]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/avr-tdep.c
Fix regression on aarch64-linux gdbserver
[thirdparty/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include <algorithm>
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 /* Constants: prefixed with AVR_ to avoid name space clashes */
73
74 /* Address space flags */
75
76 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77 space. */
78
79 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
84 enum
85 {
86 AVR_REG_W = 24,
87 AVR_REG_X = 26,
88 AVR_REG_Y = 28,
89 AVR_FP_REGNUM = 28,
90 AVR_REG_Z = 30,
91
92 AVR_SREG_REGNUM = 32,
93 AVR_SP_REGNUM = 33,
94 AVR_PC_REGNUM = 34,
95
96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
99 /* Pseudo registers. */
100 AVR_PSEUDO_PC_REGNUM = 35,
101 AVR_NUM_PSEUDO_REGS = 1,
102
103 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104
105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
106
107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
108 AVR_MAX_PUSHES = 18,
109
110 /* Number of the last pushed register. r17 for current avr-gcc */
111 AVR_LAST_PUSHED_REGNUM = 17,
112
113 AVR_ARG1_REGNUM = 24, /* Single byte argument */
114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
115 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
116
117 AVR_RET1_REGNUM = 24, /* Single byte return value */
118 AVR_RETN_REGNUM = 25, /* Multi byte return value */
119
120 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
121 bits? Do these have to match the bfd vma values? It sure would make
122 things easier in the future if they didn't need to match.
123
124 Note: I chose these values so as to be consistent with bfd vma
125 addresses.
126
127 TRoth/2002-04-08: There is already a conflict with very large programs
128 in the mega128. The mega128 has 128K instruction bytes (64K words),
129 thus the Most Significant Bit is 0x10000 which gets masked off my
130 AVR_MEM_MASK.
131
132 The problem manifests itself when trying to set a breakpoint in a
133 function which resides in the upper half of the instruction space and
134 thus requires a 17-bit address.
135
136 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
137 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
138 but could be for some remote targets by just adding the correct offset
139 to the address and letting the remote target handle the low-level
140 details of actually accessing the eeprom. */
141
142 AVR_IMEM_START = 0x00000000, /* INSN memory */
143 AVR_SMEM_START = 0x00800000, /* SRAM memory */
144 #if 1
145 /* No eeprom mask defined */
146 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
147 #else
148 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
149 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
150 #endif
151 };
152
153 /* Prologue types:
154
155 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156 causes the generation of the CALL type prologues). */
157
158 enum {
159 AVR_PROLOGUE_NONE, /* No prologue */
160 AVR_PROLOGUE_NORMAL,
161 AVR_PROLOGUE_CALL, /* -mcall-prologues */
162 AVR_PROLOGUE_MAIN,
163 AVR_PROLOGUE_INTR, /* interrupt handler */
164 AVR_PROLOGUE_SIG, /* signal handler */
165 };
166
167 /* Any function with a frame looks like this
168 ....... <-SP POINTS HERE
169 LOCALS1 <-FP POINTS HERE
170 LOCALS0
171 SAVED FP
172 SAVED R3
173 SAVED R2
174 RET PC
175 FIRST ARG
176 SECOND ARG */
177
178 struct avr_unwind_cache
179 {
180 /* The previous frame's inner most stack address. Used as this
181 frame ID's stack_addr. */
182 CORE_ADDR prev_sp;
183 /* The frame's base, optionally used by the high-level debug info. */
184 CORE_ADDR base;
185 int size;
186 int prologue_type;
187 /* Table indicating the location of each and every register. */
188 struct trad_frame_saved_reg *saved_regs;
189 };
190
191 struct gdbarch_tdep
192 {
193 /* Number of bytes stored to the stack by call instructions.
194 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
195 int call_length;
196
197 /* Type for void. */
198 struct type *void_type;
199 /* Type for a function returning void. */
200 struct type *func_void_type;
201 /* Type for a pointer to a function. Used for the type of PC. */
202 struct type *pc_type;
203 };
204
205 /* Lookup the name of a register given it's number. */
206
207 static const char *
208 avr_register_name (struct gdbarch *gdbarch, int regnum)
209 {
210 static const char * const register_names[] = {
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
215 "SREG", "SP", "PC2",
216 "pc"
217 };
218 if (regnum < 0)
219 return NULL;
220 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221 return NULL;
222 return register_names[regnum];
223 }
224
225 /* Return the GDB type object for the "standard" data type
226 of data in register N. */
227
228 static struct type *
229 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
230 {
231 if (reg_nr == AVR_PC_REGNUM)
232 return builtin_type (gdbarch)->builtin_uint32;
233 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234 return gdbarch_tdep (gdbarch)->pc_type;
235 if (reg_nr == AVR_SP_REGNUM)
236 return builtin_type (gdbarch)->builtin_data_ptr;
237 return builtin_type (gdbarch)->builtin_uint8;
238 }
239
240 /* Instruction address checks and convertions. */
241
242 static CORE_ADDR
243 avr_make_iaddr (CORE_ADDR x)
244 {
245 return ((x) | AVR_IMEM_START);
246 }
247
248 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
249 devices are already up to 128KBytes of flash space.
