]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/amd64-tdep.c
config:
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "opcode/i386.h"
25 #include "dis-asm.h"
26 #include "arch-utils.h"
27 #include "block.h"
28 #include "dummy-frame.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39
40 #include "gdb_assert.h"
41
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
44
45 /* Note that the AMD64 architecture was previously known as x86-64.
46 The latter is (forever) engraved into the canonical system name as
47 returned by config.guess, and used as the name for the AMD64 port
48 of GNU/Linux. The BSD's have renamed their ports to amd64; they
49 don't like to shout. For GDB we prefer the amd64_-prefix over the
50 x86_64_-prefix since it's so much easier to type. */
51
52 /* Register information. */
53
54 static const char *amd64_register_names[] =
55 {
56 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
57
58 /* %r8 is indeed register number 8. */
59 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
60 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
61
62 /* %st0 is register number 24. */
63 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
65
66 /* %xmm0 is register number 40. */
67 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
68 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
69 "mxcsr",
70 };
71
72 /* Total number of registers. */
73 #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
74
75 /* Return the name of register REGNUM. */
76
77 const char *
78 amd64_register_name (struct gdbarch *gdbarch, int regnum)
79 {
80 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
81 return amd64_register_names[regnum];
82
83 return NULL;
84 }
85
86 /* Return the GDB type object for the "standard" data type of data in
87 register REGNUM. */
88
89 struct type *
90 amd64_register_type (struct gdbarch *gdbarch, int regnum)
91 {
92 if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
93 return builtin_type (gdbarch)->builtin_int64;
94 if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
95 return builtin_type (gdbarch)->builtin_data_ptr;
96 if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
97 return builtin_type (gdbarch)->builtin_int64;
98 if (regnum == AMD64_RIP_REGNUM)
99 return builtin_type (gdbarch)->builtin_func_ptr;
100 if (regnum == AMD64_EFLAGS_REGNUM)
101 return i386_eflags_type (gdbarch);
102 if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
103 return builtin_type (gdbarch)->builtin_int32;
104 if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
105 return i387_ext_type (gdbarch);
106 if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
107 return builtin_type (gdbarch)->builtin_int32;
108 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
109 return i386_sse_type (gdbarch);
110 if (regnum == AMD64_MXCSR_REGNUM)
111 return i386_mxcsr_type (gdbarch);
112
113 internal_error (__FILE__, __LINE__, _("invalid regnum"));
114 }
115
116 /* DWARF Register Number Mapping as defined in the System V psABI,
117 section 3.6. */
118
119 static int amd64_dwarf_regmap[] =
120 {
121 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
122 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
123 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
124 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
125
126 /* Frame Pointer Register RBP. */
127 AMD64_RBP_REGNUM,
128
129 /* Stack Pointer Register RSP. */
130 AMD64_RSP_REGNUM,
131
132 /* Extended Integer Registers 8 - 15. */
133 8, 9, 10, 11, 12, 13, 14, 15,
134
135 /* Return Address RA. Mapped to RIP. */
136 AMD64_RIP_REGNUM,
137
138 /* SSE Registers 0 - 7. */
139 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
140 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
141 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
142 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
143
144 /* Extended SSE Registers 8 - 15. */
145 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
146 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
147 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
148 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
149
150 /* Floating Point Registers 0-7. */
151 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
152 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
153 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
154 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
155
156 /* Control and Status Flags Register. */
157 AMD64_EFLAGS_REGNUM,
158
159 /* Selector Registers. */
160 AMD64_ES_REGNUM,
161 AMD64_CS_REGNUM,
162 AMD64_SS_REGNUM,
163 AMD64_DS_REGNUM,
164 AMD64_FS_REGNUM,
165 AMD64_GS_REGNUM,
166 -1,
167 -1,
168
169 /* Segment Base Address Registers. */
170 -1,
171 -1,
172 -1,
173 -1,
174
175 /* Special Selector Registers. */
176 -1,
177 -1,
178
179 /* Floating Point Control Registers. */
180 AMD64_MXCSR_REGNUM,
181 AMD64_FCTRL_REGNUM,
182 AMD64_FSTAT_REGNUM
183 };
184
185 static const int amd64_dwarf_regmap_len =
186 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
187
188 /* Convert DWARF register number REG to the appropriate register
189 number used by GDB. */
190
191 static int
192 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
193 {
194 int regnum = -1;
195
196 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
197 regnum = amd64_dwarf_regmap[reg];
198
199 if (regnum == -1)
200 warning (_("Unmapped DWARF Register #%d encountered."), reg);
201
202 return regnum;
203 }
204
205 /* Map architectural register numbers to gdb register numbers. */
206
207 static const int amd64_arch_regmap[16] =
208 {
209 AMD64_RAX_REGNUM, /* %rax */
210 AMD64_RCX_REGNUM, /* %rcx */
211 AMD64_RDX_REGNUM, /* %rdx */
212 AMD64_RBX_REGNUM, /* %rbx */
213 AMD64_RSP_REGNUM, /* %rsp */
214 AMD64_RBP_REGNUM, /* %rbp */
215 AMD64_RSI_REGNUM, /* %rsi */
216 AMD64_RDI_REGNUM, /* %rdi */
217 AMD64_R8_REGNUM, /* %r8 */
218 AMD64_R9_REGNUM, /* %r9 */
219 AMD64_R10_REGNUM, /* %r10 */
220 AMD64_R11_REGNUM, /* %r11 */
221 AMD64_R12_REGNUM, /* %r12 */
222 AMD64_R13_REGNUM, /* %r13 */
223 AMD64_R14_REGNUM, /* %r14 */
224 AMD64_R15_REGNUM /* %r15 */
225 };
226
227 static const int amd64_arch_regmap_len =
228 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
229
230 /* Convert architectural register number REG to the appropriate register
231 number used by GDB. */
232
233 static int
234 amd64_arch_reg_to_regnum (int reg)
235 {
236 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
237
238 return amd64_arch_regmap[reg];
239 }
240
241 \f
242
243 /* Register classes as defined in the psABI. */
244
245 enum amd64_reg_class
246 {
247 AMD64_INTEGER,
248 AMD64_SSE,
249 AMD64_SSEUP,
250 AMD64_X87,
251 AMD64_X87UP,
252 AMD64_COMPLEX_X87,
253 AMD64_NO_CLASS,
254 AMD64_MEMORY
255 };
256
257 /* Return the union class of CLASS1 and CLASS2. See the psABI for
258 details. */
259
260 static enum amd64_reg_class
261 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
262 {
263 /* Rule (a): If both classes are equal, this is the resulting class. */
264 if (class1 == class2)
265 return class1;
266
267 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
268 is the other class. */
269 if (class1 == AMD64_NO_CLASS)
270 return class2;
271 if (class2 == AMD64_NO_CLASS)
272 return class1;
273
274 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
275 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
276 return AMD64_MEMORY;
277
278 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
279 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
280 return AMD64_INTEGER;
281
282 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
283 MEMORY is used as class. */
284 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
285 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
286 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
287 return AMD64_MEMORY;
288
289 /* Rule (f): Otherwise class SSE is used. */
290 return AMD64_SSE;
291 }
292
293 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
294
295 /* Return non-zero if TYPE is a non-POD structure or union type. */
296
297 static int
298 amd64_non_pod_p (struct type *type)
299 {
300 /* ??? A class with a base class certainly isn't POD, but does this
301 catch all non-POD structure types? */
302 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
303 return 1;
304
305 return 0;
306 }
307
308 /* Classify TYPE according to the rules for aggregate (structures and
309 arrays) and union types, and store the result in CLASS. */
310
