]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/amd64-tdep.c
"backtrace full/no-filters/hide" completer
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "common/x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "common/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
60 /* Register information. */
61
62 static const char *amd64_register_names[] =
63 {
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
78 };
79
80 static const char *amd64_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86 };
87
88 static const char *amd64_ymm_avx512_names[] =
89 {
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94 };
95
96 static const char *amd64_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 };
103
104 static const char *amd64_ymmh_avx512_names[] =
105 {
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 };
111
112 static const char *amd64_mpx_names[] =
113 {
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 };
116
117 static const char *amd64_k_names[] =
118 {
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121 };
122
123 static const char *amd64_zmmh_names[] =
124 {
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 };
134
135 static const char *amd64_zmm_names[] =
136 {
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145 };
146
147 static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152 };
153
154 static const char *amd64_pkeys_names[] = {
155 "pkru"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 readable_regcache *regcache,
353 int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 value *result_value = allocate_value (register_type (gdbarch, regnum));
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
360 gdb_byte *buf = value_contents_raw (result_value);
361
362 if (i386_byte_regnum_p (gdbarch, regnum))
363 {
364 int gpnum = regnum - tdep->al_regnum;
365
366 /* Extract (always little endian). */
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
368 {
369 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
370 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
371
372 /* Special handling for AH, BH, CH, DH. */
373 register_status status = regcache->raw_read (gpnum, raw_buf);
374 if (status == REG_VALID)
375 memcpy (buf, raw_buf + 1, 1);
376 else
377 mark_value_bytes_unavailable (result_value, 0,
378 TYPE_LENGTH (value_type (result_value)));
379 }
380 else
381 {
382 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
383 register_status status = regcache->raw_read (gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
389 }
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
395 /* Extract (always little endian). */
396 register_status status = regcache->raw_read (gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
424 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
425
426 /* Read ... AH, BH, CH, DH. */
427 regcache->raw_read (gpnum, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache->raw_write (gpnum, raw_buf);
432 }
433 else
434 {
435 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
436
437 /* Read ... */
438 regcache->raw_read (gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache->raw_write (gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
449
450 /* Read ... */
451 regcache->raw_read (gpnum, raw_buf);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
455 regcache->raw_write (gpnum, raw_buf);
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459 }
460
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463 static int
464 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 }
489
490 \f
491
492 /* Register classes as defined in the psABI. */
493
494 enum amd64_reg_class
495 {
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504 };
505
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511 {
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540 }
541
542 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
543
544 /* Return true if TYPE is a structure or union with unaligned fields. */
545
546 static bool
547 amd64_has_unaligned_fields (struct type *type)
548 {
549 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
550 || TYPE_CODE (type) == TYPE_CODE_UNION)
551 {
552 for (int i = 0; i < TYPE_NFIELDS (type); i++)
553 {
554 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
555 int bitpos = TYPE_FIELD_BITPOS (type, i);
556 int align = type_align(subtype);
557
558 /* Ignore static fields, empty fields (for example nested
559 empty structures), and bitfields (these are handled by
560 the caller). */
561 if (field_is_static (&TYPE_FIELD (type, i))
562 || (TYPE_FIELD_BITSIZE (type, i) == 0
563 && TYPE_LENGTH (subtype) == 0)
564 || TYPE_FIELD_PACKED (type, i))
565 continue;
566
567 if (bitpos % 8 != 0)
568 return true;
569
570 int bytepos = bitpos / 8;
571 if (bytepos % align != 0)
572 return true;
573
574 if (amd64_has_unaligned_fields (subtype))
575 return true;
576 }
577 }
578
579 return false;
580 }
581
582 /* Classify TYPE according to the rules for aggregate (structures and
583 arrays) and union types, and store the result in CLASS. */
584
585 static void
586 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
587 {
588 /* 1. If the size of an object is larger than two eightbytes, or it has
589 unaligned fields, it has class memory. */
590 if (TYPE_LENGTH (type) > 16 || amd64_has_unaligned_fields (type))
591 {
592 theclass[0] = theclass[1] = AMD64_MEMORY;
593 return;
594 }
595
596 /* 2. Both eightbytes get initialized to class NO_CLASS. */
597 theclass[0] = theclass[1] = AMD64_NO_CLASS;
598
599 /* 3. Each field of an object is classified recursively so that
600 always two fields are considered. The resulting class is
601 calculated according to the classes of the fields in the
602 eightbyte: */
603
604 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
605 {
606 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
607
608 /* All fields in an array have the same type. */
609 amd64_classify (subtype, theclass);
610 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
611 theclass[1] = theclass[0];
612 }
613 else
614 {
615 int i;
616
617 /* Structure or union. */
618 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
619 || TYPE_CODE (type) == TYPE_CODE_UNION);
620
621 for (i = 0; i < TYPE_NFIELDS (type); i++)
622 {
623 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
624 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
625 enum amd64_reg_class subclass[2];
626 int bitsize = TYPE_FIELD_BITSIZE (type, i);
627 int endpos;
628
629 if (bitsize == 0)
630 bitsize = TYPE_LENGTH (subtype) * 8;
631 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
632
633 /* Ignore static fields, or empty fields, for example nested
634 empty structures.*/
635 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
636 continue;
637
638 gdb_assert (pos == 0 || pos == 1);
639
640 amd64_classify (subtype, subclass);
641 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
642 if (bitsize <= 64 && pos == 0 && endpos == 1)
643 /* This is a bit of an odd case: We have a field that would
644 normally fit in one of the two eightbytes, except that
645 it is placed in a way that this field straddles them.
646 This has been seen with a structure containing an array.
647
648 The ABI is a bit unclear in this case, but we assume that
649 this field's class (stored in subclass[0]) must also be merged
650 into class[1]. In other words, our field has a piece stored
651 in the second eight-byte, and thus its class applies to
652 the second eight-byte as well.
653
654 In the case where the field length exceeds 8 bytes,
655 it should not be necessary to merge the field class
656 into class[1]. As LEN > 8, subclass[1] is necessarily
657 different from AMD64_NO_CLASS. If subclass[1] is equal
658 to subclass[0], then the normal class[1]/subclass[1]
659 merging will take care of everything. For subclass[1]
660 to be different from subclass[0], I can only see the case
661 where we have a SSE/SSEUP or X87/X87UP pair, which both
662 use up all 16 bytes of the aggregate, and are already
663 handled just fine (because each portion sits on its own
664 8-byte). */
665 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
666 if (pos == 0)
667 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
668 }
669 }
670
671 /* 4. Then a post merger cleanup is done: */
672
673 /* Rule (a): If one of the classes is MEMORY, the whole argument is
674 passed in memory. */
675 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
676 theclass[0] = theclass[1] = AMD64_MEMORY;
677
678 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
679 SSE. */
680 if (theclass[0] == AMD64_SSEUP)
681 theclass[0] = AMD64_SSE;
682 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
683 theclass[1] = AMD64_SSE;
684 }
685
686 /* Classify TYPE, and store the result in CLASS. */
687
688 static void
689 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
690 {
691 enum type_code code = TYPE_CODE (type);
692 int len = TYPE_LENGTH (type);
693
694 theclass[0] = theclass[1] = AMD64_NO_CLASS;
695
696 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
697 long, long long, and pointers are in the INTEGER class. Similarly,
698 range types, used by languages such as Ada, are also in the INTEGER
699 class. */
700 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
701 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
702 || code == TYPE_CODE_CHAR
703 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
704 && (len == 1 || len == 2 || len == 4 || len == 8))
705 theclass[0] = AMD64_INTEGER;
706
707 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
708 are in class SSE. */
709 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
710 && (len == 4 || len == 8))
711 /* FIXME: __m64 . */
712 theclass[0] = AMD64_SSE;
713
714 /* Arguments of types __float128, _Decimal128 and __m128 are split into
715 two halves. The least significant ones belong to class SSE, the most
716 significant one to class SSEUP. */
717 else if (code == TYPE_CODE_DECFLOAT && len == 16)
718 /* FIXME: __float128, __m128. */
719 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
720
721 /* The 64-bit mantissa of arguments of type long double belongs to
722 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
723 class X87UP. */
724 else if (code == TYPE_CODE_FLT && len == 16)
725 /* Class X87 and X87UP. */
726 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
727
728 /* Arguments of complex T where T is one of the types float or
729 double get treated as if they are implemented as:
730
731 struct complexT {
732 T real;
733 T imag;
734 };
735
736 */
737 else if (code == TYPE_CODE_COMPLEX && len == 8)
738 theclass[0] = AMD64_SSE;
739 else if (code == TYPE_CODE_COMPLEX && len == 16)
740 theclass[0] = theclass[1] = AMD64_SSE;
741
742 /* A variable of type complex long double is classified as type
743 COMPLEX_X87. */
744 else if (code == TYPE_CODE_COMPLEX && len == 32)
745 theclass[0] = AMD64_COMPLEX_X87;
746
747 /* Aggregates. */
748 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
749 || code == TYPE_CODE_UNION)
750 amd64_classify_aggregate (type, theclass);
751 }
752
753 static enum return_value_convention
754 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
755 struct type *type, struct regcache *regcache,
756 gdb_byte *readbuf, const gdb_byte *writebuf)
757 {
758 enum amd64_reg_class theclass[2];
759 int len = TYPE_LENGTH (type);
760 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
761 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
762 int integer_reg = 0;
763 int sse_reg = 0;
764 int i;
765
766 gdb_assert (!(readbuf && writebuf));
767
768 /* 1. Classify the return type with the classification algorithm. */
769 amd64_classify (type, theclass);
770
771 /* 2. If the type has class MEMORY, then the caller provides space
772 for the return value and passes the address of this storage in
773 %rdi as if it were the first argument to the function. In effect,
774 this address becomes a hidden first argument.
