]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/breakpoint.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "common/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72 #include "mi/mi-main.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84 #include "progspace-and-thread.h"
85 #include "common/array-view.h"
86 #include "common/gdb_optional.h"
87
88 /* Enums for exception-handling support. */
89 enum exception_event_kind
90 {
91 EX_EVENT_THROW,
92 EX_EVENT_RETHROW,
93 EX_EVENT_CATCH
94 };
95
96 /* Prototypes for local functions. */
97
98 static void map_breakpoint_numbers (const char *,
99 gdb::function_view<void (breakpoint *)>);
100
101 static void breakpoint_re_set_default (struct breakpoint *);
102
103 static void
104 create_sals_from_location_default (const struct event_location *location,
105 struct linespec_result *canonical,
106 enum bptype type_wanted);
107
108 static void create_breakpoints_sal_default (struct gdbarch *,
109 struct linespec_result *,
110 gdb::unique_xmalloc_ptr<char>,
111 gdb::unique_xmalloc_ptr<char>,
112 enum bptype,
113 enum bpdisp, int, int,
114 int,
115 const struct breakpoint_ops *,
116 int, int, int, unsigned);
117
118 static std::vector<symtab_and_line> decode_location_default
119 (struct breakpoint *b, const struct event_location *location,
120 struct program_space *search_pspace);
121
122 static int can_use_hardware_watchpoint
123 (const std::vector<value_ref_ptr> &vals);
124
125 static void mention (struct breakpoint *);
126
127 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
128 enum bptype,
129 const struct breakpoint_ops *);
130 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
131 const struct symtab_and_line *);
132
133 /* This function is used in gdbtk sources and thus can not be made
134 static. */
135 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
136 struct symtab_and_line,
137 enum bptype,
138 const struct breakpoint_ops *);
139
140 static struct breakpoint *
141 momentary_breakpoint_from_master (struct breakpoint *orig,
142 enum bptype type,
143 const struct breakpoint_ops *ops,
144 int loc_enabled);
145
146 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
147
148 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
149 CORE_ADDR bpaddr,
150 enum bptype bptype);
151
152 static void describe_other_breakpoints (struct gdbarch *,
153 struct program_space *, CORE_ADDR,
154 struct obj_section *, int);
155
156 static int watchpoint_locations_match (struct bp_location *loc1,
157 struct bp_location *loc2);
158
159 static int breakpoint_location_address_match (struct bp_location *bl,
160 const struct address_space *aspace,
161 CORE_ADDR addr);
162
163 static int breakpoint_location_address_range_overlap (struct bp_location *,
164 const address_space *,
165 CORE_ADDR, int);
166
167 static int remove_breakpoint (struct bp_location *);
168 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
169
170 static enum print_stop_action print_bp_stop_message (bpstat bs);
171
172 static int hw_breakpoint_used_count (void);
173
174 static int hw_watchpoint_use_count (struct breakpoint *);
175
176 static int hw_watchpoint_used_count_others (struct breakpoint *except,
177 enum bptype type,
178 int *other_type_used);
179
180 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
181 int count);
182
183 static void free_bp_location (struct bp_location *loc);
184 static void incref_bp_location (struct bp_location *loc);
185 static void decref_bp_location (struct bp_location **loc);
186
187 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
188
189 /* update_global_location_list's modes of operation wrt to whether to
190 insert locations now. */
191 enum ugll_insert_mode
192 {
193 /* Don't insert any breakpoint locations into the inferior, only
194 remove already-inserted locations that no longer should be
195 inserted. Functions that delete a breakpoint or breakpoints
196 should specify this mode, so that deleting a breakpoint doesn't
197 have the side effect of inserting the locations of other
198 breakpoints that are marked not-inserted, but should_be_inserted
199 returns true on them.
200
201 This behavior is useful is situations close to tear-down -- e.g.,
202 after an exec, while the target still has execution, but
203 breakpoint shadows of the previous executable image should *NOT*
204 be restored to the new image; or before detaching, where the
205 target still has execution and wants to delete breakpoints from
206 GDB's lists, and all breakpoints had already been removed from
207 the inferior. */
208 UGLL_DONT_INSERT,
209
210 /* May insert breakpoints iff breakpoints_should_be_inserted_now
211 claims breakpoints should be inserted now. */
212 UGLL_MAY_INSERT,
213
214 /* Insert locations now, irrespective of
215 breakpoints_should_be_inserted_now. E.g., say all threads are
216 stopped right now, and the user did "continue". We need to
217 insert breakpoints _before_ resuming the target, but
218 UGLL_MAY_INSERT wouldn't insert them, because
219 breakpoints_should_be_inserted_now returns false at that point,
220 as no thread is running yet. */
221 UGLL_INSERT
222 };
223
224 static void update_global_location_list (enum ugll_insert_mode);
225
226 static void update_global_location_list_nothrow (enum ugll_insert_mode);
227
228 static int is_hardware_watchpoint (const struct breakpoint *bpt);
229
230 static void insert_breakpoint_locations (void);
231
232 static void trace_pass_command (const char *, int);
233
234 static void set_tracepoint_count (int num);
235
236 static int is_masked_watchpoint (const struct breakpoint *b);
237
238 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
239
240 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
241 otherwise. */
242
243 static int strace_marker_p (struct breakpoint *b);
244
245 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
246 that are implemented on top of software or hardware breakpoints
247 (user breakpoints, internal and momentary breakpoints, etc.). */
248 static struct breakpoint_ops bkpt_base_breakpoint_ops;
249
250 /* Internal breakpoints class type. */
251 static struct breakpoint_ops internal_breakpoint_ops;
252
253 /* Momentary breakpoints class type. */
254 static struct breakpoint_ops momentary_breakpoint_ops;
255
256 /* The breakpoint_ops structure to be used in regular user created
257 breakpoints. */
258 struct breakpoint_ops bkpt_breakpoint_ops;
259
260 /* Breakpoints set on probes. */
261 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
262
263 /* Dynamic printf class type. */
264 struct breakpoint_ops dprintf_breakpoint_ops;
265
266 /* The style in which to perform a dynamic printf. This is a user
267 option because different output options have different tradeoffs;
268 if GDB does the printing, there is better error handling if there
269 is a problem with any of the arguments, but using an inferior
270 function lets you have special-purpose printers and sending of
271 output to the same place as compiled-in print functions. */
272
273 static const char dprintf_style_gdb[] = "gdb";
274 static const char dprintf_style_call[] = "call";
275 static const char dprintf_style_agent[] = "agent";
276 static const char *const dprintf_style_enums[] = {
277 dprintf_style_gdb,
278 dprintf_style_call,
279 dprintf_style_agent,
280 NULL
281 };
282 static const char *dprintf_style = dprintf_style_gdb;
283
284 /* The function to use for dynamic printf if the preferred style is to
285 call into the inferior. The value is simply a string that is
286 copied into the command, so it can be anything that GDB can
287 evaluate to a callable address, not necessarily a function name. */
288
289 static char *dprintf_function;
290
291 /* The channel to use for dynamic printf if the preferred style is to
292 call into the inferior; if a nonempty string, it will be passed to
293 the call as the first argument, with the format string as the
294 second. As with the dprintf function, this can be anything that
295 GDB knows how to evaluate, so in addition to common choices like
296 "stderr", this could be an app-specific expression like
297 "mystreams[curlogger]". */
298
299 static char *dprintf_channel;
300
301 /* True if dprintf commands should continue to operate even if GDB
302 has disconnected. */
303 static int disconnected_dprintf = 1;
304
305 struct command_line *
306 breakpoint_commands (struct breakpoint *b)
307 {
308 return b->commands ? b->commands.get () : NULL;
309 }
310
311 /* Flag indicating that a command has proceeded the inferior past the
312 current breakpoint. */
313
314 static int breakpoint_proceeded;
315
316 const char *
317 bpdisp_text (enum bpdisp disp)
318 {
319 /* NOTE: the following values are a part of MI protocol and
320 represent values of 'disp' field returned when inferior stops at
321 a breakpoint. */
322 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
323
324 return bpdisps[(int) disp];
325 }
326
327 /* Prototypes for exported functions. */
328 /* If FALSE, gdb will not use hardware support for watchpoints, even
329 if such is available. */
330 static int can_use_hw_watchpoints;
331
332 static void
333 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
334 struct cmd_list_element *c,
335 const char *value)
336 {
337 fprintf_filtered (file,
338 _("Debugger's willingness to use "
339 "watchpoint hardware is %s.\n"),
340 value);
341 }
342
343 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
344 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
345 for unrecognized breakpoint locations.
346 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
347 static enum auto_boolean pending_break_support;
348 static void
349 show_pending_break_support (struct ui_file *file, int from_tty,
350 struct cmd_list_element *c,
351 const char *value)
352 {
353 fprintf_filtered (file,
354 _("Debugger's behavior regarding "
355 "pending breakpoints is %s.\n"),
356 value);
357 }
358
359 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
360 set with "break" but falling in read-only memory.
361 If 0, gdb will warn about such breakpoints, but won't automatically
362 use hardware breakpoints. */
363 static int automatic_hardware_breakpoints;
364 static void
365 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c,
367 const char *value)
368 {
369 fprintf_filtered (file,
370 _("Automatic usage of hardware breakpoints is %s.\n"),
371 value);
372 }
373
374 /* If on, GDB keeps breakpoints inserted even if the inferior is
375 stopped, and immediately inserts any new breakpoints as soon as
376 they're created. If off (default), GDB keeps breakpoints off of
377 the target as long as possible. That is, it delays inserting
378 breakpoints until the next resume, and removes them again when the
379 target fully stops. This is a bit safer in case GDB crashes while
380 processing user input. */
381 static int always_inserted_mode = 0;
382
383 static void
384 show_always_inserted_mode (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386 {
387 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
388 value);
389 }
390
391 /* See breakpoint.h. */
392
393 int
394 breakpoints_should_be_inserted_now (void)
395 {
396 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
397 {
398 /* If breakpoints are global, they should be inserted even if no
399 thread under gdb's control is running, or even if there are
400 no threads under GDB's control yet. */
401 return 1;
402 }
403 else if (target_has_execution)
404 {
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 for (thread_info *tp : all_non_exited_threads ())
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 static std::vector<bp_location *> moribund_locations;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block_tracker tracker;
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = tracker.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 if (c->control_type == while_stepping_control)
1013 error (_("The 'while-stepping' command can "
1014 "only be used for tracepoints"));
1015
1016 check_no_tracepoint_commands (c->body_list_0.get ());
1017 check_no_tracepoint_commands (c->body_list_1.get ());
1018
1019 /* Not that command parsing removes leading whitespace and comment
1020 lines and also empty lines. So, we only need to check for
1021 command directly. */
1022 if (strstr (c->line, "collect ") == c->line)
1023 error (_("The 'collect' command can only be used for tracepoints"));
1024
1025 if (strstr (c->line, "teval ") == c->line)
1026 error (_("The 'teval' command can only be used for tracepoints"));
1027 }
1028 }
1029
1030 struct longjmp_breakpoint : public breakpoint
1031 {
1032 ~longjmp_breakpoint () override;
1033 };
1034
1035 /* Encapsulate tests for different types of tracepoints. */
1036
1037 static bool
1038 is_tracepoint_type (bptype type)
1039 {
1040 return (type == bp_tracepoint
1041 || type == bp_fast_tracepoint
1042 || type == bp_static_tracepoint);
1043 }
1044
1045 static bool
1046 is_longjmp_type (bptype type)
1047 {
1048 return type == bp_longjmp || type == bp_exception;
1049 }
1050
1051 int
1052 is_tracepoint (const struct breakpoint *b)
1053 {
1054 return is_tracepoint_type (b->type);
1055 }
1056
1057 /* Factory function to create an appropriate instance of breakpoint given
1058 TYPE. */
1059
1060 static std::unique_ptr<breakpoint>
1061 new_breakpoint_from_type (bptype type)
1062 {
1063 breakpoint *b;
1064
1065 if (is_tracepoint_type (type))
1066 b = new tracepoint ();
1067 else if (is_longjmp_type (type))
1068 b = new longjmp_breakpoint ();
1069 else
1070 b = new breakpoint ();
1071
1072 return std::unique_ptr<breakpoint> (b);
1073 }
1074
1075 /* A helper function that validates that COMMANDS are valid for a
1076 breakpoint. This function will throw an exception if a problem is
1077 found. */
1078
1079 static void
1080 validate_commands_for_breakpoint (struct breakpoint *b,
1081 struct command_line *commands)
1082 {
1083 if (is_tracepoint (b))
1084 {
1085 struct tracepoint *t = (struct tracepoint *) b;
1086 struct command_line *c;
1087 struct command_line *while_stepping = 0;
1088
1089 /* Reset the while-stepping step count. The previous commands
1090 might have included a while-stepping action, while the new
1091 ones might not. */
1092 t->step_count = 0;
1093
1094 /* We need to verify that each top-level element of commands is
1095 valid for tracepoints, that there's at most one
1096 while-stepping element, and that the while-stepping's body
1097 has valid tracing commands excluding nested while-stepping.
1098 We also need to validate the tracepoint action line in the
1099 context of the tracepoint --- validate_actionline actually
1100 has side effects, like setting the tracepoint's
1101 while-stepping STEP_COUNT, in addition to checking if the
1102 collect/teval actions parse and make sense in the
1103 tracepoint's context. */
1104 for (c = commands; c; c = c->next)
1105 {
1106 if (c->control_type == while_stepping_control)
1107 {
1108 if (b->type == bp_fast_tracepoint)
1109 error (_("The 'while-stepping' command "
1110 "cannot be used for fast tracepoint"));
1111 else if (b->type == bp_static_tracepoint)
1112 error (_("The 'while-stepping' command "
1113 "cannot be used for static tracepoint"));
1114
1115 if (while_stepping)
1116 error (_("The 'while-stepping' command "
1117 "can be used only once"));
1118 else
1119 while_stepping = c;
1120 }
1121
1122 validate_actionline (c->line, b);
1123 }
1124 if (while_stepping)
1125 {
1126 struct command_line *c2;
1127
1128 gdb_assert (while_stepping->body_list_1 == nullptr);
1129 c2 = while_stepping->body_list_0.get ();
1130 for (; c2; c2 = c2->next)
1131 {
1132 if (c2->control_type == while_stepping_control)
1133 error (_("The 'while-stepping' command cannot be nested"));
1134 }
1135 }
1136 }
1137 else
1138 {
1139 check_no_tracepoint_commands (commands);
1140 }
1141 }
1142
1143 /* Return a vector of all the static tracepoints set at ADDR. The
1144 caller is responsible for releasing the vector. */
1145
1146 std::vector<breakpoint *>
1147 static_tracepoints_here (CORE_ADDR addr)
1148 {
1149 struct breakpoint *b;
1150 std::vector<breakpoint *> found;
1151 struct bp_location *loc;
1152
1153 ALL_BREAKPOINTS (b)
1154 if (b->type == bp_static_tracepoint)
1155 {
1156 for (loc = b->loc; loc; loc = loc->next)
1157 if (loc->address == addr)
1158 found.push_back (b);
1159 }
1160
1161 return found;
1162 }
1163
1164 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1165 validate that only allowed commands are included. */
1166
1167 void
1168 breakpoint_set_commands (struct breakpoint *b,
1169 counted_command_line &&commands)
1170 {
1171 validate_commands_for_breakpoint (b, commands.get ());
1172
1173 b->commands = std::move (commands);
1174 gdb::observers::breakpoint_modified.notify (b);
1175 }
1176
1177 /* Set the internal `silent' flag on the breakpoint. Note that this
1178 is not the same as the "silent" that may appear in the breakpoint's
1179 commands. */
1180
1181 void
1182 breakpoint_set_silent (struct breakpoint *b, int silent)
1183 {
1184 int old_silent = b->silent;
1185
1186 b->silent = silent;
1187 if (old_silent != silent)
1188 gdb::observers::breakpoint_modified.notify (b);
1189 }
1190
1191 /* Set the thread for this breakpoint. If THREAD is -1, make the
1192 breakpoint work for any thread. */
1193
1194 void
1195 breakpoint_set_thread (struct breakpoint *b, int thread)
1196 {
1197 int old_thread = b->thread;
1198
1199 b->thread = thread;
1200 if (old_thread != thread)
1201 gdb::observers::breakpoint_modified.notify (b);
1202 }
1203
1204 /* Set the task for this breakpoint. If TASK is 0, make the
1205 breakpoint work for any task. */
1206
1207 void
1208 breakpoint_set_task (struct breakpoint *b, int task)
1209 {
1210 int old_task = b->task;
1211
1212 b->task = task;
1213 if (old_task != task)
1214 gdb::observers::breakpoint_modified.notify (b);
1215 }
1216
1217 static void
1218 commands_command_1 (const char *arg, int from_tty,
1219 struct command_line *control)
1220 {
1221 counted_command_line cmd;
1222 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1223 NULL after the call to read_command_lines if the user provides an empty
1224 list of command by just typing "end". */
1225 bool cmd_read = false;
1226
1227 std::string new_arg;
1228
1229 if (arg == NULL || !*arg)
1230 {
1231 if (breakpoint_count - prev_breakpoint_count > 1)
1232 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1233 breakpoint_count);
1234 else if (breakpoint_count > 0)
1235 new_arg = string_printf ("%d", breakpoint_count);
1236 arg = new_arg.c_str ();
1237 }
1238
1239 map_breakpoint_numbers
1240 (arg, [&] (breakpoint *b)
1241 {
1242 if (!cmd_read)
1243 {
1244 gdb_assert (cmd == NULL);
1245 if (control != NULL)
1246 cmd = control->body_list_0;
1247 else
1248 {
1249 std::string str
1250 = string_printf (_("Type commands for breakpoint(s) "
1251 "%s, one per line."),
1252 arg);
1253
1254 auto do_validate = [=] (const char *line)
1255 {
1256 validate_actionline (line, b);
1257 };
1258 gdb::function_view<void (const char *)> validator;
1259 if (is_tracepoint (b))
1260 validator = do_validate;
1261
1262 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1263 }
1264 cmd_read = true;
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (b->watchpoint_thread == null_ptid
1554 || (inferior_ptid == b->watchpoint_thread
1555 && !inferior_thread ()->executing)));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 try
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 catch (const gdb_exception_error &ex)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111
2112 /* We have a valid agent expression. */
2113 return aexpr;
2114 }
2115
2116 /* Based on location BL, create a list of breakpoint conditions to be
2117 passed on to the target. If we have duplicated locations with different
2118 conditions, we will add such conditions to the list. The idea is that the
2119 target will evaluate the list of conditions and will only notify GDB when
2120 one of them is true. */
2121
2122 static void
2123 build_target_condition_list (struct bp_location *bl)
2124 {
2125 struct bp_location **locp = NULL, **loc2p;
2126 int null_condition_or_parse_error = 0;
2127 int modified = bl->needs_update;
2128 struct bp_location *loc;
2129
2130 /* Release conditions left over from a previous insert. */
2131 bl->target_info.conditions.clear ();
2132
2133 /* This is only meaningful if the target is
2134 evaluating conditions and if the user has
2135 opted for condition evaluation on the target's
2136 side. */
2137 if (gdb_evaluates_breakpoint_condition_p ()
2138 || !target_supports_evaluation_of_breakpoint_conditions ())
2139 return;
2140
2141 /* Do a first pass to check for locations with no assigned
2142 conditions or conditions that fail to parse to a valid agent expression
2143 bytecode. If any of these happen, then it's no use to send conditions
2144 to the target since this location will always trigger and generate a
2145 response back to GDB. */
2146 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2147 {
2148 loc = (*loc2p);
2149 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2150 {
2151 if (modified)
2152 {
2153 /* Re-parse the conditions since something changed. In that
2154 case we already freed the condition bytecodes (see
2155 force_breakpoint_reinsertion). We just
2156 need to parse the condition to bytecodes again. */
2157 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2158 loc->cond.get ());
2159 }
2160
2161 /* If we have a NULL bytecode expression, it means something
2162 went wrong or we have a null condition expression. */
2163 if (!loc->cond_bytecode)
2164 {
2165 null_condition_or_parse_error = 1;
2166 break;
2167 }
2168 }
2169 }
2170
2171 /* If any of these happened, it means we will have to evaluate the conditions
2172 for the location's address on gdb's side. It is no use keeping bytecodes
2173 for all the other duplicate locations, thus we free all of them here.
2174
2175 This is so we have a finer control over which locations' conditions are
2176 being evaluated by GDB or the remote stub. */
2177 if (null_condition_or_parse_error)
2178 {
2179 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2180 {
2181 loc = (*loc2p);
2182 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2183 {
2184 /* Only go as far as the first NULL bytecode is
2185 located. */
2186 if (!loc->cond_bytecode)
2187 return;
2188
2189 loc->cond_bytecode.reset ();
2190 }
2191 }
2192 }
2193
2194 /* No NULL conditions or failed bytecode generation. Build a condition list
2195 for this location's address. */
2196 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2197 {
2198 loc = (*loc2p);
2199 if (loc->cond
2200 && is_breakpoint (loc->owner)
2201 && loc->pspace->num == bl->pspace->num
2202 && loc->owner->enable_state == bp_enabled
2203 && loc->enabled)
2204 {
2205 /* Add the condition to the vector. This will be used later
2206 to send the conditions to the target. */
2207 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2208 }
2209 }
2210
2211 return;
2212 }
2213
2214 /* Parses a command described by string CMD into an agent expression
2215 bytecode suitable for evaluation by the bytecode interpreter.
2216 Return NULL if there was any error during parsing. */
2217
2218 static agent_expr_up
2219 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2220 {
2221 const char *cmdrest;
2222 const char *format_start, *format_end;
2223 struct gdbarch *gdbarch = get_current_arch ();
2224
2225 if (cmd == NULL)
2226 return NULL;
2227
2228 cmdrest = cmd;
2229
2230 if (*cmdrest == ',')
2231 ++cmdrest;
2232 cmdrest = skip_spaces (cmdrest);
2233
2234 if (*cmdrest++ != '"')
2235 error (_("No format string following the location"));
2236
2237 format_start = cmdrest;
2238
2239 format_pieces fpieces (&cmdrest);
2240
2241 format_end = cmdrest;
2242
2243 if (*cmdrest++ != '"')
2244 error (_("Bad format string, non-terminated '\"'."));
2245
2246 cmdrest = skip_spaces (cmdrest);
2247
2248 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2249 error (_("Invalid argument syntax"));
2250
2251 if (*cmdrest == ',')
2252 cmdrest++;
2253 cmdrest = skip_spaces (cmdrest);
2254
2255 /* For each argument, make an expression. */
2256
2257 std::vector<struct expression *> argvec;
2258 while (*cmdrest != '\0')
2259 {
2260 const char *cmd1;
2261
2262 cmd1 = cmdrest;
2263 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2264 argvec.push_back (expr.release ());
2265 cmdrest = cmd1;
2266 if (*cmdrest == ',')
2267 ++cmdrest;
2268 }
2269
2270 agent_expr_up aexpr;
2271
2272 /* We don't want to stop processing, so catch any errors
2273 that may show up. */
2274 try
2275 {
2276 aexpr = gen_printf (scope, gdbarch, 0, 0,
2277 format_start, format_end - format_start,
2278 argvec.size (), argvec.data ());
2279 }
2280 catch (const gdb_exception_error &ex)
2281 {
2282 /* If we got here, it means the command could not be parsed to a valid
2283 bytecode expression and thus can't be evaluated on the target's side.
2284 It's no use iterating through the other commands. */
2285 }
2286
2287 /* We have a valid agent expression, return it. */
2288 return aexpr;
2289 }
2290
2291 /* Based on location BL, create a list of breakpoint commands to be
2292 passed on to the target. If we have duplicated locations with
2293 different commands, we will add any such to the list. */
2294
2295 static void
2296 build_target_command_list (struct bp_location *bl)
2297 {
2298 struct bp_location **locp = NULL, **loc2p;
2299 int null_command_or_parse_error = 0;
2300 int modified = bl->needs_update;
2301 struct bp_location *loc;
2302
2303 /* Clear commands left over from a previous insert. */
2304 bl->target_info.tcommands.clear ();
2305
2306 if (!target_can_run_breakpoint_commands ())
2307 return;
2308
2309 /* For now, limit to agent-style dprintf breakpoints. */
2310 if (dprintf_style != dprintf_style_agent)
2311 return;
2312
2313 /* For now, if we have any duplicate location that isn't a dprintf,
2314 don't install the target-side commands, as that would make the
2315 breakpoint not be reported to the core, and we'd lose
2316 control. */
2317 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2318 {
2319 loc = (*loc2p);
2320 if (is_breakpoint (loc->owner)
2321 && loc->pspace->num == bl->pspace->num
2322 && loc->owner->type != bp_dprintf)
2323 return;
2324 }
2325
2326 /* Do a first pass to check for locations with no assigned
2327 conditions or conditions that fail to parse to a valid agent expression
2328 bytecode. If any of these happen, then it's no use to send conditions
2329 to the target since this location will always trigger and generate a
2330 response back to GDB. */
2331 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2332 {
2333 loc = (*loc2p);
2334 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2335 {
2336 if (modified)
2337 {
2338 /* Re-parse the commands since something changed. In that
2339 case we already freed the command bytecodes (see
2340 force_breakpoint_reinsertion). We just
2341 need to parse the command to bytecodes again. */
2342 loc->cmd_bytecode
2343 = parse_cmd_to_aexpr (bl->address,
2344 loc->owner->extra_string);
2345 }
2346
2347 /* If we have a NULL bytecode expression, it means something
2348 went wrong or we have a null command expression. */
2349 if (!loc->cmd_bytecode)
2350 {
2351 null_command_or_parse_error = 1;
2352 break;
2353 }
2354 }
2355 }
2356
2357 /* If anything failed, then we're not doing target-side commands,
2358 and so clean up. */
2359 if (null_command_or_parse_error)
2360 {
2361 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2362 {
2363 loc = (*loc2p);
2364 if (is_breakpoint (loc->owner)
2365 && loc->pspace->num == bl->pspace->num)
2366 {
2367 /* Only go as far as the first NULL bytecode is
2368 located. */
2369 if (loc->cmd_bytecode == NULL)
2370 return;
2371
2372 loc->cmd_bytecode.reset ();
2373 }
2374 }
2375 }
2376
2377 /* No NULL commands or failed bytecode generation. Build a command list
2378 for this location's address. */
2379 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2380 {
2381 loc = (*loc2p);
2382 if (loc->owner->extra_string
2383 && is_breakpoint (loc->owner)
2384 && loc->pspace->num == bl->pspace->num
2385 && loc->owner->enable_state == bp_enabled
2386 && loc->enabled)
2387 {
2388 /* Add the command to the vector. This will be used later
2389 to send the commands to the target. */
2390 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2391 }
2392 }
2393
2394 bl->target_info.persist = 0;
2395 /* Maybe flag this location as persistent. */
2396 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2397 bl->target_info.persist = 1;
2398 }
2399
2400 /* Return the kind of breakpoint on address *ADDR. Get the kind
2401 of breakpoint according to ADDR except single-step breakpoint.
2402 Get the kind of single-step breakpoint according to the current
2403 registers state. */
2404
2405 static int
2406 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2407 {
2408 if (bl->owner->type == bp_single_step)
2409 {
2410 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2411 struct regcache *regcache;
2412
2413 regcache = get_thread_regcache (thr);
2414
2415 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2416 regcache, addr);
2417 }
2418 else
2419 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2420 }
2421
2422 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2423 location. Any error messages are printed to TMP_ERROR_STREAM; and
2424 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2425 Returns 0 for success, 1 if the bp_location type is not supported or
2426 -1 for failure.
2427
2428 NOTE drow/2003-09-09: This routine could be broken down to an
2429 object-style method for each breakpoint or catchpoint type. */
2430 static int
2431 insert_bp_location (struct bp_location *bl,
2432 struct ui_file *tmp_error_stream,
2433 int *disabled_breaks,
2434 int *hw_breakpoint_error,
2435 int *hw_bp_error_explained_already)
2436 {
2437 gdb_exception bp_excpt = exception_none;
2438
2439 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2440 return 0;
2441
2442 /* Note we don't initialize bl->target_info, as that wipes out
2443 the breakpoint location's shadow_contents if the breakpoint
2444 is still inserted at that location. This in turn breaks
2445 target_read_memory which depends on these buffers when
2446 a memory read is requested at the breakpoint location:
2447 Once the target_info has been wiped, we fail to see that
2448 we have a breakpoint inserted at that address and thus
2449 read the breakpoint instead of returning the data saved in
2450 the breakpoint location's shadow contents. */
2451 bl->target_info.reqstd_address = bl->address;
2452 bl->target_info.placed_address_space = bl->pspace->aspace;
2453 bl->target_info.length = bl->length;
2454
2455 /* When working with target-side conditions, we must pass all the conditions
2456 for the same breakpoint address down to the target since GDB will not
2457 insert those locations. With a list of breakpoint conditions, the target
2458 can decide when to stop and notify GDB. */
2459
2460 if (is_breakpoint (bl->owner))
2461 {
2462 build_target_condition_list (bl);
2463 build_target_command_list (bl);
2464 /* Reset the modification marker. */
2465 bl->needs_update = 0;
2466 }
2467
2468 if (bl->loc_type == bp_loc_software_breakpoint
2469 || bl->loc_type == bp_loc_hardware_breakpoint)
2470 {
2471 if (bl->owner->type != bp_hardware_breakpoint)
2472 {
2473 /* If the explicitly specified breakpoint type
2474 is not hardware breakpoint, check the memory map to see
2475 if the breakpoint address is in read only memory or not.
2476
2477 Two important cases are:
2478 - location type is not hardware breakpoint, memory
2479 is readonly. We change the type of the location to
2480 hardware breakpoint.
2481 - location type is hardware breakpoint, memory is
2482 read-write. This means we've previously made the
2483 location hardware one, but then the memory map changed,
2484 so we undo.
2485
2486 When breakpoints are removed, remove_breakpoints will use
2487 location types we've just set here, the only possible
2488 problem is that memory map has changed during running
2489 program, but it's not going to work anyway with current
2490 gdb. */
2491 struct mem_region *mr
2492 = lookup_mem_region (bl->target_info.reqstd_address);
2493
2494 if (mr)
2495 {
2496 if (automatic_hardware_breakpoints)
2497 {
2498 enum bp_loc_type new_type;
2499
2500 if (mr->attrib.mode != MEM_RW)
2501 new_type = bp_loc_hardware_breakpoint;
2502 else
2503 new_type = bp_loc_software_breakpoint;
2504
2505 if (new_type != bl->loc_type)
2506 {
2507 static int said = 0;
2508
2509 bl->loc_type = new_type;
2510 if (!said)
2511 {
2512 fprintf_filtered (gdb_stdout,
2513 _("Note: automatically using "
2514 "hardware breakpoints for "
2515 "read-only addresses.\n"));
2516 said = 1;
2517 }
2518 }
2519 }
2520 else if (bl->loc_type == bp_loc_software_breakpoint
2521 && mr->attrib.mode != MEM_RW)
2522 {
2523 fprintf_unfiltered (tmp_error_stream,
2524 _("Cannot insert breakpoint %d.\n"
2525 "Cannot set software breakpoint "
2526 "at read-only address %s\n"),
2527 bl->owner->number,
2528 paddress (bl->gdbarch, bl->address));
2529 return 1;
2530 }
2531 }
2532 }
2533
2534 /* First check to see if we have to handle an overlay. */
2535 if (overlay_debugging == ovly_off
2536 || bl->section == NULL
2537 || !(section_is_overlay (bl->section)))
2538 {
2539 /* No overlay handling: just set the breakpoint. */
2540 try
2541 {
2542 int val;
2543
2544 val = bl->owner->ops->insert_location (bl);
2545 if (val)
2546 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2547 }
2548 catch (const gdb_exception &e)
2549 {
2550 bp_excpt = e;
2551 }
2552 }
2553 else
2554 {
2555 /* This breakpoint is in an overlay section.
2556 Shall we set a breakpoint at the LMA? */
2557 if (!overlay_events_enabled)
2558 {
2559 /* Yes -- overlay event support is not active,
2560 so we must try to set a breakpoint at the LMA.
2561 This will not work for a hardware breakpoint. */
2562 if (bl->loc_type == bp_loc_hardware_breakpoint)
2563 warning (_("hardware breakpoint %d not supported in overlay!"),
2564 bl->owner->number);
2565 else
2566 {
2567 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2568 bl->section);
2569 /* Set a software (trap) breakpoint at the LMA. */
2570 bl->overlay_target_info = bl->target_info;
2571 bl->overlay_target_info.reqstd_address = addr;
2572
2573 /* No overlay handling: just set the breakpoint. */
2574 try
2575 {
2576 int val;
2577
2578 bl->overlay_target_info.kind
2579 = breakpoint_kind (bl, &addr);
2580 bl->overlay_target_info.placed_address = addr;
2581 val = target_insert_breakpoint (bl->gdbarch,
2582 &bl->overlay_target_info);
2583 if (val)
2584 bp_excpt
2585 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2586 }
2587 catch (const gdb_exception &e)
2588 {
2589 bp_excpt = e;
2590 }
2591
2592 if (bp_excpt.reason != 0)
2593 fprintf_unfiltered (tmp_error_stream,
2594 "Overlay breakpoint %d "
2595 "failed: in ROM?\n",
2596 bl->owner->number);
2597 }
2598 }
2599 /* Shall we set a breakpoint at the VMA? */
2600 if (section_is_mapped (bl->section))
2601 {
2602 /* Yes. This overlay section is mapped into memory. */
2603 try
2604 {
2605 int val;
2606
2607 val = bl->owner->ops->insert_location (bl);
2608 if (val)
2609 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2610 }
2611 catch (const gdb_exception &e)
2612 {
2613 bp_excpt = e;
2614 }
2615 }
2616 else
2617 {
2618 /* No. This breakpoint will not be inserted.
2619 No error, but do not mark the bp as 'inserted'. */
2620 return 0;
2621 }
2622 }
2623
2624 if (bp_excpt.reason != 0)
2625 {
2626 /* Can't set the breakpoint. */
2627
2628 /* In some cases, we might not be able to insert a
2629 breakpoint in a shared library that has already been
2630 removed, but we have not yet processed the shlib unload
2631 event. Unfortunately, some targets that implement
2632 breakpoint insertion themselves can't tell why the
2633 breakpoint insertion failed (e.g., the remote target
2634 doesn't define error codes), so we must treat generic
2635 errors as memory errors. */
2636 if (bp_excpt.reason == RETURN_ERROR
2637 && (bp_excpt.error == GENERIC_ERROR
2638 || bp_excpt.error == MEMORY_ERROR)
2639 && bl->loc_type == bp_loc_software_breakpoint
2640 && (solib_name_from_address (bl->pspace, bl->address)
2641 || shared_objfile_contains_address_p (bl->pspace,
2642 bl->address)))
2643 {
2644 /* See also: disable_breakpoints_in_shlibs. */
2645 bl->shlib_disabled = 1;
2646 gdb::observers::breakpoint_modified.notify (bl->owner);
2647 if (!*disabled_breaks)
2648 {
2649 fprintf_unfiltered (tmp_error_stream,
2650 "Cannot insert breakpoint %d.\n",
2651 bl->owner->number);
2652 fprintf_unfiltered (tmp_error_stream,
2653 "Temporarily disabling shared "
2654 "library breakpoints:\n");
2655 }
2656 *disabled_breaks = 1;
2657 fprintf_unfiltered (tmp_error_stream,
2658 "breakpoint #%d\n", bl->owner->number);
2659 return 0;
2660 }
2661 else
2662 {
2663 if (bl->loc_type == bp_loc_hardware_breakpoint)
2664 {
2665 *hw_breakpoint_error = 1;
2666 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2667 fprintf_unfiltered (tmp_error_stream,
2668 "Cannot insert hardware breakpoint %d%s",
2669 bl->owner->number,
2670 bp_excpt.message ? ":" : ".\n");
2671 if (bp_excpt.message != NULL)
2672 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2673 bp_excpt.what ());
2674 }
2675 else
2676 {
2677 if (bp_excpt.message == NULL)
2678 {
2679 std::string message
2680 = memory_error_message (TARGET_XFER_E_IO,
2681 bl->gdbarch, bl->address);
2682
2683 fprintf_unfiltered (tmp_error_stream,
2684 "Cannot insert breakpoint %d.\n"
2685 "%s\n",
2686 bl->owner->number, message.c_str ());
2687 }
2688 else
2689 {
2690 fprintf_unfiltered (tmp_error_stream,
2691 "Cannot insert breakpoint %d: %s\n",
2692 bl->owner->number,
2693 bp_excpt.what ());
2694 }
2695 }
2696 return 1;
2697
2698 }
2699 }
2700 else
2701 bl->inserted = 1;
2702
2703 return 0;
2704 }
2705
2706 else if (bl->loc_type == bp_loc_hardware_watchpoint
2707 /* NOTE drow/2003-09-08: This state only exists for removing
2708 watchpoints. It's not clear that it's necessary... */
2709 && bl->owner->disposition != disp_del_at_next_stop)
2710 {
2711 int val;
2712
2713 gdb_assert (bl->owner->ops != NULL
2714 && bl->owner->ops->insert_location != NULL);
2715
2716 val = bl->owner->ops->insert_location (bl);
2717
2718 /* If trying to set a read-watchpoint, and it turns out it's not
2719 supported, try emulating one with an access watchpoint. */
2720 if (val == 1 && bl->watchpoint_type == hw_read)
2721 {
2722 struct bp_location *loc, **loc_temp;
2723
2724 /* But don't try to insert it, if there's already another
2725 hw_access location that would be considered a duplicate
2726 of this one. */
2727 ALL_BP_LOCATIONS (loc, loc_temp)
2728 if (loc != bl
2729 && loc->watchpoint_type == hw_access
2730 && watchpoint_locations_match (bl, loc))
2731 {
2732 bl->duplicate = 1;
2733 bl->inserted = 1;
2734 bl->target_info = loc->target_info;
2735 bl->watchpoint_type = hw_access;
2736 val = 0;
2737 break;
2738 }
2739
2740 if (val == 1)
2741 {
2742 bl->watchpoint_type = hw_access;
2743 val = bl->owner->ops->insert_location (bl);
2744
2745 if (val)
2746 /* Back to the original value. */
2747 bl->watchpoint_type = hw_read;
2748 }
2749 }
2750
2751 bl->inserted = (val == 0);
2752 }
2753
2754 else if (bl->owner->type == bp_catchpoint)
2755 {
2756 int val;
2757
2758 gdb_assert (bl->owner->ops != NULL
2759 && bl->owner->ops->insert_location != NULL);
2760
2761 val = bl->owner->ops->insert_location (bl);
2762 if (val)
2763 {
2764 bl->owner->enable_state = bp_disabled;
2765
2766 if (val == 1)
2767 warning (_("\
2768 Error inserting catchpoint %d: Your system does not support this type\n\
2769 of catchpoint."), bl->owner->number);
2770 else
2771 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2772 }
2773
2774 bl->inserted = (val == 0);
2775
2776 /* We've already printed an error message if there was a problem
2777 inserting this catchpoint, and we've disabled the catchpoint,
2778 so just return success. */
2779 return 0;
2780 }
2781
2782 return 0;
2783 }
2784
2785 /* This function is called when program space PSPACE is about to be
2786 deleted. It takes care of updating breakpoints to not reference
2787 PSPACE anymore. */
2788
2789 void
2790 breakpoint_program_space_exit (struct program_space *pspace)
2791 {
2792 struct breakpoint *b, *b_temp;
2793 struct bp_location *loc, **loc_temp;
2794
2795 /* Remove any breakpoint that was set through this program space. */
2796 ALL_BREAKPOINTS_SAFE (b, b_temp)
2797 {
2798 if (b->pspace == pspace)
2799 delete_breakpoint (b);
2800 }
2801
2802 /* Breakpoints set through other program spaces could have locations
2803 bound to PSPACE as well. Remove those. */
2804 ALL_BP_LOCATIONS (loc, loc_temp)
2805 {
2806 struct bp_location *tmp;
2807
2808 if (loc->pspace == pspace)
2809 {
2810 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2811 if (loc->owner->loc == loc)
2812 loc->owner->loc = loc->next;
2813 else
2814 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2815 if (tmp->next == loc)
2816 {
2817 tmp->next = loc->next;
2818 break;
2819 }
2820 }
2821 }
2822
2823 /* Now update the global location list to permanently delete the
2824 removed locations above. */
2825 update_global_location_list (UGLL_DONT_INSERT);
2826 }
2827
2828 /* Make sure all breakpoints are inserted in inferior.
2829 Throws exception on any error.
2830 A breakpoint that is already inserted won't be inserted
2831 again, so calling this function twice is safe. */
2832 void
2833 insert_breakpoints (void)
2834 {
2835 struct breakpoint *bpt;
2836
2837 ALL_BREAKPOINTS (bpt)
2838 if (is_hardware_watchpoint (bpt))
2839 {
2840 struct watchpoint *w = (struct watchpoint *) bpt;
2841
2842 update_watchpoint (w, 0 /* don't reparse. */);
2843 }
2844
2845 /* Updating watchpoints creates new locations, so update the global
2846 location list. Explicitly tell ugll to insert locations and
2847 ignore breakpoints_always_inserted_mode. */
2848 update_global_location_list (UGLL_INSERT);
2849 }
2850
2851 /* Invoke CALLBACK for each of bp_location. */
2852
2853 void
2854 iterate_over_bp_locations (walk_bp_location_callback callback)
2855 {
2856 struct bp_location *loc, **loc_tmp;
2857
2858 ALL_BP_LOCATIONS (loc, loc_tmp)
2859 {
2860 callback (loc, NULL);
2861 }
2862 }
2863
2864 /* This is used when we need to synch breakpoint conditions between GDB and the
2865 target. It is the case with deleting and disabling of breakpoints when using
2866 always-inserted mode. */
2867
2868 static void
2869 update_inserted_breakpoint_locations (void)
2870 {
2871 struct bp_location *bl, **blp_tmp;
2872 int error_flag = 0;
2873 int val = 0;
2874 int disabled_breaks = 0;
2875 int hw_breakpoint_error = 0;
2876 int hw_bp_details_reported = 0;
2877
2878 string_file tmp_error_stream;
2879
2880 /* Explicitly mark the warning -- this will only be printed if
2881 there was an error. */
2882 tmp_error_stream.puts ("Warning:\n");
2883
2884 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2885
2886 ALL_BP_LOCATIONS (bl, blp_tmp)
2887 {
2888 /* We only want to update software breakpoints and hardware
2889 breakpoints. */
2890 if (!is_breakpoint (bl->owner))
2891 continue;
2892
2893 /* We only want to update locations that are already inserted
2894 and need updating. This is to avoid unwanted insertion during
2895 deletion of breakpoints. */
2896 if (!bl->inserted || !bl->needs_update)
2897 continue;
2898
2899 switch_to_program_space_and_thread (bl->pspace);
2900
2901 /* For targets that support global breakpoints, there's no need
2902 to select an inferior to insert breakpoint to. In fact, even
2903 if we aren't attached to any process yet, we should still
2904 insert breakpoints. */
2905 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2906 && inferior_ptid == null_ptid)
2907 continue;
2908
2909 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2910 &hw_breakpoint_error, &hw_bp_details_reported);
2911 if (val)
2912 error_flag = val;
2913 }
2914
2915 if (error_flag)
2916 {
2917 target_terminal::ours_for_output ();
2918 error_stream (tmp_error_stream);
2919 }
2920 }
2921
2922 /* Used when starting or continuing the program. */
2923
2924 static void
2925 insert_breakpoint_locations (void)
2926 {
2927 struct breakpoint *bpt;
2928 struct bp_location *bl, **blp_tmp;
2929 int error_flag = 0;
2930 int val = 0;
2931 int disabled_breaks = 0;
2932 int hw_breakpoint_error = 0;
2933 int hw_bp_error_explained_already = 0;
2934
2935 string_file tmp_error_stream;
2936
2937 /* Explicitly mark the warning -- this will only be printed if
2938 there was an error. */
2939 tmp_error_stream.puts ("Warning:\n");
2940
2941 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2942
2943 ALL_BP_LOCATIONS (bl, blp_tmp)
2944 {
2945 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2946 continue;
2947
2948 /* There is no point inserting thread-specific breakpoints if
2949 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2950 has BL->OWNER always non-NULL. */
2951 if (bl->owner->thread != -1
2952 && !valid_global_thread_id (bl->owner->thread))
2953 continue;
2954
2955 switch_to_program_space_and_thread (bl->pspace);
2956
2957 /* For targets that support global breakpoints, there's no need
2958 to select an inferior to insert breakpoint to. In fact, even
2959 if we aren't attached to any process yet, we should still
2960 insert breakpoints. */
2961 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2962 && inferior_ptid == null_ptid)
2963 continue;
2964
2965 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2966 &hw_breakpoint_error, &hw_bp_error_explained_already);
2967 if (val)
2968 error_flag = val;
2969 }
2970
2971 /* If we failed to insert all locations of a watchpoint, remove
2972 them, as half-inserted watchpoint is of limited use. */
2973 ALL_BREAKPOINTS (bpt)
2974 {
2975 int some_failed = 0;
2976 struct bp_location *loc;
2977
2978 if (!is_hardware_watchpoint (bpt))
2979 continue;
2980
2981 if (!breakpoint_enabled (bpt))
2982 continue;
2983
2984 if (bpt->disposition == disp_del_at_next_stop)
2985 continue;
2986
2987 for (loc = bpt->loc; loc; loc = loc->next)
2988 if (!loc->inserted && should_be_inserted (loc))
2989 {
2990 some_failed = 1;
2991 break;
2992 }
2993 if (some_failed)
2994 {
2995 for (loc = bpt->loc; loc; loc = loc->next)
2996 if (loc->inserted)
2997 remove_breakpoint (loc);
2998
2999 hw_breakpoint_error = 1;
3000 tmp_error_stream.printf ("Could not insert "
3001 "hardware watchpoint %d.\n",
3002 bpt->number);
3003 error_flag = -1;
3004 }
3005 }
3006
3007 if (error_flag)
3008 {
3009 /* If a hardware breakpoint or watchpoint was inserted, add a
3010 message about possibly exhausted resources. */
3011 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3012 {
3013 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3014 You may have requested too many hardware breakpoints/watchpoints.\n");
3015 }
3016 target_terminal::ours_for_output ();
3017 error_stream (tmp_error_stream);
3018 }
3019 }
3020
3021 /* Used when the program stops.
3022 Returns zero if successful, or non-zero if there was a problem
3023 removing a breakpoint location. */
3024
3025 int
3026 remove_breakpoints (void)
3027 {
3028 struct bp_location *bl, **blp_tmp;
3029 int val = 0;
3030
3031 ALL_BP_LOCATIONS (bl, blp_tmp)
3032 {
3033 if (bl->inserted && !is_tracepoint (bl->owner))
3034 val |= remove_breakpoint (bl);
3035 }
3036 return val;
3037 }
3038
3039 /* When a thread exits, remove breakpoints that are related to
3040 that thread. */
3041
3042 static void
3043 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3044 {
3045 struct breakpoint *b, *b_tmp;
3046
3047 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3048 {
3049 if (b->thread == tp->global_num && user_breakpoint_p (b))
3050 {
3051 b->disposition = disp_del_at_next_stop;
3052
3053 printf_filtered (_("\
3054 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3055 b->number, print_thread_id (tp));
3056
3057 /* Hide it from the user. */
3058 b->number = 0;
3059 }
3060 }
3061 }
3062
3063 /* Remove breakpoints of inferior INF. */
3064
3065 int
3066 remove_breakpoints_inf (inferior *inf)
3067 {
3068 struct bp_location *bl, **blp_tmp;
3069 int val;
3070
3071 ALL_BP_LOCATIONS (bl, blp_tmp)
3072 {
3073 if (bl->pspace != inf->pspace)
3074 continue;
3075
3076 if (bl->inserted && !bl->target_info.persist)
3077 {
3078 val = remove_breakpoint (bl);
3079 if (val != 0)
3080 return val;
3081 }
3082 }
3083 return 0;
3084 }
3085
3086 static int internal_breakpoint_number = -1;
3087
3088 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3089 If INTERNAL is non-zero, the breakpoint number will be populated
3090 from internal_breakpoint_number and that variable decremented.
3091 Otherwise the breakpoint number will be populated from
3092 breakpoint_count and that value incremented. Internal breakpoints
3093 do not set the internal var bpnum. */
3094 static void
3095 set_breakpoint_number (int internal, struct breakpoint *b)
3096 {
3097 if (internal)
3098 b->number = internal_breakpoint_number--;
3099 else
3100 {
3101 set_breakpoint_count (breakpoint_count + 1);
3102 b->number = breakpoint_count;
3103 }
3104 }
3105
3106 static struct breakpoint *
3107 create_internal_breakpoint (struct gdbarch *gdbarch,
3108 CORE_ADDR address, enum bptype type,
3109 const struct breakpoint_ops *ops)
3110 {
3111 symtab_and_line sal;
3112 sal.pc = address;
3113 sal.section = find_pc_overlay (sal.pc);
3114 sal.pspace = current_program_space;
3115
3116 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3117 b->number = internal_breakpoint_number--;
3118 b->disposition = disp_donttouch;
3119
3120 return b;
3121 }
3122
3123 static const char *const longjmp_names[] =
3124 {
3125 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3126 };
3127 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3128
3129 /* Per-objfile data private to breakpoint.c. */
3130 struct breakpoint_objfile_data
3131 {
3132 /* Minimal symbol for "_ovly_debug_event" (if any). */
3133 struct bound_minimal_symbol overlay_msym {};
3134
3135 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3136 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3137
3138 /* True if we have looked for longjmp probes. */
3139 int longjmp_searched = 0;
3140
3141 /* SystemTap probe points for longjmp (if any). These are non-owning
3142 references. */
3143 std::vector<probe *> longjmp_probes;
3144
3145 /* Minimal symbol for "std::terminate()" (if any). */
3146 struct bound_minimal_symbol terminate_msym {};
3147
3148 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3149 struct bound_minimal_symbol exception_msym {};
3150
3151 /* True if we have looked for exception probes. */
3152 int exception_searched = 0;
3153
3154 /* SystemTap probe points for unwinding (if any). These are non-owning
3155 references. */
3156 std::vector<probe *> exception_probes;
3157 };
3158
3159 static const struct objfile_data *breakpoint_objfile_key;
3160
3161 /* Minimal symbol not found sentinel. */
3162 static struct minimal_symbol msym_not_found;
3163
3164 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3165
3166 static int
3167 msym_not_found_p (const struct minimal_symbol *msym)
3168 {
3169 return msym == &msym_not_found;
3170 }
3171
3172 /* Return per-objfile data needed by breakpoint.c.
