]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-linux-nat.c
Use gdb_assert_not_reached in arm-linux-nat.c
[thirdparty/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observable.h"
28 #include "gdbthread.h"
29
30 #include "arm-tdep.h"
31 #include "arm-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33
34 #include <elf/common.h>
35 #include <sys/user.h>
36 #include "nat/gdb_ptrace.h"
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
39
40 #include "nat/linux-ptrace.h"
41 #include "linux-tdep.h"
42
43 /* Prototypes for supply_gregset etc. */
44 #include "gregset.h"
45
46 /* Defines ps_err_e, struct ps_prochandle. */
47 #include "gdb_proc_service.h"
48
49 #ifndef PTRACE_GET_THREAD_AREA
50 #define PTRACE_GET_THREAD_AREA 22
51 #endif
52
53 #ifndef PTRACE_GETWMMXREGS
54 #define PTRACE_GETWMMXREGS 18
55 #define PTRACE_SETWMMXREGS 19
56 #endif
57
58 #ifndef PTRACE_GETVFPREGS
59 #define PTRACE_GETVFPREGS 27
60 #define PTRACE_SETVFPREGS 28
61 #endif
62
63 #ifndef PTRACE_GETHBPREGS
64 #define PTRACE_GETHBPREGS 29
65 #define PTRACE_SETHBPREGS 30
66 #endif
67
68 extern int arm_apcs_32;
69
70 class arm_linux_nat_target final : public linux_nat_target
71 {
72 public:
73 /* Add our register access methods. */
74 void fetch_registers (struct regcache *, int) override;
75 void store_registers (struct regcache *, int) override;
76
77 /* Add our hardware breakpoint and watchpoint implementation. */
78 int can_use_hw_breakpoint (enum bptype, int, int) override;
79
80 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
81
82 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
83
84 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
85
86 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
87 struct expression *) override;
88
89 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
90 struct expression *) override;
91 bool stopped_by_watchpoint () override;
92
93 bool stopped_data_address (CORE_ADDR *) override;
94
95 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
96
97 const struct target_desc *read_description () override;
98
99 /* Override linux_nat_target low methods. */
100
101 /* Handle thread creation and exit. */
102 void low_new_thread (struct lwp_info *lp) override;
103 void low_delete_thread (struct arch_lwp_info *lp) override;
104 void low_prepare_to_resume (struct lwp_info *lp) override;
105
106 /* Handle process creation and exit. */
107 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
108 void low_forget_process (pid_t pid) override;
109 };
110
111 static arm_linux_nat_target the_arm_linux_nat_target;
112
113 /* Get the whole floating point state of the process and store it
114 into regcache. */
115
116 static void
117 fetch_fpregs (struct regcache *regcache)
118 {
119 int ret, regno, tid;
120 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
121
122 /* Get the thread id for the ptrace call. */
123 tid = regcache->ptid ().lwp ();
124
125 /* Read the floating point state. */
126 if (have_ptrace_getregset == TRIBOOL_TRUE)
127 {
128 struct iovec iov;
129
130 iov.iov_base = &fp;
131 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
132
133 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
134 }
135 else
136 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
137
138 if (ret < 0)
139 perror_with_name (_("Unable to fetch the floating point registers."));
140
141 /* Fetch fpsr. */
142 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
143
144 /* Fetch the floating point registers. */
145 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
146 supply_nwfpe_register (regcache, regno, fp);
147 }
148
149 /* Save the whole floating point state of the process using
150 the contents from regcache. */
151
152 static void
153 store_fpregs (const struct regcache *regcache)
154 {
155 int ret, regno, tid;
156 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
157
158 /* Get the thread id for the ptrace call. */
159 tid = regcache->ptid ().lwp ();
160
161 /* Read the floating point state. */
162 if (have_ptrace_getregset == TRIBOOL_TRUE)
163 {
164 elf_fpregset_t fpregs;
165 struct iovec iov;
166
167 iov.iov_base = &fpregs;
168 iov.iov_len = sizeof (fpregs);
169
170 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
171 }
172 else
173 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
174
175 if (ret < 0)
176 perror_with_name (_("Unable to fetch the floating point registers."));
177
178 /* Store fpsr. */
179 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
180 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
181
182 /* Store the floating point registers. */
183 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
184 if (REG_VALID == regcache->get_register_status (regno))
185 collect_nwfpe_register (regcache, regno, fp);
186
187 if (have_ptrace_getregset == TRIBOOL_TRUE)
188 {
189 struct iovec iov;
190
191 iov.iov_base = &fp;
192 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
193
194 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