311 static void
312 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
313 {
314 int len = TYPE_LENGTH (type);
315
316 /* 1. If the size of an object is larger than two eightbytes, or in
317 C++, is a non-POD structure or union type, or contains
318 unaligned fields, it has class memory. */
319 if (len > 16 || amd64_non_pod_p (type))
320 {
321 class[0] = class[1] = AMD64_MEMORY;
322 return;
323 }
324
325 /* 2. Both eightbytes get initialized to class NO_CLASS. */
326 class[0] = class[1] = AMD64_NO_CLASS;
327
328 /* 3. Each field of an object is classified recursively so that
329 always two fields are considered. The resulting class is
330 calculated according to the classes of the fields in the
331 eightbyte: */
332
333 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
334 {
335 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
336
337 /* All fields in an array have the same type. */
338 amd64_classify (subtype, class);
339 if (len > 8 && class[1] == AMD64_NO_CLASS)
340 class[1] = class[0];
341 }
342 else
343 {
344 int i;
345
346 /* Structure or union. */
347 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
348 || TYPE_CODE (type) == TYPE_CODE_UNION);
349
350 for (i = 0; i < TYPE_NFIELDS (type); i++)
351 {
352 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
353 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
354 enum amd64_reg_class subclass[2];
355
356 /* Ignore static fields. */
357 if (field_is_static (&TYPE_FIELD (type, i)))
358 continue;
359
360 gdb_assert (pos == 0 || pos == 1);
361
362 amd64_classify (subtype, subclass);
363 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
364 if (pos == 0)
365 class[1] = amd64_merge_classes (class[1], subclass[1]);
366 }
367 }
368
369 /* 4. Then a post merger cleanup is done: */
370
371 /* Rule (a): If one of the classes is MEMORY, the whole argument is
372 passed in memory. */
373 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
374 class[0] = class[1] = AMD64_MEMORY;
375
376 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
377 SSE. */
378 if (class[0] == AMD64_SSEUP)
379 class[0] = AMD64_SSE;
380 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
381 class[1] = AMD64_SSE;
382 }
383
384 /* Classify TYPE, and store the result in CLASS. */
385
386 static void
387 amd64_classify (struct type *type, enum amd64_reg_class class[2])
388 {
389 enum type_code code = TYPE_CODE (type);
390 int len = TYPE_LENGTH (type);
391
392 class[0] = class[1] = AMD64_NO_CLASS;
393
394 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
395 long, long long, and pointers are in the INTEGER class. Similarly,
396 range types, used by languages such as Ada, are also in the INTEGER
397 class. */
398 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
399 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
400 || code == TYPE_CODE_CHAR
401 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
402 && (len == 1 || len == 2 || len == 4 || len == 8))
403 class[0] = AMD64_INTEGER;
404
405 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
406 are in class SSE. */
407 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
408 && (len == 4 || len == 8))
409 /* FIXME: __m64 . */
410 class[0] = AMD64_SSE;
411
412 /* Arguments of types __float128, _Decimal128 and __m128 are split into
413 two halves. The least significant ones belong to class SSE, the most
414 significant one to class SSEUP. */
415 else if (code == TYPE_CODE_DECFLOAT && len == 16)
416 /* FIXME: __float128, __m128. */
417 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
418
419 /* The 64-bit mantissa of arguments of type long double belongs to
420 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
421 class X87UP. */
422 else if (code == TYPE_CODE_FLT && len == 16)
423 /* Class X87 and X87UP. */
424 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
425
426 /* Aggregates. */
427 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
428 || code == TYPE_CODE_UNION)
429 amd64_classify_aggregate (type, class);
430 }
431
432 static enum return_value_convention
433 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
434 struct type *type, struct regcache *regcache,
435 gdb_byte *readbuf, const gdb_byte *writebuf)
436 {
437 enum amd64_reg_class class[2];
438 int len = TYPE_LENGTH (type);
439 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
440 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
441 int integer_reg = 0;
442 int sse_reg = 0;
443 int i;
444
445 gdb_assert (!(readbuf && writebuf));
446
447 /* 1. Classify the return type with the classification algorithm. */
448 amd64_classify (type, class);
449
450 /* 2. If the type has class MEMORY, then the caller provides space
451 for the return value and passes the address of this storage in
452 %rdi as if it were the first argument to the function. In effect,
453 this address becomes a hidden first argument.
454
455 On return %rax will contain the address that has been passed in
456 by the caller in %rdi. */
457 if (class[0] == AMD64_MEMORY)
458 {
459 /* As indicated by the comment above, the ABI guarantees that we
460 can always find the return value just after the function has
461 returned. */
462
463 if (readbuf)
464 {
465 ULONGEST addr;
466
467 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
468 read_memory (addr, readbuf, TYPE_LENGTH (type));
469 }
470
471 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
472 }
473
474 gdb_assert (class[1] != AMD64_MEMORY);
475 gdb_assert (len <= 16);
476
477 for (i = 0; len > 0; i++, len -= 8)
478 {
479 int regnum = -1;
480 int offset = 0;
481
482 switch (class[i])
483 {
484 case AMD64_INTEGER:
485 /* 3. If the class is INTEGER, the next available register
486 of the sequence %rax, %rdx is used. */
487 regnum = integer_regnum[integer_reg++];
488 break;
489
490 case AMD64_SSE:
491 /* 4. If the class is SSE, the next available SSE register
492 of the sequence %xmm0, %xmm1 is used. */
493 regnum = sse_regnum[sse_reg++];
494 break;
495
496 case AMD64_SSEUP:
497 /* 5. If the class is SSEUP, the eightbyte is passed in the
498 upper half of the last used SSE register. */
499 gdb_assert (sse_reg > 0);
500 regnum = sse_regnum[sse_reg - 1];
501 offset = 8;
502 break;
503
504 case AMD64_X87:
505 /* 6. If the class is X87, the value is returned on the X87
506 stack in %st0 as 80-bit x87 number. */
507 regnum = AMD64_ST0_REGNUM;
508 if (writebuf)
509 i387_return_value (gdbarch, regcache);
510 break;
511
512 case AMD64_X87UP:
513 /* 7. If the class is X87UP, the value is returned together
514 with the previous X87 value in %st0. */
515 gdb_assert (i > 0 && class[0] == AMD64_X87);
516 regnum = AMD64_ST0_REGNUM;
517 offset = 8;
518 len = 2;
519 break;
520
521 case AMD64_NO_CLASS:
522 continue;
523
524 default:
525 gdb_assert (!"Unexpected register class.");
526 }
527
528 gdb_assert (regnum != -1);
529
530 if (readbuf)
531 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
532 readbuf + i * 8);
533 if (writebuf)
534 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
535 writebuf + i * 8);
536 }
537
538 return RETURN_VALUE_REGISTER_CONVENTION;
539 }
540 \f
541
542 static CORE_ADDR
543 amd64_push_arguments (struct regcache *regcache, int nargs,
544 struct value **args, CORE_ADDR sp, int struct_return)
545 {
546 static int integer_regnum[] =
547 {
548 AMD64_RDI_REGNUM, /* %rdi */
549 AMD64_RSI_REGNUM, /* %rsi */
550 AMD64_RDX_REGNUM, /* %rdx */
551 AMD64_RCX_REGNUM, /* %rcx */
552 8, /* %r8 */
553 9 /* %r9 */
554 };
555 static int sse_regnum[] =
556 {
557 /* %xmm0 ... %xmm7 */
558 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
559 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
560 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
561 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
562 };
563 struct value **stack_args = alloca (nargs * sizeof (struct value *));
564 int num_stack_args = 0;
565 int num_elements = 0;
566 int element = 0;
567 int integer_reg = 0;
568 int sse_reg = 0;
569 int i;
570
571 /* Reserve a register for the "hidden" argument. */
572 if (struct_return)
573 integer_reg++;
574
575 for (i = 0; i < nargs; i++)
576 {
577 struct type *type = value_type (args[i]);
578 int len = TYPE_LENGTH (type);
579 enum amd64_reg_class class[2];
580 int needed_integer_regs = 0;
581 int needed_sse_regs = 0;
582 int j;
583
584 /* Classify argument. */
585 amd64_classify (type, class);
586
587 /* Calculate the number of integer and SSE registers needed for
588 this argument. */
589 for (j = 0; j < 2; j++)