3173 Allocate the data if necessary. */
3174
3175 static struct breakpoint_objfile_data *
3176 get_breakpoint_objfile_data (struct objfile *objfile)
3177 {
3178 struct breakpoint_objfile_data *bp_objfile_data;
3179
3180 bp_objfile_data = ((struct breakpoint_objfile_data *)
3181 objfile_data (objfile, breakpoint_objfile_key));
3182 if (bp_objfile_data == NULL)
3183 {
3184 bp_objfile_data = new breakpoint_objfile_data ();
3185 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3186 }
3187 return bp_objfile_data;
3188 }
3189
3190 static void
3191 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3192 {
3193 struct breakpoint_objfile_data *bp_objfile_data
3194 = (struct breakpoint_objfile_data *) data;
3195
3196 delete bp_objfile_data;
3197 }
3198
3199 static void
3200 create_overlay_event_breakpoint (void)
3201 {
3202 const char *const func_name = "_ovly_debug_event";
3203
3204 for (objfile *objfile : current_program_space->objfiles ())
3205 {
3206 struct breakpoint *b;
3207 struct breakpoint_objfile_data *bp_objfile_data;
3208 CORE_ADDR addr;
3209 struct explicit_location explicit_loc;
3210
3211 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3212
3213 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3214 continue;
3215
3216 if (bp_objfile_data->overlay_msym.minsym == NULL)
3217 {
3218 struct bound_minimal_symbol m;
3219
3220 m = lookup_minimal_symbol_text (func_name, objfile);
3221 if (m.minsym == NULL)
3222 {
3223 /* Avoid future lookups in this objfile. */
3224 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3225 continue;
3226 }
3227 bp_objfile_data->overlay_msym = m;
3228 }
3229
3230 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3231 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3232 bp_overlay_event,
3233 &internal_breakpoint_ops);
3234 initialize_explicit_location (&explicit_loc);
3235 explicit_loc.function_name = ASTRDUP (func_name);
3236 b->location = new_explicit_location (&explicit_loc);
3237
3238 if (overlay_debugging == ovly_auto)
3239 {
3240 b->enable_state = bp_enabled;
3241 overlay_events_enabled = 1;
3242 }
3243 else
3244 {
3245 b->enable_state = bp_disabled;
3246 overlay_events_enabled = 0;
3247 }
3248 }
3249 }
3250
3251 static void
3252 create_longjmp_master_breakpoint (void)
3253 {
3254 struct program_space *pspace;
3255
3256 scoped_restore_current_program_space restore_pspace;
3257
3258 ALL_PSPACES (pspace)
3259 {
3260 set_current_program_space (pspace);
3261
3262 for (objfile *objfile : current_program_space->objfiles ())
3263 {
3264 int i;
3265 struct gdbarch *gdbarch;
3266 struct breakpoint_objfile_data *bp_objfile_data;
3267
3268 gdbarch = get_objfile_arch (objfile);
3269
3270 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3271
3272 if (!bp_objfile_data->longjmp_searched)
3273 {
3274 std::vector<probe *> ret
3275 = find_probes_in_objfile (objfile, "libc", "longjmp");
3276
3277 if (!ret.empty ())
3278 {
3279 /* We are only interested in checking one element. */
3280 probe *p = ret[0];
3281
3282 if (!p->can_evaluate_arguments ())
3283 {
3284 /* We cannot use the probe interface here, because it does
3285 not know how to evaluate arguments. */
3286 ret.clear ();
3287 }
3288 }
3289 bp_objfile_data->longjmp_probes = ret;
3290 bp_objfile_data->longjmp_searched = 1;
3291 }
3292
3293 if (!bp_objfile_data->longjmp_probes.empty ())
3294 {
3295 for (probe *p : bp_objfile_data->longjmp_probes)
3296 {
3297 struct breakpoint *b;
3298
3299 b = create_internal_breakpoint (gdbarch,
3300 p->get_relocated_address (objfile),
3301 bp_longjmp_master,
3302 &internal_breakpoint_ops);
3303 b->location = new_probe_location ("-probe-stap libc:longjmp");
3304 b->enable_state = bp_disabled;
3305 }
3306
3307 continue;
3308 }
3309
3310 if (!gdbarch_get_longjmp_target_p (gdbarch))
3311 continue;
3312
3313 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3314 {
3315 struct breakpoint *b;
3316 const char *func_name;
3317 CORE_ADDR addr;
3318 struct explicit_location explicit_loc;
3319
3320 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3321 continue;
3322
3323 func_name = longjmp_names[i];
3324 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3325 {
3326 struct bound_minimal_symbol m;
3327
3328 m = lookup_minimal_symbol_text (func_name, objfile);
3329 if (m.minsym == NULL)
3330 {
3331 /* Prevent future lookups in this objfile. */
3332 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3333 continue;
3334 }
3335 bp_objfile_data->longjmp_msym[i] = m;
3336 }
3337
3338 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3339 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3340 &internal_breakpoint_ops);
3341 initialize_explicit_location (&explicit_loc);
3342 explicit_loc.function_name = ASTRDUP (func_name);
3343 b->location = new_explicit_location (&explicit_loc);
3344 b->enable_state = bp_disabled;
3345 }
3346 }
3347 }
3348 }
3349
3350 /* Create a master std::terminate breakpoint. */
3351 static void
3352 create_std_terminate_master_breakpoint (void)
3353 {
3354 struct program_space *pspace;
3355 const char *const func_name = "std::terminate()";
3356
3357 scoped_restore_current_program_space restore_pspace;
3358
3359 ALL_PSPACES (pspace)
3360 {
3361 CORE_ADDR addr;
3362
3363 set_current_program_space (pspace);
3364
3365 for (objfile *objfile : current_program_space->objfiles ())
3366 {
3367 struct breakpoint *b;
3368 struct breakpoint_objfile_data *bp_objfile_data;
3369 struct explicit_location explicit_loc;
3370
3371 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3372
3373 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3374 continue;
3375
3376 if (bp_objfile_data->terminate_msym.minsym == NULL)
3377 {
3378 struct bound_minimal_symbol m;
3379
3380 m = lookup_minimal_symbol (func_name, NULL, objfile);
3381 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3382 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3383 {
3384 /* Prevent future lookups in this objfile. */
3385 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3386 continue;
3387 }
3388 bp_objfile_data->terminate_msym = m;
3389 }
3390
3391 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3392 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3393 bp_std_terminate_master,
3394 &internal_breakpoint_ops);
3395 initialize_explicit_location (&explicit_loc);
3396 explicit_loc.function_name = ASTRDUP (func_name);
3397 b->location = new_explicit_location (&explicit_loc);
3398 b->enable_state = bp_disabled;
3399 }
3400 }
3401 }
3402
3403 /* Install a master breakpoint on the unwinder's debug hook. */
3404
3405 static void
3406 create_exception_master_breakpoint (void)
3407 {
3408 const char *const func_name = "_Unwind_DebugHook";
3409
3410 for (objfile *objfile : current_program_space->objfiles ())
3411 {
3412 struct breakpoint *b;
3413 struct gdbarch *gdbarch;
3414 struct breakpoint_objfile_data *bp_objfile_data;
3415 CORE_ADDR addr;
3416 struct explicit_location explicit_loc;
3417
3418 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3419
3420 /* We prefer the SystemTap probe point if it exists. */
3421 if (!bp_objfile_data->exception_searched)
3422 {
3423 std::vector<probe *> ret
3424 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3425
3426 if (!ret.empty ())
3427 {
3428 /* We are only interested in checking one element. */
3429 probe *p = ret[0];
3430
3431 if (!p->can_evaluate_arguments ())
3432 {
3433 /* We cannot use the probe interface here, because it does
3434 not know how to evaluate arguments. */
3435 ret.clear ();
3436 }
3437 }
3438 bp_objfile_data->exception_probes = ret;
3439 bp_objfile_data->exception_searched = 1;
3440 }
3441
3442 if (!bp_objfile_data->exception_probes.empty ())
3443 {
3444 gdbarch = get_objfile_arch (objfile);
3445
3446 for (probe *p : bp_objfile_data->exception_probes)
3447 {
3448 b = create_internal_breakpoint (gdbarch,
3449 p->get_relocated_address (objfile),
3450 bp_exception_master,
3451 &internal_breakpoint_ops);
3452 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3453 b->enable_state = bp_disabled;
3454 }
3455
3456 continue;
3457 }
3458
3459 /* Otherwise, try the hook function. */
3460
3461 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3462 continue;
3463
3464 gdbarch = get_objfile_arch (objfile);
3465
3466 if (bp_objfile_data->exception_msym.minsym == NULL)
3467 {
3468 struct bound_minimal_symbol debug_hook;
3469
3470 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3471 if (debug_hook.minsym == NULL)
3472 {
3473 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3474 continue;
3475 }
3476
3477 bp_objfile_data->exception_msym = debug_hook;
3478 }
3479
3480 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3481 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3482 current_top_target ());
3483 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3484 &internal_breakpoint_ops);
3485 initialize_explicit_location (&explicit_loc);
3486 explicit_loc.function_name = ASTRDUP (func_name);
3487 b->location = new_explicit_location (&explicit_loc);
3488 b->enable_state = bp_disabled;
3489 }
3490 }
3491
3492 /* Does B have a location spec? */
3493
3494 static int
3495 breakpoint_event_location_empty_p (const struct breakpoint *b)
3496 {
3497 return b->location != NULL && event_location_empty_p (b->location.get ());
3498 }
3499
3500 void
3501 update_breakpoints_after_exec (void)
3502 {
3503 struct breakpoint *b, *b_tmp;
3504 struct bp_location *bploc, **bplocp_tmp;
3505
3506 /* We're about to delete breakpoints from GDB's lists. If the
3507 INSERTED flag is true, GDB will try to lift the breakpoints by
3508 writing the breakpoints' "shadow contents" back into memory. The
3509 "shadow contents" are NOT valid after an exec, so GDB should not
3510 do that. Instead, the target is responsible from marking
3511 breakpoints out as soon as it detects an exec. We don't do that
3512 here instead, because there may be other attempts to delete
3513 breakpoints after detecting an exec and before reaching here. */
3514 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3515 if (bploc->pspace == current_program_space)
3516 gdb_assert (!bploc->inserted);
3517
3518 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3519 {
3520 if (b->pspace != current_program_space)
3521 continue;
3522
3523 /* Solib breakpoints must be explicitly reset after an exec(). */
3524 if (b->type == bp_shlib_event)
3525 {
3526 delete_breakpoint (b);
3527 continue;
3528 }
3529
3530 /* JIT breakpoints must be explicitly reset after an exec(). */
3531 if (b->type == bp_jit_event)
3532 {
3533 delete_breakpoint (b);
3534 continue;
3535 }
3536
3537 /* Thread event breakpoints must be set anew after an exec(),
3538 as must overlay event and longjmp master breakpoints. */
3539 if (b->type == bp_thread_event || b->type == bp_overlay_event
3540 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3541 || b->type == bp_exception_master)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 /* Step-resume breakpoints are meaningless after an exec(). */
3548 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3549 {
3550 delete_breakpoint (b);
3551 continue;
3552 }
3553
3554 /* Just like single-step breakpoints. */
3555 if (b->type == bp_single_step)
3556 {
3557 delete_breakpoint (b);
3558 continue;
3559 }
3560
3561 /* Longjmp and longjmp-resume breakpoints are also meaningless
3562 after an exec. */
3563 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3564 || b->type == bp_longjmp_call_dummy
3565 || b->type == bp_exception || b->type == bp_exception_resume)
3566 {
3567 delete_breakpoint (b);
3568 continue;
3569 }
3570
3571 if (b->type == bp_catchpoint)
3572 {
3573 /* For now, none of the bp_catchpoint breakpoints need to
3574 do anything at this point. In the future, if some of
3575 the catchpoints need to something, we will need to add
3576 a new method, and call this method from here. */
3577 continue;
3578 }
3579
3580 /* bp_finish is a special case. The only way we ought to be able
3581 to see one of these when an exec() has happened, is if the user
3582 caught a vfork, and then said "finish". Ordinarily a finish just
3583 carries them to the call-site of the current callee, by setting
3584 a temporary bp there and resuming. But in this case, the finish
3585 will carry them entirely through the vfork & exec.
3586
3587 We don't want to allow a bp_finish to remain inserted now. But
3588 we can't safely delete it, 'cause finish_command has a handle to
3589 the bp on a bpstat, and will later want to delete it. There's a
3590 chance (and I've seen it happen) that if we delete the bp_finish
3591 here, that its storage will get reused by the time finish_command
3592 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3593 We really must allow finish_command to delete a bp_finish.
3594
3595 In the absence of a general solution for the "how do we know
3596 it's safe to delete something others may have handles to?"
3597 problem, what we'll do here is just uninsert the bp_finish, and
3598 let finish_command delete it.
3599
3600 (We know the bp_finish is "doomed" in the sense that it's
3601 momentary, and will be deleted as soon as finish_command sees
3602 the inferior stopped. So it doesn't matter that the bp's
3603 address is probably bogus in the new a.out, unlike e.g., the
3604 solib breakpoints.) */
3605
3606 if (b->type == bp_finish)
3607 {
3608 continue;
3609 }
3610
3611 /* Without a symbolic address, we have little hope of the
3612 pre-exec() address meaning the same thing in the post-exec()
3613 a.out. */
3614 if (breakpoint_event_location_empty_p (b))
3615 {
3616 delete_breakpoint (b);
3617 continue;
3618 }
3619 }
3620 }
3621
3622 int
3623 detach_breakpoints (ptid_t ptid)
3624 {
3625 struct bp_location *bl, **blp_tmp;
3626 int val = 0;
3627 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3628 struct inferior *inf = current_inferior ();
3629
3630 if (ptid.pid () == inferior_ptid.pid ())
3631 error (_("Cannot detach breakpoints of inferior_ptid"));
3632
3633 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3634 inferior_ptid = ptid;
3635 ALL_BP_LOCATIONS (bl, blp_tmp)
3636 {
3637 if (bl->pspace != inf->pspace)
3638 continue;
3639
3640 /* This function must physically remove breakpoints locations
3641 from the specified ptid, without modifying the breakpoint
3642 package's state. Locations of type bp_loc_other are only
3643 maintained at GDB side. So, there is no need to remove
3644 these bp_loc_other locations. Moreover, removing these
3645 would modify the breakpoint package's state. */
3646 if (bl->loc_type == bp_loc_other)
3647 continue;
3648
3649 if (bl->inserted)
3650 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3651 }
3652
3653 return val;
3654 }
3655
3656 /* Remove the breakpoint location BL from the current address space.
3657 Note that this is used to detach breakpoints from a child fork.
3658 When we get here, the child isn't in the inferior list, and neither
3659 do we have objects to represent its address space --- we should
3660 *not* look at bl->pspace->aspace here. */
3661
3662 static int
3663 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3664 {
3665 int val;
3666
3667 /* BL is never in moribund_locations by our callers. */
3668 gdb_assert (bl->owner != NULL);
3669
3670 /* The type of none suggests that owner is actually deleted.
3671 This should not ever happen. */
3672 gdb_assert (bl->owner->type != bp_none);
3673
3674 if (bl->loc_type == bp_loc_software_breakpoint
3675 || bl->loc_type == bp_loc_hardware_breakpoint)
3676 {
3677 /* "Normal" instruction breakpoint: either the standard
3678 trap-instruction bp (bp_breakpoint), or a
3679 bp_hardware_breakpoint. */
3680
3681 /* First check to see if we have to handle an overlay. */
3682 if (overlay_debugging == ovly_off
3683 || bl->section == NULL
3684 || !(section_is_overlay (bl->section)))
3685 {
3686 /* No overlay handling: just remove the breakpoint. */
3687
3688 /* If we're trying to uninsert a memory breakpoint that we
3689 know is set in a dynamic object that is marked
3690 shlib_disabled, then either the dynamic object was
3691 removed with "remove-symbol-file" or with
3692 "nosharedlibrary". In the former case, we don't know
3693 whether another dynamic object might have loaded over the
3694 breakpoint's address -- the user might well let us know
3695 about it next with add-symbol-file (the whole point of
3696 add-symbol-file is letting the user manually maintain a
3697 list of dynamically loaded objects). If we have the
3698 breakpoint's shadow memory, that is, this is a software
3699 breakpoint managed by GDB, check whether the breakpoint
3700 is still inserted in memory, to avoid overwriting wrong
3701 code with stale saved shadow contents. Note that HW
3702 breakpoints don't have shadow memory, as they're
3703 implemented using a mechanism that is not dependent on
3704 being able to modify the target's memory, and as such
3705 they should always be removed. */
3706 if (bl->shlib_disabled
3707 && bl->target_info.shadow_len != 0
3708 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3709 val = 0;
3710 else
3711 val = bl->owner->ops->remove_location (bl, reason);
3712 }
3713 else
3714 {
3715 /* This breakpoint is in an overlay section.
3716 Did we set a breakpoint at the LMA? */
3717 if (!overlay_events_enabled)
3718 {
3719 /* Yes -- overlay event support is not active, so we
3720 should have set a breakpoint at the LMA. Remove it.
3721 */
3722 /* Ignore any failures: if the LMA is in ROM, we will
3723 have already warned when we failed to insert it. */
3724 if (bl->loc_type == bp_loc_hardware_breakpoint)
3725 target_remove_hw_breakpoint (bl->gdbarch,
3726 &bl->overlay_target_info);
3727 else
3728 target_remove_breakpoint (bl->gdbarch,
3729 &bl->overlay_target_info,
3730 reason);
3731 }
3732 /* Did we set a breakpoint at the VMA?
3733 If so, we will have marked the breakpoint 'inserted'. */
3734 if (bl->inserted)
3735 {
3736 /* Yes -- remove it. Previously we did not bother to
3737 remove the breakpoint if the section had been
3738 unmapped, but let's not rely on that being safe. We
3739 don't know what the overlay manager might do. */
3740
3741 /* However, we should remove *software* breakpoints only
3742 if the section is still mapped, or else we overwrite
3743 wrong code with the saved shadow contents. */
3744 if (bl->loc_type == bp_loc_hardware_breakpoint
3745 || section_is_mapped (bl->section))
3746 val = bl->owner->ops->remove_location (bl, reason);
3747 else
3748 val = 0;
3749 }
3750 else
3751 {
3752 /* No -- not inserted, so no need to remove. No error. */
3753 val = 0;
3754 }
3755 }
3756
3757 /* In some cases, we might not be able to remove a breakpoint in
3758 a shared library that has already been removed, but we have
3759 not yet processed the shlib unload event. Similarly for an
3760 unloaded add-symbol-file object - the user might not yet have
3761 had the chance to remove-symbol-file it. shlib_disabled will
3762 be set if the library/object has already been removed, but
3763 the breakpoint hasn't been uninserted yet, e.g., after
3764 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3765 always-inserted mode. */
3766 if (val
3767 && (bl->loc_type == bp_loc_software_breakpoint
3768 && (bl->shlib_disabled
3769 || solib_name_from_address (bl->pspace, bl->address)
3770 || shared_objfile_contains_address_p (bl->pspace,
3771 bl->address))))
3772 val = 0;
3773
3774 if (val)
3775 return val;
3776 bl->inserted = (reason == DETACH_BREAKPOINT);
3777 }
3778 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3779 {
3780 gdb_assert (bl->owner->ops != NULL
3781 && bl->owner->ops->remove_location != NULL);
3782
3783 bl->inserted = (reason == DETACH_BREAKPOINT);
3784 bl->owner->ops->remove_location (bl, reason);
3785
3786 /* Failure to remove any of the hardware watchpoints comes here. */
3787 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3788 warning (_("Could not remove hardware watchpoint %d."),
3789 bl->owner->number);
3790 }
3791 else if (bl->owner->type == bp_catchpoint
3792 && breakpoint_enabled (bl->owner)
3793 && !bl->duplicate)
3794 {
3795 gdb_assert (bl->owner->ops != NULL
3796 && bl->owner->ops->remove_location != NULL);
3797
3798 val = bl->owner->ops->remove_location (bl, reason);
3799 if (val)
3800 return val;
3801
3802 bl->inserted = (reason == DETACH_BREAKPOINT);
3803 }
3804
3805 return 0;
3806 }
3807
3808 static int
3809 remove_breakpoint (struct bp_location *bl)
3810 {
3811 /* BL is never in moribund_locations by our callers. */
3812 gdb_assert (bl->owner != NULL);
3813
3814 /* The type of none suggests that owner is actually deleted.
3815 This should not ever happen. */
3816 gdb_assert (bl->owner->type != bp_none);
3817
3818 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3819
3820 switch_to_program_space_and_thread (bl->pspace);
3821
3822 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3823 }
3824
3825 /* Clear the "inserted" flag in all breakpoints. */
3826
3827 void
3828 mark_breakpoints_out (void)
3829 {
3830 struct bp_location *bl, **blp_tmp;
3831
3832 ALL_BP_LOCATIONS (bl, blp_tmp)
3833 if (bl->pspace == current_program_space)
3834 bl->inserted = 0;
3835 }
3836
3837 /* Clear the "inserted" flag in all breakpoints and delete any
3838 breakpoints which should go away between runs of the program.
3839
3840 Plus other such housekeeping that has to be done for breakpoints
3841 between runs.
3842
3843 Note: this function gets called at the end of a run (by
3844 generic_mourn_inferior) and when a run begins (by
3845 init_wait_for_inferior). */
3846
3847
3848
3849 void
3850 breakpoint_init_inferior (enum inf_context context)
3851 {
3852 struct breakpoint *b, *b_tmp;
3853 struct program_space *pspace = current_program_space;
3854
3855 /* If breakpoint locations are shared across processes, then there's
3856 nothing to do. */
3857 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3858 return;
3859
3860 mark_breakpoints_out ();
3861
3862 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3863 {
3864 if (b->loc && b->loc->pspace != pspace)
3865 continue;
3866
3867 switch (b->type)
3868 {
3869 case bp_call_dummy:
3870 case bp_longjmp_call_dummy:
3871
3872 /* If the call dummy breakpoint is at the entry point it will
3873 cause problems when the inferior is rerun, so we better get
3874 rid of it. */
3875
3876 case bp_watchpoint_scope:
3877
3878 /* Also get rid of scope breakpoints. */
3879
3880 case bp_shlib_event:
3881
3882 /* Also remove solib event breakpoints. Their addresses may
3883 have changed since the last time we ran the program.
3884 Actually we may now be debugging against different target;
3885 and so the solib backend that installed this breakpoint may
3886 not be used in by the target. E.g.,
3887
3888 (gdb) file prog-linux
3889 (gdb) run # native linux target
3890 ...
3891 (gdb) kill
3892 (gdb) file prog-win.exe
3893 (gdb) tar rem :9999 # remote Windows gdbserver.
3894 */
3895
3896 case bp_step_resume:
3897
3898 /* Also remove step-resume breakpoints. */
3899
3900 case bp_single_step:
3901
3902 /* Also remove single-step breakpoints. */
3903
3904 delete_breakpoint (b);
3905 break;
3906
3907 case bp_watchpoint:
3908 case bp_hardware_watchpoint:
3909 case bp_read_watchpoint:
3910 case bp_access_watchpoint:
3911 {
3912 struct watchpoint *w = (struct watchpoint *) b;
3913
3914 /* Likewise for watchpoints on local expressions. */
3915 if (w->exp_valid_block != NULL)
3916 delete_breakpoint (b);
3917 else
3918 {
3919 /* Get rid of existing locations, which are no longer
3920 valid. New ones will be created in
3921 update_watchpoint, when the inferior is restarted.
3922 The next update_global_location_list call will
3923 garbage collect them. */
3924 b->loc = NULL;
3925
3926 if (context == inf_starting)
3927 {
3928 /* Reset val field to force reread of starting value in
3929 insert_breakpoints. */
3930 w->val.reset (nullptr);
3931 w->val_valid = 0;
3932 }
3933 }
3934 }
3935 break;
3936 default:
3937 break;
3938 }
3939 }
3940
3941 /* Get rid of the moribund locations. */
3942 for (bp_location *bl : moribund_locations)
3943 decref_bp_location (&bl);
3944 moribund_locations.clear ();
3945 }
3946
3947 /* These functions concern about actual breakpoints inserted in the
3948 target --- to e.g. check if we need to do decr_pc adjustment or if
3949 we need to hop over the bkpt --- so we check for address space
3950 match, not program space. */
3951
3952 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3953 exists at PC. It returns ordinary_breakpoint_here if it's an
3954 ordinary breakpoint, or permanent_breakpoint_here if it's a
3955 permanent breakpoint.
3956 - When continuing from a location with an ordinary breakpoint, we
3957 actually single step once before calling insert_breakpoints.
3958 - When continuing from a location with a permanent breakpoint, we
3959 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3960 the target, to advance the PC past the breakpoint. */
3961
3962 enum breakpoint_here
3963 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3964 {
3965 struct bp_location *bl, **blp_tmp;
3966 int any_breakpoint_here = 0;
3967
3968 ALL_BP_LOCATIONS (bl, blp_tmp)
3969 {
3970 if (bl->loc_type != bp_loc_software_breakpoint
3971 && bl->loc_type != bp_loc_hardware_breakpoint)
3972 continue;
3973
3974 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3975 if ((breakpoint_enabled (bl->owner)
3976 || bl->permanent)
3977 && breakpoint_location_address_match (bl, aspace, pc))
3978 {
3979 if (overlay_debugging
3980 && section_is_overlay (bl->section)
3981 && !section_is_mapped (bl->section))
3982 continue; /* unmapped overlay -- can't be a match */
3983 else if (bl->permanent)
3984 return permanent_breakpoint_here;
3985 else
3986 any_breakpoint_here = 1;
3987 }
3988 }
3989
3990 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3991 }
3992
3993 /* See breakpoint.h. */
3994
3995 int
3996 breakpoint_in_range_p (const address_space *aspace,
3997 CORE_ADDR addr, ULONGEST len)
3998 {
3999 struct bp_location *bl, **blp_tmp;
4000
4001 ALL_BP_LOCATIONS (bl, blp_tmp)
4002 {
4003 if (bl->loc_type != bp_loc_software_breakpoint
4004 && bl->loc_type != bp_loc_hardware_breakpoint)
4005 continue;
4006
4007 if ((breakpoint_enabled (bl->owner)
4008 || bl->permanent)
4009 && breakpoint_location_address_range_overlap (bl, aspace,
4010 addr, len))
4011 {
4012 if (overlay_debugging
4013 && section_is_overlay (bl->section)
4014 && !section_is_mapped (bl->section))
4015 {
4016 /* Unmapped overlay -- can't be a match. */
4017 continue;
4018 }
4019
4020 return 1;
4021 }
4022 }
4023
4024 return 0;
4025 }
4026
4027 /* Return true if there's a moribund breakpoint at PC. */
4028
4029 int
4030 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4031 {
4032 for (bp_location *loc : moribund_locations)
4033 if (breakpoint_location_address_match (loc, aspace, pc))
4034 return 1;
4035
4036 return 0;
4037 }
4038
4039 /* Returns non-zero iff BL is inserted at PC, in address space
4040 ASPACE. */
4041
4042 static int
4043 bp_location_inserted_here_p (struct bp_location *bl,
4044 const address_space *aspace, CORE_ADDR pc)
4045 {
4046 if (bl->inserted
4047 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4048 aspace, pc))
4049 {
4050 if (overlay_debugging
4051 && section_is_overlay (bl->section)
4052 && !section_is_mapped (bl->section))
4053 return 0; /* unmapped overlay -- can't be a match */
4054 else
4055 return 1;
4056 }
4057 return 0;
4058 }
4059
4060 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4061
4062 int
4063 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4064 {
4065 struct bp_location **blp, **blp_tmp = NULL;
4066
4067 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4068 {
4069 struct bp_location *bl = *blp;
4070
4071 if (bl->loc_type != bp_loc_software_breakpoint
4072 && bl->loc_type != bp_loc_hardware_breakpoint)
4073 continue;
4074
4075 if (bp_location_inserted_here_p (bl, aspace, pc))
4076 return 1;
4077 }
4078 return 0;
4079 }
4080
4081 /* This function returns non-zero iff there is a software breakpoint
4082 inserted at PC. */
4083
4084 int
4085 software_breakpoint_inserted_here_p (const address_space *aspace,
4086 CORE_ADDR pc)
4087 {
4088 struct bp_location **blp, **blp_tmp = NULL;
4089
4090 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4091 {
4092 struct bp_location *bl = *blp;
4093
4094 if (bl->loc_type != bp_loc_software_breakpoint)
4095 continue;
4096
4097 if (bp_location_inserted_here_p (bl, aspace, pc))
4098 return 1;
4099 }
4100
4101 return 0;
4102 }
4103
4104 /* See breakpoint.h. */
4105
4106 int
4107 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4108 CORE_ADDR pc)
4109 {
4110 struct bp_location **blp, **blp_tmp = NULL;
4111
4112 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4113 {
4114 struct bp_location *bl = *blp;
4115
4116 if (bl->loc_type != bp_loc_hardware_breakpoint)
4117 continue;
4118
4119 if (bp_location_inserted_here_p (bl, aspace, pc))
4120 return 1;
4121 }
4122
4123 return 0;
4124 }
4125
4126 int
4127 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4128 CORE_ADDR addr, ULONGEST len)
4129 {
4130 struct breakpoint *bpt;
4131
4132 ALL_BREAKPOINTS (bpt)
4133 {
4134 struct bp_location *loc;
4135
4136 if (bpt->type != bp_hardware_watchpoint
4137 && bpt->type != bp_access_watchpoint)
4138 continue;
4139
4140 if (!breakpoint_enabled (bpt))
4141 continue;
4142
4143 for (loc = bpt->loc; loc; loc = loc->next)
4144 if (loc->pspace->aspace == aspace && loc->inserted)
4145 {
4146 CORE_ADDR l, h;
4147
4148 /* Check for intersection. */
4149 l = std::max<CORE_ADDR> (loc->address, addr);
4150 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4151 if (l < h)
4152 return 1;
4153 }
4154 }
4155 return 0;
4156 }
4157 \f
4158
4159 /* bpstat stuff. External routines' interfaces are documented
4160 in breakpoint.h. */
4161
4162 int
4163 is_catchpoint (struct breakpoint *ep)
4164 {
4165 return (ep->type == bp_catchpoint);
4166 }
4167
4168 /* Frees any storage that is part of a bpstat. Does not walk the
4169 'next' chain. */
4170
4171 bpstats::~bpstats ()
4172 {
4173 if (bp_location_at != NULL)
4174 decref_bp_location (&bp_location_at);
4175 }
4176
4177 /* Clear a bpstat so that it says we are not at any breakpoint.
4178 Also free any storage that is part of a bpstat. */
4179
4180 void
4181 bpstat_clear (bpstat *bsp)
4182 {
4183 bpstat p;
4184 bpstat q;
4185
4186 if (bsp == 0)
4187 return;
4188 p = *bsp;
4189 while (p != NULL)
4190 {
4191 q = p->next;
4192 delete p;
4193 p = q;
4194 }
4195 *bsp = NULL;
4196 }
4197
4198 bpstats::bpstats (const bpstats &other)
4199 : next (NULL),
4200 bp_location_at (other.bp_location_at),
4201 breakpoint_at (other.breakpoint_at),
4202 commands (other.commands),
4203 print (other.print),
4204 stop (other.stop),
4205 print_it (other.print_it)
4206 {
4207 if (other.old_val != NULL)
4208 old_val = release_value (value_copy (other.old_val.get ()));
4209 incref_bp_location (bp_location_at);
4210 }
4211
4212 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4213 is part of the bpstat is copied as well. */
4214
4215 bpstat
4216 bpstat_copy (bpstat bs)
4217 {
4218 bpstat p = NULL;
4219 bpstat tmp;
4220 bpstat retval = NULL;
4221
4222 if (bs == NULL)
4223 return bs;
4224
4225 for (; bs != NULL; bs = bs->next)
4226 {
4227 tmp = new bpstats (*bs);
4228
4229 if (p == NULL)
4230 /* This is the first thing in the chain. */
4231 retval = tmp;
4232 else
4233 p->next = tmp;
4234 p = tmp;
4235 }
4236 p->next = NULL;
4237 return retval;
4238 }
4239
4240 /* Find the bpstat associated with this breakpoint. */
4241
4242 bpstat
4243 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4244 {
4245 if (bsp == NULL)
4246 return NULL;
4247
4248 for (; bsp != NULL; bsp = bsp->next)
4249 {
4250 if (bsp->breakpoint_at == breakpoint)
4251 return bsp;
4252 }
4253 return NULL;
4254 }
4255
4256 /* See breakpoint.h. */
4257
4258 int
4259 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4260 {
4261 for (; bsp != NULL; bsp = bsp->next)
4262 {
4263 if (bsp->breakpoint_at == NULL)
4264 {
4265 /* A moribund location can never explain a signal other than
4266 GDB_SIGNAL_TRAP. */
4267 if (sig == GDB_SIGNAL_TRAP)
4268 return 1;
4269 }
4270 else
4271 {
4272 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4273 sig))
4274 return 1;
4275 }
4276 }
4277
4278 return 0;
4279 }
4280
4281 /* Put in *NUM the breakpoint number of the first breakpoint we are
4282 stopped at. *BSP upon return is a bpstat which points to the
4283 remaining breakpoints stopped at (but which is not guaranteed to be
4284 good for anything but further calls to bpstat_num).
4285
4286 Return 0 if passed a bpstat which does not indicate any breakpoints.
4287 Return -1 if stopped at a breakpoint that has been deleted since
4288 we set it.
4289 Return 1 otherwise. */
4290
4291 int
4292 bpstat_num (bpstat *bsp, int *num)
4293 {
4294 struct breakpoint *b;
4295
4296 if ((*bsp) == NULL)
4297 return 0; /* No more breakpoint values */
4298
4299 /* We assume we'll never have several bpstats that correspond to a
4300 single breakpoint -- otherwise, this function might return the
4301 same number more than once and this will look ugly. */
4302 b = (*bsp)->breakpoint_at;
4303 *bsp = (*bsp)->next;
4304 if (b == NULL)
4305 return -1; /* breakpoint that's been deleted since */
4306
4307 *num = b->number; /* We have its number */
4308 return 1;
4309 }
4310
4311 /* See breakpoint.h. */
4312
4313 void
4314 bpstat_clear_actions (void)
4315 {
4316 bpstat bs;
4317
4318 if (inferior_ptid == null_ptid)
4319 return;
4320
4321 thread_info *tp = inferior_thread ();
4322 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4323 {
4324 bs->commands = NULL;
4325 bs->old_val.reset (nullptr);
4326 }
4327 }
4328
4329 /* Called when a command is about to proceed the inferior. */
4330
4331 static void
4332 breakpoint_about_to_proceed (void)
4333 {
4334 if (inferior_ptid != null_ptid)
4335 {
4336 struct thread_info *tp = inferior_thread ();
4337
4338 /* Allow inferior function calls in breakpoint commands to not
4339 interrupt the command list. When the call finishes
4340 successfully, the inferior will be standing at the same
4341 breakpoint as if nothing happened. */
4342 if (tp->control.in_infcall)
4343 return;
4344 }
4345
4346 breakpoint_proceeded = 1;
4347 }
4348
4349 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4350 or its equivalent. */
4351
4352 static int
4353 command_line_is_silent (struct command_line *cmd)
4354 {
4355 return cmd && (strcmp ("silent", cmd->line) == 0);
4356 }
4357
4358 /* Execute all the commands associated with all the breakpoints at
4359 this location. Any of these commands could cause the process to
4360 proceed beyond this point, etc. We look out for such changes by
4361 checking the global "breakpoint_proceeded" after each command.
4362
4363 Returns true if a breakpoint command resumed the inferior. In that
4364 case, it is the caller's responsibility to recall it again with the
4365 bpstat of the current thread. */
4366
4367 static int
4368 bpstat_do_actions_1 (bpstat *bsp)
4369 {
4370 bpstat bs;
4371 int again = 0;
4372
4373 /* Avoid endless recursion if a `source' command is contained
4374 in bs->commands. */
4375 if (executing_breakpoint_commands)
4376 return 0;
4377
4378 scoped_restore save_executing
4379 = make_scoped_restore (&executing_breakpoint_commands, 1);
4380
4381 scoped_restore preventer = prevent_dont_repeat ();
4382
4383 /* This pointer will iterate over the list of bpstat's. */
4384 bs = *bsp;
4385
4386 breakpoint_proceeded = 0;
4387 for (; bs != NULL; bs = bs->next)
4388 {
4389 struct command_line *cmd = NULL;
4390
4391 /* Take ownership of the BSP's command tree, if it has one.
4392
4393 The command tree could legitimately contain commands like
4394 'step' and 'next', which call clear_proceed_status, which
4395 frees stop_bpstat's command tree. To make sure this doesn't
4396 free the tree we're executing out from under us, we need to
4397 take ownership of the tree ourselves. Since a given bpstat's
4398 commands are only executed once, we don't need to copy it; we
4399 can clear the pointer in the bpstat, and make sure we free
4400 the tree when we're done. */
4401 counted_command_line ccmd = bs->commands;
4402 bs->commands = NULL;
4403 if (ccmd != NULL)
4404 cmd = ccmd.get ();
4405 if (command_line_is_silent (cmd))
4406 {
4407 /* The action has been already done by bpstat_stop_status. */
4408 cmd = cmd->next;
4409 }
4410
4411 while (cmd != NULL)
4412 {
4413 execute_control_command (cmd);
4414
4415 if (breakpoint_proceeded)
4416 break;
4417 else
4418 cmd = cmd->next;
4419 }
4420
4421 if (breakpoint_proceeded)
4422 {
4423 if (current_ui->async)
4424 /* If we are in async mode, then the target might be still
4425 running, not stopped at any breakpoint, so nothing for
4426 us to do here -- just return to the event loop. */
4427 ;
4428 else
4429 /* In sync mode, when execute_control_command returns
4430 we're already standing on the next breakpoint.
4431 Breakpoint commands for that stop were not run, since
4432 execute_command does not run breakpoint commands --
4433 only command_line_handler does, but that one is not
4434 involved in execution of breakpoint commands. So, we
4435 can now execute breakpoint commands. It should be
4436 noted that making execute_command do bpstat actions is
4437 not an option -- in this case we'll have recursive
4438 invocation of bpstat for each breakpoint with a
4439 command, and can easily blow up GDB stack. Instead, we
4440 return true, which will trigger the caller to recall us
4441 with the new stop_bpstat. */
4442 again = 1;
4443 break;
4444 }
4445 }
4446 return again;
4447 }
4448
4449 /* Helper for bpstat_do_actions. Get the current thread, if there's
4450 one, is alive and has execution. Return NULL otherwise. */
4451
4452 static thread_info *
4453 get_bpstat_thread ()
4454 {
4455 if (inferior_ptid == null_ptid || !target_has_execution)
4456 return NULL;
4457
4458 thread_info *tp = inferior_thread ();
4459 if (tp->state == THREAD_EXITED || tp->executing)
4460 return NULL;
4461 return tp;
4462 }
4463
4464 void
4465 bpstat_do_actions (void)
4466 {
4467 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4468 thread_info *tp;
4469
4470 /* Do any commands attached to breakpoint we are stopped at. */
4471 while ((tp = get_bpstat_thread ()) != NULL)
4472 {
4473 /* Since in sync mode, bpstat_do_actions may resume the
4474 inferior, and only return when it is stopped at the next
4475 breakpoint, we keep doing breakpoint actions until it returns
4476 false to indicate the inferior was not resumed. */
4477 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4478 break;
4479 }
4480
4481 cleanup_if_error.release ();
4482 }
4483
4484 /* Print out the (old or new) value associated with a watchpoint. */
4485
4486 static void
4487 watchpoint_value_print (struct value *val, struct ui_file *stream)
4488 {
4489 if (val == NULL)
4490 fprintf_unfiltered (stream, _("<unreadable>"));
4491 else
4492 {
4493 struct value_print_options opts;
4494 get_user_print_options (&opts);
4495 value_print (val, stream, &opts);
4496 }
4497 }
4498
4499 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4500 debugging multiple threads. */
4501
4502 void
4503 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4504 {
4505 if (uiout->is_mi_like_p ())
4506 return;
4507
4508 uiout->text ("\n");
4509
4510 if (show_thread_that_caused_stop ())
4511 {
4512 const char *name;
4513 struct thread_info *thr = inferior_thread ();
4514
4515 uiout->text ("Thread ");
4516 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4517
4518 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4519 if (name != NULL)
4520 {
4521 uiout->text (" \"");
4522 uiout->field_fmt ("name", "%s", name);
4523 uiout->text ("\"");
4524 }
4525
4526 uiout->text (" hit ");
4527 }
4528 }
4529
4530 /* Generic routine for printing messages indicating why we
4531 stopped. The behavior of this function depends on the value
4532 'print_it' in the bpstat structure. Under some circumstances we
4533 may decide not to print anything here and delegate the task to
4534 normal_stop(). */
4535
4536 static enum print_stop_action
4537 print_bp_stop_message (bpstat bs)
4538 {
4539 switch (bs->print_it)
4540 {
4541 case print_it_noop:
4542 /* Nothing should be printed for this bpstat entry. */
4543 return PRINT_UNKNOWN;
4544 break;
4545
4546 case print_it_done:
4547 /* We still want to print the frame, but we already printed the
4548 relevant messages. */
4549 return PRINT_SRC_AND_LOC;
4550 break;
4551
4552 case print_it_normal:
4553 {
4554 struct breakpoint *b = bs->breakpoint_at;
4555
4556 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4557 which has since been deleted. */
4558 if (b == NULL)
4559 return PRINT_UNKNOWN;
4560
4561 /* Normal case. Call the breakpoint's print_it method. */
4562 return b->ops->print_it (bs);
4563 }
4564 break;
4565
4566 default:
4567 internal_error (__FILE__, __LINE__,
4568 _("print_bp_stop_message: unrecognized enum value"));
4569 break;
4570 }
4571 }
4572
4573 /* A helper function that prints a shared library stopped event. */
4574
4575 static void
4576 print_solib_event (int is_catchpoint)
4577 {
4578 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4579 bool any_added = !current_program_space->added_solibs.empty ();
4580
4581 if (!is_catchpoint)
4582 {
4583 if (any_added || any_deleted)
4584 current_uiout->text (_("Stopped due to shared library event:\n"));
4585 else
4586 current_uiout->text (_("Stopped due to shared library event (no "
4587 "libraries added or removed)\n"));
4588 }
4589
4590 if (current_uiout->is_mi_like_p ())
4591 current_uiout->field_string ("reason",
4592 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4593
4594 if (any_deleted)
4595 {
4596 current_uiout->text (_(" Inferior unloaded "));
4597 ui_out_emit_list list_emitter (current_uiout, "removed");
4598 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4599 {
4600 const std::string &name = current_program_space->deleted_solibs[ix];
4601
4602 if (ix > 0)
4603 current_uiout->text (" ");
4604 current_uiout->field_string ("library", name);
4605 current_uiout->text ("\n");
4606 }
4607 }
4608
4609 if (any_added)
4610 {
4611 current_uiout->text (_(" Inferior loaded "));
4612 ui_out_emit_list list_emitter (current_uiout, "added");
4613 bool first = true;
4614 for (so_list *iter : current_program_space->added_solibs)
4615 {
4616 if (!first)
4617 current_uiout->text (" ");
4618 first = false;
4619 current_uiout->field_string ("library", iter->so_name);
4620 current_uiout->text ("\n");
4621 }
4622 }
4623 }
4624
4625 /* Print a message indicating what happened. This is called from
4626 normal_stop(). The input to this routine is the head of the bpstat
4627 list - a list of the eventpoints that caused this stop. KIND is
4628 the target_waitkind for the stopping event. This
4629 routine calls the generic print routine for printing a message
4630 about reasons for stopping. This will print (for example) the
4631 "Breakpoint n," part of the output. The return value of this
4632 routine is one of:
4633
4634 PRINT_UNKNOWN: Means we printed nothing.
4635 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4636 code to print the location. An example is
4637 "Breakpoint 1, " which should be followed by
4638 the location.
4639 PRINT_SRC_ONLY: Means we printed something, but there is no need
4640 to also print the location part of the message.
4641 An example is the catch/throw messages, which
4642 don't require a location appended to the end.
4643 PRINT_NOTHING: We have done some printing and we don't need any
4644 further info to be printed. */
4645
4646 enum print_stop_action
4647 bpstat_print (bpstat bs, int kind)
4648 {
4649 enum print_stop_action val;
4650
4651 /* Maybe another breakpoint in the chain caused us to stop.
4652 (Currently all watchpoints go on the bpstat whether hit or not.
4653 That probably could (should) be changed, provided care is taken
4654 with respect to bpstat_explains_signal). */
4655 for (; bs; bs = bs->next)
4656 {
4657 val = print_bp_stop_message (bs);
4658 if (val == PRINT_SRC_ONLY
4659 || val == PRINT_SRC_AND_LOC
4660 || val == PRINT_NOTHING)
4661 return val;
4662 }
4663
4664 /* If we had hit a shared library event breakpoint,
4665 print_bp_stop_message would print out this message. If we hit an
4666 OS-level shared library event, do the same thing. */
4667 if (kind == TARGET_WAITKIND_LOADED)
4668 {
4669 print_solib_event (0);
4670 return PRINT_NOTHING;
4671 }
4672
4673 /* We reached the end of the chain, or we got a null BS to start
4674 with and nothing was printed. */
4675 return PRINT_UNKNOWN;
4676 }
4677
4678 /* Evaluate the boolean expression EXP and return the result. */
4679
4680 static bool
4681 breakpoint_cond_eval (expression *exp)
4682 {
4683 struct value *mark = value_mark ();
4684 bool res = value_true (evaluate_expression (exp));
4685
4686 value_free_to_mark (mark);
4687 return res;
4688 }
4689
4690 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4691
4692 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4693 : next (NULL),
4694 bp_location_at (bl),
4695 breakpoint_at (bl->owner),
4696 commands (NULL),
4697 print (0),
4698 stop (0),
4699 print_it (print_it_normal)
4700 {
4701 incref_bp_location (bl);
4702 **bs_link_pointer = this;
4703 *bs_link_pointer = &next;
4704 }
4705
4706 bpstats::bpstats ()
4707 : next (NULL),
4708 bp_location_at (NULL),
4709 breakpoint_at (NULL),
4710 commands (NULL),
4711 print (0),
4712 stop (0),
4713 print_it (print_it_normal)
4714 {
4715 }
4716 \f
4717 /* The target has stopped with waitstatus WS. Check if any hardware
4718 watchpoints have triggered, according to the target. */
4719
4720 int
4721 watchpoints_triggered (struct target_waitstatus *ws)
4722 {
4723 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4724 CORE_ADDR addr;
4725 struct breakpoint *b;
4726
4727 if (!stopped_by_watchpoint)
4728 {
4729 /* We were not stopped by a watchpoint. Mark all watchpoints
4730 as not triggered. */
4731 ALL_BREAKPOINTS (b)
4732 if (is_hardware_watchpoint (b))
4733 {
4734 struct watchpoint *w = (struct watchpoint *) b;
4735
4736 w->watchpoint_triggered = watch_triggered_no;
4737 }
4738
4739 return 0;
4740 }
4741
4742 if (!target_stopped_data_address (current_top_target (), &addr))
4743 {
4744 /* We were stopped by a watchpoint, but we don't know where.
4745 Mark all watchpoints as unknown. */
4746 ALL_BREAKPOINTS (b)
4747 if (is_hardware_watchpoint (b))
4748 {
4749 struct watchpoint *w = (struct watchpoint *) b;
4750
4751 w->watchpoint_triggered = watch_triggered_unknown;
4752 }
4753
4754 return 1;
4755 }
4756
4757 /* The target could report the data address. Mark watchpoints
4758 affected by this data address as triggered, and all others as not
4759 triggered. */
4760
4761 ALL_BREAKPOINTS (b)
4762 if (is_hardware_watchpoint (b))
4763 {
4764 struct watchpoint *w = (struct watchpoint *) b;
4765 struct bp_location *loc;
4766
4767 w->watchpoint_triggered = watch_triggered_no;
4768 for (loc = b->loc; loc; loc = loc->next)
4769 {
4770 if (is_masked_watchpoint (b))
4771 {
4772 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4773 CORE_ADDR start = loc->address & w->hw_wp_mask;
4774
4775 if (newaddr == start)
4776 {
4777 w->watchpoint_triggered = watch_triggered_yes;
4778 break;
4779 }
4780 }
4781 /* Exact match not required. Within range is sufficient. */
4782 else if (target_watchpoint_addr_within_range (current_top_target (),
4783 addr, loc->address,
4784 loc->length))
4785 {
4786 w->watchpoint_triggered = watch_triggered_yes;
4787 break;
4788 }
4789 }
4790 }
4791
4792 return 1;
4793 }
4794
4795 /* Possible return values for watchpoint_check. */
4796 enum wp_check_result
4797 {
4798 /* The watchpoint has been deleted. */
4799 WP_DELETED = 1,
4800
4801 /* The value has changed. */
4802 WP_VALUE_CHANGED = 2,
4803
4804 /* The value has not changed. */
4805 WP_VALUE_NOT_CHANGED = 3,
4806
4807 /* Ignore this watchpoint, no matter if the value changed or not. */
4808 WP_IGNORE = 4,
4809 };
4810
4811 #define BP_TEMPFLAG 1
4812 #define BP_HARDWAREFLAG 2
4813
4814 /* Evaluate watchpoint condition expression and check if its value
4815 changed. */
4816
4817 static wp_check_result
4818 watchpoint_check (bpstat bs)
4819 {
4820 struct watchpoint *b;
4821 struct frame_info *fr;
4822 int within_current_scope;
4823
4824 /* BS is built from an existing struct breakpoint. */
4825 gdb_assert (bs->breakpoint_at != NULL);
4826 b = (struct watchpoint *) bs->breakpoint_at;
4827
4828 /* If this is a local watchpoint, we only want to check if the
4829 watchpoint frame is in scope if the current thread is the thread
4830 that was used to create the watchpoint. */
4831 if (!watchpoint_in_thread_scope (b))
4832 return WP_IGNORE;
4833
4834 if (b->exp_valid_block == NULL)
4835 within_current_scope = 1;
4836 else
4837 {
4838 struct frame_info *frame = get_current_frame ();
4839 struct gdbarch *frame_arch = get_frame_arch (frame);
4840 CORE_ADDR frame_pc = get_frame_pc (frame);
4841
4842 /* stack_frame_destroyed_p() returns a non-zero value if we're
4843 still in the function but the stack frame has already been
4844 invalidated. Since we can't rely on the values of local
4845 variables after the stack has been destroyed, we are treating
4846 the watchpoint in that state as `not changed' without further
4847 checking. Don't mark watchpoints as changed if the current
4848 frame is in an epilogue - even if they are in some other
4849 frame, our view of the stack is likely to be wrong and
4850 frame_find_by_id could error out. */
4851 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4852 return WP_IGNORE;
4853
4854 fr = frame_find_by_id (b->watchpoint_frame);
4855 within_current_scope = (fr != NULL);
4856
4857 /* If we've gotten confused in the unwinder, we might have
4858 returned a frame that can't describe this variable. */
4859 if (within_current_scope)
4860 {
4861 struct symbol *function;
4862
4863 function = get_frame_function (fr);
4864 if (function == NULL
4865 || !contained_in (b->exp_valid_block,
4866 SYMBOL_BLOCK_VALUE (function)))
4867 within_current_scope = 0;
4868 }
4869
4870 if (within_current_scope)
4871 /* If we end up stopping, the current frame will get selected
4872 in normal_stop. So this call to select_frame won't affect
4873 the user. */
4874 select_frame (fr);
4875 }
4876
4877 if (within_current_scope)
4878 {
4879 /* We use value_{,free_to_}mark because it could be a *long*
4880 time before we return to the command level and call
4881 free_all_values. We can't call free_all_values because we
4882 might be in the middle of evaluating a function call. */
4883
4884 int pc = 0;
4885 struct value *mark;
4886 struct value *new_val;
4887
4888 if (is_masked_watchpoint (b))
4889 /* Since we don't know the exact trigger address (from
4890 stopped_data_address), just tell the user we've triggered
4891 a mask watchpoint. */
4892 return WP_VALUE_CHANGED;
4893
4894 mark = value_mark ();
4895 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4896
4897 if (b->val_bitsize != 0)
4898 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4899
4900 /* We use value_equal_contents instead of value_equal because
4901 the latter coerces an array to a pointer, thus comparing just
4902 the address of the array instead of its contents. This is
4903 not what we want. */
4904 if ((b->val != NULL) != (new_val != NULL)
4905 || (b->val != NULL && !value_equal_contents (b->val.get (),
4906 new_val)))
4907 {
4908 bs->old_val = b->val;
4909 b->val = release_value (new_val);
4910 b->val_valid = 1;
4911 if (new_val != NULL)
4912 value_free_to_mark (mark);
4913 return WP_VALUE_CHANGED;
4914 }
4915 else
4916 {
4917 /* Nothing changed. */
4918 value_free_to_mark (mark);
4919 return WP_VALUE_NOT_CHANGED;
4920 }
4921 }
4922 else
4923 {
4924 /* This seems like the only logical thing to do because
4925 if we temporarily ignored the watchpoint, then when
4926 we reenter the block in which it is valid it contains
4927 garbage (in the case of a function, it may have two
4928 garbage values, one before and one after the prologue).
4929 So we can't even detect the first assignment to it and
4930 watch after that (since the garbage may or may not equal
4931 the first value assigned). */
4932 /* We print all the stop information in
4933 breakpoint_ops->print_it, but in this case, by the time we
4934 call breakpoint_ops->print_it this bp will be deleted
4935 already. So we have no choice but print the information
4936 here. */
4937
4938 SWITCH_THRU_ALL_UIS ()
4939 {
4940 struct ui_out *uiout = current_uiout;
4941
4942 if (uiout->is_mi_like_p ())
4943 uiout->field_string
4944 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4945 uiout->text ("\nWatchpoint ");
4946 uiout->field_int ("wpnum", b->number);
4947 uiout->text (" deleted because the program has left the block in\n"
4948 "which its expression is valid.\n");
4949 }
4950
4951 /* Make sure the watchpoint's commands aren't executed. */
4952 b->commands = NULL;
4953 watchpoint_del_at_next_stop (b);
4954
4955 return WP_DELETED;
4956 }
4957 }
4958
4959 /* Return true if it looks like target has stopped due to hitting
4960 breakpoint location BL. This function does not check if we should
4961 stop, only if BL explains the stop. */
4962
4963 static int
4964 bpstat_check_location (const struct bp_location *bl,
4965 const address_space *aspace, CORE_ADDR bp_addr,
4966 const struct target_waitstatus *ws)
4967 {
4968 struct breakpoint *b = bl->owner;
4969
4970 /* BL is from an existing breakpoint. */
4971 gdb_assert (b != NULL);
4972
4973 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4974 }
4975
4976 /* Determine if the watched values have actually changed, and we
4977 should stop. If not, set BS->stop to 0. */
4978
4979 static void
4980 bpstat_check_watchpoint (bpstat bs)
4981 {
4982 const struct bp_location *bl;
4983 struct watchpoint *b;
4984
4985 /* BS is built for existing struct breakpoint. */
4986 bl = bs->bp_location_at;
4987 gdb_assert (bl != NULL);
4988 b = (struct watchpoint *) bs->breakpoint_at;
4989 gdb_assert (b != NULL);
4990
4991 {
4992 int must_check_value = 0;
4993
4994 if (b->type == bp_watchpoint)
4995 /* For a software watchpoint, we must always check the
4996 watched value. */
4997 must_check_value = 1;
4998 else if (b->watchpoint_triggered == watch_triggered_yes)
4999 /* We have a hardware watchpoint (read, write, or access)
5000 and the target earlier reported an address watched by
5001 this watchpoint. */
5002 must_check_value = 1;
5003 else if (b->watchpoint_triggered == watch_triggered_unknown
5004 && b->type == bp_hardware_watchpoint)
5005 /* We were stopped by a hardware watchpoint, but the target could
5006 not report the data address. We must check the watchpoint's
5007 value. Access and read watchpoints are out of luck; without
5008 a data address, we can't figure it out. */
5009 must_check_value = 1;
5010
5011 if (must_check_value)
5012 {
5013 wp_check_result e;
5014
5015 try
5016 {
5017 e = watchpoint_check (bs);
5018 }
5019 catch (const gdb_exception &ex)
5020 {
5021 exception_fprintf (gdb_stderr, ex,
5022 "Error evaluating expression "
5023 "for watchpoint %d\n",
5024 b->number);
5025
5026 SWITCH_THRU_ALL_UIS ()
5027 {
5028 printf_filtered (_("Watchpoint %d deleted.\n"),
5029 b->number);
5030 }
5031 watchpoint_del_at_next_stop (b);
5032 e = WP_DELETED;
5033 }
5034
5035 switch (e)
5036 {
5037 case WP_DELETED:
5038 /* We've already printed what needs to be printed. */
5039 bs->print_it = print_it_done;
5040 /* Stop. */
5041 break;
5042 case WP_IGNORE:
5043 bs->print_it = print_it_noop;
5044 bs->stop = 0;
5045 break;
5046 case WP_VALUE_CHANGED:
5047 if (b->type == bp_read_watchpoint)
5048 {
5049 /* There are two cases to consider here:
5050
5051 1. We're watching the triggered memory for reads.
5052 In that case, trust the target, and always report
5053 the watchpoint hit to the user. Even though
5054 reads don't cause value changes, the value may
5055 have changed since the last time it was read, and
5056 since we're not trapping writes, we will not see
5057 those, and as such we should ignore our notion of
5058 old value.
5059
5060 2. We're watching the triggered memory for both
5061 reads and writes. There are two ways this may
5062 happen:
5063
5064 2.1. This is a target that can't break on data
5065 reads only, but can break on accesses (reads or
5066 writes), such as e.g., x86. We detect this case
5067 at the time we try to insert read watchpoints.
5068
5069 2.2. Otherwise, the target supports read
5070 watchpoints, but, the user set an access or write
5071 watchpoint watching the same memory as this read
5072 watchpoint.
5073
5074 If we're watching memory writes as well as reads,
5075 ignore watchpoint hits when we find that the
5076 value hasn't changed, as reads don't cause
5077 changes. This still gives false positives when
5078 the program writes the same value to memory as
5079 what there was already in memory (we will confuse
5080 it for a read), but it's much better than
5081 nothing. */
5082
5083 int other_write_watchpoint = 0;
5084
5085 if (bl->watchpoint_type == hw_read)
5086 {
5087 struct breakpoint *other_b;
5088
5089 ALL_BREAKPOINTS (other_b)
5090 if (other_b->type == bp_hardware_watchpoint
5091 || other_b->type == bp_access_watchpoint)
5092 {
5093 struct watchpoint *other_w =
5094 (struct watchpoint *) other_b;
5095
5096 if (other_w->watchpoint_triggered
5097 == watch_triggered_yes)
5098 {
5099 other_write_watchpoint = 1;
5100 break;
5101 }
5102 }
5103 }
5104
5105 if (other_write_watchpoint
5106 || bl->watchpoint_type == hw_access)
5107 {
5108 /* We're watching the same memory for writes,
5109 and the value changed since the last time we
5110 updated it, so this trap must be for a write.
