]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/c-exp.y
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse a C expression from text in a string,
20 and return the result as a struct expression pointer.
21 That structure contains arithmetic operations in reverse polish,
22 with constants represented by operations that are followed by special data.
23 See expression.h for the details of the format.
24 What is important here is that it can be built up sequentially
25 during the process of parsing; the lower levels of the tree always
26 come first in the result.
27
28 Note that malloc's and realloc's in this file are transformed to
29 xmalloc and xrealloc respectively by the same sed command in the
30 makefile that remaps any other malloc/realloc inserted by the parser
31 generator. Doing this with #defines and trying to control the interaction
32 with include files (<malloc.h> and <stdlib.h> for example) just became
33 too messy, particularly when such includes can be inserted at random
34 times by the parser generator. */
35
36 %{
37
38 #include "defs.h"
39 #include <ctype.h>
40 #include "expression.h"
41 #include "value.h"
42 #include "parser-defs.h"
43 #include "language.h"
44 #include "c-lang.h"
45 #include "c-support.h"
46 #include "bfd.h" /* Required by objfiles.h. */
47 #include "symfile.h" /* Required by objfiles.h. */
48 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
49 #include "charset.h"
50 #include "block.h"
51 #include "cp-support.h"
52 #include "macroscope.h"
53 #include "objc-lang.h"
54 #include "typeprint.h"
55 #include "cp-abi.h"
56 #include "type-stack.h"
57
58 #define parse_type(ps) builtin_type (ps->gdbarch ())
59
60 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
61 etc). */
62 #define GDB_YY_REMAP_PREFIX c_
63 #include "yy-remap.h"
64
65 /* The state of the parser, used internally when we are parsing the
66 expression. */
67
68 static struct parser_state *pstate = NULL;
69
70 /* Data that must be held for the duration of a parse. */
71
72 struct c_parse_state
73 {
74 /* These are used to hold type lists and type stacks that are
75 allocated during the parse. */
76 std::vector<std::unique_ptr<std::vector<struct type *>>> type_lists;
77 std::vector<std::unique_ptr<struct type_stack>> type_stacks;
78
79 /* Storage for some strings allocated during the parse. */
80 std::vector<gdb::unique_xmalloc_ptr<char>> strings;
81
82 /* When we find that lexptr (the global var defined in parse.c) is
83 pointing at a macro invocation, we expand the invocation, and call
84 scan_macro_expansion to save the old lexptr here and point lexptr
85 into the expanded text. When we reach the end of that, we call
86 end_macro_expansion to pop back to the value we saved here. The
87 macro expansion code promises to return only fully-expanded text,
88 so we don't need to "push" more than one level.
89
90 This is disgusting, of course. It would be cleaner to do all macro
91 expansion beforehand, and then hand that to lexptr. But we don't
92 really know where the expression ends. Remember, in a command like
93
94 (gdb) break *ADDRESS if CONDITION
95
96 we evaluate ADDRESS in the scope of the current frame, but we
97 evaluate CONDITION in the scope of the breakpoint's location. So
98 it's simply wrong to try to macro-expand the whole thing at once. */
99 const char *macro_original_text = nullptr;
100
101 /* We save all intermediate macro expansions on this obstack for the
102 duration of a single parse. The expansion text may sometimes have
103 to live past the end of the expansion, due to yacc lookahead.
104 Rather than try to be clever about saving the data for a single
105 token, we simply keep it all and delete it after parsing has
106 completed. */
107 auto_obstack expansion_obstack;
108
109 /* The type stack. */
110 struct type_stack type_stack;
111 };
112
113 /* This is set and cleared in c_parse. */
114
115 static struct c_parse_state *cpstate;
116
117 int yyparse (void);
118
119 static int yylex (void);
120
121 static void yyerror (const char *);
122
123 static int type_aggregate_p (struct type *);
124
125 %}
126
127 /* Although the yacc "value" of an expression is not used,
128 since the result is stored in the structure being created,
129 other node types do have values. */
130
131 %union
132 {
133 LONGEST lval;
134 struct {
135 LONGEST val;
136 struct type *type;
137 } typed_val_int;
138 struct {
139 gdb_byte val[16];
140 struct type *type;
141 } typed_val_float;
142 struct type *tval;
143 struct stoken sval;
144 struct typed_stoken tsval;
145 struct ttype tsym;
146 struct symtoken ssym;
147 int voidval;
148 const struct block *bval;
149 enum exp_opcode opcode;
150
151 struct stoken_vector svec;
152 std::vector<struct type *> *tvec;
153
154 struct type_stack *type_stack;
155
156 struct objc_class_str theclass;
157 }
158
159 %{
160 /* YYSTYPE gets defined by %union */
161 static int parse_number (struct parser_state *par_state,
162 const char *, int, int, YYSTYPE *);
163 static struct stoken operator_stoken (const char *);
164 static struct stoken typename_stoken (const char *);
165 static void check_parameter_typelist (std::vector<struct type *> *);
166 static void write_destructor_name (struct parser_state *par_state,
167 struct stoken);
168
169 #ifdef YYBISON
170 static void c_print_token (FILE *file, int type, YYSTYPE value);
171 #define YYPRINT(FILE, TYPE, VALUE) c_print_token (FILE, TYPE, VALUE)
172 #endif
173 %}
174
175 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly function_method
176 %type <lval> rcurly
177 %type <tval> type typebase
178 %type <tvec> nonempty_typelist func_mod parameter_typelist
179 /* %type <bval> block */
180
181 /* Fancy type parsing. */
182 %type <tval> ptype
183 %type <lval> array_mod
184 %type <tval> conversion_type_id
185
186 %type <type_stack> ptr_operator_ts abs_decl direct_abs_decl
187
188 %token <typed_val_int> INT
189 %token <typed_val_float> FLOAT
190
191 /* Both NAME and TYPENAME tokens represent symbols in the input,
192 and both convey their data as strings.
193 But a TYPENAME is a string that happens to be defined as a typedef
194 or builtin type name (such as int or char)
195 and a NAME is any other symbol.
196 Contexts where this distinction is not important can use the
197 nonterminal "name", which matches either NAME or TYPENAME. */
198
199 %token <tsval> STRING
200 %token <sval> NSSTRING /* ObjC Foundation "NSString" literal */
201 %token SELECTOR /* ObjC "@selector" pseudo-operator */
202 %token <tsval> CHAR
203 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
204 %token <ssym> UNKNOWN_CPP_NAME
205 %token <voidval> COMPLETE
206 %token <tsym> TYPENAME
207 %token <theclass> CLASSNAME /* ObjC Class name */
208 %type <sval> name field_name
209 %type <svec> string_exp
210 %type <ssym> name_not_typename
211 %type <tsym> type_name
212
213 /* This is like a '[' token, but is only generated when parsing
214 Objective C. This lets us reuse the same parser without
215 erroneously parsing ObjC-specific expressions in C. */
216 %token OBJC_LBRAC
217
218 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
219 but which would parse as a valid number in the current input radix.
220 E.g. "c" when input_radix==16. Depending on the parse, it will be
221 turned into a name or into a number. */
222
223 %token <ssym> NAME_OR_INT
224
225 %token OPERATOR
226 %token STRUCT CLASS UNION ENUM SIZEOF ALIGNOF UNSIGNED COLONCOLON
227 %token TEMPLATE
228 %token ERROR
229 %token NEW DELETE
230 %type <sval> oper
231 %token REINTERPRET_CAST DYNAMIC_CAST STATIC_CAST CONST_CAST
232 %token ENTRY
233 %token TYPEOF
234 %token DECLTYPE
235 %token TYPEID
236
237 /* Special type cases, put in to allow the parser to distinguish different
238 legal basetypes. */
239 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
240
241 %token <sval> DOLLAR_VARIABLE
242
243 %token <opcode> ASSIGN_MODIFY
244
245 /* C++ */
246 %token TRUEKEYWORD
247 %token FALSEKEYWORD
248
249
250 %left ','
251 %left ABOVE_COMMA
252 %right '=' ASSIGN_MODIFY
253 %right '?'