590 {
591 if (class[j] == AMD64_INTEGER)
592 needed_integer_regs++;
593 else if (class[j] == AMD64_SSE)
594 needed_sse_regs++;
595 }
596
597 /* Check whether enough registers are available, and if the
598 argument should be passed in registers at all. */
599 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
600 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
601 || (needed_integer_regs == 0 && needed_sse_regs == 0))
602 {
603 /* The argument will be passed on the stack. */
604 num_elements += ((len + 7) / 8);
605 stack_args[num_stack_args++] = args[i];
606 }
607 else
608 {
609 /* The argument will be passed in registers. */
610 const gdb_byte *valbuf = value_contents (args[i]);
611 gdb_byte buf[8];
612
613 gdb_assert (len <= 16);
614
615 for (j = 0; len > 0; j++, len -= 8)
616 {
617 int regnum = -1;
618 int offset = 0;
619
620 switch (class[j])
621 {
622 case AMD64_INTEGER:
623 regnum = integer_regnum[integer_reg++];
624 break;
625
626 case AMD64_SSE:
627 regnum = sse_regnum[sse_reg++];
628 break;
629
630 case AMD64_SSEUP:
631 gdb_assert (sse_reg > 0);
632 regnum = sse_regnum[sse_reg - 1];
633 offset = 8;
634 break;
635
636 default:
637 gdb_assert (!"Unexpected register class.");
638 }
639
640 gdb_assert (regnum != -1);
641 memset (buf, 0, sizeof buf);
642 memcpy (buf, valbuf + j * 8, min (len, 8));
643 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
644 }
645 }
646 }
647
648 /* Allocate space for the arguments on the stack. */
649 sp -= num_elements * 8;
650
651 /* The psABI says that "The end of the input argument area shall be
652 aligned on a 16 byte boundary." */
653 sp &= ~0xf;
654
655 /* Write out the arguments to the stack. */
656 for (i = 0; i < num_stack_args; i++)
657 {
658 struct type *type = value_type (stack_args[i]);
659 const gdb_byte *valbuf = value_contents (stack_args[i]);
660 int len = TYPE_LENGTH (type);
661
662 write_memory (sp + element * 8, valbuf, len);
663 element += ((len + 7) / 8);
664 }
665
666 /* The psABI says that "For calls that may call functions that use
667 varargs or stdargs (prototype-less calls or calls to functions
668 containing ellipsis (...) in the declaration) %al is used as
669 hidden argument to specify the number of SSE registers used. */
670 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
671 return sp;
672 }
673
674 static CORE_ADDR
675 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
676 struct regcache *regcache, CORE_ADDR bp_addr,
677 int nargs, struct value **args, CORE_ADDR sp,
678 int struct_return, CORE_ADDR struct_addr)
679 {
680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
681 gdb_byte buf[8];
682
683 /* Pass arguments. */
684 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
685
686 /* Pass "hidden" argument". */
687 if (struct_return)
688 {
689 store_unsigned_integer (buf, 8, byte_order, struct_addr);
690 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
691 }
692
693 /* Store return address. */
694 sp -= 8;
695 store_unsigned_integer (buf, 8, byte_order, bp_addr);
696 write_memory (sp, buf, 8);
697
698 /* Finally, update the stack pointer... */
699 store_unsigned_integer (buf, 8, byte_order, sp);
700 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
701
702 /* ...and fake a frame pointer. */
703 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
704
705 return sp + 16;
706 }
707 \f
708 /* Displaced instruction handling. */
709
710 /* A partially decoded instruction.
711 This contains enough details for displaced stepping purposes. */
712
713 struct amd64_insn
714 {
715 /* The number of opcode bytes. */
716 int opcode_len;
717 /* The offset of the rex prefix or -1 if not present. */
718 int rex_offset;
719 /* The offset to the first opcode byte. */
720 int opcode_offset;
721 /* The offset to the modrm byte or -1 if not present. */
722 int modrm_offset;
723
724 /* The raw instruction. */
725 gdb_byte *raw_insn;
726 };
727
728 struct displaced_step_closure
729 {
730 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
731 int tmp_used;
732 int tmp_regno;
733 ULONGEST tmp_save;
734
735 /* Details of the instruction. */
736 struct amd64_insn insn_details;
737
738 /* Amount of space allocated to insn_buf. */
739 int max_len;
740
741 /* The possibly modified insn.
742 This is a variable-length field. */
743 gdb_byte insn_buf[1];
744 };
745
746 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
747 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
748 at which point delete these in favor of libopcodes' versions). */
749
750 static const unsigned char onebyte_has_modrm[256] = {
751 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
752 /* ------------------------------- */
753 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
754 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
755 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
756 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
757 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
758 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
759 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
760 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
761 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
762 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
763 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
764 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
765 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
766 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
767 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
768 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
769 /* ------------------------------- */
770 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
771 };
772
773 static const unsigned char twobyte_has_modrm[256] = {
774 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
775 /* ------------------------------- */
776 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
777 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
778 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
779 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
780 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
781 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
782 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
783 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
784 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
785 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
786 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
787 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
788 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
789 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
790 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
791 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
792 /* ------------------------------- */
793 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
794 };
795
796 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
797
798 static int
799 rex_prefix_p (gdb_byte pfx)
800 {
801 return REX_PREFIX_P (pfx);
802 }
803
804 /* Skip the legacy instruction prefixes in INSN.
805 We assume INSN is properly sentineled so we don't have to worry
806 about falling off the end of the buffer. */
807
808 static gdb_byte *
809 amd64_skip_prefixes (gdb_byte *insn)
810 {
811 while (1)
812 {
813 switch (*insn)
814 {
815 case DATA_PREFIX_OPCODE:
816 case ADDR_PREFIX_OPCODE:
817 case CS_PREFIX_OPCODE:
818 case DS_PREFIX_OPCODE:
819 case ES_PREFIX_OPCODE:
820 case FS_PREFIX_OPCODE:
821 case GS_PREFIX_OPCODE:
822 case SS_PREFIX_OPCODE:
823 case LOCK_PREFIX_OPCODE:
824 case REPE_PREFIX_OPCODE:
825 case REPNE_PREFIX_OPCODE:
826 ++insn;
827 continue;
828 default:
829 break;
830 }
831 break;
832 }
833
834 return insn;
835 }
836
837 /* fprintf-function for amd64_insn_length.
838 This function is a nop, we don't want to print anything, we just want to
839 compute the length of the insn. */
840
841 static int ATTR_FORMAT (printf, 2, 3)
842 amd64_insn_length_fprintf (void *stream, const char *format, ...)
843 {
844 return 0;
845 }
846
847 /* Initialize a struct disassemble_info for amd64_insn_length. */
848
849 static void
850 amd64_insn_length_init_dis (struct gdbarch *gdbarch,
851 struct disassemble_info *di,
852 const gdb_byte *insn, int max_len,
853 CORE_ADDR addr)
854 {
855 init_disassemble_info (di, NULL, amd64_insn_length_fprintf);
856
857 /* init_disassemble_info installs buffer_read_memory, etc.
858 so we don't need to do that here.
