]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-linux-tdep.c
libctf: lookup_by_name: do not return success for nonexistent pointer types
[thirdparty/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "gdbcore.h"
25 #include "frame.h"
26 #include "regcache.h"
27 #include "solib-svr4.h"
28 #include "osabi.h"
29 #include "regset.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "breakpoint.h"
33 #include "auxv.h"
34 #include "xml-syscall.h"
35
36 #include "aarch32-tdep.h"
37 #include "arch/arm.h"
38 #include "arch/arm-get-next-pcs.h"
39 #include "arch/arm-linux.h"
40 #include "arm-tdep.h"
41 #include "arm-linux-tdep.h"
42 #include "linux-tdep.h"
43 #include "glibc-tdep.h"
44 #include "arch-utils.h"
45 #include "inferior.h"
46 #include "infrun.h"
47 #include "gdbthread.h"
48 #include "symfile.h"
49
50 #include "record-full.h"
51 #include "linux-record.h"
52
53 #include "cli/cli-utils.h"
54 #include "stap-probe.h"
55 #include "parser-defs.h"
56 #include "user-regs.h"
57 #include <ctype.h>
58 #include "elf/common.h"
59
60 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
61 is to execute a particular software interrupt, rather than use a
62 particular undefined instruction to provoke a trap. Upon exection
63 of the software interrupt the kernel stops the inferior with a
64 SIGTRAP, and wakes the debugger. */
65
66 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
67
68 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
69
70 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
71 the operand of the swi if old-ABI compatibility is disabled. Therefore,
72 use an undefined instruction instead. This is supported as of kernel
73 version 2.5.70 (May 2003), so should be a safe assumption for EABI
74 binaries. */
75
76 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
77
78 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
79
80 /* All the kernels which support Thumb support using a specific undefined
81 instruction for the Thumb breakpoint. */
82
83 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
84
85 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
86
87 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
88 we must use a length-appropriate breakpoint for 32-bit Thumb
89 instructions. See also thumb_get_next_pc. */
90
91 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
92
93 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
94
95 /* Description of the longjmp buffer. The buffer is treated as an array of
96 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
97
98 The location of saved registers in this buffer (in particular the PC
99 to use after longjmp is called) varies depending on the ABI (in
100 particular the FP model) and also (possibly) the C Library.
101
102 For glibc, eglibc, and uclibc the following holds: If the FP model is
103 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
104 buffer. This is also true for the SoftFPA model. However, for the FPA
105 model the PC is at offset 21 in the buffer. */
106 #define ARM_LINUX_JB_ELEMENT_SIZE ARM_INT_REGISTER_SIZE
107 #define ARM_LINUX_JB_PC_FPA 21
108 #define ARM_LINUX_JB_PC_EABI 9
109
110 /*
111 Dynamic Linking on ARM GNU/Linux
112 --------------------------------
113
114 Note: PLT = procedure linkage table
115 GOT = global offset table
116
117 As much as possible, ELF dynamic linking defers the resolution of
118 jump/call addresses until the last minute. The technique used is
119 inspired by the i386 ELF design, and is based on the following
120 constraints.
121
122 1) The calling technique should not force a change in the assembly
123 code produced for apps; it MAY cause changes in the way assembly
124 code is produced for position independent code (i.e. shared
125 libraries).
126
127 2) The technique must be such that all executable areas must not be
128 modified; and any modified areas must not be executed.
129
130 To do this, there are three steps involved in a typical jump:
131
132 1) in the code
133 2) through the PLT
134 3) using a pointer from the GOT
135
136 When the executable or library is first loaded, each GOT entry is
137 initialized to point to the code which implements dynamic name
138 resolution and code finding. This is normally a function in the
139 program interpreter (on ARM GNU/Linux this is usually
140 ld-linux.so.2, but it does not have to be). On the first
141 invocation, the function is located and the GOT entry is replaced
142 with the real function address. Subsequent calls go through steps
143 1, 2 and 3 and end up calling the real code.
144
145 1) In the code:
146
147 b function_call
148 bl function_call
149
150 This is typical ARM code using the 26 bit relative branch or branch
151 and link instructions. The target of the instruction
152 (function_call is usually the address of the function to be called.
153 In position independent code, the target of the instruction is
154 actually an entry in the PLT when calling functions in a shared
155 library. Note that this call is identical to a normal function
156 call, only the target differs.
157
158 2) In the PLT:
159
160 The PLT is a synthetic area, created by the linker. It exists in
161 both executables and libraries. It is an array of stubs, one per
162 imported function call. It looks like this:
163
164 PLT[0]:
165 str lr, [sp, #-4]! @push the return address (lr)
166 ldr lr, [pc, #16] @load from 6 words ahead
167 add lr, pc, lr @form an address for GOT[0]
168 ldr pc, [lr, #8]! @jump to the contents of that addr
169
170 The return address (lr) is pushed on the stack and used for
171 calculations. The load on the second line loads the lr with
172 &GOT[3] - . - 20. The addition on the third leaves:
173
174 lr = (&GOT[3] - . - 20) + (. + 8)
175 lr = (&GOT[3] - 12)
176 lr = &GOT[0]
177
178 On the fourth line, the pc and lr are both updated, so that:
179
180 pc = GOT[2]
181 lr = &GOT[0] + 8
182 = &GOT[2]
183
184 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
185 "tight", but allows us to keep all the PLT entries the same size.
186
187 PLT[n+1]:
188 ldr ip, [pc, #4] @load offset from gotoff
189 add ip, pc, ip @add the offset to the pc
190 ldr pc, [ip] @jump to that address
191 gotoff: .word GOT[n+3] - .
192
193 The load on the first line, gets an offset from the fourth word of
194 the PLT entry. The add on the second line makes ip = &GOT[n+3],
195 which contains either a pointer to PLT[0] (the fixup trampoline) or
196 a pointer to the actual code.
197
198 3) In the GOT:
199
200 The GOT contains helper pointers for both code (PLT) fixups and
201 data fixups. The first 3 entries of the GOT are special. The next
202 M entries (where M is the number of entries in the PLT) belong to
203 the PLT fixups. The next D (all remaining) entries belong to
204 various data fixups. The actual size of the GOT is 3 + M + D.
205
206 The GOT is also a synthetic area, created by the linker. It exists
207 in both executables and libraries. When the GOT is first
208 initialized , all the GOT entries relating to PLT fixups are
209 pointing to code back at PLT[0].