195 }
196 else
197 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
198
199 if (ret < 0)
200 perror_with_name (_("Unable to store floating point registers."));
201 }
202
203 /* Fetch all general registers of the process and store into
204 regcache. */
205
206 static void
207 fetch_regs (struct regcache *regcache)
208 {
209 int ret, tid;
210 elf_gregset_t regs;
211
212 /* Get the thread id for the ptrace call. */
213 tid = regcache->ptid ().lwp ();
214
215 if (have_ptrace_getregset == TRIBOOL_TRUE)
216 {
217 struct iovec iov;
218
219 iov.iov_base = &regs;
220 iov.iov_len = sizeof (regs);
221
222 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
223 }
224 else
225 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
226
227 if (ret < 0)
228 perror_with_name (_("Unable to fetch general registers."));
229
230 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
231 }
232
233 static void
234 store_regs (const struct regcache *regcache)
235 {
236 int ret, tid;
237 elf_gregset_t regs;
238
239 /* Get the thread id for the ptrace call. */
240 tid = regcache->ptid ().lwp ();
241
242 /* Fetch the general registers. */
243 if (have_ptrace_getregset == TRIBOOL_TRUE)
244 {
245 struct iovec iov;
246
247 iov.iov_base = &regs;
248 iov.iov_len = sizeof (regs);
249
250 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
251 }
252 else
253 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
254
255 if (ret < 0)
256 perror_with_name (_("Unable to fetch general registers."));
257
258 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
259
260 if (have_ptrace_getregset == TRIBOOL_TRUE)
261 {
262 struct iovec iov;
263
264 iov.iov_base = &regs;
265 iov.iov_len = sizeof (regs);
266
267 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
268 }
269 else
270 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
271
272 if (ret < 0)
273 perror_with_name (_("Unable to store general registers."));
274 }
275
276 /* Fetch all WMMX registers of the process and store into
277 regcache. */
278
279 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
280
281 static void
282 fetch_wmmx_regs (struct regcache *regcache)
283 {
284 char regbuf[IWMMXT_REGS_SIZE];
285 int ret, regno, tid;
286
287 /* Get the thread id for the ptrace call. */
288 tid = regcache->ptid ().lwp ();
289
290 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
291 if (ret < 0)
292 perror_with_name (_("Unable to fetch WMMX registers."));
293
294 for (regno = 0; regno < 16; regno++)
295 regcache->raw_supply (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
296
297 for (regno = 0; regno < 2; regno++)
298 regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
299 &regbuf[16 * 8 + regno * 4]);
300
301 for (regno = 0; regno < 4; regno++)
302 regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
303 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
304 }
305
306 static void
307 store_wmmx_regs (const struct regcache *regcache)
308 {
309 char regbuf[IWMMXT_REGS_SIZE];
310 int ret, regno, tid;
311
312 /* Get the thread id for the ptrace call. */
313 tid = regcache->ptid ().lwp ();
314
315 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
316 if (ret < 0)
317 perror_with_name (_("Unable to fetch WMMX registers."));
318
319 for (regno = 0; regno < 16; regno++)
320 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
321 regcache->raw_collect (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
322
323 for (regno = 0; regno < 2; regno++)
324 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
325 regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
326 &regbuf[16 * 8 + regno * 4]);
327
328 for (regno = 0; regno < 4; regno++)
329 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
330 regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
331 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
332
333 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
334
335 if (ret < 0)
336 perror_with_name (_("Unable to store WMMX registers."));
337 }
338
339 static void
340 fetch_vfp_regs (struct regcache *regcache)
341 {
342 gdb_byte regbuf[VFP_REGS_SIZE];
343 int ret, tid;
344 struct gdbarch *gdbarch = regcache->arch ();
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346
347 /* Get the thread id for the ptrace call. */
348 tid = regcache->ptid ().lwp ();
349
350 if (have_ptrace_getregset == TRIBOOL_TRUE)
351 {
352 struct iovec iov;
353
354 iov.iov_base = regbuf;
355 iov.iov_len = VFP_REGS_SIZE;
356 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
357 }
358 else
359 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
360
361 if (ret < 0)
362 perror_with_name (_("Unable to fetch VFP registers."));
363
364 aarch32_vfp_regcache_supply (regcache, regbuf,
365 tdep->vfp_register_count);
366 }
367
368 static void
369 store_vfp_regs (const struct regcache *regcache)
370 {
371 gdb_byte regbuf[VFP_REGS_SIZE];
372 int ret, tid;
373 struct gdbarch *gdbarch = regcache->arch ();