859 The cast is necessary until disassemble_info is const-ified. */
860 di->buffer = (gdb_byte *) insn;
861 di->buffer_length = max_len;
862 di->buffer_vma = addr;
863
864 di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
865 di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
866 di->endian = gdbarch_byte_order (gdbarch);
867 di->endian_code = gdbarch_byte_order_for_code (gdbarch);
868
869 disassemble_init_for_target (di);
870 }
871
872 /* Return the length in bytes of INSN.
873 MAX_LEN is the size of the buffer containing INSN.
874 libopcodes currently doesn't export a utility to compute the
875 instruction length, so use the disassembler until then. */
876
877 static int
878 amd64_insn_length (struct gdbarch *gdbarch,
879 const gdb_byte *insn, int max_len, CORE_ADDR addr)
880 {
881 struct disassemble_info di;
882
883 amd64_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
884
885 return gdbarch_print_insn (gdbarch, addr, &di);
886 }
887
888 /* Return an integer register (other than RSP) that is unused as an input
889 operand in INSN.
890 In order to not require adding a rex prefix if the insn doesn't already
891 have one, the result is restricted to RAX ... RDI, sans RSP.
892 The register numbering of the result follows architecture ordering,
893 e.g. RDI = 7. */
894
895 static int
896 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
897 {
898 /* 1 bit for each reg */
899 int used_regs_mask = 0;
900
901 /* There can be at most 3 int regs used as inputs in an insn, and we have
902 7 to choose from (RAX ... RDI, sans RSP).
903 This allows us to take a conservative approach and keep things simple.
904 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
905 that implicitly specify RAX. */
906
907 /* Avoid RAX. */
908 used_regs_mask |= 1 << EAX_REG_NUM;
909 /* Similarily avoid RDX, implicit operand in divides. */
910 used_regs_mask |= 1 << EDX_REG_NUM;
911 /* Avoid RSP. */
912 used_regs_mask |= 1 << ESP_REG_NUM;
913
914 /* If the opcode is one byte long and there's no ModRM byte,
915 assume the opcode specifies a register. */
916 if (details->opcode_len == 1 && details->modrm_offset == -1)
917 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
918
919 /* Mark used regs in the modrm/sib bytes. */
920 if (details->modrm_offset != -1)
921 {
922 int modrm = details->raw_insn[details->modrm_offset];
923 int mod = MODRM_MOD_FIELD (modrm);
924 int reg = MODRM_REG_FIELD (modrm);
925 int rm = MODRM_RM_FIELD (modrm);
926 int have_sib = mod != 3 && rm == 4;
927
928 /* Assume the reg field of the modrm byte specifies a register. */
929 used_regs_mask |= 1 << reg;
930
931 if (have_sib)
932 {
933 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
934 int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
935 used_regs_mask |= 1 << base;
936 used_regs_mask |= 1 << index;
937 }
938 else
939 {
940 used_regs_mask |= 1 << rm;
941 }
942 }
943
944 gdb_assert (used_regs_mask < 256);
945 gdb_assert (used_regs_mask != 255);
946
947 /* Finally, find a free reg. */
948 {
949 int i;
950
951 for (i = 0; i < 8; ++i)
952 {
953 if (! (used_regs_mask & (1 << i)))
954 return i;
955 }
956
957 /* We shouldn't get here. */
958 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
959 }
960 }
961
962 /* Extract the details of INSN that we need. */
963
964 static void
965 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
966 {
967 gdb_byte *start = insn;
968 int need_modrm;
969
970 details->raw_insn = insn;
971
972 details->opcode_len = -1;
973 details->rex_offset = -1;
974 details->opcode_offset = -1;
975 details->modrm_offset = -1;
976
977 /* Skip legacy instruction prefixes. */
978 insn = amd64_skip_prefixes (insn);
979
980 /* Skip REX instruction prefix. */
981 if (rex_prefix_p (*insn))
982 {
983 details->rex_offset = insn - start;
984 ++insn;
985 }
986
987 details->opcode_offset = insn - start;
988
989 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
990 {
991 /* Two or three-byte opcode. */
992 ++insn;
993 need_modrm = twobyte_has_modrm[*insn];
994
995 /* Check for three-byte opcode. */
996 switch (*insn)
997 {
998 case 0x24:
999 case 0x25:
1000 case 0x38:
1001 case 0x3a:
1002 case 0x7a:
1003 case 0x7b:
1004 ++insn;
1005 details->opcode_len = 3;
1006 break;
1007 default:
1008 details->opcode_len = 2;
1009 break;
1010 }
1011 }
1012 else
1013 {
1014 /* One-byte opcode. */
1015 need_modrm = onebyte_has_modrm[*insn];
1016 details->opcode_len = 1;
1017 }
1018
1019 if (need_modrm)
1020 {
1021 ++insn;
1022 details->modrm_offset = insn - start;
1023 }
1024 }
1025
1026 /* Update %rip-relative addressing in INSN.
1027
1028 %rip-relative addressing only uses a 32-bit displacement.
1029 32 bits is not enough to be guaranteed to cover the distance between where
1030 the real instruction is and where its copy is.
1031 Convert the insn to use base+disp addressing.
1032 We set base = pc + insn_length so we can leave disp unchanged. */
1033
1034 static void
1035 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1036 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1037 {
1038 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1039 const struct amd64_insn *insn_details = &dsc->insn_details;
1040 int modrm_offset = insn_details->modrm_offset;
1041 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1042 CORE_ADDR rip_base;
1043 int32_t disp;
1044 int insn_length;
1045 int arch_tmp_regno, tmp_regno;
1046 ULONGEST orig_value;
1047
1048 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1049 ++insn;
1050
1051 /* Compute the rip-relative address. */
1052 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1053 insn_length = amd64_insn_length (gdbarch, dsc->insn_buf, dsc->max_len, from);
1054 rip_base = from + insn_length;
1055
1056 /* We need a register to hold the address.
1057 Pick one not used in the insn.
1058 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1059 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1060 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1061
1062 /* REX.B should be unset as we were using rip-relative addressing,
1063 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1064 if (insn_details->rex_offset != -1)
1065 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1066
1067 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1068 dsc->tmp_regno = tmp_regno;
1069 dsc->tmp_save = orig_value;
1070 dsc->tmp_used = 1;
1071
1072 /* Convert the ModRM field to be base+disp. */
1073 dsc->insn_buf[modrm_offset] &= ~0xc7;
1074 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1075
1076 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1077
1078 if (debug_displaced)
1079 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1080 "displaced: using temp reg %d, old value %s, new value %s\n",
1081 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1082 paddress (gdbarch, rip_base));
1083 }
1084
1085 static void
1086 fixup_displaced_copy (struct gdbarch *gdbarch,
1087 struct displaced_step_closure *dsc,
1088 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1089 {
1090 const struct amd64_insn *details = &dsc->insn_details;
1091
1092 if (details->modrm_offset != -1)
1093 {
1094 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1095
1096 if ((modrm & 0xc7) == 0x05)
1097 {
1098 /* The insn uses rip-relative addressing.
1099 Deal with it. */
1100 fixup_riprel (gdbarch, dsc, from, to, regs);
1101 }
1102 }
1103 }
1104
1105 struct displaced_step_closure *
1106 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1107 CORE_ADDR from, CORE_ADDR to,
1108 struct regcache *regs)
1109 {
1110 int len = gdbarch_max_insn_length (gdbarch);
1111 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1112 continually watch for running off the end of the buffer. */
1113 int fixup_sentinel_space = len;
1114 struct displaced_step_closure *dsc =
1115 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1116 gdb_byte *buf = &dsc->insn_buf[0];
1117 struct amd64_insn *details = &dsc->insn_details;
1118
1119 dsc->tmp_used = 0;
1120 dsc->max_len = len + fixup_sentinel_space;
1121
1122 read_memory (from, buf, len);
1123
1124 /* Set up the sentinel space so we don't have to worry about running
1125 off the end of the buffer. An excessive number of leading prefixes
1126 could otherwise cause this. */
1127 memset (buf + len, 0, fixup_sentinel_space);
1128
1129 amd64_get_insn_details (buf, details);
1130
1131 /* GDB may get control back after the insn after the syscall.