775
776 On return %rax will contain the address that has been passed in
777 by the caller in %rdi. */
778 if (theclass[0] == AMD64_MEMORY)
779 {
780 /* As indicated by the comment above, the ABI guarantees that we
781 can always find the return value just after the function has
782 returned. */
783
784 if (readbuf)
785 {
786 ULONGEST addr;
787
788 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
789 read_memory (addr, readbuf, TYPE_LENGTH (type));
790 }
791
792 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
793 }
794
795 /* 8. If the class is COMPLEX_X87, the real part of the value is
796 returned in %st0 and the imaginary part in %st1. */
797 if (theclass[0] == AMD64_COMPLEX_X87)
798 {
799 if (readbuf)
800 {
801 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
802 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
803 }
804
805 if (writebuf)
806 {
807 i387_return_value (gdbarch, regcache);
808 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
809 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
810
811 /* Fix up the tag word such that both %st(0) and %st(1) are
812 marked as valid. */
813 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
814 }
815
816 return RETURN_VALUE_REGISTER_CONVENTION;
817 }
818
819 gdb_assert (theclass[1] != AMD64_MEMORY);
820 gdb_assert (len <= 16);
821
822 for (i = 0; len > 0; i++, len -= 8)
823 {
824 int regnum = -1;
825 int offset = 0;
826
827 switch (theclass[i])
828 {
829 case AMD64_INTEGER:
830 /* 3. If the class is INTEGER, the next available register
831 of the sequence %rax, %rdx is used. */
832 regnum = integer_regnum[integer_reg++];
833 break;
834
835 case AMD64_SSE:
836 /* 4. If the class is SSE, the next available SSE register
837 of the sequence %xmm0, %xmm1 is used. */
838 regnum = sse_regnum[sse_reg++];
839 break;
840
841 case AMD64_SSEUP:
842 /* 5. If the class is SSEUP, the eightbyte is passed in the
843 upper half of the last used SSE register. */
844 gdb_assert (sse_reg > 0);
845 regnum = sse_regnum[sse_reg - 1];
846 offset = 8;
847 break;
848
849 case AMD64_X87:
850 /* 6. If the class is X87, the value is returned on the X87
851 stack in %st0 as 80-bit x87 number. */
852 regnum = AMD64_ST0_REGNUM;
853 if (writebuf)
854 i387_return_value (gdbarch, regcache);
855 break;
856
857 case AMD64_X87UP:
858 /* 7. If the class is X87UP, the value is returned together
859 with the previous X87 value in %st0. */
860 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
861 regnum = AMD64_ST0_REGNUM;
862 offset = 8;
863 len = 2;
864 break;
865
866 case AMD64_NO_CLASS:
867 continue;
868
869 default:
870 gdb_assert (!"Unexpected register class.");
871 }
872
873 gdb_assert (regnum != -1);
874
875 if (readbuf)
876 regcache->raw_read_part (regnum, offset, std::min (len, 8),
877 readbuf + i * 8);
878 if (writebuf)
879 regcache->raw_write_part (regnum, offset, std::min (len, 8),
880 writebuf + i * 8);
881 }
882
883 return RETURN_VALUE_REGISTER_CONVENTION;
884 }
885 \f
886
887 static CORE_ADDR
888 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
889 CORE_ADDR sp, function_call_return_method return_method)
890 {
891 static int integer_regnum[] =
892 {
893 AMD64_RDI_REGNUM, /* %rdi */
894 AMD64_RSI_REGNUM, /* %rsi */
895 AMD64_RDX_REGNUM, /* %rdx */
896 AMD64_RCX_REGNUM, /* %rcx */
897 AMD64_R8_REGNUM, /* %r8 */
898 AMD64_R9_REGNUM /* %r9 */
899 };
900 static int sse_regnum[] =
901 {
902 /* %xmm0 ... %xmm7 */
903 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
904 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
905 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
906 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
907 };
908 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
909 int num_stack_args = 0;
910 int num_elements = 0;
911 int element = 0;
912 int integer_reg = 0;
913 int sse_reg = 0;
914 int i;
915
916 /* Reserve a register for the "hidden" argument. */
917 if (return_method == return_method_struct)
918 integer_reg++;
919
920 for (i = 0; i < nargs; i++)
921 {
922 struct type *type = value_type (args[i]);
923 int len = TYPE_LENGTH (type);
924 enum amd64_reg_class theclass[2];
925 int needed_integer_regs = 0;
926 int needed_sse_regs = 0;
927 int j;
928
929 /* Classify argument. */
930 amd64_classify (type, theclass);
931
932 /* Calculate the number of integer and SSE registers needed for
933 this argument. */
934 for (j = 0; j < 2; j++)
935 {
936 if (theclass[j] == AMD64_INTEGER)
937 needed_integer_regs++;
938 else if (theclass[j] == AMD64_SSE)
939 needed_sse_regs++;
940 }
941
942 /* Check whether enough registers are available, and if the
943 argument should be passed in registers at all. */
944 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
945 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
946 || (needed_integer_regs == 0 && needed_sse_regs == 0))
947 {
948 /* The argument will be passed on the stack. */
949 num_elements += ((len + 7) / 8);
950 stack_args[num_stack_args++] = args[i];
951 }
952 else
953 {
954 /* The argument will be passed in registers. */
955 const gdb_byte *valbuf = value_contents (args[i]);
956 gdb_byte buf[8];
957
958 gdb_assert (len <= 16);
959
960 for (j = 0; len > 0; j++, len -= 8)
961 {
962 int regnum = -1;
963 int offset = 0;
964
965 switch (theclass[j])
966 {
967 case AMD64_INTEGER:
968 regnum = integer_regnum[integer_reg++];
969 break;
970
971 case AMD64_SSE:
972 regnum = sse_regnum[sse_reg++];
973 break;
974
975 case AMD64_SSEUP:
976 gdb_assert (sse_reg > 0);
977 regnum = sse_regnum[sse_reg - 1];
978 offset = 8;
979 break;
980
981 default:
982 gdb_assert (!"Unexpected register class.");
983 }
984
985 gdb_assert (regnum != -1);
986 memset (buf, 0, sizeof buf);
987 memcpy (buf, valbuf + j * 8, std::min (len, 8));
988 regcache->raw_write_part (regnum, offset, 8, buf);
989 }
990 }
991 }
992
993 /* Allocate space for the arguments on the stack. */
994 sp -= num_elements * 8;
995
996 /* The psABI says that "The end of the input argument area shall be
997 aligned on a 16 byte boundary." */
998 sp &= ~0xf;
999
1000 /* Write out the arguments to the stack. */
1001 for (i = 0; i < num_stack_args; i++)
1002 {
1003 struct type *type = value_type (stack_args[i]);
1004 const gdb_byte *valbuf = value_contents (stack_args[i]);
1005 int len = TYPE_LENGTH (type);
1006
1007 write_memory (sp + element * 8, valbuf, len);
1008 element += ((len + 7) / 8);
1009 }
1010
1011 /* The psABI says that "For calls that may call functions that use
1012 varargs or stdargs (prototype-less calls or calls to functions
1013 containing ellipsis (...) in the declaration) %al is used as
1014 hidden argument to specify the number of SSE registers used. */
1015 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
1016 return sp;
1017 }
1018
1019 static CORE_ADDR
1020 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1021 struct regcache *regcache, CORE_ADDR bp_addr,
1022 int nargs, struct value **args, CORE_ADDR sp,
1023 function_call_return_method return_method,
1024 CORE_ADDR struct_addr)
1025 {
1026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1027 gdb_byte buf[8];
1028
1029 /* BND registers can be in arbitrary values at the moment of the
1030 inferior call. This can cause boundary violations that are not
1031 due to a real bug or even desired by the user. The best to be done
1032 is set the BND registers to allow access to the whole memory, INIT
1033 state, before pushing the inferior call. */
1034 i387_reset_bnd_regs (gdbarch, regcache);
1035
1036 /* Pass arguments. */
1037 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
1038
1039 /* Pass "hidden" argument". */
1040 if (return_method == return_method_struct)
1041 {
1042 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1043 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1044 }
1045
1046 /* Store return address. */
1047 sp -= 8;
1048 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1049 write_memory (sp, buf, 8);
1050
1051 /* Finally, update the stack pointer... */
1052 store_unsigned_integer (buf, 8, byte_order, sp);
1053 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1054
1055 /* ...and fake a frame pointer. */
1056 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1057
1058 return sp + 16;
1059 }
1060 \f
1061 /* Displaced instruction handling. */
1062
1063 /* A partially decoded instruction.
1064 This contains enough details for displaced stepping purposes. */
1065
1066 struct amd64_insn
1067 {
1068 /* The number of opcode bytes. */
1069 int opcode_len;
1070 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1071 not present. */
1072 int enc_prefix_offset;
1073 /* The offset to the first opcode byte. */
1074 int opcode_offset;
1075 /* The offset to the modrm byte or -1 if not present. */
1076 int modrm_offset;
1077
1078 /* The raw instruction. */
1079 gdb_byte *raw_insn;
1080 };
1081
1082 struct amd64_displaced_step_closure : public displaced_step_closure
1083 {
1084 amd64_displaced_step_closure (int insn_buf_len)
1085 : insn_buf (insn_buf_len, 0)
1086 {}
1087
1088 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1089 int tmp_used = 0;
1090 int tmp_regno;
1091 ULONGEST tmp_save;
1092
1093 /* Details of the instruction. */
1094 struct amd64_insn insn_details;
1095
1096 /* The possibly modified insn. */
1097 gdb::byte_vector insn_buf;
1098 };
1099
1100 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1101 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1102 at which point delete these in favor of libopcodes' versions). */
1103
1104 static const unsigned char onebyte_has_modrm[256] = {
1105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1106 /* ------------------------------- */
1107 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1108 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1109 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1110 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1111 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1112 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1113 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1114 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1115 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1116 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1117 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1118 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1119 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1120 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1121 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1122 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1123 /* ------------------------------- */
1124 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1125 };
1126
1127 static const unsigned char twobyte_has_modrm[256] = {
1128 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1129 /* ------------------------------- */
1130 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1131 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1132 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1133 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1134 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1135 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1136 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1137 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1138 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1139 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1140 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1141 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1142 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1143 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1144 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1145 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1146 /* ------------------------------- */
1147 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1148 };
1149
1150 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1151
1152 static int
1153 rex_prefix_p (gdb_byte pfx)
1154 {
1155 return REX_PREFIX_P (pfx);
1156 }
1157
1158 /* True if PFX is the start of the 2-byte VEX prefix. */
1159
1160 static bool
1161 vex2_prefix_p (gdb_byte pfx)
1162 {
1163 return pfx == 0xc5;
1164 }
1165
1166 /* True if PFX is the start of the 3-byte VEX prefix. */
1167
1168 static bool
1169 vex3_prefix_p (gdb_byte pfx)
1170 {
1171 return pfx == 0xc4;
1172 }
1173
1174 /* Skip the legacy instruction prefixes in INSN.