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 /* Get the thread id for the ptrace call. */
377 tid = regcache->ptid ().lwp ();
378
379 if (have_ptrace_getregset == TRIBOOL_TRUE)
380 {
381 struct iovec iov;
382
383 iov.iov_base = regbuf;
384 iov.iov_len = VFP_REGS_SIZE;
385 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
386 }
387 else
388 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
389
390 if (ret < 0)
391 perror_with_name (_("Unable to fetch VFP registers (for update)."));
392
393 aarch32_vfp_regcache_collect (regcache, regbuf,
394 tdep->vfp_register_count);
395
396 if (have_ptrace_getregset == TRIBOOL_TRUE)
397 {
398 struct iovec iov;
399
400 iov.iov_base = regbuf;
401 iov.iov_len = VFP_REGS_SIZE;
402 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
403 }
404 else
405 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
406
407 if (ret < 0)
408 perror_with_name (_("Unable to store VFP registers."));
409 }
410
411 /* Fetch registers from the child process. Fetch all registers if
412 regno == -1, otherwise fetch all general registers or all floating
413 point registers depending upon the value of regno. */
414
415 void
416 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
417 {
418 struct gdbarch *gdbarch = regcache->arch ();
419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
420
421 if (-1 == regno)
422 {
423 fetch_regs (regcache);
424 if (tdep->have_wmmx_registers)
425 fetch_wmmx_regs (regcache);
426 if (tdep->vfp_register_count > 0)
427 fetch_vfp_regs (regcache);
428 if (tdep->have_fpa_registers)
429 fetch_fpregs (regcache);
430 }
431 else
432 {
433 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
434 fetch_regs (regcache);
435 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
436 fetch_fpregs (regcache);
437 else if (tdep->have_wmmx_registers
438 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
439 fetch_wmmx_regs (regcache);
440 else if (tdep->vfp_register_count > 0
441 && regno >= ARM_D0_REGNUM
442 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
443 || regno == ARM_FPSCR_REGNUM))
444 fetch_vfp_regs (regcache);
445 }
446 }
447
448 /* Store registers back into the inferior. Store all registers if
449 regno == -1, otherwise store all general registers or all floating
450 point registers depending upon the value of regno. */
451
452 void
453 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
454 {
455 struct gdbarch *gdbarch = regcache->arch ();
456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
457
458 if (-1 == regno)
459 {
460 store_regs (regcache);
461 if (tdep->have_wmmx_registers)
462 store_wmmx_regs (regcache);
463 if (tdep->vfp_register_count > 0)
464 store_vfp_regs (regcache);
465 if (tdep->have_fpa_registers)
466 store_fpregs (regcache);
467 }
468 else
469 {
470 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
471 store_regs (regcache);
472 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
473 store_fpregs (regcache);
474 else if (tdep->have_wmmx_registers
475 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
476 store_wmmx_regs (regcache);
477 else if (tdep->vfp_register_count > 0
478 && regno >= ARM_D0_REGNUM
479 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
480 || regno == ARM_FPSCR_REGNUM))
481 store_vfp_regs (regcache);
482 }
483 }
484
485 /* Wrapper functions for the standard regset handling, used by
486 thread debugging. */
487
488 void
489 fill_gregset (const struct regcache *regcache,
490 gdb_gregset_t *gregsetp, int regno)
491 {
492 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
493 }
494
495 void
496 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
497 {
498 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
499 }
500
501 void
502 fill_fpregset (const struct regcache *regcache,
503 gdb_fpregset_t *fpregsetp, int regno)
504 {
505 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
506 }
507
508 /* Fill GDB's register array with the floating-point register values
509 in *fpregsetp. */
510
511 void
512 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
513 {
514 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
515 }
516
517 /* Fetch the thread-local storage pointer for libthread_db. */
518
519 ps_err_e
520 ps_get_thread_area (struct ps_prochandle *ph,
521 lwpid_t lwpid, int idx, void **base)
522 {
523 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
524 return PS_ERR;
525
526 /* IDX is the bias from the thread pointer to the beginning of the
527 thread descriptor. It has to be subtracted due to implementation
528 quirks in libthread_db. */
529 *base = (void *) ((char *)*base - idx);
530
531 return PS_OK;
532 }
533
534 const struct target_desc *
535 arm_linux_nat_target::read_description ()
536 {
537 CORE_ADDR arm_hwcap = linux_get_hwcap (this);
538
539 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
540 {
541 elf_gregset_t gpregs;
542 struct iovec iov;
543 int tid = inferior_ptid.lwp ();
544
545 iov.iov_base = &gpregs;
546 iov.iov_len = sizeof (gpregs);
547