1132 Presumably this is a kernel bug.
1133 If this is a syscall, make sure there's a nop afterwards. */
1134 {
1135 int syscall_length;
1136
1137 if (amd64_syscall_p (details, &syscall_length))
1138 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1139 }
1140
1141 /* Modify the insn to cope with the address where it will be executed from.
1142 In particular, handle any rip-relative addressing. */
1143 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1144
1145 write_memory (to, buf, len);
1146
1147 if (debug_displaced)
1148 {
1149 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1150 paddress (gdbarch, from), paddress (gdbarch, to));
1151 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1152 }
1153
1154 return dsc;
1155 }
1156
1157 static int
1158 amd64_absolute_jmp_p (const struct amd64_insn *details)
1159 {
1160 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1161
1162 if (insn[0] == 0xff)
1163 {
1164 /* jump near, absolute indirect (/4) */
1165 if ((insn[1] & 0x38) == 0x20)
1166 return 1;
1167
1168 /* jump far, absolute indirect (/5) */
1169 if ((insn[1] & 0x38) == 0x28)
1170 return 1;
1171 }
1172
1173 return 0;
1174 }
1175
1176 static int
1177 amd64_absolute_call_p (const struct amd64_insn *details)
1178 {
1179 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1180
1181 if (insn[0] == 0xff)
1182 {
1183 /* Call near, absolute indirect (/2) */
1184 if ((insn[1] & 0x38) == 0x10)
1185 return 1;
1186
1187 /* Call far, absolute indirect (/3) */
1188 if ((insn[1] & 0x38) == 0x18)
1189 return 1;
1190 }
1191
1192 return 0;
1193 }
1194
1195 static int
1196 amd64_ret_p (const struct amd64_insn *details)
1197 {
1198 /* NOTE: gcc can emit "repz ; ret". */
1199 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1200
1201 switch (insn[0])
1202 {
1203 case 0xc2: /* ret near, pop N bytes */
1204 case 0xc3: /* ret near */
1205 case 0xca: /* ret far, pop N bytes */
1206 case 0xcb: /* ret far */
1207 case 0xcf: /* iret */
1208 return 1;
1209
1210 default:
1211 return 0;
1212 }
1213 }
1214
1215 static int
1216 amd64_call_p (const struct amd64_insn *details)
1217 {
1218 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1219
1220 if (amd64_absolute_call_p (details))
1221 return 1;
1222
1223 /* call near, relative */
1224 if (insn[0] == 0xe8)
1225 return 1;
1226
1227 return 0;
1228 }
1229
1230 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1231 length in bytes. Otherwise, return zero. */
1232
1233 static int
1234 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1235 {
1236 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1237
1238 if (insn[0] == 0x0f && insn[1] == 0x05)
1239 {
1240 *lengthp = 2;
1241 return 1;
1242 }
1243
1244 return 0;
1245 }
1246
1247 /* Fix up the state of registers and memory after having single-stepped
1248 a displaced instruction. */
1249
1250 void
1251 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1252 struct displaced_step_closure *dsc,
1253 CORE_ADDR from, CORE_ADDR to,
1254 struct regcache *regs)
1255 {
1256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1257 /* The offset we applied to the instruction's address. */
1258 ULONGEST insn_offset = to - from;
1259 gdb_byte *insn = dsc->insn_buf;
1260 const struct amd64_insn *insn_details = &dsc->insn_details;
1261
1262 if (debug_displaced)
1263 fprintf_unfiltered (gdb_stdlog,
1264 "displaced: fixup (%s, %s), "
1265 "insn = 0x%02x 0x%02x ...\n",
1266 paddress (gdbarch, from), paddress (gdbarch, to),
1267 insn[0], insn[1]);
1268
1269 /* If we used a tmp reg, restore it. */
1270
1271 if (dsc->tmp_used)
1272 {
1273 if (debug_displaced)
1274 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1275 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1276 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1277 }
1278
1279 /* The list of issues to contend with here is taken from
1280 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1281 Yay for Free Software! */
1282
1283 /* Relocate the %rip back to the program's instruction stream,
1284 if necessary. */
1285
1286 /* Except in the case of absolute or indirect jump or call
1287 instructions, or a return instruction, the new rip is relative to
1288 the displaced instruction; make it relative to the original insn.
1289 Well, signal handler returns don't need relocation either, but we use the
1290 value of %rip to recognize those; see below. */
1291 if (! amd64_absolute_jmp_p (insn_details)
1292 && ! amd64_absolute_call_p (insn_details)
1293 && ! amd64_ret_p (insn_details))
1294 {
1295 ULONGEST orig_rip;
1296 int insn_len;
1297
1298 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1299
1300 /* A signal trampoline system call changes the %rip, resuming
1301 execution of the main program after the signal handler has
1302 returned. That makes them like 'return' instructions; we
1303 shouldn't relocate %rip.
1304
1305 But most system calls don't, and we do need to relocate %rip.
1306
1307 Our heuristic for distinguishing these cases: if stepping
1308 over the system call instruction left control directly after
1309 the instruction, the we relocate --- control almost certainly
1310 doesn't belong in the displaced copy. Otherwise, we assume
1311 the instruction has put control where it belongs, and leave
1312 it unrelocated. Goodness help us if there are PC-relative
1313 system calls. */
1314 if (amd64_syscall_p (insn_details, &insn_len)
1315 && orig_rip != to + insn_len
1316 /* GDB can get control back after the insn after the syscall.
1317 Presumably this is a kernel bug.
1318 Fixup ensures its a nop, we add one to the length for it. */
1319 && orig_rip != to + insn_len + 1)
1320 {
1321 if (debug_displaced)
1322 fprintf_unfiltered (gdb_stdlog,
1323 "displaced: syscall changed %%rip; "
1324 "not relocating\n");
1325 }
1326 else
1327 {
1328 ULONGEST rip = orig_rip - insn_offset;
1329
1330 /* If we just stepped over a breakpoint insn, we don't backup
1331 the pc on purpose; this is to match behaviour without
1332 stepping. */
1333
1334 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1335
1336 if (debug_displaced)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "displaced: "
1339 "relocated %%rip from %s to %s\n",
1340 paddress (gdbarch, orig_rip),
1341 paddress (gdbarch, rip));
1342 }
1343 }
1344
1345 /* If the instruction was PUSHFL, then the TF bit will be set in the
1346 pushed value, and should be cleared. We'll leave this for later,
1347 since GDB already messes up the TF flag when stepping over a
1348 pushfl. */
1349
1350 /* If the instruction was a call, the return address now atop the
1351 stack is the address following the copied instruction. We need
1352 to make it the address following the original instruction. */
1353 if (amd64_call_p (insn_details))
1354 {
1355 ULONGEST rsp;
1356 ULONGEST retaddr;
1357 const ULONGEST retaddr_len = 8;
1358
1359 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1360 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1361 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1362 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1363
1364 if (debug_displaced)
1365 fprintf_unfiltered (gdb_stdlog,
1366 "displaced: relocated return addr at %s "
1367 "to %s\n",
1368 paddress (gdbarch, rsp),
1369 paddress (gdbarch, retaddr));
1370 }
1371 }
1372 \f
1373 /* The maximum number of saved registers. This should include %rip. */
1374 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1375
1376 struct amd64_frame_cache
1377 {
1378 /* Base address. */
1379 CORE_ADDR base;
1380 CORE_ADDR sp_offset;
1381 CORE_ADDR pc;
1382
1383 /* Saved registers. */
1384 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1385 CORE_ADDR saved_sp;
1386 int saved_sp_reg;
1387
1388 /* Do we have a frame? */
1389 int frameless_p;
1390 };
1391
1392 /* Initialize a frame cache. */
1393
1394 static void
1395 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1396 {
1397 int i;
1398
1399 /* Base address. */
1400 cache->base = 0;
1401 cache->sp_offset = -8;
1402 cache->pc = 0;
1403
1404 /* Saved registers. We initialize these to -1 since zero is a valid
1405 offset (that's where %rbp is supposed to be stored).