1175 We assume INSN is properly sentineled so we don't have to worry
1176 about falling off the end of the buffer. */
1177
1178 static gdb_byte *
1179 amd64_skip_prefixes (gdb_byte *insn)
1180 {
1181 while (1)
1182 {
1183 switch (*insn)
1184 {
1185 case DATA_PREFIX_OPCODE:
1186 case ADDR_PREFIX_OPCODE:
1187 case CS_PREFIX_OPCODE:
1188 case DS_PREFIX_OPCODE:
1189 case ES_PREFIX_OPCODE:
1190 case FS_PREFIX_OPCODE:
1191 case GS_PREFIX_OPCODE:
1192 case SS_PREFIX_OPCODE:
1193 case LOCK_PREFIX_OPCODE:
1194 case REPE_PREFIX_OPCODE:
1195 case REPNE_PREFIX_OPCODE:
1196 ++insn;
1197 continue;
1198 default:
1199 break;
1200 }
1201 break;
1202 }
1203
1204 return insn;
1205 }
1206
1207 /* Return an integer register (other than RSP) that is unused as an input
1208 operand in INSN.
1209 In order to not require adding a rex prefix if the insn doesn't already
1210 have one, the result is restricted to RAX ... RDI, sans RSP.
1211 The register numbering of the result follows architecture ordering,
1212 e.g. RDI = 7. */
1213
1214 static int
1215 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1216 {
1217 /* 1 bit for each reg */
1218 int used_regs_mask = 0;
1219
1220 /* There can be at most 3 int regs used as inputs in an insn, and we have
1221 7 to choose from (RAX ... RDI, sans RSP).
1222 This allows us to take a conservative approach and keep things simple.
1223 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1224 that implicitly specify RAX. */
1225
1226 /* Avoid RAX. */
1227 used_regs_mask |= 1 << EAX_REG_NUM;
1228 /* Similarily avoid RDX, implicit operand in divides. */
1229 used_regs_mask |= 1 << EDX_REG_NUM;
1230 /* Avoid RSP. */
1231 used_regs_mask |= 1 << ESP_REG_NUM;
1232
1233 /* If the opcode is one byte long and there's no ModRM byte,
1234 assume the opcode specifies a register. */
1235 if (details->opcode_len == 1 && details->modrm_offset == -1)
1236 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1237
1238 /* Mark used regs in the modrm/sib bytes. */
1239 if (details->modrm_offset != -1)
1240 {
1241 int modrm = details->raw_insn[details->modrm_offset];
1242 int mod = MODRM_MOD_FIELD (modrm);
1243 int reg = MODRM_REG_FIELD (modrm);
1244 int rm = MODRM_RM_FIELD (modrm);
1245 int have_sib = mod != 3 && rm == 4;
1246
1247 /* Assume the reg field of the modrm byte specifies a register. */
1248 used_regs_mask |= 1 << reg;
1249
1250 if (have_sib)
1251 {
1252 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1253 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1254 used_regs_mask |= 1 << base;
1255 used_regs_mask |= 1 << idx;
1256 }
1257 else
1258 {
1259 used_regs_mask |= 1 << rm;
1260 }
1261 }
1262
1263 gdb_assert (used_regs_mask < 256);
1264 gdb_assert (used_regs_mask != 255);
1265
1266 /* Finally, find a free reg. */
1267 {
1268 int i;
1269
1270 for (i = 0; i < 8; ++i)
1271 {
1272 if (! (used_regs_mask & (1 << i)))
1273 return i;
1274 }
1275
1276 /* We shouldn't get here. */
1277 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1278 }
1279 }
1280
1281 /* Extract the details of INSN that we need. */
1282
1283 static void
1284 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1285 {
1286 gdb_byte *start = insn;
1287 int need_modrm;
1288
1289 details->raw_insn = insn;
1290
1291 details->opcode_len = -1;
1292 details->enc_prefix_offset = -1;
1293 details->opcode_offset = -1;
1294 details->modrm_offset = -1;
1295
1296 /* Skip legacy instruction prefixes. */
1297 insn = amd64_skip_prefixes (insn);
1298
1299 /* Skip REX/VEX instruction encoding prefixes. */
1300 if (rex_prefix_p (*insn))
1301 {
1302 details->enc_prefix_offset = insn - start;
1303 ++insn;
1304 }
1305 else if (vex2_prefix_p (*insn))
1306 {
1307 /* Don't record the offset in this case because this prefix has
1308 no REX.B equivalent. */
1309 insn += 2;
1310 }
1311 else if (vex3_prefix_p (*insn))
1312 {
1313 details->enc_prefix_offset = insn - start;
1314 insn += 3;
1315 }
1316
1317 details->opcode_offset = insn - start;
1318
1319 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1320 {
1321 /* Two or three-byte opcode. */
1322 ++insn;
1323 need_modrm = twobyte_has_modrm[*insn];
1324
1325 /* Check for three-byte opcode. */
1326 switch (*insn)
1327 {
1328 case 0x24:
1329 case 0x25:
1330 case 0x38:
1331 case 0x3a:
1332 case 0x7a:
1333 case 0x7b:
1334 ++insn;
1335 details->opcode_len = 3;
1336 break;
1337 default:
1338 details->opcode_len = 2;
1339 break;
1340 }
1341 }
1342 else
1343 {
1344 /* One-byte opcode. */
1345 need_modrm = onebyte_has_modrm[*insn];
1346 details->opcode_len = 1;
1347 }
1348
1349 if (need_modrm)
1350 {
1351 ++insn;
1352 details->modrm_offset = insn - start;
1353 }
1354 }
1355
1356 /* Update %rip-relative addressing in INSN.
1357
1358 %rip-relative addressing only uses a 32-bit displacement.
1359 32 bits is not enough to be guaranteed to cover the distance between where
1360 the real instruction is and where its copy is.
1361 Convert the insn to use base+disp addressing.
1362 We set base = pc + insn_length so we can leave disp unchanged. */
1363
1364 static void
1365 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
1366 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1367 {
1368 const struct amd64_insn *insn_details = &dsc->insn_details;
1369 int modrm_offset = insn_details->modrm_offset;
1370 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1371 CORE_ADDR rip_base;
1372 int insn_length;
1373 int arch_tmp_regno, tmp_regno;
1374 ULONGEST orig_value;
1375
1376 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1377 ++insn;
1378
1379 /* Compute the rip-relative address. */
1380 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1381 dsc->insn_buf.size (), from);
1382 rip_base = from + insn_length;
1383
1384 /* We need a register to hold the address.
1385 Pick one not used in the insn.
1386 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1387 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1388 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1389
1390 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1391 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1392
1393 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1394 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1395 is not r8-r15. */
1396 if (insn_details->enc_prefix_offset != -1)
1397 {
1398 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1399 if (rex_prefix_p (pfx[0]))
1400 pfx[0] &= ~REX_B;
1401 else if (vex3_prefix_p (pfx[0]))
1402 pfx[1] |= VEX3_NOT_B;
1403 else
1404 gdb_assert_not_reached ("unhandled prefix");
1405 }
1406
1407 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1408 dsc->tmp_regno = tmp_regno;
1409 dsc->tmp_save = orig_value;
1410 dsc->tmp_used = 1;
1411
1412 /* Convert the ModRM field to be base+disp. */
1413 dsc->insn_buf[modrm_offset] &= ~0xc7;
1414 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1415
1416 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1417
1418 if (debug_displaced)
1419 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1420 "displaced: using temp reg %d, old value %s, new value %s\n",
1421 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1422 paddress (gdbarch, rip_base));
1423 }
1424
1425 static void
1426 fixup_displaced_copy (struct gdbarch *gdbarch,
1427 amd64_displaced_step_closure *dsc,
1428 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1429 {
1430 const struct amd64_insn *details = &dsc->insn_details;
1431
1432 if (details->modrm_offset != -1)
1433 {
1434 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1435
1436 if ((modrm & 0xc7) == 0x05)
1437 {
1438 /* The insn uses rip-relative addressing.
1439 Deal with it. */
1440 fixup_riprel (gdbarch, dsc, from, to, regs);
1441 }
1442 }
1443 }
1444
1445 struct displaced_step_closure *
1446 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1447 CORE_ADDR from, CORE_ADDR to,
1448 struct regcache *regs)
1449 {
1450 int len = gdbarch_max_insn_length (gdbarch);
1451 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1452 continually watch for running off the end of the buffer. */
1453 int fixup_sentinel_space = len;
1454 amd64_displaced_step_closure *dsc
1455 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
1456 gdb_byte *buf = &dsc->insn_buf[0];
1457 struct amd64_insn *details = &dsc->insn_details;
1458
1459 read_memory (from, buf, len);
1460
1461 /* Set up the sentinel space so we don't have to worry about running
1462 off the end of the buffer. An excessive number of leading prefixes
1463 could otherwise cause this. */
1464 memset (buf + len, 0, fixup_sentinel_space);
1465
1466 amd64_get_insn_details (buf, details);
1467
1468 /* GDB may get control back after the insn after the syscall.
1469 Presumably this is a kernel bug.
1470 If this is a syscall, make sure there's a nop afterwards. */
1471 {
1472 int syscall_length;
1473
1474 if (amd64_syscall_p (details, &syscall_length))
1475 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1476 }
1477
1478 /* Modify the insn to cope with the address where it will be executed from.
1479 In particular, handle any rip-relative addressing. */
1480 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1481
1482 write_memory (to, buf, len);
1483
1484 if (debug_displaced)
1485 {
1486 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1487 paddress (gdbarch, from), paddress (gdbarch, to));
1488 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1489 }
1490
1491 return dsc;
1492 }
1493
1494 static int
1495 amd64_absolute_jmp_p (const struct amd64_insn *details)
1496 {
1497 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1498
1499 if (insn[0] == 0xff)
1500 {
1501 /* jump near, absolute indirect (/4) */
1502 if ((insn[1] & 0x38) == 0x20)
1503 return 1;
1504
1505 /* jump far, absolute indirect (/5) */
1506 if ((insn[1] & 0x38) == 0x28)
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1514
1515 static int
1516 amd64_jmp_p (const struct amd64_insn *details)
1517 {
1518 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1519
1520 /* jump short, relative. */
1521 if (insn[0] == 0xeb)
1522 return 1;
1523
1524 /* jump near, relative. */
1525 if (insn[0] == 0xe9)
1526 return 1;
1527
1528 return amd64_absolute_jmp_p (details);
1529 }
1530
1531 static int
1532 amd64_absolute_call_p (const struct amd64_insn *details)
1533 {
1534 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1535
1536 if (insn[0] == 0xff)
1537 {
1538 /* Call near, absolute indirect (/2) */
1539 if ((insn[1] & 0x38) == 0x10)
1540 return 1;
1541
1542 /* Call far, absolute indirect (/3) */
1543 if ((insn[1] & 0x38) == 0x18)
1544 return 1;
1545 }
1546
1547 return 0;
1548 }
1549
1550 static int
1551 amd64_ret_p (const struct amd64_insn *details)
1552 {
1553 /* NOTE: gcc can emit "repz ; ret". */
1554 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1555
1556 switch (insn[0])
1557 {
1558 case 0xc2: /* ret near, pop N bytes */
1559 case 0xc3: /* ret near */
1560 case 0xca: /* ret far, pop N bytes */
1561 case 0xcb: /* ret far */
1562 case 0xcf: /* iret */
1563 return 1;
1564
1565 default:
1566 return 0;
1567 }
1568 }
1569
1570 static int
1571 amd64_call_p (const struct amd64_insn *details)
1572 {
1573 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1574
1575 if (amd64_absolute_call_p (details))
1576 return 1;
1577
1578 /* call near, relative */
1579 if (insn[0] == 0xe8)
1580 return 1;
1581
1582 return 0;
1583 }
1584
1585 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1586 length in bytes. Otherwise, return zero. */
1587
1588 static int
1589 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1590 {
1591 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1592
1593 if (insn[0] == 0x0f && insn[1] == 0x05)
1594 {
1595 *lengthp = 2;
1596 return 1;
1597 }
1598
1599 return 0;
1600 }
1601
1602 /* Classify the instruction at ADDR using PRED.