5111 Ignore it. */
5112 bs->print_it = print_it_noop;
5113 bs->stop = 0;
5114 }
5115 }
5116 break;
5117 case WP_VALUE_NOT_CHANGED:
5118 if (b->type == bp_hardware_watchpoint
5119 || b->type == bp_watchpoint)
5120 {
5121 /* Don't stop: write watchpoints shouldn't fire if
5122 the value hasn't changed. */
5123 bs->print_it = print_it_noop;
5124 bs->stop = 0;
5125 }
5126 /* Stop. */
5127 break;
5128 default:
5129 /* Can't happen. */
5130 break;
5131 }
5132 }
5133 else /* must_check_value == 0 */
5134 {
5135 /* This is a case where some watchpoint(s) triggered, but
5136 not at the address of this watchpoint, or else no
5137 watchpoint triggered after all. So don't print
5138 anything for this watchpoint. */
5139 bs->print_it = print_it_noop;
5140 bs->stop = 0;
5141 }
5142 }
5143 }
5144
5145 /* For breakpoints that are currently marked as telling gdb to stop,
5146 check conditions (condition proper, frame, thread and ignore count)
5147 of breakpoint referred to by BS. If we should not stop for this
5148 breakpoint, set BS->stop to 0. */
5149
5150 static void
5151 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5152 {
5153 const struct bp_location *bl;
5154 struct breakpoint *b;
5155 /* Assume stop. */
5156 bool condition_result = true;
5157 struct expression *cond;
5158
5159 gdb_assert (bs->stop);
5160
5161 /* BS is built for existing struct breakpoint. */
5162 bl = bs->bp_location_at;
5163 gdb_assert (bl != NULL);
5164 b = bs->breakpoint_at;
5165 gdb_assert (b != NULL);
5166
5167 /* Even if the target evaluated the condition on its end and notified GDB, we
5168 need to do so again since GDB does not know if we stopped due to a
5169 breakpoint or a single step breakpoint. */
5170
5171 if (frame_id_p (b->frame_id)
5172 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5173 {
5174 bs->stop = 0;
5175 return;
5176 }
5177
5178 /* If this is a thread/task-specific breakpoint, don't waste cpu
5179 evaluating the condition if this isn't the specified
5180 thread/task. */
5181 if ((b->thread != -1 && b->thread != thread->global_num)
5182 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5183 {
5184 bs->stop = 0;
5185 return;
5186 }
5187
5188 /* Evaluate extension language breakpoints that have a "stop" method
5189 implemented. */
5190 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5191
5192 if (is_watchpoint (b))
5193 {
5194 struct watchpoint *w = (struct watchpoint *) b;
5195
5196 cond = w->cond_exp.get ();
5197 }
5198 else
5199 cond = bl->cond.get ();
5200
5201 if (cond && b->disposition != disp_del_at_next_stop)
5202 {
5203 int within_current_scope = 1;
5204 struct watchpoint * w;
5205
5206 /* We use value_mark and value_free_to_mark because it could
5207 be a long time before we return to the command level and
5208 call free_all_values. We can't call free_all_values
5209 because we might be in the middle of evaluating a
5210 function call. */
5211 struct value *mark = value_mark ();
5212
5213 if (is_watchpoint (b))
5214 w = (struct watchpoint *) b;
5215 else
5216 w = NULL;
5217
5218 /* Need to select the frame, with all that implies so that
5219 the conditions will have the right context. Because we
5220 use the frame, we will not see an inlined function's
5221 variables when we arrive at a breakpoint at the start
5222 of the inlined function; the current frame will be the
5223 call site. */
5224 if (w == NULL || w->cond_exp_valid_block == NULL)
5225 select_frame (get_current_frame ());
5226 else
5227 {
5228 struct frame_info *frame;
5229
5230 /* For local watchpoint expressions, which particular
5231 instance of a local is being watched matters, so we
5232 keep track of the frame to evaluate the expression
5233 in. To evaluate the condition however, it doesn't
5234 really matter which instantiation of the function
5235 where the condition makes sense triggers the
5236 watchpoint. This allows an expression like "watch
5237 global if q > 10" set in `func', catch writes to
5238 global on all threads that call `func', or catch
5239 writes on all recursive calls of `func' by a single
5240 thread. We simply always evaluate the condition in
5241 the innermost frame that's executing where it makes
5242 sense to evaluate the condition. It seems
5243 intuitive. */
5244 frame = block_innermost_frame (w->cond_exp_valid_block);
5245 if (frame != NULL)
5246 select_frame (frame);
5247 else
5248 within_current_scope = 0;
5249 }
5250 if (within_current_scope)
5251 {
5252 try
5253 {
5254 condition_result = breakpoint_cond_eval (cond);
5255 }
5256 catch (const gdb_exception &ex)
5257 {
5258 exception_fprintf (gdb_stderr, ex,
5259 "Error in testing breakpoint condition:\n");
5260 }
5261 }
5262 else
5263 {
5264 warning (_("Watchpoint condition cannot be tested "
5265 "in the current scope"));
5266 /* If we failed to set the right context for this
5267 watchpoint, unconditionally report it. */
5268 }
5269 /* FIXME-someday, should give breakpoint #. */
5270 value_free_to_mark (mark);
5271 }
5272
5273 if (cond && !condition_result)
5274 {
5275 bs->stop = 0;
5276 }
5277 else if (b->ignore_count > 0)
5278 {
5279 b->ignore_count--;
5280 bs->stop = 0;
5281 /* Increase the hit count even though we don't stop. */
5282 ++(b->hit_count);
5283 gdb::observers::breakpoint_modified.notify (b);
5284 }
5285 }
5286
5287 /* Returns true if we need to track moribund locations of LOC's type
5288 on the current target. */
5289
5290 static int
5291 need_moribund_for_location_type (struct bp_location *loc)
5292 {
5293 return ((loc->loc_type == bp_loc_software_breakpoint
5294 && !target_supports_stopped_by_sw_breakpoint ())
5295 || (loc->loc_type == bp_loc_hardware_breakpoint
5296 && !target_supports_stopped_by_hw_breakpoint ()));
5297 }
5298
5299 /* See breakpoint.h. */
5300
5301 bpstat
5302 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5303 const struct target_waitstatus *ws)
5304 {
5305 struct breakpoint *b;
5306 bpstat bs_head = NULL, *bs_link = &bs_head;
5307
5308 ALL_BREAKPOINTS (b)
5309 {
5310 if (!breakpoint_enabled (b))
5311 continue;
5312
5313 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5314 {
5315 /* For hardware watchpoints, we look only at the first
5316 location. The watchpoint_check function will work on the
5317 entire expression, not the individual locations. For
5318 read watchpoints, the watchpoints_triggered function has
5319 checked all locations already. */
5320 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5321 break;
5322
5323 if (!bl->enabled || bl->shlib_disabled)
5324 continue;
5325
5326 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5327 continue;
5328
5329 /* Come here if it's a watchpoint, or if the break address
5330 matches. */
5331
5332 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5333 explain stop. */
5334
5335 /* Assume we stop. Should we find a watchpoint that is not
5336 actually triggered, or if the condition of the breakpoint
5337 evaluates as false, we'll reset 'stop' to 0. */
5338 bs->stop = 1;
5339 bs->print = 1;
5340
5341 /* If this is a scope breakpoint, mark the associated
5342 watchpoint as triggered so that we will handle the
5343 out-of-scope event. We'll get to the watchpoint next
5344 iteration. */
5345 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5346 {
5347 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5348
5349 w->watchpoint_triggered = watch_triggered_yes;
5350 }
5351 }
5352 }
5353
5354 /* Check if a moribund breakpoint explains the stop. */
5355 if (!target_supports_stopped_by_sw_breakpoint ()
5356 || !target_supports_stopped_by_hw_breakpoint ())
5357 {
5358 for (bp_location *loc : moribund_locations)
5359 {
5360 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5361 && need_moribund_for_location_type (loc))
5362 {
5363 bpstat bs = new bpstats (loc, &bs_link);
5364 /* For hits of moribund locations, we should just proceed. */
5365 bs->stop = 0;
5366 bs->print = 0;
5367 bs->print_it = print_it_noop;
5368 }
5369 }
5370 }
5371
5372 return bs_head;
5373 }
5374
5375 /* See breakpoint.h. */
5376
5377 bpstat
5378 bpstat_stop_status (const address_space *aspace,
5379 CORE_ADDR bp_addr, thread_info *thread,
5380 const struct target_waitstatus *ws,
5381 bpstat stop_chain)
5382 {
5383 struct breakpoint *b = NULL;
5384 /* First item of allocated bpstat's. */
5385 bpstat bs_head = stop_chain;
5386 bpstat bs;
5387 int need_remove_insert;
5388 int removed_any;
5389
5390 /* First, build the bpstat chain with locations that explain a
5391 target stop, while being careful to not set the target running,
5392 as that may invalidate locations (in particular watchpoint
5393 locations are recreated). Resuming will happen here with
5394 breakpoint conditions or watchpoint expressions that include
5395 inferior function calls. */
5396 if (bs_head == NULL)
5397 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5398
5399 /* A bit of special processing for shlib breakpoints. We need to
5400 process solib loading here, so that the lists of loaded and
5401 unloaded libraries are correct before we handle "catch load" and
5402 "catch unload". */
5403 for (bs = bs_head; bs != NULL; bs = bs->next)
5404 {
5405 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5406 {
5407 handle_solib_event ();
5408 break;
5409 }
5410 }
5411
5412 /* Now go through the locations that caused the target to stop, and
5413 check whether we're interested in reporting this stop to higher
5414 layers, or whether we should resume the target transparently. */
5415
5416 removed_any = 0;
5417
5418 for (bs = bs_head; bs != NULL; bs = bs->next)
5419 {
5420 if (!bs->stop)
5421 continue;
5422
5423 b = bs->breakpoint_at;
5424 b->ops->check_status (bs);
5425 if (bs->stop)
5426 {
5427 bpstat_check_breakpoint_conditions (bs, thread);
5428
5429 if (bs->stop)
5430 {
5431 ++(b->hit_count);
5432 gdb::observers::breakpoint_modified.notify (b);
5433
5434 /* We will stop here. */
5435 if (b->disposition == disp_disable)
5436 {
5437 --(b->enable_count);
5438 if (b->enable_count <= 0)
5439 b->enable_state = bp_disabled;
5440 removed_any = 1;
5441 }
5442 if (b->silent)
5443 bs->print = 0;
5444 bs->commands = b->commands;
5445 if (command_line_is_silent (bs->commands
5446 ? bs->commands.get () : NULL))
5447 bs->print = 0;
5448
5449 b->ops->after_condition_true (bs);
5450 }
5451
5452 }
5453
5454 /* Print nothing for this entry if we don't stop or don't
5455 print. */
5456 if (!bs->stop || !bs->print)
5457 bs->print_it = print_it_noop;
5458 }
5459
5460 /* If we aren't stopping, the value of some hardware watchpoint may
5461 not have changed, but the intermediate memory locations we are
5462 watching may have. Don't bother if we're stopping; this will get
5463 done later. */
5464 need_remove_insert = 0;
5465 if (! bpstat_causes_stop (bs_head))
5466 for (bs = bs_head; bs != NULL; bs = bs->next)
5467 if (!bs->stop
5468 && bs->breakpoint_at
5469 && is_hardware_watchpoint (bs->breakpoint_at))
5470 {
5471 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5472
5473 update_watchpoint (w, 0 /* don't reparse. */);
5474 need_remove_insert = 1;
5475 }
5476
5477 if (need_remove_insert)
5478 update_global_location_list (UGLL_MAY_INSERT);
5479 else if (removed_any)
5480 update_global_location_list (UGLL_DONT_INSERT);
5481
5482 return bs_head;
5483 }
5484
5485 static void
5486 handle_jit_event (void)
5487 {
5488 struct frame_info *frame;
5489 struct gdbarch *gdbarch;
5490
5491 if (debug_infrun)
5492 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5493
5494 /* Switch terminal for any messages produced by
5495 breakpoint_re_set. */
5496 target_terminal::ours_for_output ();
5497
5498 frame = get_current_frame ();
5499 gdbarch = get_frame_arch (frame);
5500
5501 jit_event_handler (gdbarch);
5502
5503 target_terminal::inferior ();
5504 }
5505
5506 /* Prepare WHAT final decision for infrun. */
5507
5508 /* Decide what infrun needs to do with this bpstat. */
5509
5510 struct bpstat_what
5511 bpstat_what (bpstat bs_head)
5512 {
5513 struct bpstat_what retval;
5514 bpstat bs;
5515
5516 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5517 retval.call_dummy = STOP_NONE;
5518 retval.is_longjmp = 0;
5519
5520 for (bs = bs_head; bs != NULL; bs = bs->next)
5521 {
5522 /* Extract this BS's action. After processing each BS, we check
5523 if its action overrides all we've seem so far. */
5524 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5525 enum bptype bptype;
5526
5527 if (bs->breakpoint_at == NULL)
5528 {
5529 /* I suspect this can happen if it was a momentary
5530 breakpoint which has since been deleted. */
5531 bptype = bp_none;
5532 }
5533 else
5534 bptype = bs->breakpoint_at->type;
5535
5536 switch (bptype)
5537 {
5538 case bp_none:
5539 break;
5540 case bp_breakpoint:
5541 case bp_hardware_breakpoint:
5542 case bp_single_step:
5543 case bp_until:
5544 case bp_finish:
5545 case bp_shlib_event:
5546 if (bs->stop)
5547 {
5548 if (bs->print)
5549 this_action = BPSTAT_WHAT_STOP_NOISY;
5550 else
5551 this_action = BPSTAT_WHAT_STOP_SILENT;
5552 }
5553 else
5554 this_action = BPSTAT_WHAT_SINGLE;
5555 break;
5556 case bp_watchpoint:
5557 case bp_hardware_watchpoint:
5558 case bp_read_watchpoint:
5559 case bp_access_watchpoint:
5560 if (bs->stop)
5561 {
5562 if (bs->print)
5563 this_action = BPSTAT_WHAT_STOP_NOISY;
5564 else
5565 this_action = BPSTAT_WHAT_STOP_SILENT;
5566 }
5567 else
5568 {
5569 /* There was a watchpoint, but we're not stopping.
5570 This requires no further action. */
5571 }
5572 break;
5573 case bp_longjmp:
5574 case bp_longjmp_call_dummy:
5575 case bp_exception:
5576 if (bs->stop)
5577 {
5578 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5579 retval.is_longjmp = bptype != bp_exception;
5580 }
5581 else
5582 this_action = BPSTAT_WHAT_SINGLE;
5583 break;
5584 case bp_longjmp_resume:
5585 case bp_exception_resume:
5586 if (bs->stop)
5587 {
5588 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5589 retval.is_longjmp = bptype == bp_longjmp_resume;
5590 }
5591 else
5592 this_action = BPSTAT_WHAT_SINGLE;
5593 break;
5594 case bp_step_resume:
5595 if (bs->stop)
5596 this_action = BPSTAT_WHAT_STEP_RESUME;
5597 else
5598 {
5599 /* It is for the wrong frame. */
5600 this_action = BPSTAT_WHAT_SINGLE;
5601 }
5602 break;
5603 case bp_hp_step_resume:
5604 if (bs->stop)
5605 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5606 else
5607 {
5608 /* It is for the wrong frame. */
5609 this_action = BPSTAT_WHAT_SINGLE;
5610 }
5611 break;
5612 case bp_watchpoint_scope:
5613 case bp_thread_event:
5614 case bp_overlay_event:
5615 case bp_longjmp_master:
5616 case bp_std_terminate_master:
5617 case bp_exception_master:
5618 this_action = BPSTAT_WHAT_SINGLE;
5619 break;
5620 case bp_catchpoint:
5621 if (bs->stop)
5622 {
5623 if (bs->print)
5624 this_action = BPSTAT_WHAT_STOP_NOISY;
5625 else
5626 this_action = BPSTAT_WHAT_STOP_SILENT;
5627 }
5628 else
5629 {
5630 /* There was a catchpoint, but we're not stopping.
5631 This requires no further action. */
5632 }
5633 break;
5634 case bp_jit_event:
5635 this_action = BPSTAT_WHAT_SINGLE;
5636 break;
5637 case bp_call_dummy:
5638 /* Make sure the action is stop (silent or noisy),
5639 so infrun.c pops the dummy frame. */
5640 retval.call_dummy = STOP_STACK_DUMMY;
5641 this_action = BPSTAT_WHAT_STOP_SILENT;
5642 break;
5643 case bp_std_terminate:
5644 /* Make sure the action is stop (silent or noisy),
5645 so infrun.c pops the dummy frame. */
5646 retval.call_dummy = STOP_STD_TERMINATE;
5647 this_action = BPSTAT_WHAT_STOP_SILENT;
5648 break;
5649 case bp_tracepoint:
5650 case bp_fast_tracepoint:
5651 case bp_static_tracepoint:
5652 /* Tracepoint hits should not be reported back to GDB, and
5653 if one got through somehow, it should have been filtered
5654 out already. */
5655 internal_error (__FILE__, __LINE__,
5656 _("bpstat_what: tracepoint encountered"));
5657 break;
5658 case bp_gnu_ifunc_resolver:
5659 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5660 this_action = BPSTAT_WHAT_SINGLE;
5661 break;
5662 case bp_gnu_ifunc_resolver_return:
5663 /* The breakpoint will be removed, execution will restart from the
5664 PC of the former breakpoint. */
5665 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5666 break;
5667
5668 case bp_dprintf:
5669 if (bs->stop)
5670 this_action = BPSTAT_WHAT_STOP_SILENT;
5671 else
5672 this_action = BPSTAT_WHAT_SINGLE;
5673 break;
5674
5675 default:
5676 internal_error (__FILE__, __LINE__,
5677 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5678 }
5679
5680 retval.main_action = std::max (retval.main_action, this_action);
5681 }
5682
5683 return retval;
5684 }
5685
5686 void
5687 bpstat_run_callbacks (bpstat bs_head)
5688 {
5689 bpstat bs;
5690
5691 for (bs = bs_head; bs != NULL; bs = bs->next)
5692 {
5693 struct breakpoint *b = bs->breakpoint_at;
5694
5695 if (b == NULL)
5696 continue;
5697 switch (b->type)
5698 {
5699 case bp_jit_event:
5700 handle_jit_event ();
5701 break;
5702 case bp_gnu_ifunc_resolver:
5703 gnu_ifunc_resolver_stop (b);
5704 break;
5705 case bp_gnu_ifunc_resolver_return:
5706 gnu_ifunc_resolver_return_stop (b);
5707 break;
5708 }
5709 }
5710 }
5711
5712 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5713 without hardware support). This isn't related to a specific bpstat,
5714 just to things like whether watchpoints are set. */
5715
5716 int
5717 bpstat_should_step (void)
5718 {
5719 struct breakpoint *b;
5720
5721 ALL_BREAKPOINTS (b)
5722 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5723 return 1;
5724 return 0;
5725 }
5726
5727 int
5728 bpstat_causes_stop (bpstat bs)
5729 {
5730 for (; bs != NULL; bs = bs->next)
5731 if (bs->stop)
5732 return 1;
5733
5734 return 0;
5735 }
5736
5737 \f
5738
5739 /* Compute a string of spaces suitable to indent the next line
5740 so it starts at the position corresponding to the table column
5741 named COL_NAME in the currently active table of UIOUT. */
5742
5743 static char *
5744 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5745 {
5746 static char wrap_indent[80];
5747 int i, total_width, width, align;
5748 const char *text;
5749
5750 total_width = 0;
5751 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5752 {
5753 if (strcmp (text, col_name) == 0)
5754 {
5755 gdb_assert (total_width < sizeof wrap_indent);
5756 memset (wrap_indent, ' ', total_width);
5757 wrap_indent[total_width] = 0;
5758
5759 return wrap_indent;
5760 }
5761
5762 total_width += width + 1;
5763 }
5764
5765 return NULL;
5766 }
5767
5768 /* Determine if the locations of this breakpoint will have their conditions
5769 evaluated by the target, host or a mix of both. Returns the following:
5770
5771 "host": Host evals condition.
5772 "host or target": Host or Target evals condition.
5773 "target": Target evals condition.
5774 */
5775
5776 static const char *
5777 bp_condition_evaluator (struct breakpoint *b)
5778 {
5779 struct bp_location *bl;
5780 char host_evals = 0;
5781 char target_evals = 0;
5782
5783 if (!b)
5784 return NULL;
5785
5786 if (!is_breakpoint (b))
5787 return NULL;
5788
5789 if (gdb_evaluates_breakpoint_condition_p ()
5790 || !target_supports_evaluation_of_breakpoint_conditions ())
5791 return condition_evaluation_host;
5792
5793 for (bl = b->loc; bl; bl = bl->next)
5794 {
5795 if (bl->cond_bytecode)
5796 target_evals++;
5797 else
5798 host_evals++;
5799 }
5800
5801 if (host_evals && target_evals)
5802 return condition_evaluation_both;
5803 else if (target_evals)
5804 return condition_evaluation_target;
5805 else
5806 return condition_evaluation_host;
5807 }
5808
5809 /* Determine the breakpoint location's condition evaluator. This is
5810 similar to bp_condition_evaluator, but for locations. */
5811
5812 static const char *
5813 bp_location_condition_evaluator (struct bp_location *bl)
5814 {
5815 if (bl && !is_breakpoint (bl->owner))
5816 return NULL;
5817
5818 if (gdb_evaluates_breakpoint_condition_p ()
5819 || !target_supports_evaluation_of_breakpoint_conditions ())
5820 return condition_evaluation_host;
5821
5822 if (bl && bl->cond_bytecode)
5823 return condition_evaluation_target;
5824 else
5825 return condition_evaluation_host;
5826 }
5827
5828 /* Print the LOC location out of the list of B->LOC locations. */
5829
5830 static void
5831 print_breakpoint_location (struct breakpoint *b,
5832 struct bp_location *loc)
5833 {
5834 struct ui_out *uiout = current_uiout;
5835
5836 scoped_restore_current_program_space restore_pspace;
5837
5838 if (loc != NULL && loc->shlib_disabled)
5839 loc = NULL;
5840
5841 if (loc != NULL)
5842 set_current_program_space (loc->pspace);
5843
5844 if (b->display_canonical)
5845 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5846 else if (loc && loc->symtab)
5847 {
5848 const struct symbol *sym = loc->symbol;
5849
5850 if (sym)
5851 {
5852 uiout->text ("in ");
5853 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5854 ui_out_style_kind::FUNCTION);
5855 uiout->text (" ");
5856 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5857 uiout->text ("at ");
5858 }
5859 uiout->field_string ("file",
5860 symtab_to_filename_for_display (loc->symtab),
5861 ui_out_style_kind::FILE);
5862 uiout->text (":");
5863
5864 if (uiout->is_mi_like_p ())
5865 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5866
5867 uiout->field_int ("line", loc->line_number);
5868 }
5869 else if (loc)
5870 {
5871 string_file stb;
5872
5873 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5874 demangle, "");
5875 uiout->field_stream ("at", stb);
5876 }
5877 else
5878 {
5879 uiout->field_string ("pending",
5880 event_location_to_string (b->location.get ()));
5881 /* If extra_string is available, it could be holding a condition
5882 or dprintf arguments. In either case, make sure it is printed,
5883 too, but only for non-MI streams. */
5884 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5885 {
5886 if (b->type == bp_dprintf)
5887 uiout->text (",");
5888 else
5889 uiout->text (" ");
5890 uiout->text (b->extra_string);
5891 }
5892 }
5893
5894 if (loc && is_breakpoint (b)
5895 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5896 && bp_condition_evaluator (b) == condition_evaluation_both)
5897 {
5898 uiout->text (" (");
5899 uiout->field_string ("evaluated-by",
5900 bp_location_condition_evaluator (loc));
5901 uiout->text (")");
5902 }
5903 }
5904
5905 static const char *
5906 bptype_string (enum bptype type)
5907 {
5908 struct ep_type_description
5909 {
5910 enum bptype type;
5911 const char *description;
5912 };
5913 static struct ep_type_description bptypes[] =
5914 {
5915 {bp_none, "?deleted?"},
5916 {bp_breakpoint, "breakpoint"},
5917 {bp_hardware_breakpoint, "hw breakpoint"},
5918 {bp_single_step, "sw single-step"},
5919 {bp_until, "until"},
5920 {bp_finish, "finish"},
5921 {bp_watchpoint, "watchpoint"},
5922 {bp_hardware_watchpoint, "hw watchpoint"},
5923 {bp_read_watchpoint, "read watchpoint"},
5924 {bp_access_watchpoint, "acc watchpoint"},
5925 {bp_longjmp, "longjmp"},
5926 {bp_longjmp_resume, "longjmp resume"},
5927 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5928 {bp_exception, "exception"},
5929 {bp_exception_resume, "exception resume"},
5930 {bp_step_resume, "step resume"},
5931 {bp_hp_step_resume, "high-priority step resume"},
5932 {bp_watchpoint_scope, "watchpoint scope"},
5933 {bp_call_dummy, "call dummy"},
5934 {bp_std_terminate, "std::terminate"},
5935 {bp_shlib_event, "shlib events"},
5936 {bp_thread_event, "thread events"},
5937 {bp_overlay_event, "overlay events"},
5938 {bp_longjmp_master, "longjmp master"},
5939 {bp_std_terminate_master, "std::terminate master"},
5940 {bp_exception_master, "exception master"},
5941 {bp_catchpoint, "catchpoint"},
5942 {bp_tracepoint, "tracepoint"},
5943 {bp_fast_tracepoint, "fast tracepoint"},
5944 {bp_static_tracepoint, "static tracepoint"},
5945 {bp_dprintf, "dprintf"},
5946 {bp_jit_event, "jit events"},
5947 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5948 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5949 };
5950
5951 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5952 || ((int) type != bptypes[(int) type].type))
5953 internal_error (__FILE__, __LINE__,
5954 _("bptypes table does not describe type #%d."),
5955 (int) type);
5956
5957 return bptypes[(int) type].description;
5958 }
5959
5960 /* For MI, output a field named 'thread-groups' with a list as the value.
5961 For CLI, prefix the list with the string 'inf'. */
5962
5963 static void
5964 output_thread_groups (struct ui_out *uiout,
5965 const char *field_name,
5966 const std::vector<int> &inf_nums,
5967 int mi_only)
5968 {
5969 int is_mi = uiout->is_mi_like_p ();
5970
5971 /* For backward compatibility, don't display inferiors in CLI unless
5972 there are several. Always display them for MI. */
5973 if (!is_mi && mi_only)
5974 return;
5975
5976 ui_out_emit_list list_emitter (uiout, field_name);
5977
5978 for (size_t i = 0; i < inf_nums.size (); i++)
5979 {
5980 if (is_mi)
5981 {
5982 char mi_group[10];
5983
5984 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5985 uiout->field_string (NULL, mi_group);
5986 }
5987 else
5988 {
5989 if (i == 0)
5990 uiout->text (" inf ");
5991 else
5992 uiout->text (", ");
5993
5994 uiout->text (plongest (inf_nums[i]));
5995 }
5996 }
5997 }
5998
5999 /* Print B to gdb_stdout. */
6000
6001 static void
6002 print_one_breakpoint_location (struct breakpoint *b,
6003 struct bp_location *loc,
6004 int loc_number,
6005 struct bp_location **last_loc,
6006 int allflag)
6007 {
6008 struct command_line *l;
6009 static char bpenables[] = "nynny";
6010
6011 struct ui_out *uiout = current_uiout;
6012 int header_of_multiple = 0;
6013 int part_of_multiple = (loc != NULL);
6014 struct value_print_options opts;
6015
6016 get_user_print_options (&opts);
6017
6018 gdb_assert (!loc || loc_number != 0);
6019 /* See comment in print_one_breakpoint concerning treatment of
6020 breakpoints with single disabled location. */
6021 if (loc == NULL
6022 && (b->loc != NULL
6023 && (b->loc->next != NULL || !b->loc->enabled)))
6024 header_of_multiple = 1;
6025 if (loc == NULL)
6026 loc = b->loc;
6027
6028 annotate_record ();
6029
6030 /* 1 */
6031 annotate_field (0);
6032 if (part_of_multiple)
6033 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6034 else
6035 uiout->field_int ("number", b->number);
6036
6037 /* 2 */
6038 annotate_field (1);
6039 if (part_of_multiple)
6040 uiout->field_skip ("type");
6041 else
6042 uiout->field_string ("type", bptype_string (b->type));
6043
6044 /* 3 */
6045 annotate_field (2);
6046 if (part_of_multiple)
6047 uiout->field_skip ("disp");
6048 else
6049 uiout->field_string ("disp", bpdisp_text (b->disposition));
6050
6051 /* 4 */
6052 annotate_field (3);
6053 if (part_of_multiple)
6054 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6055 else
6056 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6057
6058 /* 5 and 6 */
6059 if (b->ops != NULL && b->ops->print_one != NULL)
6060 {
6061 /* Although the print_one can possibly print all locations,
6062 calling it here is not likely to get any nice result. So,
6063 make sure there's just one location. */
6064 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6065 b->ops->print_one (b, last_loc);
6066 }
6067 else
6068 switch (b->type)
6069 {
6070 case bp_none:
6071 internal_error (__FILE__, __LINE__,
6072 _("print_one_breakpoint: bp_none encountered\n"));
6073 break;
6074
6075 case bp_watchpoint:
6076 case bp_hardware_watchpoint:
6077 case bp_read_watchpoint:
6078 case bp_access_watchpoint:
6079 {
6080 struct watchpoint *w = (struct watchpoint *) b;
6081
6082 /* Field 4, the address, is omitted (which makes the columns
6083 not line up too nicely with the headers, but the effect
6084 is relatively readable). */
6085 if (opts.addressprint)
6086 uiout->field_skip ("addr");
6087 annotate_field (5);
6088 uiout->field_string ("what", w->exp_string);
6089 }
6090 break;
6091
6092 case bp_breakpoint:
6093 case bp_hardware_breakpoint:
6094 case bp_single_step:
6095 case bp_until:
6096 case bp_finish:
6097 case bp_longjmp:
6098 case bp_longjmp_resume:
6099 case bp_longjmp_call_dummy:
6100 case bp_exception:
6101 case bp_exception_resume:
6102 case bp_step_resume:
6103 case bp_hp_step_resume:
6104 case bp_watchpoint_scope:
6105 case bp_call_dummy:
6106 case bp_std_terminate:
6107 case bp_shlib_event:
6108 case bp_thread_event:
6109 case bp_overlay_event:
6110 case bp_longjmp_master:
6111 case bp_std_terminate_master:
6112 case bp_exception_master:
6113 case bp_tracepoint:
6114 case bp_fast_tracepoint:
6115 case bp_static_tracepoint:
6116 case bp_dprintf:
6117 case bp_jit_event:
6118 case bp_gnu_ifunc_resolver:
6119 case bp_gnu_ifunc_resolver_return:
6120 if (opts.addressprint)
6121 {
6122 annotate_field (4);
6123 if (header_of_multiple)
6124 uiout->field_string ("addr", "<MULTIPLE>");
6125 else if (b->loc == NULL || loc->shlib_disabled)
6126 uiout->field_string ("addr", "<PENDING>");
6127 else
6128 uiout->field_core_addr ("addr",
6129 loc->gdbarch, loc->address);
6130 }
6131 annotate_field (5);
6132 if (!header_of_multiple)
6133 print_breakpoint_location (b, loc);
6134 if (b->loc)
6135 *last_loc = b->loc;
6136 break;
6137 }
6138
6139
6140 if (loc != NULL && !header_of_multiple)
6141 {
6142 std::vector<int> inf_nums;
6143 int mi_only = 1;
6144
6145 for (inferior *inf : all_inferiors ())
6146 {
6147 if (inf->pspace == loc->pspace)
6148 inf_nums.push_back (inf->num);
6149 }
6150
6151 /* For backward compatibility, don't display inferiors in CLI unless
6152 there are several. Always display for MI. */
6153 if (allflag
6154 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6155 && (number_of_program_spaces () > 1
6156 || number_of_inferiors () > 1)
6157 /* LOC is for existing B, it cannot be in
6158 moribund_locations and thus having NULL OWNER. */
6159 && loc->owner->type != bp_catchpoint))
6160 mi_only = 0;
6161 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6162 }
6163
6164 if (!part_of_multiple)
6165 {
6166 if (b->thread != -1)
6167 {
6168 /* FIXME: This seems to be redundant and lost here; see the
6169 "stop only in" line a little further down. */
6170 uiout->text (" thread ");
6171 uiout->field_int ("thread", b->thread);
6172 }
6173 else if (b->task != 0)
6174 {
6175 uiout->text (" task ");
6176 uiout->field_int ("task", b->task);
6177 }
6178 }
6179
6180 uiout->text ("\n");
6181
6182 if (!part_of_multiple)
6183 b->ops->print_one_detail (b, uiout);
6184
6185 if (part_of_multiple && frame_id_p (b->frame_id))
6186 {
6187 annotate_field (6);
6188 uiout->text ("\tstop only in stack frame at ");
6189 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6190 the frame ID. */
6191 uiout->field_core_addr ("frame",
6192 b->gdbarch, b->frame_id.stack_addr);
6193 uiout->text ("\n");
6194 }
6195
6196 if (!part_of_multiple && b->cond_string)
6197 {
6198 annotate_field (7);
6199 if (is_tracepoint (b))
6200 uiout->text ("\ttrace only if ");
6201 else
6202 uiout->text ("\tstop only if ");
6203 uiout->field_string ("cond", b->cond_string);
6204
6205 /* Print whether the target is doing the breakpoint's condition
6206 evaluation. If GDB is doing the evaluation, don't print anything. */
6207 if (is_breakpoint (b)
6208 && breakpoint_condition_evaluation_mode ()
6209 == condition_evaluation_target)
6210 {
6211 uiout->text (" (");
6212 uiout->field_string ("evaluated-by",
6213 bp_condition_evaluator (b));
6214 uiout->text (" evals)");
6215 }
6216 uiout->text ("\n");
6217 }
6218
6219 if (!part_of_multiple && b->thread != -1)
6220 {
6221 /* FIXME should make an annotation for this. */
6222 uiout->text ("\tstop only in thread ");
6223 if (uiout->is_mi_like_p ())
6224 uiout->field_int ("thread", b->thread);
6225 else
6226 {
6227 struct thread_info *thr = find_thread_global_id (b->thread);
6228
6229 uiout->field_string ("thread", print_thread_id (thr));
6230 }
6231 uiout->text ("\n");
6232 }
6233
6234 if (!part_of_multiple)
6235 {
6236 if (b->hit_count)
6237 {
6238 /* FIXME should make an annotation for this. */
6239 if (is_catchpoint (b))
6240 uiout->text ("\tcatchpoint");
6241 else if (is_tracepoint (b))
6242 uiout->text ("\ttracepoint");
6243 else
6244 uiout->text ("\tbreakpoint");
6245 uiout->text (" already hit ");
6246 uiout->field_int ("times", b->hit_count);
6247 if (b->hit_count == 1)
6248 uiout->text (" time\n");
6249 else
6250 uiout->text (" times\n");
6251 }
6252 else
6253 {
6254 /* Output the count also if it is zero, but only if this is mi. */
6255 if (uiout->is_mi_like_p ())
6256 uiout->field_int ("times", b->hit_count);
6257 }
6258 }
6259
6260 if (!part_of_multiple && b->ignore_count)
6261 {
6262 annotate_field (8);
6263 uiout->text ("\tignore next ");
6264 uiout->field_int ("ignore", b->ignore_count);
6265 uiout->text (" hits\n");
6266 }
6267
6268 /* Note that an enable count of 1 corresponds to "enable once"
6269 behavior, which is reported by the combination of enablement and
6270 disposition, so we don't need to mention it here. */
6271 if (!part_of_multiple && b->enable_count > 1)
6272 {
6273 annotate_field (8);
6274 uiout->text ("\tdisable after ");
6275 /* Tweak the wording to clarify that ignore and enable counts
6276 are distinct, and have additive effect. */
6277 if (b->ignore_count)
6278 uiout->text ("additional ");
6279 else
6280 uiout->text ("next ");
6281 uiout->field_int ("enable", b->enable_count);
6282 uiout->text (" hits\n");
6283 }
6284
6285 if (!part_of_multiple && is_tracepoint (b))
6286 {
6287 struct tracepoint *tp = (struct tracepoint *) b;
6288
6289 if (tp->traceframe_usage)
6290 {
6291 uiout->text ("\ttrace buffer usage ");
6292 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6293 uiout->text (" bytes\n");
6294 }
6295 }
6296
6297 l = b->commands ? b->commands.get () : NULL;
6298 if (!part_of_multiple && l)
6299 {
6300 annotate_field (9);
6301 ui_out_emit_tuple tuple_emitter (uiout, "script");
6302 print_command_lines (uiout, l, 4);
6303 }
6304
6305 if (is_tracepoint (b))
6306 {
6307 struct tracepoint *t = (struct tracepoint *) b;
6308
6309 if (!part_of_multiple && t->pass_count)
6310 {
6311 annotate_field (10);
6312 uiout->text ("\tpass count ");
6313 uiout->field_int ("pass", t->pass_count);
6314 uiout->text (" \n");
6315 }
6316
6317 /* Don't display it when tracepoint or tracepoint location is
6318 pending. */
6319 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6320 {
6321 annotate_field (11);
6322
6323 if (uiout->is_mi_like_p ())
6324 uiout->field_string ("installed",
6325 loc->inserted ? "y" : "n");
6326 else
6327 {
6328 if (loc->inserted)
6329 uiout->text ("\t");
6330 else
6331 uiout->text ("\tnot ");
6332 uiout->text ("installed on target\n");
6333 }
6334 }
6335 }
6336
6337 if (uiout->is_mi_like_p () && !part_of_multiple)
6338 {
6339 if (is_watchpoint (b))
6340 {
6341 struct watchpoint *w = (struct watchpoint *) b;
6342
6343 uiout->field_string ("original-location", w->exp_string);
6344 }
6345 else if (b->location != NULL
6346 && event_location_to_string (b->location.get ()) != NULL)
6347 uiout->field_string ("original-location",
6348 event_location_to_string (b->location.get ()));
6349 }
6350 }
6351
6352 static void
6353 print_one_breakpoint (struct breakpoint *b,
6354 struct bp_location **last_loc,
6355 int allflag)
6356 {
6357 struct ui_out *uiout = current_uiout;
6358 bool use_fixed_output = mi_multi_location_breakpoint_output_fixed (uiout);
6359
6360 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6361 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6362
6363 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6364 are outside. */
6365 if (!use_fixed_output)
6366 bkpt_tuple_emitter.reset ();
6367
6368 /* If this breakpoint has custom print function,
6369 it's already printed. Otherwise, print individual
6370 locations, if any. */
6371 if (b->ops == NULL || b->ops->print_one == NULL)
6372 {
6373 /* If breakpoint has a single location that is disabled, we
6374 print it as if it had several locations, since otherwise it's
6375 hard to represent "breakpoint enabled, location disabled"
6376 situation.
6377
6378 Note that while hardware watchpoints have several locations
6379 internally, that's not a property exposed to user. */
6380 if (b->loc
6381 && !is_hardware_watchpoint (b)
6382 && (b->loc->next || !b->loc->enabled))
6383 {
6384 gdb::optional<ui_out_emit_list> locations_list;
6385
6386 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6387 MI record. For later versions, place breakpoint locations in a
6388 list. */
6389 if (uiout->is_mi_like_p () && use_fixed_output)
6390 locations_list.emplace (uiout, "locations");
6391
6392 int n = 1;
6393 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6394 {
6395 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6396 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6397 }
6398 }
6399 }
6400 }
6401
6402 static int
6403 breakpoint_address_bits (struct breakpoint *b)
6404 {
6405 int print_address_bits = 0;
6406 struct bp_location *loc;
6407
6408 /* Software watchpoints that aren't watching memory don't have an
6409 address to print. */
6410 if (is_no_memory_software_watchpoint (b))
6411 return 0;
6412
6413 for (loc = b->loc; loc; loc = loc->next)
6414 {
6415 int addr_bit;
6416
6417 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6418 if (addr_bit > print_address_bits)
6419 print_address_bits = addr_bit;
6420 }
6421
6422 return print_address_bits;
6423 }
6424
6425 /* See breakpoint.h. */
6426
6427 void
6428 print_breakpoint (breakpoint *b)
6429 {
6430 struct bp_location *dummy_loc = NULL;
6431 print_one_breakpoint (b, &dummy_loc, 0);
6432 }
6433
6434 /* Return true if this breakpoint was set by the user, false if it is
6435 internal or momentary. */
6436
6437 int
6438 user_breakpoint_p (struct breakpoint *b)
6439 {
6440 return b->number > 0;
6441 }
6442
6443 /* See breakpoint.h. */
6444
6445 int
6446 pending_breakpoint_p (struct breakpoint *b)
6447 {
6448 return b->loc == NULL;
6449 }
6450
6451 /* Print information on user settable breakpoint (watchpoint, etc)
6452 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6453 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6454 FILTER is non-NULL, call it on each breakpoint and only include the
6455 ones for which it returns non-zero. Return the total number of
6456 breakpoints listed. */
6457
6458 static int
6459 breakpoint_1 (const char *args, int allflag,
6460 int (*filter) (const struct breakpoint *))
6461 {
6462 struct breakpoint *b;
6463 struct bp_location *last_loc = NULL;
6464 int nr_printable_breakpoints;
6465 struct value_print_options opts;
6466 int print_address_bits = 0;
6467 int print_type_col_width = 14;
6468 struct ui_out *uiout = current_uiout;
6469
6470 get_user_print_options (&opts);
6471
6472 /* Compute the number of rows in the table, as well as the size
6473 required for address fields. */
6474 nr_printable_breakpoints = 0;
6475 ALL_BREAKPOINTS (b)
6476 {
6477 /* If we have a filter, only list the breakpoints it accepts. */
6478 if (filter && !filter (b))
6479 continue;
6480
6481 /* If we have an "args" string, it is a list of breakpoints to
6482 accept. Skip the others. */
6483 if (args != NULL && *args != '\0')
6484 {
6485 if (allflag && parse_and_eval_long (args) != b->number)
6486 continue;
6487 if (!allflag && !number_is_in_list (args, b->number))
6488 continue;
6489 }
6490
6491 if (allflag || user_breakpoint_p (b))
6492 {
6493 int addr_bit, type_len;
6494
6495 addr_bit = breakpoint_address_bits (b);
6496 if (addr_bit > print_address_bits)
6497 print_address_bits = addr_bit;
6498
6499 type_len = strlen (bptype_string (b->type));
6500 if (type_len > print_type_col_width)
6501 print_type_col_width = type_len;
6502
6503 nr_printable_breakpoints++;
6504 }
6505 }
6506
6507 {
6508 ui_out_emit_table table_emitter (uiout,
6509 opts.addressprint ? 6 : 5,
6510 nr_printable_breakpoints,
6511 "BreakpointTable");
6512
6513 if (nr_printable_breakpoints > 0)
6514 annotate_breakpoints_headers ();
6515 if (nr_printable_breakpoints > 0)
6516 annotate_field (0);
6517 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6518 if (nr_printable_breakpoints > 0)
6519 annotate_field (1);
6520 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6521 if (nr_printable_breakpoints > 0)
6522 annotate_field (2);
6523 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6524 if (nr_printable_breakpoints > 0)
6525 annotate_field (3);
6526 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6527 if (opts.addressprint)
6528 {
6529 if (nr_printable_breakpoints > 0)
6530 annotate_field (4);
6531 if (print_address_bits <= 32)
6532 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6533 else
6534 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6535 }
6536 if (nr_printable_breakpoints > 0)
6537 annotate_field (5);
6538 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6539 uiout->table_body ();
6540 if (nr_printable_breakpoints > 0)
6541 annotate_breakpoints_table ();
6542
6543 ALL_BREAKPOINTS (b)
6544 {
6545 QUIT;
6546 /* If we have a filter, only list the breakpoints it accepts. */
6547 if (filter && !filter (b))
6548 continue;
6549
6550 /* If we have an "args" string, it is a list of breakpoints to
6551 accept. Skip the others. */
6552
6553 if (args != NULL && *args != '\0')
6554 {
6555 if (allflag) /* maintenance info breakpoint */
6556 {
6557 if (parse_and_eval_long (args) != b->number)
6558 continue;
6559 }
6560 else /* all others */
6561 {
6562 if (!number_is_in_list (args, b->number))
6563 continue;
6564 }
6565 }
6566 /* We only print out user settable breakpoints unless the
6567 allflag is set. */
6568 if (allflag || user_breakpoint_p (b))
6569 print_one_breakpoint (b, &last_loc, allflag);
6570 }
6571 }
6572
6573 if (nr_printable_breakpoints == 0)
6574 {
6575 /* If there's a filter, let the caller decide how to report
6576 empty list. */
6577 if (!filter)
6578 {
6579 if (args == NULL || *args == '\0')
6580 uiout->message ("No breakpoints or watchpoints.\n");
6581 else
6582 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6583 args);
6584 }
6585 }
6586 else
6587 {
6588 if (last_loc && !server_command)
6589 set_next_address (last_loc->gdbarch, last_loc->address);
6590 }
6591
6592 /* FIXME? Should this be moved up so that it is only called when
6593 there have been breakpoints? */
6594 annotate_breakpoints_table_end ();
6595
6596 return nr_printable_breakpoints;
6597 }
6598
6599 /* Display the value of default-collect in a way that is generally
6600 compatible with the breakpoint list. */
6601
6602 static void
6603 default_collect_info (void)
6604 {
6605 struct ui_out *uiout = current_uiout;
6606
6607 /* If it has no value (which is frequently the case), say nothing; a
6608 message like "No default-collect." gets in user's face when it's
6609 not wanted. */
6610 if (!*default_collect)
6611 return;
6612
6613 /* The following phrase lines up nicely with per-tracepoint collect
6614 actions. */
6615 uiout->text ("default collect ");
6616 uiout->field_string ("default-collect", default_collect);
6617 uiout->text (" \n");
6618 }
6619
6620 static void
6621 info_breakpoints_command (const char *args, int from_tty)
6622 {
6623 breakpoint_1 (args, 0, NULL);
6624
6625 default_collect_info ();
6626 }
6627
6628 static void
6629 info_watchpoints_command (const char *args, int from_tty)
6630 {
6631 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6632 struct ui_out *uiout = current_uiout;
6633
6634 if (num_printed == 0)
6635 {
6636 if (args == NULL || *args == '\0')
6637 uiout->message ("No watchpoints.\n");
6638 else
6639 uiout->message ("No watchpoint matching '%s'.\n", args);
6640 }
6641 }
6642
6643 static void
6644 maintenance_info_breakpoints (const char *args, int from_tty)
6645 {
6646 breakpoint_1 (args, 1, NULL);
6647
6648 default_collect_info ();
6649 }
6650
6651 static int
6652 breakpoint_has_pc (struct breakpoint *b,
6653 struct program_space *pspace,
6654 CORE_ADDR pc, struct obj_section *section)
6655 {
6656 struct bp_location *bl = b->loc;
6657
6658 for (; bl; bl = bl->next)
6659 {
6660 if (bl->pspace == pspace
6661 && bl->address == pc
6662 && (!overlay_debugging || bl->section == section))
6663 return 1;
6664 }
6665 return 0;
6666 }
6667
6668 /* Print a message describing any user-breakpoints set at PC. This
6669 concerns with logical breakpoints, so we match program spaces, not
6670 address spaces. */
6671
6672 static void
6673 describe_other_breakpoints (struct gdbarch *gdbarch,
6674 struct program_space *pspace, CORE_ADDR pc,
6675 struct obj_section *section, int thread)
6676 {
6677 int others = 0;
6678 struct breakpoint *b;
6679
6680 ALL_BREAKPOINTS (b)
6681 others += (user_breakpoint_p (b)
6682 && breakpoint_has_pc (b, pspace, pc, section));
6683 if (others > 0)
6684 {
6685 if (others == 1)
6686 printf_filtered (_("Note: breakpoint "));
6687 else /* if (others == ???) */
6688 printf_filtered (_("Note: breakpoints "));
6689 ALL_BREAKPOINTS (b)
6690 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6691 {
6692 others--;
6693 printf_filtered ("%d", b->number);
6694 if (b->thread == -1 && thread != -1)
6695 printf_filtered (" (all threads)");
6696 else if (b->thread != -1)
6697 printf_filtered (" (thread %d)", b->thread);
6698 printf_filtered ("%s%s ",
6699 ((b->enable_state == bp_disabled
6700 || b->enable_state == bp_call_disabled)
6701 ? " (disabled)"
6702 : ""),
6703 (others > 1) ? ","
6704 : ((others == 1) ? " and" : ""));
6705 }
6706 printf_filtered (_("also set at pc "));
6707 fputs_styled (paddress (gdbarch, pc), address_style.style (), gdb_stdout);
6708 printf_filtered (".\n");
6709 }
6710 }
6711 \f
6712
6713 /* Return true iff it is meaningful to use the address member of
6714 BPT locations. For some breakpoint types, the locations' address members
6715 are irrelevant and it makes no sense to attempt to compare them to other
6716 addresses (or use them for any other purpose either).
6717
6718 More specifically, each of the following breakpoint types will
6719 always have a zero valued location address and we don't want to mark
6720 breakpoints of any of these types to be a duplicate of an actual
6721 breakpoint location at address zero:
6722
6723 bp_watchpoint
6724 bp_catchpoint
6725
6726 */
6727
6728 static int
6729 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6730 {
6731 enum bptype type = bpt->type;
6732
6733 return (type != bp_watchpoint && type != bp_catchpoint);
6734 }
6735
6736 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6737 true if LOC1 and LOC2 represent the same watchpoint location. */
6738
6739 static int
6740 watchpoint_locations_match (struct bp_location *loc1,
6741 struct bp_location *loc2)
6742 {
6743 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6744 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6745
6746 /* Both of them must exist. */
6747 gdb_assert (w1 != NULL);
6748 gdb_assert (w2 != NULL);
6749
6750 /* If the target can evaluate the condition expression in hardware,
6751 then we we need to insert both watchpoints even if they are at
6752 the same place. Otherwise the watchpoint will only trigger when
6753 the condition of whichever watchpoint was inserted evaluates to
6754 true, not giving a chance for GDB to check the condition of the
6755 other watchpoint. */
6756 if ((w1->cond_exp
6757 && target_can_accel_watchpoint_condition (loc1->address,
6758 loc1->length,
6759 loc1->watchpoint_type,
6760 w1->cond_exp.get ()))
6761 || (w2->cond_exp
6762 && target_can_accel_watchpoint_condition (loc2->address,
6763 loc2->length,
6764 loc2->watchpoint_type,
6765 w2->cond_exp.get ())))
6766 return 0;
6767
6768 /* Note that this checks the owner's type, not the location's. In
6769 case the target does not support read watchpoints, but does
6770 support access watchpoints, we'll have bp_read_watchpoint
6771 watchpoints with hw_access locations. Those should be considered
6772 duplicates of hw_read locations. The hw_read locations will
6773 become hw_access locations later. */
6774 return (loc1->owner->type == loc2->owner->type
6775 && loc1->pspace->aspace == loc2->pspace->aspace
6776 && loc1->address == loc2->address
6777 && loc1->length == loc2->length);
6778 }
6779
6780 /* See breakpoint.h. */
6781
6782 int
6783 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6784 const address_space *aspace2, CORE_ADDR addr2)
6785 {
6786 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6787 || aspace1 == aspace2)
6788 && addr1 == addr2);
6789 }
6790
6791 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6792 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6793 matches ASPACE2. On targets that have global breakpoints, the address
6794 space doesn't really matter. */
6795
6796 static int
6797 breakpoint_address_match_range (const address_space *aspace1,
6798 CORE_ADDR addr1,
6799 int len1, const address_space *aspace2,
6800 CORE_ADDR addr2)
6801 {
6802 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6803 || aspace1 == aspace2)
6804 && addr2 >= addr1 && addr2 < addr1 + len1);
6805 }
6806
6807 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6808 a ranged breakpoint. In most targets, a match happens only if ASPACE
6809 matches the breakpoint's address space. On targets that have global
6810 breakpoints, the address space doesn't really matter. */
6811
6812 static int
6813 breakpoint_location_address_match (struct bp_location *bl,
6814 const address_space *aspace,
6815 CORE_ADDR addr)
6816 {
6817 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6818 aspace, addr)
6819 || (bl->length
6820 && breakpoint_address_match_range (bl->pspace->aspace,
6821 bl->address, bl->length,
6822 aspace, addr)));
6823 }
6824
6825 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6826 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6827 match happens only if ASPACE matches the breakpoint's address
6828 space. On targets that have global breakpoints, the address space
6829 doesn't really matter. */
6830
6831 static int
6832 breakpoint_location_address_range_overlap (struct bp_location *bl,
6833 const address_space *aspace,
6834 CORE_ADDR addr, int len)
6835 {
6836 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6837 || bl->pspace->aspace == aspace)
6838 {
6839 int bl_len = bl->length != 0 ? bl->length : 1;
6840
6841 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6842 return 1;
6843 }
6844 return 0;
6845 }
6846
6847 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6848 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6849 true, otherwise returns false. */
6850
6851 static int
6852 tracepoint_locations_match (struct bp_location *loc1,
6853 struct bp_location *loc2)
6854 {
6855 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6856 /* Since tracepoint locations are never duplicated with others', tracepoint
6857 locations at the same address of different tracepoints are regarded as
6858 different locations. */
6859 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6860 else
6861 return 0;
6862 }
6863
6864 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6865 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6866 represent the same location. */
6867
6868 static int
6869 breakpoint_locations_match (struct bp_location *loc1,
6870 struct bp_location *loc2)
6871 {
6872 int hw_point1, hw_point2;
6873
6874 /* Both of them must not be in moribund_locations. */
6875 gdb_assert (loc1->owner != NULL);
6876 gdb_assert (loc2->owner != NULL);
6877
6878 hw_point1 = is_hardware_watchpoint (loc1->owner);
6879 hw_point2 = is_hardware_watchpoint (loc2->owner);
6880
6881 if (hw_point1 != hw_point2)
6882 return 0;
6883 else if (hw_point1)
6884 return watchpoint_locations_match (loc1, loc2);
6885 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6886 return tracepoint_locations_match (loc1, loc2);
6887 else
6888 /* We compare bp_location.length in order to cover ranged breakpoints. */
6889 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6890 loc2->pspace->aspace, loc2->address)
6891 && loc1->length == loc2->length);
6892 }
6893
6894 static void
6895 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6896 int bnum, int have_bnum)
6897 {
6898 /* The longest string possibly returned by hex_string_custom
6899 is 50 chars. These must be at least that big for safety. */
6900 char astr1[64];
6901 char astr2[64];
6902
6903 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6904 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6905 if (have_bnum)
6906 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6907 bnum, astr1, astr2);
6908 else
6909 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6910 }
6911
6912 /* Adjust a breakpoint's address to account for architectural
6913 constraints on breakpoint placement. Return the adjusted address.