210
211 The special entries in the GOT are:
212
213 GOT[0] = linked list pointer used by the dynamic loader
214 GOT[1] = pointer to the reloc table for this module
215 GOT[2] = pointer to the fixup/resolver code
216
217 The first invocation of function call comes through and uses the
218 fixup/resolver code. On the entry to the fixup/resolver code:
219
220 ip = &GOT[n+3]
221 lr = &GOT[2]
222 stack[0] = return address (lr) of the function call
223 [r0, r1, r2, r3] are still the arguments to the function call
224
225 This is enough information for the fixup/resolver code to work
226 with. Before the fixup/resolver code returns, it actually calls
227 the requested function and repairs &GOT[n+3]. */
228
229 /* The constants below were determined by examining the following files
230 in the linux kernel sources:
231
232 arch/arm/kernel/signal.c
233 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
234 include/asm-arm/unistd.h
235 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
236
237 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
238 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
239
240 /* For ARM EABI, the syscall number is not in the SWI instruction
241 (instead it is loaded into r7). We recognize the pattern that
242 glibc uses... alternatively, we could arrange to do this by
243 function name, but they are not always exported. */
244 #define ARM_SET_R7_SIGRETURN 0xe3a07077
245 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
246 #define ARM_EABI_SYSCALL 0xef000000
247
248 /* Equivalent patterns for Thumb2. */
249 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
250 #define THUMB2_SET_R7_SIGRETURN2 0x0777
251 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
252 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
253 #define THUMB2_EABI_SYSCALL 0xdf00
254
255 /* OABI syscall restart trampoline, used for EABI executables too
256 whenever OABI support has been enabled in the kernel. */
257 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
258 #define ARM_LDR_PC_SP_12 0xe49df00c
259 #define ARM_LDR_PC_SP_4 0xe49df004
260
261 /* Syscall number for sigreturn. */
262 #define ARM_SIGRETURN 119
263 /* Syscall number for rt_sigreturn. */
264 #define ARM_RT_SIGRETURN 173
265
266 static CORE_ADDR
267 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
268
269 /* Operation function pointers for get_next_pcs. */
270 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
271 arm_get_next_pcs_read_memory_unsigned_integer,
272 arm_linux_get_next_pcs_syscall_next_pc,
273 arm_get_next_pcs_addr_bits_remove,
274 arm_get_next_pcs_is_thumb,
275 arm_linux_get_next_pcs_fixup,
276 };
277
278 static void
279 arm_linux_sigtramp_cache (struct frame_info *this_frame,
280 struct trad_frame_cache *this_cache,
281 CORE_ADDR func, int regs_offset)
282 {
283 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
284 CORE_ADDR base = sp + regs_offset;
285 int i;
286
287 for (i = 0; i < 16; i++)
288 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
289
290 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
291
292 /* The VFP or iWMMXt registers may be saved on the stack, but there's
293 no reliable way to restore them (yet). */
294
295 /* Save a frame ID. */
296 trad_frame_set_id (this_cache, frame_id_build (sp, func));
297 }
298
299 /* See arm-linux.h for stack layout details. */
300 static void
301 arm_linux_sigreturn_init (const struct tramp_frame *self,
302 struct frame_info *this_frame,
303 struct trad_frame_cache *this_cache,
304 CORE_ADDR func)
305 {
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
309 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
310
311 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
312 arm_linux_sigtramp_cache (this_frame, this_cache, func,
313 ARM_UCONTEXT_SIGCONTEXT
314 + ARM_SIGCONTEXT_R0);
315 else
316 arm_linux_sigtramp_cache (this_frame, this_cache, func,
317 ARM_SIGCONTEXT_R0);
318 }
319
320 static void
321 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
322 struct frame_info *this_frame,
323 struct trad_frame_cache *this_cache,
324 CORE_ADDR func)
325 {
326 struct gdbarch *gdbarch = get_frame_arch (this_frame);
327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
328 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
329 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
330
331 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
332 arm_linux_sigtramp_cache (this_frame, this_cache, func,
333 ARM_OLD_RT_SIGFRAME_UCONTEXT
334 + ARM_UCONTEXT_SIGCONTEXT
335 + ARM_SIGCONTEXT_R0);
336 else
337 arm_linux_sigtramp_cache (this_frame, this_cache, func,
338 ARM_NEW_RT_SIGFRAME_UCONTEXT
339 + ARM_UCONTEXT_SIGCONTEXT
340 + ARM_SIGCONTEXT_R0);
341 }
342
343 static void
344 arm_linux_restart_syscall_init (const struct tramp_frame *self,
345 struct frame_info *this_frame,
346 struct trad_frame_cache *this_cache,
347 CORE_ADDR func)
348 {
349 struct gdbarch *gdbarch = get_frame_arch (this_frame);
350 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
351 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
352 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
353 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
354 int sp_offset;
355
356 /* There are two variants of this trampoline; with older kernels, the
357 stub is placed on the stack, while newer kernels use the stub from
358 the vector page. They are identical except that the older version
359 increments SP by 12 (to skip stored PC and the stub itself), while
360 the newer version increments SP only by 4 (just the stored PC). */
361 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
362 sp_offset = 4;
363 else
364 sp_offset = 12;
365
366 /* Update Thumb bit in CPSR. */
367 if (pc & 1)
368 cpsr |= t_bit;
369 else
370 cpsr &= ~t_bit;
371
372 /* Remove Thumb bit from PC. */
373 pc = gdbarch_addr_bits_remove (gdbarch, pc);
374
375 /* Save previous register values. */
376 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
377 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
378 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
379
380 /* Save a frame ID. */
381 trad_frame_set_id (this_cache, frame_id_build (sp, func));
382 }
383
384 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
385 SIGTRAMP_FRAME,
386 4,
387 {
388 { ARM_LINUX_SIGRETURN_INSTR, ULONGEST_MAX },
389 { TRAMP_SENTINEL_INSN }
390 },
391 arm_linux_sigreturn_init
392 };
393
394 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
395 SIGTRAMP_FRAME,
396 4,
397 {
398 { ARM_LINUX_RT_SIGRETURN_INSTR, ULONGEST_MAX },
399 { TRAMP_SENTINEL_INSN }
400 },
401 arm_linux_rt_sigreturn_init
402 };
403
404 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
405 SIGTRAMP_FRAME,
406 4,
407 {
408 { ARM_SET_R7_SIGRETURN, ULONGEST_MAX },
409 { ARM_EABI_SYSCALL, ULONGEST_MAX },
410 { TRAMP_SENTINEL_INSN }
411 },
412 arm_linux_sigreturn_init
413 };
414
415 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
416 SIGTRAMP_FRAME,
417 4,
418 {
419 { ARM_SET_R7_RT_SIGRETURN, ULONGEST_MAX },
420 { ARM_EABI_SYSCALL, ULONGEST_MAX },
421 { TRAMP_SENTINEL_INSN }
422 },
423 arm_linux_rt_sigreturn_init
424 };
425
426 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
427 SIGTRAMP_FRAME,
428 2,
429 {
430 { THUMB2_SET_R7_SIGRETURN1, ULONGEST_MAX },
431 { THUMB2_SET_R7_SIGRETURN2, ULONGEST_MAX },
432 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
433 { TRAMP_SENTINEL_INSN }
434 },
435 arm_linux_sigreturn_init
436 };
437
438 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
439 SIGTRAMP_FRAME,
440 2,
441 {
442 { THUMB2_SET_R7_RT_SIGRETURN1, ULONGEST_MAX },
443 { THUMB2_SET_R7_RT_SIGRETURN2, ULONGEST_MAX },
444 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
445 { TRAMP_SENTINEL_INSN }
446 },
447 arm_linux_rt_sigreturn_init
448 };
449
450 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
451 NORMAL_FRAME,
452 4,
453 {
454 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
455 { ARM_LDR_PC_SP_12, ULONGEST_MAX },
456 { TRAMP_SENTINEL_INSN }
457 },
458 arm_linux_restart_syscall_init
459 };
460
461 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
462 NORMAL_FRAME,
463 4,
464 {
465 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
466 { ARM_LDR_PC_SP_4, ULONGEST_MAX },
467 { TRAMP_SENTINEL_INSN }
468 },
469 arm_linux_restart_syscall_init
470 };
471
472 /* Core file and register set support. */
473
474 #define ARM_LINUX_SIZEOF_GREGSET (18 * ARM_INT_REGISTER_SIZE)
475
476 void
477 arm_linux_supply_gregset (const struct regset *regset,
478 struct regcache *regcache,
479 int regnum, const void *gregs_buf, size_t len)
480 {
481 struct gdbarch *gdbarch = regcache->arch ();
482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
483 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
484 int regno;
485 CORE_ADDR reg_pc;
486 gdb_byte pc_buf[ARM_INT_REGISTER_SIZE];
487
488 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
489 if (regnum == -1 || regnum == regno)
490 regcache->raw_supply (regno, gregs + ARM_INT_REGISTER_SIZE * regno);
491
492 if (regnum == ARM_PS_REGNUM || regnum == -1)
493 {
494 if (arm_apcs_32)
495 regcache->raw_supply (ARM_PS_REGNUM,
496 gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
497 else
498 regcache->raw_supply (ARM_PS_REGNUM,
499 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
500 }
501
502 if (regnum == ARM_PC_REGNUM || regnum == -1)
503 {
504 reg_pc = extract_unsigned_integer (