254 %left OROR
255 %left ANDAND
256 %left '|'
257 %left '^'
258 %left '&'
259 %left EQUAL NOTEQUAL
260 %left '<' '>' LEQ GEQ
261 %left LSH RSH
262 %left '@'
263 %left '+' '-'
264 %left '*' '/' '%'
265 %right UNARY INCREMENT DECREMENT
266 %right ARROW ARROW_STAR '.' DOT_STAR '[' OBJC_LBRAC '('
267 %token <ssym> BLOCKNAME
268 %token <bval> FILENAME
269 %type <bval> block
270 %left COLONCOLON
271
272 %token DOTDOTDOT
273
274 \f
275 %%
276
277 start : exp1
278 | type_exp
279 ;
280
281 type_exp: type
282 { write_exp_elt_opcode(pstate, OP_TYPE);
283 write_exp_elt_type(pstate, $1);
284 write_exp_elt_opcode(pstate, OP_TYPE);}
285 | TYPEOF '(' exp ')'
286 {
287 write_exp_elt_opcode (pstate, OP_TYPEOF);
288 }
289 | TYPEOF '(' type ')'
290 {
291 write_exp_elt_opcode (pstate, OP_TYPE);
292 write_exp_elt_type (pstate, $3);
293 write_exp_elt_opcode (pstate, OP_TYPE);
294 }
295 | DECLTYPE '(' exp ')'
296 {
297 write_exp_elt_opcode (pstate, OP_DECLTYPE);
298 }
299 ;
300
301 /* Expressions, including the comma operator. */
302 exp1 : exp
303 | exp1 ',' exp
304 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
305 ;
306
307 /* Expressions, not including the comma operator. */
308 exp : '*' exp %prec UNARY
309 { write_exp_elt_opcode (pstate, UNOP_IND); }
310 ;
311
312 exp : '&' exp %prec UNARY
313 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
314 ;
315
316 exp : '-' exp %prec UNARY
317 { write_exp_elt_opcode (pstate, UNOP_NEG); }
318 ;
319
320 exp : '+' exp %prec UNARY
321 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
322 ;
323
324 exp : '!' exp %prec UNARY
325 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
326 ;
327
328 exp : '~' exp %prec UNARY
329 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
330 ;
331
332 exp : INCREMENT exp %prec UNARY
333 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
334 ;
335
336 exp : DECREMENT exp %prec UNARY
337 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
338 ;
339
340 exp : exp INCREMENT %prec UNARY
341 { write_exp_elt_opcode (pstate, UNOP_POSTINCREMENT); }
342 ;
343
344 exp : exp DECREMENT %prec UNARY
345 { write_exp_elt_opcode (pstate, UNOP_POSTDECREMENT); }
346 ;
347
348 exp : TYPEID '(' exp ')' %prec UNARY
349 { write_exp_elt_opcode (pstate, OP_TYPEID); }
350 ;
351
352 exp : TYPEID '(' type_exp ')' %prec UNARY
353 { write_exp_elt_opcode (pstate, OP_TYPEID); }
354 ;
355
356 exp : SIZEOF exp %prec UNARY
357 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
358 ;
359
360 exp : ALIGNOF '(' type_exp ')' %prec UNARY
361 { write_exp_elt_opcode (pstate, UNOP_ALIGNOF); }
362 ;
363
364 exp : exp ARROW field_name
365 { write_exp_elt_opcode (pstate, STRUCTOP_PTR);
366 write_exp_string (pstate, $3);
367 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
368 ;
369
370 exp : exp ARROW field_name COMPLETE
371 { pstate->mark_struct_expression ();
372 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
373 write_exp_string (pstate, $3);
374 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
375 ;
376
377 exp : exp ARROW COMPLETE
378 { struct stoken s;
379 pstate->mark_struct_expression ();
380 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
381 s.ptr = "";
382 s.length = 0;
383 write_exp_string (pstate, s);
384 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
385 ;
386
387 exp : exp ARROW '~' name
388 { write_exp_elt_opcode (pstate, STRUCTOP_PTR);
389 write_destructor_name (pstate, $4);
390 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
391 ;
392
393 exp : exp ARROW '~' name COMPLETE
394 { pstate->mark_struct_expression ();
395 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
396 write_destructor_name (pstate, $4);
397 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
398 ;
399
400 exp : exp ARROW qualified_name
401 { /* exp->type::name becomes exp->*(&type::name) */
402 /* Note: this doesn't work if name is a
403 static member! FIXME */
404 write_exp_elt_opcode (pstate, UNOP_ADDR);
405 write_exp_elt_opcode (pstate, STRUCTOP_MPTR); }
406 ;
407
408 exp : exp ARROW_STAR exp
409 { write_exp_elt_opcode (pstate, STRUCTOP_MPTR); }
410 ;
411
412 exp : exp '.' field_name
413 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
414 write_exp_string (pstate, $3);
415 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
416 ;
417
418 exp : exp '.' field_name COMPLETE
419 { pstate->mark_struct_expression ();
420 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
421 write_exp_string (pstate, $3);
422 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
423 ;
424
425 exp : exp '.' COMPLETE
426 { struct stoken s;
427 pstate->mark_struct_expression ();
428 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
429 s.ptr = "";
430 s.length = 0;
431 write_exp_string (pstate, s);
432 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
433 ;
434
435 exp : exp '.' '~' name
436 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
437 write_destructor_name (pstate, $4);
438 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
439 ;
440
441 exp : exp '.' '~' name COMPLETE
442 { pstate->mark_struct_expression ();
443 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
444 write_destructor_name (pstate, $4);
445 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
446 ;
447
448 exp : exp '.' qualified_name
449 { /* exp.type::name becomes exp.*(&type::name) */
450 /* Note: this doesn't work if name is a
451 static member! FIXME */
452 write_exp_elt_opcode (pstate, UNOP_ADDR);
453 write_exp_elt_opcode (pstate, STRUCTOP_MEMBER); }
454 ;
455
456 exp : exp DOT_STAR exp
457 { write_exp_elt_opcode (pstate, STRUCTOP_MEMBER); }
458 ;
459
460 exp : exp '[' exp1 ']'
461 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
462 ;
463
464 exp : exp OBJC_LBRAC exp1 ']'
465 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
466 ;
467
468 /*
469 * The rules below parse ObjC message calls of the form:
470 * '[' target selector {':' argument}* ']'
471 */
472
473 exp : OBJC_LBRAC TYPENAME
474 {
475 CORE_ADDR theclass;
476
477 theclass = lookup_objc_class (pstate->gdbarch (),
478 copy_name ($2.stoken));
479 if (theclass == 0)
480 error (_("%s is not an ObjC Class"),
481 copy_name ($2.stoken));
482 write_exp_elt_opcode (pstate, OP_LONG);
483 write_exp_elt_type (pstate,
484 parse_type (pstate)->builtin_int);
485 write_exp_elt_longcst (pstate, (LONGEST) theclass);
486 write_exp_elt_opcode (pstate, OP_LONG);
487 start_msglist();
488 }
489 msglist ']'
490 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
491 end_msglist (pstate);
492 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
493 }
494 ;
495
496 exp : OBJC_LBRAC CLASSNAME
497 {