6914 Note: Very few targets require this kind of adjustment. For most
6915 targets, this function is simply the identity function. */
6916
6917 static CORE_ADDR
6918 adjust_breakpoint_address (struct gdbarch *gdbarch,
6919 CORE_ADDR bpaddr, enum bptype bptype)
6920 {
6921 if (bptype == bp_watchpoint
6922 || bptype == bp_hardware_watchpoint
6923 || bptype == bp_read_watchpoint
6924 || bptype == bp_access_watchpoint
6925 || bptype == bp_catchpoint)
6926 {
6927 /* Watchpoints and the various bp_catch_* eventpoints should not
6928 have their addresses modified. */
6929 return bpaddr;
6930 }
6931 else if (bptype == bp_single_step)
6932 {
6933 /* Single-step breakpoints should not have their addresses
6934 modified. If there's any architectural constrain that
6935 applies to this address, then it should have already been
6936 taken into account when the breakpoint was created in the
6937 first place. If we didn't do this, stepping through e.g.,
6938 Thumb-2 IT blocks would break. */
6939 return bpaddr;
6940 }
6941 else
6942 {
6943 CORE_ADDR adjusted_bpaddr = bpaddr;
6944
6945 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6946 {
6947 /* Some targets have architectural constraints on the placement
6948 of breakpoint instructions. Obtain the adjusted address. */
6949 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6950 }
6951
6952 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6953
6954 /* An adjusted breakpoint address can significantly alter
6955 a user's expectations. Print a warning if an adjustment
6956 is required. */
6957 if (adjusted_bpaddr != bpaddr)
6958 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6959
6960 return adjusted_bpaddr;
6961 }
6962 }
6963
6964 bp_location::bp_location (breakpoint *owner)
6965 {
6966 bp_location *loc = this;
6967
6968 loc->owner = owner;
6969 loc->cond_bytecode = NULL;
6970 loc->shlib_disabled = 0;
6971 loc->enabled = 1;
6972
6973 switch (owner->type)
6974 {
6975 case bp_breakpoint:
6976 case bp_single_step:
6977 case bp_until:
6978 case bp_finish:
6979 case bp_longjmp:
6980 case bp_longjmp_resume:
6981 case bp_longjmp_call_dummy:
6982 case bp_exception:
6983 case bp_exception_resume:
6984 case bp_step_resume:
6985 case bp_hp_step_resume:
6986 case bp_watchpoint_scope:
6987 case bp_call_dummy:
6988 case bp_std_terminate:
6989 case bp_shlib_event:
6990 case bp_thread_event:
6991 case bp_overlay_event:
6992 case bp_jit_event:
6993 case bp_longjmp_master:
6994 case bp_std_terminate_master:
6995 case bp_exception_master:
6996 case bp_gnu_ifunc_resolver:
6997 case bp_gnu_ifunc_resolver_return:
6998 case bp_dprintf:
6999 loc->loc_type = bp_loc_software_breakpoint;
7000 mark_breakpoint_location_modified (loc);
7001 break;
7002 case bp_hardware_breakpoint:
7003 loc->loc_type = bp_loc_hardware_breakpoint;
7004 mark_breakpoint_location_modified (loc);
7005 break;
7006 case bp_hardware_watchpoint:
7007 case bp_read_watchpoint:
7008 case bp_access_watchpoint:
7009 loc->loc_type = bp_loc_hardware_watchpoint;
7010 break;
7011 case bp_watchpoint:
7012 case bp_catchpoint:
7013 case bp_tracepoint:
7014 case bp_fast_tracepoint:
7015 case bp_static_tracepoint:
7016 loc->loc_type = bp_loc_other;
7017 break;
7018 default:
7019 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7020 }
7021
7022 loc->refc = 1;
7023 }
7024
7025 /* Allocate a struct bp_location. */
7026
7027 static struct bp_location *
7028 allocate_bp_location (struct breakpoint *bpt)
7029 {
7030 return bpt->ops->allocate_location (bpt);
7031 }
7032
7033 static void
7034 free_bp_location (struct bp_location *loc)
7035 {
7036 delete loc;
7037 }
7038
7039 /* Increment reference count. */
7040
7041 static void
7042 incref_bp_location (struct bp_location *bl)
7043 {
7044 ++bl->refc;
7045 }
7046
7047 /* Decrement reference count. If the reference count reaches 0,
7048 destroy the bp_location. Sets *BLP to NULL. */
7049
7050 static void
7051 decref_bp_location (struct bp_location **blp)
7052 {
7053 gdb_assert ((*blp)->refc > 0);
7054
7055 if (--(*blp)->refc == 0)
7056 free_bp_location (*blp);
7057 *blp = NULL;
7058 }
7059
7060 /* Add breakpoint B at the end of the global breakpoint chain. */
7061
7062 static breakpoint *
7063 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7064 {
7065 struct breakpoint *b1;
7066 struct breakpoint *result = b.get ();
7067
7068 /* Add this breakpoint to the end of the chain so that a list of
7069 breakpoints will come out in order of increasing numbers. */
7070
7071 b1 = breakpoint_chain;
7072 if (b1 == 0)
7073 breakpoint_chain = b.release ();
7074 else
7075 {
7076 while (b1->next)
7077 b1 = b1->next;
7078 b1->next = b.release ();
7079 }
7080
7081 return result;
7082 }
7083
7084 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7085
7086 static void
7087 init_raw_breakpoint_without_location (struct breakpoint *b,
7088 struct gdbarch *gdbarch,
7089 enum bptype bptype,
7090 const struct breakpoint_ops *ops)
7091 {
7092 gdb_assert (ops != NULL);
7093
7094 b->ops = ops;
7095 b->type = bptype;
7096 b->gdbarch = gdbarch;
7097 b->language = current_language->la_language;
7098 b->input_radix = input_radix;
7099 b->related_breakpoint = b;
7100 }
7101
7102 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7103 that has type BPTYPE and has no locations as yet. */
7104
7105 static struct breakpoint *
7106 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7107 enum bptype bptype,
7108 const struct breakpoint_ops *ops)
7109 {
7110 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7111
7112 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7113 return add_to_breakpoint_chain (std::move (b));
7114 }
7115
7116 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7117 resolutions should be made as the user specified the location explicitly
7118 enough. */
7119
7120 static void
7121 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7122 {
7123 gdb_assert (loc->owner != NULL);
7124
7125 if (loc->owner->type == bp_breakpoint
7126 || loc->owner->type == bp_hardware_breakpoint
7127 || is_tracepoint (loc->owner))
7128 {
7129 const char *function_name;
7130
7131 if (loc->msymbol != NULL
7132 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7133 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7134 && !explicit_loc)
7135 {
7136 struct breakpoint *b = loc->owner;
7137
7138 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7139
7140 if (b->type == bp_breakpoint && b->loc == loc
7141 && loc->next == NULL && b->related_breakpoint == b)
7142 {
7143 /* Create only the whole new breakpoint of this type but do not
7144 mess more complicated breakpoints with multiple locations. */
7145 b->type = bp_gnu_ifunc_resolver;
7146 /* Remember the resolver's address for use by the return
7147 breakpoint. */
7148 loc->related_address = loc->address;
7149 }
7150 }
7151 else
7152 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7153
7154 if (function_name)
7155 loc->function_name = xstrdup (function_name);
7156 }
7157 }
7158
7159 /* Attempt to determine architecture of location identified by SAL. */
7160 struct gdbarch *
7161 get_sal_arch (struct symtab_and_line sal)
7162 {
7163 if (sal.section)
7164 return get_objfile_arch (sal.section->objfile);
7165 if (sal.symtab)
7166 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7167
7168 return NULL;
7169 }
7170
7171 /* Low level routine for partially initializing a breakpoint of type
7172 BPTYPE. The newly created breakpoint's address, section, source
7173 file name, and line number are provided by SAL.
7174
7175 It is expected that the caller will complete the initialization of
7176 the newly created breakpoint struct as well as output any status
7177 information regarding the creation of a new breakpoint. */
7178
7179 static void
7180 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7181 struct symtab_and_line sal, enum bptype bptype,
7182 const struct breakpoint_ops *ops)
7183 {
7184 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7185
7186 add_location_to_breakpoint (b, &sal);
7187
7188 if (bptype != bp_catchpoint)
7189 gdb_assert (sal.pspace != NULL);
7190
7191 /* Store the program space that was used to set the breakpoint,
7192 except for ordinary breakpoints, which are independent of the
7193 program space. */
7194 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7195 b->pspace = sal.pspace;
7196 }
7197
7198 /* set_raw_breakpoint is a low level routine for allocating and
7199 partially initializing a breakpoint of type BPTYPE. The newly
7200 created breakpoint's address, section, source file name, and line
7201 number are provided by SAL. The newly created and partially
7202 initialized breakpoint is added to the breakpoint chain and
7203 is also returned as the value of this function.
7204
7205 It is expected that the caller will complete the initialization of
7206 the newly created breakpoint struct as well as output any status
7207 information regarding the creation of a new breakpoint. In
7208 particular, set_raw_breakpoint does NOT set the breakpoint
7209 number! Care should be taken to not allow an error to occur
7210 prior to completing the initialization of the breakpoint. If this
7211 should happen, a bogus breakpoint will be left on the chain. */
7212
7213 struct breakpoint *
7214 set_raw_breakpoint (struct gdbarch *gdbarch,
7215 struct symtab_and_line sal, enum bptype bptype,
7216 const struct breakpoint_ops *ops)
7217 {
7218 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7219
7220 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7221 return add_to_breakpoint_chain (std::move (b));
7222 }
7223
7224 /* Call this routine when stepping and nexting to enable a breakpoint
7225 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7226 initiated the operation. */
7227
7228 void
7229 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7230 {
7231 struct breakpoint *b, *b_tmp;
7232 int thread = tp->global_num;
7233
7234 /* To avoid having to rescan all objfile symbols at every step,
7235 we maintain a list of continually-inserted but always disabled
7236 longjmp "master" breakpoints. Here, we simply create momentary
7237 clones of those and enable them for the requested thread. */
7238 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7239 if (b->pspace == current_program_space
7240 && (b->type == bp_longjmp_master
7241 || b->type == bp_exception_master))
7242 {
7243 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7244 struct breakpoint *clone;
7245
7246 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7247 after their removal. */
7248 clone = momentary_breakpoint_from_master (b, type,
7249 &momentary_breakpoint_ops, 1);
7250 clone->thread = thread;
7251 }
7252
7253 tp->initiating_frame = frame;
7254 }
7255
7256 /* Delete all longjmp breakpoints from THREAD. */
7257 void
7258 delete_longjmp_breakpoint (int thread)
7259 {
7260 struct breakpoint *b, *b_tmp;
7261
7262 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7263 if (b->type == bp_longjmp || b->type == bp_exception)
7264 {
7265 if (b->thread == thread)
7266 delete_breakpoint (b);
7267 }
7268 }
7269
7270 void
7271 delete_longjmp_breakpoint_at_next_stop (int thread)
7272 {
7273 struct breakpoint *b, *b_tmp;
7274
7275 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7276 if (b->type == bp_longjmp || b->type == bp_exception)
7277 {
7278 if (b->thread == thread)
7279 b->disposition = disp_del_at_next_stop;
7280 }
7281 }
7282
7283 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7284 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7285 pointer to any of them. Return NULL if this system cannot place longjmp
7286 breakpoints. */
7287
7288 struct breakpoint *
7289 set_longjmp_breakpoint_for_call_dummy (void)
7290 {
7291 struct breakpoint *b, *retval = NULL;
7292
7293 ALL_BREAKPOINTS (b)
7294 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7295 {
7296 struct breakpoint *new_b;
7297
7298 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7299 &momentary_breakpoint_ops,
7300 1);
7301 new_b->thread = inferior_thread ()->global_num;
7302
7303 /* Link NEW_B into the chain of RETVAL breakpoints. */
7304
7305 gdb_assert (new_b->related_breakpoint == new_b);
7306 if (retval == NULL)
7307 retval = new_b;
7308 new_b->related_breakpoint = retval;
7309 while (retval->related_breakpoint != new_b->related_breakpoint)
7310 retval = retval->related_breakpoint;
7311 retval->related_breakpoint = new_b;
7312 }
7313
7314 return retval;
7315 }
7316
7317 /* Verify all existing dummy frames and their associated breakpoints for
7318 TP. Remove those which can no longer be found in the current frame
7319 stack.
7320
7321 You should call this function only at places where it is safe to currently
7322 unwind the whole stack. Failed stack unwind would discard live dummy
7323 frames. */
7324
7325 void
7326 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7327 {
7328 struct breakpoint *b, *b_tmp;
7329
7330 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7331 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7332 {
7333 struct breakpoint *dummy_b = b->related_breakpoint;
7334
7335 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7336 dummy_b = dummy_b->related_breakpoint;
7337 if (dummy_b->type != bp_call_dummy
7338 || frame_find_by_id (dummy_b->frame_id) != NULL)
7339 continue;
7340
7341 dummy_frame_discard (dummy_b->frame_id, tp);
7342
7343 while (b->related_breakpoint != b)
7344 {
7345 if (b_tmp == b->related_breakpoint)
7346 b_tmp = b->related_breakpoint->next;
7347 delete_breakpoint (b->related_breakpoint);
7348 }
7349 delete_breakpoint (b);
7350 }
7351 }
7352
7353 void
7354 enable_overlay_breakpoints (void)
7355 {
7356 struct breakpoint *b;
7357
7358 ALL_BREAKPOINTS (b)
7359 if (b->type == bp_overlay_event)
7360 {
7361 b->enable_state = bp_enabled;
7362 update_global_location_list (UGLL_MAY_INSERT);
7363 overlay_events_enabled = 1;
7364 }
7365 }
7366
7367 void
7368 disable_overlay_breakpoints (void)
7369 {
7370 struct breakpoint *b;
7371
7372 ALL_BREAKPOINTS (b)
7373 if (b->type == bp_overlay_event)
7374 {
7375 b->enable_state = bp_disabled;
7376 update_global_location_list (UGLL_DONT_INSERT);
7377 overlay_events_enabled = 0;
7378 }
7379 }
7380
7381 /* Set an active std::terminate breakpoint for each std::terminate
7382 master breakpoint. */
7383 void
7384 set_std_terminate_breakpoint (void)
7385 {
7386 struct breakpoint *b, *b_tmp;
7387
7388 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7389 if (b->pspace == current_program_space
7390 && b->type == bp_std_terminate_master)
7391 {
7392 momentary_breakpoint_from_master (b, bp_std_terminate,
7393 &momentary_breakpoint_ops, 1);
7394 }
7395 }
7396
7397 /* Delete all the std::terminate breakpoints. */
7398 void
7399 delete_std_terminate_breakpoint (void)
7400 {
7401 struct breakpoint *b, *b_tmp;
7402
7403 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7404 if (b->type == bp_std_terminate)
7405 delete_breakpoint (b);
7406 }
7407
7408 struct breakpoint *
7409 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7410 {
7411 struct breakpoint *b;
7412
7413 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7414 &internal_breakpoint_ops);
7415
7416 b->enable_state = bp_enabled;
7417 /* location has to be used or breakpoint_re_set will delete me. */
7418 b->location = new_address_location (b->loc->address, NULL, 0);
7419
7420 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7421
7422 return b;
7423 }
7424
7425 struct lang_and_radix
7426 {
7427 enum language lang;
7428 int radix;
7429 };
7430
7431 /* Create a breakpoint for JIT code registration and unregistration. */
7432
7433 struct breakpoint *
7434 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7435 {
7436 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7437 &internal_breakpoint_ops);
7438 }
7439
7440 /* Remove JIT code registration and unregistration breakpoint(s). */
7441
7442 void
7443 remove_jit_event_breakpoints (void)
7444 {
7445 struct breakpoint *b, *b_tmp;
7446
7447 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7448 if (b->type == bp_jit_event
7449 && b->loc->pspace == current_program_space)
7450 delete_breakpoint (b);
7451 }
7452
7453 void
7454 remove_solib_event_breakpoints (void)
7455 {
7456 struct breakpoint *b, *b_tmp;
7457
7458 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7459 if (b->type == bp_shlib_event
7460 && b->loc->pspace == current_program_space)
7461 delete_breakpoint (b);
7462 }
7463
7464 /* See breakpoint.h. */
7465
7466 void
7467 remove_solib_event_breakpoints_at_next_stop (void)
7468 {
7469 struct breakpoint *b, *b_tmp;
7470
7471 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7472 if (b->type == bp_shlib_event
7473 && b->loc->pspace == current_program_space)
7474 b->disposition = disp_del_at_next_stop;
7475 }
7476
7477 /* Helper for create_solib_event_breakpoint /
7478 create_and_insert_solib_event_breakpoint. Allows specifying which
7479 INSERT_MODE to pass through to update_global_location_list. */
7480
7481 static struct breakpoint *
7482 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7483 enum ugll_insert_mode insert_mode)
7484 {
7485 struct breakpoint *b;
7486
7487 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7488 &internal_breakpoint_ops);
7489 update_global_location_list_nothrow (insert_mode);
7490 return b;
7491 }
7492
7493 struct breakpoint *
7494 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7495 {
7496 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7497 }
7498
7499 /* See breakpoint.h. */
7500
7501 struct breakpoint *
7502 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7503 {
7504 struct breakpoint *b;
7505
7506 /* Explicitly tell update_global_location_list to insert
7507 locations. */
7508 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7509 if (!b->loc->inserted)
7510 {
7511 delete_breakpoint (b);
7512 return NULL;
7513 }
7514 return b;
7515 }
7516
7517 /* Disable any breakpoints that are on code in shared libraries. Only
7518 apply to enabled breakpoints, disabled ones can just stay disabled. */
7519
7520 void
7521 disable_breakpoints_in_shlibs (void)
7522 {
7523 struct bp_location *loc, **locp_tmp;
7524
7525 ALL_BP_LOCATIONS (loc, locp_tmp)
7526 {
7527 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7528 struct breakpoint *b = loc->owner;
7529
7530 /* We apply the check to all breakpoints, including disabled for
7531 those with loc->duplicate set. This is so that when breakpoint
7532 becomes enabled, or the duplicate is removed, gdb will try to
7533 insert all breakpoints. If we don't set shlib_disabled here,
7534 we'll try to insert those breakpoints and fail. */
7535 if (((b->type == bp_breakpoint)
7536 || (b->type == bp_jit_event)
7537 || (b->type == bp_hardware_breakpoint)
7538 || (is_tracepoint (b)))
7539 && loc->pspace == current_program_space
7540 && !loc->shlib_disabled
7541 && solib_name_from_address (loc->pspace, loc->address)
7542 )
7543 {
7544 loc->shlib_disabled = 1;
7545 }
7546 }
7547 }
7548
7549 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7550 notification of unloaded_shlib. Only apply to enabled breakpoints,
7551 disabled ones can just stay disabled. */
7552
7553 static void
7554 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7555 {
7556 struct bp_location *loc, **locp_tmp;
7557 int disabled_shlib_breaks = 0;
7558
7559 ALL_BP_LOCATIONS (loc, locp_tmp)
7560 {
7561 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7562 struct breakpoint *b = loc->owner;
7563
7564 if (solib->pspace == loc->pspace
7565 && !loc->shlib_disabled
7566 && (((b->type == bp_breakpoint
7567 || b->type == bp_jit_event
7568 || b->type == bp_hardware_breakpoint)
7569 && (loc->loc_type == bp_loc_hardware_breakpoint
7570 || loc->loc_type == bp_loc_software_breakpoint))
7571 || is_tracepoint (b))
7572 && solib_contains_address_p (solib, loc->address))
7573 {
7574 loc->shlib_disabled = 1;
7575 /* At this point, we cannot rely on remove_breakpoint
7576 succeeding so we must mark the breakpoint as not inserted
7577 to prevent future errors occurring in remove_breakpoints. */
7578 loc->inserted = 0;
7579
7580 /* This may cause duplicate notifications for the same breakpoint. */
7581 gdb::observers::breakpoint_modified.notify (b);
7582
7583 if (!disabled_shlib_breaks)
7584 {
7585 target_terminal::ours_for_output ();
7586 warning (_("Temporarily disabling breakpoints "
7587 "for unloaded shared library \"%s\""),
7588 solib->so_name);
7589 }
7590 disabled_shlib_breaks = 1;
7591 }
7592 }
7593 }
7594
7595 /* Disable any breakpoints and tracepoints in OBJFILE upon
7596 notification of free_objfile. Only apply to enabled breakpoints,
7597 disabled ones can just stay disabled. */
7598
7599 static void
7600 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7601 {
7602 struct breakpoint *b;
7603
7604 if (objfile == NULL)
7605 return;
7606
7607 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7608 managed by the user with add-symbol-file/remove-symbol-file.
7609 Similarly to how breakpoints in shared libraries are handled in
7610 response to "nosharedlibrary", mark breakpoints in such modules
7611 shlib_disabled so they end up uninserted on the next global
7612 location list update. Shared libraries not loaded by the user
7613 aren't handled here -- they're already handled in
7614 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7615 solib_unloaded observer. We skip objfiles that are not
7616 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7617 main objfile). */
7618 if ((objfile->flags & OBJF_SHARED) == 0
7619 || (objfile->flags & OBJF_USERLOADED) == 0)
7620 return;
7621
7622 ALL_BREAKPOINTS (b)
7623 {
7624 struct bp_location *loc;
7625 int bp_modified = 0;
7626
7627 if (!is_breakpoint (b) && !is_tracepoint (b))
7628 continue;
7629
7630 for (loc = b->loc; loc != NULL; loc = loc->next)
7631 {
7632 CORE_ADDR loc_addr = loc->address;
7633
7634 if (loc->loc_type != bp_loc_hardware_breakpoint
7635 && loc->loc_type != bp_loc_software_breakpoint)
7636 continue;
7637
7638 if (loc->shlib_disabled != 0)
7639 continue;
7640
7641 if (objfile->pspace != loc->pspace)
7642 continue;
7643
7644 if (loc->loc_type != bp_loc_hardware_breakpoint
7645 && loc->loc_type != bp_loc_software_breakpoint)
7646 continue;
7647
7648 if (is_addr_in_objfile (loc_addr, objfile))
7649 {
7650 loc->shlib_disabled = 1;
7651 /* At this point, we don't know whether the object was
7652 unmapped from the inferior or not, so leave the
7653 inserted flag alone. We'll handle failure to
7654 uninsert quietly, in case the object was indeed
7655 unmapped. */
7656
7657 mark_breakpoint_location_modified (loc);
7658
7659 bp_modified = 1;
7660 }
7661 }
7662
7663 if (bp_modified)
7664 gdb::observers::breakpoint_modified.notify (b);
7665 }
7666 }
7667
7668 /* FORK & VFORK catchpoints. */
7669
7670 /* An instance of this type is used to represent a fork or vfork
7671 catchpoint. A breakpoint is really of this type iff its ops pointer points
7672 to CATCH_FORK_BREAKPOINT_OPS. */
7673
7674 struct fork_catchpoint : public breakpoint
7675 {
7676 /* Process id of a child process whose forking triggered this
7677 catchpoint. This field is only valid immediately after this
7678 catchpoint has triggered. */
7679 ptid_t forked_inferior_pid;
7680 };
7681
7682 /* Implement the "insert" breakpoint_ops method for fork
7683 catchpoints. */
7684
7685 static int
7686 insert_catch_fork (struct bp_location *bl)
7687 {
7688 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7689 }
7690
7691 /* Implement the "remove" breakpoint_ops method for fork
7692 catchpoints. */
7693
7694 static int
7695 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7696 {
7697 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7698 }
7699
7700 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7701 catchpoints. */
7702
7703 static int
7704 breakpoint_hit_catch_fork (const struct bp_location *bl,
7705 const address_space *aspace, CORE_ADDR bp_addr,
7706 const struct target_waitstatus *ws)
7707 {
7708 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7709
7710 if (ws->kind != TARGET_WAITKIND_FORKED)
7711 return 0;
7712
7713 c->forked_inferior_pid = ws->value.related_pid;
7714 return 1;
7715 }
7716
7717 /* Implement the "print_it" breakpoint_ops method for fork
7718 catchpoints. */
7719
7720 static enum print_stop_action
7721 print_it_catch_fork (bpstat bs)
7722 {
7723 struct ui_out *uiout = current_uiout;
7724 struct breakpoint *b = bs->breakpoint_at;
7725 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7726
7727 annotate_catchpoint (b->number);
7728 maybe_print_thread_hit_breakpoint (uiout);
7729 if (b->disposition == disp_del)
7730 uiout->text ("Temporary catchpoint ");
7731 else
7732 uiout->text ("Catchpoint ");
7733 if (uiout->is_mi_like_p ())
7734 {
7735 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7736 uiout->field_string ("disp", bpdisp_text (b->disposition));
7737 }
7738 uiout->field_int ("bkptno", b->number);
7739 uiout->text (" (forked process ");
7740 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7741 uiout->text ("), ");
7742 return PRINT_SRC_AND_LOC;
7743 }
7744
7745 /* Implement the "print_one" breakpoint_ops method for fork
7746 catchpoints. */
7747
7748 static void
7749 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7750 {
7751 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7752 struct value_print_options opts;
7753 struct ui_out *uiout = current_uiout;
7754
7755 get_user_print_options (&opts);
7756
7757 /* Field 4, the address, is omitted (which makes the columns not
7758 line up too nicely with the headers, but the effect is relatively
7759 readable). */
7760 if (opts.addressprint)
7761 uiout->field_skip ("addr");
7762 annotate_field (5);
7763 uiout->text ("fork");
7764 if (c->forked_inferior_pid != null_ptid)
7765 {
7766 uiout->text (", process ");
7767 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7768 uiout->spaces (1);
7769 }
7770
7771 if (uiout->is_mi_like_p ())
7772 uiout->field_string ("catch-type", "fork");
7773 }
7774
7775 /* Implement the "print_mention" breakpoint_ops method for fork
7776 catchpoints. */
7777
7778 static void
7779 print_mention_catch_fork (struct breakpoint *b)
7780 {
7781 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7782 }
7783
7784 /* Implement the "print_recreate" breakpoint_ops method for fork
7785 catchpoints. */
7786
7787 static void
7788 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7789 {
7790 fprintf_unfiltered (fp, "catch fork");
7791 print_recreate_thread (b, fp);
7792 }
7793
7794 /* The breakpoint_ops structure to be used in fork catchpoints. */
7795
7796 static struct breakpoint_ops catch_fork_breakpoint_ops;
7797
7798 /* Implement the "insert" breakpoint_ops method for vfork
7799 catchpoints. */
7800
7801 static int
7802 insert_catch_vfork (struct bp_location *bl)
7803 {
7804 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7805 }
7806
7807 /* Implement the "remove" breakpoint_ops method for vfork
7808 catchpoints. */
7809
7810 static int
7811 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7812 {
7813 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7814 }
7815
7816 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7817 catchpoints. */
7818
7819 static int
7820 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7821 const address_space *aspace, CORE_ADDR bp_addr,
7822 const struct target_waitstatus *ws)
7823 {
7824 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7825
7826 if (ws->kind != TARGET_WAITKIND_VFORKED)
7827 return 0;
7828
7829 c->forked_inferior_pid = ws->value.related_pid;
7830 return 1;
7831 }
7832
7833 /* Implement the "print_it" breakpoint_ops method for vfork
7834 catchpoints. */
7835
7836 static enum print_stop_action
7837 print_it_catch_vfork (bpstat bs)
7838 {
7839 struct ui_out *uiout = current_uiout;
7840 struct breakpoint *b = bs->breakpoint_at;
7841 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7842
7843 annotate_catchpoint (b->number);
7844 maybe_print_thread_hit_breakpoint (uiout);
7845 if (b->disposition == disp_del)
7846 uiout->text ("Temporary catchpoint ");
7847 else
7848 uiout->text ("Catchpoint ");
7849 if (uiout->is_mi_like_p ())
7850 {
7851 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7852 uiout->field_string ("disp", bpdisp_text (b->disposition));
7853 }
7854 uiout->field_int ("bkptno", b->number);
7855 uiout->text (" (vforked process ");
7856 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7857 uiout->text ("), ");
7858 return PRINT_SRC_AND_LOC;
7859 }
7860
7861 /* Implement the "print_one" breakpoint_ops method for vfork
7862 catchpoints. */
7863
7864 static void
7865 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7866 {
7867 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7868 struct value_print_options opts;
7869 struct ui_out *uiout = current_uiout;
7870
7871 get_user_print_options (&opts);
7872 /* Field 4, the address, is omitted (which makes the columns not
7873 line up too nicely with the headers, but the effect is relatively
7874 readable). */
7875 if (opts.addressprint)
7876 uiout->field_skip ("addr");
7877 annotate_field (5);
7878 uiout->text ("vfork");
7879 if (c->forked_inferior_pid != null_ptid)
7880 {
7881 uiout->text (", process ");
7882 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7883 uiout->spaces (1);
7884 }
7885
7886 if (uiout->is_mi_like_p ())
7887 uiout->field_string ("catch-type", "vfork");
7888 }
7889
7890 /* Implement the "print_mention" breakpoint_ops method for vfork
7891 catchpoints. */
7892
7893 static void
7894 print_mention_catch_vfork (struct breakpoint *b)
7895 {
7896 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7897 }
7898
7899 /* Implement the "print_recreate" breakpoint_ops method for vfork
7900 catchpoints. */
7901
7902 static void
7903 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7904 {
7905 fprintf_unfiltered (fp, "catch vfork");
7906 print_recreate_thread (b, fp);
7907 }
7908
7909 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7910
7911 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7912
7913 /* An instance of this type is used to represent an solib catchpoint.
7914 A breakpoint is really of this type iff its ops pointer points to
7915 CATCH_SOLIB_BREAKPOINT_OPS. */
7916
7917 struct solib_catchpoint : public breakpoint
7918 {
7919 ~solib_catchpoint () override;
7920
7921 /* True for "catch load", false for "catch unload". */
7922 unsigned char is_load;
7923
7924 /* Regular expression to match, if any. COMPILED is only valid when
7925 REGEX is non-NULL. */
7926 char *regex;
7927 std::unique_ptr<compiled_regex> compiled;
7928 };
7929
7930 solib_catchpoint::~solib_catchpoint ()
7931 {
7932 xfree (this->regex);
7933 }
7934
7935 static int
7936 insert_catch_solib (struct bp_location *ignore)
7937 {
7938 return 0;
7939 }
7940
7941 static int
7942 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7943 {
7944 return 0;
7945 }
7946
7947 static int
7948 breakpoint_hit_catch_solib (const struct bp_location *bl,
7949 const address_space *aspace,
7950 CORE_ADDR bp_addr,
7951 const struct target_waitstatus *ws)
7952 {
7953 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7954 struct breakpoint *other;
7955
7956 if (ws->kind == TARGET_WAITKIND_LOADED)
7957 return 1;
7958
7959 ALL_BREAKPOINTS (other)
7960 {
7961 struct bp_location *other_bl;
7962
7963 if (other == bl->owner)
7964 continue;
7965
7966 if (other->type != bp_shlib_event)
7967 continue;
7968
7969 if (self->pspace != NULL && other->pspace != self->pspace)
7970 continue;
7971
7972 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7973 {
7974 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7975 return 1;
7976 }
7977 }
7978
7979 return 0;
7980 }
7981
7982 static void
7983 check_status_catch_solib (struct bpstats *bs)
7984 {
7985 struct solib_catchpoint *self
7986 = (struct solib_catchpoint *) bs->breakpoint_at;
7987
7988 if (self->is_load)
7989 {
7990 for (so_list *iter : current_program_space->added_solibs)
7991 {
7992 if (!self->regex
7993 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7994 return;
7995 }
7996 }
7997 else
7998 {
7999 for (const std::string &iter : current_program_space->deleted_solibs)
8000 {
8001 if (!self->regex
8002 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8003 return;
8004 }
8005 }
8006
8007 bs->stop = 0;
8008 bs->print_it = print_it_noop;
8009 }
8010
8011 static enum print_stop_action
8012 print_it_catch_solib (bpstat bs)
8013 {
8014 struct breakpoint *b = bs->breakpoint_at;
8015 struct ui_out *uiout = current_uiout;
8016
8017 annotate_catchpoint (b->number);
8018 maybe_print_thread_hit_breakpoint (uiout);
8019 if (b->disposition == disp_del)
8020 uiout->text ("Temporary catchpoint ");
8021 else
8022 uiout->text ("Catchpoint ");
8023 uiout->field_int ("bkptno", b->number);
8024 uiout->text ("\n");
8025 if (uiout->is_mi_like_p ())
8026 uiout->field_string ("disp", bpdisp_text (b->disposition));
8027 print_solib_event (1);
8028 return PRINT_SRC_AND_LOC;
8029 }
8030
8031 static void
8032 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8033 {
8034 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8035 struct value_print_options opts;
8036 struct ui_out *uiout = current_uiout;
8037
8038 get_user_print_options (&opts);
8039 /* Field 4, the address, is omitted (which makes the columns not
8040 line up too nicely with the headers, but the effect is relatively
8041 readable). */
8042 if (opts.addressprint)
8043 {
8044 annotate_field (4);
8045 uiout->field_skip ("addr");
8046 }
8047
8048 std::string msg;
8049 annotate_field (5);
8050 if (self->is_load)
8051 {
8052 if (self->regex)
8053 msg = string_printf (_("load of library matching %s"), self->regex);
8054 else
8055 msg = _("load of library");
8056 }
8057 else
8058 {
8059 if (self->regex)
8060 msg = string_printf (_("unload of library matching %s"), self->regex);
8061 else
8062 msg = _("unload of library");
8063 }
8064 uiout->field_string ("what", msg);
8065
8066 if (uiout->is_mi_like_p ())
8067 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8068 }
8069
8070 static void
8071 print_mention_catch_solib (struct breakpoint *b)
8072 {
8073 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8074
8075 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8076 self->is_load ? "load" : "unload");
8077 }
8078
8079 static void
8080 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8081 {
8082 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8083
8084 fprintf_unfiltered (fp, "%s %s",
8085 b->disposition == disp_del ? "tcatch" : "catch",
8086 self->is_load ? "load" : "unload");
8087 if (self->regex)
8088 fprintf_unfiltered (fp, " %s", self->regex);
8089 fprintf_unfiltered (fp, "\n");
8090 }
8091
8092 static struct breakpoint_ops catch_solib_breakpoint_ops;
8093
8094 /* Shared helper function (MI and CLI) for creating and installing
8095 a shared object event catchpoint. If IS_LOAD is non-zero then
8096 the events to be caught are load events, otherwise they are
8097 unload events. If IS_TEMP is non-zero the catchpoint is a
8098 temporary one. If ENABLED is non-zero the catchpoint is
8099 created in an enabled state. */
8100
8101 void
8102 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8103 {
8104 struct gdbarch *gdbarch = get_current_arch ();
8105
8106 if (!arg)
8107 arg = "";
8108 arg = skip_spaces (arg);
8109
8110 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8111
8112 if (*arg != '\0')
8113 {
8114 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8115 _("Invalid regexp")));
8116 c->regex = xstrdup (arg);
8117 }
8118
8119 c->is_load = is_load;
8120 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8121 &catch_solib_breakpoint_ops);
8122
8123 c->enable_state = enabled ? bp_enabled : bp_disabled;
8124
8125 install_breakpoint (0, std::move (c), 1);
8126 }
8127
8128 /* A helper function that does all the work for "catch load" and
8129 "catch unload". */
8130
8131 static void
8132 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8133 struct cmd_list_element *command)
8134 {
8135 int tempflag;
8136 const int enabled = 1;
8137
8138 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8139
8140 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8141 }
8142
8143 static void
8144 catch_load_command_1 (const char *arg, int from_tty,
8145 struct cmd_list_element *command)
8146 {
8147 catch_load_or_unload (arg, from_tty, 1, command);
8148 }
8149
8150 static void
8151 catch_unload_command_1 (const char *arg, int from_tty,
8152 struct cmd_list_element *command)
8153 {
8154 catch_load_or_unload (arg, from_tty, 0, command);
8155 }
8156
8157 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8158 is non-zero, then make the breakpoint temporary. If COND_STRING is
8159 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8160 the breakpoint_ops structure associated to the catchpoint. */
8161
8162 void
8163 init_catchpoint (struct breakpoint *b,
8164 struct gdbarch *gdbarch, int tempflag,
8165 const char *cond_string,
8166 const struct breakpoint_ops *ops)
8167 {
8168 symtab_and_line sal;
8169 sal.pspace = current_program_space;
8170
8171 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8172
8173 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8174 b->disposition = tempflag ? disp_del : disp_donttouch;
8175 }
8176
8177 void
8178 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8179 {
8180 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8181 set_breakpoint_number (internal, b);
8182 if (is_tracepoint (b))
8183 set_tracepoint_count (breakpoint_count);
8184 if (!internal)
8185 mention (b);
8186 gdb::observers::breakpoint_created.notify (b);
8187
8188 if (update_gll)
8189 update_global_location_list (UGLL_MAY_INSERT);
8190 }
8191
8192 static void
8193 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8194 int tempflag, const char *cond_string,
8195 const struct breakpoint_ops *ops)
8196 {
8197 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8198
8199 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8200
8201 c->forked_inferior_pid = null_ptid;
8202
8203 install_breakpoint (0, std::move (c), 1);
8204 }
8205
8206 /* Exec catchpoints. */
8207
8208 /* An instance of this type is used to represent an exec catchpoint.
8209 A breakpoint is really of this type iff its ops pointer points to
8210 CATCH_EXEC_BREAKPOINT_OPS. */
8211
8212 struct exec_catchpoint : public breakpoint
8213 {
8214 ~exec_catchpoint () override;
8215
8216 /* Filename of a program whose exec triggered this catchpoint.
8217 This field is only valid immediately after this catchpoint has
8218 triggered. */
8219 char *exec_pathname;
8220 };
8221
8222 /* Exec catchpoint destructor. */
8223
8224 exec_catchpoint::~exec_catchpoint ()
8225 {
8226 xfree (this->exec_pathname);
8227 }
8228
8229 static int
8230 insert_catch_exec (struct bp_location *bl)
8231 {
8232 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8233 }
8234
8235 static int
8236 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8237 {
8238 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8239 }
8240
8241 static int
8242 breakpoint_hit_catch_exec (const struct bp_location *bl,
8243 const address_space *aspace, CORE_ADDR bp_addr,
8244 const struct target_waitstatus *ws)
8245 {
8246 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8247
8248 if (ws->kind != TARGET_WAITKIND_EXECD)
8249 return 0;
8250
8251 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8252 return 1;
8253 }
8254
8255 static enum print_stop_action
8256 print_it_catch_exec (bpstat bs)
8257 {
8258 struct ui_out *uiout = current_uiout;
8259 struct breakpoint *b = bs->breakpoint_at;
8260 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8261
8262 annotate_catchpoint (b->number);
8263 maybe_print_thread_hit_breakpoint (uiout);
8264 if (b->disposition == disp_del)
8265 uiout->text ("Temporary catchpoint ");
8266 else
8267 uiout->text ("Catchpoint ");
8268 if (uiout->is_mi_like_p ())
8269 {
8270 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8271 uiout->field_string ("disp", bpdisp_text (b->disposition));
8272 }
8273 uiout->field_int ("bkptno", b->number);
8274 uiout->text (" (exec'd ");
8275 uiout->field_string ("new-exec", c->exec_pathname);
8276 uiout->text ("), ");
8277
8278 return PRINT_SRC_AND_LOC;
8279 }
8280
8281 static void
8282 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8283 {
8284 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8285 struct value_print_options opts;
8286 struct ui_out *uiout = current_uiout;
8287
8288 get_user_print_options (&opts);
8289
8290 /* Field 4, the address, is omitted (which makes the columns
8291 not line up too nicely with the headers, but the effect
8292 is relatively readable). */
8293 if (opts.addressprint)
8294 uiout->field_skip ("addr");
8295 annotate_field (5);
8296 uiout->text ("exec");
8297 if (c->exec_pathname != NULL)
8298 {
8299 uiout->text (", program \"");
8300 uiout->field_string ("what", c->exec_pathname);
8301 uiout->text ("\" ");
8302 }
8303
8304 if (uiout->is_mi_like_p ())
8305 uiout->field_string ("catch-type", "exec");
8306 }
8307
8308 static void
8309 print_mention_catch_exec (struct breakpoint *b)
8310 {
8311 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8312 }
8313
8314 /* Implement the "print_recreate" breakpoint_ops method for exec
8315 catchpoints. */
8316
8317 static void
8318 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8319 {
8320 fprintf_unfiltered (fp, "catch exec");
8321 print_recreate_thread (b, fp);
8322 }
8323
8324 static struct breakpoint_ops catch_exec_breakpoint_ops;
8325
8326 static int
8327 hw_breakpoint_used_count (void)
8328 {
8329 int i = 0;
8330 struct breakpoint *b;
8331 struct bp_location *bl;
8332
8333 ALL_BREAKPOINTS (b)
8334 {
8335 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8336 for (bl = b->loc; bl; bl = bl->next)
8337 {
8338 /* Special types of hardware breakpoints may use more than
8339 one register. */
8340 i += b->ops->resources_needed (bl);
8341 }
8342 }
8343
8344 return i;
8345 }
8346
8347 /* Returns the resources B would use if it were a hardware
8348 watchpoint. */
8349
8350 static int
8351 hw_watchpoint_use_count (struct breakpoint *b)
8352 {
8353 int i = 0;
8354 struct bp_location *bl;
8355
8356 if (!breakpoint_enabled (b))
8357 return 0;
8358
8359 for (bl = b->loc; bl; bl = bl->next)
8360 {
8361 /* Special types of hardware watchpoints may use more than
8362 one register. */
8363 i += b->ops->resources_needed (bl);
8364 }
8365
8366 return i;
8367 }
8368
8369 /* Returns the sum the used resources of all hardware watchpoints of
8370 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8371 the sum of the used resources of all hardware watchpoints of other
8372 types _not_ TYPE. */
8373
8374 static int
8375 hw_watchpoint_used_count_others (struct breakpoint *except,
8376 enum bptype type, int *other_type_used)
8377 {
8378 int i = 0;
8379 struct breakpoint *b;
8380
8381 *other_type_used = 0;
8382 ALL_BREAKPOINTS (b)
8383 {
8384 if (b == except)
8385 continue;
8386 if (!breakpoint_enabled (b))
8387 continue;
8388
8389 if (b->type == type)
8390 i += hw_watchpoint_use_count (b);
8391 else if (is_hardware_watchpoint (b))
8392 *other_type_used = 1;
8393 }
8394
8395 return i;
8396 }
8397
8398 void
8399 disable_watchpoints_before_interactive_call_start (void)
8400 {
8401 struct breakpoint *b;
8402
8403 ALL_BREAKPOINTS (b)
8404 {
8405 if (is_watchpoint (b) && breakpoint_enabled (b))
8406 {
8407 b->enable_state = bp_call_disabled;
8408 update_global_location_list (UGLL_DONT_INSERT);
8409 }
8410 }
8411 }
8412
8413 void
8414 enable_watchpoints_after_interactive_call_stop (void)
8415 {
8416 struct breakpoint *b;
8417
8418 ALL_BREAKPOINTS (b)
8419 {
8420 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8421 {
8422 b->enable_state = bp_enabled;
8423 update_global_location_list (UGLL_MAY_INSERT);
8424 }
8425 }
8426 }
8427
8428 void
8429 disable_breakpoints_before_startup (void)
8430 {
8431 current_program_space->executing_startup = 1;
8432 update_global_location_list (UGLL_DONT_INSERT);
8433 }
8434
8435 void
8436 enable_breakpoints_after_startup (void)
8437 {
8438 current_program_space->executing_startup = 0;
8439 breakpoint_re_set ();
8440 }
8441
8442 /* Create a new single-step breakpoint for thread THREAD, with no
8443 locations. */
8444
8445 static struct breakpoint *
8446 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8447 {
8448 std::unique_ptr<breakpoint> b (new breakpoint ());
8449
8450 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8451 &momentary_breakpoint_ops);
8452
8453 b->disposition = disp_donttouch;
8454 b->frame_id = null_frame_id;
8455
8456 b->thread = thread;
8457 gdb_assert (b->thread != 0);
8458
8459 return add_to_breakpoint_chain (std::move (b));
8460 }
8461
8462 /* Set a momentary breakpoint of type TYPE at address specified by
8463 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8464 frame. */
8465
8466 breakpoint_up
8467 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8468 struct frame_id frame_id, enum bptype type)
8469 {
8470 struct breakpoint *b;
8471
8472 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8473 tail-called one. */
8474 gdb_assert (!frame_id_artificial_p (frame_id));
8475
8476 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8477 b->enable_state = bp_enabled;
8478 b->disposition = disp_donttouch;
8479 b->frame_id = frame_id;
8480
8481 b->thread = inferior_thread ()->global_num;
8482
8483 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8484
8485 return breakpoint_up (b);
8486 }
8487
8488 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8489 The new breakpoint will have type TYPE, use OPS as its
8490 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8491
8492 static struct breakpoint *
8493 momentary_breakpoint_from_master (struct breakpoint *orig,
8494 enum bptype type,
8495 const struct breakpoint_ops *ops,
8496 int loc_enabled)
8497 {
8498 struct breakpoint *copy;
8499
8500 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8501 copy->loc = allocate_bp_location (copy);
8502 set_breakpoint_location_function (copy->loc, 1);
8503
8504 copy->loc->gdbarch = orig->loc->gdbarch;
8505 copy->loc->requested_address = orig->loc->requested_address;
8506 copy->loc->address = orig->loc->address;
8507 copy->loc->section = orig->loc->section;
8508 copy->loc->pspace = orig->loc->pspace;
8509 copy->loc->probe = orig->loc->probe;
8510 copy->loc->line_number = orig->loc->line_number;
8511 copy->loc->symtab = orig->loc->symtab;
8512 copy->loc->enabled = loc_enabled;
8513 copy->frame_id = orig->frame_id;
8514 copy->thread = orig->thread;
8515 copy->pspace = orig->pspace;
8516
8517 copy->enable_state = bp_enabled;
8518 copy->disposition = disp_donttouch;
8519 copy->number = internal_breakpoint_number--;
8520
8521 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8522 return copy;
8523 }
8524
8525 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8526 ORIG is NULL. */
8527
8528 struct breakpoint *
8529 clone_momentary_breakpoint (struct breakpoint *orig)
8530 {
8531 /* If there's nothing to clone, then return nothing. */
8532 if (orig == NULL)
8533 return NULL;
8534
8535 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8536 }
8537
8538 breakpoint_up
8539 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8540 enum bptype type)
8541 {
8542 struct symtab_and_line sal;
8543
8544 sal = find_pc_line (pc, 0);
8545 sal.pc = pc;
8546 sal.section = find_pc_overlay (pc);
8547 sal.explicit_pc = 1;
8548
8549 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8550 }
8551 \f
8552
8553 /* Tell the user we have just set a breakpoint B. */
8554
8555 static void
8556 mention (struct breakpoint *b)
8557 {
8558 b->ops->print_mention (b);
8559 current_uiout->text ("\n");
8560 }
8561 \f
8562
8563 static int bp_loc_is_permanent (struct bp_location *loc);
8564
8565 static struct bp_location *
8566 add_location_to_breakpoint (struct breakpoint *b,
8567 const struct symtab_and_line *sal)
8568 {
8569 struct bp_location *loc, **tmp;
8570 CORE_ADDR adjusted_address;
8571 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8572
8573 if (loc_gdbarch == NULL)
8574 loc_gdbarch = b->gdbarch;
8575
8576 /* Adjust the breakpoint's address prior to allocating a location.
8577 Once we call allocate_bp_location(), that mostly uninitialized
8578 location will be placed on the location chain. Adjustment of the
8579 breakpoint may cause target_read_memory() to be called and we do
8580 not want its scan of the location chain to find a breakpoint and
8581 location that's only been partially initialized. */
8582 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8583 sal->pc, b->type);
8584
8585 /* Sort the locations by their ADDRESS. */
8586 loc = allocate_bp_location (b);
8587 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8588 tmp = &((*tmp)->next))
8589 ;
8590 loc->next = *tmp;
8591 *tmp = loc;
8592
8593 loc->requested_address = sal->pc;
8594 loc->address = adjusted_address;
8595 loc->pspace = sal->pspace;
8596 loc->probe.prob = sal->prob;
8597 loc->probe.objfile = sal->objfile;
8598 gdb_assert (loc->pspace != NULL);
8599 loc->section = sal->section;
8600 loc->gdbarch = loc_gdbarch;
8601 loc->line_number = sal->line;
8602 loc->symtab = sal->symtab;
8603 loc->symbol = sal->symbol;
8604 loc->msymbol = sal->msymbol;
8605 loc->objfile = sal->objfile;
8606
8607 set_breakpoint_location_function (loc,
8608 sal->explicit_pc || sal->explicit_line);
8609
8610 /* While by definition, permanent breakpoints are already present in the
8611 code, we don't mark the location as inserted. Normally one would expect
8612 that GDB could rely on that breakpoint instruction to stop the program,
8613 thus removing the need to insert its own breakpoint, except that executing
8614 the breakpoint instruction can kill the target instead of reporting a
8615 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8616 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8617 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8618 breakpoint be inserted normally results in QEMU knowing about the GDB
8619 breakpoint, and thus trap before the breakpoint instruction is executed.
8620 (If GDB later needs to continue execution past the permanent breakpoint,
8621 it manually increments the PC, thus avoiding executing the breakpoint
8622 instruction.) */
8623 if (bp_loc_is_permanent (loc))
8624 loc->permanent = 1;
8625
8626 return loc;
8627 }
8628 \f
8629
8630 /* See breakpoint.h. */
8631
8632 int
8633 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8634 {
8635 int len;
8636 CORE_ADDR addr;
8637 const gdb_byte *bpoint;
8638 gdb_byte *target_mem;
8639
8640 addr = address;
8641 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8642
8643 /* Software breakpoints unsupported? */
8644 if (bpoint == NULL)
8645 return 0;
8646
8647 target_mem = (gdb_byte *) alloca (len);
8648
8649 /* Enable the automatic memory restoration from breakpoints while
8650 we read the memory. Otherwise we could say about our temporary
8651 breakpoints they are permanent. */
8652 scoped_restore restore_memory
8653 = make_scoped_restore_show_memory_breakpoints (0);
8654
8655 if (target_read_memory (address, target_mem, len) == 0
8656 && memcmp (target_mem, bpoint, len) == 0)
8657 return 1;
8658
8659 return 0;
8660 }
8661
8662 /* Return 1 if LOC is pointing to a permanent breakpoint,
8663 return 0 otherwise. */
8664
8665 static int
8666 bp_loc_is_permanent (struct bp_location *loc)
8667 {
8668 gdb_assert (loc != NULL);
8669
8670 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8671 attempt to read from the addresses the locations of these breakpoint types
8672 point to. program_breakpoint_here_p, below, will attempt to read
8673 memory. */
8674 if (!breakpoint_address_is_meaningful (loc->owner))
8675 return 0;
8676
8677 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8678 switch_to_program_space_and_thread (loc->pspace);
8679 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8680 }
8681
8682 /* Build a command list for the dprintf corresponding to the current
8683 settings of the dprintf style options. */
8684
8685 static void
8686 update_dprintf_command_list (struct breakpoint *b)
8687 {
8688 char *dprintf_args = b->extra_string;
8689 char *printf_line = NULL;
8690
8691 if (!dprintf_args)
8692 return;
8693
8694 dprintf_args = skip_spaces (dprintf_args);
8695
8696 /* Allow a comma, as it may have terminated a location, but don't
8697 insist on it. */
8698 if (*dprintf_args == ',')
8699 ++dprintf_args;
8700 dprintf_args = skip_spaces (dprintf_args);
8701
8702 if (*dprintf_args != '"')
8703 error (_("Bad format string, missing '\"'."));
8704
8705 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8706 printf_line = xstrprintf ("printf %s", dprintf_args);
8707 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8708 {
8709 if (!dprintf_function)
8710 error (_("No function supplied for dprintf call"));
8711
8712 if (dprintf_channel && strlen (dprintf_channel) > 0)
8713 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8714 dprintf_function,
8715 dprintf_channel,
8716 dprintf_args);
8717 else
8718 printf_line = xstrprintf ("call (void) %s (%s)",
8719 dprintf_function,
8720 dprintf_args);
8721 }
8722 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8723 {
8724 if (target_can_run_breakpoint_commands ())
8725 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8726 else
8727 {
8728 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8729 printf_line = xstrprintf ("printf %s", dprintf_args);
8730 }
8731 }
8732 else
8733 internal_error (__FILE__, __LINE__,
8734 _("Invalid dprintf style."));
8735
8736 gdb_assert (printf_line != NULL);
8737
8738 /* Manufacture a printf sequence. */
8739 struct command_line *printf_cmd_line
8740 = new struct command_line (simple_control, printf_line);
8741 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8742 command_lines_deleter ()));
8743 }
8744
8745 /* Update all dprintf commands, making their command lists reflect
8746 current style settings. */
8747
8748 static void
8749 update_dprintf_commands (const char *args, int from_tty,
8750 struct cmd_list_element *c)
8751 {
8752 struct breakpoint *b;
8753
8754 ALL_BREAKPOINTS (b)
8755 {
8756 if (b->type == bp_dprintf)
8757 update_dprintf_command_list (b);
8758 }
8759 }
8760
8761 /* Create a breakpoint with SAL as location. Use LOCATION
8762 as a description of the location, and COND_STRING
8763 as condition expression. If LOCATION is NULL then create an
8764 "address location" from the address in the SAL. */
8765
8766 static void
8767 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8768 gdb::array_view<const symtab_and_line> sals,
8769 event_location_up &&location,
8770 gdb::unique_xmalloc_ptr<char> filter,
8771 gdb::unique_xmalloc_ptr<char> cond_string,
8772 gdb::unique_xmalloc_ptr<char> extra_string,
8773 enum bptype type, enum bpdisp disposition,
8774 int thread, int task, int ignore_count,
8775 const struct breakpoint_ops *ops, int from_tty,
8776 int enabled, int internal, unsigned flags,
8777 int display_canonical)
8778 {
8779 int i;
8780
8781 if (type == bp_hardware_breakpoint)
8782 {
8783 int target_resources_ok;
8784
8785 i = hw_breakpoint_used_count ();
8786 target_resources_ok =
8787 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8788 i + 1, 0);
8789 if (target_resources_ok == 0)
8790 error (_("No hardware breakpoint support in the target."));
8791 else if (target_resources_ok < 0)
8792 error (_("Hardware breakpoints used exceeds limit."));
8793 }
8794
8795 gdb_assert (!sals.empty ());
8796
8797 for (const auto &sal : sals)
8798 {
8799 struct bp_location *loc;
8800
8801 if (from_tty)
8802 {
8803 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8804 if (!loc_gdbarch)
8805 loc_gdbarch = gdbarch;
8806
8807 describe_other_breakpoints (loc_gdbarch,
8808 sal.pspace, sal.pc, sal.section, thread);
8809 }
8810
8811 if (&sal == &sals[0])
8812 {
8813 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8814 b->thread = thread;
8815 b->task = task;
8816
8817 b->cond_string = cond_string.release ();
8818 b->extra_string = extra_string.release ();
8819 b->ignore_count = ignore_count;
8820 b->enable_state = enabled ? bp_enabled : bp_disabled;
8821 b->disposition = disposition;
8822
8823 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8824 b->loc->inserted = 1;
8825
8826 if (type == bp_static_tracepoint)
8827 {
8828 struct tracepoint *t = (struct tracepoint *) b;
8829 struct static_tracepoint_marker marker;
8830
8831 if (strace_marker_p (b))
8832 {
8833 /* We already know the marker exists, otherwise, we
8834 wouldn't see a sal for it. */
8835 const char *p
8836 = &event_location_to_string (b->location.get ())[3];
8837 const char *endp;
8838
8839 p = skip_spaces (p);
8840
8841 endp = skip_to_space (p);
8842
8843 t->static_trace_marker_id.assign (p, endp - p);
8844
8845 printf_filtered (_("Probed static tracepoint "
8846 "marker \"%s\"\n"),
8847 t->static_trace_marker_id.c_str ());
8848 }
8849 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8850 {
8851 t->static_trace_marker_id = std::move (marker.str_id);
8852
8853 printf_filtered (_("Probed static tracepoint "
8854 "marker \"%s\"\n"),
8855 t->static_trace_marker_id.c_str ());
8856 }
8857 else
8858 warning (_("Couldn't determine the static "
8859 "tracepoint marker to probe"));
8860 }
8861
8862 loc = b->loc;
8863 }
8864 else
8865 {
8866 loc = add_location_to_breakpoint (b, &sal);
8867 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8868 loc->inserted = 1;
8869 }
8870
8871 if (b->cond_string)
8872 {
8873 const char *arg = b->cond_string;
8874
8875 loc->cond = parse_exp_1 (&arg, loc->address,
8876 block_for_pc (loc->address), 0);
8877 if (*arg)
8878 error (_("Garbage '%s' follows condition"), arg);
8879 }
8880
8881 /* Dynamic printf requires and uses additional arguments on the
8882 command line, otherwise it's an error. */
8883 if (type == bp_dprintf)
8884 {
8885 if (b->extra_string)
8886 update_dprintf_command_list (b);
8887 else
8888 error (_("Format string required"));
8889 }
8890 else if (b->extra_string)
8891 error (_("Garbage '%s' at end of command"), b->extra_string);
8892 }
8893
8894 b->display_canonical = display_canonical;
8895 if (location != NULL)
8896 b->location = std::move (location);
8897 else
8898 b->location = new_address_location (b->loc->address, NULL, 0);
8899 b->filter = filter.release ();
8900 }
8901
8902 static void
8903 create_breakpoint_sal (struct gdbarch *gdbarch,
8904 gdb::array_view<const symtab_and_line> sals,
8905 event_location_up &&location,
8906 gdb::unique_xmalloc_ptr<char> filter,
8907 gdb::unique_xmalloc_ptr<char> cond_string,
8908 gdb::unique_xmalloc_ptr<char> extra_string,
8909 enum bptype type, enum bpdisp disposition,
8910 int thread, int task, int ignore_count,
8911 const struct breakpoint_ops *ops, int from_tty,
8912 int enabled, int internal, unsigned flags,
8913 int display_canonical)
8914 {
8915 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8916
8917 init_breakpoint_sal (b.get (), gdbarch,
8918 sals, std::move (location),
8919 std::move (filter),
8920 std::move (cond_string),
8921 std::move (extra_string),
8922 type, disposition,
8923 thread, task, ignore_count,
8924 ops, from_tty,
8925 enabled, internal, flags,
8926 display_canonical);
8927
8928 install_breakpoint (internal, std::move (b), 0);
8929 }
8930
8931 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8932 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8933 value. COND_STRING, if not NULL, specified the condition to be
8934 used for all breakpoints. Essentially the only case where
8935 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8936 function. In that case, it's still not possible to specify
8937 separate conditions for different overloaded functions, so
8938 we take just a single condition string.