1603 Throw an error if the memory can't be read. */
1604
1605 static int
1606 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1607 int (*pred) (const struct amd64_insn *))
1608 {
1609 struct amd64_insn details;
1610 gdb_byte *buf;
1611 int len, classification;
1612
1613 len = gdbarch_max_insn_length (gdbarch);
1614 buf = (gdb_byte *) alloca (len);
1615
1616 read_code (addr, buf, len);
1617 amd64_get_insn_details (buf, &details);
1618
1619 classification = pred (&details);
1620
1621 return classification;
1622 }
1623
1624 /* The gdbarch insn_is_call method. */
1625
1626 static int
1627 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1628 {
1629 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1630 }
1631
1632 /* The gdbarch insn_is_ret method. */
1633
1634 static int
1635 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1636 {
1637 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1638 }
1639
1640 /* The gdbarch insn_is_jump method. */
1641
1642 static int
1643 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1644 {
1645 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1646 }
1647
1648 /* Fix up the state of registers and memory after having single-stepped
1649 a displaced instruction. */
1650
1651 void
1652 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1653 struct displaced_step_closure *dsc_,
1654 CORE_ADDR from, CORE_ADDR to,
1655 struct regcache *regs)
1656 {
1657 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
1658 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1659 /* The offset we applied to the instruction's address. */
1660 ULONGEST insn_offset = to - from;
1661 gdb_byte *insn = dsc->insn_buf.data ();
1662 const struct amd64_insn *insn_details = &dsc->insn_details;
1663
1664 if (debug_displaced)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "displaced: fixup (%s, %s), "
1667 "insn = 0x%02x 0x%02x ...\n",
1668 paddress (gdbarch, from), paddress (gdbarch, to),
1669 insn[0], insn[1]);
1670
1671 /* If we used a tmp reg, restore it. */
1672
1673 if (dsc->tmp_used)
1674 {
1675 if (debug_displaced)
1676 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1677 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1678 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1679 }
1680
1681 /* The list of issues to contend with here is taken from
1682 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1683 Yay for Free Software! */
1684
1685 /* Relocate the %rip back to the program's instruction stream,
1686 if necessary. */
1687
1688 /* Except in the case of absolute or indirect jump or call
1689 instructions, or a return instruction, the new rip is relative to
1690 the displaced instruction; make it relative to the original insn.
1691 Well, signal handler returns don't need relocation either, but we use the
1692 value of %rip to recognize those; see below. */
1693 if (! amd64_absolute_jmp_p (insn_details)
1694 && ! amd64_absolute_call_p (insn_details)
1695 && ! amd64_ret_p (insn_details))
1696 {
1697 ULONGEST orig_rip;
1698 int insn_len;
1699
1700 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1701
1702 /* A signal trampoline system call changes the %rip, resuming
1703 execution of the main program after the signal handler has
1704 returned. That makes them like 'return' instructions; we
1705 shouldn't relocate %rip.
1706
1707 But most system calls don't, and we do need to relocate %rip.
1708
1709 Our heuristic for distinguishing these cases: if stepping
1710 over the system call instruction left control directly after
1711 the instruction, the we relocate --- control almost certainly
1712 doesn't belong in the displaced copy. Otherwise, we assume
1713 the instruction has put control where it belongs, and leave
1714 it unrelocated. Goodness help us if there are PC-relative
1715 system calls. */
1716 if (amd64_syscall_p (insn_details, &insn_len)
1717 && orig_rip != to + insn_len
1718 /* GDB can get control back after the insn after the syscall.
1719 Presumably this is a kernel bug.
1720 Fixup ensures its a nop, we add one to the length for it. */
1721 && orig_rip != to + insn_len + 1)
1722 {
1723 if (debug_displaced)
1724 fprintf_unfiltered (gdb_stdlog,
1725 "displaced: syscall changed %%rip; "
1726 "not relocating\n");
1727 }
1728 else
1729 {
1730 ULONGEST rip = orig_rip - insn_offset;
1731
1732 /* If we just stepped over a breakpoint insn, we don't backup
1733 the pc on purpose; this is to match behaviour without
1734 stepping. */
1735
1736 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1737
1738 if (debug_displaced)
1739 fprintf_unfiltered (gdb_stdlog,
1740 "displaced: "
1741 "relocated %%rip from %s to %s\n",
1742 paddress (gdbarch, orig_rip),
1743 paddress (gdbarch, rip));
1744 }
1745 }
1746
1747 /* If the instruction was PUSHFL, then the TF bit will be set in the
1748 pushed value, and should be cleared. We'll leave this for later,
1749 since GDB already messes up the TF flag when stepping over a
1750 pushfl. */
1751
1752 /* If the instruction was a call, the return address now atop the
1753 stack is the address following the copied instruction. We need
1754 to make it the address following the original instruction. */
1755 if (amd64_call_p (insn_details))
1756 {
1757 ULONGEST rsp;
1758 ULONGEST retaddr;
1759 const ULONGEST retaddr_len = 8;
1760
1761 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1762 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1763 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1764 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1765
1766 if (debug_displaced)
1767 fprintf_unfiltered (gdb_stdlog,
1768 "displaced: relocated return addr at %s "
1769 "to %s\n",
1770 paddress (gdbarch, rsp),
1771 paddress (gdbarch, retaddr));
1772 }
1773 }
1774
1775 /* If the instruction INSN uses RIP-relative addressing, return the
1776 offset into the raw INSN where the displacement to be adjusted is
1777 found. Returns 0 if the instruction doesn't use RIP-relative
1778 addressing. */
1779
1780 static int
1781 rip_relative_offset (struct amd64_insn *insn)
1782 {
1783 if (insn->modrm_offset != -1)
1784 {
1785 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1786
1787 if ((modrm & 0xc7) == 0x05)
1788 {
1789 /* The displacement is found right after the ModRM byte. */
1790 return insn->modrm_offset + 1;
1791 }
1792 }
1793
1794 return 0;
1795 }
1796
1797 static void
1798 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1799 {
1800 target_write_memory (*to, buf, len);
1801 *to += len;
1802 }
1803
1804 static void
1805 amd64_relocate_instruction (struct gdbarch *gdbarch,
1806 CORE_ADDR *to, CORE_ADDR oldloc)
1807 {
1808 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1809 int len = gdbarch_max_insn_length (gdbarch);
1810 /* Extra space for sentinels. */
1811 int fixup_sentinel_space = len;
1812 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1813 struct amd64_insn insn_details;
1814 int offset = 0;
1815 LONGEST rel32, newrel;
1816 gdb_byte *insn;
1817 int insn_length;
1818
1819 read_memory (oldloc, buf, len);
1820
1821 /* Set up the sentinel space so we don't have to worry about running
1822 off the end of the buffer. An excessive number of leading prefixes
1823 could otherwise cause this. */
1824 memset (buf + len, 0, fixup_sentinel_space);
1825
1826 insn = buf;
1827 amd64_get_insn_details (insn, &insn_details);
1828
1829 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1830
1831 /* Skip legacy instruction prefixes. */
1832 insn = amd64_skip_prefixes (insn);
1833
1834 /* Adjust calls with 32-bit relative addresses as push/jump, with
1835 the address pushed being the location where the original call in
1836 the user program would return to. */
1837 if (insn[0] == 0xe8)
1838 {
1839 gdb_byte push_buf[32];
1840 CORE_ADDR ret_addr;
1841 int i = 0;
1842
1843 /* Where "ret" in the original code will return to. */
1844 ret_addr = oldloc + insn_length;
1845
1846 /* If pushing an address higher than or equal to 0x80000000,
1847 avoid 'pushq', as that sign extends its 32-bit operand, which
1848 would be incorrect. */
1849 if (ret_addr <= 0x7fffffff)
1850 {
1851 push_buf[0] = 0x68; /* pushq $... */
1852 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1853 i = 5;
1854 }
1855 else
1856 {
1857 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1858 push_buf[i++] = 0x83;
1859 push_buf[i++] = 0xec;
1860 push_buf[i++] = 0x08;
1861
1862 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1863 push_buf[i++] = 0x04;
1864 push_buf[i++] = 0x24;
1865 store_unsigned_integer (&push_buf[i], 4, byte_order,
1866 ret_addr & 0xffffffff);
1867 i += 4;
1868
1869 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1870 push_buf[i++] = 0x44;
1871 push_buf[i++] = 0x24;
1872 push_buf[i++] = 0x04;
1873 store_unsigned_integer (&push_buf[i], 4, byte_order,
1874 ret_addr >> 32);
1875 i += 4;
1876 }
1877 gdb_assert (i <= sizeof (push_buf));
1878 /* Push the push. */
1879 append_insns (to, i, push_buf);
1880
1881 /* Convert the relative call to a relative jump. */
1882 insn[0] = 0xe9;
1883
1884 /* Adjust the destination offset. */
1885 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1886 newrel = (oldloc - *to) + rel32;
1887 store_signed_integer (insn + 1, 4, byte_order, newrel);
1888
1889 if (debug_displaced)
1890 fprintf_unfiltered (gdb_stdlog,
1891 "Adjusted insn rel32=%s at %s to"
1892 " rel32=%s at %s\n",
1893 hex_string (rel32), paddress (gdbarch, oldloc),
1894 hex_string (newrel), paddress (gdbarch, *to));
1895
1896 /* Write the adjusted jump into its displaced location. */
1897 append_insns (to, 5, insn);
1898 return;
1899 }
1900
1901 offset = rip_relative_offset (&insn_details);
1902 if (!offset)
1903 {
1904 /* Adjust jumps with 32-bit relative addresses. Calls are
1905 already handled above. */
1906 if (insn[0] == 0xe9)
1907 offset = 1;
1908 /* Adjust conditional jumps. */
1909 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1910 offset = 2;
1911 }
1912
1913 if (offset)
1914 {
1915 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1916 newrel = (oldloc - *to) + rel32;
1917 store_signed_integer (insn + offset, 4, byte_order, newrel);
1918 if (debug_displaced)
1919 fprintf_unfiltered (gdb_stdlog,
1920 "Adjusted insn rel32=%s at %s to"
1921 " rel32=%s at %s\n",
1922 hex_string (rel32), paddress (gdbarch, oldloc),
1923 hex_string (newrel), paddress (gdbarch, *to));
1924 }
1925
1926 /* Write the adjusted instruction into its displaced location. */
1927 append_insns (to, insn_length, buf);
1928 }
1929
1930 \f
1931 /* The maximum number of saved registers. This should include %rip. */
1932 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1933
1934 struct amd64_frame_cache
1935 {
1936 /* Base address. */
1937 CORE_ADDR base;
1938 int base_p;
1939 CORE_ADDR sp_offset;
1940 CORE_ADDR pc;
1941
1942 /* Saved registers. */
1943 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1944 CORE_ADDR saved_sp;
1945 int saved_sp_reg;
1946
1947 /* Do we have a frame? */
1948 int frameless_p;
1949 };
1950
1951 /* Initialize a frame cache. */
1952
1953 static void
1954 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1955 {
1956 int i;
1957
1958 /* Base address. */
1959 cache->base = 0;
1960 cache->base_p = 0;
1961 cache->sp_offset = -8;
1962 cache->pc = 0;
1963
1964 /* Saved registers. We initialize these to -1 since zero is a valid
1965 offset (that's where %rbp is supposed to be stored).