250
251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
252
253 static CORE_ADDR
254 avr_convert_iaddr_to_raw (CORE_ADDR x)
255 {
256 return ((x) & 0xffffffff);
257 }
258
259 /* SRAM address checks and convertions. */
260
261 static CORE_ADDR
262 avr_make_saddr (CORE_ADDR x)
263 {
264 /* Return 0 for NULL. */
265 if (x == 0)
266 return 0;
267
268 return ((x) | AVR_SMEM_START);
269 }
270
271 static CORE_ADDR
272 avr_convert_saddr_to_raw (CORE_ADDR x)
273 {
274 return ((x) & 0xffffffff);
275 }
276
277 /* EEPROM address checks and convertions. I don't know if these will ever
278 actually be used, but I've added them just the same. TRoth */
279
280 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
281 programs in the mega128. */
282
283 /* static CORE_ADDR */
284 /* avr_make_eaddr (CORE_ADDR x) */
285 /* { */
286 /* return ((x) | AVR_EMEM_START); */
287 /* } */
288
289 /* static int */
290 /* avr_eaddr_p (CORE_ADDR x) */
291 /* { */
292 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293 /* } */
294
295 /* static CORE_ADDR */
296 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
297 /* { */
298 /* return ((x) & 0xffffffff); */
299 /* } */
300
301 /* Convert from address to pointer and vice-versa. */
302
303 static void
304 avr_address_to_pointer (struct gdbarch *gdbarch,
305 struct type *type, gdb_byte *buf, CORE_ADDR addr)
306 {
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308
309 /* Is it a data address in flash? */
310 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311 {
312 /* A data pointer in flash is byte addressed. */
313 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314 avr_convert_iaddr_to_raw (addr));
315 }
316 /* Is it a code address? */
317 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
318 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
319 {
320 /* A code pointer is word (16 bits) addressed. We shift the address down
321 by 1 bit to convert it to a pointer. */
322 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
323 avr_convert_iaddr_to_raw (addr >> 1));
324 }
325 else
326 {
327 /* Strip off any upper segment bits. */
328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
329 avr_convert_saddr_to_raw (addr));
330 }
331 }
332
333 static CORE_ADDR
334 avr_pointer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336 {
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 CORE_ADDR addr
339 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
340
341 /* Is it a data address in flash? */
342 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
343 {
344 /* A data pointer in flash is already byte addressed. */
345 return avr_make_iaddr (addr);
346 }
347 /* Is it a code address? */
348 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
349 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
350 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
351 {
352 /* A code pointer is word (16 bits) addressed so we shift it up
353 by 1 bit to convert it to an address. */
354 return avr_make_iaddr (addr << 1);
355 }
356 else
357 return avr_make_saddr (addr);
358 }
359
360 static CORE_ADDR
361 avr_integer_to_address (struct gdbarch *gdbarch,
362 struct type *type, const gdb_byte *buf)
363 {
364 ULONGEST addr = unpack_long (type, buf);
365
366 return avr_make_saddr (addr);
367 }
368
369 static CORE_ADDR
370 avr_read_pc (readable_regcache *regcache)
371 {
372 ULONGEST pc;
373
374 regcache->cooked_read (AVR_PC_REGNUM, &pc);
375 return avr_make_iaddr (pc);
376 }
377
378 static void
379 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
380 {
381 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
382 avr_convert_iaddr_to_raw (val));
383 }
384
385 static enum register_status
386 avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
387 int regnum, gdb_byte *buf)
388 {
389 ULONGEST val;
390 enum register_status status;
391
392 switch (regnum)
393 {
394 case AVR_PSEUDO_PC_REGNUM:
395 status = regcache->raw_read (AVR_PC_REGNUM, &val);
396 if (status != REG_VALID)
397 return status;
398 val >>= 1;
399 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
400 return status;
401 default:
402 internal_error (__FILE__, __LINE__, _("invalid regnum"));
403 }
404 }
405
406 static void
407 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
408 int regnum, const gdb_byte *buf)
409 {
410 ULONGEST val;
411
412 switch (regnum)
413 {
414 case AVR_PSEUDO_PC_REGNUM:
415 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
416 val <<= 1;
417 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
418 break;
419 default:
420 internal_error (__FILE__, __LINE__, _("invalid regnum"));
421 }
422 }
423
424 /* Function: avr_scan_prologue
425
426 This function decodes an AVR function prologue to determine:
427 1) the size of the stack frame
428 2) which registers are saved on it
429 3) the offsets of saved regs
430 This information is stored in the avr_unwind_cache structure.
431
432 Some devices lack the sbiw instruction, so on those replace this:
433 sbiw r28, XX
434 with this:
435 subi r28,lo8(XX)
436 sbci r29,hi8(XX)
437
438 A typical AVR function prologue with a frame pointer might look like this:
439 push rXX ; saved regs
440 ...
441 push r28
442 push r29
443 in r28,__SP_L__
444 in r29,__SP_H__
445 sbiw r28,<LOCALS_SIZE>
446 in __tmp_reg__,__SREG__
447 cli
448 out __SP_H__,r29
449 out __SREG__,__tmp_reg__
450 out __SP_L__,r28
451
452 A typical AVR function prologue without a frame pointer might look like
453 this:
454 push rXX ; saved regs
455 ...
456
457 A main function prologue looks like this:
458 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
459 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
460 out __SP_H__,r29
461 out __SP_L__,r28
462
463 A signal handler prologue looks like this:
464 push __zero_reg__
465 push __tmp_reg__
466 in __tmp_reg__, __SREG__
467 push __tmp_reg__
468 clr __zero_reg__
469 push rXX ; save registers r18:r27, r30:r31
470 ...