8939
8940 NOTE: If the function succeeds, the caller is expected to cleanup
8941 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8942 array contents). If the function fails (error() is called), the
8943 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8944 COND and SALS arrays and each of those arrays contents. */
8945
8946 static void
8947 create_breakpoints_sal (struct gdbarch *gdbarch,
8948 struct linespec_result *canonical,
8949 gdb::unique_xmalloc_ptr<char> cond_string,
8950 gdb::unique_xmalloc_ptr<char> extra_string,
8951 enum bptype type, enum bpdisp disposition,
8952 int thread, int task, int ignore_count,
8953 const struct breakpoint_ops *ops, int from_tty,
8954 int enabled, int internal, unsigned flags)
8955 {
8956 if (canonical->pre_expanded)
8957 gdb_assert (canonical->lsals.size () == 1);
8958
8959 for (const auto &lsal : canonical->lsals)
8960 {
8961 /* Note that 'location' can be NULL in the case of a plain
8962 'break', without arguments. */
8963 event_location_up location
8964 = (canonical->location != NULL
8965 ? copy_event_location (canonical->location.get ()) : NULL);
8966 gdb::unique_xmalloc_ptr<char> filter_string
8967 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8968
8969 create_breakpoint_sal (gdbarch, lsal.sals,
8970 std::move (location),
8971 std::move (filter_string),
8972 std::move (cond_string),
8973 std::move (extra_string),
8974 type, disposition,
8975 thread, task, ignore_count, ops,
8976 from_tty, enabled, internal, flags,
8977 canonical->special_display);
8978 }
8979 }
8980
8981 /* Parse LOCATION which is assumed to be a SAL specification possibly
8982 followed by conditionals. On return, SALS contains an array of SAL
8983 addresses found. LOCATION points to the end of the SAL (for
8984 linespec locations).
8985
8986 The array and the line spec strings are allocated on the heap, it is
8987 the caller's responsibility to free them. */
8988
8989 static void
8990 parse_breakpoint_sals (const struct event_location *location,
8991 struct linespec_result *canonical)
8992 {
8993 struct symtab_and_line cursal;
8994
8995 if (event_location_type (location) == LINESPEC_LOCATION)
8996 {
8997 const char *spec = get_linespec_location (location)->spec_string;
8998
8999 if (spec == NULL)
9000 {
9001 /* The last displayed codepoint, if it's valid, is our default
9002 breakpoint address. */
9003 if (last_displayed_sal_is_valid ())
9004 {
9005 /* Set sal's pspace, pc, symtab, and line to the values
9006 corresponding to the last call to print_frame_info.
9007 Be sure to reinitialize LINE with NOTCURRENT == 0
9008 as the breakpoint line number is inappropriate otherwise.
9009 find_pc_line would adjust PC, re-set it back. */
9010 symtab_and_line sal = get_last_displayed_sal ();
9011 CORE_ADDR pc = sal.pc;
9012
9013 sal = find_pc_line (pc, 0);
9014
9015 /* "break" without arguments is equivalent to "break *PC"
9016 where PC is the last displayed codepoint's address. So
9017 make sure to set sal.explicit_pc to prevent GDB from
9018 trying to expand the list of sals to include all other
9019 instances with the same symtab and line. */
9020 sal.pc = pc;
9021 sal.explicit_pc = 1;
9022
9023 struct linespec_sals lsal;
9024 lsal.sals = {sal};
9025 lsal.canonical = NULL;
9026
9027 canonical->lsals.push_back (std::move (lsal));
9028 return;
9029 }
9030 else
9031 error (_("No default breakpoint address now."));
9032 }
9033 }
9034
9035 /* Force almost all breakpoints to be in terms of the
9036 current_source_symtab (which is decode_line_1's default).
9037 This should produce the results we want almost all of the
9038 time while leaving default_breakpoint_* alone.
9039
9040 ObjC: However, don't match an Objective-C method name which
9041 may have a '+' or '-' succeeded by a '['. */
9042 cursal = get_current_source_symtab_and_line ();
9043 if (last_displayed_sal_is_valid ())
9044 {
9045 const char *spec = NULL;
9046
9047 if (event_location_type (location) == LINESPEC_LOCATION)
9048 spec = get_linespec_location (location)->spec_string;
9049
9050 if (!cursal.symtab
9051 || (spec != NULL
9052 && strchr ("+-", spec[0]) != NULL
9053 && spec[1] != '['))
9054 {
9055 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9056 get_last_displayed_symtab (),
9057 get_last_displayed_line (),
9058 canonical, NULL, NULL);
9059 return;
9060 }
9061 }
9062
9063 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9064 cursal.symtab, cursal.line, canonical, NULL, NULL);
9065 }
9066
9067
9068 /* Convert each SAL into a real PC. Verify that the PC can be
9069 inserted as a breakpoint. If it can't throw an error. */
9070
9071 static void
9072 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9073 {
9074 for (auto &sal : sals)
9075 resolve_sal_pc (&sal);
9076 }
9077
9078 /* Fast tracepoints may have restrictions on valid locations. For
9079 instance, a fast tracepoint using a jump instead of a trap will
9080 likely have to overwrite more bytes than a trap would, and so can
9081 only be placed where the instruction is longer than the jump, or a
9082 multi-instruction sequence does not have a jump into the middle of
9083 it, etc. */
9084
9085 static void
9086 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9087 gdb::array_view<const symtab_and_line> sals)
9088 {
9089 for (const auto &sal : sals)
9090 {
9091 struct gdbarch *sarch;
9092
9093 sarch = get_sal_arch (sal);
9094 /* We fall back to GDBARCH if there is no architecture
9095 associated with SAL. */
9096 if (sarch == NULL)
9097 sarch = gdbarch;
9098 std::string msg;
9099 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9100 error (_("May not have a fast tracepoint at %s%s"),
9101 paddress (sarch, sal.pc), msg.c_str ());
9102 }
9103 }
9104
9105 /* Given TOK, a string specification of condition and thread, as
9106 accepted by the 'break' command, extract the condition
9107 string and thread number and set *COND_STRING and *THREAD.
9108 PC identifies the context at which the condition should be parsed.
9109 If no condition is found, *COND_STRING is set to NULL.
9110 If no thread is found, *THREAD is set to -1. */
9111
9112 static void
9113 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9114 char **cond_string, int *thread, int *task,
9115 char **rest)
9116 {
9117 *cond_string = NULL;
9118 *thread = -1;
9119 *task = 0;
9120 *rest = NULL;
9121
9122 while (tok && *tok)
9123 {
9124 const char *end_tok;
9125 int toklen;
9126 const char *cond_start = NULL;
9127 const char *cond_end = NULL;
9128
9129 tok = skip_spaces (tok);
9130
9131 if ((*tok == '"' || *tok == ',') && rest)
9132 {
9133 *rest = savestring (tok, strlen (tok));
9134 return;
9135 }
9136
9137 end_tok = skip_to_space (tok);
9138
9139 toklen = end_tok - tok;
9140
9141 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9142 {
9143 tok = cond_start = end_tok + 1;
9144 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9145 cond_end = tok;
9146 *cond_string = savestring (cond_start, cond_end - cond_start);
9147 }
9148 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9149 {
9150 const char *tmptok;
9151 struct thread_info *thr;
9152
9153 tok = end_tok + 1;
9154 thr = parse_thread_id (tok, &tmptok);
9155 if (tok == tmptok)
9156 error (_("Junk after thread keyword."));
9157 *thread = thr->global_num;
9158 tok = tmptok;
9159 }
9160 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9161 {
9162 char *tmptok;
9163
9164 tok = end_tok + 1;
9165 *task = strtol (tok, &tmptok, 0);
9166 if (tok == tmptok)
9167 error (_("Junk after task keyword."));
9168 if (!valid_task_id (*task))
9169 error (_("Unknown task %d."), *task);
9170 tok = tmptok;
9171 }
9172 else if (rest)
9173 {
9174 *rest = savestring (tok, strlen (tok));
9175 return;
9176 }
9177 else
9178 error (_("Junk at end of arguments."));
9179 }
9180 }
9181
9182 /* Decode a static tracepoint marker spec. */
9183
9184 static std::vector<symtab_and_line>
9185 decode_static_tracepoint_spec (const char **arg_p)
9186 {
9187 const char *p = &(*arg_p)[3];
9188 const char *endp;
9189
9190 p = skip_spaces (p);
9191
9192 endp = skip_to_space (p);
9193
9194 std::string marker_str (p, endp - p);
9195
9196 std::vector<static_tracepoint_marker> markers
9197 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9198 if (markers.empty ())
9199 error (_("No known static tracepoint marker named %s"),
9200 marker_str.c_str ());
9201
9202 std::vector<symtab_and_line> sals;
9203 sals.reserve (markers.size ());
9204
9205 for (const static_tracepoint_marker &marker : markers)
9206 {
9207 symtab_and_line sal = find_pc_line (marker.address, 0);
9208 sal.pc = marker.address;
9209 sals.push_back (sal);
9210 }
9211
9212 *arg_p = endp;
9213 return sals;
9214 }
9215
9216 /* See breakpoint.h. */
9217
9218 int
9219 create_breakpoint (struct gdbarch *gdbarch,
9220 const struct event_location *location,
9221 const char *cond_string,
9222 int thread, const char *extra_string,
9223 int parse_extra,
9224 int tempflag, enum bptype type_wanted,
9225 int ignore_count,
9226 enum auto_boolean pending_break_support,
9227 const struct breakpoint_ops *ops,
9228 int from_tty, int enabled, int internal,
9229 unsigned flags)
9230 {
9231 struct linespec_result canonical;
9232 int pending = 0;
9233 int task = 0;
9234 int prev_bkpt_count = breakpoint_count;
9235
9236 gdb_assert (ops != NULL);
9237
9238 /* If extra_string isn't useful, set it to NULL. */
9239 if (extra_string != NULL && *extra_string == '\0')
9240 extra_string = NULL;
9241
9242 try
9243 {
9244 ops->create_sals_from_location (location, &canonical, type_wanted);
9245 }
9246 catch (const gdb_exception_error &e)
9247 {
9248 /* If caller is interested in rc value from parse, set
9249 value. */
9250 if (e.error == NOT_FOUND_ERROR)
9251 {
9252 /* If pending breakpoint support is turned off, throw
9253 error. */
9254
9255 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9256 throw;
9257
9258 exception_print (gdb_stderr, e);
9259
9260 /* If pending breakpoint support is auto query and the user
9261 selects no, then simply return the error code. */
9262 if (pending_break_support == AUTO_BOOLEAN_AUTO
9263 && !nquery (_("Make %s pending on future shared library load? "),
9264 bptype_string (type_wanted)))
9265 return 0;
9266
9267 /* At this point, either the user was queried about setting
9268 a pending breakpoint and selected yes, or pending
9269 breakpoint behavior is on and thus a pending breakpoint
9270 is defaulted on behalf of the user. */
9271 pending = 1;
9272 }
9273 else
9274 throw;
9275 }
9276
9277 if (!pending && canonical.lsals.empty ())
9278 return 0;
9279
9280 /* Resolve all line numbers to PC's and verify that the addresses
9281 are ok for the target. */
9282 if (!pending)
9283 {
9284 for (auto &lsal : canonical.lsals)
9285 breakpoint_sals_to_pc (lsal.sals);
9286 }
9287
9288 /* Fast tracepoints may have additional restrictions on location. */
9289 if (!pending && type_wanted == bp_fast_tracepoint)
9290 {
9291 for (const auto &lsal : canonical.lsals)
9292 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9293 }
9294
9295 /* Verify that condition can be parsed, before setting any
9296 breakpoints. Allocate a separate condition expression for each
9297 breakpoint. */
9298 if (!pending)
9299 {
9300 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9301 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9302
9303 if (parse_extra)
9304 {
9305 char *rest;
9306 char *cond;
9307
9308 const linespec_sals &lsal = canonical.lsals[0];
9309
9310 /* Here we only parse 'arg' to separate condition
9311 from thread number, so parsing in context of first
9312 sal is OK. When setting the breakpoint we'll
9313 re-parse it in context of each sal. */
9314
9315 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9316 &cond, &thread, &task, &rest);
9317 cond_string_copy.reset (cond);
9318 extra_string_copy.reset (rest);
9319 }
9320 else
9321 {
9322 if (type_wanted != bp_dprintf
9323 && extra_string != NULL && *extra_string != '\0')
9324 error (_("Garbage '%s' at end of location"), extra_string);
9325
9326 /* Create a private copy of condition string. */
9327 if (cond_string)
9328 cond_string_copy.reset (xstrdup (cond_string));
9329 /* Create a private copy of any extra string. */
9330 if (extra_string)
9331 extra_string_copy.reset (xstrdup (extra_string));
9332 }
9333
9334 ops->create_breakpoints_sal (gdbarch, &canonical,
9335 std::move (cond_string_copy),
9336 std::move (extra_string_copy),
9337 type_wanted,
9338 tempflag ? disp_del : disp_donttouch,
9339 thread, task, ignore_count, ops,
9340 from_tty, enabled, internal, flags);
9341 }
9342 else
9343 {
9344 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9345
9346 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9347 b->location = copy_event_location (location);
9348
9349 if (parse_extra)
9350 b->cond_string = NULL;
9351 else
9352 {
9353 /* Create a private copy of condition string. */
9354 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9355 b->thread = thread;
9356 }
9357
9358 /* Create a private copy of any extra string. */
9359 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9360 b->ignore_count = ignore_count;
9361 b->disposition = tempflag ? disp_del : disp_donttouch;
9362 b->condition_not_parsed = 1;
9363 b->enable_state = enabled ? bp_enabled : bp_disabled;
9364 if ((type_wanted != bp_breakpoint
9365 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9366 b->pspace = current_program_space;
9367
9368 install_breakpoint (internal, std::move (b), 0);
9369 }
9370
9371 if (canonical.lsals.size () > 1)
9372 {
9373 warning (_("Multiple breakpoints were set.\nUse the "
9374 "\"delete\" command to delete unwanted breakpoints."));
9375 prev_breakpoint_count = prev_bkpt_count;
9376 }
9377
9378 update_global_location_list (UGLL_MAY_INSERT);
9379
9380 return 1;
9381 }
9382
9383 /* Set a breakpoint.
9384 ARG is a string describing breakpoint address,
9385 condition, and thread.
9386 FLAG specifies if a breakpoint is hardware on,
9387 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9388 and BP_TEMPFLAG. */
9389
9390 static void
9391 break_command_1 (const char *arg, int flag, int from_tty)
9392 {
9393 int tempflag = flag & BP_TEMPFLAG;
9394 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9395 ? bp_hardware_breakpoint
9396 : bp_breakpoint);
9397 struct breakpoint_ops *ops;
9398
9399 event_location_up location = string_to_event_location (&arg, current_language);
9400
9401 /* Matching breakpoints on probes. */
9402 if (location != NULL
9403 && event_location_type (location.get ()) == PROBE_LOCATION)
9404 ops = &bkpt_probe_breakpoint_ops;
9405 else
9406 ops = &bkpt_breakpoint_ops;
9407
9408 create_breakpoint (get_current_arch (),
9409 location.get (),
9410 NULL, 0, arg, 1 /* parse arg */,
9411 tempflag, type_wanted,
9412 0 /* Ignore count */,
9413 pending_break_support,
9414 ops,
9415 from_tty,
9416 1 /* enabled */,
9417 0 /* internal */,
9418 0);
9419 }
9420
9421 /* Helper function for break_command_1 and disassemble_command. */
9422
9423 void
9424 resolve_sal_pc (struct symtab_and_line *sal)
9425 {
9426 CORE_ADDR pc;
9427
9428 if (sal->pc == 0 && sal->symtab != NULL)
9429 {
9430 if (!find_line_pc (sal->symtab, sal->line, &pc))
9431 error (_("No line %d in file \"%s\"."),
9432 sal->line, symtab_to_filename_for_display (sal->symtab));
9433 sal->pc = pc;
9434
9435 /* If this SAL corresponds to a breakpoint inserted using a line
9436 number, then skip the function prologue if necessary. */
9437 if (sal->explicit_line)
9438 skip_prologue_sal (sal);
9439 }
9440
9441 if (sal->section == 0 && sal->symtab != NULL)
9442 {
9443 const struct blockvector *bv;
9444 const struct block *b;
9445 struct symbol *sym;
9446
9447 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9448 SYMTAB_COMPUNIT (sal->symtab));
9449 if (bv != NULL)
9450 {
9451 sym = block_linkage_function (b);
9452 if (sym != NULL)
9453 {
9454 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9455 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9456 sym);
9457 }
9458 else
9459 {
9460 /* It really is worthwhile to have the section, so we'll
9461 just have to look harder. This case can be executed
9462 if we have line numbers but no functions (as can
9463 happen in assembly source). */
9464
9465 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9466 switch_to_program_space_and_thread (sal->pspace);
9467
9468 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9469 if (msym.minsym)
9470 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9471 }
9472 }
9473 }
9474 }
9475
9476 void
9477 break_command (const char *arg, int from_tty)
9478 {
9479 break_command_1 (arg, 0, from_tty);
9480 }
9481
9482 void
9483 tbreak_command (const char *arg, int from_tty)
9484 {
9485 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9486 }
9487
9488 static void
9489 hbreak_command (const char *arg, int from_tty)
9490 {
9491 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9492 }
9493
9494 static void
9495 thbreak_command (const char *arg, int from_tty)
9496 {
9497 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9498 }
9499
9500 static void
9501 stop_command (const char *arg, int from_tty)
9502 {
9503 printf_filtered (_("Specify the type of breakpoint to set.\n\
9504 Usage: stop in <function | address>\n\
9505 stop at <line>\n"));
9506 }
9507
9508 static void
9509 stopin_command (const char *arg, int from_tty)
9510 {
9511 int badInput = 0;
9512
9513 if (arg == (char *) NULL)
9514 badInput = 1;
9515 else if (*arg != '*')
9516 {
9517 const char *argptr = arg;
9518 int hasColon = 0;
9519
9520 /* Look for a ':'. If this is a line number specification, then
9521 say it is bad, otherwise, it should be an address or
9522 function/method name. */
9523 while (*argptr && !hasColon)
9524 {
9525 hasColon = (*argptr == ':');
9526 argptr++;
9527 }
9528
9529 if (hasColon)
9530 badInput = (*argptr != ':'); /* Not a class::method */
9531 else
9532 badInput = isdigit (*arg); /* a simple line number */
9533 }
9534
9535 if (badInput)
9536 printf_filtered (_("Usage: stop in <function | address>\n"));
9537 else
9538 break_command_1 (arg, 0, from_tty);
9539 }
9540
9541 static void
9542 stopat_command (const char *arg, int from_tty)
9543 {
9544 int badInput = 0;
9545
9546 if (arg == (char *) NULL || *arg == '*') /* no line number */
9547 badInput = 1;
9548 else
9549 {
9550 const char *argptr = arg;
9551 int hasColon = 0;
9552
9553 /* Look for a ':'. If there is a '::' then get out, otherwise
9554 it is probably a line number. */
9555 while (*argptr && !hasColon)
9556 {
9557 hasColon = (*argptr == ':');
9558 argptr++;
9559 }
9560
9561 if (hasColon)
9562 badInput = (*argptr == ':'); /* we have class::method */
9563 else
9564 badInput = !isdigit (*arg); /* not a line number */
9565 }
9566
9567 if (badInput)
9568 printf_filtered (_("Usage: stop at LINE\n"));
9569 else
9570 break_command_1 (arg, 0, from_tty);
9571 }
9572
9573 /* The dynamic printf command is mostly like a regular breakpoint, but
9574 with a prewired command list consisting of a single output command,
9575 built from extra arguments supplied on the dprintf command
9576 line. */
9577
9578 static void
9579 dprintf_command (const char *arg, int from_tty)
9580 {
9581 event_location_up location = string_to_event_location (&arg, current_language);
9582
9583 /* If non-NULL, ARG should have been advanced past the location;
9584 the next character must be ','. */
9585 if (arg != NULL)
9586 {
9587 if (arg[0] != ',' || arg[1] == '\0')
9588 error (_("Format string required"));
9589 else
9590 {
9591 /* Skip the comma. */
9592 ++arg;
9593 }
9594 }
9595
9596 create_breakpoint (get_current_arch (),
9597 location.get (),
9598 NULL, 0, arg, 1 /* parse arg */,
9599 0, bp_dprintf,
9600 0 /* Ignore count */,
9601 pending_break_support,
9602 &dprintf_breakpoint_ops,
9603 from_tty,
9604 1 /* enabled */,
9605 0 /* internal */,
9606 0);
9607 }
9608
9609 static void
9610 agent_printf_command (const char *arg, int from_tty)
9611 {
9612 error (_("May only run agent-printf on the target"));
9613 }
9614
9615 /* Implement the "breakpoint_hit" breakpoint_ops method for
9616 ranged breakpoints. */
9617
9618 static int
9619 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9620 const address_space *aspace,
9621 CORE_ADDR bp_addr,
9622 const struct target_waitstatus *ws)
9623 {
9624 if (ws->kind != TARGET_WAITKIND_STOPPED
9625 || ws->value.sig != GDB_SIGNAL_TRAP)
9626 return 0;
9627
9628 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9629 bl->length, aspace, bp_addr);
9630 }
9631
9632 /* Implement the "resources_needed" breakpoint_ops method for
9633 ranged breakpoints. */
9634
9635 static int
9636 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9637 {
9638 return target_ranged_break_num_registers ();
9639 }
9640
9641 /* Implement the "print_it" breakpoint_ops method for
9642 ranged breakpoints. */
9643
9644 static enum print_stop_action
9645 print_it_ranged_breakpoint (bpstat bs)
9646 {
9647 struct breakpoint *b = bs->breakpoint_at;
9648 struct bp_location *bl = b->loc;
9649 struct ui_out *uiout = current_uiout;
9650
9651 gdb_assert (b->type == bp_hardware_breakpoint);
9652
9653 /* Ranged breakpoints have only one location. */
9654 gdb_assert (bl && bl->next == NULL);
9655
9656 annotate_breakpoint (b->number);
9657
9658 maybe_print_thread_hit_breakpoint (uiout);
9659
9660 if (b->disposition == disp_del)
9661 uiout->text ("Temporary ranged breakpoint ");
9662 else
9663 uiout->text ("Ranged breakpoint ");
9664 if (uiout->is_mi_like_p ())
9665 {
9666 uiout->field_string ("reason",
9667 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9668 uiout->field_string ("disp", bpdisp_text (b->disposition));
9669 }
9670 uiout->field_int ("bkptno", b->number);
9671 uiout->text (", ");
9672
9673 return PRINT_SRC_AND_LOC;
9674 }
9675
9676 /* Implement the "print_one" breakpoint_ops method for
9677 ranged breakpoints. */
9678
9679 static void
9680 print_one_ranged_breakpoint (struct breakpoint *b,
9681 struct bp_location **last_loc)
9682 {
9683 struct bp_location *bl = b->loc;
9684 struct value_print_options opts;
9685 struct ui_out *uiout = current_uiout;
9686
9687 /* Ranged breakpoints have only one location. */
9688 gdb_assert (bl && bl->next == NULL);
9689
9690 get_user_print_options (&opts);
9691
9692 if (opts.addressprint)
9693 /* We don't print the address range here, it will be printed later
9694 by print_one_detail_ranged_breakpoint. */
9695 uiout->field_skip ("addr");
9696 annotate_field (5);
9697 print_breakpoint_location (b, bl);
9698 *last_loc = bl;
9699 }
9700
9701 /* Implement the "print_one_detail" breakpoint_ops method for
9702 ranged breakpoints. */
9703
9704 static void
9705 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9706 struct ui_out *uiout)
9707 {
9708 CORE_ADDR address_start, address_end;
9709 struct bp_location *bl = b->loc;
9710 string_file stb;
9711
9712 gdb_assert (bl);
9713
9714 address_start = bl->address;
9715 address_end = address_start + bl->length - 1;
9716
9717 uiout->text ("\taddress range: ");
9718 stb.printf ("[%s, %s]",
9719 print_core_address (bl->gdbarch, address_start),
9720 print_core_address (bl->gdbarch, address_end));
9721 uiout->field_stream ("addr", stb);
9722 uiout->text ("\n");
9723 }
9724
9725 /* Implement the "print_mention" breakpoint_ops method for
9726 ranged breakpoints. */
9727
9728 static void
9729 print_mention_ranged_breakpoint (struct breakpoint *b)
9730 {
9731 struct bp_location *bl = b->loc;
9732 struct ui_out *uiout = current_uiout;
9733
9734 gdb_assert (bl);
9735 gdb_assert (b->type == bp_hardware_breakpoint);
9736
9737 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9738 b->number, paddress (bl->gdbarch, bl->address),
9739 paddress (bl->gdbarch, bl->address + bl->length - 1));
9740 }
9741
9742 /* Implement the "print_recreate" breakpoint_ops method for
9743 ranged breakpoints. */
9744
9745 static void
9746 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9747 {
9748 fprintf_unfiltered (fp, "break-range %s, %s",
9749 event_location_to_string (b->location.get ()),
9750 event_location_to_string (b->location_range_end.get ()));
9751 print_recreate_thread (b, fp);
9752 }
9753
9754 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9755
9756 static struct breakpoint_ops ranged_breakpoint_ops;
9757
9758 /* Find the address where the end of the breakpoint range should be
9759 placed, given the SAL of the end of the range. This is so that if
9760 the user provides a line number, the end of the range is set to the
9761 last instruction of the given line. */
9762
9763 static CORE_ADDR
9764 find_breakpoint_range_end (struct symtab_and_line sal)
9765 {
9766 CORE_ADDR end;
9767
9768 /* If the user provided a PC value, use it. Otherwise,
9769 find the address of the end of the given location. */
9770 if (sal.explicit_pc)
9771 end = sal.pc;
9772 else
9773 {
9774 int ret;
9775 CORE_ADDR start;
9776
9777 ret = find_line_pc_range (sal, &start, &end);
9778 if (!ret)
9779 error (_("Could not find location of the end of the range."));
9780
9781 /* find_line_pc_range returns the start of the next line. */
9782 end--;
9783 }
9784
9785 return end;
9786 }
9787
9788 /* Implement the "break-range" CLI command. */
9789
9790 static void
9791 break_range_command (const char *arg, int from_tty)
9792 {
9793 const char *arg_start;
9794 struct linespec_result canonical_start, canonical_end;
9795 int bp_count, can_use_bp, length;
9796 CORE_ADDR end;
9797 struct breakpoint *b;
9798
9799 /* We don't support software ranged breakpoints. */
9800 if (target_ranged_break_num_registers () < 0)
9801 error (_("This target does not support hardware ranged breakpoints."));
9802
9803 bp_count = hw_breakpoint_used_count ();
9804 bp_count += target_ranged_break_num_registers ();
9805 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9806 bp_count, 0);
9807 if (can_use_bp < 0)
9808 error (_("Hardware breakpoints used exceeds limit."));
9809
9810 arg = skip_spaces (arg);
9811 if (arg == NULL || arg[0] == '\0')
9812 error(_("No address range specified."));
9813
9814 arg_start = arg;
9815 event_location_up start_location = string_to_event_location (&arg,
9816 current_language);
9817 parse_breakpoint_sals (start_location.get (), &canonical_start);
9818
9819 if (arg[0] != ',')
9820 error (_("Too few arguments."));
9821 else if (canonical_start.lsals.empty ())
9822 error (_("Could not find location of the beginning of the range."));
9823
9824 const linespec_sals &lsal_start = canonical_start.lsals[0];
9825
9826 if (canonical_start.lsals.size () > 1
9827 || lsal_start.sals.size () != 1)
9828 error (_("Cannot create a ranged breakpoint with multiple locations."));
9829
9830 const symtab_and_line &sal_start = lsal_start.sals[0];
9831 std::string addr_string_start (arg_start, arg - arg_start);
9832
9833 arg++; /* Skip the comma. */
9834 arg = skip_spaces (arg);
9835
9836 /* Parse the end location. */
9837
9838 arg_start = arg;
9839
9840 /* We call decode_line_full directly here instead of using
9841 parse_breakpoint_sals because we need to specify the start location's
9842 symtab and line as the default symtab and line for the end of the
9843 range. This makes it possible to have ranges like "foo.c:27, +14",
9844 where +14 means 14 lines from the start location. */
9845 event_location_up end_location = string_to_event_location (&arg,
9846 current_language);
9847 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9848 sal_start.symtab, sal_start.line,
9849 &canonical_end, NULL, NULL);
9850
9851 if (canonical_end.lsals.empty ())
9852 error (_("Could not find location of the end of the range."));
9853
9854 const linespec_sals &lsal_end = canonical_end.lsals[0];
9855 if (canonical_end.lsals.size () > 1
9856 || lsal_end.sals.size () != 1)
9857 error (_("Cannot create a ranged breakpoint with multiple locations."));
9858
9859 const symtab_and_line &sal_end = lsal_end.sals[0];
9860
9861 end = find_breakpoint_range_end (sal_end);
9862 if (sal_start.pc > end)
9863 error (_("Invalid address range, end precedes start."));
9864
9865 length = end - sal_start.pc + 1;
9866 if (length < 0)
9867 /* Length overflowed. */
9868 error (_("Address range too large."));
9869 else if (length == 1)
9870 {
9871 /* This range is simple enough to be handled by
9872 the `hbreak' command. */
9873 hbreak_command (&addr_string_start[0], 1);
9874
9875 return;
9876 }
9877
9878 /* Now set up the breakpoint. */
9879 b = set_raw_breakpoint (get_current_arch (), sal_start,
9880 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9881 set_breakpoint_count (breakpoint_count + 1);
9882 b->number = breakpoint_count;
9883 b->disposition = disp_donttouch;
9884 b->location = std::move (start_location);
9885 b->location_range_end = std::move (end_location);
9886 b->loc->length = length;
9887
9888 mention (b);
9889 gdb::observers::breakpoint_created.notify (b);
9890 update_global_location_list (UGLL_MAY_INSERT);
9891 }
9892
9893 /* Return non-zero if EXP is verified as constant. Returned zero
9894 means EXP is variable. Also the constant detection may fail for
9895 some constant expressions and in such case still falsely return
9896 zero. */
9897
9898 static int
9899 watchpoint_exp_is_const (const struct expression *exp)
9900 {
9901 int i = exp->nelts;
9902
9903 while (i > 0)
9904 {
9905 int oplenp, argsp;
9906
9907 /* We are only interested in the descriptor of each element. */
9908 operator_length (exp, i, &oplenp, &argsp);
9909 i -= oplenp;
9910
9911 switch (exp->elts[i].opcode)
9912 {
9913 case BINOP_ADD:
9914 case BINOP_SUB:
9915 case BINOP_MUL:
9916 case BINOP_DIV:
9917 case BINOP_REM:
9918 case BINOP_MOD:
9919 case BINOP_LSH:
9920 case BINOP_RSH:
9921 case BINOP_LOGICAL_AND:
9922 case BINOP_LOGICAL_OR:
9923 case BINOP_BITWISE_AND:
9924 case BINOP_BITWISE_IOR:
9925 case BINOP_BITWISE_XOR:
9926 case BINOP_EQUAL:
9927 case BINOP_NOTEQUAL:
9928 case BINOP_LESS:
9929 case BINOP_GTR:
9930 case BINOP_LEQ:
9931 case BINOP_GEQ:
9932 case BINOP_REPEAT:
9933 case BINOP_COMMA:
9934 case BINOP_EXP:
9935 case BINOP_MIN:
9936 case BINOP_MAX:
9937 case BINOP_INTDIV:
9938 case BINOP_CONCAT:
9939 case TERNOP_COND:
9940 case TERNOP_SLICE:
9941
9942 case OP_LONG:
9943 case OP_FLOAT:
9944 case OP_LAST:
9945 case OP_COMPLEX:
9946 case OP_STRING:
9947 case OP_ARRAY:
9948 case OP_TYPE:
9949 case OP_TYPEOF:
9950 case OP_DECLTYPE:
9951 case OP_TYPEID:
9952 case OP_NAME:
9953 case OP_OBJC_NSSTRING:
9954
9955 case UNOP_NEG:
9956 case UNOP_LOGICAL_NOT:
9957 case UNOP_COMPLEMENT:
9958 case UNOP_ADDR:
9959 case UNOP_HIGH:
9960 case UNOP_CAST:
9961
9962 case UNOP_CAST_TYPE:
9963 case UNOP_REINTERPRET_CAST:
9964 case UNOP_DYNAMIC_CAST:
9965 /* Unary, binary and ternary operators: We have to check
9966 their operands. If they are constant, then so is the
9967 result of that operation. For instance, if A and B are
9968 determined to be constants, then so is "A + B".
9969
9970 UNOP_IND is one exception to the rule above, because the
9971 value of *ADDR is not necessarily a constant, even when
9972 ADDR is. */
9973 break;
9974
9975 case OP_VAR_VALUE:
9976 /* Check whether the associated symbol is a constant.
9977
9978 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9979 possible that a buggy compiler could mark a variable as
9980 constant even when it is not, and TYPE_CONST would return
9981 true in this case, while SYMBOL_CLASS wouldn't.
9982
9983 We also have to check for function symbols because they
9984 are always constant. */
9985 {
9986 struct symbol *s = exp->elts[i + 2].symbol;
9987
9988 if (SYMBOL_CLASS (s) != LOC_BLOCK
9989 && SYMBOL_CLASS (s) != LOC_CONST
9990 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9991 return 0;
9992 break;
9993 }
9994
9995 /* The default action is to return 0 because we are using
9996 the optimistic approach here: If we don't know something,
9997 then it is not a constant. */
9998 default:
9999 return 0;
10000 }
10001 }
10002
10003 return 1;
10004 }
10005
10006 /* Watchpoint destructor. */
10007
10008 watchpoint::~watchpoint ()
10009 {
10010 xfree (this->exp_string);
10011 xfree (this->exp_string_reparse);
10012 }
10013
10014 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10015
10016 static void
10017 re_set_watchpoint (struct breakpoint *b)
10018 {
10019 struct watchpoint *w = (struct watchpoint *) b;
10020
10021 /* Watchpoint can be either on expression using entirely global
10022 variables, or it can be on local variables.
10023
10024 Watchpoints of the first kind are never auto-deleted, and even
10025 persist across program restarts. Since they can use variables
10026 from shared libraries, we need to reparse expression as libraries
10027 are loaded and unloaded.
10028
10029 Watchpoints on local variables can also change meaning as result
10030 of solib event. For example, if a watchpoint uses both a local
10031 and a global variables in expression, it's a local watchpoint,
10032 but unloading of a shared library will make the expression
10033 invalid. This is not a very common use case, but we still
10034 re-evaluate expression, to avoid surprises to the user.
10035
10036 Note that for local watchpoints, we re-evaluate it only if
10037 watchpoints frame id is still valid. If it's not, it means the
10038 watchpoint is out of scope and will be deleted soon. In fact,
10039 I'm not sure we'll ever be called in this case.
10040
10041 If a local watchpoint's frame id is still valid, then
10042 w->exp_valid_block is likewise valid, and we can safely use it.
10043
10044 Don't do anything about disabled watchpoints, since they will be
10045 reevaluated again when enabled. */
10046 update_watchpoint (w, 1 /* reparse */);
10047 }
10048
10049 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10050
10051 static int
10052 insert_watchpoint (struct bp_location *bl)
10053 {
10054 struct watchpoint *w = (struct watchpoint *) bl->owner;
10055 int length = w->exact ? 1 : bl->length;
10056
10057 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10058 w->cond_exp.get ());
10059 }
10060
10061 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10062
10063 static int
10064 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10065 {
10066 struct watchpoint *w = (struct watchpoint *) bl->owner;
10067 int length = w->exact ? 1 : bl->length;
10068
10069 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10070 w->cond_exp.get ());
10071 }
10072
10073 static int
10074 breakpoint_hit_watchpoint (const struct bp_location *bl,
10075 const address_space *aspace, CORE_ADDR bp_addr,
10076 const struct target_waitstatus *ws)
10077 {
10078 struct breakpoint *b = bl->owner;
10079 struct watchpoint *w = (struct watchpoint *) b;
10080
10081 /* Continuable hardware watchpoints are treated as non-existent if the
10082 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10083 some data address). Otherwise gdb won't stop on a break instruction
10084 in the code (not from a breakpoint) when a hardware watchpoint has
10085 been defined. Also skip watchpoints which we know did not trigger
10086 (did not match the data address). */
10087 if (is_hardware_watchpoint (b)
10088 && w->watchpoint_triggered == watch_triggered_no)
10089 return 0;
10090
10091 return 1;
10092 }
10093
10094 static void
10095 check_status_watchpoint (bpstat bs)
10096 {
10097 gdb_assert (is_watchpoint (bs->breakpoint_at));
10098
10099 bpstat_check_watchpoint (bs);
10100 }
10101
10102 /* Implement the "resources_needed" breakpoint_ops method for
10103 hardware watchpoints. */
10104
10105 static int
10106 resources_needed_watchpoint (const struct bp_location *bl)
10107 {
10108 struct watchpoint *w = (struct watchpoint *) bl->owner;
10109 int length = w->exact? 1 : bl->length;
10110
10111 return target_region_ok_for_hw_watchpoint (bl->address, length);
10112 }
10113
10114 /* Implement the "works_in_software_mode" breakpoint_ops method for
10115 hardware watchpoints. */
10116
10117 static int
10118 works_in_software_mode_watchpoint (const struct breakpoint *b)
10119 {
10120 /* Read and access watchpoints only work with hardware support. */
10121 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10122 }
10123
10124 static enum print_stop_action
10125 print_it_watchpoint (bpstat bs)
10126 {
10127 struct breakpoint *b;
10128 enum print_stop_action result;
10129 struct watchpoint *w;
10130 struct ui_out *uiout = current_uiout;
10131
10132 gdb_assert (bs->bp_location_at != NULL);
10133
10134 b = bs->breakpoint_at;
10135 w = (struct watchpoint *) b;
10136
10137 annotate_watchpoint (b->number);
10138 maybe_print_thread_hit_breakpoint (uiout);
10139
10140 string_file stb;
10141
10142 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10143 switch (b->type)
10144 {
10145 case bp_watchpoint:
10146 case bp_hardware_watchpoint:
10147 if (uiout->is_mi_like_p ())
10148 uiout->field_string
10149 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10150 mention (b);
10151 tuple_emitter.emplace (uiout, "value");
10152 uiout->text ("\nOld value = ");
10153 watchpoint_value_print (bs->old_val.get (), &stb);
10154 uiout->field_stream ("old", stb);
10155 uiout->text ("\nNew value = ");
10156 watchpoint_value_print (w->val.get (), &stb);
10157 uiout->field_stream ("new", stb);
10158 uiout->text ("\n");
10159 /* More than one watchpoint may have been triggered. */
10160 result = PRINT_UNKNOWN;
10161 break;
10162
10163 case bp_read_watchpoint:
10164 if (uiout->is_mi_like_p ())
10165 uiout->field_string
10166 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10167 mention (b);
10168 tuple_emitter.emplace (uiout, "value");
10169 uiout->text ("\nValue = ");
10170 watchpoint_value_print (w->val.get (), &stb);
10171 uiout->field_stream ("value", stb);
10172 uiout->text ("\n");
10173 result = PRINT_UNKNOWN;
10174 break;
10175
10176 case bp_access_watchpoint:
10177 if (bs->old_val != NULL)
10178 {
10179 if (uiout->is_mi_like_p ())
10180 uiout->field_string
10181 ("reason",
10182 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10183 mention (b);
10184 tuple_emitter.emplace (uiout, "value");
10185 uiout->text ("\nOld value = ");
10186 watchpoint_value_print (bs->old_val.get (), &stb);
10187 uiout->field_stream ("old", stb);
10188 uiout->text ("\nNew value = ");
10189 }
10190 else
10191 {
10192 mention (b);
10193 if (uiout->is_mi_like_p ())
10194 uiout->field_string
10195 ("reason",
10196 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10197 tuple_emitter.emplace (uiout, "value");
10198 uiout->text ("\nValue = ");
10199 }
10200 watchpoint_value_print (w->val.get (), &stb);
10201 uiout->field_stream ("new", stb);
10202 uiout->text ("\n");
10203 result = PRINT_UNKNOWN;
10204 break;
10205 default:
10206 result = PRINT_UNKNOWN;
10207 }
10208
10209 return result;
10210 }
10211
10212 /* Implement the "print_mention" breakpoint_ops method for hardware
10213 watchpoints. */
10214
10215 static void
10216 print_mention_watchpoint (struct breakpoint *b)
10217 {
10218 struct watchpoint *w = (struct watchpoint *) b;
10219 struct ui_out *uiout = current_uiout;
10220 const char *tuple_name;
10221
10222 switch (b->type)
10223 {
10224 case bp_watchpoint:
10225 uiout->text ("Watchpoint ");
10226 tuple_name = "wpt";
10227 break;
10228 case bp_hardware_watchpoint:
10229 uiout->text ("Hardware watchpoint ");
10230 tuple_name = "wpt";
10231 break;
10232 case bp_read_watchpoint:
10233 uiout->text ("Hardware read watchpoint ");
10234 tuple_name = "hw-rwpt";
10235 break;
10236 case bp_access_watchpoint:
10237 uiout->text ("Hardware access (read/write) watchpoint ");
10238 tuple_name = "hw-awpt";
10239 break;
10240 default:
10241 internal_error (__FILE__, __LINE__,
10242 _("Invalid hardware watchpoint type."));
10243 }
10244
10245 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10246 uiout->field_int ("number", b->number);
10247 uiout->text (": ");
10248 uiout->field_string ("exp", w->exp_string);
10249 }
10250
10251 /* Implement the "print_recreate" breakpoint_ops method for
10252 watchpoints. */
10253
10254 static void
10255 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10256 {
10257 struct watchpoint *w = (struct watchpoint *) b;
10258
10259 switch (b->type)
10260 {
10261 case bp_watchpoint:
10262 case bp_hardware_watchpoint:
10263 fprintf_unfiltered (fp, "watch");
10264 break;
10265 case bp_read_watchpoint:
10266 fprintf_unfiltered (fp, "rwatch");
10267 break;
10268 case bp_access_watchpoint:
10269 fprintf_unfiltered (fp, "awatch");
10270 break;
10271 default:
10272 internal_error (__FILE__, __LINE__,
10273 _("Invalid watchpoint type."));
10274 }
10275
10276 fprintf_unfiltered (fp, " %s", w->exp_string);
10277 print_recreate_thread (b, fp);
10278 }
10279
10280 /* Implement the "explains_signal" breakpoint_ops method for
10281 watchpoints. */
10282
10283 static int
10284 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10285 {
10286 /* A software watchpoint cannot cause a signal other than
10287 GDB_SIGNAL_TRAP. */
10288 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10289 return 0;
10290
10291 return 1;
10292 }
10293
10294 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10295
10296 static struct breakpoint_ops watchpoint_breakpoint_ops;
10297
10298 /* Implement the "insert" breakpoint_ops method for
10299 masked hardware watchpoints. */
10300
10301 static int
10302 insert_masked_watchpoint (struct bp_location *bl)
10303 {
10304 struct watchpoint *w = (struct watchpoint *) bl->owner;
10305
10306 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10307 bl->watchpoint_type);
10308 }
10309
10310 /* Implement the "remove" breakpoint_ops method for
10311 masked hardware watchpoints. */
10312
10313 static int
10314 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10315 {
10316 struct watchpoint *w = (struct watchpoint *) bl->owner;
10317
10318 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10319 bl->watchpoint_type);
10320 }
10321
10322 /* Implement the "resources_needed" breakpoint_ops method for
10323 masked hardware watchpoints. */
10324
10325 static int
10326 resources_needed_masked_watchpoint (const struct bp_location *bl)
10327 {
10328 struct watchpoint *w = (struct watchpoint *) bl->owner;
10329
10330 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10331 }
10332
10333 /* Implement the "works_in_software_mode" breakpoint_ops method for
10334 masked hardware watchpoints. */
10335
10336 static int
10337 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10338 {
10339 return 0;
10340 }
10341
10342 /* Implement the "print_it" breakpoint_ops method for
10343 masked hardware watchpoints. */
10344
10345 static enum print_stop_action
10346 print_it_masked_watchpoint (bpstat bs)
10347 {
10348 struct breakpoint *b = bs->breakpoint_at;
10349 struct ui_out *uiout = current_uiout;
10350
10351 /* Masked watchpoints have only one location. */
10352 gdb_assert (b->loc && b->loc->next == NULL);
10353
10354 annotate_watchpoint (b->number);
10355 maybe_print_thread_hit_breakpoint (uiout);
10356
10357 switch (b->type)
10358 {
10359 case bp_hardware_watchpoint:
10360 if (uiout->is_mi_like_p ())
10361 uiout->field_string
10362 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10363 break;
10364
10365 case bp_read_watchpoint:
10366 if (uiout->is_mi_like_p ())
10367 uiout->field_string
10368 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10369 break;
10370
10371 case bp_access_watchpoint:
10372 if (uiout->is_mi_like_p ())
10373 uiout->field_string
10374 ("reason",
10375 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10376 break;
10377 default:
10378 internal_error (__FILE__, __LINE__,
10379 _("Invalid hardware watchpoint type."));
10380 }
10381
10382 mention (b);
10383 uiout->text (_("\n\
10384 Check the underlying instruction at PC for the memory\n\
10385 address and value which triggered this watchpoint.\n"));
10386 uiout->text ("\n");
10387
10388 /* More than one watchpoint may have been triggered. */
10389 return PRINT_UNKNOWN;
10390 }
10391
10392 /* Implement the "print_one_detail" breakpoint_ops method for
10393 masked hardware watchpoints. */
10394
10395 static void
10396 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10397 struct ui_out *uiout)
10398 {
10399 struct watchpoint *w = (struct watchpoint *) b;
10400
10401 /* Masked watchpoints have only one location. */
10402 gdb_assert (b->loc && b->loc->next == NULL);
10403
10404 uiout->text ("\tmask ");
10405 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10406 uiout->text ("\n");
10407 }
10408
10409 /* Implement the "print_mention" breakpoint_ops method for
10410 masked hardware watchpoints. */
10411
10412 static void
10413 print_mention_masked_watchpoint (struct breakpoint *b)
10414 {
10415 struct watchpoint *w = (struct watchpoint *) b;
10416 struct ui_out *uiout = current_uiout;
10417 const char *tuple_name;
10418
10419 switch (b->type)
10420 {
10421 case bp_hardware_watchpoint:
10422 uiout->text ("Masked hardware watchpoint ");
10423 tuple_name = "wpt";
10424 break;
10425 case bp_read_watchpoint:
10426 uiout->text ("Masked hardware read watchpoint ");
10427 tuple_name = "hw-rwpt";
10428 break;
10429 case bp_access_watchpoint:
10430 uiout->text ("Masked hardware access (read/write) watchpoint ");
10431 tuple_name = "hw-awpt";
10432 break;
10433 default:
10434 internal_error (__FILE__, __LINE__,
10435 _("Invalid hardware watchpoint type."));
10436 }
10437
10438 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10439 uiout->field_int ("number", b->number);
10440 uiout->text (": ");
10441 uiout->field_string ("exp", w->exp_string);
10442 }
10443
10444 /* Implement the "print_recreate" breakpoint_ops method for
10445 masked hardware watchpoints. */
10446
10447 static void
10448 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10449 {
10450 struct watchpoint *w = (struct watchpoint *) b;
10451 char tmp[40];
10452
10453 switch (b->type)
10454 {
10455 case bp_hardware_watchpoint:
10456 fprintf_unfiltered (fp, "watch");
10457 break;
10458 case bp_read_watchpoint:
10459 fprintf_unfiltered (fp, "rwatch");
10460 break;
10461 case bp_access_watchpoint:
10462 fprintf_unfiltered (fp, "awatch");
10463 break;
10464 default:
10465 internal_error (__FILE__, __LINE__,
10466 _("Invalid hardware watchpoint type."));
10467 }
10468
10469 sprintf_vma (tmp, w->hw_wp_mask);
10470 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10471 print_recreate_thread (b, fp);
10472 }
10473
10474 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10475
10476 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10477
10478 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10479
10480 static int
10481 is_masked_watchpoint (const struct breakpoint *b)
10482 {
10483 return b->ops == &masked_watchpoint_breakpoint_ops;
10484 }
10485
10486 /* accessflag: hw_write: watch write,
10487 hw_read: watch read,
10488 hw_access: watch access (read or write) */
10489 static void
10490 watch_command_1 (const char *arg, int accessflag, int from_tty,
10491 int just_location, int internal)
10492 {
10493 struct breakpoint *scope_breakpoint = NULL;
10494 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10495 struct value *result;
10496 int saved_bitpos = 0, saved_bitsize = 0;
10497 const char *exp_start = NULL;
10498 const char *exp_end = NULL;
10499 const char *tok, *end_tok;
10500 int toklen = -1;
10501 const char *cond_start = NULL;
10502 const char *cond_end = NULL;
10503 enum bptype bp_type;
10504 int thread = -1;
10505 int pc = 0;
10506 /* Flag to indicate whether we are going to use masks for
10507 the hardware watchpoint. */
10508 int use_mask = 0;
10509 CORE_ADDR mask = 0;
10510
10511 /* Make sure that we actually have parameters to parse. */
10512 if (arg != NULL && arg[0] != '\0')
10513 {
10514 const char *value_start;
10515
10516 exp_end = arg + strlen (arg);
10517
10518 /* Look for "parameter value" pairs at the end
10519 of the arguments string. */
10520 for (tok = exp_end - 1; tok > arg; tok--)
10521 {
10522 /* Skip whitespace at the end of the argument list. */
10523 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10524 tok--;
10525
10526 /* Find the beginning of the last token.
10527 This is the value of the parameter. */
10528 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10529 tok--;
10530 value_start = tok + 1;
10531
10532 /* Skip whitespace. */
10533 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10534 tok--;
10535
10536 end_tok = tok;
10537
10538 /* Find the beginning of the second to last token.
10539 This is the parameter itself. */
10540 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10541 tok--;
10542 tok++;
10543 toklen = end_tok - tok + 1;
10544
10545 if (toklen == 6 && startswith (tok, "thread"))
10546 {
10547 struct thread_info *thr;
10548 /* At this point we've found a "thread" token, which means
10549 the user is trying to set a watchpoint that triggers
10550 only in a specific thread. */
10551 const char *endp;
10552
10553 if (thread != -1)
10554 error(_("You can specify only one thread."));
10555
10556 /* Extract the thread ID from the next token. */
10557 thr = parse_thread_id (value_start, &endp);
10558
10559 /* Check if the user provided a valid thread ID. */
10560 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10561 invalid_thread_id_error (value_start);
10562
10563 thread = thr->global_num;
10564 }
10565 else if (toklen == 4 && startswith (tok, "mask"))
10566 {
10567 /* We've found a "mask" token, which means the user wants to
10568 create a hardware watchpoint that is going to have the mask
10569 facility. */
10570 struct value *mask_value, *mark;
10571
10572 if (use_mask)
10573 error(_("You can specify only one mask."));
10574
10575 use_mask = just_location = 1;
10576
10577 mark = value_mark ();
10578 mask_value = parse_to_comma_and_eval (&value_start);
10579 mask = value_as_address (mask_value);
10580 value_free_to_mark (mark);
10581 }
10582 else
10583 /* We didn't recognize what we found. We should stop here. */
10584 break;
10585
10586 /* Truncate the string and get rid of the "parameter value" pair before
10587 the arguments string is parsed by the parse_exp_1 function. */
10588 exp_end = tok;
10589 }
10590 }
10591 else
10592 exp_end = arg;
10593
10594 /* Parse the rest of the arguments. From here on out, everything
10595 is in terms of a newly allocated string instead of the original
10596 ARG. */
10597 std::string expression (arg, exp_end - arg);
10598 exp_start = arg = expression.c_str ();
10599 innermost_block_tracker tracker;
10600 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10601 exp_end = arg;
10602 /* Remove trailing whitespace from the expression before saving it.
10603 This makes the eventual display of the expression string a bit
10604 prettier. */
10605 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10606 --exp_end;
10607
10608 /* Checking if the expression is not constant. */
10609 if (watchpoint_exp_is_const (exp.get ()))
10610 {
10611 int len;
10612
10613 len = exp_end - exp_start;
10614 while (len > 0 && isspace (exp_start[len - 1]))
10615 len--;
10616 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10617 }
10618
10619 exp_valid_block = tracker.block ();
10620 struct value *mark = value_mark ();
10621 struct value *val_as_value = nullptr;
10622 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10623 just_location);
10624
10625 if (val_as_value != NULL && just_location)
10626 {
10627 saved_bitpos = value_bitpos (val_as_value);
10628 saved_bitsize = value_bitsize (val_as_value);
10629 }
10630
10631 value_ref_ptr val;
10632 if (just_location)
10633 {
10634 int ret;
10635
10636 exp_valid_block = NULL;
10637 val = release_value (value_addr (result));
10638 value_free_to_mark (mark);
10639
10640 if (use_mask)
10641 {
10642 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10643 mask);
10644 if (ret == -1)
10645 error (_("This target does not support masked watchpoints."));
10646 else if (ret == -2)
10647 error (_("Invalid mask or memory region."));
10648 }
10649 }
10650 else if (val_as_value != NULL)
10651 val = release_value (val_as_value);
10652
10653 tok = skip_spaces (arg);
10654 end_tok = skip_to_space (tok);
10655
10656 toklen = end_tok - tok;
10657 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10658 {
10659 tok = cond_start = end_tok + 1;
10660 innermost_block_tracker if_tracker;
10661 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10662
10663 /* The watchpoint expression may not be local, but the condition
10664 may still be. E.g.: `watch global if local > 0'. */
10665 cond_exp_valid_block = if_tracker.block ();
10666
10667 cond_end = tok;
10668 }
10669 if (*tok)
10670 error (_("Junk at end of command."));
10671
10672 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10673
10674 /* Save this because create_internal_breakpoint below invalidates
10675 'wp_frame'. */
10676 frame_id watchpoint_frame = get_frame_id (wp_frame);
10677
10678 /* If the expression is "local", then set up a "watchpoint scope"
10679 breakpoint at the point where we've left the scope of the watchpoint
10680 expression. Create the scope breakpoint before the watchpoint, so
10681 that we will encounter it first in bpstat_stop_status. */
10682 if (exp_valid_block != NULL && wp_frame != NULL)
10683 {
10684 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10685
10686 if (frame_id_p (caller_frame_id))
10687 {
10688 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10689 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10690
10691 scope_breakpoint
10692 = create_internal_breakpoint (caller_arch, caller_pc,
10693 bp_watchpoint_scope,
10694 &momentary_breakpoint_ops);
10695
10696 /* create_internal_breakpoint could invalidate WP_FRAME. */
10697 wp_frame = NULL;
10698
10699 scope_breakpoint->enable_state = bp_enabled;
10700
10701 /* Automatically delete the breakpoint when it hits. */
10702 scope_breakpoint->disposition = disp_del;
10703
10704 /* Only break in the proper frame (help with recursion). */
10705 scope_breakpoint->frame_id = caller_frame_id;
10706
10707 /* Set the address at which we will stop. */
10708 scope_breakpoint->loc->gdbarch = caller_arch;
10709 scope_breakpoint->loc->requested_address = caller_pc;
10710 scope_breakpoint->loc->address
10711 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10712 scope_breakpoint->loc->requested_address,
10713 scope_breakpoint->type);
10714 }
10715 }
10716
10717 /* Now set up the breakpoint. We create all watchpoints as hardware
10718 watchpoints here even if hardware watchpoints are turned off, a call
10719 to update_watchpoint later in this function will cause the type to
10720 drop back to bp_watchpoint (software watchpoint) if required. */
10721
10722 if (accessflag == hw_read)
10723 bp_type = bp_read_watchpoint;
10724 else if (accessflag == hw_access)
10725 bp_type = bp_access_watchpoint;
10726 else
10727 bp_type = bp_hardware_watchpoint;
10728
10729 std::unique_ptr<watchpoint> w (new watchpoint ());
10730
10731 if (use_mask)
10732 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10733 &masked_watchpoint_breakpoint_ops);
10734 else
10735 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10736 &watchpoint_breakpoint_ops);
10737 w->thread = thread;
10738 w->disposition = disp_donttouch;
10739 w->pspace = current_program_space;
10740 w->exp = std::move (exp);
10741 w->exp_valid_block = exp_valid_block;
10742 w->cond_exp_valid_block = cond_exp_valid_block;
10743 if (just_location)
10744 {
10745 struct type *t = value_type (val.get ());
10746 CORE_ADDR addr = value_as_address (val.get ());
10747
10748 w->exp_string_reparse
10749 = current_language->la_watch_location_expression (t, addr).release ();
10750
10751 w->exp_string = xstrprintf ("-location %.*s",
10752 (int) (exp_end - exp_start), exp_start);
10753 }
10754 else
10755 w->exp_string = savestring (exp_start, exp_end - exp_start);
10756
10757 if (use_mask)
10758 {
10759 w->hw_wp_mask = mask;
10760 }
10761 else
10762 {
10763 w->val = val;
10764 w->val_bitpos = saved_bitpos;
10765 w->val_bitsize = saved_bitsize;
10766 w->val_valid = 1;
10767 }
10768
10769 if (cond_start)
10770 w->cond_string = savestring (cond_start, cond_end - cond_start);
10771 else
10772 w->cond_string = 0;
10773
10774 if (frame_id_p (watchpoint_frame))
10775 {
10776 w->watchpoint_frame = watchpoint_frame;
10777 w->watchpoint_thread = inferior_ptid;
10778 }
10779 else
10780 {
10781 w->watchpoint_frame = null_frame_id;
10782 w->watchpoint_thread = null_ptid;
10783 }
10784
10785 if (scope_breakpoint != NULL)
10786 {
10787 /* The scope breakpoint is related to the watchpoint. We will
10788 need to act on them together. */
10789 w->related_breakpoint = scope_breakpoint;
10790 scope_breakpoint->related_breakpoint = w.get ();
10791 }
10792
10793 if (!just_location)
10794 value_free_to_mark (mark);
10795
10796 /* Finally update the new watchpoint. This creates the locations
10797 that should be inserted. */
10798 update_watchpoint (w.get (), 1);
10799
10800 install_breakpoint (internal, std::move (w), 1);
10801 }
10802
10803 /* Return count of debug registers needed to watch the given expression.