505 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM,
506 ARM_INT_REGISTER_SIZE, byte_order);
507 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
508 store_unsigned_integer (pc_buf, ARM_INT_REGISTER_SIZE, byte_order,
509 reg_pc);
510 regcache->raw_supply (ARM_PC_REGNUM, pc_buf);
511 }
512 }
513
514 void
515 arm_linux_collect_gregset (const struct regset *regset,
516 const struct regcache *regcache,
517 int regnum, void *gregs_buf, size_t len)
518 {
519 gdb_byte *gregs = (gdb_byte *) gregs_buf;
520 int regno;
521
522 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
523 if (regnum == -1 || regnum == regno)
524 regcache->raw_collect (regno,
525 gregs + ARM_INT_REGISTER_SIZE * regno);
526
527 if (regnum == ARM_PS_REGNUM || regnum == -1)
528 {
529 if (arm_apcs_32)
530 regcache->raw_collect (ARM_PS_REGNUM,
531 gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
532 else
533 regcache->raw_collect (ARM_PS_REGNUM,
534 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
535 }
536
537 if (regnum == ARM_PC_REGNUM || regnum == -1)
538 regcache->raw_collect (ARM_PC_REGNUM,
539 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
540 }
541
542 /* Support for register format used by the NWFPE FPA emulator. */
543
544 #define typeNone 0x00
545 #define typeSingle 0x01
546 #define typeDouble 0x02
547 #define typeExtended 0x03
548
549 void
550 supply_nwfpe_register (struct regcache *regcache, int regno,
551 const gdb_byte *regs)
552 {
553 const gdb_byte *reg_data;
554 gdb_byte reg_tag;
555 gdb_byte buf[ARM_FP_REGISTER_SIZE];
556
557 reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
558 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
559 memset (buf, 0, ARM_FP_REGISTER_SIZE);
560
561 switch (reg_tag)
562 {
563 case typeSingle:
564 memcpy (buf, reg_data, 4);
565 break;
566 case typeDouble:
567 memcpy (buf, reg_data + 4, 4);
568 memcpy (buf + 4, reg_data, 4);
569 break;
570 case typeExtended:
571 /* We want sign and exponent, then least significant bits,
572 then most significant. NWFPE does sign, most, least. */
573 memcpy (buf, reg_data, 4);
574 memcpy (buf + 4, reg_data + 8, 4);
575 memcpy (buf + 8, reg_data + 4, 4);
576 break;
577 default:
578 break;
579 }
580
581 regcache->raw_supply (regno, buf);
582 }
583
584 void
585 collect_nwfpe_register (const struct regcache *regcache, int regno,
586 gdb_byte *regs)
587 {
588 gdb_byte *reg_data;
589 gdb_byte reg_tag;
590 gdb_byte buf[ARM_FP_REGISTER_SIZE];
591
592 regcache->raw_collect (regno, buf);
593
594 /* NOTE drow/2006-06-07: This code uses the tag already in the
595 register buffer. I've preserved that when moving the code
596 from the native file to the target file. But this doesn't
597 always make sense. */
598
599 reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
600 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
601
602 switch (reg_tag)
603 {
604 case typeSingle:
605 memcpy (reg_data, buf, 4);
606 break;
607 case typeDouble:
608 memcpy (reg_data, buf + 4, 4);
609 memcpy (reg_data + 4, buf, 4);
610 break;
611 case typeExtended:
612 memcpy (reg_data, buf, 4);
613 memcpy (reg_data + 4, buf + 8, 4);
614 memcpy (reg_data + 8, buf + 4, 4);
615 break;
616 default:
617 break;
618 }
619 }
620
621 void
622 arm_linux_supply_nwfpe (const struct regset *regset,
623 struct regcache *regcache,
624 int regnum, const void *regs_buf, size_t len)
625 {
626 const gdb_byte *regs = (const gdb_byte *) regs_buf;
627 int regno;
628
629 if (regnum == ARM_FPS_REGNUM || regnum == -1)
630 regcache->raw_supply (ARM_FPS_REGNUM,
631 regs + NWFPE_FPSR_OFFSET);
632
633 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
634 if (regnum == -1 || regnum == regno)
635 supply_nwfpe_register (regcache, regno, regs);
636 }
637
638 void
639 arm_linux_collect_nwfpe (const struct regset *regset,
640 const struct regcache *regcache,
641 int regnum, void *regs_buf, size_t len)
642 {
643 gdb_byte *regs = (gdb_byte *) regs_buf;
644 int regno;
645
646 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
647 if (regnum == -1 || regnum == regno)
648 collect_nwfpe_register (regcache, regno, regs);
649
650 if (regnum == ARM_FPS_REGNUM || regnum == -1)
651 regcache->raw_collect (ARM_FPS_REGNUM,
652 regs + ARM_INT_REGISTER_SIZE * ARM_FPS_REGNUM);
653 }
654
655 /* Support VFP register format. */
656
657 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
658
659 static void
660 arm_linux_supply_vfp (const struct regset *regset,
661 struct regcache *regcache,
662 int regnum, const void *regs_buf, size_t len)
663 {
664 const gdb_byte *regs = (const gdb_byte *) regs_buf;
665 int regno;
666
667 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
668 regcache->raw_supply (ARM_FPSCR_REGNUM, regs + 32 * 8);
669
670 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
671 if (regnum == -1 || regnum == regno)
672 regcache->raw_supply (regno, regs + (regno - ARM_D0_REGNUM) * 8);
673 }
674
675 static void
676 arm_linux_collect_vfp (const struct regset *regset,
677 const struct regcache *regcache,
678 int regnum, void *regs_buf, size_t len)
679 {
680 gdb_byte *regs = (gdb_byte *) regs_buf;
681 int regno;
682
683 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
684 regcache->raw_collect (ARM_FPSCR_REGNUM, regs + 32 * 8);
685
686 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
687 if (regnum == -1 || regnum == regno)
688 regcache->raw_collect (regno, regs + (regno - ARM_D0_REGNUM) * 8);
689 }
690
691 static const struct regset arm_linux_gregset =
692 {
693 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
694 };
695
696 static const struct regset arm_linux_fpregset =
697 {
698 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
699 };
700
701 static const struct regset arm_linux_vfpregset =
702 {
703 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
704 };
705
706 /* Iterate over core file register note sections. */
707
708 static void
709 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
710 iterate_over_regset_sections_cb *cb,
711 void *cb_data,
712 const struct regcache *regcache)
713 {
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715
716 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, ARM_LINUX_SIZEOF_GREGSET,
717 &arm_linux_gregset, NULL, cb_data);
718
719 if (tdep->vfp_register_count > 0)
720 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, ARM_LINUX_SIZEOF_VFP,
721 &arm_linux_vfpregset, "VFP floating-point", cb_data);
722 else if (tdep->have_fpa_registers)
723 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, ARM_LINUX_SIZEOF_NWFPE,
724 &arm_linux_fpregset, "FPA floating-point", cb_data);
725 }
726
727 /* Determine target description from core file. */
728
729 static const struct target_desc *
730 arm_linux_core_read_description (struct gdbarch *gdbarch,
731 struct target_ops *target,
732 bfd *abfd)
733 {
734 CORE_ADDR arm_hwcap = linux_get_hwcap (target);
735
736 if (arm_hwcap & HWCAP_VFP)
737 {
738 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
739 Neon with VFPv3-D32. */
740 if (arm_hwcap & HWCAP_NEON)
741 return aarch32_read_description ();
742 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
743 return arm_read_description (ARM_FP_TYPE_VFPV3);
744
745 return arm_read_description (ARM_FP_TYPE_VFPV2);
746 }
747
748 return nullptr;
749 }
750
751
752 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
753 return 1. In addition, set IS_THUMB depending on whether we
754 will return to ARM or Thumb code. Return 0 if it is not a
755 rt_sigreturn/sigreturn syscall. */
756 static int
757 arm_linux_sigreturn_return_addr (struct frame_info *frame,
758 unsigned long svc_number,
759 CORE_ADDR *pc, int *is_thumb)
760 {
761 /* Is this a sigreturn or rt_sigreturn syscall? */
762 if (svc_number == 119 || svc_number == 173)
763 {
764 if (get_frame_type (frame) == SIGTRAMP_FRAME)
765 {
766 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
767 CORE_ADDR cpsr
768 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
769
770 *is_thumb = (cpsr & t_bit) != 0;
771 *pc = frame_unwind_caller_pc (frame);
772 return 1;
773 }
774 }
775 return 0;
776 }
777
778 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
779 based on current processor state. In addition, set IS_THUMB depending
780 on whether we will return to ARM or Thumb code. */
781
782 static CORE_ADDR
783 arm_linux_sigreturn_next_pc (struct regcache *regcache,
784 unsigned long svc_number, int *is_thumb)
785 {
786 ULONGEST sp;
787 unsigned long sp_data;
788 CORE_ADDR next_pc = 0;
789 struct gdbarch *gdbarch = regcache->arch ();
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 int pc_offset = 0;
792 int is_sigreturn = 0;
793 CORE_ADDR cpsr;
794
795 gdb_assert (svc_number == ARM_SIGRETURN
796 || svc_number == ARM_RT_SIGRETURN);
797
798 is_sigreturn = (svc_number == ARM_SIGRETURN);
799 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
800 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
801
802 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
803 is_sigreturn);
804
805 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
806
807 /* Set IS_THUMB according the CPSR saved on the stack. */
808 cpsr = read_memory_unsigned_integer (sp + pc_offset + 4, 4, byte_order);
809 *is_thumb = ((cpsr & arm_psr_thumb_bit (gdbarch)) != 0);
810
811 return next_pc;
812 }
813
814 /* At a ptrace syscall-stop, return the syscall number. This either
815 comes from the SWI instruction (OABI) or from r7 (EABI).