1406 The values start out as being offsets, and are later converted to
1407 addresses (at which point -1 is interpreted as an address, still meaning
1408 "invalid"). */
1409 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1410 cache->saved_regs[i] = -1;
1411 cache->saved_sp = 0;
1412 cache->saved_sp_reg = -1;
1413
1414 /* Frameless until proven otherwise. */
1415 cache->frameless_p = 1;
1416 }
1417
1418 /* Allocate and initialize a frame cache. */
1419
1420 static struct amd64_frame_cache *
1421 amd64_alloc_frame_cache (void)
1422 {
1423 struct amd64_frame_cache *cache;
1424
1425 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1426 amd64_init_frame_cache (cache);
1427 return cache;
1428 }
1429
1430 /* GCC 4.4 and later, can put code in the prologue to realign the
1431 stack pointer. Check whether PC points to such code, and update
1432 CACHE accordingly. Return the first instruction after the code
1433 sequence or CURRENT_PC, whichever is smaller. If we don't
1434 recognize the code, return PC. */
1435
1436 static CORE_ADDR
1437 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1438 struct amd64_frame_cache *cache)
1439 {
1440 /* There are 2 code sequences to re-align stack before the frame
1441 gets set up:
1442
1443 1. Use a caller-saved saved register:
1444
1445 leaq 8(%rsp), %reg
1446 andq $-XXX, %rsp
1447 pushq -8(%reg)
1448
1449 2. Use a callee-saved saved register:
1450
1451 pushq %reg
1452 leaq 16(%rsp), %reg
1453 andq $-XXX, %rsp
1454 pushq -8(%reg)
1455
1456 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1457
1458 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1459 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1460 */
1461
1462 gdb_byte buf[18];
1463 int reg, r;
1464 int offset, offset_and;
1465
1466 if (target_read_memory (pc, buf, sizeof buf))
1467 return pc;
1468
1469 /* Check caller-saved saved register. The first instruction has
1470 to be "leaq 8(%rsp), %reg". */
1471 if ((buf[0] & 0xfb) == 0x48
1472 && buf[1] == 0x8d
1473 && buf[3] == 0x24
1474 && buf[4] == 0x8)
1475 {
1476 /* MOD must be binary 10 and R/M must be binary 100. */
1477 if ((buf[2] & 0xc7) != 0x44)
1478 return pc;
1479
1480 /* REG has register number. */
1481 reg = (buf[2] >> 3) & 7;
1482
1483 /* Check the REX.R bit. */
1484 if (buf[0] == 0x4c)
1485 reg += 8;
1486
1487 offset = 5;
1488 }
1489 else
1490 {
1491 /* Check callee-saved saved register. The first instruction
1492 has to be "pushq %reg". */
1493 reg = 0;
1494 if ((buf[0] & 0xf8) == 0x50)
1495 offset = 0;
1496 else if ((buf[0] & 0xf6) == 0x40
1497 && (buf[1] & 0xf8) == 0x50)
1498 {
1499 /* Check the REX.B bit. */
1500 if ((buf[0] & 1) != 0)
1501 reg = 8;
1502
1503 offset = 1;
1504 }
1505 else
1506 return pc;
1507
1508 /* Get register. */
1509 reg += buf[offset] & 0x7;
1510
1511 offset++;
1512
1513 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1514 if ((buf[offset] & 0xfb) != 0x48
1515 || buf[offset + 1] != 0x8d
1516 || buf[offset + 3] != 0x24
1517 || buf[offset + 4] != 0x10)
1518 return pc;
1519
1520 /* MOD must be binary 10 and R/M must be binary 100. */
1521 if ((buf[offset + 2] & 0xc7) != 0x44)
1522 return pc;
1523
1524 /* REG has register number. */
1525 r = (buf[offset + 2] >> 3) & 7;
1526
1527 /* Check the REX.R bit. */
1528 if (buf[offset] == 0x4c)
1529 r += 8;
1530
1531 /* Registers in pushq and leaq have to be the same. */
1532 if (reg != r)
1533 return pc;
1534
1535 offset += 5;
1536 }
1537
1538 /* Rigister can't be %rsp nor %rbp. */
1539 if (reg == 4 || reg == 5)
1540 return pc;
1541
1542 /* The next instruction has to be "andq $-XXX, %rsp". */
1543 if (buf[offset] != 0x48
1544 || buf[offset + 2] != 0xe4
1545 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1546 return pc;
1547
1548 offset_and = offset;
1549 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1550
1551 /* The next instruction has to be "pushq -8(%reg)". */
1552 r = 0;
1553 if (buf[offset] == 0xff)
1554 offset++;
1555 else if ((buf[offset] & 0xf6) == 0x40
1556 && buf[offset + 1] == 0xff)
1557 {
1558 /* Check the REX.B bit. */
1559 if ((buf[offset] & 0x1) != 0)
1560 r = 8;
1561 offset += 2;
1562 }
1563 else
1564 return pc;
1565
1566 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1567 01. */
1568 if (buf[offset + 1] != 0xf8
1569 || (buf[offset] & 0xf8) != 0x70)
1570 return pc;
1571
1572 /* R/M has register. */
1573 r += buf[offset] & 7;
1574
1575 /* Registers in leaq and pushq have to be the same. */
1576 if (reg != r)
1577 return pc;
1578
1579 if (current_pc > pc + offset_and)
1580 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1581
1582 return min (pc + offset + 2, current_pc);
1583 }
1584
1585 /* Do a limited analysis of the prologue at PC and update CACHE
1586 accordingly. Bail out early if CURRENT_PC is reached. Return the
1587 address where the analysis stopped.