10804 If the watchpoint cannot be handled in hardware return zero. */
10805
10806 static int
10807 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10808 {
10809 int found_memory_cnt = 0;
10810
10811 /* Did the user specifically forbid us to use hardware watchpoints? */
10812 if (!can_use_hw_watchpoints)
10813 return 0;
10814
10815 gdb_assert (!vals.empty ());
10816 struct value *head = vals[0].get ();
10817
10818 /* Make sure that the value of the expression depends only upon
10819 memory contents, and values computed from them within GDB. If we
10820 find any register references or function calls, we can't use a
10821 hardware watchpoint.
10822
10823 The idea here is that evaluating an expression generates a series
10824 of values, one holding the value of every subexpression. (The
10825 expression a*b+c has five subexpressions: a, b, a*b, c, and
10826 a*b+c.) GDB's values hold almost enough information to establish
10827 the criteria given above --- they identify memory lvalues,
10828 register lvalues, computed values, etcetera. So we can evaluate
10829 the expression, and then scan the chain of values that leaves
10830 behind to decide whether we can detect any possible change to the
10831 expression's final value using only hardware watchpoints.
10832
10833 However, I don't think that the values returned by inferior
10834 function calls are special in any way. So this function may not
10835 notice that an expression involving an inferior function call
10836 can't be watched with hardware watchpoints. FIXME. */
10837 for (const value_ref_ptr &iter : vals)
10838 {
10839 struct value *v = iter.get ();
10840
10841 if (VALUE_LVAL (v) == lval_memory)
10842 {
10843 if (v != head && value_lazy (v))
10844 /* A lazy memory lvalue in the chain is one that GDB never
10845 needed to fetch; we either just used its address (e.g.,
10846 `a' in `a.b') or we never needed it at all (e.g., `a'
10847 in `a,b'). This doesn't apply to HEAD; if that is
10848 lazy then it was not readable, but watch it anyway. */
10849 ;
10850 else
10851 {
10852 /* Ahh, memory we actually used! Check if we can cover
10853 it with hardware watchpoints. */
10854 struct type *vtype = check_typedef (value_type (v));
10855
10856 /* We only watch structs and arrays if user asked for it
10857 explicitly, never if they just happen to appear in a
10858 middle of some value chain. */
10859 if (v == head
10860 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10861 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10862 {
10863 CORE_ADDR vaddr = value_address (v);
10864 int len;
10865 int num_regs;
10866
10867 len = (target_exact_watchpoints
10868 && is_scalar_type_recursive (vtype))?
10869 1 : TYPE_LENGTH (value_type (v));
10870
10871 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10872 if (!num_regs)
10873 return 0;
10874 else
10875 found_memory_cnt += num_regs;
10876 }
10877 }
10878 }
10879 else if (VALUE_LVAL (v) != not_lval
10880 && deprecated_value_modifiable (v) == 0)
10881 return 0; /* These are values from the history (e.g., $1). */
10882 else if (VALUE_LVAL (v) == lval_register)
10883 return 0; /* Cannot watch a register with a HW watchpoint. */
10884 }
10885
10886 /* The expression itself looks suitable for using a hardware
10887 watchpoint, but give the target machine a chance to reject it. */
10888 return found_memory_cnt;
10889 }
10890
10891 void
10892 watch_command_wrapper (const char *arg, int from_tty, int internal)
10893 {
10894 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10895 }
10896
10897 /* A helper function that looks for the "-location" argument and then
10898 calls watch_command_1. */
10899
10900 static void
10901 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10902 {
10903 int just_location = 0;
10904
10905 if (arg
10906 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10907 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10908 {
10909 arg = skip_spaces (arg);
10910 just_location = 1;
10911 }
10912
10913 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10914 }
10915
10916 static void
10917 watch_command (const char *arg, int from_tty)
10918 {
10919 watch_maybe_just_location (arg, hw_write, from_tty);
10920 }
10921
10922 void
10923 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10924 {
10925 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10926 }
10927
10928 static void
10929 rwatch_command (const char *arg, int from_tty)
10930 {
10931 watch_maybe_just_location (arg, hw_read, from_tty);
10932 }
10933
10934 void
10935 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10936 {
10937 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10938 }
10939
10940 static void
10941 awatch_command (const char *arg, int from_tty)
10942 {
10943 watch_maybe_just_location (arg, hw_access, from_tty);
10944 }
10945 \f
10946
10947 /* Data for the FSM that manages the until(location)/advance commands
10948 in infcmd.c. Here because it uses the mechanisms of
10949 breakpoints. */
10950
10951 struct until_break_fsm : public thread_fsm
10952 {
10953 /* The thread that was current when the command was executed. */
10954 int thread;
10955
10956 /* The breakpoint set at the destination location. */
10957 breakpoint_up location_breakpoint;
10958
10959 /* Breakpoint set at the return address in the caller frame. May be
10960 NULL. */
10961 breakpoint_up caller_breakpoint;
10962
10963 until_break_fsm (struct interp *cmd_interp, int thread,
10964 breakpoint_up &&location_breakpoint,
10965 breakpoint_up &&caller_breakpoint)
10966 : thread_fsm (cmd_interp),
10967 thread (thread),
10968 location_breakpoint (std::move (location_breakpoint)),
10969 caller_breakpoint (std::move (caller_breakpoint))
10970 {
10971 }
10972
10973 void clean_up (struct thread_info *thread) override;
10974 bool should_stop (struct thread_info *thread) override;
10975 enum async_reply_reason do_async_reply_reason () override;
10976 };
10977
10978 /* Implementation of the 'should_stop' FSM method for the
10979 until(location)/advance commands. */
10980
10981 bool
10982 until_break_fsm::should_stop (struct thread_info *tp)
10983 {
10984 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10985 location_breakpoint.get ()) != NULL
10986 || (caller_breakpoint != NULL
10987 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10988 caller_breakpoint.get ()) != NULL))
10989 set_finished ();
10990
10991 return true;
10992 }
10993
10994 /* Implementation of the 'clean_up' FSM method for the
10995 until(location)/advance commands. */
10996
10997 void
10998 until_break_fsm::clean_up (struct thread_info *)
10999 {
11000 /* Clean up our temporary breakpoints. */
11001 location_breakpoint.reset ();
11002 caller_breakpoint.reset ();
11003 delete_longjmp_breakpoint (thread);
11004 }
11005
11006 /* Implementation of the 'async_reply_reason' FSM method for the
11007 until(location)/advance commands. */
11008
11009 enum async_reply_reason
11010 until_break_fsm::do_async_reply_reason ()
11011 {
11012 return EXEC_ASYNC_LOCATION_REACHED;
11013 }
11014
11015 void
11016 until_break_command (const char *arg, int from_tty, int anywhere)
11017 {
11018 struct frame_info *frame;
11019 struct gdbarch *frame_gdbarch;
11020 struct frame_id stack_frame_id;
11021 struct frame_id caller_frame_id;
11022 int thread;
11023 struct thread_info *tp;
11024
11025 clear_proceed_status (0);
11026
11027 /* Set a breakpoint where the user wants it and at return from
11028 this function. */
11029
11030 event_location_up location = string_to_event_location (&arg, current_language);
11031
11032 std::vector<symtab_and_line> sals
11033 = (last_displayed_sal_is_valid ()
11034 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11035 get_last_displayed_symtab (),
11036 get_last_displayed_line ())
11037 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11038 NULL, (struct symtab *) NULL, 0));
11039
11040 if (sals.size () != 1)
11041 error (_("Couldn't get information on specified line."));
11042
11043 symtab_and_line &sal = sals[0];
11044
11045 if (*arg)
11046 error (_("Junk at end of arguments."));
11047
11048 resolve_sal_pc (&sal);
11049
11050 tp = inferior_thread ();
11051 thread = tp->global_num;
11052
11053 /* Note linespec handling above invalidates the frame chain.
11054 Installing a breakpoint also invalidates the frame chain (as it
11055 may need to switch threads), so do any frame handling before
11056 that. */
11057
11058 frame = get_selected_frame (NULL);
11059 frame_gdbarch = get_frame_arch (frame);
11060 stack_frame_id = get_stack_frame_id (frame);
11061 caller_frame_id = frame_unwind_caller_id (frame);
11062
11063 /* Keep within the current frame, or in frames called by the current
11064 one. */
11065
11066 breakpoint_up caller_breakpoint;
11067
11068 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11069
11070 if (frame_id_p (caller_frame_id))
11071 {
11072 struct symtab_and_line sal2;
11073 struct gdbarch *caller_gdbarch;
11074
11075 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11076 sal2.pc = frame_unwind_caller_pc (frame);
11077 caller_gdbarch = frame_unwind_caller_arch (frame);
11078 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11079 sal2,
11080 caller_frame_id,
11081 bp_until);
11082
11083 set_longjmp_breakpoint (tp, caller_frame_id);
11084 lj_deleter.emplace (thread);
11085 }
11086
11087 /* set_momentary_breakpoint could invalidate FRAME. */
11088 frame = NULL;
11089
11090 breakpoint_up location_breakpoint;
11091 if (anywhere)
11092 /* If the user told us to continue until a specified location,
11093 we don't specify a frame at which we need to stop. */
11094 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11095 null_frame_id, bp_until);
11096 else
11097 /* Otherwise, specify the selected frame, because we want to stop
11098 only at the very same frame. */
11099 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11100 stack_frame_id, bp_until);
11101
11102 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11103 std::move (location_breakpoint),
11104 std::move (caller_breakpoint));
11105
11106 if (lj_deleter)
11107 lj_deleter->release ();
11108
11109 proceed (-1, GDB_SIGNAL_DEFAULT);
11110 }
11111
11112 /* This function attempts to parse an optional "if <cond>" clause
11113 from the arg string. If one is not found, it returns NULL.
11114
11115 Else, it returns a pointer to the condition string. (It does not
11116 attempt to evaluate the string against a particular block.) And,
11117 it updates arg to point to the first character following the parsed
11118 if clause in the arg string. */
11119
11120 const char *
11121 ep_parse_optional_if_clause (const char **arg)
11122 {
11123 const char *cond_string;
11124
11125 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11126 return NULL;
11127
11128 /* Skip the "if" keyword. */
11129 (*arg) += 2;
11130
11131 /* Skip any extra leading whitespace, and record the start of the
11132 condition string. */
11133 *arg = skip_spaces (*arg);
11134 cond_string = *arg;
11135
11136 /* Assume that the condition occupies the remainder of the arg
11137 string. */
11138 (*arg) += strlen (cond_string);
11139
11140 return cond_string;
11141 }
11142
11143 /* Commands to deal with catching events, such as signals, exceptions,
11144 process start/exit, etc. */
11145
11146 typedef enum
11147 {
11148 catch_fork_temporary, catch_vfork_temporary,
11149 catch_fork_permanent, catch_vfork_permanent
11150 }
11151 catch_fork_kind;
11152
11153 static void
11154 catch_fork_command_1 (const char *arg, int from_tty,
11155 struct cmd_list_element *command)
11156 {
11157 struct gdbarch *gdbarch = get_current_arch ();
11158 const char *cond_string = NULL;
11159 catch_fork_kind fork_kind;
11160 int tempflag;
11161
11162 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11163 tempflag = (fork_kind == catch_fork_temporary
11164 || fork_kind == catch_vfork_temporary);
11165
11166 if (!arg)
11167 arg = "";
11168 arg = skip_spaces (arg);
11169
11170 /* The allowed syntax is:
11171 catch [v]fork
11172 catch [v]fork if <cond>
11173
11174 First, check if there's an if clause. */
11175 cond_string = ep_parse_optional_if_clause (&arg);
11176
11177 if ((*arg != '\0') && !isspace (*arg))
11178 error (_("Junk at end of arguments."));
11179
11180 /* If this target supports it, create a fork or vfork catchpoint
11181 and enable reporting of such events. */
11182 switch (fork_kind)
11183 {
11184 case catch_fork_temporary:
11185 case catch_fork_permanent:
11186 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11187 &catch_fork_breakpoint_ops);
11188 break;
11189 case catch_vfork_temporary:
11190 case catch_vfork_permanent:
11191 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11192 &catch_vfork_breakpoint_ops);
11193 break;
11194 default:
11195 error (_("unsupported or unknown fork kind; cannot catch it"));
11196 break;
11197 }
11198 }
11199
11200 static void
11201 catch_exec_command_1 (const char *arg, int from_tty,
11202 struct cmd_list_element *command)
11203 {
11204 struct gdbarch *gdbarch = get_current_arch ();
11205 int tempflag;
11206 const char *cond_string = NULL;
11207
11208 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11209
11210 if (!arg)
11211 arg = "";
11212 arg = skip_spaces (arg);
11213
11214 /* The allowed syntax is:
11215 catch exec
11216 catch exec if <cond>
11217
11218 First, check if there's an if clause. */
11219 cond_string = ep_parse_optional_if_clause (&arg);
11220
11221 if ((*arg != '\0') && !isspace (*arg))
11222 error (_("Junk at end of arguments."));
11223
11224 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11225 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11226 &catch_exec_breakpoint_ops);
11227 c->exec_pathname = NULL;
11228
11229 install_breakpoint (0, std::move (c), 1);
11230 }
11231
11232 void
11233 init_ada_exception_breakpoint (struct breakpoint *b,
11234 struct gdbarch *gdbarch,
11235 struct symtab_and_line sal,
11236 const char *addr_string,
11237 const struct breakpoint_ops *ops,
11238 int tempflag,
11239 int enabled,
11240 int from_tty)
11241 {
11242 if (from_tty)
11243 {
11244 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11245 if (!loc_gdbarch)
11246 loc_gdbarch = gdbarch;
11247
11248 describe_other_breakpoints (loc_gdbarch,
11249 sal.pspace, sal.pc, sal.section, -1);
11250 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11251 version for exception catchpoints, because two catchpoints
11252 used for different exception names will use the same address.
11253 In this case, a "breakpoint ... also set at..." warning is
11254 unproductive. Besides, the warning phrasing is also a bit
11255 inappropriate, we should use the word catchpoint, and tell
11256 the user what type of catchpoint it is. The above is good
11257 enough for now, though. */
11258 }
11259
11260 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11261
11262 b->enable_state = enabled ? bp_enabled : bp_disabled;
11263 b->disposition = tempflag ? disp_del : disp_donttouch;
11264 b->location = string_to_event_location (&addr_string,
11265 language_def (language_ada));
11266 b->language = language_ada;
11267 }
11268
11269 static void
11270 catch_command (const char *arg, int from_tty)
11271 {
11272 error (_("Catch requires an event name."));
11273 }
11274 \f
11275
11276 static void
11277 tcatch_command (const char *arg, int from_tty)
11278 {
11279 error (_("Catch requires an event name."));
11280 }
11281
11282 /* Compare two breakpoints and return a strcmp-like result. */
11283
11284 static int
11285 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11286 {
11287 uintptr_t ua = (uintptr_t) a;
11288 uintptr_t ub = (uintptr_t) b;
11289
11290 if (a->number < b->number)
11291 return -1;
11292 else if (a->number > b->number)
11293 return 1;
11294
11295 /* Now sort by address, in case we see, e..g, two breakpoints with
11296 the number 0. */
11297 if (ua < ub)
11298 return -1;
11299 return ua > ub ? 1 : 0;
11300 }
11301
11302 /* Delete breakpoints by address or line. */
11303
11304 static void
11305 clear_command (const char *arg, int from_tty)
11306 {
11307 struct breakpoint *b;
11308 int default_match;
11309
11310 std::vector<symtab_and_line> decoded_sals;
11311 symtab_and_line last_sal;
11312 gdb::array_view<symtab_and_line> sals;
11313 if (arg)
11314 {
11315 decoded_sals
11316 = decode_line_with_current_source (arg,
11317 (DECODE_LINE_FUNFIRSTLINE
11318 | DECODE_LINE_LIST_MODE));
11319 default_match = 0;
11320 sals = decoded_sals;
11321 }
11322 else
11323 {
11324 /* Set sal's line, symtab, pc, and pspace to the values
11325 corresponding to the last call to print_frame_info. If the
11326 codepoint is not valid, this will set all the fields to 0. */
11327 last_sal = get_last_displayed_sal ();
11328 if (last_sal.symtab == 0)
11329 error (_("No source file specified."));
11330
11331 default_match = 1;
11332 sals = last_sal;
11333 }
11334
11335 /* We don't call resolve_sal_pc here. That's not as bad as it
11336 seems, because all existing breakpoints typically have both
11337 file/line and pc set. So, if clear is given file/line, we can
11338 match this to existing breakpoint without obtaining pc at all.
11339
11340 We only support clearing given the address explicitly
11341 present in breakpoint table. Say, we've set breakpoint
11342 at file:line. There were several PC values for that file:line,
11343 due to optimization, all in one block.
11344
11345 We've picked one PC value. If "clear" is issued with another
11346 PC corresponding to the same file:line, the breakpoint won't
11347 be cleared. We probably can still clear the breakpoint, but
11348 since the other PC value is never presented to user, user
11349 can only find it by guessing, and it does not seem important
11350 to support that. */
11351
11352 /* For each line spec given, delete bps which correspond to it. Do
11353 it in two passes, solely to preserve the current behavior that
11354 from_tty is forced true if we delete more than one
11355 breakpoint. */
11356
11357 std::vector<struct breakpoint *> found;
11358 for (const auto &sal : sals)
11359 {
11360 const char *sal_fullname;
11361
11362 /* If exact pc given, clear bpts at that pc.
11363 If line given (pc == 0), clear all bpts on specified line.
11364 If defaulting, clear all bpts on default line
11365 or at default pc.
11366
11367 defaulting sal.pc != 0 tests to do
11368
11369 0 1 pc
11370 1 1 pc _and_ line
11371 0 0 line
11372 1 0 <can't happen> */
11373
11374 sal_fullname = (sal.symtab == NULL
11375 ? NULL : symtab_to_fullname (sal.symtab));
11376
11377 /* Find all matching breakpoints and add them to 'found'. */
11378 ALL_BREAKPOINTS (b)
11379 {
11380 int match = 0;
11381 /* Are we going to delete b? */
11382 if (b->type != bp_none && !is_watchpoint (b))
11383 {
11384 struct bp_location *loc = b->loc;
11385 for (; loc; loc = loc->next)
11386 {
11387 /* If the user specified file:line, don't allow a PC
11388 match. This matches historical gdb behavior. */
11389 int pc_match = (!sal.explicit_line
11390 && sal.pc
11391 && (loc->pspace == sal.pspace)
11392 && (loc->address == sal.pc)
11393 && (!section_is_overlay (loc->section)
11394 || loc->section == sal.section));
11395 int line_match = 0;
11396
11397 if ((default_match || sal.explicit_line)
11398 && loc->symtab != NULL
11399 && sal_fullname != NULL
11400 && sal.pspace == loc->pspace
11401 && loc->line_number == sal.line
11402 && filename_cmp (symtab_to_fullname (loc->symtab),
11403 sal_fullname) == 0)
11404 line_match = 1;
11405
11406 if (pc_match || line_match)
11407 {
11408 match = 1;
11409 break;
11410 }
11411 }
11412 }
11413
11414 if (match)
11415 found.push_back (b);
11416 }
11417 }
11418
11419 /* Now go thru the 'found' chain and delete them. */
11420 if (found.empty ())
11421 {
11422 if (arg)
11423 error (_("No breakpoint at %s."), arg);
11424 else
11425 error (_("No breakpoint at this line."));
11426 }
11427
11428 /* Remove duplicates from the vec. */
11429 std::sort (found.begin (), found.end (),
11430 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11431 {
11432 return compare_breakpoints (bp_a, bp_b) < 0;
11433 });
11434 found.erase (std::unique (found.begin (), found.end (),
11435 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11436 {
11437 return compare_breakpoints (bp_a, bp_b) == 0;
11438 }),
11439 found.end ());
11440
11441 if (found.size () > 1)
11442 from_tty = 1; /* Always report if deleted more than one. */
11443 if (from_tty)
11444 {
11445 if (found.size () == 1)
11446 printf_unfiltered (_("Deleted breakpoint "));
11447 else
11448 printf_unfiltered (_("Deleted breakpoints "));
11449 }
11450
11451 for (breakpoint *iter : found)
11452 {
11453 if (from_tty)
11454 printf_unfiltered ("%d ", iter->number);
11455 delete_breakpoint (iter);
11456 }
11457 if (from_tty)
11458 putchar_unfiltered ('\n');
11459 }
11460 \f
11461 /* Delete breakpoint in BS if they are `delete' breakpoints and
11462 all breakpoints that are marked for deletion, whether hit or not.
11463 This is called after any breakpoint is hit, or after errors. */
11464
11465 void
11466 breakpoint_auto_delete (bpstat bs)
11467 {
11468 struct breakpoint *b, *b_tmp;
11469
11470 for (; bs; bs = bs->next)
11471 if (bs->breakpoint_at
11472 && bs->breakpoint_at->disposition == disp_del
11473 && bs->stop)
11474 delete_breakpoint (bs->breakpoint_at);
11475
11476 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11477 {
11478 if (b->disposition == disp_del_at_next_stop)
11479 delete_breakpoint (b);
11480 }
11481 }
11482
11483 /* A comparison function for bp_location AP and BP being interfaced to
11484 qsort. Sort elements primarily by their ADDRESS (no matter what
11485 does breakpoint_address_is_meaningful say for its OWNER),
11486 secondarily by ordering first permanent elements and
11487 terciarily just ensuring the array is sorted stable way despite
11488 qsort being an unstable algorithm. */
11489
11490 static int
11491 bp_locations_compare (const void *ap, const void *bp)
11492 {
11493 const struct bp_location *a = *(const struct bp_location **) ap;
11494 const struct bp_location *b = *(const struct bp_location **) bp;
11495
11496 if (a->address != b->address)
11497 return (a->address > b->address) - (a->address < b->address);
11498
11499 /* Sort locations at the same address by their pspace number, keeping
11500 locations of the same inferior (in a multi-inferior environment)
11501 grouped. */
11502
11503 if (a->pspace->num != b->pspace->num)
11504 return ((a->pspace->num > b->pspace->num)
11505 - (a->pspace->num < b->pspace->num));
11506
11507 /* Sort permanent breakpoints first. */
11508 if (a->permanent != b->permanent)
11509 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11510
11511 /* Make the internal GDB representation stable across GDB runs
11512 where A and B memory inside GDB can differ. Breakpoint locations of
11513 the same type at the same address can be sorted in arbitrary order. */
11514
11515 if (a->owner->number != b->owner->number)
11516 return ((a->owner->number > b->owner->number)
11517 - (a->owner->number < b->owner->number));
11518
11519 return (a > b) - (a < b);
11520 }
11521
11522 /* Set bp_locations_placed_address_before_address_max and
11523 bp_locations_shadow_len_after_address_max according to the current
11524 content of the bp_locations array. */
11525
11526 static void
11527 bp_locations_target_extensions_update (void)
11528 {
11529 struct bp_location *bl, **blp_tmp;
11530
11531 bp_locations_placed_address_before_address_max = 0;
11532 bp_locations_shadow_len_after_address_max = 0;
11533
11534 ALL_BP_LOCATIONS (bl, blp_tmp)
11535 {
11536 CORE_ADDR start, end, addr;
11537
11538 if (!bp_location_has_shadow (bl))
11539 continue;
11540
11541 start = bl->target_info.placed_address;
11542 end = start + bl->target_info.shadow_len;
11543
11544 gdb_assert (bl->address >= start);
11545 addr = bl->address - start;
11546 if (addr > bp_locations_placed_address_before_address_max)
11547 bp_locations_placed_address_before_address_max = addr;
11548
11549 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11550
11551 gdb_assert (bl->address < end);
11552 addr = end - bl->address;
11553 if (addr > bp_locations_shadow_len_after_address_max)
11554 bp_locations_shadow_len_after_address_max = addr;
11555 }
11556 }
11557
11558 /* Download tracepoint locations if they haven't been. */
11559
11560 static void
11561 download_tracepoint_locations (void)
11562 {
11563 struct breakpoint *b;
11564 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11565
11566 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11567
11568 ALL_TRACEPOINTS (b)
11569 {
11570 struct bp_location *bl;
11571 struct tracepoint *t;
11572 int bp_location_downloaded = 0;
11573
11574 if ((b->type == bp_fast_tracepoint
11575 ? !may_insert_fast_tracepoints
11576 : !may_insert_tracepoints))
11577 continue;
11578
11579 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11580 {
11581 if (target_can_download_tracepoint ())
11582 can_download_tracepoint = TRIBOOL_TRUE;
11583 else
11584 can_download_tracepoint = TRIBOOL_FALSE;
11585 }
11586
11587 if (can_download_tracepoint == TRIBOOL_FALSE)
11588 break;
11589
11590 for (bl = b->loc; bl; bl = bl->next)
11591 {
11592 /* In tracepoint, locations are _never_ duplicated, so
11593 should_be_inserted is equivalent to
11594 unduplicated_should_be_inserted. */
11595 if (!should_be_inserted (bl) || bl->inserted)
11596 continue;
11597
11598 switch_to_program_space_and_thread (bl->pspace);
11599
11600 target_download_tracepoint (bl);
11601
11602 bl->inserted = 1;
11603 bp_location_downloaded = 1;
11604 }
11605 t = (struct tracepoint *) b;
11606 t->number_on_target = b->number;
11607 if (bp_location_downloaded)
11608 gdb::observers::breakpoint_modified.notify (b);
11609 }
11610 }
11611
11612 /* Swap the insertion/duplication state between two locations. */
11613
11614 static void
11615 swap_insertion (struct bp_location *left, struct bp_location *right)
11616 {
11617 const int left_inserted = left->inserted;
11618 const int left_duplicate = left->duplicate;
11619 const int left_needs_update = left->needs_update;
11620 const struct bp_target_info left_target_info = left->target_info;
11621
11622 /* Locations of tracepoints can never be duplicated. */
11623 if (is_tracepoint (left->owner))
11624 gdb_assert (!left->duplicate);
11625 if (is_tracepoint (right->owner))
11626 gdb_assert (!right->duplicate);
11627
11628 left->inserted = right->inserted;
11629 left->duplicate = right->duplicate;
11630 left->needs_update = right->needs_update;
11631 left->target_info = right->target_info;
11632 right->inserted = left_inserted;
11633 right->duplicate = left_duplicate;
11634 right->needs_update = left_needs_update;
11635 right->target_info = left_target_info;
11636 }
11637
11638 /* Force the re-insertion of the locations at ADDRESS. This is called
11639 once a new/deleted/modified duplicate location is found and we are evaluating
11640 conditions on the target's side. Such conditions need to be updated on
11641 the target. */
11642
11643 static void
11644 force_breakpoint_reinsertion (struct bp_location *bl)
11645 {
11646 struct bp_location **locp = NULL, **loc2p;
11647 struct bp_location *loc;
11648 CORE_ADDR address = 0;
11649 int pspace_num;
11650
11651 address = bl->address;
11652 pspace_num = bl->pspace->num;
11653
11654 /* This is only meaningful if the target is
11655 evaluating conditions and if the user has
11656 opted for condition evaluation on the target's
11657 side. */
11658 if (gdb_evaluates_breakpoint_condition_p ()
11659 || !target_supports_evaluation_of_breakpoint_conditions ())
11660 return;
11661
11662 /* Flag all breakpoint locations with this address and
11663 the same program space as the location
11664 as "its condition has changed". We need to
11665 update the conditions on the target's side. */
11666 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11667 {
11668 loc = *loc2p;
11669
11670 if (!is_breakpoint (loc->owner)
11671 || pspace_num != loc->pspace->num)
11672 continue;
11673
11674 /* Flag the location appropriately. We use a different state to
11675 let everyone know that we already updated the set of locations
11676 with addr bl->address and program space bl->pspace. This is so
11677 we don't have to keep calling these functions just to mark locations
11678 that have already been marked. */
11679 loc->condition_changed = condition_updated;
11680
11681 /* Free the agent expression bytecode as well. We will compute
11682 it later on. */
11683 loc->cond_bytecode.reset ();
11684 }
11685 }
11686 /* Called whether new breakpoints are created, or existing breakpoints
11687 deleted, to update the global location list and recompute which
11688 locations are duplicate of which.
11689
11690 The INSERT_MODE flag determines whether locations may not, may, or
11691 shall be inserted now. See 'enum ugll_insert_mode' for more
11692 info. */
11693
11694 static void
11695 update_global_location_list (enum ugll_insert_mode insert_mode)
11696 {
11697 struct breakpoint *b;
11698 struct bp_location **locp, *loc;
11699 /* Last breakpoint location address that was marked for update. */
11700 CORE_ADDR last_addr = 0;
11701 /* Last breakpoint location program space that was marked for update. */
11702 int last_pspace_num = -1;
11703
11704 /* Used in the duplicates detection below. When iterating over all
11705 bp_locations, points to the first bp_location of a given address.
11706 Breakpoints and watchpoints of different types are never
11707 duplicates of each other. Keep one pointer for each type of
11708 breakpoint/watchpoint, so we only need to loop over all locations
11709 once. */
11710 struct bp_location *bp_loc_first; /* breakpoint */
11711 struct bp_location *wp_loc_first; /* hardware watchpoint */
11712 struct bp_location *awp_loc_first; /* access watchpoint */
11713 struct bp_location *rwp_loc_first; /* read watchpoint */
11714
11715 /* Saved former bp_locations array which we compare against the newly
11716 built bp_locations from the current state of ALL_BREAKPOINTS. */
11717 struct bp_location **old_locp;
11718 unsigned old_locations_count;
11719 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11720
11721 old_locations_count = bp_locations_count;
11722 bp_locations = NULL;
11723 bp_locations_count = 0;
11724
11725 ALL_BREAKPOINTS (b)
11726 for (loc = b->loc; loc; loc = loc->next)
11727 bp_locations_count++;
11728
11729 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11730 locp = bp_locations;
11731 ALL_BREAKPOINTS (b)
11732 for (loc = b->loc; loc; loc = loc->next)
11733 *locp++ = loc;
11734 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11735 bp_locations_compare);
11736
11737 bp_locations_target_extensions_update ();
11738
11739 /* Identify bp_location instances that are no longer present in the
11740 new list, and therefore should be freed. Note that it's not
11741 necessary that those locations should be removed from inferior --
11742 if there's another location at the same address (previously
11743 marked as duplicate), we don't need to remove/insert the
11744 location.
11745
11746 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11747 and former bp_location array state respectively. */
11748
11749 locp = bp_locations;
11750 for (old_locp = old_locations.get ();
11751 old_locp < old_locations.get () + old_locations_count;
11752 old_locp++)
11753 {
11754 struct bp_location *old_loc = *old_locp;
11755 struct bp_location **loc2p;
11756
11757 /* Tells if 'old_loc' is found among the new locations. If
11758 not, we have to free it. */
11759 int found_object = 0;
11760 /* Tells if the location should remain inserted in the target. */
11761 int keep_in_target = 0;
11762 int removed = 0;
11763
11764 /* Skip LOCP entries which will definitely never be needed.
11765 Stop either at or being the one matching OLD_LOC. */
11766 while (locp < bp_locations + bp_locations_count
11767 && (*locp)->address < old_loc->address)
11768 locp++;
11769
11770 for (loc2p = locp;
11771 (loc2p < bp_locations + bp_locations_count
11772 && (*loc2p)->address == old_loc->address);
11773 loc2p++)
11774 {
11775 /* Check if this is a new/duplicated location or a duplicated
11776 location that had its condition modified. If so, we want to send
11777 its condition to the target if evaluation of conditions is taking
11778 place there. */
11779 if ((*loc2p)->condition_changed == condition_modified
11780 && (last_addr != old_loc->address
11781 || last_pspace_num != old_loc->pspace->num))
11782 {
11783 force_breakpoint_reinsertion (*loc2p);
11784 last_pspace_num = old_loc->pspace->num;
11785 }
11786
11787 if (*loc2p == old_loc)
11788 found_object = 1;
11789 }
11790
11791 /* We have already handled this address, update it so that we don't
11792 have to go through updates again. */
11793 last_addr = old_loc->address;
11794
11795 /* Target-side condition evaluation: Handle deleted locations. */
11796 if (!found_object)
11797 force_breakpoint_reinsertion (old_loc);
11798
11799 /* If this location is no longer present, and inserted, look if
11800 there's maybe a new location at the same address. If so,
11801 mark that one inserted, and don't remove this one. This is
11802 needed so that we don't have a time window where a breakpoint
11803 at certain location is not inserted. */
11804
11805 if (old_loc->inserted)
11806 {
11807 /* If the location is inserted now, we might have to remove
11808 it. */
11809
11810 if (found_object && should_be_inserted (old_loc))
11811 {
11812 /* The location is still present in the location list,
11813 and still should be inserted. Don't do anything. */
11814 keep_in_target = 1;
11815 }
11816 else
11817 {
11818 /* This location still exists, but it won't be kept in the
11819 target since it may have been disabled. We proceed to
11820 remove its target-side condition. */
11821
11822 /* The location is either no longer present, or got
11823 disabled. See if there's another location at the
11824 same address, in which case we don't need to remove
11825 this one from the target. */
11826
11827 /* OLD_LOC comes from existing struct breakpoint. */
11828 if (breakpoint_address_is_meaningful (old_loc->owner))
11829 {
11830 for (loc2p = locp;
11831 (loc2p < bp_locations + bp_locations_count
11832 && (*loc2p)->address == old_loc->address);
11833 loc2p++)
11834 {
11835 struct bp_location *loc2 = *loc2p;
11836
11837 if (breakpoint_locations_match (loc2, old_loc))
11838 {
11839 /* Read watchpoint locations are switched to
11840 access watchpoints, if the former are not
11841 supported, but the latter are. */
11842 if (is_hardware_watchpoint (old_loc->owner))
11843 {
11844 gdb_assert (is_hardware_watchpoint (loc2->owner));
11845 loc2->watchpoint_type = old_loc->watchpoint_type;
11846 }
11847
11848 /* loc2 is a duplicated location. We need to check
11849 if it should be inserted in case it will be
11850 unduplicated. */
11851 if (loc2 != old_loc
11852 && unduplicated_should_be_inserted (loc2))
11853 {
11854 swap_insertion (old_loc, loc2);
11855 keep_in_target = 1;
11856 break;
11857 }
11858 }
11859 }
11860 }
11861 }
11862
11863 if (!keep_in_target)
11864 {
11865 if (remove_breakpoint (old_loc))
11866 {
11867 /* This is just about all we can do. We could keep
11868 this location on the global list, and try to
11869 remove it next time, but there's no particular
11870 reason why we will succeed next time.
11871
11872 Note that at this point, old_loc->owner is still
11873 valid, as delete_breakpoint frees the breakpoint
11874 only after calling us. */
11875 printf_filtered (_("warning: Error removing "
11876 "breakpoint %d\n"),
11877 old_loc->owner->number);
11878 }
11879 removed = 1;
11880 }
11881 }
11882
11883 if (!found_object)
11884 {
11885 if (removed && target_is_non_stop_p ()
11886 && need_moribund_for_location_type (old_loc))
11887 {
11888 /* This location was removed from the target. In
11889 non-stop mode, a race condition is possible where
11890 we've removed a breakpoint, but stop events for that
11891 breakpoint are already queued and will arrive later.
11892 We apply an heuristic to be able to distinguish such
11893 SIGTRAPs from other random SIGTRAPs: we keep this
11894 breakpoint location for a bit, and will retire it
11895 after we see some number of events. The theory here
11896 is that reporting of events should, "on the average",
11897 be fair, so after a while we'll see events from all
11898 threads that have anything of interest, and no longer
11899 need to keep this breakpoint location around. We
11900 don't hold locations forever so to reduce chances of
11901 mistaking a non-breakpoint SIGTRAP for a breakpoint
11902 SIGTRAP.
11903
11904 The heuristic failing can be disastrous on
11905 decr_pc_after_break targets.
11906
11907 On decr_pc_after_break targets, like e.g., x86-linux,
11908 if we fail to recognize a late breakpoint SIGTRAP,
11909 because events_till_retirement has reached 0 too
11910 soon, we'll fail to do the PC adjustment, and report
11911 a random SIGTRAP to the user. When the user resumes
11912 the inferior, it will most likely immediately crash
11913 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11914 corrupted, because of being resumed e.g., in the
11915 middle of a multi-byte instruction, or skipped a
11916 one-byte instruction. This was actually seen happen
11917 on native x86-linux, and should be less rare on
11918 targets that do not support new thread events, like
11919 remote, due to the heuristic depending on
11920 thread_count.
11921
11922 Mistaking a random SIGTRAP for a breakpoint trap
11923 causes similar symptoms (PC adjustment applied when
11924 it shouldn't), but then again, playing with SIGTRAPs
11925 behind the debugger's back is asking for trouble.
11926
11927 Since hardware watchpoint traps are always
11928 distinguishable from other traps, so we don't need to
11929 apply keep hardware watchpoint moribund locations
11930 around. We simply always ignore hardware watchpoint
11931 traps we can no longer explain. */
11932
11933 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11934 old_loc->owner = NULL;
11935
11936 moribund_locations.push_back (old_loc);
11937 }
11938 else
11939 {
11940 old_loc->owner = NULL;
11941 decref_bp_location (&old_loc);
11942 }
11943 }
11944 }
11945
11946 /* Rescan breakpoints at the same address and section, marking the
11947 first one as "first" and any others as "duplicates". This is so
11948 that the bpt instruction is only inserted once. If we have a
11949 permanent breakpoint at the same place as BPT, make that one the
11950 official one, and the rest as duplicates. Permanent breakpoints
11951 are sorted first for the same address.
11952
11953 Do the same for hardware watchpoints, but also considering the
11954 watchpoint's type (regular/access/read) and length. */
11955
11956 bp_loc_first = NULL;
11957 wp_loc_first = NULL;
11958 awp_loc_first = NULL;
11959 rwp_loc_first = NULL;
11960 ALL_BP_LOCATIONS (loc, locp)
11961 {
11962 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11963 non-NULL. */
11964 struct bp_location **loc_first_p;
11965 b = loc->owner;
11966
11967 if (!unduplicated_should_be_inserted (loc)
11968 || !breakpoint_address_is_meaningful (b)
11969 /* Don't detect duplicate for tracepoint locations because they are
11970 never duplicated. See the comments in field `duplicate' of
11971 `struct bp_location'. */
11972 || is_tracepoint (b))
11973 {
11974 /* Clear the condition modification flag. */
11975 loc->condition_changed = condition_unchanged;
11976 continue;
11977 }
11978
11979 if (b->type == bp_hardware_watchpoint)
11980 loc_first_p = &wp_loc_first;
11981 else if (b->type == bp_read_watchpoint)
11982 loc_first_p = &rwp_loc_first;
11983 else if (b->type == bp_access_watchpoint)
11984 loc_first_p = &awp_loc_first;
11985 else
11986 loc_first_p = &bp_loc_first;
11987
11988 if (*loc_first_p == NULL
11989 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11990 || !breakpoint_locations_match (loc, *loc_first_p))
11991 {
11992 *loc_first_p = loc;
11993 loc->duplicate = 0;
11994
11995 if (is_breakpoint (loc->owner) && loc->condition_changed)
11996 {
11997 loc->needs_update = 1;
11998 /* Clear the condition modification flag. */
11999 loc->condition_changed = condition_unchanged;
12000 }
12001 continue;
12002 }
12003
12004
12005 /* This and the above ensure the invariant that the first location
12006 is not duplicated, and is the inserted one.
12007 All following are marked as duplicated, and are not inserted. */
12008 if (loc->inserted)
12009 swap_insertion (loc, *loc_first_p);
12010 loc->duplicate = 1;
12011
12012 /* Clear the condition modification flag. */
12013 loc->condition_changed = condition_unchanged;
12014 }
12015
12016 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12017 {
12018 if (insert_mode != UGLL_DONT_INSERT)
12019 insert_breakpoint_locations ();
12020 else
12021 {
12022 /* Even though the caller told us to not insert new
12023 locations, we may still need to update conditions on the
12024 target's side of breakpoints that were already inserted
12025 if the target is evaluating breakpoint conditions. We
12026 only update conditions for locations that are marked
12027 "needs_update". */
12028 update_inserted_breakpoint_locations ();
12029 }
12030 }
12031
12032 if (insert_mode != UGLL_DONT_INSERT)
12033 download_tracepoint_locations ();
12034 }
12035
12036 void
12037 breakpoint_retire_moribund (void)
12038 {
12039 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12040 {
12041 struct bp_location *loc = moribund_locations[ix];
12042 if (--(loc->events_till_retirement) == 0)
12043 {
12044 decref_bp_location (&loc);
12045 unordered_remove (moribund_locations, ix);
12046 --ix;
12047 }
12048 }
12049 }
12050
12051 static void
12052 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12053 {
12054
12055 try
12056 {
12057 update_global_location_list (insert_mode);
12058 }
12059 catch (const gdb_exception_error &e)
12060 {
12061 }
12062 }
12063
12064 /* Clear BKP from a BPS. */
12065
12066 static void
12067 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12068 {
12069 bpstat bs;
12070
12071 for (bs = bps; bs; bs = bs->next)
12072 if (bs->breakpoint_at == bpt)
12073 {
12074 bs->breakpoint_at = NULL;
12075 bs->old_val = NULL;
12076 /* bs->commands will be freed later. */
12077 }
12078 }
12079
12080 /* Callback for iterate_over_threads. */
12081 static int
12082 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12083 {
12084 struct breakpoint *bpt = (struct breakpoint *) data;
12085
12086 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12087 return 0;
12088 }
12089
12090 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12091 callbacks. */
12092
12093 static void
12094 say_where (struct breakpoint *b)
12095 {
12096 struct value_print_options opts;
12097
12098 get_user_print_options (&opts);
12099
12100 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12101 single string. */
12102 if (b->loc == NULL)
12103 {
12104 /* For pending locations, the output differs slightly based
12105 on b->extra_string. If this is non-NULL, it contains either
12106 a condition or dprintf arguments. */
12107 if (b->extra_string == NULL)
12108 {
12109 printf_filtered (_(" (%s) pending."),
12110 event_location_to_string (b->location.get ()));
12111 }
12112 else if (b->type == bp_dprintf)
12113 {
12114 printf_filtered (_(" (%s,%s) pending."),
12115 event_location_to_string (b->location.get ()),
12116 b->extra_string);
12117 }
12118 else
12119 {
12120 printf_filtered (_(" (%s %s) pending."),
12121 event_location_to_string (b->location.get ()),
12122 b->extra_string);
12123 }
12124 }
12125 else
12126 {
12127 if (opts.addressprint || b->loc->symtab == NULL)
12128 {
12129 printf_filtered (" at ");
12130 fputs_styled (paddress (b->loc->gdbarch, b->loc->address),
12131 address_style.style (),
12132 gdb_stdout);
12133 }
12134 if (b->loc->symtab != NULL)
12135 {
12136 /* If there is a single location, we can print the location
12137 more nicely. */
12138 if (b->loc->next == NULL)
12139 {
12140 puts_filtered (": file ");
12141 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12142 file_name_style.style (),
12143 gdb_stdout);
12144 printf_filtered (", line %d.",
12145 b->loc->line_number);
12146 }
12147 else
12148 /* This is not ideal, but each location may have a
12149 different file name, and this at least reflects the
12150 real situation somewhat. */
12151 printf_filtered (": %s.",
12152 event_location_to_string (b->location.get ()));
12153 }
12154
12155 if (b->loc->next)
12156 {
12157 struct bp_location *loc = b->loc;
12158 int n = 0;
12159 for (; loc; loc = loc->next)
12160 ++n;
12161 printf_filtered (" (%d locations)", n);
12162 }
12163 }
12164 }
12165
12166 bp_location::~bp_location ()
12167 {
12168 xfree (function_name);
12169 }
12170
12171 /* Destructor for the breakpoint base class. */
12172
12173 breakpoint::~breakpoint ()
12174 {
12175 xfree (this->cond_string);
12176 xfree (this->extra_string);
12177 xfree (this->filter);
12178 }
12179
12180 static struct bp_location *
12181 base_breakpoint_allocate_location (struct breakpoint *self)
12182 {
12183 return new bp_location (self);
12184 }
12185
12186 static void
12187 base_breakpoint_re_set (struct breakpoint *b)
12188 {
12189 /* Nothing to re-set. */
12190 }
12191
12192 #define internal_error_pure_virtual_called() \
12193 gdb_assert_not_reached ("pure virtual function called")
12194
12195 static int
12196 base_breakpoint_insert_location (struct bp_location *bl)
12197 {
12198 internal_error_pure_virtual_called ();
12199 }
12200
12201 static int
12202 base_breakpoint_remove_location (struct bp_location *bl,
12203 enum remove_bp_reason reason)
12204 {
12205 internal_error_pure_virtual_called ();
12206 }
12207
12208 static int
12209 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12210 const address_space *aspace,
12211 CORE_ADDR bp_addr,
12212 const struct target_waitstatus *ws)
12213 {
12214 internal_error_pure_virtual_called ();
12215 }
12216
12217 static void
12218 base_breakpoint_check_status (bpstat bs)
12219 {
12220 /* Always stop. */
12221 }
12222
12223 /* A "works_in_software_mode" breakpoint_ops method that just internal
12224 errors. */
12225
12226 static int
12227 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12228 {
12229 internal_error_pure_virtual_called ();
12230 }
12231
12232 /* A "resources_needed" breakpoint_ops method that just internal
12233 errors. */
12234
12235 static int
12236 base_breakpoint_resources_needed (const struct bp_location *bl)
12237 {
12238 internal_error_pure_virtual_called ();
12239 }
12240
12241 static enum print_stop_action
12242 base_breakpoint_print_it (bpstat bs)
12243 {
12244 internal_error_pure_virtual_called ();
12245 }
12246
12247 static void
12248 base_breakpoint_print_one_detail (const struct breakpoint *self,
12249 struct ui_out *uiout)
12250 {
12251 /* nothing */
12252 }
12253
12254 static void
12255 base_breakpoint_print_mention (struct breakpoint *b)
12256 {
12257 internal_error_pure_virtual_called ();
12258 }
12259
12260 static void
12261 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12262 {
12263 internal_error_pure_virtual_called ();
12264 }
12265
12266 static void
12267 base_breakpoint_create_sals_from_location
12268 (const struct event_location *location,
12269 struct linespec_result *canonical,
12270 enum bptype type_wanted)
12271 {
12272 internal_error_pure_virtual_called ();
12273 }
12274
12275 static void
12276 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12277 struct linespec_result *c,
12278 gdb::unique_xmalloc_ptr<char> cond_string,
12279 gdb::unique_xmalloc_ptr<char> extra_string,
12280 enum bptype type_wanted,
12281 enum bpdisp disposition,
12282 int thread,
12283 int task, int ignore_count,
12284 const struct breakpoint_ops *o,
12285 int from_tty, int enabled,
12286 int internal, unsigned flags)
12287 {
12288 internal_error_pure_virtual_called ();
12289 }
12290
12291 static std::vector<symtab_and_line>
12292 base_breakpoint_decode_location (struct breakpoint *b,
12293 const struct event_location *location,
12294 struct program_space *search_pspace)
12295 {
12296 internal_error_pure_virtual_called ();
12297 }
12298
12299 /* The default 'explains_signal' method. */
12300
12301 static int
12302 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12303 {
12304 return 1;
12305 }
12306
12307 /* The default "after_condition_true" method. */
12308
12309 static void
12310 base_breakpoint_after_condition_true (struct bpstats *bs)
12311 {
12312 /* Nothing to do. */
12313 }
12314
12315 struct breakpoint_ops base_breakpoint_ops =
12316 {
12317 base_breakpoint_allocate_location,
12318 base_breakpoint_re_set,
12319 base_breakpoint_insert_location,
12320 base_breakpoint_remove_location,
12321 base_breakpoint_breakpoint_hit,
12322 base_breakpoint_check_status,
12323 base_breakpoint_resources_needed,
12324 base_breakpoint_works_in_software_mode,
12325 base_breakpoint_print_it,
12326 NULL,
12327 base_breakpoint_print_one_detail,
12328 base_breakpoint_print_mention,
12329 base_breakpoint_print_recreate,
12330 base_breakpoint_create_sals_from_location,
12331 base_breakpoint_create_breakpoints_sal,
12332 base_breakpoint_decode_location,
12333 base_breakpoint_explains_signal,
12334 base_breakpoint_after_condition_true,
12335 };
12336
12337 /* Default breakpoint_ops methods. */
12338
12339 static void
12340 bkpt_re_set (struct breakpoint *b)
12341 {
12342 /* FIXME: is this still reachable? */
12343 if (breakpoint_event_location_empty_p (b))
12344 {
12345 /* Anything without a location can't be re-set. */
12346 delete_breakpoint (b);
12347 return;
12348 }
12349
12350 breakpoint_re_set_default (b);
12351 }
12352
12353 static int
12354 bkpt_insert_location (struct bp_location *bl)
12355 {
12356 CORE_ADDR addr = bl->target_info.reqstd_address;
12357
12358 bl->target_info.kind = breakpoint_kind (bl, &addr);
12359 bl->target_info.placed_address = addr;
12360
12361 if (bl->loc_type == bp_loc_hardware_breakpoint)
12362 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12363 else
12364 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12365 }
12366
12367 static int
12368 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12369 {
12370 if (bl->loc_type == bp_loc_hardware_breakpoint)
12371 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12372 else
12373 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12374 }
12375
12376 static int
12377 bkpt_breakpoint_hit (const struct bp_location *bl,
12378 const address_space *aspace, CORE_ADDR bp_addr,
12379 const struct target_waitstatus *ws)
12380 {
12381 if (ws->kind != TARGET_WAITKIND_STOPPED
12382 || ws->value.sig != GDB_SIGNAL_TRAP)
12383 return 0;
12384
12385 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12386 aspace, bp_addr))
12387 return 0;
12388
12389 if (overlay_debugging /* unmapped overlay section */
12390 && section_is_overlay (bl->section)
12391 && !section_is_mapped (bl->section))
12392 return 0;
12393
12394 return 1;
12395 }
12396
12397 static int
12398 dprintf_breakpoint_hit (const struct bp_location *bl,
12399 const address_space *aspace, CORE_ADDR bp_addr,
12400 const struct target_waitstatus *ws)
12401 {
12402 if (dprintf_style == dprintf_style_agent
12403 && target_can_run_breakpoint_commands ())
12404 {
12405 /* An agent-style dprintf never causes a stop. If we see a trap
12406 for this address it must be for a breakpoint that happens to
12407 be set at the same address. */
12408 return 0;
12409 }
12410
12411 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12412 }
12413
12414 static int
12415 bkpt_resources_needed (const struct bp_location *bl)
12416 {
12417 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12418
12419 return 1;
12420 }
12421
12422 static enum print_stop_action
12423 bkpt_print_it (bpstat bs)
12424 {
12425 struct breakpoint *b;
12426 const struct bp_location *bl;
12427 int bp_temp;
12428 struct ui_out *uiout = current_uiout;
12429
12430 gdb_assert (bs->bp_location_at != NULL);
12431
12432 bl = bs->bp_location_at;
12433 b = bs->breakpoint_at;
12434
12435 bp_temp = b->disposition == disp_del;
12436 if (bl->address != bl->requested_address)
12437 breakpoint_adjustment_warning (bl->requested_address,
12438 bl->address,
12439 b->number, 1);
12440 annotate_breakpoint (b->number);
12441 maybe_print_thread_hit_breakpoint (uiout);
12442
12443 if (bp_temp)
12444 uiout->text ("Temporary breakpoint ");
12445 else
12446 uiout->text ("Breakpoint ");
12447 if (uiout->is_mi_like_p ())
12448 {
12449 uiout->field_string ("reason",
12450 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12451 uiout->field_string ("disp", bpdisp_text (b->disposition));
12452 }
12453 uiout->field_int ("bkptno", b->number);
12454 uiout->text (", ");
12455
12456 return PRINT_SRC_AND_LOC;
12457 }
12458
12459 static void
12460 bkpt_print_mention (struct breakpoint *b)
12461 {
12462 if (current_uiout->is_mi_like_p ())
12463 return;
12464
12465 switch (b->type)
12466 {
12467 case bp_breakpoint:
12468 case bp_gnu_ifunc_resolver:
12469 if (b->disposition == disp_del)
12470 printf_filtered (_("Temporary breakpoint"));
12471 else
12472 printf_filtered (_("Breakpoint"));
12473 printf_filtered (_(" %d"), b->number);
12474 if (b->type == bp_gnu_ifunc_resolver)
12475 printf_filtered (_(" at gnu-indirect-function resolver"));
12476 break;
12477 case bp_hardware_breakpoint:
12478 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12479 break;
12480 case bp_dprintf:
12481 printf_filtered (_("Dprintf %d"), b->number);
12482 break;
12483 }
12484
12485 say_where (b);
12486 }
12487
12488 static void
12489 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12490 {
12491 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12492 fprintf_unfiltered (fp, "tbreak");
12493 else if (tp->type == bp_breakpoint)
12494 fprintf_unfiltered (fp, "break");
12495 else if (tp->type == bp_hardware_breakpoint
12496 && tp->disposition == disp_del)
12497 fprintf_unfiltered (fp, "thbreak");
12498 else if (tp->type == bp_hardware_breakpoint)
12499 fprintf_unfiltered (fp, "hbreak");
12500 else
12501 internal_error (__FILE__, __LINE__,
12502 _("unhandled breakpoint type %d"), (int) tp->type);
12503
12504 fprintf_unfiltered (fp, " %s",
12505 event_location_to_string (tp->location.get ()));
12506
12507 /* Print out extra_string if this breakpoint is pending. It might
12508 contain, for example, conditions that were set by the user. */
12509 if (tp->loc == NULL && tp->extra_string != NULL)
12510 fprintf_unfiltered (fp, " %s", tp->extra_string);
12511
12512 print_recreate_thread (tp, fp);
12513 }
12514
12515 static void
12516 bkpt_create_sals_from_location (const struct event_location *location,
12517 struct linespec_result *canonical,
12518 enum bptype type_wanted)
12519 {
12520 create_sals_from_location_default (location, canonical, type_wanted);
12521 }
12522
12523 static void
12524 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12525 struct linespec_result *canonical,
12526 gdb::unique_xmalloc_ptr<char> cond_string,
12527 gdb::unique_xmalloc_ptr<char> extra_string,
12528 enum bptype type_wanted,
12529 enum bpdisp disposition,
12530 int thread,
12531 int task, int ignore_count,
12532 const struct breakpoint_ops *ops,
12533 int from_tty, int enabled,
12534 int internal, unsigned flags)
12535 {
12536 create_breakpoints_sal_default (gdbarch, canonical,
12537 std::move (cond_string),
12538 std::move (extra_string),
12539 type_wanted,
12540 disposition, thread, task,
12541 ignore_count, ops, from_tty,
12542 enabled, internal, flags);
12543 }
12544
12545 static std::vector<symtab_and_line>
12546 bkpt_decode_location (struct breakpoint *b,
12547 const struct event_location *location,
12548 struct program_space *search_pspace)
12549 {
12550 return decode_location_default (b, location, search_pspace);
12551 }
12552
12553 /* Virtual table for internal breakpoints. */
12554
12555 static void
12556 internal_bkpt_re_set (struct breakpoint *b)
12557 {
12558 switch (b->type)
12559 {
12560 /* Delete overlay event and longjmp master breakpoints; they
12561 will be reset later by breakpoint_re_set. */
12562 case bp_overlay_event:
12563 case bp_longjmp_master:
12564 case bp_std_terminate_master:
12565 case bp_exception_master:
12566 delete_breakpoint (b);
12567 break;
12568
12569 /* This breakpoint is special, it's set up when the inferior
12570 starts and we really don't want to touch it. */
12571 case bp_shlib_event:
12572
12573 /* Like bp_shlib_event, this breakpoint type is special. Once
12574 it is set up, we do not want to touch it. */
12575 case bp_thread_event:
12576 break;
12577 }
12578 }
12579
12580 static void
12581 internal_bkpt_check_status (bpstat bs)
12582 {
12583 if (bs->breakpoint_at->type == bp_shlib_event)
12584 {
12585 /* If requested, stop when the dynamic linker notifies GDB of
12586 events. This allows the user to get control and place
12587 breakpoints in initializer routines for dynamically loaded
12588 objects (among other things). */
12589 bs->stop = stop_on_solib_events;
12590 bs->print = stop_on_solib_events;
12591 }
12592 else
12593 bs->stop = 0;
12594 }
12595
12596 static enum print_stop_action
12597 internal_bkpt_print_it (bpstat bs)
12598 {
12599 struct breakpoint *b;
12600
12601 b = bs->breakpoint_at;
12602
12603 switch (b->type)
12604 {
12605 case bp_shlib_event:
12606 /* Did we stop because the user set the stop_on_solib_events
12607 variable? (If so, we report this as a generic, "Stopped due
12608 to shlib event" message.) */
12609 print_solib_event (0);
12610 break;
12611
12612 case bp_thread_event:
12613 /* Not sure how we will get here.