548 /* Check if PTRACE_GETREGSET works. */
549 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
550 have_ptrace_getregset = TRIBOOL_FALSE;
551 else
552 have_ptrace_getregset = TRIBOOL_TRUE;
553 }
554
555 if (arm_hwcap & HWCAP_IWMMXT)
556 return tdesc_arm_with_iwmmxt;
557
558 if (arm_hwcap & HWCAP_VFP)
559 {
560 int pid;
561 char *buf;
562 const struct target_desc * result = NULL;
563
564 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
565 Neon with VFPv3-D32. */
566 if (arm_hwcap & HWCAP_NEON)
567 result = tdesc_arm_with_neon;
568 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
569 result = tdesc_arm_with_vfpv3;
570 else
571 result = tdesc_arm_with_vfpv2;
572
573 /* Now make sure that the kernel supports reading these
574 registers. Support was added in 2.6.30. */
575 pid = inferior_ptid.lwp ();
576 errno = 0;
577 buf = (char *) alloca (VFP_REGS_SIZE);
578 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
579 && errno == EIO)
580 result = NULL;
581
582 return result;
583 }
584
585 return this->beneath ()->read_description ();
586 }
587
588 /* Information describing the hardware breakpoint capabilities. */
589 struct arm_linux_hwbp_cap
590 {
591 gdb_byte arch;
592 gdb_byte max_wp_length;
593 gdb_byte wp_count;
594 gdb_byte bp_count;
595 };
596
597 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
598 assume a maximum number of supported break-/watchpoints. */
599 #define MAX_BPTS 16
600 #define MAX_WPTS 16
601
602 /* Get hold of the Hardware Breakpoint information for the target we are
603 attached to. Returns NULL if the kernel doesn't support Hardware
604 breakpoints at all, or a pointer to the information structure. */
605 static const struct arm_linux_hwbp_cap *
606 arm_linux_get_hwbp_cap (void)
607 {
608 /* The info structure we return. */
609 static struct arm_linux_hwbp_cap info;
610
611 /* Is INFO in a good state? -1 means that no attempt has been made to
612 initialize INFO; 0 means an attempt has been made, but it failed; 1
613 means INFO is in an initialized state. */
614 static int available = -1;
615
616 if (available == -1)
617 {
618 int tid;
619 unsigned int val;
620
621 tid = inferior_ptid.lwp ();
622 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
623 available = 0;
624 else
625 {
626 info.arch = (gdb_byte)((val >> 24) & 0xff);
627 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
628 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
629 info.bp_count = (gdb_byte)(val & 0xff);
630
631 if (info.wp_count > MAX_WPTS)
632 {
633 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
634 supports %d"), MAX_WPTS, info.wp_count);
635 info.wp_count = MAX_WPTS;
636 }
637
638 if (info.bp_count > MAX_BPTS)
639 {
640 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
641 supports %d"), MAX_BPTS, info.bp_count);
642 info.bp_count = MAX_BPTS;
643 }
644 available = (info.arch != 0);
645 }
646 }
647
648 return available == 1 ? &info : NULL;
649 }
650
651 /* How many hardware breakpoints are available? */
652 static int
653 arm_linux_get_hw_breakpoint_count (void)
654 {
655 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
656 return cap != NULL ? cap->bp_count : 0;
657 }
658
659 /* How many hardware watchpoints are available? */
660 static int
661 arm_linux_get_hw_watchpoint_count (void)
662 {
663 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
664 return cap != NULL ? cap->wp_count : 0;
665 }
666
667 /* Have we got a free break-/watch-point available for use? Returns -1 if
668 there is not an appropriate resource available, otherwise returns 1. */
669 int
670 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
671 int cnt, int ot)
672 {
673 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
674 || type == bp_access_watchpoint || type == bp_watchpoint)
675 {
676 int count = arm_linux_get_hw_watchpoint_count ();
677
678 if (count == 0)
679 return 0;
680 else if (cnt + ot > count)
681 return -1;
682 }
683 else if (type == bp_hardware_breakpoint)
684 {
685 int count = arm_linux_get_hw_breakpoint_count ();
686
687 if (count == 0)
688 return 0;
689 else if (cnt > count)
690 return -1;
691 }
692 else
693 gdb_assert_not_reached ("unknown breakpoint type");
694
695 return 1;
696 }
697
698 /* Enum describing the different types of ARM hardware break-/watch-points. */
699 typedef enum
700 {
701 arm_hwbp_break = 0,
702 arm_hwbp_load = 1,
703 arm_hwbp_store = 2,
704 arm_hwbp_access = 3
705 } arm_hwbp_type;
706
707 /* Type describing an ARM Hardware Breakpoint Control register value. */
708 typedef unsigned int arm_hwbp_control_t;
709
710 /* Structure used to keep track of hardware break-/watch-points. */
711 struct arm_linux_hw_breakpoint
712 {
713 /* Address to break on, or being watched. */
714 unsigned int address;
715 /* Control register for break-/watch- point. */
716 arm_hwbp_control_t control;
717 };
718
719 /* Structure containing arrays of per process hardware break-/watchpoints
720 for caching address and control information.