816
817 When the function fails, it should return -1. */
818
819 static LONGEST
820 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
821 thread_info *thread)
822 {
823 struct regcache *regs = get_thread_regcache (thread);
824
825 ULONGEST pc;
826 ULONGEST cpsr;
827 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
828 int is_thumb;
829 ULONGEST svc_number = -1;
830
831 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
832 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
833 is_thumb = (cpsr & t_bit) != 0;
834
835 if (is_thumb)
836 {
837 regcache_cooked_read_unsigned (regs, 7, &svc_number);
838 }
839 else
840 {
841 enum bfd_endian byte_order_for_code =
842 gdbarch_byte_order_for_code (gdbarch);
843
844 /* PC gets incremented before the syscall-stop, so read the
845 previous instruction. */
846 unsigned long this_instr =
847 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
848
849 unsigned long svc_operand = (0x00ffffff & this_instr);
850
851 if (svc_operand)
852 {
853 /* OABI */
854 svc_number = svc_operand - 0x900000;
855 }
856 else
857 {
858 /* EABI */
859 regcache_cooked_read_unsigned (regs, 7, &svc_number);
860 }
861 }
862
863 return svc_number;
864 }
865
866 static CORE_ADDR
867 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
868 {
869 CORE_ADDR next_pc = 0;
870 CORE_ADDR pc = regcache_read_pc (self->regcache);
871 int is_thumb = arm_is_thumb (self->regcache);
872 ULONGEST svc_number = 0;
873
874 if (is_thumb)
875 {
876 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
877 next_pc = pc + 2;
878 }
879 else
880 {
881 struct gdbarch *gdbarch = self->regcache->arch ();
882 enum bfd_endian byte_order_for_code =
883 gdbarch_byte_order_for_code (gdbarch);
884 unsigned long this_instr =
885 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
886
887 unsigned long svc_operand = (0x00ffffff & this_instr);
888 if (svc_operand) /* OABI. */
889 {
890 svc_number = svc_operand - 0x900000;
891 }
892 else /* EABI. */
893 {
894 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
895 }
896
897 next_pc = pc + 4;
898 }
899
900 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
901 {
902 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
903 update IS_THUMB. */
904 next_pc = arm_linux_sigreturn_next_pc (self->regcache, svc_number,
905 &is_thumb);
906 }
907
908 /* Addresses for calling Thumb functions have the bit 0 set. */
909 if (is_thumb)
910 next_pc = MAKE_THUMB_ADDR (next_pc);
911
912 return next_pc;
913 }
914
915
916 /* Insert a single step breakpoint at the next executed instruction. */
917
918 static std::vector<CORE_ADDR>
919 arm_linux_software_single_step (struct regcache *regcache)
920 {
921 struct gdbarch *gdbarch = regcache->arch ();
922 struct arm_get_next_pcs next_pcs_ctx;
923
924 /* If the target does have hardware single step, GDB doesn't have
925 to bother software single step. */
926 if (target_can_do_single_step () == 1)
927 return {};
928
929 arm_get_next_pcs_ctor (&next_pcs_ctx,
930 &arm_linux_get_next_pcs_ops,
931 gdbarch_byte_order (gdbarch),
932 gdbarch_byte_order_for_code (gdbarch),
933 1,
934 regcache);
935
936 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
937
938 for (CORE_ADDR &pc_ref : next_pcs)
939 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
940
941 return next_pcs;
942 }
943
944 /* Support for displaced stepping of Linux SVC instructions. */
945
946 static void
947 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
948 struct regcache *regs,
949 arm_displaced_step_copy_insn_closure *dsc)
950 {
951 ULONGEST apparent_pc;
952 int within_scratch;
953
954 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
955
956 within_scratch = (apparent_pc >= dsc->scratch_base
957 && apparent_pc < (dsc->scratch_base
958 + ARM_DISPLACED_MODIFIED_INSNS * 4 + 4));
959
960 displaced_debug_printf ("PC is apparently %.8lx after SVC step %s",
961 (unsigned long) apparent_pc,
962 (within_scratch
963 ? "(within scratch space)"
964 : "(outside scratch space)"));
965
966 if (within_scratch)
967 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
968 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
969 }
970
971 static int
972 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
973 arm_displaced_step_copy_insn_closure *dsc)
974 {
975 CORE_ADDR return_to = 0;
976
977 struct frame_info *frame;
978 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
979 int is_sigreturn = 0;
980 int is_thumb;
981
982 frame = get_current_frame ();
983
984 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
985 &return_to, &is_thumb);
986 if (is_sigreturn)
987 {
988 struct symtab_and_line sal;
989
990 displaced_debug_printf ("found sigreturn/rt_sigreturn SVC call. "
991 "PC in frame = %lx",
992 (unsigned long) get_frame_pc (frame));
993
994 displaced_debug_printf ("unwind pc = %lx. Setting momentary breakpoint.",
995 (unsigned long) return_to);
996
997 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
998 == NULL);
999
1000 sal = find_pc_line (return_to, 0);
1001 sal.pc = return_to;
1002 sal.section = find_pc_overlay (return_to);
1003 sal.explicit_pc = 1;
1004
1005 frame = get_prev_frame (frame);
1006
1007 if (frame)
1008 {
1009 inferior_thread ()->control.step_resume_breakpoint
1010 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1011 bp_step_resume).release ();
1012
1013 /* set_momentary_breakpoint invalidates FRAME. */
1014 frame = NULL;
1015
1016 /* We need to make sure we actually insert the momentary
1017 breakpoint set above. */
1018 insert_breakpoints ();
1019 }
1020 else
1021 displaced_debug_printf ("couldn't find previous frame to set momentary "
1022 "breakpoint for sigreturn/rt_sigreturn");
1023 }
1024 else
1025 displaced_debug_printf ("found SVC call");
1026
1027 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1028 location, else nothing.
1029 Insn: unmodified svc.
1030 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1031 else leave pc alone. */
1032
1033
1034 dsc->cleanup = &arm_linux_cleanup_svc;
1035 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1036 instruction. */
1037 dsc->wrote_to_pc = 1;
1038
1039 return 0;
1040 }
1041
1042
1043 /* The following two functions implement single-stepping over calls to Linux
1044 kernel helper routines, which perform e.g. atomic operations on architecture
1045 variants which don't support them natively.
1046
1047 When this function is called, the PC will be pointing at the kernel helper
1048 (at an address inaccessible to GDB), and r14 will point to the return
1049 address. Displaced stepping always executes code in the copy area:
1050 so, make the copy-area instruction branch back to the kernel helper (the
1051 "from" address), and make r14 point to the breakpoint in the copy area. In
1052 that way, we regain control once the kernel helper returns, and can clean
1053 up appropriately (as if we had just returned from the kernel helper as it
1054 would have been called from the non-displaced location). */
1055
1056 static void
1057 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1058 struct regcache *regs,
1059 arm_displaced_step_copy_insn_closure *dsc)
1060 {
1061 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1062 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1063 }
1064
1065 static void
1066 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1067 CORE_ADDR to, struct regcache *regs,
1068 arm_displaced_step_copy_insn_closure *dsc)
1069 {
1070 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1071
1072 dsc->numinsns = 1;
1073 dsc->insn_addr = from;
1074 dsc->cleanup = &cleanup_kernel_helper_return;
1075 /* Say we wrote to the PC, else cleanup will set PC to the next
1076 instruction in the helper, which isn't helpful. */
1077 dsc->wrote_to_pc = 1;
1078
1079 /* Preparation: tmp[0] <- r14
1080 r14 <- <scratch space>+4
1081 *(<scratch space>+8) <- from
1082 Insn: ldr pc, [r14, #4]
1083 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1084
1085 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1086 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1087 CANNOT_WRITE_PC);
1088 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1089
1090 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1091 }
1092
1093 /* Linux-specific displaced step instruction copying function. Detects when
1094 the program has stepped into a Linux kernel helper routine (which must be
1095 handled as a special case). */
1096
1097 static displaced_step_copy_insn_closure_up
1098 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1099 CORE_ADDR from, CORE_ADDR to,
1100 struct regcache *regs)
1101 {
1102 std::unique_ptr<arm_displaced_step_copy_insn_closure> dsc
1103 (new arm_displaced_step_copy_insn_closure);
1104
1105 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1106 stop at the return location. */
1107 if (from > 0xffff0000)
1108 {
1109 displaced_debug_printf ("detected kernel helper at %.8lx",
1110 (unsigned long) from);
1111
1112 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc.get ());
1113 }
1114 else
1115 {
1116 /* Override the default handling of SVC instructions. */
1117 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1118
1119 arm_process_displaced_insn (gdbarch, from, to, regs, dsc.get ());
1120 }
1121
1122 arm_displaced_init_closure (gdbarch, from, to, dsc.get ());
1123
1124 /* This is a work around for a problem with g++ 4.8. */
1125 return displaced_step_copy_insn_closure_up (dsc.release ());
1126 }
1127
1128 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1129 gdbarch.h. */
1130
1131 static int
1132 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1133 {
1134 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1135 || *s == '[' /* Register indirection or
1136 displacement. */
1137 || isalpha (*s)); /* Register value. */
1138 }
1139
1140 /* This routine is used to parse a special token in ARM's assembly.