471 push r28 ; save frame pointer
472 push r29
473 in r28, __SP_L__
474 in r29, __SP_H__
475 sbiw r28, <LOCALS_SIZE>
476 out __SP_H__, r29
477 out __SP_L__, r28
478
479 A interrupt handler prologue looks like this:
480 sei
481 push __zero_reg__
482 push __tmp_reg__
483 in __tmp_reg__, __SREG__
484 push __tmp_reg__
485 clr __zero_reg__
486 push rXX ; save registers r18:r27, r30:r31
487 ...
488 push r28 ; save frame pointer
489 push r29
490 in r28, __SP_L__
491 in r29, __SP_H__
492 sbiw r28, <LOCALS_SIZE>
493 cli
494 out __SP_H__, r29
495 sei
496 out __SP_L__, r28
497
498 A `-mcall-prologues' prologue looks like this (Note that the megas use a
499 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
500 32 bit insn and rjmp is a 16 bit insn):
501 ldi r26,lo8(<LOCALS_SIZE>)
502 ldi r27,hi8(<LOCALS_SIZE>)
503 ldi r30,pm_lo8(.L_foo_body)
504 ldi r31,pm_hi8(.L_foo_body)
505 rjmp __prologue_saves__+RRR
506 .L_foo_body: */
507
508 /* Not really part of a prologue, but still need to scan for it, is when a
509 function prologue moves values passed via registers as arguments to new
510 registers. In this case, all local variables live in registers, so there
511 may be some register saves. This is what it looks like:
512 movw rMM, rNN
513 ...
514
515 There could be multiple movw's. If the target doesn't have a movw insn, it
516 will use two mov insns. This could be done after any of the above prologue
517 types. */
518
519 static CORE_ADDR
520 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
521 struct avr_unwind_cache *info)
522 {
523 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
524 int i;
525 unsigned short insn;
526 int scan_stage = 0;
527 struct bound_minimal_symbol msymbol;
528 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
529 int vpc = 0;
530 int len;
531
532 len = pc_end - pc_beg;
533 if (len > AVR_MAX_PROLOGUE_SIZE)
534 len = AVR_MAX_PROLOGUE_SIZE;
535
536 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
537 reading in the bytes of the prologue. The problem is that the figuring
538 out where the end of the prologue is is a bit difficult. The old code
539 tried to do that, but failed quite often. */
540 read_memory (pc_beg, prologue, len);
541
542 /* Scanning main()'s prologue
543 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
544 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
545 out __SP_H__,r29
546 out __SP_L__,r28 */
547
548 if (len >= 4)
549 {
550 CORE_ADDR locals;
551 static const unsigned char img[] = {
552 0xde, 0xbf, /* out __SP_H__,r29 */
553 0xcd, 0xbf /* out __SP_L__,r28 */
554 };
555
556 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
557 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
558 if ((insn & 0xf0f0) == 0xe0c0)
559 {
560 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
561 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
562 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
563 if ((insn & 0xf0f0) == 0xe0d0)
564 {
565 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
566 if (vpc + 4 + sizeof (img) < len
567 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
568 {
569 info->prologue_type = AVR_PROLOGUE_MAIN;
570 info->base = locals;
571 return pc_beg + 4;
572 }
573 }
574 }
575 }
576
577 /* Scanning `-mcall-prologues' prologue
578 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
579
580 while (1) /* Using a while to avoid many goto's */
581 {
582 int loc_size;
583 int body_addr;
584 unsigned num_pushes;
585 int pc_offset = 0;
586
587 /* At least the fifth instruction must have been executed to
588 modify frame shape. */
589 if (len < 10)
590 break;
591
592 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
593 /* ldi r26,<LOCALS_SIZE> */
594 if ((insn & 0xf0f0) != 0xe0a0)
595 break;
596 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
597 pc_offset += 2;
598
599 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
600 /* ldi r27,<LOCALS_SIZE> / 256 */
601 if ((insn & 0xf0f0) != 0xe0b0)
602 break;
603 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
604 pc_offset += 2;
605
606 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
607 /* ldi r30,pm_lo8(.L_foo_body) */
608 if ((insn & 0xf0f0) != 0xe0e0)
609 break;
610 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
611 pc_offset += 2;
612
613 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
614 /* ldi r31,pm_hi8(.L_foo_body) */
615 if ((insn & 0xf0f0) != 0xe0f0)
616 break;
617 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
618 pc_offset += 2;
619
620 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
621 if (!msymbol.minsym)
622 break;
623
624 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
625 /* rjmp __prologue_saves__+RRR */
626 if ((insn & 0xf000) == 0xc000)
627 {
628 /* Extract PC relative offset from RJMP */
629 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
630 /* Convert offset to byte addressable mode */
631 i *= 2;
632 /* Destination address */
633 i += pc_beg + 10;
634
635 if (body_addr != (pc_beg + 10)/2)
636 break;
637
638 pc_offset += 2;
639 }
640 else if ((insn & 0xfe0e) == 0x940c)
641 {
642 /* Extract absolute PC address from JMP */
643 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
644 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
645 & 0xffff));
646 /* Convert address to byte addressable mode */
647 i *= 2;
648
649 if (body_addr != (pc_beg + 12)/2)
650 break;
651
652 pc_offset += 4;
653 }
654 else
655 break;
656
657 /* Resolve offset (in words) from __prologue_saves__ symbol.