1966 The values start out as being offsets, and are later converted to
1967 addresses (at which point -1 is interpreted as an address, still meaning
1968 "invalid"). */
1969 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1970 cache->saved_regs[i] = -1;
1971 cache->saved_sp = 0;
1972 cache->saved_sp_reg = -1;
1973
1974 /* Frameless until proven otherwise. */
1975 cache->frameless_p = 1;
1976 }
1977
1978 /* Allocate and initialize a frame cache. */
1979
1980 static struct amd64_frame_cache *
1981 amd64_alloc_frame_cache (void)
1982 {
1983 struct amd64_frame_cache *cache;
1984
1985 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1986 amd64_init_frame_cache (cache);
1987 return cache;
1988 }
1989
1990 /* GCC 4.4 and later, can put code in the prologue to realign the
1991 stack pointer. Check whether PC points to such code, and update
1992 CACHE accordingly. Return the first instruction after the code
1993 sequence or CURRENT_PC, whichever is smaller. If we don't
1994 recognize the code, return PC. */
1995
1996 static CORE_ADDR
1997 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1998 struct amd64_frame_cache *cache)
1999 {
2000 /* There are 2 code sequences to re-align stack before the frame
2001 gets set up:
2002
2003 1. Use a caller-saved saved register:
2004
2005 leaq 8(%rsp), %reg
2006 andq $-XXX, %rsp
2007 pushq -8(%reg)
2008
2009 2. Use a callee-saved saved register:
2010
2011 pushq %reg
2012 leaq 16(%rsp), %reg
2013 andq $-XXX, %rsp
2014 pushq -8(%reg)
2015
2016 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2017
2018 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2019 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2020 */
2021
2022 gdb_byte buf[18];
2023 int reg, r;
2024 int offset, offset_and;
2025
2026 if (target_read_code (pc, buf, sizeof buf))
2027 return pc;
2028
2029 /* Check caller-saved saved register. The first instruction has
2030 to be "leaq 8(%rsp), %reg". */
2031 if ((buf[0] & 0xfb) == 0x48
2032 && buf[1] == 0x8d
2033 && buf[3] == 0x24
2034 && buf[4] == 0x8)
2035 {
2036 /* MOD must be binary 10 and R/M must be binary 100. */
2037 if ((buf[2] & 0xc7) != 0x44)
2038 return pc;
2039
2040 /* REG has register number. */
2041 reg = (buf[2] >> 3) & 7;
2042
2043 /* Check the REX.R bit. */
2044 if (buf[0] == 0x4c)
2045 reg += 8;
2046
2047 offset = 5;
2048 }
2049 else
2050 {
2051 /* Check callee-saved saved register. The first instruction
2052 has to be "pushq %reg". */
2053 reg = 0;
2054 if ((buf[0] & 0xf8) == 0x50)
2055 offset = 0;
2056 else if ((buf[0] & 0xf6) == 0x40
2057 && (buf[1] & 0xf8) == 0x50)
2058 {
2059 /* Check the REX.B bit. */
2060 if ((buf[0] & 1) != 0)
2061 reg = 8;
2062
2063 offset = 1;
2064 }
2065 else
2066 return pc;
2067
2068 /* Get register. */
2069 reg += buf[offset] & 0x7;
2070
2071 offset++;
2072
2073 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2074 if ((buf[offset] & 0xfb) != 0x48
2075 || buf[offset + 1] != 0x8d
2076 || buf[offset + 3] != 0x24
2077 || buf[offset + 4] != 0x10)
2078 return pc;
2079
2080 /* MOD must be binary 10 and R/M must be binary 100. */
2081 if ((buf[offset + 2] & 0xc7) != 0x44)
2082 return pc;
2083
2084 /* REG has register number. */
2085 r = (buf[offset + 2] >> 3) & 7;
2086
2087 /* Check the REX.R bit. */
2088 if (buf[offset] == 0x4c)
2089 r += 8;
2090
2091 /* Registers in pushq and leaq have to be the same. */
2092 if (reg != r)
2093 return pc;
2094
2095 offset += 5;
2096 }
2097
2098 /* Rigister can't be %rsp nor %rbp. */
2099 if (reg == 4 || reg == 5)
2100 return pc;
2101
2102 /* The next instruction has to be "andq $-XXX, %rsp". */
2103 if (buf[offset] != 0x48
2104 || buf[offset + 2] != 0xe4
2105 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2106 return pc;
2107
2108 offset_and = offset;
2109 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2110
2111 /* The next instruction has to be "pushq -8(%reg)". */
2112 r = 0;
2113 if (buf[offset] == 0xff)
2114 offset++;
2115 else if ((buf[offset] & 0xf6) == 0x40
2116 && buf[offset + 1] == 0xff)
2117 {
2118 /* Check the REX.B bit. */
2119 if ((buf[offset] & 0x1) != 0)
2120 r = 8;
2121 offset += 2;
2122 }
2123 else
2124 return pc;
2125
2126 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2127 01. */
2128 if (buf[offset + 1] != 0xf8
2129 || (buf[offset] & 0xf8) != 0x70)
2130 return pc;
2131
2132 /* R/M has register. */
2133 r += buf[offset] & 7;
2134
2135 /* Registers in leaq and pushq have to be the same. */
2136 if (reg != r)
2137 return pc;
2138
2139 if (current_pc > pc + offset_and)
2140 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2141
2142 return std::min (pc + offset + 2, current_pc);
2143 }
2144
2145 /* Similar to amd64_analyze_stack_align for x32. */
2146
2147 static CORE_ADDR
2148 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2149 struct amd64_frame_cache *cache)
2150 {
2151 /* There are 2 code sequences to re-align stack before the frame
2152 gets set up:
2153
2154 1. Use a caller-saved saved register:
2155
2156 leaq 8(%rsp), %reg
2157 andq $-XXX, %rsp
2158 pushq -8(%reg)
2159
2160 or
2161
2162 [addr32] leal 8(%rsp), %reg
2163 andl $-XXX, %esp
2164 [addr32] pushq -8(%reg)
2165
2166 2. Use a callee-saved saved register:
2167
2168 pushq %reg
2169 leaq 16(%rsp), %reg
2170 andq $-XXX, %rsp
2171 pushq -8(%reg)
2172
2173 or
2174
2175 pushq %reg
2176 [addr32] leal 16(%rsp), %reg
2177 andl $-XXX, %esp
2178 [addr32] pushq -8(%reg)
2179
2180 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2181
2182 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2183 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2184
2185 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2186
2187 0x83 0xe4 0xf0 andl $-16, %esp
2188 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2189 */
2190
2191 gdb_byte buf[19];
2192 int reg, r;
2193 int offset, offset_and;
2194
2195 if (target_read_memory (pc, buf, sizeof buf))
2196 return pc;
2197
2198 /* Skip optional addr32 prefix. */
2199 offset = buf[0] == 0x67 ? 1 : 0;
2200
2201 /* Check caller-saved saved register. The first instruction has
2202 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2203 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2204 && buf[offset + 1] == 0x8d
2205 && buf[offset + 3] == 0x24
2206 && buf[offset + 4] == 0x8)
2207 {
2208 /* MOD must be binary 10 and R/M must be binary 100. */
2209 if ((buf[offset + 2] & 0xc7) != 0x44)
2210 return pc;
2211
2212 /* REG has register number. */
2213 reg = (buf[offset + 2] >> 3) & 7;
2214
2215 /* Check the REX.R bit. */
2216 if ((buf[offset] & 0x4) != 0)
2217 reg += 8;
2218
2219 offset += 5;
2220 }
2221 else
2222 {
2223 /* Check callee-saved saved register. The first instruction
2224 has to be "pushq %reg". */
2225 reg = 0;
2226 if ((buf[offset] & 0xf6) == 0x40
2227 && (buf[offset + 1] & 0xf8) == 0x50)
2228 {
2229 /* Check the REX.B bit. */
2230 if ((buf[offset] & 1) != 0)
2231 reg = 8;
2232
2233 offset += 1;
2234 }
2235 else if ((buf[offset] & 0xf8) != 0x50)
2236 return pc;
2237
2238 /* Get register. */
2239 reg += buf[offset] & 0x7;
2240
2241 offset++;
2242
2243 /* Skip optional addr32 prefix. */
2244 if (buf[offset] == 0x67)
2245 offset++;
2246
2247 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2248 "leal 16(%rsp), %reg". */
2249 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2250 || buf[offset + 1] != 0x8d
2251 || buf[offset + 3] != 0x24
2252 || buf[offset + 4] != 0x10)
2253 return pc;
2254
2255 /* MOD must be binary 10 and R/M must be binary 100. */
2256 if ((buf[offset + 2] & 0xc7) != 0x44)
2257 return pc;
2258
2259 /* REG has register number. */
2260 r = (buf[offset + 2] >> 3) & 7;
2261
2262 /* Check the REX.R bit. */
2263 if ((buf[offset] & 0x4) != 0)
2264 r += 8;
2265
2266 /* Registers in pushq and leaq have to be the same. */
2267 if (reg != r)
2268 return pc;
2269
2270 offset += 5;
2271 }
2272
2273 /* Rigister can't be %rsp nor %rbp. */
2274 if (reg == 4 || reg == 5)
2275 return pc;
2276
2277 /* The next instruction may be "andq $-XXX, %rsp" or
2278 "andl $-XXX, %esp". */
2279 if (buf[offset] != 0x48)
2280 offset--;
2281
2282 if (buf[offset + 2] != 0xe4
2283 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2284 return pc;
2285
2286 offset_and = offset;
2287 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2288
2289 /* Skip optional addr32 prefix. */
2290 if (buf[offset] == 0x67)
2291 offset++;
2292
2293 /* The next instruction has to be "pushq -8(%reg)". */
2294 r = 0;
2295 if (buf[offset] == 0xff)
2296 offset++;
2297 else if ((buf[offset] & 0xf6) == 0x40
2298 && buf[offset + 1] == 0xff)
2299 {
2300 /* Check the REX.B bit. */
2301 if ((buf[offset] & 0x1) != 0)
2302 r = 8;
2303 offset += 2;
2304 }
2305 else
2306 return pc;
2307
2308 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2309 01. */
2310 if (buf[offset + 1] != 0xf8
2311 || (buf[offset] & 0xf8) != 0x70)
2312 return pc;
2313
2314 /* R/M has register. */
2315 r += buf[offset] & 7;
2316
2317 /* Registers in leaq and pushq have to be the same. */
2318 if (reg != r)
2319 return pc;
2320
2321 if (current_pc > pc + offset_and)
2322 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2323
2324 return std::min (pc + offset + 2, current_pc);
2325 }
2326
2327 /* Do a limited analysis of the prologue at PC and update CACHE
2328 accordingly. Bail out early if CURRENT_PC is reached. Return the
2329 address where the analysis stopped.