498 write_exp_elt_opcode (pstate, OP_LONG);
499 write_exp_elt_type (pstate,
500 parse_type (pstate)->builtin_int);
501 write_exp_elt_longcst (pstate, (LONGEST) $2.theclass);
502 write_exp_elt_opcode (pstate, OP_LONG);
503 start_msglist();
504 }
505 msglist ']'
506 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
507 end_msglist (pstate);
508 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
509 }
510 ;
511
512 exp : OBJC_LBRAC exp
513 { start_msglist(); }
514 msglist ']'
515 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
516 end_msglist (pstate);
517 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
518 }
519 ;
520
521 msglist : name
522 { add_msglist(&$1, 0); }
523 | msgarglist
524 ;
525
526 msgarglist : msgarg
527 | msgarglist msgarg
528 ;
529
530 msgarg : name ':' exp
531 { add_msglist(&$1, 1); }
532 | ':' exp /* Unnamed arg. */
533 { add_msglist(0, 1); }
534 | ',' exp /* Variable number of args. */
535 { add_msglist(0, 0); }
536 ;
537
538 exp : exp '('
539 /* This is to save the value of arglist_len
540 being accumulated by an outer function call. */
541 { pstate->start_arglist (); }
542 arglist ')' %prec ARROW
543 { write_exp_elt_opcode (pstate, OP_FUNCALL);
544 write_exp_elt_longcst (pstate,
545 pstate->end_arglist ());
546 write_exp_elt_opcode (pstate, OP_FUNCALL); }
547 ;
548
549 /* This is here to disambiguate with the production for
550 "func()::static_var" further below, which uses
551 function_method_void. */
552 exp : exp '(' ')' %prec ARROW
553 { pstate->start_arglist ();
554 write_exp_elt_opcode (pstate, OP_FUNCALL);
555 write_exp_elt_longcst (pstate,
556 pstate->end_arglist ());
557 write_exp_elt_opcode (pstate, OP_FUNCALL); }
558 ;
559
560
561 exp : UNKNOWN_CPP_NAME '('
562 {
563 /* This could potentially be a an argument defined
564 lookup function (Koenig). */
565 write_exp_elt_opcode (pstate, OP_ADL_FUNC);
566 write_exp_elt_block
567 (pstate, pstate->expression_context_block);
568 write_exp_elt_sym (pstate,
569 NULL); /* Placeholder. */
570 write_exp_string (pstate, $1.stoken);
571 write_exp_elt_opcode (pstate, OP_ADL_FUNC);
572
573 /* This is to save the value of arglist_len
574 being accumulated by an outer function call. */
575
576 pstate->start_arglist ();
577 }
578 arglist ')' %prec ARROW
579 {
580 write_exp_elt_opcode (pstate, OP_FUNCALL);
581 write_exp_elt_longcst (pstate,
582 pstate->end_arglist ());
583 write_exp_elt_opcode (pstate, OP_FUNCALL);
584 }
585 ;
586
587 lcurly : '{'
588 { pstate->start_arglist (); }
589 ;
590
591 arglist :
592 ;
593
594 arglist : exp
595 { pstate->arglist_len = 1; }
596 ;
597
598 arglist : arglist ',' exp %prec ABOVE_COMMA
599 { pstate->arglist_len++; }
600 ;
601
602 function_method: exp '(' parameter_typelist ')' const_or_volatile
603 {
604 std::vector<struct type *> *type_list = $3;
605 LONGEST len = type_list->size ();
606
607 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
608 /* Save the const/volatile qualifiers as
609 recorded by the const_or_volatile
610 production's actions. */
611 write_exp_elt_longcst
612 (pstate,
613 (cpstate->type_stack
614 .follow_type_instance_flags ()));
615 write_exp_elt_longcst (pstate, len);
616 for (type *type_elt : *type_list)
617 write_exp_elt_type (pstate, type_elt);
618 write_exp_elt_longcst(pstate, len);
619 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
620 }
621 ;
622
623 function_method_void: exp '(' ')' const_or_volatile
624 { write_exp_elt_opcode (pstate, TYPE_INSTANCE);
625 /* See above. */
626 write_exp_elt_longcst
627 (pstate,
628 cpstate->type_stack.follow_type_instance_flags ());
629 write_exp_elt_longcst (pstate, 0);
630 write_exp_elt_longcst (pstate, 0);
631 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
632 }
633 ;
634
635 exp : function_method
636 ;
637
638 /* Normally we must interpret "func()" as a function call, instead of
639 a type. The user needs to write func(void) to disambiguate.
640 However, in the "func()::static_var" case, there's no
641 ambiguity. */
642 function_method_void_or_typelist: function_method
643 | function_method_void
644 ;
645
646 exp : function_method_void_or_typelist COLONCOLON name
647 {
648 write_exp_elt_opcode (pstate, OP_FUNC_STATIC_VAR);
649 write_exp_string (pstate, $3);
650 write_exp_elt_opcode (pstate, OP_FUNC_STATIC_VAR);
651 }
652 ;
653
654 rcurly : '}'
655 { $$ = pstate->end_arglist () - 1; }
656 ;
657 exp : lcurly arglist rcurly %prec ARROW
658 { write_exp_elt_opcode (pstate, OP_ARRAY);
659 write_exp_elt_longcst (pstate, (LONGEST) 0);
660 write_exp_elt_longcst (pstate, (LONGEST) $3);
661 write_exp_elt_opcode (pstate, OP_ARRAY); }
662 ;
663
664 exp : lcurly type_exp rcurly exp %prec UNARY
665 { write_exp_elt_opcode (pstate, UNOP_MEMVAL_TYPE); }
666 ;
667
668 exp : '(' type_exp ')' exp %prec UNARY
669 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
670 ;
671
672 exp : '(' exp1 ')'
673 { }
674 ;
675
676 /* Binary operators in order of decreasing precedence. */
677
678 exp : exp '@' exp
679 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
680 ;
681
682 exp : exp '*' exp
683 { write_exp_elt_opcode (pstate, BINOP_MUL); }
684 ;
685
686 exp : exp '/' exp
687 { write_exp_elt_opcode (pstate, BINOP_DIV); }
688 ;
689
690 exp : exp '%' exp
691 { write_exp_elt_opcode (pstate, BINOP_REM); }
692 ;
693
694 exp : exp '+' exp
695 { write_exp_elt_opcode (pstate, BINOP_ADD); }
696 ;
697
698 exp : exp '-' exp
699 { write_exp_elt_opcode (pstate, BINOP_SUB); }
700 ;
701
702 exp : exp LSH exp
703 { write_exp_elt_opcode (pstate, BINOP_LSH); }
704 ;
705
706 exp : exp RSH exp
707 { write_exp_elt_opcode (pstate, BINOP_RSH); }
708 ;
709
710 exp : exp EQUAL exp
711 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
712 ;
713
714 exp : exp NOTEQUAL exp
715 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
716 ;
717
718 exp : exp LEQ exp
719 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
720 ;
721
722 exp : exp GEQ exp
723 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
724 ;
725
726 exp : exp '<' exp
727 { write_exp_elt_opcode (pstate, BINOP_LESS); }
728 ;
729
730 exp : exp '>' exp
731 { write_exp_elt_opcode (pstate, BINOP_GTR); }
732 ;
733
734 exp : exp '&' exp
735 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
736 ;
737
738 exp : exp '^' exp
739 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
740 ;
741
742 exp : exp '|' exp
743 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
744 ;
745
746 exp : exp ANDAND exp
747 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
748 ;
749
750 exp : exp OROR exp
751 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
752 ;
753
754 exp : exp '?' exp ':' exp %prec '?'