658 Which is a pushes count in `-mcall-prologues' mode */
659 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
660
661 if (num_pushes > AVR_MAX_PUSHES)
662 {
663 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
664 num_pushes);
665 num_pushes = 0;
666 }
667
668 if (num_pushes)
669 {
670 int from;
671
672 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
673 if (num_pushes >= 2)
674 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
675
676 i = 0;
677 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
678 from <= AVR_LAST_PUSHED_REGNUM; ++from)
679 info->saved_regs [from].addr = ++i;
680 }
681 info->size = loc_size + num_pushes;
682 info->prologue_type = AVR_PROLOGUE_CALL;
683
684 return pc_beg + pc_offset;
685 }
686
687 /* Scan for the beginning of the prologue for an interrupt or signal
688 function. Note that we have to set the prologue type here since the
689 third stage of the prologue may not be present (e.g. no saved registered
690 or changing of the SP register). */
691
692 if (1)
693 {
694 static const unsigned char img[] = {
695 0x78, 0x94, /* sei */
696 0x1f, 0x92, /* push r1 */
697 0x0f, 0x92, /* push r0 */
698 0x0f, 0xb6, /* in r0,0x3f SREG */
699 0x0f, 0x92, /* push r0 */
700 0x11, 0x24 /* clr r1 */
701 };
702 if (len >= sizeof (img)
703 && memcmp (prologue, img, sizeof (img)) == 0)
704 {
705 info->prologue_type = AVR_PROLOGUE_INTR;
706 vpc += sizeof (img);
707 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
708 info->saved_regs[0].addr = 2;
709 info->saved_regs[1].addr = 1;
710 info->size += 3;
711 }
712 else if (len >= sizeof (img) - 2
713 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
714 {
715 info->prologue_type = AVR_PROLOGUE_SIG;
716 vpc += sizeof (img) - 2;
717 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
718 info->saved_regs[0].addr = 2;
719 info->saved_regs[1].addr = 1;
720 info->size += 2;
721 }
722 }
723
724 /* First stage of the prologue scanning.
725 Scan pushes (saved registers) */
726
727 for (; vpc < len; vpc += 2)
728 {
729 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
730 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
731 {
732 /* Bits 4-9 contain a mask for registers R0-R32. */
733 int regno = (insn & 0x1f0) >> 4;
734 info->size++;
735 info->saved_regs[regno].addr = info->size;
736 scan_stage = 1;
737 }
738 else
739 break;
740 }
741
742 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
743
744 /* Handle static small stack allocation using rcall or push. */
745
746 while (scan_stage == 1 && vpc < len)
747 {
748 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
749 if (insn == 0xd000) /* rcall .+0 */
750 {
751 info->size += gdbarch_tdep (gdbarch)->call_length;
752 vpc += 2;
753 }
754 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
755 {
756 info->size += 1;
757 vpc += 2;
758 }
759 else
760 break;
761 }
762
763 /* Second stage of the prologue scanning.
764 Scan:
765 in r28,__SP_L__
766 in r29,__SP_H__ */
767
768 if (scan_stage == 1 && vpc < len)
769 {
770 static const unsigned char img[] = {
771 0xcd, 0xb7, /* in r28,__SP_L__ */
772 0xde, 0xb7 /* in r29,__SP_H__ */
773 };
774
775 if (vpc + sizeof (img) < len
776 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
777 {
778 vpc += 4;
779 scan_stage = 2;
780 }
781 }
782
783 /* Third stage of the prologue scanning. (Really two stages).
784 Scan for:
785 sbiw r28,XX or subi r28,lo8(XX)
786 sbci r29,hi8(XX)
787 in __tmp_reg__,__SREG__
788 cli
789 out __SP_H__,r29
790 out __SREG__,__tmp_reg__
791 out __SP_L__,r28 */
792
793 if (scan_stage == 2 && vpc < len)
794 {
795 int locals_size = 0;
796 static const unsigned char img[] = {
797 0x0f, 0xb6, /* in r0,0x3f */
798 0xf8, 0x94, /* cli */
799 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
800 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
801 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
802 };
803 static const unsigned char img_sig[] = {
804 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
805 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
806 };
807 static const unsigned char img_int[] = {
808 0xf8, 0x94, /* cli */
809 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
810 0x78, 0x94, /* sei */
811 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
812 };
813
814 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
815 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
816 {
817 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
818 vpc += 2;
819 }
820 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
821 {
822 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
823 vpc += 2;
824 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
825 vpc += 2;
826 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
827 }
828 else
829 return pc_beg + vpc;
830
831 /* Scan the last part of the prologue. May not be present for interrupt
832 or signal handler functions, which is why we set the prologue type
833 when we saw the beginning of the prologue previously. */
834
835 if (vpc + sizeof (img_sig) < len
836 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
837 {
838 vpc += sizeof (img_sig);
839 }
840 else if (vpc + sizeof (img_int) < len
841 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
842 {
843 vpc += sizeof (img_int);
844 }
845 if (vpc + sizeof (img) < len
846 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
847 {
848 info->prologue_type = AVR_PROLOGUE_NORMAL;
849 vpc += sizeof (img);
850 }
851
852 info->size += locals_size;
853
854 /* Fall through. */
855 }
856
857 /* If we got this far, we could not scan the prologue, so just return the pc
858 of the frame plus an adjustment for argument move insns. */
859
860 for (; vpc < len; vpc += 2)
861 {
862 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
863 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
864 continue;
865 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
866 continue;
867 else
868 break;
869 }
870
871 return pc_beg + vpc;
872 }
873
874 static CORE_ADDR
875 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
876 {
877 CORE_ADDR func_addr, func_end;
878 CORE_ADDR post_prologue_pc;
879
880 /* See what the symbol table says */
881
882 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
883 return pc;
884
885 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
886 if (post_prologue_pc != 0)
887 return std::max (pc, post_prologue_pc);
888
889 {
890 CORE_ADDR prologue_end = pc;
891 struct avr_unwind_cache info = {0};
892 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
893
894 info.saved_regs = saved_regs;
895
896 /* Need to run the prologue scanner to figure out if the function has a
897 prologue and possibly skip over moving arguments passed via registers
898 to other registers. */
899
900 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
901
902 if (info.prologue_type != AVR_PROLOGUE_NONE)
903 return prologue_end;
904 }
905
906 /* Either we didn't find the start of this function (nothing we can do),
907 or there's no line info, or the line after the prologue is after
908 the end of the function (there probably isn't a prologue). */
909
910 return pc;
911 }
912
913 /* Not all avr devices support the BREAK insn. Those that don't should treat
914 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
915 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
916
917 constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
918
919 typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
920
921 /* Determine, for architecture GDBARCH, how a return value of TYPE
922 should be returned. If it is supposed to be returned in registers,
923 and READBUF is non-zero, read the appropriate value from REGCACHE,
924 and copy it into READBUF. If WRITEBUF is non-zero, write the value
925 from WRITEBUF into REGCACHE. */
926
927 static enum return_value_convention
928 avr_return_value (struct gdbarch *gdbarch, struct value *function,
929 struct type *valtype, struct regcache *regcache,
930 gdb_byte *readbuf, const gdb_byte *writebuf)
931 {
932 int i;
933 /* Single byte are returned in r24.