721
722 The Linux ptrace interface to hardware break-/watch-points presents the
723 values in a vector centred around 0 (which is used fo generic information).
724 Positive indicies refer to breakpoint addresses/control registers, negative
725 indices to watchpoint addresses/control registers.
726
727 The Linux vector is indexed as follows:
728 -((i << 1) + 2): Control register for watchpoint i.
729 -((i << 1) + 1): Address register for watchpoint i.
730 0: Information register.
731 ((i << 1) + 1): Address register for breakpoint i.
732 ((i << 1) + 2): Control register for breakpoint i.
733
734 This structure is used as a per-thread cache of the state stored by the
735 kernel, so that we don't need to keep calling into the kernel to find a
736 free breakpoint.
737
738 We treat break-/watch-points with their enable bit clear as being deleted.
739 */
740 struct arm_linux_debug_reg_state
741 {
742 /* Hardware breakpoints for this process. */
743 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
744 /* Hardware watchpoints for this process. */
745 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
746 };
747
748 /* Per-process arch-specific data we want to keep. */
749 struct arm_linux_process_info
750 {
751 /* Linked list. */
752 struct arm_linux_process_info *next;
753 /* The process identifier. */
754 pid_t pid;
755 /* Hardware break-/watchpoints state information. */
756 struct arm_linux_debug_reg_state state;
757
758 };
759
760 /* Per-thread arch-specific data we want to keep. */
761 struct arch_lwp_info
762 {
763 /* Non-zero if our copy differs from what's recorded in the thread. */
764 char bpts_changed[MAX_BPTS];
765 char wpts_changed[MAX_WPTS];
766 };
767
768 static struct arm_linux_process_info *arm_linux_process_list = NULL;
769
770 /* Find process data for process PID. */
771
772 static struct arm_linux_process_info *
773 arm_linux_find_process_pid (pid_t pid)
774 {
775 struct arm_linux_process_info *proc;
776
777 for (proc = arm_linux_process_list; proc; proc = proc->next)
778 if (proc->pid == pid)
779 return proc;
780
781 return NULL;
782 }
783
784 /* Add process data for process PID. Returns newly allocated info
785 object. */
786
787 static struct arm_linux_process_info *
788 arm_linux_add_process (pid_t pid)
789 {
790 struct arm_linux_process_info *proc;
791
792 proc = XCNEW (struct arm_linux_process_info);
793 proc->pid = pid;
794
795 proc->next = arm_linux_process_list;
796 arm_linux_process_list = proc;
797
798 return proc;
799 }
800
801 /* Get data specific info for process PID, creating it if necessary.
802 Never returns NULL. */
803
804 static struct arm_linux_process_info *
805 arm_linux_process_info_get (pid_t pid)
806 {
807 struct arm_linux_process_info *proc;
808
809 proc = arm_linux_find_process_pid (pid);
810 if (proc == NULL)
811 proc = arm_linux_add_process (pid);
812
813 return proc;
814 }
815
816 /* Called whenever GDB is no longer debugging process PID. It deletes
817 data structures that keep track of debug register state. */
818
819 void
820 arm_linux_nat_target::low_forget_process (pid_t pid)
821 {
822 struct arm_linux_process_info *proc, **proc_link;
823
824 proc = arm_linux_process_list;
825 proc_link = &arm_linux_process_list;
826
827 while (proc != NULL)
828 {
829 if (proc->pid == pid)
830 {
831 *proc_link = proc->next;
832
833 xfree (proc);
834 return;
835 }
836
837 proc_link = &proc->next;
838 proc = *proc_link;
839 }
840 }
841
842 /* Get hardware break-/watchpoint state for process PID. */
843
844 static struct arm_linux_debug_reg_state *
845 arm_linux_get_debug_reg_state (pid_t pid)
846 {
847 return &arm_linux_process_info_get (pid)->state;
848 }
849
850 /* Initialize an ARM hardware break-/watch-point control register value.