12614 GDB should not stop for these breakpoints. */
12615 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12616 break;
12617
12618 case bp_overlay_event:
12619 /* By analogy with the thread event, GDB should not stop for these. */
12620 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12621 break;
12622
12623 case bp_longjmp_master:
12624 /* These should never be enabled. */
12625 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12626 break;
12627
12628 case bp_std_terminate_master:
12629 /* These should never be enabled. */
12630 printf_filtered (_("std::terminate Master Breakpoint: "
12631 "gdb should not stop!\n"));
12632 break;
12633
12634 case bp_exception_master:
12635 /* These should never be enabled. */
12636 printf_filtered (_("Exception Master Breakpoint: "
12637 "gdb should not stop!\n"));
12638 break;
12639 }
12640
12641 return PRINT_NOTHING;
12642 }
12643
12644 static void
12645 internal_bkpt_print_mention (struct breakpoint *b)
12646 {
12647 /* Nothing to mention. These breakpoints are internal. */
12648 }
12649
12650 /* Virtual table for momentary breakpoints */
12651
12652 static void
12653 momentary_bkpt_re_set (struct breakpoint *b)
12654 {
12655 /* Keep temporary breakpoints, which can be encountered when we step
12656 over a dlopen call and solib_add is resetting the breakpoints.
12657 Otherwise these should have been blown away via the cleanup chain
12658 or by breakpoint_init_inferior when we rerun the executable. */
12659 }
12660
12661 static void
12662 momentary_bkpt_check_status (bpstat bs)
12663 {
12664 /* Nothing. The point of these breakpoints is causing a stop. */
12665 }
12666
12667 static enum print_stop_action
12668 momentary_bkpt_print_it (bpstat bs)
12669 {
12670 return PRINT_UNKNOWN;
12671 }
12672
12673 static void
12674 momentary_bkpt_print_mention (struct breakpoint *b)
12675 {
12676 /* Nothing to mention. These breakpoints are internal. */
12677 }
12678
12679 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12680
12681 It gets cleared already on the removal of the first one of such placed
12682 breakpoints. This is OK as they get all removed altogether. */
12683
12684 longjmp_breakpoint::~longjmp_breakpoint ()
12685 {
12686 thread_info *tp = find_thread_global_id (this->thread);
12687
12688 if (tp != NULL)
12689 tp->initiating_frame = null_frame_id;
12690 }
12691
12692 /* Specific methods for probe breakpoints. */
12693
12694 static int
12695 bkpt_probe_insert_location (struct bp_location *bl)
12696 {
12697 int v = bkpt_insert_location (bl);
12698
12699 if (v == 0)
12700 {
12701 /* The insertion was successful, now let's set the probe's semaphore
12702 if needed. */
12703 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12704 }
12705
12706 return v;
12707 }
12708
12709 static int
12710 bkpt_probe_remove_location (struct bp_location *bl,
12711 enum remove_bp_reason reason)
12712 {
12713 /* Let's clear the semaphore before removing the location. */
12714 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12715
12716 return bkpt_remove_location (bl, reason);
12717 }
12718
12719 static void
12720 bkpt_probe_create_sals_from_location (const struct event_location *location,
12721 struct linespec_result *canonical,
12722 enum bptype type_wanted)
12723 {
12724 struct linespec_sals lsal;
12725
12726 lsal.sals = parse_probes (location, NULL, canonical);
12727 lsal.canonical
12728 = xstrdup (event_location_to_string (canonical->location.get ()));
12729 canonical->lsals.push_back (std::move (lsal));
12730 }
12731
12732 static std::vector<symtab_and_line>
12733 bkpt_probe_decode_location (struct breakpoint *b,
12734 const struct event_location *location,
12735 struct program_space *search_pspace)
12736 {
12737 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12738 if (sals.empty ())
12739 error (_("probe not found"));
12740 return sals;
12741 }
12742
12743 /* The breakpoint_ops structure to be used in tracepoints. */
12744
12745 static void
12746 tracepoint_re_set (struct breakpoint *b)
12747 {
12748 breakpoint_re_set_default (b);
12749 }
12750
12751 static int
12752 tracepoint_breakpoint_hit (const struct bp_location *bl,
12753 const address_space *aspace, CORE_ADDR bp_addr,
12754 const struct target_waitstatus *ws)
12755 {
12756 /* By definition, the inferior does not report stops at
12757 tracepoints. */
12758 return 0;
12759 }
12760
12761 static void
12762 tracepoint_print_one_detail (const struct breakpoint *self,
12763 struct ui_out *uiout)
12764 {
12765 struct tracepoint *tp = (struct tracepoint *) self;
12766 if (!tp->static_trace_marker_id.empty ())
12767 {
12768 gdb_assert (self->type == bp_static_tracepoint);
12769
12770 uiout->text ("\tmarker id is ");
12771 uiout->field_string ("static-tracepoint-marker-string-id",
12772 tp->static_trace_marker_id);
12773 uiout->text ("\n");
12774 }
12775 }
12776
12777 static void
12778 tracepoint_print_mention (struct breakpoint *b)
12779 {
12780 if (current_uiout->is_mi_like_p ())
12781 return;
12782
12783 switch (b->type)
12784 {
12785 case bp_tracepoint:
12786 printf_filtered (_("Tracepoint"));
12787 printf_filtered (_(" %d"), b->number);
12788 break;
12789 case bp_fast_tracepoint:
12790 printf_filtered (_("Fast tracepoint"));
12791 printf_filtered (_(" %d"), b->number);
12792 break;
12793 case bp_static_tracepoint:
12794 printf_filtered (_("Static tracepoint"));
12795 printf_filtered (_(" %d"), b->number);
12796 break;
12797 default:
12798 internal_error (__FILE__, __LINE__,
12799 _("unhandled tracepoint type %d"), (int) b->type);
12800 }
12801
12802 say_where (b);
12803 }
12804
12805 static void
12806 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12807 {
12808 struct tracepoint *tp = (struct tracepoint *) self;
12809
12810 if (self->type == bp_fast_tracepoint)
12811 fprintf_unfiltered (fp, "ftrace");
12812 else if (self->type == bp_static_tracepoint)
12813 fprintf_unfiltered (fp, "strace");
12814 else if (self->type == bp_tracepoint)
12815 fprintf_unfiltered (fp, "trace");
12816 else
12817 internal_error (__FILE__, __LINE__,
12818 _("unhandled tracepoint type %d"), (int) self->type);
12819
12820 fprintf_unfiltered (fp, " %s",
12821 event_location_to_string (self->location.get ()));
12822 print_recreate_thread (self, fp);
12823
12824 if (tp->pass_count)
12825 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12826 }
12827
12828 static void
12829 tracepoint_create_sals_from_location (const struct event_location *location,
12830 struct linespec_result *canonical,
12831 enum bptype type_wanted)
12832 {
12833 create_sals_from_location_default (location, canonical, type_wanted);
12834 }
12835
12836 static void
12837 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12838 struct linespec_result *canonical,
12839 gdb::unique_xmalloc_ptr<char> cond_string,
12840 gdb::unique_xmalloc_ptr<char> extra_string,
12841 enum bptype type_wanted,
12842 enum bpdisp disposition,
12843 int thread,
12844 int task, int ignore_count,
12845 const struct breakpoint_ops *ops,
12846 int from_tty, int enabled,
12847 int internal, unsigned flags)
12848 {
12849 create_breakpoints_sal_default (gdbarch, canonical,
12850 std::move (cond_string),
12851 std::move (extra_string),
12852 type_wanted,
12853 disposition, thread, task,
12854 ignore_count, ops, from_tty,
12855 enabled, internal, flags);
12856 }
12857
12858 static std::vector<symtab_and_line>
12859 tracepoint_decode_location (struct breakpoint *b,
12860 const struct event_location *location,
12861 struct program_space *search_pspace)
12862 {
12863 return decode_location_default (b, location, search_pspace);
12864 }
12865
12866 struct breakpoint_ops tracepoint_breakpoint_ops;
12867
12868 /* The breakpoint_ops structure to be use on tracepoints placed in a
12869 static probe. */
12870
12871 static void
12872 tracepoint_probe_create_sals_from_location
12873 (const struct event_location *location,
12874 struct linespec_result *canonical,
12875 enum bptype type_wanted)
12876 {
12877 /* We use the same method for breakpoint on probes. */
12878 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12879 }
12880
12881 static std::vector<symtab_and_line>
12882 tracepoint_probe_decode_location (struct breakpoint *b,
12883 const struct event_location *location,
12884 struct program_space *search_pspace)
12885 {
12886 /* We use the same method for breakpoint on probes. */
12887 return bkpt_probe_decode_location (b, location, search_pspace);
12888 }
12889
12890 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12891
12892 /* Dprintf breakpoint_ops methods. */
12893
12894 static void
12895 dprintf_re_set (struct breakpoint *b)
12896 {
12897 breakpoint_re_set_default (b);
12898
12899 /* extra_string should never be non-NULL for dprintf. */
12900 gdb_assert (b->extra_string != NULL);
12901
12902 /* 1 - connect to target 1, that can run breakpoint commands.
12903 2 - create a dprintf, which resolves fine.
12904 3 - disconnect from target 1
12905 4 - connect to target 2, that can NOT run breakpoint commands.
12906
12907 After steps #3/#4, you'll want the dprintf command list to
12908 be updated, because target 1 and 2 may well return different
12909 answers for target_can_run_breakpoint_commands().
12910 Given absence of finer grained resetting, we get to do
12911 it all the time. */
12912 if (b->extra_string != NULL)
12913 update_dprintf_command_list (b);
12914 }
12915
12916 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12917
12918 static void
12919 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12920 {
12921 fprintf_unfiltered (fp, "dprintf %s,%s",
12922 event_location_to_string (tp->location.get ()),
12923 tp->extra_string);
12924 print_recreate_thread (tp, fp);
12925 }
12926
12927 /* Implement the "after_condition_true" breakpoint_ops method for
12928 dprintf.
12929
12930 dprintf's are implemented with regular commands in their command
12931 list, but we run the commands here instead of before presenting the
12932 stop to the user, as dprintf's don't actually cause a stop. This
12933 also makes it so that the commands of multiple dprintfs at the same
12934 address are all handled. */
12935
12936 static void
12937 dprintf_after_condition_true (struct bpstats *bs)
12938 {
12939 struct bpstats tmp_bs;
12940 struct bpstats *tmp_bs_p = &tmp_bs;
12941
12942 /* dprintf's never cause a stop. This wasn't set in the
12943 check_status hook instead because that would make the dprintf's
12944 condition not be evaluated. */
12945 bs->stop = 0;
12946
12947 /* Run the command list here. Take ownership of it instead of
12948 copying. We never want these commands to run later in
12949 bpstat_do_actions, if a breakpoint that causes a stop happens to
12950 be set at same address as this dprintf, or even if running the
12951 commands here throws. */
12952 tmp_bs.commands = bs->commands;
12953 bs->commands = NULL;
12954
12955 bpstat_do_actions_1 (&tmp_bs_p);
12956
12957 /* 'tmp_bs.commands' will usually be NULL by now, but
12958 bpstat_do_actions_1 may return early without processing the whole
12959 list. */
12960 }
12961
12962 /* The breakpoint_ops structure to be used on static tracepoints with
12963 markers (`-m'). */
12964
12965 static void
12966 strace_marker_create_sals_from_location (const struct event_location *location,
12967 struct linespec_result *canonical,
12968 enum bptype type_wanted)
12969 {
12970 struct linespec_sals lsal;
12971 const char *arg_start, *arg;
12972
12973 arg = arg_start = get_linespec_location (location)->spec_string;
12974 lsal.sals = decode_static_tracepoint_spec (&arg);
12975
12976 std::string str (arg_start, arg - arg_start);
12977 const char *ptr = str.c_str ();
12978 canonical->location
12979 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12980
12981 lsal.canonical
12982 = xstrdup (event_location_to_string (canonical->location.get ()));
12983 canonical->lsals.push_back (std::move (lsal));
12984 }
12985
12986 static void
12987 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12988 struct linespec_result *canonical,
12989 gdb::unique_xmalloc_ptr<char> cond_string,
12990 gdb::unique_xmalloc_ptr<char> extra_string,
12991 enum bptype type_wanted,
12992 enum bpdisp disposition,
12993 int thread,
12994 int task, int ignore_count,
12995 const struct breakpoint_ops *ops,
12996 int from_tty, int enabled,
12997 int internal, unsigned flags)
12998 {
12999 const linespec_sals &lsal = canonical->lsals[0];
13000
13001 /* If the user is creating a static tracepoint by marker id
13002 (strace -m MARKER_ID), then store the sals index, so that
13003 breakpoint_re_set can try to match up which of the newly
13004 found markers corresponds to this one, and, don't try to
13005 expand multiple locations for each sal, given than SALS
13006 already should contain all sals for MARKER_ID. */
13007
13008 for (size_t i = 0; i < lsal.sals.size (); i++)
13009 {
13010 event_location_up location
13011 = copy_event_location (canonical->location.get ());
13012
13013 std::unique_ptr<tracepoint> tp (new tracepoint ());
13014 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13015 std::move (location), NULL,
13016 std::move (cond_string),
13017 std::move (extra_string),
13018 type_wanted, disposition,
13019 thread, task, ignore_count, ops,
13020 from_tty, enabled, internal, flags,
13021 canonical->special_display);
13022 /* Given that its possible to have multiple markers with
13023 the same string id, if the user is creating a static
13024 tracepoint by marker id ("strace -m MARKER_ID"), then
13025 store the sals index, so that breakpoint_re_set can
13026 try to match up which of the newly found markers
13027 corresponds to this one */
13028 tp->static_trace_marker_id_idx = i;
13029
13030 install_breakpoint (internal, std::move (tp), 0);
13031 }
13032 }
13033
13034 static std::vector<symtab_and_line>
13035 strace_marker_decode_location (struct breakpoint *b,
13036 const struct event_location *location,
13037 struct program_space *search_pspace)
13038 {
13039 struct tracepoint *tp = (struct tracepoint *) b;
13040 const char *s = get_linespec_location (location)->spec_string;
13041
13042 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13043 if (sals.size () > tp->static_trace_marker_id_idx)
13044 {
13045 sals[0] = sals[tp->static_trace_marker_id_idx];
13046 sals.resize (1);
13047 return sals;
13048 }
13049 else
13050 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13051 }
13052
13053 static struct breakpoint_ops strace_marker_breakpoint_ops;
13054
13055 static int
13056 strace_marker_p (struct breakpoint *b)
13057 {
13058 return b->ops == &strace_marker_breakpoint_ops;
13059 }
13060
13061 /* Delete a breakpoint and clean up all traces of it in the data
13062 structures. */
13063
13064 void
13065 delete_breakpoint (struct breakpoint *bpt)
13066 {
13067 struct breakpoint *b;
13068
13069 gdb_assert (bpt != NULL);
13070
13071 /* Has this bp already been deleted? This can happen because
13072 multiple lists can hold pointers to bp's. bpstat lists are
13073 especial culprits.
13074
13075 One example of this happening is a watchpoint's scope bp. When
13076 the scope bp triggers, we notice that the watchpoint is out of
13077 scope, and delete it. We also delete its scope bp. But the
13078 scope bp is marked "auto-deleting", and is already on a bpstat.
13079 That bpstat is then checked for auto-deleting bp's, which are
13080 deleted.
13081
13082 A real solution to this problem might involve reference counts in
13083 bp's, and/or giving them pointers back to their referencing
13084 bpstat's, and teaching delete_breakpoint to only free a bp's
13085 storage when no more references were extent. A cheaper bandaid
13086 was chosen. */
13087 if (bpt->type == bp_none)
13088 return;
13089
13090 /* At least avoid this stale reference until the reference counting
13091 of breakpoints gets resolved. */
13092 if (bpt->related_breakpoint != bpt)
13093 {
13094 struct breakpoint *related;
13095 struct watchpoint *w;
13096
13097 if (bpt->type == bp_watchpoint_scope)
13098 w = (struct watchpoint *) bpt->related_breakpoint;
13099 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13100 w = (struct watchpoint *) bpt;
13101 else
13102 w = NULL;
13103 if (w != NULL)
13104 watchpoint_del_at_next_stop (w);
13105
13106 /* Unlink bpt from the bpt->related_breakpoint ring. */
13107 for (related = bpt; related->related_breakpoint != bpt;
13108 related = related->related_breakpoint);
13109 related->related_breakpoint = bpt->related_breakpoint;
13110 bpt->related_breakpoint = bpt;
13111 }
13112
13113 /* watch_command_1 creates a watchpoint but only sets its number if
13114 update_watchpoint succeeds in creating its bp_locations. If there's
13115 a problem in that process, we'll be asked to delete the half-created
13116 watchpoint. In that case, don't announce the deletion. */
13117 if (bpt->number)
13118 gdb::observers::breakpoint_deleted.notify (bpt);
13119
13120 if (breakpoint_chain == bpt)
13121 breakpoint_chain = bpt->next;
13122
13123 ALL_BREAKPOINTS (b)
13124 if (b->next == bpt)
13125 {
13126 b->next = bpt->next;
13127 break;
13128 }
13129
13130 /* Be sure no bpstat's are pointing at the breakpoint after it's
13131 been freed. */
13132 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13133 in all threads for now. Note that we cannot just remove bpstats
13134 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13135 commands are associated with the bpstat; if we remove it here,
13136 then the later call to bpstat_do_actions (&stop_bpstat); in
13137 event-top.c won't do anything, and temporary breakpoints with
13138 commands won't work. */
13139
13140 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13141
13142 /* Now that breakpoint is removed from breakpoint list, update the
13143 global location list. This will remove locations that used to
13144 belong to this breakpoint. Do this before freeing the breakpoint
13145 itself, since remove_breakpoint looks at location's owner. It
13146 might be better design to have location completely
13147 self-contained, but it's not the case now. */
13148 update_global_location_list (UGLL_DONT_INSERT);
13149
13150 /* On the chance that someone will soon try again to delete this
13151 same bp, we mark it as deleted before freeing its storage. */
13152 bpt->type = bp_none;
13153 delete bpt;
13154 }
13155
13156 /* Iterator function to call a user-provided callback function once
13157 for each of B and its related breakpoints. */
13158
13159 static void
13160 iterate_over_related_breakpoints (struct breakpoint *b,
13161 gdb::function_view<void (breakpoint *)> function)
13162 {
13163 struct breakpoint *related;
13164
13165 related = b;
13166 do
13167 {
13168 struct breakpoint *next;
13169
13170 /* FUNCTION may delete RELATED. */
13171 next = related->related_breakpoint;
13172
13173 if (next == related)
13174 {
13175 /* RELATED is the last ring entry. */
13176 function (related);
13177
13178 /* FUNCTION may have deleted it, so we'd never reach back to
13179 B. There's nothing left to do anyway, so just break
13180 out. */
13181 break;
13182 }
13183 else
13184 function (related);
13185
13186 related = next;
13187 }
13188 while (related != b);
13189 }
13190
13191 static void
13192 delete_command (const char *arg, int from_tty)
13193 {
13194 struct breakpoint *b, *b_tmp;
13195
13196 dont_repeat ();
13197
13198 if (arg == 0)
13199 {
13200 int breaks_to_delete = 0;
13201
13202 /* Delete all breakpoints if no argument. Do not delete
13203 internal breakpoints, these have to be deleted with an
13204 explicit breakpoint number argument. */
13205 ALL_BREAKPOINTS (b)
13206 if (user_breakpoint_p (b))
13207 {
13208 breaks_to_delete = 1;
13209 break;
13210 }
13211
13212 /* Ask user only if there are some breakpoints to delete. */
13213 if (!from_tty
13214 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13215 {
13216 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13217 if (user_breakpoint_p (b))
13218 delete_breakpoint (b);
13219 }
13220 }
13221 else
13222 map_breakpoint_numbers
13223 (arg, [&] (breakpoint *br)
13224 {
13225 iterate_over_related_breakpoints (br, delete_breakpoint);
13226 });
13227 }
13228
13229 /* Return true if all locations of B bound to PSPACE are pending. If
13230 PSPACE is NULL, all locations of all program spaces are
13231 considered. */
13232
13233 static int
13234 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13235 {
13236 struct bp_location *loc;
13237
13238 for (loc = b->loc; loc != NULL; loc = loc->next)
13239 if ((pspace == NULL
13240 || loc->pspace == pspace)
13241 && !loc->shlib_disabled
13242 && !loc->pspace->executing_startup)
13243 return 0;
13244 return 1;
13245 }
13246
13247 /* Subroutine of update_breakpoint_locations to simplify it.
13248 Return non-zero if multiple fns in list LOC have the same name.
13249 Null names are ignored. */
13250
13251 static int
13252 ambiguous_names_p (struct bp_location *loc)
13253 {
13254 struct bp_location *l;
13255 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13256 xcalloc, xfree);
13257
13258 for (l = loc; l != NULL; l = l->next)
13259 {
13260 const char **slot;
13261 const char *name = l->function_name;
13262
13263 /* Allow for some names to be NULL, ignore them. */
13264 if (name == NULL)
13265 continue;
13266
13267 slot = (const char **) htab_find_slot (htab, (const void *) name,
13268 INSERT);
13269 /* NOTE: We can assume slot != NULL here because xcalloc never
13270 returns NULL. */
13271 if (*slot != NULL)
13272 {
13273 htab_delete (htab);
13274 return 1;
13275 }
13276 *slot = name;
13277 }
13278
13279 htab_delete (htab);
13280 return 0;
13281 }
13282
13283 /* When symbols change, it probably means the sources changed as well,
13284 and it might mean the static tracepoint markers are no longer at
13285 the same address or line numbers they used to be at last we
13286 checked. Losing your static tracepoints whenever you rebuild is
13287 undesirable. This function tries to resync/rematch gdb static
13288 tracepoints with the markers on the target, for static tracepoints
13289 that have not been set by marker id. Static tracepoint that have
13290 been set by marker id are reset by marker id in breakpoint_re_set.
13291 The heuristic is:
13292
13293 1) For a tracepoint set at a specific address, look for a marker at
13294 the old PC. If one is found there, assume to be the same marker.
13295 If the name / string id of the marker found is different from the
13296 previous known name, assume that means the user renamed the marker
13297 in the sources, and output a warning.
13298
13299 2) For a tracepoint set at a given line number, look for a marker
13300 at the new address of the old line number. If one is found there,
13301 assume to be the same marker. If the name / string id of the
13302 marker found is different from the previous known name, assume that
13303 means the user renamed the marker in the sources, and output a
13304 warning.
13305
13306 3) If a marker is no longer found at the same address or line, it
13307 may mean the marker no longer exists. But it may also just mean
13308 the code changed a bit. Maybe the user added a few lines of code
13309 that made the marker move up or down (in line number terms). Ask
13310 the target for info about the marker with the string id as we knew
13311 it. If found, update line number and address in the matching
13312 static tracepoint. This will get confused if there's more than one
13313 marker with the same ID (possible in UST, although unadvised
13314 precisely because it confuses tools). */
13315
13316 static struct symtab_and_line
13317 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13318 {
13319 struct tracepoint *tp = (struct tracepoint *) b;
13320 struct static_tracepoint_marker marker;
13321 CORE_ADDR pc;
13322
13323 pc = sal.pc;
13324 if (sal.line)
13325 find_line_pc (sal.symtab, sal.line, &pc);
13326
13327 if (target_static_tracepoint_marker_at (pc, &marker))
13328 {
13329 if (tp->static_trace_marker_id != marker.str_id)
13330 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13331 b->number, tp->static_trace_marker_id.c_str (),
13332 marker.str_id.c_str ());
13333
13334 tp->static_trace_marker_id = std::move (marker.str_id);
13335
13336 return sal;
13337 }
13338
13339 /* Old marker wasn't found on target at lineno. Try looking it up
13340 by string ID. */
13341 if (!sal.explicit_pc
13342 && sal.line != 0
13343 && sal.symtab != NULL
13344 && !tp->static_trace_marker_id.empty ())
13345 {
13346 std::vector<static_tracepoint_marker> markers
13347 = target_static_tracepoint_markers_by_strid
13348 (tp->static_trace_marker_id.c_str ());
13349
13350 if (!markers.empty ())
13351 {
13352 struct symbol *sym;
13353 struct static_tracepoint_marker *tpmarker;
13354 struct ui_out *uiout = current_uiout;
13355 struct explicit_location explicit_loc;
13356
13357 tpmarker = &markers[0];
13358
13359 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13360
13361 warning (_("marker for static tracepoint %d (%s) not "
13362 "found at previous line number"),
13363 b->number, tp->static_trace_marker_id.c_str ());
13364
13365 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13366 sym = find_pc_sect_function (tpmarker->address, NULL);
13367 uiout->text ("Now in ");
13368 if (sym)
13369 {
13370 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13371 ui_out_style_kind::FUNCTION);
13372 uiout->text (" at ");
13373 }
13374 uiout->field_string ("file",
13375 symtab_to_filename_for_display (sal2.symtab),
13376 ui_out_style_kind::FILE);
13377 uiout->text (":");
13378
13379 if (uiout->is_mi_like_p ())
13380 {
13381 const char *fullname = symtab_to_fullname (sal2.symtab);
13382
13383 uiout->field_string ("fullname", fullname);
13384 }
13385
13386 uiout->field_int ("line", sal2.line);
13387 uiout->text ("\n");
13388
13389 b->loc->line_number = sal2.line;
13390 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13391
13392 b->location.reset (NULL);
13393 initialize_explicit_location (&explicit_loc);
13394 explicit_loc.source_filename
13395 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13396 explicit_loc.line_offset.offset = b->loc->line_number;
13397 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13398 b->location = new_explicit_location (&explicit_loc);
13399
13400 /* Might be nice to check if function changed, and warn if
13401 so. */
13402 }
13403 }
13404 return sal;
13405 }
13406
13407 /* Returns 1 iff locations A and B are sufficiently same that
13408 we don't need to report breakpoint as changed. */
13409
13410 static int
13411 locations_are_equal (struct bp_location *a, struct bp_location *b)
13412 {
13413 while (a && b)
13414 {
13415 if (a->address != b->address)
13416 return 0;
13417
13418 if (a->shlib_disabled != b->shlib_disabled)
13419 return 0;
13420
13421 if (a->enabled != b->enabled)
13422 return 0;
13423
13424 a = a->next;
13425 b = b->next;
13426 }
13427
13428 if ((a == NULL) != (b == NULL))
13429 return 0;
13430
13431 return 1;
13432 }
13433
13434 /* Split all locations of B that are bound to PSPACE out of B's
13435 location list to a separate list and return that list's head. If
13436 PSPACE is NULL, hoist out all locations of B. */
13437
13438 static struct bp_location *
13439 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13440 {
13441 struct bp_location head;
13442 struct bp_location *i = b->loc;
13443 struct bp_location **i_link = &b->loc;
13444 struct bp_location *hoisted = &head;
13445
13446 if (pspace == NULL)
13447 {
13448 i = b->loc;
13449 b->loc = NULL;
13450 return i;
13451 }
13452
13453 head.next = NULL;
13454
13455 while (i != NULL)
13456 {
13457 if (i->pspace == pspace)
13458 {
13459 *i_link = i->next;
13460 i->next = NULL;
13461 hoisted->next = i;
13462 hoisted = i;
13463 }
13464 else
13465 i_link = &i->next;
13466 i = *i_link;
13467 }
13468
13469 return head.next;
13470 }
13471
13472 /* Create new breakpoint locations for B (a hardware or software
13473 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13474 zero, then B is a ranged breakpoint. Only recreates locations for
13475 FILTER_PSPACE. Locations of other program spaces are left
13476 untouched. */
13477
13478 void
13479 update_breakpoint_locations (struct breakpoint *b,
13480 struct program_space *filter_pspace,
13481 gdb::array_view<const symtab_and_line> sals,
13482 gdb::array_view<const symtab_and_line> sals_end)
13483 {
13484 struct bp_location *existing_locations;
13485
13486 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13487 {
13488 /* Ranged breakpoints have only one start location and one end
13489 location. */
13490 b->enable_state = bp_disabled;
13491 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13492 "multiple locations found\n"),
13493 b->number);
13494 return;
13495 }
13496
13497 /* If there's no new locations, and all existing locations are
13498 pending, don't do anything. This optimizes the common case where
13499 all locations are in the same shared library, that was unloaded.
13500 We'd like to retain the location, so that when the library is
13501 loaded again, we don't loose the enabled/disabled status of the
13502 individual locations. */
13503 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13504 return;
13505
13506 existing_locations = hoist_existing_locations (b, filter_pspace);
13507
13508 for (const auto &sal : sals)
13509 {
13510 struct bp_location *new_loc;
13511
13512 switch_to_program_space_and_thread (sal.pspace);
13513
13514 new_loc = add_location_to_breakpoint (b, &sal);
13515
13516 /* Reparse conditions, they might contain references to the
13517 old symtab. */
13518 if (b->cond_string != NULL)
13519 {
13520 const char *s;
13521
13522 s = b->cond_string;
13523 try
13524 {
13525 new_loc->cond = parse_exp_1 (&s, sal.pc,
13526 block_for_pc (sal.pc),
13527 0);
13528 }
13529 catch (const gdb_exception_error &e)
13530 {
13531 warning (_("failed to reevaluate condition "
13532 "for breakpoint %d: %s"),
13533 b->number, e.what ());
13534 new_loc->enabled = 0;
13535 }
13536 }
13537
13538 if (!sals_end.empty ())
13539 {
13540 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13541
13542 new_loc->length = end - sals[0].pc + 1;
13543 }
13544 }
13545
13546 /* If possible, carry over 'disable' status from existing
13547 breakpoints. */
13548 {
13549 struct bp_location *e = existing_locations;
13550 /* If there are multiple breakpoints with the same function name,
13551 e.g. for inline functions, comparing function names won't work.
13552 Instead compare pc addresses; this is just a heuristic as things
13553 may have moved, but in practice it gives the correct answer
13554 often enough until a better solution is found. */
13555 int have_ambiguous_names = ambiguous_names_p (b->loc);
13556
13557 for (; e; e = e->next)
13558 {
13559 if (!e->enabled && e->function_name)
13560 {
13561 struct bp_location *l = b->loc;
13562 if (have_ambiguous_names)
13563 {
13564 for (; l; l = l->next)
13565 if (breakpoint_locations_match (e, l))
13566 {
13567 l->enabled = 0;
13568 break;
13569 }
13570 }
13571 else
13572 {
13573 for (; l; l = l->next)
13574 if (l->function_name
13575 && strcmp (e->function_name, l->function_name) == 0)
13576 {
13577 l->enabled = 0;
13578 break;
13579 }
13580 }
13581 }
13582 }
13583 }
13584
13585 if (!locations_are_equal (existing_locations, b->loc))
13586 gdb::observers::breakpoint_modified.notify (b);
13587 }
13588
13589 /* Find the SaL locations corresponding to the given LOCATION.
13590 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13591
13592 static std::vector<symtab_and_line>
13593 location_to_sals (struct breakpoint *b, struct event_location *location,
13594 struct program_space *search_pspace, int *found)
13595 {
13596 struct gdb_exception exception = exception_none;
13597
13598 gdb_assert (b->ops != NULL);
13599
13600 std::vector<symtab_and_line> sals;
13601
13602 try
13603 {
13604 sals = b->ops->decode_location (b, location, search_pspace);
13605 }
13606 catch (const gdb_exception_error &e)
13607 {
13608 int not_found_and_ok = 0;
13609
13610 exception = e;
13611
13612 /* For pending breakpoints, it's expected that parsing will
13613 fail until the right shared library is loaded. User has
13614 already told to create pending breakpoints and don't need
13615 extra messages. If breakpoint is in bp_shlib_disabled
13616 state, then user already saw the message about that
13617 breakpoint being disabled, and don't want to see more
13618 errors. */
13619 if (e.error == NOT_FOUND_ERROR
13620 && (b->condition_not_parsed
13621 || (b->loc != NULL
13622 && search_pspace != NULL
13623 && b->loc->pspace != search_pspace)
13624 || (b->loc && b->loc->shlib_disabled)
13625 || (b->loc && b->loc->pspace->executing_startup)
13626 || b->enable_state == bp_disabled))
13627 not_found_and_ok = 1;
13628
13629 if (!not_found_and_ok)
13630 {
13631 /* We surely don't want to warn about the same breakpoint
13632 10 times. One solution, implemented here, is disable
13633 the breakpoint on error. Another solution would be to
13634 have separate 'warning emitted' flag. Since this
13635 happens only when a binary has changed, I don't know
13636 which approach is better. */
13637 b->enable_state = bp_disabled;
13638 throw;
13639 }
13640 }
13641
13642 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13643 {
13644 for (auto &sal : sals)
13645 resolve_sal_pc (&sal);
13646 if (b->condition_not_parsed && b->extra_string != NULL)
13647 {
13648 char *cond_string, *extra_string;
13649 int thread, task;
13650
13651 find_condition_and_thread (b->extra_string, sals[0].pc,
13652 &cond_string, &thread, &task,
13653 &extra_string);
13654 gdb_assert (b->cond_string == NULL);
13655 if (cond_string)
13656 b->cond_string = cond_string;
13657 b->thread = thread;
13658 b->task = task;
13659 if (extra_string)
13660 {
13661 xfree (b->extra_string);
13662 b->extra_string = extra_string;
13663 }
13664 b->condition_not_parsed = 0;
13665 }
13666
13667 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13668 sals[0] = update_static_tracepoint (b, sals[0]);
13669
13670 *found = 1;
13671 }
13672 else
13673 *found = 0;
13674
13675 return sals;
13676 }
13677
13678 /* The default re_set method, for typical hardware or software
13679 breakpoints. Reevaluate the breakpoint and recreate its
13680 locations. */
13681
13682 static void
13683 breakpoint_re_set_default (struct breakpoint *b)
13684 {
13685 struct program_space *filter_pspace = current_program_space;
13686 std::vector<symtab_and_line> expanded, expanded_end;
13687
13688 int found;
13689 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13690 filter_pspace, &found);
13691 if (found)
13692 expanded = std::move (sals);
13693
13694 if (b->location_range_end != NULL)
13695 {
13696 std::vector<symtab_and_line> sals_end
13697 = location_to_sals (b, b->location_range_end.get (),
13698 filter_pspace, &found);
13699 if (found)
13700 expanded_end = std::move (sals_end);
13701 }
13702
13703 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13704 }
13705
13706 /* Default method for creating SALs from an address string. It basically
13707 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13708
13709 static void
13710 create_sals_from_location_default (const struct event_location *location,
13711 struct linespec_result *canonical,
13712 enum bptype type_wanted)
13713 {
13714 parse_breakpoint_sals (location, canonical);
13715 }
13716
13717 /* Call create_breakpoints_sal for the given arguments. This is the default
13718 function for the `create_breakpoints_sal' method of
13719 breakpoint_ops. */
13720
13721 static void
13722 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13723 struct linespec_result *canonical,
13724 gdb::unique_xmalloc_ptr<char> cond_string,
13725 gdb::unique_xmalloc_ptr<char> extra_string,
13726 enum bptype type_wanted,
13727 enum bpdisp disposition,
13728 int thread,
13729 int task, int ignore_count,
13730 const struct breakpoint_ops *ops,
13731 int from_tty, int enabled,
13732 int internal, unsigned flags)
13733 {
13734 create_breakpoints_sal (gdbarch, canonical,
13735 std::move (cond_string),
13736 std::move (extra_string),
13737 type_wanted, disposition,
13738 thread, task, ignore_count, ops, from_tty,
13739 enabled, internal, flags);
13740 }
13741
13742 /* Decode the line represented by S by calling decode_line_full. This is the
13743 default function for the `decode_location' method of breakpoint_ops. */
13744
13745 static std::vector<symtab_and_line>
13746 decode_location_default (struct breakpoint *b,
13747 const struct event_location *location,
13748 struct program_space *search_pspace)
13749 {
13750 struct linespec_result canonical;
13751
13752 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13753 (struct symtab *) NULL, 0,
13754 &canonical, multiple_symbols_all,
13755 b->filter);
13756
13757 /* We should get 0 or 1 resulting SALs. */
13758 gdb_assert (canonical.lsals.size () < 2);
13759
13760 if (!canonical.lsals.empty ())
13761 {
13762 const linespec_sals &lsal = canonical.lsals[0];
13763 return std::move (lsal.sals);
13764 }
13765 return {};
13766 }
13767
13768 /* Reset a breakpoint. */
13769
13770 static void
13771 breakpoint_re_set_one (breakpoint *b)
13772 {
13773 input_radix = b->input_radix;
13774 set_language (b->language);
13775
13776 b->ops->re_set (b);
13777 }
13778
13779 /* Re-set breakpoint locations for the current program space.
13780 Locations bound to other program spaces are left untouched. */
13781
13782 void
13783 breakpoint_re_set (void)
13784 {
13785 struct breakpoint *b, *b_tmp;
13786
13787 {
13788 scoped_restore_current_language save_language;
13789 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13790 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13791
13792 /* breakpoint_re_set_one sets the current_language to the language
13793 of the breakpoint it is resetting (see prepare_re_set_context)
13794 before re-evaluating the breakpoint's location. This change can
13795 unfortunately get undone by accident if the language_mode is set
13796 to auto, and we either switch frames, or more likely in this context,
13797 we select the current frame.
13798
13799 We prevent this by temporarily turning the language_mode to
13800 language_mode_manual. We restore it once all breakpoints
13801 have been reset. */
13802 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13803 language_mode = language_mode_manual;
13804
13805 /* Note: we must not try to insert locations until after all
13806 breakpoints have been re-set. Otherwise, e.g., when re-setting
13807 breakpoint 1, we'd insert the locations of breakpoint 2, which
13808 hadn't been re-set yet, and thus may have stale locations. */
13809
13810 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13811 {
13812 try
13813 {
13814 breakpoint_re_set_one (b);
13815 }
13816 catch (const gdb_exception &ex)
13817 {
13818 exception_fprintf (gdb_stderr, ex,
13819 "Error in re-setting breakpoint %d: ",
13820 b->number);
13821 }
13822 }
13823
13824 jit_breakpoint_re_set ();
13825 }
13826
13827 create_overlay_event_breakpoint ();
13828 create_longjmp_master_breakpoint ();
13829 create_std_terminate_master_breakpoint ();
13830 create_exception_master_breakpoint ();
13831
13832 /* Now we can insert. */
13833 update_global_location_list (UGLL_MAY_INSERT);
13834 }
13835 \f
13836 /* Reset the thread number of this breakpoint:
13837
13838 - If the breakpoint is for all threads, leave it as-is.
13839 - Else, reset it to the current thread for inferior_ptid. */
13840 void
13841 breakpoint_re_set_thread (struct breakpoint *b)
13842 {
13843 if (b->thread != -1)
13844 {
13845 b->thread = inferior_thread ()->global_num;
13846
13847 /* We're being called after following a fork. The new fork is
13848 selected as current, and unless this was a vfork will have a
13849 different program space from the original thread. Reset that
13850 as well. */
13851 b->loc->pspace = current_program_space;
13852 }
13853 }
13854
13855 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13856 If from_tty is nonzero, it prints a message to that effect,
13857 which ends with a period (no newline). */
13858
13859 void
13860 set_ignore_count (int bptnum, int count, int from_tty)
13861 {
13862 struct breakpoint *b;
13863
13864 if (count < 0)
13865 count = 0;
13866
13867 ALL_BREAKPOINTS (b)
13868 if (b->number == bptnum)
13869 {
13870 if (is_tracepoint (b))
13871 {
13872 if (from_tty && count != 0)
13873 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13874 bptnum);
13875 return;
13876 }
13877
13878 b->ignore_count = count;
13879 if (from_tty)
13880 {
13881 if (count == 0)
13882 printf_filtered (_("Will stop next time "
13883 "breakpoint %d is reached."),
13884 bptnum);
13885 else if (count == 1)
13886 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13887 bptnum);
13888 else
13889 printf_filtered (_("Will ignore next %d "
13890 "crossings of breakpoint %d."),
13891 count, bptnum);
13892 }
13893 gdb::observers::breakpoint_modified.notify (b);
13894 return;
13895 }
13896
13897 error (_("No breakpoint number %d."), bptnum);
13898 }
13899
13900 /* Command to set ignore-count of breakpoint N to COUNT. */
13901
13902 static void
13903 ignore_command (const char *args, int from_tty)
13904 {
13905 const char *p = args;
13906 int num;
13907
13908 if (p == 0)
13909 error_no_arg (_("a breakpoint number"));
13910
13911 num = get_number (&p);
13912 if (num == 0)
13913 error (_("bad breakpoint number: '%s'"), args);
13914 if (*p == 0)
13915 error (_("Second argument (specified ignore-count) is missing."));
13916
13917 set_ignore_count (num,
13918 longest_to_int (value_as_long (parse_and_eval (p))),
13919 from_tty);
13920 if (from_tty)
13921 printf_filtered ("\n");
13922 }
13923 \f
13924
13925 /* Call FUNCTION on each of the breakpoints with numbers in the range
13926 defined by BP_NUM_RANGE (an inclusive range). */
13927
13928 static void
13929 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13930 gdb::function_view<void (breakpoint *)> function)
13931 {
13932 if (bp_num_range.first == 0)
13933 {
13934 warning (_("bad breakpoint number at or near '%d'"),
13935 bp_num_range.first);
13936 }
13937 else
13938 {
13939 struct breakpoint *b, *tmp;
13940
13941 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13942 {
13943 bool match = false;
13944
13945 ALL_BREAKPOINTS_SAFE (b, tmp)
13946 if (b->number == i)
13947 {
13948 match = true;
13949 function (b);
13950 break;
13951 }
13952 if (!match)
13953 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13954 }
13955 }
13956 }
13957
13958 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13959 ARGS. */
13960
13961 static void
13962 map_breakpoint_numbers (const char *args,
13963 gdb::function_view<void (breakpoint *)> function)
13964 {
13965 if (args == NULL || *args == '\0')
13966 error_no_arg (_("one or more breakpoint numbers"));
13967
13968 number_or_range_parser parser (args);
13969
13970 while (!parser.finished ())
13971 {
13972 int num = parser.get_number ();
13973 map_breakpoint_number_range (std::make_pair (num, num), function);
13974 }
13975 }
13976
13977 /* Return the breakpoint location structure corresponding to the
13978 BP_NUM and LOC_NUM values. */
13979
13980 static struct bp_location *
13981 find_location_by_number (int bp_num, int loc_num)
13982 {
13983 struct breakpoint *b;
13984
13985 ALL_BREAKPOINTS (b)
13986 if (b->number == bp_num)
13987 {
13988 break;
13989 }
13990
13991 if (!b || b->number != bp_num)
13992 error (_("Bad breakpoint number '%d'"), bp_num);
13993
13994 if (loc_num == 0)
13995 error (_("Bad breakpoint location number '%d'"), loc_num);
13996
13997 int n = 0;
13998 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
13999 if (++n == loc_num)
14000 return loc;
14001
14002 error (_("Bad breakpoint location number '%d'"), loc_num);
14003 }
14004
14005 /* Modes of operation for extract_bp_num. */
14006 enum class extract_bp_kind
14007 {
14008 /* Extracting a breakpoint number. */
14009 bp,
14010
14011 /* Extracting a location number. */
14012 loc,
14013 };
14014
14015 /* Extract a breakpoint or location number (as determined by KIND)
14016 from the string starting at START. TRAILER is a character which
14017 can be found after the number. If you don't want a trailer, use
14018 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14019 string. This always returns a positive integer. */
14020
14021 static int
14022 extract_bp_num (extract_bp_kind kind, const char *start,
14023 int trailer, const char **end_out = NULL)
14024 {
14025 const char *end = start;
14026 int num = get_number_trailer (&end, trailer);
14027 if (num < 0)
14028 error (kind == extract_bp_kind::bp
14029 ? _("Negative breakpoint number '%.*s'")
14030 : _("Negative breakpoint location number '%.*s'"),
14031 int (end - start), start);
14032 if (num == 0)
14033 error (kind == extract_bp_kind::bp
14034 ? _("Bad breakpoint number '%.*s'")
14035 : _("Bad breakpoint location number '%.*s'"),
14036 int (end - start), start);
14037
14038 if (end_out != NULL)
14039 *end_out = end;
14040 return num;
14041 }
14042
14043 /* Extract a breakpoint or location range (as determined by KIND) in
14044 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14045 representing the (inclusive) range. The returned pair's elements
14046 are always positive integers. */
14047
14048 static std::pair<int, int>
14049 extract_bp_or_bp_range (extract_bp_kind kind,
14050 const std::string &arg,
14051 std::string::size_type arg_offset)
14052 {
14053 std::pair<int, int> range;
14054 const char *bp_loc = &arg[arg_offset];
14055 std::string::size_type dash = arg.find ('-', arg_offset);
14056 if (dash != std::string::npos)
14057 {
14058 /* bp_loc is a range (x-z). */
14059 if (arg.length () == dash + 1)
14060 error (kind == extract_bp_kind::bp
14061 ? _("Bad breakpoint number at or near: '%s'")
14062 : _("Bad breakpoint location number at or near: '%s'"),
14063 bp_loc);
14064
14065 const char *end;
14066 const char *start_first = bp_loc;
14067 const char *start_second = &arg[dash + 1];
14068 range.first = extract_bp_num (kind, start_first, '-');
14069 range.second = extract_bp_num (kind, start_second, '\0', &end);
14070
14071 if (range.first > range.second)
14072 error (kind == extract_bp_kind::bp
14073 ? _("Inverted breakpoint range at '%.*s'")
14074 : _("Inverted breakpoint location range at '%.*s'"),
14075 int (end - start_first), start_first);
14076 }
14077 else
14078 {
14079 /* bp_loc is a single value. */
14080 range.first = extract_bp_num (kind, bp_loc, '\0');
14081 range.second = range.first;
14082 }
14083 return range;
14084 }
14085
14086 /* Extract the breakpoint/location range specified by ARG. Returns
14087 the breakpoint range in BP_NUM_RANGE, and the location range in
14088 BP_LOC_RANGE.
14089
14090 ARG may be in any of the following forms:
14091
14092 x where 'x' is a breakpoint number.
14093 x-y where 'x' and 'y' specify a breakpoint numbers range.
14094 x.y where 'x' is a breakpoint number and 'y' a location number.
14095 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14096 location number range.