934 Otherwise, the MSB of the return value is always in r25, calculate which
935 register holds the LSB. */
936 int lsb_reg;
937
938 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
939 || TYPE_CODE (valtype) == TYPE_CODE_UNION
940 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
941 && TYPE_LENGTH (valtype) > 8)
942 return RETURN_VALUE_STRUCT_CONVENTION;
943
944 if (TYPE_LENGTH (valtype) <= 2)
945 lsb_reg = 24;
946 else if (TYPE_LENGTH (valtype) <= 4)
947 lsb_reg = 22;
948 else if (TYPE_LENGTH (valtype) <= 8)
949 lsb_reg = 18;
950 else
951 gdb_assert_not_reached ("unexpected type length");
952
953 if (writebuf != NULL)
954 {
955 for (i = 0; i < TYPE_LENGTH (valtype); i++)
956 regcache->cooked_write (lsb_reg + i, writebuf + i);
957 }
958
959 if (readbuf != NULL)
960 {
961 for (i = 0; i < TYPE_LENGTH (valtype); i++)
962 regcache->cooked_read (lsb_reg + i, readbuf + i);
963 }
964
965 return RETURN_VALUE_REGISTER_CONVENTION;
966 }
967
968
969 /* Put here the code to store, into fi->saved_regs, the addresses of
970 the saved registers of frame described by FRAME_INFO. This
971 includes special registers such as pc and fp saved in special ways
972 in the stack frame. sp is even more special: the address we return
973 for it IS the sp for the next frame. */
974
975 static struct avr_unwind_cache *
976 avr_frame_unwind_cache (struct frame_info *this_frame,
977 void **this_prologue_cache)
978 {
979 CORE_ADDR start_pc, current_pc;
980 ULONGEST prev_sp;
981 ULONGEST this_base;
982 struct avr_unwind_cache *info;
983 struct gdbarch *gdbarch;
984 struct gdbarch_tdep *tdep;
985 int i;
986
987 if (*this_prologue_cache)
988 return (struct avr_unwind_cache *) *this_prologue_cache;
989
990 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
991 *this_prologue_cache = info;
992 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
993
994 info->size = 0;
995 info->prologue_type = AVR_PROLOGUE_NONE;
996
997 start_pc = get_frame_func (this_frame);
998 current_pc = get_frame_pc (this_frame);
999 if ((start_pc > 0) && (start_pc <= current_pc))
1000 avr_scan_prologue (get_frame_arch (this_frame),
1001 start_pc, current_pc, info);
1002
1003 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1004 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1005 {
1006 ULONGEST high_base; /* High byte of FP */
1007
1008 /* The SP was moved to the FP. This indicates that a new frame
1009 was created. Get THIS frame's FP value by unwinding it from
1010 the next frame. */
1011 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1012 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1013 this_base += (high_base << 8);
1014
1015 /* The FP points at the last saved register. Adjust the FP back
1016 to before the first saved register giving the SP. */
1017 prev_sp = this_base + info->size;
1018 }
1019 else
1020 {
1021 /* Assume that the FP is this frame's SP but with that pushed
1022 stack space added back. */
1023 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1024 prev_sp = this_base + info->size;
1025 }
1026
1027 /* Add 1 here to adjust for the post-decrement nature of the push
1028 instruction.*/
1029 info->prev_sp = avr_make_saddr (prev_sp + 1);
1030 info->base = avr_make_saddr (this_base);
1031
1032 gdbarch = get_frame_arch (this_frame);
1033
1034 /* Adjust all the saved registers so that they contain addresses and not
1035 offsets. */
1036 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1037 if (info->saved_regs[i].addr > 0)
1038 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1039
1040 /* Except for the main and startup code, the return PC is always saved on
1041 the stack and is at the base of the frame. */
1042
1043 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1044 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1045
1046 /* The previous frame's SP needed to be computed. Save the computed
1047 value. */
1048 tdep = gdbarch_tdep (gdbarch);
1049 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1050 info->prev_sp - 1 + tdep->call_length);
1051
1052 return info;
1053 }
1054
1055 static CORE_ADDR
1056 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1057 {
1058 ULONGEST pc;
1059
1060 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1061
1062 return avr_make_iaddr (pc);
1063 }
1064
1065 static CORE_ADDR
1066 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1067 {
1068 ULONGEST sp;
1069
1070 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1071
1072 return avr_make_saddr (sp);
1073 }
1074
1075 /* Given a GDB frame, determine the address of the calling function's
1076 frame. This will be used to create a new GDB frame struct. */
1077
1078 static void
1079 avr_frame_this_id (struct frame_info *this_frame,
1080 void **this_prologue_cache,
1081 struct frame_id *this_id)
1082 {
1083 struct avr_unwind_cache *info
1084 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1085 CORE_ADDR base;
1086 CORE_ADDR func;
1087 struct frame_id id;
1088
1089 /* The FUNC is easy. */
1090 func = get_frame_func (this_frame);
1091
1092 /* Hopefully the prologue analysis either correctly determined the
1093 frame's base (which is the SP from the previous frame), or set
1094 that base to "NULL". */
1095 base = info->prev_sp;
1096 if (base == 0)
1097 return;
1098
1099 id = frame_id_build (base, func);
1100 (*this_id) = id;
1101 }
1102
1103 static struct value *
1104 avr_frame_prev_register (struct frame_info *this_frame,
1105 void **this_prologue_cache, int regnum)
1106 {
1107 struct avr_unwind_cache *info
1108 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1109
1110 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1111 {
1112 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1113 {
1114 /* Reading the return PC from the PC register is slightly
1115 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1116 but in reality, only two bytes (3 in upcoming mega256) are
1117 stored on the stack.