851 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
852 type of break-/watch-point; ENABLE indicates whether the point is enabled.
853 */
854 static arm_hwbp_control_t
855 arm_hwbp_control_initialize (unsigned byte_address_select,
856 arm_hwbp_type hwbp_type,
857 int enable)
858 {
859 gdb_assert ((byte_address_select & ~0xffU) == 0);
860 gdb_assert (hwbp_type != arm_hwbp_break
861 || ((byte_address_select & 0xfU) != 0));
862
863 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
864 }
865
866 /* Does the breakpoint control value CONTROL have the enable bit set? */
867 static int
868 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
869 {
870 return control & 0x1;
871 }
872
873 /* Change a breakpoint control word so that it is in the disabled state. */
874 static arm_hwbp_control_t
875 arm_hwbp_control_disable (arm_hwbp_control_t control)
876 {
877 return control & ~0x1;
878 }
879
880 /* Initialise the hardware breakpoint structure P. The breakpoint will be
881 enabled, and will point to the placed address of BP_TGT. */
882 static void
883 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
884 struct bp_target_info *bp_tgt,
885 struct arm_linux_hw_breakpoint *p)
886 {
887 unsigned mask;
888 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
889
890 /* We have to create a mask for the control register which says which bits
891 of the word pointed to by address to break on. */
892 if (arm_pc_is_thumb (gdbarch, address))
893 {
894 mask = 0x3;
895 address &= ~1;
896 }
897 else
898 {
899 mask = 0xf;
900 address &= ~3;
901 }
902
903 p->address = (unsigned int) address;
904 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
905 }
906
907 /* Get the ARM hardware breakpoint type from the TYPE value we're
908 given when asked to set a watchpoint. */
909 static arm_hwbp_type
910 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
911 {
912 if (type == hw_read)
913 return arm_hwbp_load;
914 else if (type == hw_write)
915 return arm_hwbp_store;
916 else
917 return arm_hwbp_access;
918 }
919
920 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
921 to LEN. The type of watchpoint is given in RW. */
922 static void
923 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
924 enum target_hw_bp_type type,
925 struct arm_linux_hw_breakpoint *p)
926 {
927 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
928 unsigned mask;
929
930 gdb_assert (cap != NULL);
931 gdb_assert (cap->max_wp_length != 0);
932
933 mask = (1 << len) - 1;
934
935 p->address = (unsigned int) addr;
936 p->control = arm_hwbp_control_initialize (mask,
937 arm_linux_get_hwbp_type (type), 1);
938 }
939
940 /* Are two break-/watch-points equal? */
941 static int
942 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
943 const struct arm_linux_hw_breakpoint *p2)
944 {
945 return p1->address == p2->address && p1->control == p2->control;
946 }
947
948 /* Callback to mark a watch-/breakpoint to be updated in all threads of
949 the current process. */
950
951 static int
952 update_registers_callback (struct lwp_info *lwp, int watch, int index)
953 {
954 if (lwp->arch_private == NULL)
955 lwp->arch_private = XCNEW (struct arch_lwp_info);
956
957 /* The actual update is done later just before resuming the lwp,
958 we just mark that the registers need updating. */
959 if (watch)
960 lwp->arch_private->wpts_changed[index] = 1;
961 else
962 lwp->arch_private->bpts_changed[index] = 1;
963
964 /* If the lwp isn't stopped, force it to momentarily pause, so
965 we can update its breakpoint registers. */
966 if (!lwp->stopped)
967 linux_stop_lwp (lwp);
968
969 return 0;
970 }
971
972 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
973 =1) BPT for thread TID. */
974 static void
975 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
976 int watchpoint)
977 {
978 int pid;
979 ptid_t pid_ptid;
980 gdb_byte count, i;
981 struct arm_linux_hw_breakpoint* bpts;
982
983 pid = inferior_ptid.pid ();
984 pid_ptid = ptid_t (pid);
985
986 if (watchpoint)
987 {
988 count = arm_linux_get_hw_watchpoint_count ();
989 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
990 }
991 else
992 {
993 count = arm_linux_get_hw_breakpoint_count ();
994 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
995 }
996
997 for (i = 0; i < count; ++i)
998 if (!arm_hwbp_control_is_enabled (bpts[i].control))
999 {
1000 bpts[i] = *bpt;
1001 iterate_over_lwps (pid_ptid,
1002 [=] (struct lwp_info *info)