2330
2331 We will handle only functions beginning with:
2332
2333 pushq %rbp 0x55
2334 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2335
2336 or (for the X32 ABI):
2337
2338 pushq %rbp 0x55
2339 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2340
2341 Any function that doesn't start with one of these sequences will be
2342 assumed to have no prologue and thus no valid frame pointer in
2343 %rbp. */
2344
2345 static CORE_ADDR
2346 amd64_analyze_prologue (struct gdbarch *gdbarch,
2347 CORE_ADDR pc, CORE_ADDR current_pc,
2348 struct amd64_frame_cache *cache)
2349 {
2350 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2351 /* There are two variations of movq %rsp, %rbp. */
2352 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2353 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2354 /* Ditto for movl %esp, %ebp. */
2355 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2356 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2357
2358 gdb_byte buf[3];
2359 gdb_byte op;
2360
2361 if (current_pc <= pc)
2362 return current_pc;
2363
2364 if (gdbarch_ptr_bit (gdbarch) == 32)
2365 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2366 else
2367 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2368
2369 op = read_code_unsigned_integer (pc, 1, byte_order);
2370
2371 if (op == 0x55) /* pushq %rbp */
2372 {
2373 /* Take into account that we've executed the `pushq %rbp' that
2374 starts this instruction sequence. */
2375 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2376 cache->sp_offset += 8;
2377
2378 /* If that's all, return now. */
2379 if (current_pc <= pc + 1)
2380 return current_pc;
2381
2382 read_code (pc + 1, buf, 3);
2383
2384 /* Check for `movq %rsp, %rbp'. */
2385 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2386 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2387 {
2388 /* OK, we actually have a frame. */
2389 cache->frameless_p = 0;
2390 return pc + 4;
2391 }
2392
2393 /* For X32, also check for `movq %esp, %ebp'. */
2394 if (gdbarch_ptr_bit (gdbarch) == 32)
2395 {
2396 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2397 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2398 {
2399 /* OK, we actually have a frame. */
2400 cache->frameless_p = 0;
2401 return pc + 3;
2402 }
2403 }
2404
2405 return pc + 1;
2406 }
2407
2408 return pc;
2409 }
2410
2411 /* Work around false termination of prologue - GCC PR debug/48827.
2412
2413 START_PC is the first instruction of a function, PC is its minimal already
2414 determined advanced address. Function returns PC if it has nothing to do.
2415
2416 84 c0 test %al,%al
2417 74 23 je after
2418 <-- here is 0 lines advance - the false prologue end marker.
2419 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2420 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2421 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2422 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2423 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2424 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2425 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2426 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2427 after: */
2428
2429 static CORE_ADDR
2430 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2431 {
2432 struct symtab_and_line start_pc_sal, next_sal;
2433 gdb_byte buf[4 + 8 * 7];
2434 int offset, xmmreg;
2435
2436 if (pc == start_pc)
2437 return pc;
2438
2439 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2440 if (start_pc_sal.symtab == NULL
2441 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2442 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2443 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2444 return pc;
2445
2446 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2447 if (next_sal.line != start_pc_sal.line)
2448 return pc;
2449
2450 /* START_PC can be from overlayed memory, ignored here. */
2451 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2452 return pc;
2453
2454 /* test %al,%al */
2455 if (buf[0] != 0x84 || buf[1] != 0xc0)
2456 return pc;
2457 /* je AFTER */
2458 if (buf[2] != 0x74)
2459 return pc;
2460
2461 offset = 4;
2462 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2463 {
2464 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2465 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2466 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2467 return pc;
2468
2469 /* 0b01?????? */
2470 if ((buf[offset + 2] & 0xc0) == 0x40)
2471 {
2472 /* 8-bit displacement. */
2473 offset += 4;
2474 }
2475 /* 0b10?????? */
2476 else if ((buf[offset + 2] & 0xc0) == 0x80)
2477 {
2478 /* 32-bit displacement. */
2479 offset += 7;
2480 }
2481 else
2482 return pc;
2483 }
2484
2485 /* je AFTER */
2486 if (offset - 4 != buf[3])
2487 return pc;
2488
2489 return next_sal.end;
2490 }
2491
2492 /* Return PC of first real instruction. */
2493
2494 static CORE_ADDR
2495 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2496 {
2497 struct amd64_frame_cache cache;
2498 CORE_ADDR pc;
2499 CORE_ADDR func_addr;
2500
2501 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2502 {
2503 CORE_ADDR post_prologue_pc
2504 = skip_prologue_using_sal (gdbarch, func_addr);
2505 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2506
2507 /* Clang always emits a line note before the prologue and another
2508 one after. We trust clang to emit usable line notes. */
2509 if (post_prologue_pc
2510 && (cust != NULL
2511 && COMPUNIT_PRODUCER (cust) != NULL
2512 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2513 return std::max (start_pc, post_prologue_pc);
2514 }
2515
2516 amd64_init_frame_cache (&cache);
2517 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2518 &cache);
2519 if (cache.frameless_p)
2520 return start_pc;
2521
2522 return amd64_skip_xmm_prologue (pc, start_pc);
2523 }
2524 \f
2525
2526 /* Normal frames. */
2527
2528 static void
2529 amd64_frame_cache_1 (struct frame_info *this_frame,
2530 struct amd64_frame_cache *cache)
2531 {
2532 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2534 gdb_byte buf[8];
2535 int i;
2536
2537 cache->pc = get_frame_func (this_frame);
2538 if (cache->pc != 0)
2539 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2540 cache);
2541
2542 if (cache->frameless_p)
2543 {
2544 /* We didn't find a valid frame. If we're at the start of a
2545 function, or somewhere half-way its prologue, the function's
2546 frame probably hasn't been fully setup yet. Try to
2547 reconstruct the base address for the stack frame by looking
2548 at the stack pointer. For truly "frameless" functions this
2549 might work too. */
2550
2551 if (cache->saved_sp_reg != -1)
2552 {
2553 /* Stack pointer has been saved. */
2554 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2555 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2556
2557 /* We're halfway aligning the stack. */
2558 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2559 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2560
2561 /* This will be added back below. */
2562 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2563 }
2564 else
2565 {
2566 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2567 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2568 + cache->sp_offset;
2569 }
2570 }
2571 else
2572 {
2573 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2574 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2575 }
2576
2577 /* Now that we have the base address for the stack frame we can
2578 calculate the value of %rsp in the calling frame. */
2579 cache->saved_sp = cache->base + 16;
2580
2581 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2582 frame we find it at the same offset from the reconstructed base
2583 address. If we're halfway aligning the stack, %rip is handled
2584 differently (see above). */
2585 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2586 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2587
2588 /* Adjust all the saved registers such that they contain addresses
2589 instead of offsets. */
2590 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2591 if (cache->saved_regs[i] != -1)
2592 cache->saved_regs[i] += cache->base;
2593
2594 cache->base_p = 1;
2595 }
2596
2597 static struct amd64_frame_cache *
2598 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2599 {
2600 struct amd64_frame_cache *cache;
2601
2602 if (*this_cache)
2603 return (struct amd64_frame_cache *) *this_cache;
2604
2605 cache = amd64_alloc_frame_cache ();
2606 *this_cache = cache;
2607
2608 try
2609 {
2610 amd64_frame_cache_1 (this_frame, cache);
2611 }
2612 catch (const gdb_exception_error &ex)
2613 {
2614 if (ex.error != NOT_AVAILABLE_ERROR)
2615 throw;
2616 }
2617
2618 return cache;
2619 }
2620
2621 static enum unwind_stop_reason
2622 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2623 void **this_cache)
2624 {
2625 struct amd64_frame_cache *cache =
2626 amd64_frame_cache (this_frame, this_cache);
2627
2628 if (!cache->base_p)
2629 return UNWIND_UNAVAILABLE;
2630
2631 /* This marks the outermost frame. */
2632 if (cache->base == 0)
2633 return UNWIND_OUTERMOST;
2634
2635 return UNWIND_NO_REASON;
2636 }
2637
2638 static void
2639 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2640 struct frame_id *this_id)
2641 {
2642 struct amd64_frame_cache *cache =
2643 amd64_frame_cache (this_frame, this_cache);
2644
2645 if (!cache->base_p)
2646 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2647 else if (cache->base == 0)
2648 {
2649 /* This marks the outermost frame. */
2650 return;
2651 }
2652 else
2653 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2654 }
2655
2656 static struct value *
2657 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2658 int regnum)
2659 {
2660 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2661 struct amd64_frame_cache *cache =
2662 amd64_frame_cache (this_frame, this_cache);
2663
2664 gdb_assert (regnum >= 0);
2665
2666 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2667 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2668
2669 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2670 return frame_unwind_got_memory (this_frame, regnum,
2671 cache->saved_regs[regnum]);
2672
2673 return frame_unwind_got_register (this_frame, regnum, regnum);
2674 }
2675
2676 static const struct frame_unwind amd64_frame_unwind =
2677 {
2678 NORMAL_FRAME,
2679 amd64_frame_unwind_stop_reason,
2680 amd64_frame_this_id,
2681 amd64_frame_prev_register,
2682 NULL,
2683 default_frame_sniffer
2684 };
2685 \f
2686 /* Generate a bytecode expression to get the value of the saved PC. */
2687
2688 static void
2689 amd64_gen_return_address (struct gdbarch *gdbarch,
2690 struct agent_expr *ax, struct axs_value *value,
2691 CORE_ADDR scope)
2692 {
2693 /* The following sequence assumes the traditional use of the base
2694 register. */
2695 ax_reg (ax, AMD64_RBP_REGNUM);
2696 ax_const_l (ax, 8);
2697 ax_simple (ax, aop_add);
2698 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2699 value->kind = axs_lvalue_memory;
2700 }
2701 \f
2702
2703 /* Signal trampolines. */
2704
2705 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2706 64-bit variants. This would require using identical frame caches
2707 on both platforms. */
2708
2709 static struct amd64_frame_cache *
2710 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2711 {
2712 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2714 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2715 struct amd64_frame_cache *cache;
2716 CORE_ADDR addr;
2717 gdb_byte buf[8];
2718 int i;
2719
2720 if (*this_cache)
2721 return (struct amd64_frame_cache *) *this_cache;
2722
2723 cache = amd64_alloc_frame_cache ();
2724
2725 try
2726 {