1141
1142 The special tokens parsed by it are:
1143
1144 - Register displacement (e.g, [fp, #-8])
1145
1146 It returns one if the special token has been parsed successfully,
1147 or zero if the current token is not considered special. */
1148
1149 static int
1150 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1151 struct stap_parse_info *p)
1152 {
1153 if (*p->arg == '[')
1154 {
1155 /* Temporary holder for lookahead. */
1156 const char *tmp = p->arg;
1157 char *endp;
1158 /* Used to save the register name. */
1159 const char *start;
1160 char *regname;
1161 int len, offset;
1162 int got_minus = 0;
1163 long displacement;
1164 struct stoken str;
1165
1166 ++tmp;
1167 start = tmp;
1168
1169 /* Register name. */
1170 while (isalnum (*tmp))
1171 ++tmp;
1172
1173 if (*tmp != ',')
1174 return 0;
1175
1176 len = tmp - start;
1177 regname = (char *) alloca (len + 2);
1178
1179 offset = 0;
1180 if (isdigit (*start))
1181 {
1182 /* If we are dealing with a register whose name begins with a
1183 digit, it means we should prefix the name with the letter
1184 `r', because GDB expects this name pattern. Otherwise (e.g.,
1185 we are dealing with the register `fp'), we don't need to
1186 add such a prefix. */
1187 regname[0] = 'r';
1188 offset = 1;
1189 }
1190
1191 strncpy (regname + offset, start, len);
1192 len += offset;
1193 regname[len] = '\0';
1194
1195 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1196 error (_("Invalid register name `%s' on expression `%s'."),
1197 regname, p->saved_arg);
1198
1199 ++tmp;
1200 tmp = skip_spaces (tmp);
1201 if (*tmp == '#' || *tmp == '$')
1202 ++tmp;
1203
1204 if (*tmp == '-')
1205 {
1206 ++tmp;
1207 got_minus = 1;
1208 }
1209
1210 displacement = strtol (tmp, &endp, 10);
1211 tmp = endp;
1212
1213 /* Skipping last `]'. */
1214 if (*tmp++ != ']')
1215 return 0;
1216
1217 /* The displacement. */
1218 write_exp_elt_opcode (&p->pstate, OP_LONG);
1219 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1220 write_exp_elt_longcst (&p->pstate, displacement);
1221 write_exp_elt_opcode (&p->pstate, OP_LONG);
1222 if (got_minus)
1223 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
1224
1225 /* The register name. */
1226 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1227 str.ptr = regname;
1228 str.length = len;
1229 write_exp_string (&p->pstate, str);
1230 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1231
1232 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
1233
1234 /* Casting to the expected type. */
1235 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1236 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1237 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1238
1239 write_exp_elt_opcode (&p->pstate, UNOP_IND);
1240
1241 p->arg = tmp;
1242 }
1243 else
1244 return 0;
1245
1246 return 1;
1247 }
1248
1249 /* ARM process record-replay constructs: syscall, signal etc. */
1250
1251 struct linux_record_tdep arm_linux_record_tdep;
1252
1253 /* arm_canonicalize_syscall maps from the native arm Linux set
1254 of syscall ids into a canonical set of syscall ids used by
1255 process record. */
1256
1257 static enum gdb_syscall
1258 arm_canonicalize_syscall (int syscall)
1259 {
1260 switch (syscall)
1261 {
1262 case 0: return gdb_sys_restart_syscall;
1263 case 1: return gdb_sys_exit;
1264 case 2: return gdb_sys_fork;
1265 case 3: return gdb_sys_read;
1266 case 4: return gdb_sys_write;
1267 case 5: return gdb_sys_open;
1268 case 6: return gdb_sys_close;
1269 case 8: return gdb_sys_creat;
1270 case 9: return gdb_sys_link;
1271 case 10: return gdb_sys_unlink;
1272 case 11: return gdb_sys_execve;
1273 case 12: return gdb_sys_chdir;
1274 case 13: return gdb_sys_time;
1275 case 14: return gdb_sys_mknod;
1276 case 15: return gdb_sys_chmod;
1277 case 16: return gdb_sys_lchown16;
1278 case 19: return gdb_sys_lseek;
1279 case 20: return gdb_sys_getpid;
1280 case 21: return gdb_sys_mount;
1281 case 22: return gdb_sys_oldumount;
1282 case 23: return gdb_sys_setuid16;
1283 case 24: return gdb_sys_getuid16;
1284 case 25: return gdb_sys_stime;
1285 case 26: return gdb_sys_ptrace;
1286 case 27: return gdb_sys_alarm;
1287 case 29: return gdb_sys_pause;
1288 case 30: return gdb_sys_utime;
1289 case 33: return gdb_sys_access;
1290 case 34: return gdb_sys_nice;
1291 case 36: return gdb_sys_sync;
1292 case 37: return gdb_sys_kill;
1293 case 38: return gdb_sys_rename;
1294 case 39: return gdb_sys_mkdir;
1295 case 40: return gdb_sys_rmdir;
1296 case 41: return gdb_sys_dup;
1297 case 42: return gdb_sys_pipe;
1298 case 43: return gdb_sys_times;
1299 case 45: return gdb_sys_brk;
1300 case 46: return gdb_sys_setgid16;
1301 case 47: return gdb_sys_getgid16;
1302 case 49: return gdb_sys_geteuid16;
1303 case 50: return gdb_sys_getegid16;
1304 case 51: return gdb_sys_acct;
1305 case 52: return gdb_sys_umount;
1306 case 54: return gdb_sys_ioctl;
1307 case 55: return gdb_sys_fcntl;
1308 case 57: return gdb_sys_setpgid;
1309 case 60: return gdb_sys_umask;
1310 case 61: return gdb_sys_chroot;
1311 case 62: return gdb_sys_ustat;
1312 case 63: return gdb_sys_dup2;
1313 case 64: return gdb_sys_getppid;
1314 case 65: return gdb_sys_getpgrp;
1315 case 66: return gdb_sys_setsid;
1316 case 67: return gdb_sys_sigaction;
1317 case 70: return gdb_sys_setreuid16;
1318 case 71: return gdb_sys_setregid16;
1319 case 72: return gdb_sys_sigsuspend;
1320 case 73: return gdb_sys_sigpending;
1321 case 74: return gdb_sys_sethostname;
1322 case 75: return gdb_sys_setrlimit;
1323 case 76: return gdb_sys_getrlimit;
1324 case 77: return gdb_sys_getrusage;
1325 case 78: return gdb_sys_gettimeofday;
1326 case 79: return gdb_sys_settimeofday;
1327 case 80: return gdb_sys_getgroups16;
1328 case 81: return gdb_sys_setgroups16;
1329 case 82: return gdb_sys_select;
1330 case 83: return gdb_sys_symlink;
1331 case 85: return gdb_sys_readlink;
1332 case 86: return gdb_sys_uselib;
1333 case 87: return gdb_sys_swapon;
1334 case 88: return gdb_sys_reboot;
1335 case 89: return gdb_old_readdir;
1336 case 90: return gdb_old_mmap;
1337 case 91: return gdb_sys_munmap;
1338 case 92: return gdb_sys_truncate;
1339 case 93: return gdb_sys_ftruncate;
1340 case 94: return gdb_sys_fchmod;
1341 case 95: return gdb_sys_fchown16;
1342 case 96: return gdb_sys_getpriority;
1343 case 97: return gdb_sys_setpriority;
1344 case 99: return gdb_sys_statfs;
1345 case 100: return gdb_sys_fstatfs;
1346 case 102: return gdb_sys_socketcall;
1347 case 103: return gdb_sys_syslog;
1348 case 104: return gdb_sys_setitimer;
1349 case 105: return gdb_sys_getitimer;
1350 case 106: return gdb_sys_stat;
1351 case 107: return gdb_sys_lstat;
1352 case 108: return gdb_sys_fstat;
1353 case 111: return gdb_sys_vhangup;
1354 case 113: /* sys_syscall */
1355 return gdb_sys_no_syscall;
1356 case 114: return gdb_sys_wait4;
1357 case 115: return gdb_sys_swapoff;
1358 case 116: return gdb_sys_sysinfo;
1359 case 117: return gdb_sys_ipc;
1360 case 118: return gdb_sys_fsync;
1361 case 119: return gdb_sys_sigreturn;
1362 case 120: return gdb_sys_clone;
1363 case 121: return gdb_sys_setdomainname;
1364 case 122: return gdb_sys_uname;
1365 case 124: return gdb_sys_adjtimex;
1366 case 125: return gdb_sys_mprotect;
1367 case 126: return gdb_sys_sigprocmask;
1368 case 128: return gdb_sys_init_module;
1369 case 129: return gdb_sys_delete_module;
1370 case 131: return gdb_sys_quotactl;
1371 case 132: return gdb_sys_getpgid;
1372 case 133: return gdb_sys_fchdir;
1373 case 134: return gdb_sys_bdflush;
1374 case 135: return gdb_sys_sysfs;
1375 case 136: return gdb_sys_personality;
1376 case 138: return gdb_sys_setfsuid16;
1377 case 139: return gdb_sys_setfsgid16;
1378 case 140: return gdb_sys_llseek;
1379 case 141: return gdb_sys_getdents;
1380 case 142: return gdb_sys_select;
1381 case 143: return gdb_sys_flock;
1382 case 144: return gdb_sys_msync;
1383 case 145: return gdb_sys_readv;
1384 case 146: return gdb_sys_writev;
1385 case 147: return gdb_sys_getsid;
1386 case 148: return gdb_sys_fdatasync;
1387 case 149: return gdb_sys_sysctl;
1388 case 150: return gdb_sys_mlock;
1389 case 151: return gdb_sys_munlock;
1390 case 152: return gdb_sys_mlockall;
1391 case 153: return gdb_sys_munlockall;
1392 case 154: return gdb_sys_sched_setparam;