755 { write_exp_elt_opcode (pstate, TERNOP_COND); }
756 ;
757
758 exp : exp '=' exp
759 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
760 ;
761
762 exp : exp ASSIGN_MODIFY exp
763 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
764 write_exp_elt_opcode (pstate, $2);
765 write_exp_elt_opcode (pstate,
766 BINOP_ASSIGN_MODIFY); }
767 ;
768
769 exp : INT
770 { write_exp_elt_opcode (pstate, OP_LONG);
771 write_exp_elt_type (pstate, $1.type);
772 write_exp_elt_longcst (pstate, (LONGEST) ($1.val));
773 write_exp_elt_opcode (pstate, OP_LONG); }
774 ;
775
776 exp : CHAR
777 {
778 struct stoken_vector vec;
779 vec.len = 1;
780 vec.tokens = &$1;
781 write_exp_string_vector (pstate, $1.type, &vec);
782 }
783 ;
784
785 exp : NAME_OR_INT
786 { YYSTYPE val;
787 parse_number (pstate, $1.stoken.ptr,
788 $1.stoken.length, 0, &val);
789 write_exp_elt_opcode (pstate, OP_LONG);
790 write_exp_elt_type (pstate, val.typed_val_int.type);
791 write_exp_elt_longcst (pstate,
792 (LONGEST) val.typed_val_int.val);
793 write_exp_elt_opcode (pstate, OP_LONG);
794 }
795 ;
796
797
798 exp : FLOAT
799 { write_exp_elt_opcode (pstate, OP_FLOAT);
800 write_exp_elt_type (pstate, $1.type);
801 write_exp_elt_floatcst (pstate, $1.val);
802 write_exp_elt_opcode (pstate, OP_FLOAT); }
803 ;
804
805 exp : variable
806 ;
807
808 exp : DOLLAR_VARIABLE
809 {
810 write_dollar_variable (pstate, $1);
811 }
812 ;
813
814 exp : SELECTOR '(' name ')'
815 {
816 write_exp_elt_opcode (pstate, OP_OBJC_SELECTOR);
817 write_exp_string (pstate, $3);
818 write_exp_elt_opcode (pstate, OP_OBJC_SELECTOR); }
819 ;
820
821 exp : SIZEOF '(' type ')' %prec UNARY
822 { struct type *type = $3;
823 write_exp_elt_opcode (pstate, OP_LONG);
824 write_exp_elt_type (pstate, lookup_signed_typename
825 (pstate->language (),
826 pstate->gdbarch (),
827 "int"));
828 type = check_typedef (type);
829
830 /* $5.3.3/2 of the C++ Standard (n3290 draft)
831 says of sizeof: "When applied to a reference
832 or a reference type, the result is the size of
833 the referenced type." */
834 if (TYPE_IS_REFERENCE (type))
835 type = check_typedef (TYPE_TARGET_TYPE (type));
836 write_exp_elt_longcst (pstate,
837 (LONGEST) TYPE_LENGTH (type));
838 write_exp_elt_opcode (pstate, OP_LONG); }
839 ;
840
841 exp : REINTERPRET_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
842 { write_exp_elt_opcode (pstate,
843 UNOP_REINTERPRET_CAST); }
844 ;
845
846 exp : STATIC_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
847 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
848 ;
849
850 exp : DYNAMIC_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
851 { write_exp_elt_opcode (pstate, UNOP_DYNAMIC_CAST); }
852 ;
853
854 exp : CONST_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
855 { /* We could do more error checking here, but
856 it doesn't seem worthwhile. */
857 write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
858 ;
859
860 string_exp:
861 STRING
862 {
863 /* We copy the string here, and not in the
864 lexer, to guarantee that we do not leak a
865 string. Note that we follow the
866 NUL-termination convention of the
867 lexer. */
868 struct typed_stoken *vec = XNEW (struct typed_stoken);
869 $$.len = 1;
870 $$.tokens = vec;
871
872 vec->type = $1.type;
873 vec->length = $1.length;
874 vec->ptr = (char *) malloc ($1.length + 1);
875 memcpy (vec->ptr, $1.ptr, $1.length + 1);
876 }
877
878 | string_exp STRING
879 {
880 /* Note that we NUL-terminate here, but just
881 for convenience. */
882 char *p;
883 ++$$.len;
884 $$.tokens = XRESIZEVEC (struct typed_stoken,
885 $$.tokens, $$.len);
886
887 p = (char *) malloc ($2.length + 1);
888 memcpy (p, $2.ptr, $2.length + 1);
889
890 $$.tokens[$$.len - 1].type = $2.type;
891 $$.tokens[$$.len - 1].length = $2.length;
892 $$.tokens[$$.len - 1].ptr = p;
893 }
894 ;
895
896 exp : string_exp
897 {
898 int i;
899 c_string_type type = C_STRING;
900
901 for (i = 0; i < $1.len; ++i)
902 {
903 switch ($1.tokens[i].type)
904 {
905 case C_STRING:
906 break;
907 case C_WIDE_STRING:
908 case C_STRING_16:
909 case C_STRING_32:
910 if (type != C_STRING
911 && type != $1.tokens[i].type)
912 error (_("Undefined string concatenation."));
913 type = (enum c_string_type_values) $1.tokens[i].type;
914 break;
915 default:
916 /* internal error */
917 internal_error (__FILE__, __LINE__,
918 "unrecognized type in string concatenation");
919 }
920 }
921
922 write_exp_string_vector (pstate, type, &$1);
923 for (i = 0; i < $1.len; ++i)
924 free ($1.tokens[i].ptr);
925 free ($1.tokens);
926 }
927 ;
928
929 exp : NSSTRING /* ObjC NextStep NSString constant
930 * of the form '@' '"' string '"'.
931 */
932 { write_exp_elt_opcode (pstate, OP_OBJC_NSSTRING);
933 write_exp_string (pstate, $1);
934 write_exp_elt_opcode (pstate, OP_OBJC_NSSTRING); }
935 ;
936
937 /* C++. */
938 exp : TRUEKEYWORD
939 { write_exp_elt_opcode (pstate, OP_LONG);
940 write_exp_elt_type (pstate,
941 parse_type (pstate)->builtin_bool);
942 write_exp_elt_longcst (pstate, (LONGEST) 1);
943 write_exp_elt_opcode (pstate, OP_LONG); }
944 ;
945
946 exp : FALSEKEYWORD
947 { write_exp_elt_opcode (pstate, OP_LONG);
948 write_exp_elt_type (pstate,
949 parse_type (pstate)->builtin_bool);
950 write_exp_elt_longcst (pstate, (LONGEST) 0);
951 write_exp_elt_opcode (pstate, OP_LONG); }
952 ;
953
954 /* end of C++. */
955
956 block : BLOCKNAME
957 {
958 if ($1.sym.symbol)
959 $$ = SYMBOL_BLOCK_VALUE ($1.sym.symbol);
960 else
961 error (_("No file or function \"%s\"."),
962 copy_name ($1.stoken));
963 }
964 | FILENAME
965 {
966 $$ = $1;
967 }
968 ;
969
970 block : block COLONCOLON name
971 { struct symbol *tem
972 = lookup_symbol (copy_name ($3), $1,
973 VAR_DOMAIN, NULL).symbol;
974
975 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
976 error (_("No function \"%s\" in specified context."),
977 copy_name ($3));
978 $$ = SYMBOL_BLOCK_VALUE (tem); }
979 ;
980
981 variable: name_not_typename ENTRY
982 { struct symbol *sym = $1.sym.symbol;
983
984 if (sym == NULL || !SYMBOL_IS_ARGUMENT (sym)
985 || !symbol_read_needs_frame (sym))
986 error (_("@entry can be used only for function "
987 "parameters, not for \"%s\""),
988 copy_name ($1.stoken));
989
990 write_exp_elt_opcode (pstate, OP_VAR_ENTRY_VALUE);
991 write_exp_elt_sym (pstate, sym);
992 write_exp_elt_opcode (pstate, OP_VAR_ENTRY_VALUE);
993 }
994 ;
995
996 variable: block COLONCOLON name
997 { struct block_symbol sym
998 = lookup_symbol (copy_name ($3), $1,
999 VAR_DOMAIN, NULL);
1000
1001 if (sym.symbol == 0)
1002 error (_("No symbol \"%s\" in specified context."),
1003 copy_name ($3));
1004 if (symbol_read_needs_frame (sym.symbol))
1005 pstate->block_tracker->update (sym);
1006
1007 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1008 write_exp_elt_block (pstate, sym.block);
1009 write_exp_elt_sym (pstate, sym.symbol);
1010 write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
1011 ;
1012
1013 qualified_name: TYPENAME COLONCOLON name
1014 {
1015 struct type *type = $1.type;
1016 type = check_typedef (type);
1017 if (!type_aggregate_p (type))
1018 error (_("`%s' is not defined as an aggregate type."),
1019 TYPE_SAFE_NAME (type));
1020
1021 write_exp_elt_opcode (pstate, OP_SCOPE);
1022 write_exp_elt_type (pstate, type);
1023 write_exp_string (pstate, $3);
1024 write_exp_elt_opcode (pstate, OP_SCOPE);
1025 }
1026 | TYPENAME COLONCOLON '~' name
1027 {
1028 struct type *type = $1.type;
1029 struct stoken tmp_token;
1030 char *buf;
1031
1032 type = check_typedef (type);
1033 if (!type_aggregate_p (type))
1034 error (_("`%s' is not defined as an aggregate type."),
1035 TYPE_SAFE_NAME (type));
1036 buf = (char *) alloca ($4.length + 2);
1037 tmp_token.ptr = buf;
1038 tmp_token.length = $4.length + 1;
1039 buf[0] = '~';
1040 memcpy (buf+1, $4.ptr, $4.length);
1041 buf[tmp_token.length] = 0;
1042
1043 /* Check for valid destructor name. */
1044 destructor_name_p (tmp_token.ptr, $1.type);
1045 write_exp_elt_opcode (pstate, OP_SCOPE);
1046 write_exp_elt_type (pstate, type);
1047 write_exp_string (pstate, tmp_token);
1048 write_exp_elt_opcode (pstate, OP_SCOPE);
1049 }
1050 | TYPENAME COLONCOLON name COLONCOLON name
1051 {
1052 char *copy = copy_name ($3);
1053 error (_("No type \"%s\" within class "
1054 "or namespace \"%s\"."),
1055 copy, TYPE_SAFE_NAME ($1.type));
1056 }
1057 ;
1058
1059 variable: qualified_name
1060 | COLONCOLON name_not_typename
1061 {
1062 char *name = copy_name ($2.stoken);
1063 struct symbol *sym;
1064 struct bound_minimal_symbol msymbol;
1065
1066 sym
1067 = lookup_symbol (name, (const struct block *) NULL,
1068 VAR_DOMAIN, NULL).symbol;
1069 if (sym)
1070 {
1071 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1072 write_exp_elt_block (pstate, NULL);
1073 write_exp_elt_sym (pstate, sym);
1074 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1075 break;
1076 }
1077
1078 msymbol = lookup_bound_minimal_symbol (name);
1079 if (msymbol.minsym != NULL)
1080 write_exp_msymbol (pstate, msymbol);
1081 else if (!have_full_symbols () && !have_partial_symbols ())
1082 error (_("No symbol table is loaded. Use the \"file\" command."));
1083 else
1084 error (_("No symbol \"%s\" in current context."), name);
1085 }
1086 ;
1087
1088 variable: name_not_typename
1089 { struct block_symbol sym = $1.sym;
1090
1091 if (sym.symbol)
1092 {
1093 if (symbol_read_needs_frame (sym.symbol))
1094 pstate->block_tracker->update (sym);
1095
1096 /* If we found a function, see if it's
1097 an ifunc resolver that has the same
1098 address as the ifunc symbol itself.