2727 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2728 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2729
2730 addr = tdep->sigcontext_addr (this_frame);
2731 gdb_assert (tdep->sc_reg_offset);
2732 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2733 for (i = 0; i < tdep->sc_num_regs; i++)
2734 if (tdep->sc_reg_offset[i] != -1)
2735 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2736
2737 cache->base_p = 1;
2738 }
2739 catch (const gdb_exception_error &ex)
2740 {
2741 if (ex.error != NOT_AVAILABLE_ERROR)
2742 throw;
2743 }
2744
2745 *this_cache = cache;
2746 return cache;
2747 }
2748
2749 static enum unwind_stop_reason
2750 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2751 void **this_cache)
2752 {
2753 struct amd64_frame_cache *cache =
2754 amd64_sigtramp_frame_cache (this_frame, this_cache);
2755
2756 if (!cache->base_p)
2757 return UNWIND_UNAVAILABLE;
2758
2759 return UNWIND_NO_REASON;
2760 }
2761
2762 static void
2763 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2764 void **this_cache, struct frame_id *this_id)
2765 {
2766 struct amd64_frame_cache *cache =
2767 amd64_sigtramp_frame_cache (this_frame, this_cache);
2768
2769 if (!cache->base_p)
2770 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2771 else if (cache->base == 0)
2772 {
2773 /* This marks the outermost frame. */
2774 return;
2775 }
2776 else
2777 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2778 }
2779
2780 static struct value *
2781 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2782 void **this_cache, int regnum)
2783 {
2784 /* Make sure we've initialized the cache. */
2785 amd64_sigtramp_frame_cache (this_frame, this_cache);
2786
2787 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2788 }
2789
2790 static int
2791 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2792 struct frame_info *this_frame,
2793 void **this_cache)
2794 {
2795 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2796
2797 /* We shouldn't even bother if we don't have a sigcontext_addr
2798 handler. */
2799 if (tdep->sigcontext_addr == NULL)
2800 return 0;
2801
2802 if (tdep->sigtramp_p != NULL)
2803 {
2804 if (tdep->sigtramp_p (this_frame))
2805 return 1;
2806 }
2807
2808 if (tdep->sigtramp_start != 0)
2809 {
2810 CORE_ADDR pc = get_frame_pc (this_frame);
2811
2812 gdb_assert (tdep->sigtramp_end != 0);
2813 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2814 return 1;
2815 }
2816
2817 return 0;
2818 }
2819
2820 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2821 {
2822 SIGTRAMP_FRAME,
2823 amd64_sigtramp_frame_unwind_stop_reason,
2824 amd64_sigtramp_frame_this_id,
2825 amd64_sigtramp_frame_prev_register,
2826 NULL,
2827 amd64_sigtramp_frame_sniffer
2828 };
2829 \f
2830
2831 static CORE_ADDR
2832 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2833 {
2834 struct amd64_frame_cache *cache =
2835 amd64_frame_cache (this_frame, this_cache);
2836
2837 return cache->base;
2838 }
2839
2840 static const struct frame_base amd64_frame_base =
2841 {
2842 &amd64_frame_unwind,
2843 amd64_frame_base_address,
2844 amd64_frame_base_address,
2845 amd64_frame_base_address
2846 };
2847
2848 /* Normal frames, but in a function epilogue. */
2849
2850 /* Implement the stack_frame_destroyed_p gdbarch method.
2851
2852 The epilogue is defined here as the 'ret' instruction, which will
2853 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2854 the function's stack frame. */
2855
2856 static int
2857 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2858 {
2859 gdb_byte insn;
2860 struct compunit_symtab *cust;
2861
2862 cust = find_pc_compunit_symtab (pc);
2863 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2864 return 0;
2865
2866 if (target_read_memory (pc, &insn, 1))
2867 return 0; /* Can't read memory at pc. */
2868
2869 if (insn != 0xc3) /* 'ret' instruction. */
2870 return 0;
2871
2872 return 1;
2873 }
2874
2875 static int
2876 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2877 struct frame_info *this_frame,
2878 void **this_prologue_cache)
2879 {
2880 if (frame_relative_level (this_frame) == 0)
2881 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2882 get_frame_pc (this_frame));
2883 else
2884 return 0;
2885 }
2886
2887 static struct amd64_frame_cache *
2888 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2889 {
2890 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2891 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2892 struct amd64_frame_cache *cache;
2893 gdb_byte buf[8];
2894
2895 if (*this_cache)
2896 return (struct amd64_frame_cache *) *this_cache;
2897
2898 cache = amd64_alloc_frame_cache ();
2899 *this_cache = cache;
2900
2901 try
2902 {
2903 /* Cache base will be %esp plus cache->sp_offset (-8). */
2904 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2905 cache->base = extract_unsigned_integer (buf, 8,
2906 byte_order) + cache->sp_offset;
2907
2908 /* Cache pc will be the frame func. */
2909 cache->pc = get_frame_pc (this_frame);
2910
2911 /* The saved %esp will be at cache->base plus 16. */
2912 cache->saved_sp = cache->base + 16;
2913
2914 /* The saved %eip will be at cache->base plus 8. */
2915 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2916
2917 cache->base_p = 1;
2918 }
2919 catch (const gdb_exception_error &ex)
2920 {
2921 if (ex.error != NOT_AVAILABLE_ERROR)
2922 throw;
2923 }
2924
2925 return cache;
2926 }
2927
2928 static enum unwind_stop_reason
2929 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2930 void **this_cache)
2931 {
2932 struct amd64_frame_cache *cache
2933 = amd64_epilogue_frame_cache (this_frame, this_cache);
2934
2935 if (!cache->base_p)
2936 return UNWIND_UNAVAILABLE;
2937
2938 return UNWIND_NO_REASON;
2939 }
2940
2941 static void
2942 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2943 void **this_cache,
2944 struct frame_id *this_id)
2945 {
2946 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2947 this_cache);
2948
2949 if (!cache->base_p)
2950 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2951 else
2952 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2953 }
2954
2955 static const struct frame_unwind amd64_epilogue_frame_unwind =
2956 {
2957 NORMAL_FRAME,
2958 amd64_epilogue_frame_unwind_stop_reason,
2959 amd64_epilogue_frame_this_id,
2960 amd64_frame_prev_register,
2961 NULL,
2962 amd64_epilogue_frame_sniffer
2963 };
2964
2965 static struct frame_id
2966 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2967 {
2968 CORE_ADDR fp;
2969
2970 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2971
2972 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2973 }
2974
2975 /* 16 byte align the SP per frame requirements. */
2976
2977 static CORE_ADDR
2978 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2979 {
2980 return sp & -(CORE_ADDR)16;
2981 }
2982 \f
2983
2984 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2985 in the floating-point register set REGSET to register cache
2986 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2987
2988 static void
2989 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2990 int regnum, const void *fpregs, size_t len)
2991 {
2992 struct gdbarch *gdbarch = regcache->arch ();
2993 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2994
2995 gdb_assert (len >= tdep->sizeof_fpregset);
2996 amd64_supply_fxsave (regcache, regnum, fpregs);
2997 }
2998
2999 /* Collect register REGNUM from the register cache REGCACHE and store
3000 it in the buffer specified by FPREGS and LEN as described by the
3001 floating-point register set REGSET. If REGNUM is -1, do this for
3002 all registers in REGSET. */
3003
3004 static void
3005 amd64_collect_fpregset (const struct regset *regset,
3006 const struct regcache *regcache,
3007 int regnum, void *fpregs, size_t len)
3008 {
3009 struct gdbarch *gdbarch = regcache->arch ();
3010 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3011
3012 gdb_assert (len >= tdep->sizeof_fpregset);
3013 amd64_collect_fxsave (regcache, regnum, fpregs);
3014 }
3015
3016 const struct regset amd64_fpregset =
3017 {
3018 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3019 };
3020 \f
3021
3022 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3023 %rdi. We expect its value to be a pointer to the jmp_buf structure
3024 from which we extract the address that we will land at. This
3025 address is copied into PC. This routine returns non-zero on
3026 success. */
3027
3028 static int
3029 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3030 {
3031 gdb_byte buf[8];
3032 CORE_ADDR jb_addr;
3033 struct gdbarch *gdbarch = get_frame_arch (frame);
3034 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
3035 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
3036
3037 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3038 longjmp will land. */
3039 if (jb_pc_offset == -1)
3040 return 0;
3041
3042 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3043 jb_addr= extract_typed_address
3044 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3045 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3046 return 0;
3047
3048 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3049
3050 return 1;
3051 }
3052
3053 static const int amd64_record_regmap[] =
3054 {
3055 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3056 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3057 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3058 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3059 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3060 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3061 };
3062
3063 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3064
3065 static bool
3066 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3067 {
3068 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3069 AMD64_RAX_REGNUM,
3070 AMD64_RIP_REGNUM);
3071 }
3072
3073 void
3074 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3075 const target_desc *default_tdesc)
3076 {
3077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3078 const struct target_desc *tdesc = info.target_desc;
3079 static const char *const stap_integer_prefixes[] = { "$", NULL };
3080 static const char *const stap_register_prefixes[] = { "%", NULL };
3081 static const char *const stap_register_indirection_prefixes[] = { "(",
3082 NULL };
3083 static const char *const stap_register_indirection_suffixes[] = { ")",
3084 NULL };
3085
3086 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3087 floating-point registers. */
3088 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3089 tdep->fpregset = &amd64_fpregset;
3090
3091 if (! tdesc_has_registers (tdesc))
3092 tdesc = default_tdesc;
3093 tdep->tdesc = tdesc;
3094
3095 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3096 tdep->register_names = amd64_register_names;
3097
3098 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3099 {
3100 tdep->zmmh_register_names = amd64_zmmh_names;
3101 tdep->k_register_names = amd64_k_names;
3102 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3103 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3104
3105 tdep->num_zmm_regs = 32;
3106 tdep->num_xmm_avx512_regs = 16;
3107 tdep->num_ymm_avx512_regs = 16;
3108
3109 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3110 tdep->k0_regnum = AMD64_K0_REGNUM;
3111 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3112 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3113 }
3114
3115 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3116 {
3117 tdep->ymmh_register_names = amd64_ymmh_names;
3118 tdep->num_ymm_regs = 16;
3119 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3120 }
3121
3122 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3123 {