1393 case 155: return gdb_sys_sched_getparam;
1394 case 156: return gdb_sys_sched_setscheduler;
1395 case 157: return gdb_sys_sched_getscheduler;
1396 case 158: return gdb_sys_sched_yield;
1397 case 159: return gdb_sys_sched_get_priority_max;
1398 case 160: return gdb_sys_sched_get_priority_min;
1399 case 161: return gdb_sys_sched_rr_get_interval;
1400 case 162: return gdb_sys_nanosleep;
1401 case 163: return gdb_sys_mremap;
1402 case 164: return gdb_sys_setresuid16;
1403 case 165: return gdb_sys_getresuid16;
1404 case 168: return gdb_sys_poll;
1405 case 169: return gdb_sys_nfsservctl;
1406 case 170: return gdb_sys_setresgid;
1407 case 171: return gdb_sys_getresgid;
1408 case 172: return gdb_sys_prctl;
1409 case 173: return gdb_sys_rt_sigreturn;
1410 case 174: return gdb_sys_rt_sigaction;
1411 case 175: return gdb_sys_rt_sigprocmask;
1412 case 176: return gdb_sys_rt_sigpending;
1413 case 177: return gdb_sys_rt_sigtimedwait;
1414 case 178: return gdb_sys_rt_sigqueueinfo;
1415 case 179: return gdb_sys_rt_sigsuspend;
1416 case 180: return gdb_sys_pread64;
1417 case 181: return gdb_sys_pwrite64;
1418 case 182: return gdb_sys_chown;
1419 case 183: return gdb_sys_getcwd;
1420 case 184: return gdb_sys_capget;
1421 case 185: return gdb_sys_capset;
1422 case 186: return gdb_sys_sigaltstack;
1423 case 187: return gdb_sys_sendfile;
1424 case 190: return gdb_sys_vfork;
1425 case 191: return gdb_sys_getrlimit;
1426 case 192: return gdb_sys_mmap2;
1427 case 193: return gdb_sys_truncate64;
1428 case 194: return gdb_sys_ftruncate64;
1429 case 195: return gdb_sys_stat64;
1430 case 196: return gdb_sys_lstat64;
1431 case 197: return gdb_sys_fstat64;
1432 case 198: return gdb_sys_lchown;
1433 case 199: return gdb_sys_getuid;
1434 case 200: return gdb_sys_getgid;
1435 case 201: return gdb_sys_geteuid;
1436 case 202: return gdb_sys_getegid;
1437 case 203: return gdb_sys_setreuid;
1438 case 204: return gdb_sys_setregid;
1439 case 205: return gdb_sys_getgroups;
1440 case 206: return gdb_sys_setgroups;
1441 case 207: return gdb_sys_fchown;
1442 case 208: return gdb_sys_setresuid;
1443 case 209: return gdb_sys_getresuid;
1444 case 210: return gdb_sys_setresgid;
1445 case 211: return gdb_sys_getresgid;
1446 case 212: return gdb_sys_chown;
1447 case 213: return gdb_sys_setuid;
1448 case 214: return gdb_sys_setgid;
1449 case 215: return gdb_sys_setfsuid;
1450 case 216: return gdb_sys_setfsgid;
1451 case 217: return gdb_sys_getdents64;
1452 case 218: return gdb_sys_pivot_root;
1453 case 219: return gdb_sys_mincore;
1454 case 220: return gdb_sys_madvise;
1455 case 221: return gdb_sys_fcntl64;
1456 case 224: return gdb_sys_gettid;
1457 case 225: return gdb_sys_readahead;
1458 case 226: return gdb_sys_setxattr;
1459 case 227: return gdb_sys_lsetxattr;
1460 case 228: return gdb_sys_fsetxattr;
1461 case 229: return gdb_sys_getxattr;
1462 case 230: return gdb_sys_lgetxattr;
1463 case 231: return gdb_sys_fgetxattr;
1464 case 232: return gdb_sys_listxattr;
1465 case 233: return gdb_sys_llistxattr;
1466 case 234: return gdb_sys_flistxattr;
1467 case 235: return gdb_sys_removexattr;
1468 case 236: return gdb_sys_lremovexattr;
1469 case 237: return gdb_sys_fremovexattr;
1470 case 238: return gdb_sys_tkill;
1471 case 239: return gdb_sys_sendfile64;
1472 case 240: return gdb_sys_futex;
1473 case 241: return gdb_sys_sched_setaffinity;
1474 case 242: return gdb_sys_sched_getaffinity;
1475 case 243: return gdb_sys_io_setup;
1476 case 244: return gdb_sys_io_destroy;
1477 case 245: return gdb_sys_io_getevents;
1478 case 246: return gdb_sys_io_submit;
1479 case 247: return gdb_sys_io_cancel;
1480 case 248: return gdb_sys_exit_group;
1481 case 249: return gdb_sys_lookup_dcookie;
1482 case 250: return gdb_sys_epoll_create;
1483 case 251: return gdb_sys_epoll_ctl;
1484 case 252: return gdb_sys_epoll_wait;
1485 case 253: return gdb_sys_remap_file_pages;
1486 case 256: return gdb_sys_set_tid_address;
1487 case 257: return gdb_sys_timer_create;
1488 case 258: return gdb_sys_timer_settime;
1489 case 259: return gdb_sys_timer_gettime;
1490 case 260: return gdb_sys_timer_getoverrun;
1491 case 261: return gdb_sys_timer_delete;
1492 case 262: return gdb_sys_clock_settime;
1493 case 263: return gdb_sys_clock_gettime;
1494 case 264: return gdb_sys_clock_getres;
1495 case 265: return gdb_sys_clock_nanosleep;
1496 case 266: return gdb_sys_statfs64;
1497 case 267: return gdb_sys_fstatfs64;
1498 case 268: return gdb_sys_tgkill;
1499 case 269: return gdb_sys_utimes;
1500 /*
1501 case 270: return gdb_sys_arm_fadvise64_64;
1502 case 271: return gdb_sys_pciconfig_iobase;
1503 case 272: return gdb_sys_pciconfig_read;
1504 case 273: return gdb_sys_pciconfig_write;
1505 */
1506 case 274: return gdb_sys_mq_open;
1507 case 275: return gdb_sys_mq_unlink;
1508 case 276: return gdb_sys_mq_timedsend;
1509 case 277: return gdb_sys_mq_timedreceive;
1510 case 278: return gdb_sys_mq_notify;
1511 case 279: return gdb_sys_mq_getsetattr;
1512 case 280: return gdb_sys_waitid;
1513 case 281: return gdb_sys_socket;
1514 case 282: return gdb_sys_bind;
1515 case 283: return gdb_sys_connect;
1516 case 284: return gdb_sys_listen;
1517 case 285: return gdb_sys_accept;
1518 case 286: return gdb_sys_getsockname;
1519 case 287: return gdb_sys_getpeername;
1520 case 288: return gdb_sys_socketpair;
1521 case 289: /* send */ return gdb_sys_no_syscall;
1522 case 290: return gdb_sys_sendto;
1523 case 291: return gdb_sys_recv;
1524 case 292: return gdb_sys_recvfrom;
1525 case 293: return gdb_sys_shutdown;
1526 case 294: return gdb_sys_setsockopt;
1527 case 295: return gdb_sys_getsockopt;
1528 case 296: return gdb_sys_sendmsg;
1529 case 297: return gdb_sys_recvmsg;
1530 case 298: return gdb_sys_semop;
1531 case 299: return gdb_sys_semget;
1532 case 300: return gdb_sys_semctl;
1533 case 301: return gdb_sys_msgsnd;
1534 case 302: return gdb_sys_msgrcv;
1535 case 303: return gdb_sys_msgget;
1536 case 304: return gdb_sys_msgctl;
1537 case 305: return gdb_sys_shmat;
1538 case 306: return gdb_sys_shmdt;
1539 case 307: return gdb_sys_shmget;
1540 case 308: return gdb_sys_shmctl;
1541 case 309: return gdb_sys_add_key;
1542 case 310: return gdb_sys_request_key;
1543 case 311: return gdb_sys_keyctl;
1544 case 312: return gdb_sys_semtimedop;
1545 case 313: /* vserver */ return gdb_sys_no_syscall;
1546 case 314: return gdb_sys_ioprio_set;
1547 case 315: return gdb_sys_ioprio_get;
1548 case 316: return gdb_sys_inotify_init;
1549 case 317: return gdb_sys_inotify_add_watch;
1550 case 318: return gdb_sys_inotify_rm_watch;
1551 case 319: return gdb_sys_mbind;
1552 case 320: return gdb_sys_get_mempolicy;
1553 case 321: return gdb_sys_set_mempolicy;
1554 case 322: return gdb_sys_openat;
1555 case 323: return gdb_sys_mkdirat;
1556 case 324: return gdb_sys_mknodat;
1557 case 325: return gdb_sys_fchownat;
1558 case 326: return gdb_sys_futimesat;
1559 case 327: return gdb_sys_fstatat64;
1560 case 328: return gdb_sys_unlinkat;
1561 case 329: return gdb_sys_renameat;
1562 case 330: return gdb_sys_linkat;
1563 case 331: return gdb_sys_symlinkat;
1564 case 332: return gdb_sys_readlinkat;
1565 case 333: return gdb_sys_fchmodat;
1566 case 334: return gdb_sys_faccessat;
1567 case 335: return gdb_sys_pselect6;
1568 case 336: return gdb_sys_ppoll;
1569 case 337: return gdb_sys_unshare;
1570 case 338: return gdb_sys_set_robust_list;
1571 case 339: return gdb_sys_get_robust_list;
1572 case 340: return gdb_sys_splice;
1573 /*case 341: return gdb_sys_arm_sync_file_range;*/
1574 case 342: return gdb_sys_tee;
1575 case 343: return gdb_sys_vmsplice;
1576 case 344: return gdb_sys_move_pages;
1577 case 345: return gdb_sys_getcpu;
1578 case 346: return gdb_sys_epoll_pwait;
1579 case 347: return gdb_sys_kexec_load;
1580 /*
1581 case 348: return gdb_sys_utimensat;
1582 case 349: return gdb_sys_signalfd;
1583 case 350: return gdb_sys_timerfd_create;
1584 case 351: return gdb_sys_eventfd;
1585 */
1586 case 352: return gdb_sys_fallocate;
1587 /*
1588 case 353: return gdb_sys_timerfd_settime;
1589 case 354: return gdb_sys_timerfd_gettime;
1590 case 355: return gdb_sys_signalfd4;
1591 */
1592 case 356: return gdb_sys_eventfd2;
1593 case 357: return gdb_sys_epoll_create1;
1594 case 358: return gdb_sys_dup3;
1595 case 359: return gdb_sys_pipe2;