1118
1119 Also, note that the value on the stack is an addr to a word
1120 not a byte, so we will need to multiply it by two at some
1121 point.
1122
1123 And to confuse matters even more, the return address stored
1124 on the stack is in big endian byte order, even though most
1125 everything else about the avr is little endian. Ick! */
1126 ULONGEST pc;
1127 int i;
1128 gdb_byte buf[3];
1129 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1131
1132 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1133 buf, tdep->call_length);
1134
1135 /* Extract the PC read from memory as a big-endian. */
1136 pc = 0;
1137 for (i = 0; i < tdep->call_length; i++)
1138 pc = (pc << 8) | buf[i];
1139
1140 if (regnum == AVR_PC_REGNUM)
1141 pc <<= 1;
1142
1143 return frame_unwind_got_constant (this_frame, regnum, pc);
1144 }
1145
1146 return frame_unwind_got_optimized (this_frame, regnum);
1147 }
1148
1149 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1150 }
1151
1152 static const struct frame_unwind avr_frame_unwind = {
1153 NORMAL_FRAME,
1154 default_frame_unwind_stop_reason,
1155 avr_frame_this_id,
1156 avr_frame_prev_register,
1157 NULL,
1158 default_frame_sniffer
1159 };
1160
1161 static CORE_ADDR
1162 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1163 {
1164 struct avr_unwind_cache *info
1165 = avr_frame_unwind_cache (this_frame, this_cache);
1166
1167 return info->base;
1168 }
1169
1170 static const struct frame_base avr_frame_base = {
1171 &avr_frame_unwind,
1172 avr_frame_base_address,
1173 avr_frame_base_address,
1174 avr_frame_base_address
1175 };
1176
1177 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1178 frame. The frame ID's base needs to match the TOS value saved by
1179 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1180
1181 static struct frame_id
1182 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1183 {
1184 ULONGEST base;
1185
1186 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1187 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1188 }
1189
1190 /* When arguments must be pushed onto the stack, they go on in reverse
1191 order. The below implements a FILO (stack) to do this. */
1192
1193 struct stack_item
1194 {
1195 int len;
1196 struct stack_item *prev;
1197 gdb_byte *data;
1198 };
1199
1200 static struct stack_item *
1201 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1202 {
1203 struct stack_item *si;
1204 si = XNEW (struct stack_item);
1205 si->data = (gdb_byte *) xmalloc (len);
1206 si->len = len;
1207 si->prev = prev;
1208 memcpy (si->data, contents, len);
1209 return si;
1210 }
1211
1212 static struct stack_item *pop_stack_item (struct stack_item *si);
1213 static struct stack_item *
1214 pop_stack_item (struct stack_item *si)
1215 {
1216 struct stack_item *dead = si;
1217 si = si->prev;
1218 xfree (dead->data);
1219 xfree (dead);
1220 return si;
1221 }
1222
1223 /* Setup the function arguments for calling a function in the inferior.
1224
1225 On the AVR architecture, there are 18 registers (R25 to R8) which are
1226 dedicated for passing function arguments. Up to the first 18 arguments
1227 (depending on size) may go into these registers. The rest go on the stack.
1228
1229 All arguments are aligned to start in even-numbered registers (odd-sized
1230 arguments, including char, have one free register above them). For example,
1231 an int in arg1 and a char in arg2 would be passed as such:
1232
1233 arg1 -> r25:r24
1234 arg2 -> r22
1235
1236 Arguments that are larger than 2 bytes will be split between two or more
1237 registers as available, but will NOT be split between a register and the
1238 stack. Arguments that go onto the stack are pushed last arg first (this is
1239 similar to the d10v). */
1240
1241 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1242 inaccurate.