1003 {
1004 return update_registers_callback (info, watchpoint,
1005 i);
1006 });
1007 break;
1008 }
1009
1010 gdb_assert (i != count);
1011 }
1012
1013 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1014 (WATCHPOINT = 1) BPT for thread TID. */
1015 static void
1016 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1017 int watchpoint)
1018 {
1019 int pid;
1020 gdb_byte count, i;
1021 ptid_t pid_ptid;
1022 struct arm_linux_hw_breakpoint* bpts;
1023
1024 pid = inferior_ptid.pid ();
1025 pid_ptid = ptid_t (pid);
1026
1027 if (watchpoint)
1028 {
1029 count = arm_linux_get_hw_watchpoint_count ();
1030 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1031 }
1032 else
1033 {
1034 count = arm_linux_get_hw_breakpoint_count ();
1035 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1036 }
1037
1038 for (i = 0; i < count; ++i)
1039 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1040 {
1041 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1042 iterate_over_lwps (pid_ptid,
1043 [=] (struct lwp_info *info)
1044 {
1045 return update_registers_callback (info, watchpoint,
1046 i);
1047 });
1048 break;
1049 }
1050
1051 gdb_assert (i != count);
1052 }
1053
1054 /* Insert a Hardware breakpoint. */
1055 int
1056 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1057 struct bp_target_info *bp_tgt)
1058 {
1059 struct arm_linux_hw_breakpoint p;
1060
1061 if (arm_linux_get_hw_breakpoint_count () == 0)
1062 return -1;
1063
1064 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1065
1066 arm_linux_insert_hw_breakpoint1 (&p, 0);
1067
1068 return 0;
1069 }
1070
1071 /* Remove a hardware breakpoint. */
1072 int
1073 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1074 struct bp_target_info *bp_tgt)
1075 {
1076 struct arm_linux_hw_breakpoint p;
1077
1078 if (arm_linux_get_hw_breakpoint_count () == 0)
1079 return -1;
1080
1081 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1082
1083 arm_linux_remove_hw_breakpoint1 (&p, 0);
1084
1085 return 0;
1086 }
1087
1088 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1089 ADDR? */
1090 int
1091 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1092 {
1093 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1094 CORE_ADDR max_wp_length, aligned_addr;
1095
1096 /* Can not set watchpoints for zero or negative lengths. */
1097 if (len <= 0)
1098 return 0;
1099
1100 /* Need to be able to use the ptrace interface. */
1101 if (cap == NULL || cap->wp_count == 0)
1102 return 0;
1103
1104 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1105 range covered by a watchpoint. */
1106 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1107 aligned_addr = addr & ~(max_wp_length - 1);
1108
1109 if (aligned_addr + max_wp_length < addr + len)
1110 return 0;
1111
1112 /* The current ptrace interface can only handle watchpoints that are a
1113 power of 2. */
1114 if ((len & (len - 1)) != 0)
1115 return 0;
1116
1117 /* All tests passed so we must be able to set a watchpoint. */
1118 return 1;
1119 }
1120
1121 /* Insert a Hardware breakpoint. */
1122 int
1123 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1124 enum target_hw_bp_type rw,
1125 struct expression *cond)
1126 {
1127 struct arm_linux_hw_breakpoint p;
1128
1129 if (arm_linux_get_hw_watchpoint_count () == 0)
1130 return -1;
1131
1132 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1133
1134 arm_linux_insert_hw_breakpoint1 (&p, 1);
1135
1136 return 0;
1137 }
1138
1139 /* Remove a hardware breakpoint. */
1140 int
1141 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1142 int len, enum target_hw_bp_type rw,
1143 struct expression *cond)
1144 {
1145 struct arm_linux_hw_breakpoint p;
1146
1147 if (arm_linux_get_hw_watchpoint_count () == 0)
1148 return -1;
1149
1150 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1151
1152 arm_linux_remove_hw_breakpoint1 (&p, 1);
1153
1154 return 0;
1155 }
1156
1157 /* What was the data address the target was stopped on accessing. */
1158 bool
1159 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1160 {
1161 siginfo_t siginfo;
1162 int slot;
1163
1164 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1165 return false;
1166
1167 /* This must be a hardware breakpoint. */
1168 if (siginfo.si_signo != SIGTRAP
1169 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1170 return false;
1171
1172 /* We must be able to set hardware watchpoints. */
1173 if (arm_linux_get_hw_watchpoint_count () == 0)