1596 case 360: return gdb_sys_inotify_init1;
1597 /*
1598 case 361: return gdb_sys_preadv;
1599 case 362: return gdb_sys_pwritev;
1600 case 363: return gdb_sys_rt_tgsigqueueinfo;
1601 case 364: return gdb_sys_perf_event_open;
1602 case 365: return gdb_sys_recvmmsg;
1603 case 366: return gdb_sys_accept4;
1604 case 367: return gdb_sys_fanotify_init;
1605 case 368: return gdb_sys_fanotify_mark;
1606 case 369: return gdb_sys_prlimit64;
1607 case 370: return gdb_sys_name_to_handle_at;
1608 case 371: return gdb_sys_open_by_handle_at;
1609 case 372: return gdb_sys_clock_adjtime;
1610 case 373: return gdb_sys_syncfs;
1611 case 374: return gdb_sys_sendmmsg;
1612 case 375: return gdb_sys_setns;
1613 case 376: return gdb_sys_process_vm_readv;
1614 case 377: return gdb_sys_process_vm_writev;
1615 case 378: return gdb_sys_kcmp;
1616 case 379: return gdb_sys_finit_module;
1617 */
1618 case 983041: /* ARM_breakpoint */ return gdb_sys_no_syscall;
1619 case 983042: /* ARM_cacheflush */ return gdb_sys_no_syscall;
1620 case 983043: /* ARM_usr26 */ return gdb_sys_no_syscall;
1621 case 983044: /* ARM_usr32 */ return gdb_sys_no_syscall;
1622 case 983045: /* ARM_set_tls */ return gdb_sys_no_syscall;
1623 default: return gdb_sys_no_syscall;
1624 }
1625 }
1626
1627 /* Record all registers but PC register for process-record. */
1628
1629 static int
1630 arm_all_but_pc_registers_record (struct regcache *regcache)
1631 {
1632 int i;
1633
1634 for (i = 0; i < ARM_PC_REGNUM; i++)
1635 {
1636 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1637 return -1;
1638 }
1639
1640 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1641 return -1;
1642
1643 return 0;
1644 }
1645
1646 /* Handler for arm system call instruction recording. */
1647
1648 static int
1649 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1650 {
1651 int ret = 0;
1652 enum gdb_syscall syscall_gdb;
1653
1654 syscall_gdb = arm_canonicalize_syscall (svc_number);
1655
1656 if (syscall_gdb == gdb_sys_no_syscall)
1657 {
1658 printf_unfiltered (_("Process record and replay target doesn't "
1659 "support syscall number %s\n"),
1660 plongest (svc_number));
1661 return -1;
1662 }
1663
1664 if (syscall_gdb == gdb_sys_sigreturn
1665 || syscall_gdb == gdb_sys_rt_sigreturn)
1666 {
1667 if (arm_all_but_pc_registers_record (regcache))
1668 return -1;
1669 return 0;
1670 }
1671
1672 ret = record_linux_system_call (syscall_gdb, regcache,
1673 &arm_linux_record_tdep);
1674 if (ret != 0)
1675 return ret;
1676
1677 /* Record the return value of the system call. */
1678 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1679 return -1;
1680 /* Record LR. */
1681 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1682 return -1;
1683 /* Record CPSR. */
1684 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1685 return -1;
1686
1687 return 0;
1688 }
1689
1690 /* Implement the skip_trampoline_code gdbarch method. */
1691
1692 static CORE_ADDR
1693 arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1694 {
1695 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1696
1697 if (target_pc != 0)
1698 return target_pc;
1699
1700 return find_solib_trampoline_target (frame, pc);
1701 }
1702
1703 /* Implement the gcc_target_options gdbarch method. */
1704
1705 static std::string
1706 arm_linux_gcc_target_options (struct gdbarch *gdbarch)
1707 {
1708 /* GCC doesn't know "-m32". */
1709 return {};
1710 }
1711
1712 static void
1713 arm_linux_init_abi (struct gdbarch_info info,
1714 struct gdbarch *gdbarch)
1715 {
1716 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1717 static const char *const stap_register_prefixes[] = { "r", NULL };
1718 static const char *const stap_register_indirection_prefixes[] = { "[",
1719 NULL };
1720 static const char *const stap_register_indirection_suffixes[] = { "]",
1721 NULL };
1722 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1723
1724 linux_init_abi (info, gdbarch, 1);
1725
1726 tdep->lowest_pc = 0x8000;
1727 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1728 {
1729 if (tdep->arm_abi == ARM_ABI_AAPCS)
1730 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1731 else
1732 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1733 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1734 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1735 }
1736 else
1737 {
1738 if (tdep->arm_abi == ARM_ABI_AAPCS)
1739 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1740 else
1741 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1742 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1743 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1744 }
1745 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1746 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1747 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1748
1749 if (tdep->fp_model == ARM_FLOAT_AUTO)
1750 tdep->fp_model = ARM_FLOAT_FPA;
1751
1752 switch (tdep->fp_model)
1753 {
1754 case ARM_FLOAT_FPA:
1755 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1756 break;
1757 case ARM_FLOAT_SOFT_FPA:
1758 case ARM_FLOAT_SOFT_VFP:
1759 case ARM_FLOAT_VFP:
1760 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1761 break;
1762 default:
1763 internal_error
1764 (__FILE__, __LINE__,
1765 _("arm_linux_init_abi: Floating point model not supported"));
1766 break;
1767 }
1768 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1769
1770 set_solib_svr4_fetch_link_map_offsets
1771 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1772
1773 /* Single stepping. */
1774 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1775
1776 /* Shared library handling. */
1777 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1778 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1779
1780 /* Enable TLS support. */
1781 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1782 svr4_fetch_objfile_link_map);
1783
1784 tramp_frame_prepend_unwinder (gdbarch,
1785 &arm_linux_sigreturn_tramp_frame);
1786 tramp_frame_prepend_unwinder (gdbarch,
1787 &arm_linux_rt_sigreturn_tramp_frame);
1788 tramp_frame_prepend_unwinder (gdbarch,
1789 &arm_eabi_linux_sigreturn_tramp_frame);
1790 tramp_frame_prepend_unwinder (gdbarch,
1791 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1792 tramp_frame_prepend_unwinder (gdbarch,
1793 &thumb2_eabi_linux_sigreturn_tramp_frame);
1794 tramp_frame_prepend_unwinder (gdbarch,
1795 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1796 tramp_frame_prepend_unwinder (gdbarch,
1797 &arm_linux_restart_syscall_tramp_frame);
1798 tramp_frame_prepend_unwinder (gdbarch,
1799 &arm_kernel_linux_restart_syscall_tramp_frame);
1800
1801 /* Core file support. */
1802 set_gdbarch_iterate_over_regset_sections
1803 (gdbarch, arm_linux_iterate_over_regset_sections);
1804 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1805
1806 /* Displaced stepping. */
1807 set_gdbarch_displaced_step_copy_insn (gdbarch,
1808 arm_linux_displaced_step_copy_insn);
1809 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1810
1811 /* Reversible debugging, process record. */
1812 set_gdbarch_process_record (gdbarch, arm_process_record);
1813
1814 /* SystemTap functions. */
1815 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1816 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1817 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1818 stap_register_indirection_prefixes);
1819 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1820 stap_register_indirection_suffixes);
1821 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1822 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1823 set_gdbarch_stap_parse_special_token (gdbarch,
1824 arm_stap_parse_special_token);
1825
1826 /* `catch syscall' */
1827 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1828 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1829
1830 /* Syscall record. */
1831 tdep->arm_syscall_record = arm_linux_syscall_record;
1832
1833 /* Initialize the arm_linux_record_tdep. */
1834 /* These values are the size of the type that will be used in a system
1835 call. They are obtained from Linux Kernel source. */
1836 arm_linux_record_tdep.size_pointer
1837 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1838 arm_linux_record_tdep.size__old_kernel_stat = 32;