1588
1589 We will handle only functions beginning with:
1590
1591 pushq %rbp 0x55
1592 movq %rsp, %rbp 0x48 0x89 0xe5
1593
1594 Any function that doesn't start with this sequence will be assumed
1595 to have no prologue and thus no valid frame pointer in %rbp. */
1596
1597 static CORE_ADDR
1598 amd64_analyze_prologue (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR current_pc,
1600 struct amd64_frame_cache *cache)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1604 gdb_byte buf[3];
1605 gdb_byte op;
1606
1607 if (current_pc <= pc)
1608 return current_pc;
1609
1610 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1611
1612 op = read_memory_unsigned_integer (pc, 1, byte_order);
1613
1614 if (op == 0x55) /* pushq %rbp */
1615 {
1616 /* Take into account that we've executed the `pushq %rbp' that
1617 starts this instruction sequence. */
1618 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1619 cache->sp_offset += 8;
1620
1621 /* If that's all, return now. */
1622 if (current_pc <= pc + 1)
1623 return current_pc;
1624
1625 /* Check for `movq %rsp, %rbp'. */
1626 read_memory (pc + 1, buf, 3);
1627 if (memcmp (buf, proto, 3) != 0)
1628 return pc + 1;
1629
1630 /* OK, we actually have a frame. */
1631 cache->frameless_p = 0;
1632 return pc + 4;
1633 }
1634
1635 return pc;
1636 }
1637
1638 /* Return PC of first real instruction. */
1639
1640 static CORE_ADDR
1641 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1642 {
1643 struct amd64_frame_cache cache;
1644 CORE_ADDR pc;
1645
1646 amd64_init_frame_cache (&cache);
1647 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
1648 &cache);
1649 if (cache.frameless_p)
1650 return start_pc;
1651
1652 return pc;
1653 }
1654 \f
1655
1656 /* Normal frames. */
1657
1658 static struct amd64_frame_cache *
1659 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
1660 {
1661 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1663 struct amd64_frame_cache *cache;
1664 gdb_byte buf[8];
1665 int i;
1666
1667 if (*this_cache)
1668 return *this_cache;
1669
1670 cache = amd64_alloc_frame_cache ();
1671 *this_cache = cache;
1672
1673 cache->pc = get_frame_func (this_frame);
1674 if (cache->pc != 0)
1675 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1676 cache);
1677
1678 if (cache->saved_sp_reg != -1)
1679 {
1680 /* Stack pointer has been saved. */
1681 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1682 cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order);
1683 }
1684
1685 if (cache->frameless_p)
1686 {
1687 /* We didn't find a valid frame. If we're at the start of a
1688 function, or somewhere half-way its prologue, the function's
1689 frame probably hasn't been fully setup yet. Try to
1690 reconstruct the base address for the stack frame by looking
1691 at the stack pointer. For truly "frameless" functions this
1692 might work too. */
1693
1694 if (cache->saved_sp_reg != -1)
1695 {
1696 /* We're halfway aligning the stack. */
1697 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
1698 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
1699
1700 /* This will be added back below. */
1701 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
1702 }
1703 else
1704 {
1705 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1706 cache->base = extract_unsigned_integer (buf, 8, byte_order)
1707 + cache->sp_offset;
1708 }
1709 }
1710 else
1711 {
1712 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
1713 cache->base = extract_unsigned_integer (buf, 8, byte_order);
1714 }
1715
1716 /* Now that we have the base address for the stack frame we can
1717 calculate the value of %rsp in the calling frame. */
1718 cache->saved_sp = cache->base + 16;
1719
1720 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
1721 frame we find it at the same offset from the reconstructed base
1722 address. If we're halfway aligning the stack, %rip is handled
1723 differently (see above). */
1724 if (!cache->frameless_p || cache->saved_sp_reg == -1)
1725 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
1726
1727 /* Adjust all the saved registers such that they contain addresses
1728 instead of offsets. */
1729 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1730 if (cache->saved_regs[i] != -1)
1731 cache->saved_regs[i] += cache->base;
1732
1733 return cache;
1734 }
1735
1736 static void
1737 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1738 struct frame_id *this_id)
1739 {
1740 struct amd64_frame_cache *cache =
1741 amd64_frame_cache (this_frame, this_cache);
1742
1743 /* This marks the outermost frame. */
1744 if (cache->base == 0)
1745 return;
1746
1747 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
1748 }
1749
1750 static struct value *
1751 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1752 int regnum)
1753 {
1754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1755 struct amd64_frame_cache *cache =
1756 amd64_frame_cache (this_frame, this_cache);
1757
1758 gdb_assert (regnum >= 0);
1759
1760 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1761 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1762
1763 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1764 return frame_unwind_got_memory (this_frame, regnum,
1765 cache->saved_regs[regnum]);
1766
1767 return frame_unwind_got_register (this_frame, regnum, regnum);
1768 }
1769
1770 static const struct frame_unwind amd64_frame_unwind =
1771 {
1772 NORMAL_FRAME,
1773 amd64_frame_this_id,
1774 amd64_frame_prev_register,
1775 NULL,
1776 default_frame_sniffer
1777 };
1778 \f
1779
1780 /* Signal trampolines. */
1781
1782 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
1783 64-bit variants. This would require using identical frame caches
1784 on both platforms. */
1785
1786 static struct amd64_frame_cache *
1787 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1788 {
1789 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1792 struct amd64_frame_cache *cache;
1793 CORE_ADDR addr;
1794 gdb_byte buf[8];
1795 int i;
1796
1797 if (*this_cache)
1798 return *this_cache;
1799
1800 cache = amd64_alloc_frame_cache ();
1801
1802 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1803 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
1804
1805 addr = tdep->sigcontext_addr (this_frame);
1806 gdb_assert (tdep->sc_reg_offset);
1807 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
1808 for (i = 0; i < tdep->sc_num_regs; i++)
1809 if (tdep->sc_reg_offset[i] != -1)
1810 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1811
1812 *this_cache = cache;
1813 return cache;
1814 }
1815
1816 static void
1817 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
1818 void **this_cache, struct frame_id *this_id)
1819 {
1820 struct amd64_frame_cache *cache =
1821 amd64_sigtramp_frame_cache (this_frame, this_cache);
1822
1823 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
1824 }
1825
1826 static struct value *
1827 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
1828 void **this_cache, int regnum)
1829 {
1830 /* Make sure we've initialized the cache. */
1831 amd64_sigtramp_frame_cache (this_frame, this_cache);
1832
1833 return amd64_frame_prev_register (this_frame, this_cache, regnum);
1834 }
1835
1836 static int
1837 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
1838 struct frame_info *this_frame,
1839 void **this_cache)
1840 {
1841 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1842
1843 /* We shouldn't even bother if we don't have a sigcontext_addr
1844 handler. */
1845 if (tdep->sigcontext_addr == NULL)
1846 return 0;
1847
1848 if (tdep->sigtramp_p != NULL)
1849 {
1850 if (tdep->sigtramp_p (this_frame))
1851 return 1;
1852 }
1853
1854 if (tdep->sigtramp_start != 0)
1855 {
1856 CORE_ADDR pc = get_frame_pc (this_frame);
1857
1858 gdb_assert (tdep->sigtramp_end != 0);
1859 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1860 return 1;
1861 }
1862
1863 return 0;
1864 }
1865
1866 static const struct frame_unwind amd64_sigtramp_frame_unwind =
1867 {
1868 SIGTRAMP_FRAME,
1869 amd64_sigtramp_frame_this_id,
1870 amd64_sigtramp_frame_prev_register,
1871 NULL,
1872 amd64_sigtramp_frame_sniffer
1873 };
1874 \f
1875
1876 static CORE_ADDR
1877 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
1878 {
1879 struct amd64_frame_cache *cache =
1880 amd64_frame_cache (this_frame, this_cache);
1881
1882 return cache->base;
1883 }
1884
1885 static const struct frame_base amd64_frame_base =
1886 {
1887 &amd64_frame_unwind,
1888 amd64_frame_base_address,
1889 amd64_frame_base_address,
1890 amd64_frame_base_address
1891 };
1892
1893 /* Normal frames, but in a function epilogue. */
1894
1895 /* The epilogue is defined here as the 'ret' instruction, which will
1896 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1897 the function's stack frame. */
1898
1899 static int
1900 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1901 {
1902 gdb_byte insn;
1903
1904 if (target_read_memory (pc, &insn, 1))
1905 return 0; /* Can't read memory at pc. */
1906
1907 if (insn != 0xc3) /* 'ret' instruction. */
1908 return 0;
1909
1910 return 1;
1911 }
1912
1913 static int
1914 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
1915 struct frame_info *this_frame,
1916 void **this_prologue_cache)
1917 {
1918 if (frame_relative_level (this_frame) == 0)
1919 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
1920 get_frame_pc (this_frame));
1921 else
1922 return 0;
1923 }
1924
1925 static struct amd64_frame_cache *
1926 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1927 {
1928 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1930 struct amd64_frame_cache *cache;
1931 gdb_byte buf[4];
1932
1933 if (*this_cache)
1934 return *this_cache;
1935
1936 cache = amd64_alloc_frame_cache ();
1937 *this_cache = cache;
1938
1939 /* Cache base will be %esp plus cache->sp_offset (-8). */
1940 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1941 cache->base = extract_unsigned_integer (buf, 8,
1942 byte_order) + cache->sp_offset;
1943