1099 If so, prefer the ifunc symbol. */
1100
1101 bound_minimal_symbol resolver
1102 = find_gnu_ifunc (sym.symbol);
1103 if (resolver.minsym != NULL)
1104 write_exp_msymbol (pstate, resolver);
1105 else
1106 {
1107 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1108 write_exp_elt_block (pstate, sym.block);
1109 write_exp_elt_sym (pstate, sym.symbol);
1110 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1111 }
1112 }
1113 else if ($1.is_a_field_of_this)
1114 {
1115 /* C++: it hangs off of `this'. Must
1116 not inadvertently convert from a method call
1117 to data ref. */
1118 pstate->block_tracker->update (sym);
1119 write_exp_elt_opcode (pstate, OP_THIS);
1120 write_exp_elt_opcode (pstate, OP_THIS);
1121 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
1122 write_exp_string (pstate, $1.stoken);
1123 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
1124 }
1125 else
1126 {
1127 char *arg = copy_name ($1.stoken);
1128
1129 bound_minimal_symbol msymbol
1130 = lookup_bound_minimal_symbol (arg);
1131 if (msymbol.minsym == NULL)
1132 {
1133 if (!have_full_symbols () && !have_partial_symbols ())
1134 error (_("No symbol table is loaded. Use the \"file\" command."));
1135 else
1136 error (_("No symbol \"%s\" in current context."),
1137 copy_name ($1.stoken));
1138 }
1139
1140 /* This minsym might be an alias for
1141 another function. See if we can find
1142 the debug symbol for the target, and
1143 if so, use it instead, since it has
1144 return type / prototype info. This
1145 is important for example for "p
1146 *__errno_location()". */
1147 symbol *alias_target
1148 = ((msymbol.minsym->type != mst_text_gnu_ifunc
1149 && msymbol.minsym->type != mst_data_gnu_ifunc)
1150 ? find_function_alias_target (msymbol)
1151 : NULL);
1152 if (alias_target != NULL)
1153 {
1154 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1155 write_exp_elt_block
1156 (pstate, SYMBOL_BLOCK_VALUE (alias_target));
1157 write_exp_elt_sym (pstate, alias_target);
1158 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1159 }
1160 else
1161 write_exp_msymbol (pstate, msymbol);
1162 }
1163 }
1164 ;
1165
1166 space_identifier : '@' NAME
1167 {
1168 cpstate->type_stack.insert (pstate, copy_name ($2.stoken));
1169 }
1170 ;
1171
1172 const_or_volatile: const_or_volatile_noopt
1173 |
1174 ;
1175
1176 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
1177 ;
1178
1179 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
1180 | const_or_volatile_noopt
1181 ;
1182
1183 const_or_volatile_or_space_identifier:
1184 const_or_volatile_or_space_identifier_noopt
1185 |
1186 ;
1187
1188 ptr_operator:
1189 ptr_operator '*'
1190 { cpstate->type_stack.insert (tp_pointer); }
1191 const_or_volatile_or_space_identifier
1192 | '*'
1193 { cpstate->type_stack.insert (tp_pointer); }
1194 const_or_volatile_or_space_identifier
1195 | '&'
1196 { cpstate->type_stack.insert (tp_reference); }
1197 | '&' ptr_operator
1198 { cpstate->type_stack.insert (tp_reference); }
1199 | ANDAND
1200 { cpstate->type_stack.insert (tp_rvalue_reference); }
1201 | ANDAND ptr_operator
1202 { cpstate->type_stack.insert (tp_rvalue_reference); }
1203 ;
1204
1205 ptr_operator_ts: ptr_operator
1206 {
1207 $$ = cpstate->type_stack.create ();
1208 cpstate->type_stacks.emplace_back ($$);
1209 }
1210 ;
1211
1212 abs_decl: ptr_operator_ts direct_abs_decl
1213 { $$ = $2->append ($1); }
1214 | ptr_operator_ts
1215 | direct_abs_decl
1216 ;
1217
1218 direct_abs_decl: '(' abs_decl ')'
1219 { $$ = $2; }
1220 | direct_abs_decl array_mod
1221 {
1222 cpstate->type_stack.push ($1);
1223 cpstate->type_stack.push ($2);
1224 cpstate->type_stack.push (tp_array);
1225 $$ = cpstate->type_stack.create ();
1226 cpstate->type_stacks.emplace_back ($$);
1227 }
1228 | array_mod
1229 {
1230 cpstate->type_stack.push ($1);
1231 cpstate->type_stack.push (tp_array);
1232 $$ = cpstate->type_stack.create ();
1233 cpstate->type_stacks.emplace_back ($$);
1234 }
1235
1236 | direct_abs_decl func_mod
1237 {
1238 cpstate->type_stack.push ($1);
1239 cpstate->type_stack.push ($2);
1240 $$ = cpstate->type_stack.create ();
1241 cpstate->type_stacks.emplace_back ($$);
1242 }
1243 | func_mod
1244 {
1245 cpstate->type_stack.push ($1);
1246 $$ = cpstate->type_stack.create ();
1247 cpstate->type_stacks.emplace_back ($$);
1248 }
1249 ;
1250
1251 array_mod: '[' ']'
1252 { $$ = -1; }
1253 | OBJC_LBRAC ']'
1254 { $$ = -1; }
1255 | '[' INT ']'
1256 { $$ = $2.val; }
1257 | OBJC_LBRAC INT ']'
1258 { $$ = $2.val; }
1259 ;
1260
1261 func_mod: '(' ')'
1262 {
1263 $$ = new std::vector<struct type *>;
1264 cpstate->type_lists.emplace_back ($$);
1265 }
1266 | '(' parameter_typelist ')'
1267 { $$ = $2; }
1268 ;
1269
1270 /* We used to try to recognize pointer to member types here, but
1271 that didn't work (shift/reduce conflicts meant that these rules never
1272 got executed). The problem is that
1273 int (foo::bar::baz::bizzle)
1274 is a function type but
1275 int (foo::bar::baz::bizzle::*)
1276 is a pointer to member type. Stroustrup loses again! */
1277
1278 type : ptype
1279 ;
1280
1281 /* Implements (approximately): (type-qualifier)* type-specifier.