1839 arm_linux_record_tdep.size_tms = 16;
1840 arm_linux_record_tdep.size_loff_t = 8;
1841 arm_linux_record_tdep.size_flock = 16;
1842 arm_linux_record_tdep.size_oldold_utsname = 45;
1843 arm_linux_record_tdep.size_ustat = 20;
1844 arm_linux_record_tdep.size_old_sigaction = 16;
1845 arm_linux_record_tdep.size_old_sigset_t = 4;
1846 arm_linux_record_tdep.size_rlimit = 8;
1847 arm_linux_record_tdep.size_rusage = 72;
1848 arm_linux_record_tdep.size_timeval = 8;
1849 arm_linux_record_tdep.size_timezone = 8;
1850 arm_linux_record_tdep.size_old_gid_t = 2;
1851 arm_linux_record_tdep.size_old_uid_t = 2;
1852 arm_linux_record_tdep.size_fd_set = 128;
1853 arm_linux_record_tdep.size_old_dirent = 268;
1854 arm_linux_record_tdep.size_statfs = 64;
1855 arm_linux_record_tdep.size_statfs64 = 84;
1856 arm_linux_record_tdep.size_sockaddr = 16;
1857 arm_linux_record_tdep.size_int
1858 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1859 arm_linux_record_tdep.size_long
1860 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1861 arm_linux_record_tdep.size_ulong
1862 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1863 arm_linux_record_tdep.size_msghdr = 28;
1864 arm_linux_record_tdep.size_itimerval = 16;
1865 arm_linux_record_tdep.size_stat = 88;
1866 arm_linux_record_tdep.size_old_utsname = 325;
1867 arm_linux_record_tdep.size_sysinfo = 64;
1868 arm_linux_record_tdep.size_msqid_ds = 88;
1869 arm_linux_record_tdep.size_shmid_ds = 84;
1870 arm_linux_record_tdep.size_new_utsname = 390;
1871 arm_linux_record_tdep.size_timex = 128;
1872 arm_linux_record_tdep.size_mem_dqinfo = 24;
1873 arm_linux_record_tdep.size_if_dqblk = 68;
1874 arm_linux_record_tdep.size_fs_quota_stat = 68;
1875 arm_linux_record_tdep.size_timespec = 8;
1876 arm_linux_record_tdep.size_pollfd = 8;
1877 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1878 arm_linux_record_tdep.size_knfsd_fh = 132;
1879 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1880 arm_linux_record_tdep.size_sigaction = 20;
1881 arm_linux_record_tdep.size_sigset_t = 8;
1882 arm_linux_record_tdep.size_siginfo_t = 128;
1883 arm_linux_record_tdep.size_cap_user_data_t = 12;
1884 arm_linux_record_tdep.size_stack_t = 12;
1885 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1886 arm_linux_record_tdep.size_stat64 = 96;
1887 arm_linux_record_tdep.size_gid_t = 4;
1888 arm_linux_record_tdep.size_uid_t = 4;
1889 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1890 arm_linux_record_tdep.size_flock64 = 24;
1891 arm_linux_record_tdep.size_user_desc = 16;
1892 arm_linux_record_tdep.size_io_event = 32;
1893 arm_linux_record_tdep.size_iocb = 64;
1894 arm_linux_record_tdep.size_epoll_event = 12;
1895 arm_linux_record_tdep.size_itimerspec
1896 = arm_linux_record_tdep.size_timespec * 2;
1897 arm_linux_record_tdep.size_mq_attr = 32;
1898 arm_linux_record_tdep.size_termios = 36;
1899 arm_linux_record_tdep.size_termios2 = 44;
1900 arm_linux_record_tdep.size_pid_t = 4;
1901 arm_linux_record_tdep.size_winsize = 8;
1902 arm_linux_record_tdep.size_serial_struct = 60;
1903 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1904 arm_linux_record_tdep.size_hayes_esp_config = 12;
1905 arm_linux_record_tdep.size_size_t = 4;
1906 arm_linux_record_tdep.size_iovec = 8;
1907 arm_linux_record_tdep.size_time_t = 4;
1908
1909 /* These values are the second argument of system call "sys_ioctl".
1910 They are obtained from Linux Kernel source. */
1911 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1912 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1913 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1914 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1915 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1916 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1917 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1918 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1919 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1920 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1921 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1922 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1923 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1924 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1925 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1926 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1927 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1928 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1929 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1930 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1931 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1932 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1933 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1934 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1935 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1936 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1937 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1938 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1939 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1940 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1941 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1942 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1943 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1944 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1945 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1946 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1947 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1948 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1949 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1950 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1951 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1952 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1953 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1954 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1955 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1956 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1957 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1958 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1959 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1960 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1961 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1962 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1963 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1964 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1965 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1966 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1967 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1968 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1969 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1970 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1971 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1972 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1973 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1974 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1975 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1976
1977 /* These values are the second argument of system call "sys_fcntl"
1978 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1979 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1980 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1981 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1982 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1983
1984 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM;
1985 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 1;
1986 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 2;
1987 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1988 arm_linux_record_tdep.arg5 = ARM_A1_REGNUM + 4;
1989 arm_linux_record_tdep.arg6 = ARM_A1_REGNUM + 5;
1990 arm_linux_record_tdep.arg7 = ARM_A1_REGNUM + 6;
1991
1992 set_gdbarch_gcc_target_options (gdbarch, arm_linux_gcc_target_options);
1993 }
1994
1995 void _initialize_arm_linux_tdep ();
1996 void
1997 _initialize_arm_linux_tdep ()
1998 {
1999 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
2000 arm_linux_init_abi);
2001 }