1174 return 0;
1175
1176 slot = siginfo.si_errno;
1177
1178 /* If we are in a positive slot then we're looking at a breakpoint and not
1179 a watchpoint. */
1180 if (slot >= 0)
1181 return false;
1182
1183 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1184 return true;
1185 }
1186
1187 /* Has the target been stopped by hitting a watchpoint? */
1188 bool
1189 arm_linux_nat_target::stopped_by_watchpoint ()
1190 {
1191 CORE_ADDR addr;
1192 return stopped_data_address (&addr);
1193 }
1194
1195 bool
1196 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1197 CORE_ADDR start,
1198 int length)
1199 {
1200 return start <= addr && start + length - 1 >= addr;
1201 }
1202
1203 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1204 in the parent thread to the child thread. */
1205 void
1206 arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1207 {
1208 int i;
1209 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1210
1211 /* Mark that all the hardware breakpoint/watchpoint register pairs
1212 for this thread need to be initialized. */
1213
1214 for (i = 0; i < MAX_BPTS; i++)
1215 {
1216 info->bpts_changed[i] = 1;
1217 info->wpts_changed[i] = 1;
1218 }
1219
1220 lp->arch_private = info;
1221 }
1222
1223 /* Function to call when a thread is being deleted. */
1224
1225 void
1226 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1227 {
1228 xfree (arch_lwp);
1229 }
1230
1231 /* Called when resuming a thread.
1232 The hardware debug registers are updated when there is any change. */
1233
1234 void
1235 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1236 {
1237 int pid, i;
1238 struct arm_linux_hw_breakpoint *bpts, *wpts;
1239 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1240
1241 pid = lwp->ptid.lwp ();
1242 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1243 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1244
1245 /* NULL means this is the main thread still going through the shell,
1246 or, no watchpoint has been set yet. In that case, there's
1247 nothing to do. */
1248 if (arm_lwp_info == NULL)
1249 return;
1250
1251 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1252 if (arm_lwp_info->bpts_changed[i])
1253 {
1254 errno = 0;
1255 if (arm_hwbp_control_is_enabled (bpts[i].control))
1256 if (ptrace (PTRACE_SETHBPREGS, pid,
1257 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1258 perror_with_name (_("Unexpected error setting breakpoint"));
1259
1260 if (bpts[i].control != 0)
1261 if (ptrace (PTRACE_SETHBPREGS, pid,
1262 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1263 perror_with_name (_("Unexpected error setting breakpoint"));
1264
1265 arm_lwp_info->bpts_changed[i] = 0;
1266 }
1267
1268 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1269 if (arm_lwp_info->wpts_changed[i])
1270 {
1271 errno = 0;
1272 if (arm_hwbp_control_is_enabled (wpts[i].control))
1273 if (ptrace (PTRACE_SETHBPREGS, pid,
1274 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1275 perror_with_name (_("Unexpected error setting watchpoint"));
1276
1277 if (wpts[i].control != 0)
1278 if (ptrace (PTRACE_SETHBPREGS, pid,
1279 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1280 perror_with_name (_("Unexpected error setting watchpoint"));
1281
1282 arm_lwp_info->wpts_changed[i] = 0;
1283 }
1284 }
1285
1286 /* linux_nat_new_fork hook. */
1287
1288 void
1289 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1290 {
1291 pid_t parent_pid;
1292 struct arm_linux_debug_reg_state *parent_state;
1293 struct arm_linux_debug_reg_state *child_state;
1294
1295 /* NULL means no watchpoint has ever been set in the parent. In
1296 that case, there's nothing to do. */
1297 if (parent->arch_private == NULL)
1298 return;
1299
1300 /* GDB core assumes the child inherits the watchpoints/hw
1301 breakpoints of the parent, and will remove them all from the
1302 forked off process. Copy the debug registers mirrors into the
1303 new process so that all breakpoints and watchpoints can be
1304 removed together. */
1305
1306 parent_pid = parent->ptid.pid ();
1307 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1308 child_state = arm_linux_get_debug_reg_state (child_pid);
1309 *child_state = *parent_state;
1310 }
1311
1312 void
1313 _initialize_arm_linux_nat (void)
1314 {
1315 /* Register the target. */
1316 linux_target = &the_arm_linux_nat_target;
1317 add_inf_child_target (&the_arm_linux_nat_target);
1318 }