3124 tdep->mpx_register_names = amd64_mpx_names;
3125 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3126 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3127 }
3128
3129 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3130 {
3131 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
3132 }
3133
3134 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3135 {
3136 tdep->pkeys_register_names = amd64_pkeys_names;
3137 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3138 tdep->num_pkeys_regs = 1;
3139 }
3140
3141 tdep->num_byte_regs = 20;
3142 tdep->num_word_regs = 16;
3143 tdep->num_dword_regs = 16;
3144 /* Avoid wiring in the MMX registers for now. */
3145 tdep->num_mmx_regs = 0;
3146
3147 set_gdbarch_pseudo_register_read_value (gdbarch,
3148 amd64_pseudo_register_read_value);
3149 set_gdbarch_pseudo_register_write (gdbarch,
3150 amd64_pseudo_register_write);
3151 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3152 amd64_ax_pseudo_register_collect);
3153
3154 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3155
3156 /* AMD64 has an FPU and 16 SSE registers. */
3157 tdep->st0_regnum = AMD64_ST0_REGNUM;
3158 tdep->num_xmm_regs = 16;
3159
3160 /* This is what all the fuss is about. */
3161 set_gdbarch_long_bit (gdbarch, 64);
3162 set_gdbarch_long_long_bit (gdbarch, 64);
3163 set_gdbarch_ptr_bit (gdbarch, 64);
3164
3165 /* In contrast to the i386, on AMD64 a `long double' actually takes
3166 up 128 bits, even though it's still based on the i387 extended
3167 floating-point format which has only 80 significant bits. */
3168 set_gdbarch_long_double_bit (gdbarch, 128);
3169
3170 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3171
3172 /* Register numbers of various important registers. */
3173 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3174 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3175 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3176 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3177
3178 /* The "default" register numbering scheme for AMD64 is referred to
3179 as the "DWARF Register Number Mapping" in the System V psABI.
3180 The preferred debugging format for all known AMD64 targets is
3181 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3182 DWARF-1), but we provide the same mapping just in case. This
3183 mapping is also used for stabs, which GCC does support. */
3184 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3185 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3186
3187 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3188 be in use on any of the supported AMD64 targets. */
3189
3190 /* Call dummy code. */
3191 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3192 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3193 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3194
3195 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3196 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3197 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3198
3199 set_gdbarch_return_value (gdbarch, amd64_return_value);
3200
3201 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3202
3203 tdep->record_regmap = amd64_record_regmap;
3204
3205 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3206
3207 /* Hook the function epilogue frame unwinder. This unwinder is
3208 appended to the list first, so that it supercedes the other
3209 unwinders in function epilogues. */
3210 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3211
3212 /* Hook the prologue-based frame unwinders. */
3213 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3214 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3215 frame_base_set_default (gdbarch, &amd64_frame_base);
3216
3217 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3218
3219 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3220
3221 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3222
3223 /* SystemTap variables and functions. */
3224 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3225 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3226 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3227 stap_register_indirection_prefixes);
3228 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3229 stap_register_indirection_suffixes);
3230 set_gdbarch_stap_is_single_operand (gdbarch,
3231 i386_stap_is_single_operand);
3232 set_gdbarch_stap_parse_special_token (gdbarch,
3233 i386_stap_parse_special_token);
3234 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3235 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3236 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3237
3238 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3239 amd64_in_indirect_branch_thunk);
3240 }
3241
3242 /* Initialize ARCH for x86-64, no osabi. */
3243
3244 static void
3245 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3246 {
3247 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3248 true));
3249 }
3250
3251 static struct type *
3252 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3253 {
3254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3255
3256 switch (regnum - tdep->eax_regnum)
3257 {
3258 case AMD64_RBP_REGNUM: /* %ebp */
3259 case AMD64_RSP_REGNUM: /* %esp */
3260 return builtin_type (gdbarch)->builtin_data_ptr;
3261 case AMD64_RIP_REGNUM: /* %eip */
3262 return builtin_type (gdbarch)->builtin_func_ptr;
3263 }
3264
3265 return i386_pseudo_register_type (gdbarch, regnum);
3266 }
3267
3268 void
3269 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3270 const target_desc *default_tdesc)
3271 {
3272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3273
3274 amd64_init_abi (info, gdbarch, default_tdesc);
3275
3276 tdep->num_dword_regs = 17;
3277 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3278
3279 set_gdbarch_long_bit (gdbarch, 32);
3280 set_gdbarch_ptr_bit (gdbarch, 32);
3281 }
3282
3283 /* Initialize ARCH for x64-32, no osabi. */
3284
3285 static void
3286 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3287 {
3288 amd64_x32_init_abi (info, arch,
3289 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3290 }
3291
3292 /* Return the target description for a specified XSAVE feature mask. */
3293
3294 const struct target_desc *
3295 amd64_target_description (uint64_t xcr0, bool segments)
3296 {
3297 static target_desc *amd64_tdescs \
3298 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3299 target_desc **tdesc;
3300
3301 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3302 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3303 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3304 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3305 [segments ? 1 : 0];
3306
3307 if (*tdesc == NULL)
3308 *tdesc = amd64_create_target_description (xcr0, false, false,
3309 segments);
3310
3311 return *tdesc;
3312 }
3313
3314 void
3315 _initialize_amd64_tdep (void)
3316 {
3317 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3318 amd64_none_init_abi);
3319 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3320 amd64_x32_none_init_abi);
3321
3322 #if GDB_SELF_TEST
3323 struct
3324 {
3325 const char *xml;
3326 uint64_t mask;
3327 } xml_masks[] = {
3328 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3329 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3330 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3331 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3332 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3333 { "i386/amd64-avx-mpx-avx512-pku.xml",
3334 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3335 };
3336
3337 for (auto &a : xml_masks)
3338 {
3339 auto tdesc = amd64_target_description (a.mask, true);
3340
3341 selftests::record_xml_tdesc (a.xml, tdesc);
3342 }
3343 #endif /* GDB_SELF_TEST */
3344 }
3345 \f
3346
3347 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3348 sense that the instruction pointer and data pointer are simply
3349 64-bit offsets into the code segment and the data segment instead
3350 of a selector offset pair. The functions below store the upper 32
3351 bits of these pointers (instead of just the 16-bits of the segment
3352 selector). */
3353
3354 /* Fill register REGNUM in REGCACHE with the appropriate
3355 floating-point or SSE register value from *FXSAVE. If REGNUM is
3356 -1, do this for all registers. This function masks off any of the
3357 reserved bits in *FXSAVE. */
3358
3359 void
3360 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3361 const void *fxsave)
3362 {
3363 struct gdbarch *gdbarch = regcache->arch ();
3364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3365
3366 i387_supply_fxsave (regcache, regnum, fxsave);
3367
3368 if (fxsave
3369 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3370 {
3371 const gdb_byte *regs = (const gdb_byte *) fxsave;
3372
3373 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3374 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3375 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3376 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3377 }
3378 }
3379
3380 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3381
3382 void
3383 amd64_supply_xsave (struct regcache *regcache, int regnum,
3384 const void *xsave)
3385 {
3386 struct gdbarch *gdbarch = regcache->arch ();
3387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3388
3389 i387_supply_xsave (regcache, regnum, xsave);
3390
3391 if (xsave
3392 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3393 {
3394 const gdb_byte *regs = (const gdb_byte *) xsave;
3395 ULONGEST clear_bv;
3396
3397 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3398
3399 /* If the FISEG and FOSEG registers have not been initialised yet
3400 (their CLEAR_BV bit is set) then their default values of zero will
3401 have already been setup by I387_SUPPLY_XSAVE. */
3402 if (!(clear_bv & X86_XSTATE_X87))
3403 {
3404 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3405 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3406 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3407 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3408 }
3409 }
3410 }
3411
3412 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3413 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3414 all registers. This function doesn't touch any of the reserved
3415 bits in *FXSAVE. */
3416
3417 void
3418 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3419 void *fxsave)
3420 {
3421 struct gdbarch *gdbarch = regcache->arch ();
3422 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3423 gdb_byte *regs = (gdb_byte *) fxsave;
3424
3425 i387_collect_fxsave (regcache, regnum, fxsave);
3426
3427 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3428 {
3429 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3430 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3431 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3432 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3433 }
3434 }
3435
3436 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3437
3438 void
3439 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3440 void *xsave, int gcore)
3441 {
3442 struct gdbarch *gdbarch = regcache->arch ();
3443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3444 gdb_byte *regs = (gdb_byte *) xsave;
3445
3446 i387_collect_xsave (regcache, regnum, xsave, gcore);
3447
3448 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3449 {
3450 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3451 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3452 regs + 12);
3453 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3454 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3455 regs + 20);
3456 }
3457 }