise, the catchpoint only stops when the name of the exception being\n\
14496 raised is the same as ARG.\n\
14497 CONDITION is a boolean expression that is evaluated to see whether the\n\
14498 exception should cause a stop."),
14499 catch_ada_exception_command,
14500 catch_ada_completer,
14501 CATCH_PERMANENT,
14502 CATCH_TEMPORARY);
14503
14504 add_catch_command ("handlers", _("\
14505 Catch Ada exceptions, when handled.\n\
14506 Usage: catch handlers [ARG] [if CONDITION]\n\
14507 Without any argument, stop when any Ada exception is handled.\n\
14508 With an argument, catch only exceptions with the given name.\n\
14509 CONDITION is a boolean expression that is evaluated to see whether the\n\
14510 exception should cause a stop."),
14511 catch_ada_handlers_command,
14512 catch_ada_completer,
14513 CATCH_PERMANENT,
14514 CATCH_TEMPORARY);
14515 add_catch_command ("assert", _("\
14516 Catch failed Ada assertions, when raised.\n\
14517 Usage: catch assert [if CONDITION]\n\
14518 CONDITION is a boolean expression that is evaluated to see whether the\n\
14519 exception should cause a stop."),
14520 catch_assert_command,
14521 NULL,
14522 CATCH_PERMANENT,
14523 CATCH_TEMPORARY);
14524
14525 varsize_limit = 65536;
14526 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14527 &varsize_limit, _("\
14528 Set the maximum number of bytes allowed in a variable-size object."), _("\
14529 Show the maximum number of bytes allowed in a variable-size object."), _("\
14530 Attempts to access an object whose size is not a compile-time constant\n\
14531 and exceeds this limit will cause an error."),
14532 NULL, NULL, &setlist, &showlist);
14533
14534 add_info ("exceptions", info_exceptions_command,
14535 _("\
14536 List all Ada exception names.\n\
14537 Usage: info exceptions [REGEXP]\n\
14538 If a regular expression is passed as an argument, only those matching\n\
14539 the regular expression are listed."));
14540
14541 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14542 _("Set Ada maintenance-related variables."),
14543 &maint_set_ada_cmdlist, "maintenance set ada ",
14544 0/*allow-unknown*/, &maintenance_set_cmdlist);
14545
14546 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14547 _("Show Ada maintenance-related variables."),
14548 &maint_show_ada_cmdlist, "maintenance show ada ",
14549 0/*allow-unknown*/, &maintenance_show_cmdlist);
14550
14551 add_setshow_boolean_cmd
14552 ("ignore-descriptive-types", class_maintenance,
14553 &ada_ignore_descriptive_types_p,
14554 _("Set whether descriptive types generated by GNAT should be ignored."),
14555 _("Show whether descriptive types generated by GNAT should be ignored."),
14556 _("\
14557 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14558 DWARF attribute."),
14559 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14560
14561 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14562 NULL, xcalloc, xfree);
14563
14564 /* The ada-lang observers. */
14565 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14566 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14567 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14568 }