1243
1244 An exceptional case exists for struct arguments (and possibly other
1245 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1246 not a multiple of WORDSIZE bytes. In this case the argument is never split
1247 between the registers and the stack, but instead is copied in its entirety
1248 onto the stack, AND also copied into as many registers as there is room
1249 for. In other words, space in registers permitting, two copies of the same
1250 argument are passed in. As far as I can tell, only the one on the stack is
1251 used, although that may be a function of the level of compiler
1252 optimization. I suspect this is a compiler bug. Arguments of these odd
1253 sizes are left-justified within the word (as opposed to arguments smaller
1254 than WORDSIZE bytes, which are right-justified).
1255
1256 If the function is to return an aggregate type such as a struct, the caller
1257 must allocate space into which the callee will copy the return value. In
1258 this case, a pointer to the return value location is passed into the callee
1259 in register R0, which displaces one of the other arguments passed in via
1260 registers R0 to R2. */
1261
1262 static CORE_ADDR
1263 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1264 struct regcache *regcache, CORE_ADDR bp_addr,
1265 int nargs, struct value **args, CORE_ADDR sp,
1266 function_call_return_method return_method,
1267 CORE_ADDR struct_addr)
1268 {
1269 int i;
1270 gdb_byte buf[3];
1271 int call_length = gdbarch_tdep (gdbarch)->call_length;
1272 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1273 int regnum = AVR_ARGN_REGNUM;
1274 struct stack_item *si = NULL;
1275
1276 if (return_method == return_method_struct)
1277 {
1278 regcache_cooked_write_unsigned
1279 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1280 regcache_cooked_write_unsigned
1281 (regcache, regnum--, struct_addr & 0xff);
1282 /* SP being post decremented, we need to reserve one byte so that the
1283 return address won't overwrite the result (or vice-versa). */
1284 if (sp == struct_addr)
1285 sp--;
1286 }
1287
1288 for (i = 0; i < nargs; i++)
1289 {
1290 int last_regnum;
1291 int j;
1292 struct value *arg = args[i];
1293 struct type *type = check_typedef (value_type (arg));
1294 const bfd_byte *contents = value_contents (arg);
1295 int len = TYPE_LENGTH (type);
1296
1297 /* Calculate the potential last register needed.
1298 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1299 shall be used. So, last needed register will be regnum-1(24). */
1300 last_regnum = regnum - (len + (len & 1)) + 1;
1301
1302 /* If there are registers available, use them. Once we start putting
1303 stuff on the stack, all subsequent args go on stack. */
1304 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1305 {
1306 /* Skip a register for odd length args. */
1307 if (len & 1)
1308 regnum--;
1309
1310 /* Write MSB of argument into register and subsequent bytes in
1311 decreasing register numbers. */
1312 for (j = 0; j < len; j++)
1313 regcache_cooked_write_unsigned
1314 (regcache, regnum--, contents[len - j - 1]);
1315 }
1316 /* No registers available, push the args onto the stack. */
1317 else
1318 {
1319 /* From here on, we don't care about regnum. */
1320 si = push_stack_item (si, contents, len);
1321 }
1322 }
1323
1324 /* Push args onto the stack. */
1325 while (si)
1326 {
1327 sp -= si->len;
1328 /* Add 1 to sp here to account for post decr nature of pushes. */
1329 write_memory (sp + 1, si->data, si->len);
1330 si = pop_stack_item (si);
1331 }
1332
1333 /* Set the return address. For the avr, the return address is the BP_ADDR.
1334 Need to push the return address onto the stack noting that it needs to be
1335 in big-endian order on the stack. */
1336 for (i = 1; i <= call_length; i++)
1337 {
1338 buf[call_length - i] = return_pc & 0xff;
1339 return_pc >>= 8;
1340 }
1341
1342 sp -= call_length;
1343 /* Use 'sp + 1' since pushes are post decr ops. */
1344 write_memory (sp + 1, buf, call_length);
1345
1346 /* Finally, update the SP register. */
1347 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1348 avr_convert_saddr_to_raw (sp));
1349
1350 /* Return SP value for the dummy frame, where the return address hasn't been
1351 pushed. */
1352 return sp + call_length;
1353 }
1354
1355 /* Unfortunately dwarf2 register for SP is 32. */
1356
1357 static int
1358 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1359 {
1360 if (reg >= 0 && reg < 32)
1361 return reg;
1362 if (reg == 32)
1363 return AVR_SP_REGNUM;
1364 return -1;
1365 }
1366
1367 /* Implementation of `address_class_type_flags' gdbarch method.