14097 */
14098
14099 static void
14100 extract_bp_number_and_location (const std::string &arg,
14101 std::pair<int, int> &bp_num_range,
14102 std::pair<int, int> &bp_loc_range)
14103 {
14104 std::string::size_type dot = arg.find ('.');
14105
14106 if (dot != std::string::npos)
14107 {
14108 /* Handle 'x.y' and 'x.y-z' cases. */
14109
14110 if (arg.length () == dot + 1 || dot == 0)
14111 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14112
14113 bp_num_range.first
14114 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14115 bp_num_range.second = bp_num_range.first;
14116
14117 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14118 arg, dot + 1);
14119 }
14120 else
14121 {
14122 /* Handle x and x-y cases. */
14123
14124 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14125 bp_loc_range.first = 0;
14126 bp_loc_range.second = 0;
14127 }
14128 }
14129
14130 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14131 specifies whether to enable or disable. */
14132
14133 static void
14134 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14135 {
14136 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14137 if (loc != NULL)
14138 {
14139 if (loc->enabled != enable)
14140 {
14141 loc->enabled = enable;
14142 mark_breakpoint_location_modified (loc);
14143 }
14144 if (target_supports_enable_disable_tracepoint ()
14145 && current_trace_status ()->running && loc->owner
14146 && is_tracepoint (loc->owner))
14147 target_disable_tracepoint (loc);
14148 }
14149 update_global_location_list (UGLL_DONT_INSERT);
14150
14151 gdb::observers::breakpoint_modified.notify (loc->owner);
14152 }
14153
14154 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14155 number of the breakpoint, and BP_LOC_RANGE specifies the
14156 (inclusive) range of location numbers of that breakpoint to
14157 enable/disable. ENABLE specifies whether to enable or disable the
14158 location. */
14159
14160 static void
14161 enable_disable_breakpoint_location_range (int bp_num,
14162 std::pair<int, int> &bp_loc_range,
14163 bool enable)
14164 {
14165 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14166 enable_disable_bp_num_loc (bp_num, i, enable);
14167 }
14168
14169 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14170 If from_tty is nonzero, it prints a message to that effect,
14171 which ends with a period (no newline). */
14172
14173 void
14174 disable_breakpoint (struct breakpoint *bpt)
14175 {
14176 /* Never disable a watchpoint scope breakpoint; we want to
14177 hit them when we leave scope so we can delete both the
14178 watchpoint and its scope breakpoint at that time. */
14179 if (bpt->type == bp_watchpoint_scope)
14180 return;
14181
14182 bpt->enable_state = bp_disabled;
14183
14184 /* Mark breakpoint locations modified. */
14185 mark_breakpoint_modified (bpt);
14186
14187 if (target_supports_enable_disable_tracepoint ()
14188 && current_trace_status ()->running && is_tracepoint (bpt))
14189 {
14190 struct bp_location *location;
14191
14192 for (location = bpt->loc; location; location = location->next)
14193 target_disable_tracepoint (location);
14194 }
14195
14196 update_global_location_list (UGLL_DONT_INSERT);
14197
14198 gdb::observers::breakpoint_modified.notify (bpt);
14199 }
14200
14201 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14202 specified in ARGS. ARGS may be in any of the formats handled by
14203 extract_bp_number_and_location. ENABLE specifies whether to enable
14204 or disable the breakpoints/locations. */
14205
14206 static void
14207 enable_disable_command (const char *args, int from_tty, bool enable)
14208 {
14209 if (args == 0)
14210 {
14211 struct breakpoint *bpt;
14212
14213 ALL_BREAKPOINTS (bpt)
14214 if (user_breakpoint_p (bpt))
14215 {
14216 if (enable)
14217 enable_breakpoint (bpt);
14218 else
14219 disable_breakpoint (bpt);
14220 }
14221 }
14222 else
14223 {
14224 std::string num = extract_arg (&args);
14225
14226 while (!num.empty ())
14227 {
14228 std::pair<int, int> bp_num_range, bp_loc_range;
14229
14230 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14231
14232 if (bp_loc_range.first == bp_loc_range.second
14233 && bp_loc_range.first == 0)
14234 {
14235 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14236 map_breakpoint_number_range (bp_num_range,
14237 enable
14238 ? enable_breakpoint
14239 : disable_breakpoint);
14240 }
14241 else
14242 {
14243 /* Handle breakpoint ids with formats 'x.y' or
14244 'x.y-z'. */
14245 enable_disable_breakpoint_location_range
14246 (bp_num_range.first, bp_loc_range, enable);
14247 }
14248 num = extract_arg (&args);
14249 }
14250 }
14251 }
14252
14253 /* The disable command disables the specified breakpoints/locations
14254 (or all defined breakpoints) so they're no longer effective in
14255 stopping the inferior. ARGS may be in any of the forms defined in
14256 extract_bp_number_and_location. */
14257
14258 static void
14259 disable_command (const char *args, int from_tty)
14260 {
14261 enable_disable_command (args, from_tty, false);
14262 }
14263
14264 static void
14265 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14266 int count)
14267 {
14268 int target_resources_ok;
14269
14270 if (bpt->type == bp_hardware_breakpoint)
14271 {
14272 int i;
14273 i = hw_breakpoint_used_count ();
14274 target_resources_ok =
14275 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14276 i + 1, 0);
14277 if (target_resources_ok == 0)
14278 error (_("No hardware breakpoint support in the target."));
14279 else if (target_resources_ok < 0)
14280 error (_("Hardware breakpoints used exceeds limit."));
14281 }
14282
14283 if (is_watchpoint (bpt))
14284 {
14285 /* Initialize it just to avoid a GCC false warning. */
14286 enum enable_state orig_enable_state = bp_disabled;
14287
14288 try
14289 {
14290 struct watchpoint *w = (struct watchpoint *) bpt;
14291
14292 orig_enable_state = bpt->enable_state;
14293 bpt->enable_state = bp_enabled;
14294 update_watchpoint (w, 1 /* reparse */);
14295 }
14296 catch (const gdb_exception &e)
14297 {
14298 bpt->enable_state = orig_enable_state;
14299 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14300 bpt->number);
14301 return;
14302 }
14303 }
14304
14305 bpt->enable_state = bp_enabled;
14306
14307 /* Mark breakpoint locations modified. */
14308 mark_breakpoint_modified (bpt);
14309
14310 if (target_supports_enable_disable_tracepoint ()
14311 && current_trace_status ()->running && is_tracepoint (bpt))
14312 {
14313 struct bp_location *location;
14314
14315 for (location = bpt->loc; location; location = location->next)
14316 target_enable_tracepoint (location);
14317 }
14318
14319 bpt->disposition = disposition;
14320 bpt->enable_count = count;
14321 update_global_location_list (UGLL_MAY_INSERT);
14322
14323 gdb::observers::breakpoint_modified.notify (bpt);
14324 }
14325
14326
14327 void
14328 enable_breakpoint (struct breakpoint *bpt)
14329 {
14330 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14331 }
14332
14333 /* The enable command enables the specified breakpoints/locations (or
14334 all defined breakpoints) so they once again become (or continue to
14335 be) effective in stopping the inferior. ARGS may be in any of the
14336 forms defined in extract_bp_number_and_location. */
14337
14338 static void
14339 enable_command (const char *args, int from_tty)
14340 {
14341 enable_disable_command (args, from_tty, true);
14342 }
14343
14344 static void
14345 enable_once_command (const char *args, int from_tty)
14346 {
14347 map_breakpoint_numbers
14348 (args, [&] (breakpoint *b)
14349 {
14350 iterate_over_related_breakpoints
14351 (b, [&] (breakpoint *bpt)
14352 {
14353 enable_breakpoint_disp (bpt, disp_disable, 1);
14354 });
14355 });
14356 }
14357
14358 static void
14359 enable_count_command (const char *args, int from_tty)
14360 {
14361 int count;
14362
14363 if (args == NULL)
14364 error_no_arg (_("hit count"));
14365
14366 count = get_number (&args);
14367
14368 map_breakpoint_numbers
14369 (args, [&] (breakpoint *b)
14370 {
14371 iterate_over_related_breakpoints
14372 (b, [&] (breakpoint *bpt)
14373 {
14374 enable_breakpoint_disp (bpt, disp_disable, count);
14375 });
14376 });
14377 }
14378
14379 static void
14380 enable_delete_command (const char *args, int from_tty)
14381 {
14382 map_breakpoint_numbers
14383 (args, [&] (breakpoint *b)
14384 {
14385 iterate_over_related_breakpoints
14386 (b, [&] (breakpoint *bpt)
14387 {
14388 enable_breakpoint_disp (bpt, disp_del, 1);
14389 });
14390 });
14391 }
14392 \f
14393 static void
14394 set_breakpoint_cmd (const char *args, int from_tty)
14395 {
14396 }
14397
14398 static void
14399 show_breakpoint_cmd (const char *args, int from_tty)
14400 {
14401 }
14402
14403 /* Invalidate last known value of any hardware watchpoint if
14404 the memory which that value represents has been written to by
14405 GDB itself. */
14406
14407 static void
14408 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14409 CORE_ADDR addr, ssize_t len,
14410 const bfd_byte *data)
14411 {
14412 struct breakpoint *bp;
14413
14414 ALL_BREAKPOINTS (bp)
14415 if (bp->enable_state == bp_enabled
14416 && bp->type == bp_hardware_watchpoint)
14417 {
14418 struct watchpoint *wp = (struct watchpoint *) bp;
14419
14420 if (wp->val_valid && wp->val != nullptr)
14421 {
14422 struct bp_location *loc;
14423
14424 for (loc = bp->loc; loc != NULL; loc = loc->next)
14425 if (loc->loc_type == bp_loc_hardware_watchpoint
14426 && loc->address + loc->length > addr
14427 && addr + len > loc->address)
14428 {
14429 wp->val = NULL;
14430 wp->val_valid = 0;
14431 }
14432 }
14433 }
14434 }
14435
14436 /* Create and insert a breakpoint for software single step. */
14437
14438 void
14439 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14440 const address_space *aspace,
14441 CORE_ADDR next_pc)
14442 {
14443 struct thread_info *tp = inferior_thread ();
14444 struct symtab_and_line sal;
14445 CORE_ADDR pc = next_pc;
14446
14447 if (tp->control.single_step_breakpoints == NULL)
14448 {
14449 tp->control.single_step_breakpoints
14450 = new_single_step_breakpoint (tp->global_num, gdbarch);
14451 }
14452
14453 sal = find_pc_line (pc, 0);
14454 sal.pc = pc;
14455 sal.section = find_pc_overlay (pc);
14456 sal.explicit_pc = 1;
14457 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14458
14459 update_global_location_list (UGLL_INSERT);
14460 }
14461
14462 /* Insert single step breakpoints according to the current state. */
14463
14464 int
14465 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14466 {
14467 struct regcache *regcache = get_current_regcache ();
14468 std::vector<CORE_ADDR> next_pcs;
14469
14470 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14471
14472 if (!next_pcs.empty ())
14473 {
14474 struct frame_info *frame = get_current_frame ();
14475 const address_space *aspace = get_frame_address_space (frame);
14476
14477 for (CORE_ADDR pc : next_pcs)
14478 insert_single_step_breakpoint (gdbarch, aspace, pc);
14479
14480 return 1;
14481 }
14482 else
14483 return 0;
14484 }
14485
14486 /* See breakpoint.h. */
14487
14488 int
14489 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14490 const address_space *aspace,
14491 CORE_ADDR pc)
14492 {
14493 struct bp_location *loc;
14494
14495 for (loc = bp->loc; loc != NULL; loc = loc->next)
14496 if (loc->inserted
14497 && breakpoint_location_address_match (loc, aspace, pc))
14498 return 1;
14499
14500 return 0;
14501 }
14502
14503 /* Check whether a software single-step breakpoint is inserted at
14504 PC. */
14505
14506 int
14507 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14508 CORE_ADDR pc)
14509 {
14510 struct breakpoint *bpt;
14511
14512 ALL_BREAKPOINTS (bpt)
14513 {
14514 if (bpt->type == bp_single_step
14515 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14516 return 1;
14517 }
14518 return 0;
14519 }
14520
14521 /* Tracepoint-specific operations. */
14522
14523 /* Set tracepoint count to NUM. */
14524 static void
14525 set_tracepoint_count (int num)
14526 {
14527 tracepoint_count = num;
14528 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14529 }
14530
14531 static void
14532 trace_command (const char *arg, int from_tty)
14533 {
14534 struct breakpoint_ops *ops;
14535
14536 event_location_up location = string_to_event_location (&arg,
14537 current_language);
14538 if (location != NULL
14539 && event_location_type (location.get ()) == PROBE_LOCATION)
14540 ops = &tracepoint_probe_breakpoint_ops;
14541 else
14542 ops = &tracepoint_breakpoint_ops;
14543
14544 create_breakpoint (get_current_arch (),
14545 location.get (),
14546 NULL, 0, arg, 1 /* parse arg */,
14547 0 /* tempflag */,
14548 bp_tracepoint /* type_wanted */,
14549 0 /* Ignore count */,
14550 pending_break_support,
14551 ops,
14552 from_tty,
14553 1 /* enabled */,
14554 0 /* internal */, 0);
14555 }
14556
14557 static void
14558 ftrace_command (const char *arg, int from_tty)
14559 {
14560 event_location_up location = string_to_event_location (&arg,
14561 current_language);
14562 create_breakpoint (get_current_arch (),
14563 location.get (),
14564 NULL, 0, arg, 1 /* parse arg */,
14565 0 /* tempflag */,
14566 bp_fast_tracepoint /* type_wanted */,
14567 0 /* Ignore count */,
14568 pending_break_support,
14569 &tracepoint_breakpoint_ops,
14570 from_tty,
14571 1 /* enabled */,
14572 0 /* internal */, 0);
14573 }
14574
14575 /* strace command implementation. Creates a static tracepoint. */
14576
14577 static void
14578 strace_command (const char *arg, int from_tty)
14579 {
14580 struct breakpoint_ops *ops;
14581 event_location_up location;
14582
14583 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14584 or with a normal static tracepoint. */
14585 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14586 {
14587 ops = &strace_marker_breakpoint_ops;
14588 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14589 }
14590 else
14591 {
14592 ops = &tracepoint_breakpoint_ops;
14593 location = string_to_event_location (&arg, current_language);
14594 }
14595
14596 create_breakpoint (get_current_arch (),
14597 location.get (),
14598 NULL, 0, arg, 1 /* parse arg */,
14599 0 /* tempflag */,
14600 bp_static_tracepoint /* type_wanted */,
14601 0 /* Ignore count */,
14602 pending_break_support,
14603 ops,
14604 from_tty,
14605 1 /* enabled */,
14606 0 /* internal */, 0);
14607 }
14608
14609 /* Set up a fake reader function that gets command lines from a linked
14610 list that was acquired during tracepoint uploading. */
14611
14612 static struct uploaded_tp *this_utp;
14613 static int next_cmd;
14614
14615 static char *
14616 read_uploaded_action (void)
14617 {
14618 char *rslt = nullptr;
14619
14620 if (next_cmd < this_utp->cmd_strings.size ())
14621 {
14622 rslt = this_utp->cmd_strings[next_cmd].get ();
14623 next_cmd++;
14624 }
14625
14626 return rslt;
14627 }
14628
14629 /* Given information about a tracepoint as recorded on a target (which
14630 can be either a live system or a trace file), attempt to create an
14631 equivalent GDB tracepoint. This is not a reliable process, since
14632 the target does not necessarily have all the information used when
14633 the tracepoint was originally defined. */
14634
14635 struct tracepoint *
14636 create_tracepoint_from_upload (struct uploaded_tp *utp)
14637 {
14638 const char *addr_str;
14639 char small_buf[100];
14640 struct tracepoint *tp;
14641
14642 if (utp->at_string)
14643 addr_str = utp->at_string.get ();
14644 else
14645 {
14646 /* In the absence of a source location, fall back to raw
14647 address. Since there is no way to confirm that the address
14648 means the same thing as when the trace was started, warn the
14649 user. */
14650 warning (_("Uploaded tracepoint %d has no "
14651 "source location, using raw address"),
14652 utp->number);
14653 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14654 addr_str = small_buf;
14655 }
14656
14657 /* There's not much we can do with a sequence of bytecodes. */
14658 if (utp->cond && !utp->cond_string)
14659 warning (_("Uploaded tracepoint %d condition "
14660 "has no source form, ignoring it"),
14661 utp->number);
14662
14663 event_location_up location = string_to_event_location (&addr_str,
14664 current_language);
14665 if (!create_breakpoint (get_current_arch (),
14666 location.get (),
14667 utp->cond_string.get (), -1, addr_str,
14668 0 /* parse cond/thread */,
14669 0 /* tempflag */,
14670 utp->type /* type_wanted */,
14671 0 /* Ignore count */,
14672 pending_break_support,
14673 &tracepoint_breakpoint_ops,
14674 0 /* from_tty */,
14675 utp->enabled /* enabled */,
14676 0 /* internal */,
14677 CREATE_BREAKPOINT_FLAGS_INSERTED))
14678 return NULL;
14679
14680 /* Get the tracepoint we just created. */
14681 tp = get_tracepoint (tracepoint_count);
14682 gdb_assert (tp != NULL);
14683
14684 if (utp->pass > 0)
14685 {
14686 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14687 tp->number);
14688
14689 trace_pass_command (small_buf, 0);
14690 }
14691
14692 /* If we have uploaded versions of the original commands, set up a
14693 special-purpose "reader" function and call the usual command line
14694 reader, then pass the result to the breakpoint command-setting
14695 function. */
14696 if (!utp->cmd_strings.empty ())
14697 {
14698 counted_command_line cmd_list;
14699
14700 this_utp = utp;
14701 next_cmd = 0;
14702
14703 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14704
14705 breakpoint_set_commands (tp, std::move (cmd_list));
14706 }
14707 else if (!utp->actions.empty ()
14708 || !utp->step_actions.empty ())
14709 warning (_("Uploaded tracepoint %d actions "
14710 "have no source form, ignoring them"),
14711 utp->number);
14712
14713 /* Copy any status information that might be available. */
14714 tp->hit_count = utp->hit_count;
14715 tp->traceframe_usage = utp->traceframe_usage;
14716
14717 return tp;
14718 }
14719
14720 /* Print information on tracepoint number TPNUM_EXP, or all if
14721 omitted. */
14722
14723 static void
14724 info_tracepoints_command (const char *args, int from_tty)
14725 {
14726 struct ui_out *uiout = current_uiout;
14727 int num_printed;
14728
14729 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14730
14731 if (num_printed == 0)
14732 {
14733 if (args == NULL || *args == '\0')
14734 uiout->message ("No tracepoints.\n");
14735 else
14736 uiout->message ("No tracepoint matching '%s'.\n", args);
14737 }
14738
14739 default_collect_info ();
14740 }
14741
14742 /* The 'enable trace' command enables tracepoints.
14743 Not supported by all targets. */
14744 static void
14745 enable_trace_command (const char *args, int from_tty)
14746 {
14747 enable_command (args, from_tty);
14748 }
14749
14750 /* The 'disable trace' command disables tracepoints.
14751 Not supported by all targets. */
14752 static void
14753 disable_trace_command (const char *args, int from_tty)
14754 {
14755 disable_command (args, from_tty);
14756 }
14757
14758 /* Remove a tracepoint (or all if no argument). */
14759 static void
14760 delete_trace_command (const char *arg, int from_tty)
14761 {
14762 struct breakpoint *b, *b_tmp;
14763
14764 dont_repeat ();
14765
14766 if (arg == 0)
14767 {
14768 int breaks_to_delete = 0;
14769
14770 /* Delete all breakpoints if no argument.
14771 Do not delete internal or call-dummy breakpoints, these
14772 have to be deleted with an explicit breakpoint number
14773 argument. */
14774 ALL_TRACEPOINTS (b)
14775 if (is_tracepoint (b) && user_breakpoint_p (b))
14776 {
14777 breaks_to_delete = 1;
14778 break;
14779 }
14780
14781 /* Ask user only if there are some breakpoints to delete. */
14782 if (!from_tty
14783 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14784 {
14785 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14786 if (is_tracepoint (b) && user_breakpoint_p (b))
14787 delete_breakpoint (b);
14788 }
14789 }
14790 else
14791 map_breakpoint_numbers
14792 (arg, [&] (breakpoint *br)
14793 {
14794 iterate_over_related_breakpoints (br, delete_breakpoint);
14795 });
14796 }
14797
14798 /* Helper function for trace_pass_command. */
14799
14800 static void
14801 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14802 {
14803 tp->pass_count = count;
14804 gdb::observers::breakpoint_modified.notify (tp);
14805 if (from_tty)
14806 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14807 tp->number, count);
14808 }
14809
14810 /* Set passcount for tracepoint.
14811
14812 First command argument is passcount, second is tracepoint number.
14813 If tracepoint number omitted, apply to most recently defined.
14814 Also accepts special argument "all". */
14815
14816 static void
14817 trace_pass_command (const char *args, int from_tty)
14818 {
14819 struct tracepoint *t1;
14820 ULONGEST count;
14821
14822 if (args == 0 || *args == 0)
14823 error (_("passcount command requires an "
14824 "argument (count + optional TP num)"));
14825
14826 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14827
14828 args = skip_spaces (args);
14829 if (*args && strncasecmp (args, "all", 3) == 0)
14830 {
14831 struct breakpoint *b;
14832
14833 args += 3; /* Skip special argument "all". */
14834 if (*args)
14835 error (_("Junk at end of arguments."));
14836
14837 ALL_TRACEPOINTS (b)
14838 {
14839 t1 = (struct tracepoint *) b;
14840 trace_pass_set_count (t1, count, from_tty);
14841 }
14842 }
14843 else if (*args == '\0')
14844 {
14845 t1 = get_tracepoint_by_number (&args, NULL);
14846 if (t1)
14847 trace_pass_set_count (t1, count, from_tty);
14848 }
14849 else
14850 {
14851 number_or_range_parser parser (args);
14852 while (!parser.finished ())
14853 {
14854 t1 = get_tracepoint_by_number (&args, &parser);
14855 if (t1)
14856 trace_pass_set_count (t1, count, from_tty);
14857 }
14858 }
14859 }
14860
14861 struct tracepoint *
14862 get_tracepoint (int num)
14863 {
14864 struct breakpoint *t;
14865
14866 ALL_TRACEPOINTS (t)
14867 if (t->number == num)
14868 return (struct tracepoint *) t;
14869
14870 return NULL;
14871 }
14872
14873 /* Find the tracepoint with the given target-side number (which may be
14874 different from the tracepoint number after disconnecting and
14875 reconnecting). */
14876
14877 struct tracepoint *
14878 get_tracepoint_by_number_on_target (int num)
14879 {
14880 struct breakpoint *b;
14881
14882 ALL_TRACEPOINTS (b)
14883 {
14884 struct tracepoint *t = (struct tracepoint *) b;
14885
14886 if (t->number_on_target == num)
14887 return t;
14888 }
14889
14890 return NULL;
14891 }
14892
14893 /* Utility: parse a tracepoint number and look it up in the list.
14894 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14895 If the argument is missing, the most recent tracepoint
14896 (tracepoint_count) is returned. */
14897
14898 struct tracepoint *
14899 get_tracepoint_by_number (const char **arg,
14900 number_or_range_parser *parser)
14901 {
14902 struct breakpoint *t;
14903 int tpnum;
14904 const char *instring = arg == NULL ? NULL : *arg;
14905
14906 if (parser != NULL)
14907 {
14908 gdb_assert (!parser->finished ());
14909 tpnum = parser->get_number ();
14910 }
14911 else if (arg == NULL || *arg == NULL || ! **arg)
14912 tpnum = tracepoint_count;
14913 else
14914 tpnum = get_number (arg);
14915
14916 if (tpnum <= 0)
14917 {
14918 if (instring && *instring)
14919 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14920 instring);
14921 else
14922 printf_filtered (_("No previous tracepoint\n"));
14923 return NULL;
14924 }
14925
14926 ALL_TRACEPOINTS (t)
14927 if (t->number == tpnum)
14928 {
14929 return (struct tracepoint *) t;
14930 }
14931
14932 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14933 return NULL;
14934 }
14935
14936 void
14937 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14938 {
14939 if (b->thread != -1)
14940 fprintf_unfiltered (fp, " thread %d", b->thread);
14941
14942 if (b->task != 0)
14943 fprintf_unfiltered (fp, " task %d", b->task);
14944
14945 fprintf_unfiltered (fp, "\n");
14946 }
14947
14948 /* Save information on user settable breakpoints (watchpoints, etc) to
14949 a new script file named FILENAME. If FILTER is non-NULL, call it
14950 on each breakpoint and only include the ones for which it returns
14951 non-zero. */
14952
14953 static void
14954 save_breakpoints (const char *filename, int from_tty,
14955 int (*filter) (const struct breakpoint *))
14956 {
14957 struct breakpoint *tp;
14958 int any = 0;
14959 int extra_trace_bits = 0;
14960
14961 if (filename == 0 || *filename == 0)
14962 error (_("Argument required (file name in which to save)"));
14963
14964 /* See if we have anything to save. */
14965 ALL_BREAKPOINTS (tp)
14966 {
14967 /* Skip internal and momentary breakpoints. */
14968 if (!user_breakpoint_p (tp))
14969 continue;
14970
14971 /* If we have a filter, only save the breakpoints it accepts. */
14972 if (filter && !filter (tp))
14973 continue;
14974
14975 any = 1;
14976
14977 if (is_tracepoint (tp))
14978 {
14979 extra_trace_bits = 1;
14980
14981 /* We can stop searching. */
14982 break;
14983 }
14984 }
14985
14986 if (!any)
14987 {
14988 warning (_("Nothing to save."));
14989 return;
14990 }
14991
14992 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14993
14994 stdio_file fp;
14995
14996 if (!fp.open (expanded_filename.get (), "w"))
14997 error (_("Unable to open file '%s' for saving (%s)"),
14998 expanded_filename.get (), safe_strerror (errno));
14999
15000 if (extra_trace_bits)
15001 save_trace_state_variables (&fp);
15002
15003 ALL_BREAKPOINTS (tp)
15004 {
15005 /* Skip internal and momentary breakpoints. */
15006 if (!user_breakpoint_p (tp))
15007 continue;
15008
15009 /* If we have a filter, only save the breakpoints it accepts. */
15010 if (filter && !filter (tp))
15011 continue;
15012
15013 tp->ops->print_recreate (tp, &fp);
15014
15015 /* Note, we can't rely on tp->number for anything, as we can't
15016 assume the recreated breakpoint numbers will match. Use $bpnum
15017 instead. */
15018
15019 if (tp->cond_string)
15020 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15021
15022 if (tp->ignore_count)
15023 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15024
15025 if (tp->type != bp_dprintf && tp->commands)
15026 {
15027 fp.puts (" commands\n");
15028
15029 current_uiout->redirect (&fp);
15030 try
15031 {
15032 print_command_lines (current_uiout, tp->commands.get (), 2);
15033 }
15034 catch (const gdb_exception &ex)
15035 {
15036 current_uiout->redirect (NULL);
15037 throw;
15038 }
15039
15040 current_uiout->redirect (NULL);
15041 fp.puts (" end\n");
15042 }
15043
15044 if (tp->enable_state == bp_disabled)
15045 fp.puts ("disable $bpnum\n");
15046
15047 /* If this is a multi-location breakpoint, check if the locations
15048 should be individually disabled. Watchpoint locations are
15049 special, and not user visible. */
15050 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15051 {
15052 struct bp_location *loc;
15053 int n = 1;
15054
15055 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15056 if (!loc->enabled)
15057 fp.printf ("disable $bpnum.%d\n", n);
15058 }
15059 }
15060
15061 if (extra_trace_bits && *default_collect)
15062 fp.printf ("set default-collect %s\n", default_collect);
15063
15064 if (from_tty)
15065 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15066 }
15067
15068 /* The `save breakpoints' command. */
15069
15070 static void
15071 save_breakpoints_command (const char *args, int from_tty)
15072 {
15073 save_breakpoints (args, from_tty, NULL);
15074 }
15075
15076 /* The `save tracepoints' command. */
15077
15078 static void
15079 save_tracepoints_command (const char *args, int from_tty)
15080 {
15081 save_breakpoints (args, from_tty, is_tracepoint);
15082 }
15083
15084 /* Create a vector of all tracepoints. */
15085
15086 std::vector<breakpoint *>
15087 all_tracepoints (void)
15088 {
15089 std::vector<breakpoint *> tp_vec;
15090 struct breakpoint *tp;
15091
15092 ALL_TRACEPOINTS (tp)
15093 {
15094 tp_vec.push_back (tp);
15095 }
15096
15097 return tp_vec;
15098 }
15099
15100 \f
15101 /* This help string is used to consolidate all the help string for specifying
15102 locations used by several commands. */
15103
15104 #define LOCATION_HELP_STRING \
15105 "Linespecs are colon-separated lists of location parameters, such as\n\
15106 source filename, function name, label name, and line number.\n\
15107 Example: To specify the start of a label named \"the_top\" in the\n\
15108 function \"fact\" in the file \"factorial.c\", use\n\
15109 \"factorial.c:fact:the_top\".\n\
15110 \n\
15111 Address locations begin with \"*\" and specify an exact address in the\n\
15112 program. Example: To specify the fourth byte past the start function\n\
15113 \"main\", use \"*main + 4\".\n\
15114 \n\
15115 Explicit locations are similar to linespecs but use an option/argument\n\
15116 syntax to specify location parameters.\n\
15117 Example: To specify the start of the label named \"the_top\" in the\n\
15118 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15119 -function fact -label the_top\".\n\
15120 \n\
15121 By default, a specified function is matched against the program's\n\
15122 functions in all scopes. For C++, this means in all namespaces and\n\
15123 classes. For Ada, this means in all packages. E.g., in C++,\n\
15124 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15125 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15126 specified name as a complete fully-qualified name instead.\n"
15127
15128 /* This help string is used for the break, hbreak, tbreak and thbreak
15129 commands. It is defined as a macro to prevent duplication.
15130 COMMAND should be a string constant containing the name of the
15131 command. */
15132
15133 #define BREAK_ARGS_HELP(command) \
15134 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15135 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15136 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15137 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15138 `-probe-dtrace' (for a DTrace probe).\n\
15139 LOCATION may be a linespec, address, or explicit location as described\n\
15140 below.\n\
15141 \n\
15142 With no LOCATION, uses current execution address of the selected\n\
15143 stack frame. This is useful for breaking on return to a stack frame.\n\
15144 \n\
15145 THREADNUM is the number from \"info threads\".\n\
15146 CONDITION is a boolean expression.\n\
15147 \n" LOCATION_HELP_STRING "\n\
15148 Multiple breakpoints at one place are permitted, and useful if their\n\
15149 conditions are different.\n\
15150 \n\
15151 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15152
15153 /* List of subcommands for "catch". */
15154 static struct cmd_list_element *catch_cmdlist;
15155
15156 /* List of subcommands for "tcatch". */
15157 static struct cmd_list_element *tcatch_cmdlist;
15158
15159 void
15160 add_catch_command (const char *name, const char *docstring,
15161 cmd_const_sfunc_ftype *sfunc,
15162 completer_ftype *completer,
15163 void *user_data_catch,
15164 void *user_data_tcatch)
15165 {
15166 struct cmd_list_element *command;
15167
15168 command = add_cmd (name, class_breakpoint, docstring,
15169 &catch_cmdlist);
15170 set_cmd_sfunc (command, sfunc);
15171 set_cmd_context (command, user_data_catch);
15172 set_cmd_completer (command, completer);
15173
15174 command = add_cmd (name, class_breakpoint, docstring,
15175 &tcatch_cmdlist);
15176 set_cmd_sfunc (command, sfunc);
15177 set_cmd_context (command, user_data_tcatch);
15178 set_cmd_completer (command, completer);
15179 }
15180
15181 static void
15182 save_command (const char *arg, int from_tty)
15183 {
15184 printf_unfiltered (_("\"save\" must be followed by "
15185 "the name of a save subcommand.\n"));
15186 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15187 }
15188
15189 struct breakpoint *
15190 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15191 void *data)
15192 {
15193 struct breakpoint *b, *b_tmp;
15194
15195 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15196 {
15197 if ((*callback) (b, data))
15198 return b;
15199 }
15200
15201 return NULL;
15202 }
15203
15204 /* Zero if any of the breakpoint's locations could be a location where
15205 functions have been inlined, nonzero otherwise. */
15206
15207 static int
15208 is_non_inline_function (struct breakpoint *b)
15209 {
15210 /* The shared library event breakpoint is set on the address of a
15211 non-inline function. */
15212 if (b->type == bp_shlib_event)
15213 return 1;
15214
15215 return 0;
15216 }
15217
15218 /* Nonzero if the specified PC cannot be a location where functions
15219 have been inlined. */
15220
15221 int
15222 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15223 const struct target_waitstatus *ws)
15224 {
15225 struct breakpoint *b;
15226 struct bp_location *bl;
15227
15228 ALL_BREAKPOINTS (b)
15229 {
15230 if (!is_non_inline_function (b))
15231 continue;
15232
15233 for (bl = b->loc; bl != NULL; bl = bl->next)
15234 {
15235 if (!bl->shlib_disabled
15236 && bpstat_check_location (bl, aspace, pc, ws))
15237 return 1;
15238 }
15239 }
15240
15241 return 0;
15242 }
15243
15244 /* Remove any references to OBJFILE which is going to be freed. */
15245
15246 void
15247 breakpoint_free_objfile (struct objfile *objfile)
15248 {
15249 struct bp_location **locp, *loc;
15250
15251 ALL_BP_LOCATIONS (loc, locp)
15252 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15253 loc->symtab = NULL;
15254 }
15255
15256 void
15257 initialize_breakpoint_ops (void)
15258 {
15259 static int initialized = 0;
15260
15261 struct breakpoint_ops *ops;
15262
15263 if (initialized)
15264 return;
15265 initialized = 1;
15266
15267 /* The breakpoint_ops structure to be inherit by all kinds of
15268 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15269 internal and momentary breakpoints, etc.). */
15270 ops = &bkpt_base_breakpoint_ops;
15271 *ops = base_breakpoint_ops;
15272 ops->re_set = bkpt_re_set;
15273 ops->insert_location = bkpt_insert_location;
15274 ops->remove_location = bkpt_remove_location;
15275 ops->breakpoint_hit = bkpt_breakpoint_hit;
15276 ops->create_sals_from_location = bkpt_create_sals_from_location;
15277 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15278 ops->decode_location = bkpt_decode_location;
15279
15280 /* The breakpoint_ops structure to be used in regular breakpoints. */
15281 ops = &bkpt_breakpoint_ops;
15282 *ops = bkpt_base_breakpoint_ops;
15283 ops->re_set = bkpt_re_set;
15284 ops->resources_needed = bkpt_resources_needed;
15285 ops->print_it = bkpt_print_it;
15286 ops->print_mention = bkpt_print_mention;
15287 ops->print_recreate = bkpt_print_recreate;
15288
15289 /* Ranged breakpoints. */
15290 ops = &ranged_breakpoint_ops;
15291 *ops = bkpt_breakpoint_ops;
15292 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15293 ops->resources_needed = resources_needed_ranged_breakpoint;
15294 ops->print_it = print_it_ranged_breakpoint;
15295 ops->print_one = print_one_ranged_breakpoint;
15296 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15297 ops->print_mention = print_mention_ranged_breakpoint;
15298 ops->print_recreate = print_recreate_ranged_breakpoint;
15299
15300 /* Internal breakpoints. */
15301 ops = &internal_breakpoint_ops;
15302 *ops = bkpt_base_breakpoint_ops;
15303 ops->re_set = internal_bkpt_re_set;
15304 ops->check_status = internal_bkpt_check_status;
15305 ops->print_it = internal_bkpt_print_it;
15306 ops->print_mention = internal_bkpt_print_mention;
15307
15308 /* Momentary breakpoints. */
15309 ops = &momentary_breakpoint_ops;
15310 *ops = bkpt_base_breakpoint_ops;
15311 ops->re_set = momentary_bkpt_re_set;
15312 ops->check_status = momentary_bkpt_check_status;
15313 ops->print_it = momentary_bkpt_print_it;
15314 ops->print_mention = momentary_bkpt_print_mention;
15315
15316 /* Probe breakpoints. */
15317 ops = &bkpt_probe_breakpoint_ops;
15318 *ops = bkpt_breakpoint_ops;
15319 ops->insert_location = bkpt_probe_insert_location;
15320 ops->remove_location = bkpt_probe_remove_location;
15321 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15322 ops->decode_location = bkpt_probe_decode_location;
15323
15324 /* Watchpoints. */
15325 ops = &watchpoint_breakpoint_ops;
15326 *ops = base_breakpoint_ops;
15327 ops->re_set = re_set_watchpoint;
15328 ops->insert_location = insert_watchpoint;
15329 ops->remove_location = remove_watchpoint;
15330 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15331 ops->check_status = check_status_watchpoint;
15332 ops->resources_needed = resources_needed_watchpoint;
15333 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15334 ops->print_it = print_it_watchpoint;
15335 ops->print_mention = print_mention_watchpoint;
15336 ops->print_recreate = print_recreate_watchpoint;
15337 ops->explains_signal = explains_signal_watchpoint;
15338
15339 /* Masked watchpoints. */
15340 ops = &masked_watchpoint_breakpoint_ops;
15341 *ops = watchpoint_breakpoint_ops;
15342 ops->insert_location = insert_masked_watchpoint;
15343 ops->remove_location = remove_masked_watchpoint;
15344 ops->resources_needed = resources_needed_masked_watchpoint;
15345 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15346 ops->print_it = print_it_masked_watchpoint;
15347 ops->print_one_detail = print_one_detail_masked_watchpoint;
15348 ops->print_mention = print_mention_masked_watchpoint;
15349 ops->print_recreate = print_recreate_masked_watchpoint;
15350
15351 /* Tracepoints. */
15352 ops = &tracepoint_breakpoint_ops;
15353 *ops = base_breakpoint_ops;
15354 ops->re_set = tracepoint_re_set;
15355 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15356 ops->print_one_detail = tracepoint_print_one_detail;
15357 ops->print_mention = tracepoint_print_mention;
15358 ops->print_recreate = tracepoint_print_recreate;
15359 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15360 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15361 ops->decode_location = tracepoint_decode_location;
15362
15363 /* Probe tracepoints. */
15364 ops = &tracepoint_probe_breakpoint_ops;
15365 *ops = tracepoint_breakpoint_ops;
15366 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15367 ops->decode_location = tracepoint_probe_decode_location;
15368
15369 /* Static tracepoints with marker (`-m'). */
15370 ops = &strace_marker_breakpoint_ops;
15371 *ops = tracepoint_breakpoint_ops;
15372 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15373 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15374 ops->decode_location = strace_marker_decode_location;
15375
15376 /* Fork catchpoints. */
15377 ops = &catch_fork_breakpoint_ops;
15378 *ops = base_breakpoint_ops;
15379 ops->insert_location = insert_catch_fork;
15380 ops->remove_location = remove_catch_fork;
15381 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15382 ops->print_it = print_it_catch_fork;
15383 ops->print_one = print_one_catch_fork;
15384 ops->print_mention = print_mention_catch_fork;
15385 ops->print_recreate = print_recreate_catch_fork;
15386
15387 /* Vfork catchpoints. */
15388 ops = &catch_vfork_breakpoint_ops;
15389 *ops = base_breakpoint_ops;
15390 ops->insert_location = insert_catch_vfork;
15391 ops->remove_location = remove_catch_vfork;
15392 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15393 ops->print_it = print_it_catch_vfork;
15394 ops->print_one = print_one_catch_vfork;
15395 ops->print_mention = print_mention_catch_vfork;
15396 ops->print_recreate = print_recreate_catch_vfork;
15397
15398 /* Exec catchpoints. */
15399 ops = &catch_exec_breakpoint_ops;
15400 *ops = base_breakpoint_ops;
15401 ops->insert_location = insert_catch_exec;
15402 ops->remove_location = remove_catch_exec;
15403 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15404 ops->print_it = print_it_catch_exec;
15405 ops->print_one = print_one_catch_exec;
15406 ops->print_mention = print_mention_catch_exec;
15407 ops->print_recreate = print_recreate_catch_exec;
15408
15409 /* Solib-related catchpoints. */
15410 ops = &catch_solib_breakpoint_ops;
15411 *ops = base_breakpoint_ops;
15412 ops->insert_location = insert_catch_solib;
15413 ops->remove_location = remove_catch_solib;
15414 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15415 ops->check_status = check_status_catch_solib;
15416 ops->print_it = print_it_catch_solib;
15417 ops->print_one = print_one_catch_solib;
15418 ops->print_mention = print_mention_catch_solib;
15419 ops->print_recreate = print_recreate_catch_solib;
15420
15421 ops = &dprintf_breakpoint_ops;
15422 *ops = bkpt_base_breakpoint_ops;
15423 ops->re_set = dprintf_re_set;
15424 ops->resources_needed = bkpt_resources_needed;
15425 ops->print_it = bkpt_print_it;
15426 ops->print_mention = bkpt_print_mention;
15427 ops->print_recreate = dprintf_print_recreate;
15428 ops->after_condition_true = dprintf_after_condition_true;
15429 ops->breakpoint_hit = dprintf_breakpoint_hit;
15430 }
15431
15432 /* Chain containing all defined "enable breakpoint" subcommands. */
15433
15434 static struct cmd_list_element *enablebreaklist = NULL;
15435
15436 /* See breakpoint.h. */
15437
15438 cmd_list_element *commands_cmd_element = nullptr;
15439
15440 void
15441 _initialize_breakpoint (void)
15442 {
15443 struct cmd_list_element *c;
15444
15445 initialize_breakpoint_ops ();
15446
15447 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15448 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15449 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15450
15451 breakpoint_objfile_key
15452 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15453
15454 breakpoint_chain = 0;
15455 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15456 before a breakpoint is set. */
15457 breakpoint_count = 0;
15458
15459 tracepoint_count = 0;
15460
15461 add_com ("ignore", class_breakpoint, ignore_command, _("\
15462 Set ignore-count of breakpoint number N to COUNT.\n\
15463 Usage is `ignore N COUNT'."));
15464
15465 commands_cmd_element = add_com ("commands", class_breakpoint,
15466 commands_command, _("\
15467 Set commands to be executed when the given breakpoints are hit.\n\
15468 Give a space-separated breakpoint list as argument after \"commands\".\n\
15469 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15470 (e.g. `5-7').\n\
15471 With no argument, the targeted breakpoint is the last one set.\n\
15472 The commands themselves follow starting on the next line.\n\
15473 Type a line containing \"end\" to indicate the end of them.\n\
15474 Give \"silent\" as the first line to make the breakpoint silent;\n\
15475 then no output is printed when it is hit, except what the commands print."));
15476
15477 c = add_com ("condition", class_breakpoint, condition_command, _("\
15478 Specify breakpoint number N to break only if COND is true.\n\
15479 Usage is `condition N COND', where N is an integer and COND is an\n\
15480 expression to be evaluated whenever breakpoint N is reached."));
15481 set_cmd_completer (c, condition_completer);
15482
15483 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15484 Set a temporary breakpoint.\n\
15485 Like \"break\" except the breakpoint is only temporary,\n\
15486 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15487 by using \"enable delete\" on the breakpoint number.\n\
15488 \n"
15489 BREAK_ARGS_HELP ("tbreak")));
15490 set_cmd_completer (c, location_completer);
15491
15492 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15493 Set a hardware assisted breakpoint.\n\
15494 Like \"break\" except the breakpoint requires hardware support,\n\
15495 some target hardware may not have this support.\n\
15496 \n"
15497 BREAK_ARGS_HELP ("hbreak")));
15498 set_cmd_completer (c, location_completer);
15499
15500 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15501 Set a temporary hardware assisted breakpoint.\n\
15502 Like \"hbreak\" except the breakpoint is only temporary,\n\
15503 so it will be deleted when hit.\n\
15504 \n"
15505 BREAK_ARGS_HELP ("thbreak")));
15506 set_cmd_completer (c, location_completer);
15507
15508 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15509 Enable some breakpoints.\n\
15510 Give breakpoint numbers (separated by spaces) as arguments.\n\
15511 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15512 This is used to cancel the effect of the \"disable\" command.\n\
15513 With a subcommand you can enable temporarily."),
15514 &enablelist, "enable ", 1, &cmdlist);
15515
15516 add_com_alias ("en", "enable", class_breakpoint, 1);
15517
15518 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15519 Enable some breakpoints.\n\
15520 Give breakpoint numbers (separated by spaces) as arguments.\n\
15521 This is used to cancel the effect of the \"disable\" command.\n\
15522 May be abbreviated to simply \"enable\".\n"),
15523 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15524
15525 add_cmd ("once", no_class, enable_once_command, _("\
15526 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15527 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15528 &enablebreaklist);
15529
15530 add_cmd ("delete", no_class, enable_delete_command, _("\
15531 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15532 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15533 &enablebreaklist);
15534
15535 add_cmd ("count", no_class, enable_count_command, _("\
15536 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15537 If a breakpoint is hit while enabled in this fashion,\n\
15538 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15539 &enablebreaklist);
15540
15541 add_cmd ("delete", no_class, enable_delete_command, _("\
15542 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15543 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15544 &enablelist);
15545
15546 add_cmd ("once", no_class, enable_once_command, _("\
15547 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15548 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15549 &enablelist);
15550
15551 add_cmd ("count", no_class, enable_count_command, _("\
15552 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15553 If a breakpoint is hit while enabled in this fashion,\n\
15554 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15555 &enablelist);
15556
15557 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15558 Disable some breakpoints.\n\
15559 Arguments are breakpoint numbers with spaces in between.\n\
15560 To disable all breakpoints, give no argument.\n\
15561 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15562 &disablelist, "disable ", 1, &cmdlist);
15563 add_com_alias ("dis", "disable", class_breakpoint, 1);
15564 add_com_alias ("disa", "disable", class_breakpoint, 1);
15565
15566 add_cmd ("breakpoints", class_alias, disable_command, _("\
15567 Disable some breakpoints.\n\
15568 Arguments are breakpoint numbers with spaces in between.\n\
15569 To disable all breakpoints, give no argument.\n\
15570 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15571 This command may be abbreviated \"disable\"."),
15572 &disablelist);
15573
15574 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15575 Delete some breakpoints or auto-display expressions.\n\
15576 Arguments are breakpoint numbers with spaces in between.\n\
15577 To delete all breakpoints, give no argument.\n\
15578 \n\
15579 Also a prefix command for deletion of other GDB objects.\n\
15580 The \"unset\" command is also an alias for \"delete\"."),
15581 &deletelist, "delete ", 1, &cmdlist);
15582 add_com_alias ("d", "delete", class_breakpoint, 1);
15583 add_com_alias ("del", "delete", class_breakpoint, 1);
15584
15585 add_cmd ("breakpoints", class_alias, delete_command, _("\
15586 Delete some breakpoints or auto-display expressions.\n\
15587 Arguments are breakpoint numbers with spaces in between.\n\
15588 To delete all breakpoints, give no argument.\n\
15589 This command may be abbreviated \"delete\"."),
15590 &deletelist);
15591
15592 add_com ("clear", class_breakpoint, clear_command, _("\
15593 Clear breakpoint at specified location.\n\
15594 Argument may be a linespec, explicit, or address location as described below.\n\
15595 \n\
15596 With no argument, clears all breakpoints in the line that the selected frame\n\
15597 is executing in.\n"
15598 "\n" LOCATION_HELP_STRING "\n\
15599 See also the \"delete\" command which clears breakpoints by number."));
15600 add_com_alias ("cl", "clear", class_breakpoint, 1);
15601
15602 c = add_com ("break", class_breakpoint, break_command, _("\
15603 Set breakpoint at specified location.\n"
15604 BREAK_ARGS_HELP ("break")));
15605 set_cmd_completer (c, location_completer);
15606
15607 add_com_alias ("b", "break", class_run, 1);
15608 add_com_alias ("br", "break", class_run, 1);
15609 add_com_alias ("bre", "break", class_run, 1);
15610 add_com_alias ("brea", "break", class_run, 1);
15611
15612 if (dbx_commands)
15613 {
15614 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15615 Break in function/address or break at a line in the current file."),
15616 &stoplist, "stop ", 1, &cmdlist);
15617 add_cmd ("in", class_breakpoint, stopin_command,
15618 _("Break in function or address."), &stoplist);
15619 add_cmd ("at", class_breakpoint, stopat_command,
15620 _("Break at a line in the current file."), &stoplist);
15621 add_com ("status", class_info, info_breakpoints_command, _("\
15622 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15623 The \"Type\" column indicates one of:\n\
15624 \tbreakpoint - normal breakpoint\n\
15625 \twatchpoint - watchpoint\n\
15626 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15627 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15628 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15629 address and file/line number respectively.\n\
15630 \n\
15631 Convenience variable \"$_\" and default examine address for \"x\"\n\
15632 are set to the address of the last breakpoint listed unless the command\n\
15633 is prefixed with \"server \".\n\n\
15634 Convenience variable \"$bpnum\" contains the number of the last\n\
15635 breakpoint set."));
15636 }
15637
15638 add_info ("breakpoints", info_breakpoints_command, _("\
15639 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15640 The \"Type\" column indicates one of:\n\
15641 \tbreakpoint - normal breakpoint\n\
15642 \twatchpoint - watchpoint\n\
15643 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15644 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15645 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15646 address and file/line number respectively.\n\
15647 \n\
15648 Convenience variable \"$_\" and default examine address for \"x\"\n\
15649 are set to the address of the last breakpoint listed unless the command\n\
15650 is prefixed with \"server \".\n\n\
15651 Convenience variable \"$bpnum\" contains the number of the last\n\
15652 breakpoint set."));
15653
15654 add_info_alias ("b", "breakpoints", 1);
15655
15656 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15657 Status of all breakpoints, or breakpoint number NUMBER.\n\
15658 The \"Type\" column indicates one of:\n\
15659 \tbreakpoint - normal breakpoint\n\
15660 \twatchpoint - watchpoint\n\
15661 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15662 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15663 \tuntil - internal breakpoint used by the \"until\" command\n\
15664 \tfinish - internal breakpoint used by the \"finish\" command\n\
15665 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15666 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15667 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15668 address and file/line number respectively.\n\
15669 \n\
15670 Convenience variable \"$_\" and default examine address for \"x\"\n\
15671 are set to the address of the last breakpoint listed unless the command\n\
15672 is prefixed with \"server \".\n\n\
15673 Convenience variable \"$bpnum\" contains the number of the last\n\
15674 breakpoint set."),
15675 &maintenanceinfolist);
15676
15677 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15678 Set catchpoints to catch events."),
15679 &catch_cmdlist, "catch ",
15680 0/*allow-unknown*/, &cmdlist);
15681
15682 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15683 Set temporary catchpoints to catch events."),
15684 &tcatch_cmdlist, "tcatch ",
15685 0/*allow-unknown*/, &cmdlist);
15686
15687 add_catch_command ("fork", _("Catch calls to fork."),
15688 catch_fork_command_1,
15689 NULL,
15690 (void *) (uintptr_t) catch_fork_permanent,
15691 (void *) (uintptr_t) catch_fork_temporary);
15692 add_catch_command ("vfork", _("Catch calls to vfork."),
15693 catch_fork_command_1,
15694 NULL,
15695 (void *) (uintptr_t) catch_vfork_permanent,
15696 (void *) (uintptr_t) catch_vfork_temporary);
15697 add_catch_command ("exec", _("Catch calls to exec."),
15698 catch_exec_command_1,
15699 NULL,
15700 CATCH_PERMANENT,
15701 CATCH_TEMPORARY);
15702 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15703 Usage: catch load [REGEX]\n\
15704 If REGEX is given, only stop for libraries matching the regular expression."),
15705 catch_load_command_1,
15706 NULL,
15707 CATCH_PERMANENT,
15708 CATCH_TEMPORARY);
15709 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15710 Usage: catch unload [REGEX]\n\
15711 If REGEX is given, only stop for libraries matching the regular expression."),
15712 catch_unload_command_1,
15713 NULL,
15714 CATCH_PERMANENT,
15715 CATCH_TEMPORARY);
15716
15717 c = add_com ("watch", class_breakpoint, watch_command, _("\
15718 Set a watchpoint for an expression.\n\
15719 Usage: watch [-l|-location] EXPRESSION\n\
15720 A watchpoint stops execution of your program whenever the value of\n\
15721 an expression changes.\n\
15722 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15723 the memory to which it refers."));
15724 set_cmd_completer (c, expression_completer);
15725
15726 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15727 Set a read watchpoint for an expression.\n\
15728 Usage: rwatch [-l|-location] EXPRESSION\n\
15729 A watchpoint stops execution of your program whenever the value of\n\
15730 an expression is read.\n\
15731 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15732 the memory to which it refers."));
15733 set_cmd_completer (c, expression_completer);
15734
15735 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15736 Set a watchpoint for an expression.\n\
15737 Usage: awatch [-l|-location] EXPRESSION\n\
15738 A watchpoint stops execution of your program whenever the value of\n\
15739 an expression is either read or written.\n\
15740 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15741 the memory to which it refers."));
15742 set_cmd_completer (c, expression_completer);
15743
15744 add_info ("watchpoints", info_watchpoints_command, _("\
15745 Status of specified watchpoints (all watchpoints if no argument)."));
15746
15747 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15748 respond to changes - contrary to the description. */
15749 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15750 &can_use_hw_watchpoints, _("\
15751 Set debugger's willingness to use watchpoint hardware."), _("\
15752 Show debugger's willingness to use watchpoint hardware."), _("\
15753 If zero, gdb will not use hardware for new watchpoints, even if\n\
15754 such is available. (However, any hardware watchpoints that were\n\
15755 created before setting this to nonzero, will continue to use watchpoint\n\
15756 hardware.)"),
15757 NULL,
15758 show_can_use_hw_watchpoints,
15759 &setlist, &showlist);
15760
15761 can_use_hw_watchpoints = 1;
15762
15763 /* Tracepoint manipulation commands. */
15764
15765 c = add_com ("trace", class_breakpoint, trace_command, _("\
15766 Set a tracepoint at specified location.\n\
15767 \n"
15768 BREAK_ARGS_HELP ("trace") "\n\
15769 Do \"help tracepoints\" for info on other tracepoint commands."));
15770 set_cmd_completer (c, location_completer);
15771
15772 add_com_alias ("tp", "trace", class_alias, 0);
15773 add_com_alias ("tr", "trace", class_alias, 1);
15774 add_com_alias ("tra", "trace", class_alias, 1);
15775 add_com_alias ("trac", "trace", class_alias, 1);
15776
15777 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15778 Set a fast tracepoint at specified location.\n\
15779 \n"
15780 BREAK_ARGS_HELP ("ftrace") "\n\
15781 Do \"help tracepoints\" for info on other tracepoint commands."));
15782 set_cmd_completer (c, location_completer);
15783
15784 c = add_com ("strace", class_breakpoint, strace_command, _("\
15785 Set a static tracepoint at location or marker.\n\
15786 \n\
15787 strace [LOCATION] [if CONDITION]\n\
15788 LOCATION may be a linespec, explicit, or address location (described below) \n\
15789 or -m MARKER_ID.\n\n\
15790 If a marker id is specified, probe the marker with that name. With\n\
15791 no LOCATION, uses current execution address of the selected stack frame.\n\
15792 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15793 This collects arbitrary user data passed in the probe point call to the\n\
15794 tracing library. You can inspect it when analyzing the trace buffer,\n\
15795 by printing the $_sdata variable like any other convenience variable.\n\
15796 \n\
15797 CONDITION is a boolean expression.\n\
15798 \n" LOCATION_HELP_STRING "\n\
15799 Multiple tracepoints at one place are permitted, and useful if their\n\
15800 conditions are different.\n\
15801 \n\
15802 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15803 Do \"help tracepoints\" for info on other tracepoint commands."));
15804 set_cmd_completer (c, location_completer);
15805
15806 add_info ("tracepoints", info_tracepoints_command, _("\
15807 Status of specified tracepoints (all tracepoints if no argument).\n\
15808 Convenience variable \"$tpnum\" contains the number of the\n\
15809 last tracepoint set."));
15810
15811 add_info_alias ("tp", "tracepoints", 1);
15812
15813 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15814 Delete specified tracepoints.\n\
15815 Arguments are tracepoint numbers, separated by spaces.\n\
15816 No argument means delete all tracepoints."),
15817 &deletelist);
15818 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15819
15820 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15821 Disable specified tracepoints.\n\
15822 Arguments are tracepoint numbers, separated by spaces.\n\
15823 No argument means disable all tracepoints."),
15824 &disablelist);
15825 deprecate_cmd (c, "disable");
15826
15827 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15828 Enable specified tracepoints.\n\
15829 Arguments are tracepoint numbers, separated by spaces.\n\
15830 No argument means enable all tracepoints."),
15831 &enablelist);
15832 deprecate_cmd (c, "enable");
15833
15834 add_com ("passcount", class_trace, trace_pass_command, _("\
15835 Set the passcount for a tracepoint.\n\
15836 The trace will end when the tracepoint has been passed 'count' times.\n\
15837 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15838 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15839
15840 add_prefix_cmd ("save", class_breakpoint, save_command,
15841 _("Save breakpoint definitions as a script."),
15842 &save_cmdlist, "save ",
15843 0/*allow-unknown*/, &cmdlist);
15844
15845 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15846 Save current breakpoint definitions as a script.\n\
15847 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15848 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15849 session to restore them."),
15850 &save_cmdlist);
15851 set_cmd_completer (c, filename_completer);
15852
15853 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15854 Save current tracepoint definitions as a script.\n\
15855 Use the 'source' command in another debug session to restore them."),
15856 &save_cmdlist);
15857 set_cmd_completer (c, filename_completer);
15858
15859 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15860 deprecate_cmd (c, "save tracepoints");
15861
15862 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15863 Breakpoint specific settings\n\
15864 Configure various breakpoint-specific variables such as\n\
15865 pending breakpoint behavior"),
15866 &breakpoint_set_cmdlist, "set breakpoint ",
15867 0/*allow-unknown*/, &setlist);
15868 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15869 Breakpoint specific settings\n\
15870 Configure various breakpoint-specific variables such as\n\
15871 pending breakpoint behavior"),
15872 &breakpoint_show_cmdlist, "show breakpoint ",
15873 0/*allow-unknown*/, &showlist);
15874
15875 add_setshow_auto_boolean_cmd ("pending", no_class,
15876 &pending_break_support, _("\
15877 Set debugger's behavior regarding pending breakpoints."), _("\
15878 Show debugger's behavior regarding pending breakpoints."), _("\
15879 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15880 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15881 an error. If auto, an unrecognized breakpoint location results in a\n\
15882 user-query to see if a pending breakpoint should be created."),
15883 NULL,
15884 show_pending_break_support,
15885 &breakpoint_set_cmdlist,
15886 &breakpoint_show_cmdlist);
15887
15888 pending_break_support = AUTO_BOOLEAN_AUTO;
15889
15890 add_setshow_boolean_cmd ("auto-hw", no_class,
15891 &automatic_hardware_breakpoints, _("\
15892 Set automatic usage of hardware breakpoints."), _("\
15893 Show automatic usage of hardware breakpoints."), _("\
15894 If set, the debugger will automatically use hardware breakpoints for\n\
15895 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15896 a warning will be emitted for such breakpoints."),
15897 NULL,
15898 show_automatic_hardware_breakpoints,
15899 &breakpoint_set_cmdlist,
15900 &breakpoint_show_cmdlist);
15901
15902 add_setshow_boolean_cmd ("always-inserted", class_support,
15903 &always_inserted_mode, _("\
15904 Set mode for inserting breakpoints."), _("\
15905 Show mode for inserting breakpoints."), _("\
15906 When this mode is on, breakpoints are inserted immediately as soon as\n\
15907 they're created, kept inserted even when execution stops, and removed\n\
15908 only when the user deletes them. When this mode is off (the default),\n\
15909 breakpoints are inserted only when execution continues, and removed\n\
15910 when execution stops."),
15911 NULL,
15912 &show_always_inserted_mode,
15913 &breakpoint_set_cmdlist,
15914 &breakpoint_show_cmdlist);
15915
15916 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15917 condition_evaluation_enums,
15918 &condition_evaluation_mode_1, _("\
15919 Set mode of breakpoint condition evaluation."), _("\
15920 Show mode of breakpoint condition evaluation."), _("\
15921 When this is set to \"host\", breakpoint conditions will be\n\
15922 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15923 breakpoint conditions will be downloaded to the target (if the target\n\
15924 supports such feature) and conditions will be evaluated on the target's side.\n\
15925 If this is set to \"auto\" (default), this will be automatically set to\n\
15926 \"target\" if it supports condition evaluation, otherwise it will\n\
15927 be set to \"gdb\""),
15928 &set_condition_evaluation_mode,
15929 &show_condition_evaluation_mode,
15930 &breakpoint_set_cmdlist,
15931 &breakpoint_show_cmdlist);
15932
15933 add_com ("break-range", class_breakpoint, break_range_command, _("\
15934 Set a breakpoint for an address range.\n\
15935 break-range START-LOCATION, END-LOCATION\n\
15936 where START-LOCATION and END-LOCATION can be one of the following:\n\
15937 LINENUM, for that line in the current file,\n\
15938 FILE:LINENUM, for that line in that file,\n\
15939 +OFFSET, for that number of lines after the current line\n\
15940 or the start of the range\n\
15941 FUNCTION, for the first line in that function,\n\
15942 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15943 *ADDRESS, for the instruction at that address.\n\
15944 \n\
15945 The breakpoint will stop execution of the inferior whenever it executes\n\
15946 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15947 range (including START-LOCATION and END-LOCATION)."));
15948
15949 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15950 Set a dynamic printf at specified location.\n\
15951 dprintf location,format string,arg1,arg2,...\n\
15952 location may be a linespec, explicit, or address location.\n"
15953 "\n" LOCATION_HELP_STRING));
15954 set_cmd_completer (c, location_completer);
15955
15956 add_setshow_enum_cmd ("dprintf-style", class_support,
15957 dprintf_style_enums, &dprintf_style, _("\
15958 Set the style of usage for dynamic printf."), _("\
15959 Show the style of usage for dynamic printf."), _("\
15960 This setting chooses how GDB will do a dynamic printf.\n\
15961 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15962 console, as with the \"printf\" command.\n\
15963 If the value is \"call\", the print is done by calling a function in your\n\
15964 program; by default printf(), but you can choose a different function or\n\
15965 output stream by setting dprintf-function and dprintf-channel."),
15966 update_dprintf_commands, NULL,
15967 &setlist, &showlist);
15968
15969 dprintf_function = xstrdup ("printf");
15970 add_setshow_string_cmd ("dprintf-function", class_support,
15971 &dprintf_function, _("\
15972 Set the function to use for dynamic printf"), _("\
15973 Show the function to use for dynamic printf"), NULL,
15974 update_dprintf_commands, NULL,
15975 &setlist, &showlist);
15976
15977 dprintf_channel = xstrdup ("");
15978 add_setshow_string_cmd ("dprintf-channel", class_support,
15979 &dprintf_channel, _("\
15980 Set the channel to use for dynamic printf"), _("\
15981 Show the channel to use for dynamic printf"), NULL,
15982 update_dprintf_commands, NULL,
15983 &setlist, &showlist);
15984
15985 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15986 &disconnected_dprintf, _("\
15987 Set whether dprintf continues after GDB disconnects."), _("\
15988 Show whether dprintf continues after GDB disconnects."), _("\
15989 Use this to let dprintf commands continue to hit and produce output\n\
15990 even if GDB disconnects or detaches from the target."),
15991 NULL,
15992 NULL,
15993 &setlist, &showlist);
15994
15995 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15996 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
15997 (target agent only) This is useful for formatted output in user-defined commands."));
15998
15999 automatic_hardware_breakpoints = 1;
16000
16001 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16002 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16003 }