1282
1283 When type-specifier is only ever a single word, like 'float' then these
1284 arrive as pre-built TYPENAME tokens thanks to the classify_name
1285 function. However, when a type-specifier can contain multiple words,
1286 for example 'double' can appear as just 'double' or 'long double', and
1287 similarly 'long' can appear as just 'long' or in 'long double', then
1288 these type-specifiers are parsed into their own tokens in the function
1289 lex_one_token and the ident_tokens array. These separate tokens are all
1290 recognised here. */
1291 typebase
1292 : TYPENAME
1293 { $$ = $1.type; }
1294 | INT_KEYWORD
1295 { $$ = lookup_signed_typename (pstate->language (),
1296 pstate->gdbarch (),
1297 "int"); }
1298 | LONG
1299 { $$ = lookup_signed_typename (pstate->language (),
1300 pstate->gdbarch (),
1301 "long"); }
1302 | SHORT
1303 { $$ = lookup_signed_typename (pstate->language (),
1304 pstate->gdbarch (),
1305 "short"); }
1306 | LONG INT_KEYWORD
1307 { $$ = lookup_signed_typename (pstate->language (),
1308 pstate->gdbarch (),
1309 "long"); }
1310 | LONG SIGNED_KEYWORD INT_KEYWORD
1311 { $$ = lookup_signed_typename (pstate->language (),
1312 pstate->gdbarch (),
1313 "long"); }
1314 | LONG SIGNED_KEYWORD
1315 { $$ = lookup_signed_typename (pstate->language (),
1316 pstate->gdbarch (),
1317 "long"); }
1318 | SIGNED_KEYWORD LONG INT_KEYWORD
1319 { $$ = lookup_signed_typename (pstate->language (),
1320 pstate->gdbarch (),
1321 "long"); }
1322 | UNSIGNED LONG INT_KEYWORD
1323 { $$ = lookup_unsigned_typename (pstate->language (),
1324 pstate->gdbarch (),
1325 "long"); }
1326 | LONG UNSIGNED INT_KEYWORD
1327 { $$ = lookup_unsigned_typename (pstate->language (),
1328 pstate->gdbarch (),
1329 "long"); }
1330 | LONG UNSIGNED
1331 { $$ = lookup_unsigned_typename (pstate->language (),
1332 pstate->gdbarch (),
1333 "long"); }
1334 | LONG LONG
1335 { $$ = lookup_signed_typename (pstate->language (),
1336 pstate->gdbarch (),
1337 "long long"); }
1338 | LONG LONG INT_KEYWORD
1339 { $$ = lookup_signed_typename (pstate->language (),
1340 pstate->gdbarch (),
1341 "long long"); }
1342 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
1343 { $$ = lookup_signed_typename (pstate->language (),
1344 pstate->gdbarch (),
1345 "long long"); }
1346 | LONG LONG SIGNED_KEYWORD
1347 { $$ = lookup_signed_typename (pstate->language (),
1348 pstate->gdbarch (),
1349 "long long"); }
1350 | SIGNED_KEYWORD LONG LONG
1351 { $$ = lookup_signed_typename (pstate->language (),
1352 pstate->gdbarch (),
1353 "long long"); }
1354 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
1355 { $$ = lookup_signed_typename (pstate->language (),
1356 pstate->gdbarch (),
1357 "long long"); }
1358 | UNSIGNED LONG LONG
1359 { $$ = lookup_unsigned_typename (pstate->language (),
1360 pstate->gdbarch (),
1361 "long long"); }
1362 | UNSIGNED LONG LONG INT_KEYWORD
1363 { $$ = lookup_unsigned_typename (pstate->language (),
1364 pstate->gdbarch (),
1365 "long long"); }
1366 | LONG LONG UNSIGNED
1367 { $$ = lookup_unsigned_typename (pstate->language (),
1368 pstate->gdbarch (),
1369 "long long"); }
1370 | LONG LONG UNSIGNED INT_KEYWORD
1371 { $$ = lookup_unsigned_typename (pstate->language (),
1372 pstate->gdbarch (),
1373 "long long"); }
1374 | SHORT INT_KEYWORD
1375 { $$ = lookup_signed_typename (pstate->language (),
1376 pstate->gdbarch (),
1377 "short"); }
1378 | SHORT SIGNED_KEYWORD INT_KEYWORD
1379 { $$ = lookup_signed_typename (pstate->language (),
1380 pstate->gdbarch (),
1381 "short"); }
1382 | SHORT SIGNED_KEYWORD
1383 { $$ = lookup_signed_typename (pstate->language (),
1384 pstate->gdbarch (),
1385 "short"); }
1386 | UNSIGNED SHORT INT_KEYWORD
1387 { $$ = lookup_unsigned_typename (pstate->language (),
1388 pstate->gdbarch (),
1389 "short"); }
1390 | SHORT UNSIGNED
1391 { $$ = lookup_unsigned_typename (pstate->language (),
1392 pstate->gdbarch (),
1393 "short"); }
1394 | SHORT UNSIGNED INT_KEYWORD
1395 { $$ = lookup_unsigned_typename (pstate->language (),
1396 pstate->gdbarch (),
1397 "short"); }
1398 | DOUBLE_KEYWORD
1399 { $$ = lookup_typename (pstate->language (),
1400 pstate->gdbarch (),
1401 "double",
1402 NULL,
1403 0); }
1404 | LONG DOUBLE_KEYWORD
1405 { $$ = lookup_typename (pstate->language (),
1406 pstate->gdbarch (),
1407 "long double",
1408 NULL,
1409 0); }
1410 | STRUCT name
1411 { $$
1412 = lookup_struct (copy_name ($2),
1413 pstate->expression_context_block);
1414 }
1415 | STRUCT COMPLETE
1416 {
1417 pstate->mark_completion_tag (TYPE_CODE_STRUCT,
1418 "", 0);
1419 $$ = NULL;
1420 }
1421 | STRUCT name COMPLETE
1422 {
1423 pstate->mark_completion_tag (TYPE_CODE_STRUCT,
1424 $2.ptr, $2.length);
1425 $$ = NULL;
1426 }
1427 | CLASS name
1428 { $$ = lookup_struct
1429 (copy_name ($2), pstate->expression_context_block);
1430 }
1431 | CLASS COMPLETE
1432 {
1433 pstate->mark_completion_tag (TYPE_CODE_STRUCT,
1434 "", 0);
1435 $$ = NULL;
1436 }
1437 | CLASS name COMPLETE
1438 {
1439 pstate->mark_completion_tag (TYPE_CODE_STRUCT,
1440 $2.ptr, $2.length);
1441 $$ = NULL;
1442 }
1443 | UNION name
1444 { $$
1445 = lookup_union (copy_name ($2),
1446 pstate->expression_context_block);
1447 }
1448 | UNION COMPLETE
1449 {
1450 pstate->mark_completion_tag (TYPE_CODE_UNION,
1451 "", 0);
1452 $$ = NULL;
1453 }
1454 | UNION name COMPLETE
1455 {
1456 pstate->mark_completion_tag (TYPE_CODE_UNION,
1457 $2.ptr, $2.length);
1458 $$ = NULL;
1459 }
1460 | ENUM name
1461 { $$ = lookup_enum (copy_name ($2),
1462 pstate->expression_context_block);
1463 }
1464 | ENUM COMPLETE
1465 {
1466 pstate->mark_completion_tag (TYPE_CODE_ENUM, "", 0);
1467 $$ = NULL;
1468 }
1469 | ENUM name COMPLETE
1470 {
1471 pstate->mark_completion_tag (TYPE_CODE_ENUM, $2.ptr,
1472 $2.length);
1473 $$ = NULL;
1474 }
1475 | UNSIGNED type_name
1476 { $$ = lookup_unsigned_typename (pstate->language (),
1477 pstate->gdbarch (),
1478 TYPE_NAME($2.type)); }
1479 | UNSIGNED
1480 { $$ = lookup_unsigned_typename (pstate->language (),
1481 pstate->gdbarch (),
1482 "int"); }
1483 | SIGNED_KEYWORD type_name
1484 { $$ = lookup_signed_typename (pstate->language (),
1485 pstate->gdbarch (),
1486 TYPE_NAME($2.type)); }
1487 | SIGNED_KEYWORD
1488 { $$ = lookup_signed_typename (pstate->language (),
1489 pstate->gdbarch (),
1490 "int"); }
1491 /* It appears that this rule for templates is never
1492 reduced; template recognition happens by lookahead
1493 in the token processing code in yylex. */
1494 | TEMPLATE name '<' type '>'
1495 { $$ = lookup_template_type
1496 (copy_name($2), $4,
1497 pstate->expression_context_block);
1498 }
1499 | const_or_volatile_or_space_identifier_noopt typebase
1500 { $$ = cpstate->type_stack.follow_types ($2); }
1501 | typebase const_or_volatile_or_space_identifier_noopt