1368
1369 This method maps DW_AT_address_class attributes to a
1370 type_instance_flag_value. */
1371
1372 static int
1373 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1374 {
1375 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1376 __flash qualifier. Note that this attribute is only valid with
1377 pointer types and therefore the flag is set to the pointer type and
1378 not its target type. */
1379 if (dwarf2_addr_class == 1 && byte_size == 2)
1380 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1381 return 0;
1382 }
1383
1384 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1385
1386 Convert a type_instance_flag_value to an address space qualifier. */
1387
1388 static const char*
1389 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1390 {
1391 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1392 return "flash";
1393 else
1394 return NULL;
1395 }
1396
1397 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1398
1399 Convert an address space qualifier to a type_instance_flag_value. */
1400
1401 static int
1402 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1403 const char* name,
1404 int *type_flags_ptr)
1405 {
1406 if (strcmp (name, "flash") == 0)
1407 {
1408 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1409 return 1;
1410 }
1411 else
1412 return 0;
1413 }
1414
1415 /* Initialize the gdbarch structure for the AVR's. */
1416
1417 static struct gdbarch *
1418 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1419 {
1420 struct gdbarch *gdbarch;
1421 struct gdbarch_tdep *tdep;
1422 struct gdbarch_list *best_arch;
1423 int call_length;
1424
1425 /* Avr-6 call instructions save 3 bytes. */
1426 switch (info.bfd_arch_info->mach)
1427 {
1428 case bfd_mach_avr1:
1429 case bfd_mach_avrxmega1:
1430 case bfd_mach_avr2:
1431 case bfd_mach_avrxmega2:
1432 case bfd_mach_avr3:
1433 case bfd_mach_avrxmega3:
1434 case bfd_mach_avr4:
1435 case bfd_mach_avrxmega4:
1436 case bfd_mach_avr5:
1437 case bfd_mach_avrxmega5:
1438 default:
1439 call_length = 2;
1440 break;
1441 case bfd_mach_avr6:
1442 case bfd_mach_avrxmega6:
1443 case bfd_mach_avrxmega7:
1444 call_length = 3;
1445 break;
1446 }
1447
1448 /* If there is already a candidate, use it. */
1449 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1450 best_arch != NULL;
1451 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1452 {
1453 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1454 return best_arch->gdbarch;
1455 }
1456
1457 /* None found, create a new architecture from the information provided. */
1458 tdep = XCNEW (struct gdbarch_tdep);
1459 gdbarch = gdbarch_alloc (&info, tdep);
1460
1461 tdep->call_length = call_length;
1462
1463 /* Create a type for PC. We can't use builtin types here, as they may not
1464 be defined. */
1465 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1466 "void");
1467 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1468 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1469 tdep->func_void_type);
1470
1471 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1472 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1473 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1474 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1475 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1476 set_gdbarch_addr_bit (gdbarch, 32);
1477
1478 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1479 set_gdbarch_wchar_signed (gdbarch, 1);
1480
1481 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1482 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1483 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1484
1485 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1486 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1487 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1488
1489 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1490 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1491
1492 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1493
1494 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1495 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1496
1497 set_gdbarch_register_name (gdbarch, avr_register_name);
1498 set_gdbarch_register_type (gdbarch, avr_register_type);
1499
1500 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1501 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1502 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1503
1504 set_gdbarch_return_value (gdbarch, avr_return_value);
1505
1506 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1507
1508 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1509
1510 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1511 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1512 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1513
1514 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1516
1517 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1518 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
1519
1520 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1521 frame_base_set_default (gdbarch, &avr_frame_base);
1522
1523 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1524
1525 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1526 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1527
1528 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1529 set_gdbarch_address_class_name_to_type_flags
1530 (gdbarch, avr_address_class_name_to_type_flags);
1531 set_gdbarch_address_class_type_flags_to_name
1532 (gdbarch, avr_address_class_type_flags_to_name);
1533
1534 return gdbarch;
1535 }
1536
1537 /* Send a query request to the avr remote target asking for values of the io
1538 registers. If args parameter is not NULL, then the user has requested info
1539 on a specific io register [This still needs implemented and is ignored for
1540 now]. The query string should be one of these forms:
1541
1542 "Ravr.io_reg" -> reply is "NN" number of io registers
1543
1544 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1545 registers to be read. The reply should be "<NAME>,VV;" for each io register
1546 where, <NAME> is a string, and VV is the hex value of the register.
1547
1548 All io registers are 8-bit. */
1549
1550 static void
1551 avr_io_reg_read_command (const char *args, int from_tty)
1552 {
1553 char query[400];
1554 unsigned int nreg = 0;
1555 unsigned int val;
1556
1557 /* Find out how many io registers the target has. */
1558 gdb::optional<gdb::byte_vector> buf
1559 = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, "avr.io_reg");
1560
1561 if (!buf)
1562 {
1563 fprintf_unfiltered (gdb_stderr,
1564 _("ERR: info io_registers NOT supported "
1565 "by current target\n"));
1566 return;
1567 }
1568
1569 const char *bufstr = (const char *) buf->data ();
1570
1571 if (sscanf (bufstr, "%x", &nreg) != 1)
1572 {
1573 fprintf_unfiltered (gdb_stderr,
1574 _("Error fetching number of io registers\n"));
1575 return;
1576 }
1577
1578 reinitialize_more_filter ();
1579
1580 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1581
1582 /* only fetch up to 8 registers at a time to keep the buffer small */
1583 int step = 8;
1584
1585 for (int i = 0; i < nreg; i += step)
1586 {
1587 /* how many registers this round? */
1588 int j = step;
1589 if ((i+j) >= nreg)
1590 j = nreg - i; /* last block is less than 8 registers */
1591
1592 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1593 buf = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, query);
1594
1595 if (!buf)
1596 {
1597 fprintf_unfiltered (gdb_stderr,
1598 _("ERR: error reading avr.io_reg:%x,%x\n"),
1599 i, j);
1600 return;
1601 }
1602
1603 const char *p = (const char *) buf->data ();
1604 for (int k = i; k < (i + j); k++)
1605 {
1606 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1607 {
1608 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1609 while ((*p != ';') && (*p != '\0'))
1610 p++;
1611 p++; /* skip over ';' */
1612 if (*p == '\0')
1613 break;
1614 }
1615 }
1616 }
1617 }
1618
1619 void
1620 _initialize_avr_tdep (void)
1621 {
1622 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1623
1624 /* Add a new command to allow the user to query the avr remote target for
1625 the values of the io space registers in a saner way than just using
1626 `x/NNNb ADDR`. */
1627
1628 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1629 io_registers' to signify it is not available on other platforms. */
1630
1631 add_info ("io_registers", avr_io_reg_read_command,
1632 _("query remote avr target for io space register values"));
1633 }