1944 /* Cache pc will be the frame func. */
1945 cache->pc = get_frame_pc (this_frame);
1946
1947 /* The saved %esp will be at cache->base plus 16. */
1948 cache->saved_sp = cache->base + 16;
1949
1950 /* The saved %eip will be at cache->base plus 8. */
1951 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
1952
1953 return cache;
1954 }
1955
1956 static void
1957 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
1958 void **this_cache,
1959 struct frame_id *this_id)
1960 {
1961 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
1962 this_cache);
1963
1964 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1965 }
1966
1967 static const struct frame_unwind amd64_epilogue_frame_unwind =
1968 {
1969 NORMAL_FRAME,
1970 amd64_epilogue_frame_this_id,
1971 amd64_frame_prev_register,
1972 NULL,
1973 amd64_epilogue_frame_sniffer
1974 };
1975
1976 static struct frame_id
1977 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1978 {
1979 CORE_ADDR fp;
1980
1981 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
1982
1983 return frame_id_build (fp + 16, get_frame_pc (this_frame));
1984 }
1985
1986 /* 16 byte align the SP per frame requirements. */
1987
1988 static CORE_ADDR
1989 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1990 {
1991 return sp & -(CORE_ADDR)16;
1992 }
1993 \f
1994
1995 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1996 in the floating-point register set REGSET to register cache
1997 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1998
1999 static void
2000 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2001 int regnum, const void *fpregs, size_t len)
2002 {
2003 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2004
2005 gdb_assert (len == tdep->sizeof_fpregset);
2006 amd64_supply_fxsave (regcache, regnum, fpregs);
2007 }
2008
2009 /* Collect register REGNUM from the register cache REGCACHE and store
2010 it in the buffer specified by FPREGS and LEN as described by the
2011 floating-point register set REGSET. If REGNUM is -1, do this for
2012 all registers in REGSET. */
2013
2014 static void
2015 amd64_collect_fpregset (const struct regset *regset,
2016 const struct regcache *regcache,
2017 int regnum, void *fpregs, size_t len)
2018 {
2019 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2020
2021 gdb_assert (len == tdep->sizeof_fpregset);
2022 amd64_collect_fxsave (regcache, regnum, fpregs);
2023 }
2024
2025 /* Return the appropriate register set for the core section identified
2026 by SECT_NAME and SECT_SIZE. */
2027
2028 static const struct regset *
2029 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2030 const char *sect_name, size_t sect_size)
2031 {
2032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2033
2034 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2035 {
2036 if (tdep->fpregset == NULL)
2037 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2038 amd64_collect_fpregset);
2039
2040 return tdep->fpregset;
2041 }
2042
2043 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2044 }
2045 \f
2046
2047 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2048 %rdi. We expect its value to be a pointer to the jmp_buf structure
2049 from which we extract the address that we will land at. This
2050 address is copied into PC. This routine returns non-zero on
2051 success. */
2052
2053 static int
2054 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2055 {
2056 gdb_byte buf[8];
2057 CORE_ADDR jb_addr;
2058 struct gdbarch *gdbarch = get_frame_arch (frame);
2059 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2060 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2061
2062 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2063 longjmp will land. */
2064 if (jb_pc_offset == -1)
2065 return 0;
2066
2067 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2068 jb_addr= extract_typed_address
2069 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2070 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2071 return 0;
2072
2073 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2074
2075 return 1;
2076 }
2077
2078 static const int amd64_record_regmap[] =
2079 {
2080 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2081 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2082 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2083 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2084 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2085 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2086 };
2087
2088 void
2089 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2090 {
2091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2092
2093 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2094 floating-point registers. */
2095 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2096
2097 /* AMD64 has an FPU and 16 SSE registers. */
2098 tdep->st0_regnum = AMD64_ST0_REGNUM;
2099 tdep->num_xmm_regs = 16;
2100
2101 /* This is what all the fuss is about. */
2102 set_gdbarch_long_bit (gdbarch, 64);
2103 set_gdbarch_long_long_bit (gdbarch, 64);
2104 set_gdbarch_ptr_bit (gdbarch, 64);
2105
2106 /* In contrast to the i386, on AMD64 a `long double' actually takes
2107 up 128 bits, even though it's still based on the i387 extended
2108 floating-point format which has only 80 significant bits. */
2109 set_gdbarch_long_double_bit (gdbarch, 128);
2110
2111 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2112 set_gdbarch_register_name (gdbarch, amd64_register_name);
2113 set_gdbarch_register_type (gdbarch, amd64_register_type);
2114
2115 /* Register numbers of various important registers. */
2116 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2117 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2118 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2119 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2120
2121 /* The "default" register numbering scheme for AMD64 is referred to
2122 as the "DWARF Register Number Mapping" in the System V psABI.
2123 The preferred debugging format for all known AMD64 targets is
2124 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2125 DWARF-1), but we provide the same mapping just in case. This
2126 mapping is also used for stabs, which GCC does support. */
2127 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2128 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2129
2130 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2131 be in use on any of the supported AMD64 targets. */
2132
2133 /* Call dummy code. */
2134 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2135 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2136 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2137
2138 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2139 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2140 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2141
2142 set_gdbarch_return_value (gdbarch, amd64_return_value);
2143
2144 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2145
2146 /* Avoid wiring in the MMX registers for now. */
2147 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2148 tdep->mm0_regnum = -1;
2149
2150 tdep->record_regmap = amd64_record_regmap;
2151
2152 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2153
2154 /* Hook the function epilogue frame unwinder. This unwinder is
2155 appended to the list first, so that it supercedes the other
2156 unwinders in function epilogues. */
2157 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2158
2159 /* Hook the prologue-based frame unwinders. */
2160 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2161 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2162 frame_base_set_default (gdbarch, &amd64_frame_base);
2163
2164 /* If we have a register mapping, enable the generic core file support. */
2165 if (tdep->gregset_reg_offset)
2166 set_gdbarch_regset_from_core_section (gdbarch,
2167 amd64_regset_from_core_section);
2168
2169 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2170 }
2171 \f
2172
2173 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2174 sense that the instruction pointer and data pointer are simply
2175 64-bit offsets into the code segment and the data segment instead
2176 of a selector offset pair. The functions below store the upper 32
2177 bits of these pointers (instead of just the 16-bits of the segment
2178 selector). */
2179
2180 /* Fill register REGNUM in REGCACHE with the appropriate
2181 floating-point or SSE register value from *FXSAVE. If REGNUM is
2182 -1, do this for all registers. This function masks off any of the
2183 reserved bits in *FXSAVE. */
2184
2185 void
2186 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2187 const void *fxsave)
2188 {
2189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2190 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2191
2192 i387_supply_fxsave (regcache, regnum, fxsave);
2193
2194 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2195 {
2196 const gdb_byte *regs = fxsave;
2197
2198 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2199 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2200 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2201 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2202 }
2203 }
2204
2205 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2206 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2207 all registers. This function doesn't touch any of the reserved
2208 bits in *FXSAVE. */
2209
2210 void
2211 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2212 void *fxsave)
2213 {
2214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2216 gdb_byte *regs = fxsave;
2217
2218 i387_collect_fxsave (regcache, regnum, fxsave);
2219
2220 if (gdbarch_ptr_bit (gdbarch) == 64)
2221 {
2222 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2223 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2224 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2225 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2226 }
2227 }