1502 { $$ = cpstate->type_stack.follow_types ($1); }
1503 ;
1504
1505 type_name: TYPENAME
1506 | INT_KEYWORD
1507 {
1508 $$.stoken.ptr = "int";
1509 $$.stoken.length = 3;
1510 $$.type = lookup_signed_typename (pstate->language (),
1511 pstate->gdbarch (),
1512 "int");
1513 }
1514 | LONG
1515 {
1516 $$.stoken.ptr = "long";
1517 $$.stoken.length = 4;
1518 $$.type = lookup_signed_typename (pstate->language (),
1519 pstate->gdbarch (),
1520 "long");
1521 }
1522 | SHORT
1523 {
1524 $$.stoken.ptr = "short";
1525 $$.stoken.length = 5;
1526 $$.type = lookup_signed_typename (pstate->language (),
1527 pstate->gdbarch (),
1528 "short");
1529 }
1530 ;
1531
1532 parameter_typelist:
1533 nonempty_typelist
1534 { check_parameter_typelist ($1); }
1535 | nonempty_typelist ',' DOTDOTDOT
1536 {
1537 $1->push_back (NULL);
1538 check_parameter_typelist ($1);
1539 $$ = $1;
1540 }
1541 ;
1542
1543 nonempty_typelist
1544 : type
1545 {
1546 std::vector<struct type *> *typelist
1547 = new std::vector<struct type *>;
1548 cpstate->type_lists.emplace_back (typelist);
1549
1550 typelist->push_back ($1);
1551 $$ = typelist;
1552 }
1553 | nonempty_typelist ',' type
1554 {
1555 $1->push_back ($3);
1556 $$ = $1;
1557 }
1558 ;
1559
1560 ptype : typebase
1561 | ptype abs_decl
1562 {
1563 cpstate->type_stack.push ($2);
1564 $$ = cpstate->type_stack.follow_types ($1);
1565 }
1566 ;
1567
1568 conversion_type_id: typebase conversion_declarator
1569 { $$ = cpstate->type_stack.follow_types ($1); }
1570 ;
1571
1572 conversion_declarator: /* Nothing. */
1573 | ptr_operator conversion_declarator
1574 ;
1575
1576 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1577 | VOLATILE_KEYWORD CONST_KEYWORD
1578 ;
1579
1580 const_or_volatile_noopt: const_and_volatile
1581 { cpstate->type_stack.insert (tp_const);
1582 cpstate->type_stack.insert (tp_volatile);
1583 }
1584 | CONST_KEYWORD
1585 { cpstate->type_stack.insert (tp_const); }
1586 | VOLATILE_KEYWORD
1587 { cpstate->type_stack.insert (tp_volatile); }
1588 ;
1589
1590 oper: OPERATOR NEW
1591 { $$ = operator_stoken (" new"); }
1592 | OPERATOR DELETE
1593 { $$ = operator_stoken (" delete"); }
1594 | OPERATOR NEW '[' ']'
1595 { $$ = operator_stoken (" new[]"); }
1596 | OPERATOR DELETE '[' ']'
1597 { $$ = operator_stoken (" delete[]"); }
1598 | OPERATOR NEW OBJC_LBRAC ']'
1599 { $$ = operator_stoken (" new[]"); }
1600 | OPERATOR DELETE OBJC_LBRAC ']'
1601 { $$ = operator_stoken (" delete[]"); }
1602 | OPERATOR '+'
1603 { $$ = operator_stoken ("+"); }
1604 | OPERATOR '-'
1605 { $$ = operator_stoken ("-"); }
1606 | OPERATOR '*'
1607 { $$ = operator_stoken ("*"); }
1608 | OPERATOR '/'
1609 { $$ = operator_stoken ("/"); }
1610 | OPERATOR '%'
1611 { $$ = operator_stoken ("%"); }
1612 | OPERATOR '^'
1613 { $$ = operator_stoken ("^"); }
1614 | OPERATOR '&'
1615 { $$ = operator_stoken ("&"); }
1616 | OPERATOR '|'
1617 { $$ = operator_stoken ("|"); }
1618 | OPERATOR '~'
1619 { $$ = operator_stoken ("~"); }
1620 | OPERATOR '!'
1621 { $$ = operator_stoken ("!"); }
1622 | OPERATOR '='
1623 { $$ = operator_stoken ("="); }
1624 | OPERATOR '<'
1625 { $$ = operator_stoken ("<"); }
1626 | OPERATOR '>'
1627 { $$ = operator_stoken (">"); }
1628 | OPERATOR ASSIGN_MODIFY
1629 { const char *op = " unknown";
1630 switch ($2)
1631 {
1632 case BINOP_RSH:
1633 op = ">>=";
1634 break;
1635 case BINOP_LSH:
1636 op = "<<=";
1637 break;
1638 case BINOP_ADD:
1639 op = "+=";
1640 break;
1641 case BINOP_SUB:
1642 op = "-=";
1643 break;
1644 case BINOP_MUL:
1645 op = "*=";
1646 break;
1647 case BINOP_DIV:
1648 op = "/=";
1649 break;
1650 case BINOP_REM:
1651 op = "%=";
1652 break;
1653 case BINOP_BITWISE_IOR:
1654 op = "|=";
1655 break;
1656 case BINOP_BITWISE_AND:
1657 op = "&=";
1658 break;
1659 case BINOP_BITWISE_XOR:
1660 op = "^=";
1661 break;
1662 default:
1663 break;
1664 }
1665
1666 $$ = operator_stoken (op);
1667 }
1668 | OPERATOR LSH
1669 { $$ = operator_stoken ("<<"); }
1670 | OPERATOR RSH
1671 { $$ = operator_stoken (">>"); }
1672 | OPERATOR EQUAL
1673 { $$ = operator_stoken ("=="); }
1674 | OPERATOR NOTEQUAL
1675 { $$ = operator_stoken ("!="); }
1676 | OPERATOR LEQ
1677 { $$ = operator_stoken ("<="); }
1678 | OPERATOR GEQ
1679 { $$ = operator_stoken (">="); }
1680 | OPERATOR ANDAND
1681 { $$ = operator_stoken ("&&"); }
1682 | OPERATOR OROR
1683 { $$ = operator_stoken ("||"); }
1684 | OPERATOR INCREMENT
1685 { $$ = operator_stoken ("++"); }
1686 | OPERATOR DECREMENT
1687 { $$ = operator_stoken ("--"); }
1688 | OPERATOR ','
1689 { $$ = operator_stoken (","); }
1690 | OPERATOR ARROW_STAR
1691 { $$ = operator_stoken ("->*"); }
1692 | OPERATOR ARROW
1693 { $$ = operator_stoken ("->"); }
1694 | OPERATOR '(' ')'
1695 { $$ = operator_stoken ("()"); }
1696 | OPERATOR '[' ']'
1697 { $$ = operator_stoken ("[]"); }
1698 | OPERATOR OBJC_LBRAC ']'
1699 { $$ = operator_stoken ("[]"); }
1700 | OPERATOR conversion_type_id
1701 { string_file buf;
1702
1703 c_print_type ($2, NULL, &buf, -1, 0,
1704 &type_print_raw_options);
1705
1706 /* This also needs canonicalization. */
1707 std::string canon
1708 = cp_canonicalize_string (buf.c_str ());
1709 if (canon.empty ())
1710 canon = std::move (buf.string ());
1711 $$ = operator_stoken ((" " + canon).c_str ());
1712 }
1713 ;
1714
1715 /* This rule exists in order to allow some tokens that would not normally
1716 match the 'name' rule to appear as fields within a struct. The example
1717 that initially motivated this was the RISC-V target which models the
1718 floating point registers as a union with fields called 'float' and
1719 'double'. The 'float' string becomes a TYPENAME token and can appear
1720 anywhere a 'name' can, however 'double' is its own token,
1721 DOUBLE_KEYWORD, and doesn't match the 'name' rule.*/
1722 field_name
1723 : name
1724 | DOUBLE_KEYWORD { $$ = typename_stoken ("double"); }
1725 | INT_KEYWORD { $$ = typename_stoken ("int"); }
1726 | LONG { $$ = typename_stoken ("long"); }
1727 | SHORT { $$ = typename_stoken ("short"); }
1728 | SIGNED_KEYWORD { $$ = typename_stoken ("signed"); }
1729 | UNSIGNED { $$ = typename_stoken ("unsigned"); }
1730 ;
1731
1732 name : NAME { $$ = $1.stoken; }
1733 | BLOCKNAME { $$ = $1.stoken; }
1734 | TYPENAME { $$ = $1.stoken; }
1735 | NAME_OR_INT { $$ = $1.stoken; }
1736 | UNKNOWN_CPP_NAME { $$ = $1.stoken; }
1737 | oper { $$ = $1; }
1738 ;
1739
1740 name_not_typename : NAME
1741 | BLOCKNAME
1742 /* These would be useful if name_not_typename was useful, but it is just
1743 a fake for "variable", so these cause reduce/reduce conflicts because
1744 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1745 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1746 context where only a name could occur, this might be useful.
1747 | NAME_OR_INT
1748 */
1749 | oper
1750 {
1751 struct field_of_this_result is_a_field_of_this;
1752
1753 $$.stoken = $1;
1754 $$.sym
1755 = lookup_symbol ($1.ptr,
1756 pstate->expression_context_block,
1757 VAR_DOMAIN,
1758 &is_a_field_of_this);
1759 $$.is_a_field_of_this
1760 = is_a_field_of_this.type != NULL;
1761 }
1762 | UNKNOWN_CPP_NAME
1763 ;
1764
1765 %%
1766
1767 /* Like write_exp_string, but prepends a '~'. */
1768
1769 static void
1770 write_destructor_name (struct parser_state *par_state, struct stoken token)
1771 {
1772 char *copy = (char *) alloca (token.length + 1);
1773
1774 copy[0] = '~';
1775 memcpy (&copy[1], token.ptr, token.length);
1776
1777 token.ptr = copy;
1778 ++token.length;
1779
1780 write_exp_string (par_state, token);
1781 }
1782
1783 /* Returns a stoken of the operator name given by OP (which does not
1784 include the string "operator"). */
1785
1786 static struct stoken
1787 operator_stoken (const char *op)
1788 {
1789 struct stoken st = { NULL, 0 };
1790 char *buf;
1791
1792 st.length = CP_OPERATOR_LEN + strlen (op);
1793 buf = (char *) malloc (st.length + 1);
1794 strcpy (buf, CP_OPERATOR_STR);
1795 strcat (buf, op);
1796 st.ptr = buf;
1797
1798 /* The toplevel (c_parse) will free the memory allocated here. */
1799 cpstate->strings.emplace_back (buf);
1800 return st;
1801 };
1802
1803 /* Returns a stoken of the type named TYPE. */
1804
1805 static struct stoken
1806 typename_stoken (const char *type)
1807 {
1808 struct stoken st = { type, 0 };
1809 st.length = strlen (type);
1810 return st;
1811 };
1812
1813 /* Return true if the type is aggregate-like. */
1814
1815 static int
1816 type_aggregate_p (struct type *type)
1817 {
1818 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1819 || TYPE_CODE (type) == TYPE_CODE_UNION
1820 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE
1821 || (TYPE_CODE (type) == TYPE_CODE_ENUM
1822 && TYPE_DECLARED_CLASS (type)));
1823 }
1824
1825 /* Validate a parameter typelist. */
1826
1827 static void
1828 check_parameter_typelist (std::vector<struct type *> *params)
1829 {
1830 struct type *type;
1831 int ix;
1832
1833 for (ix = 0; ix < params->size (); ++ix)
1834 {
1835 type = (*params)[ix];
1836 if (type != NULL && TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
1837 {
1838 if (ix == 0)
1839 {
1840 if (params->size () == 1)
1841 {
1842 /* Ok. */
1843 break;
1844 }
1845 error (_("parameter types following 'void'"));
1846 }
1847 else
1848 error (_("'void' invalid as parameter type"));
1849 }
1850 }
1851 }
1852
1853 /* Take care of parsing a number (anything that starts with a digit).
1854 Set yylval and return the token type; update lexptr.
1855 LEN is the number of characters in it. */
1856
1857 /*** Needs some error checking for the float case ***/
1858
1859 static int
1860 parse_number (struct parser_state *par_state,
1861 const char *buf, int len, int parsed_float, YYSTYPE *putithere)
1862 {
1863 ULONGEST n = 0;
1864 ULONGEST prevn = 0;
1865 ULONGEST un;
1866
1867 int i = 0;
1868 int c;
1869 int base = input_radix;
1870 int unsigned_p = 0;
1871
1872 /* Number of "L" suffixes encountered. */
1873 int long_p = 0;
1874
1875 /* We have found a "L" or "U" suffix. */
1876 int found_suffix = 0;
1877
1878 ULONGEST high_bit;
1879 struct type *signed_type;
1880 struct type *unsigned_type;
1881 char *p;
1882
1883 p = (char *) alloca (len);
1884 memcpy (p, buf, len);
1885
1886 if (parsed_float)
1887 {
1888 /* Handle suffixes for decimal floating-point: "df", "dd" or "dl". */
1889 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
1890 {
1891 putithere->typed_val_float.type
1892 = parse_type (par_state)->builtin_decfloat;
1893 len -= 2;
1894 }
1895 else if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
1896 {
1897 putithere->typed_val_float.type
1898 = parse_type (par_state)->builtin_decdouble;
1899 len -= 2;
1900 }
1901 else if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
1902 {
1903 putithere->typed_val_float.type
1904 = parse_type (par_state)->builtin_declong;
1905 len -= 2;
1906 }
1907 /* Handle suffixes: 'f' for float, 'l' for long double. */
1908 else if (len >= 1 && TOLOWER (p[len - 1]) == 'f')
1909 {
1910 putithere->typed_val_float.type
1911 = parse_type (par_state)->builtin_float;
1912 len -= 1;
1913 }
1914 else if (len >= 1 && TOLOWER (p[len - 1]) == 'l')
1915 {
1916 putithere->typed_val_float.type
1917 = parse_type (par_state)->builtin_long_double;
1918 len -= 1;
1919 }
1920 /* Default type for floating-point literals is double. */
1921 else
1922 {
1923 putithere->typed_val_float.type
1924 = parse_type (par_state)->builtin_double;
1925 }
1926
1927 if (!parse_float (p, len,
1928 putithere->typed_val_float.type,
1929 putithere->typed_val_float.val))
1930 return ERROR;
1931 return FLOAT;
1932 }
1933
1934 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1935 if (p[0] == '0' && len > 1)
1936 switch (p[1])
1937 {
1938 case 'x':
1939 case 'X':
1940 if (len >= 3)
1941 {
1942 p += 2;
1943 base = 16;
1944 len -= 2;
1945 }
1946 break;
1947
1948 case 'b':
1949 case 'B':
1950 if (len >= 3)
1951 {
1952 p += 2;
1953 base = 2;
1954 len -= 2;
1955 }
1956 break;
1957
1958 case 't':
1959 case 'T':
1960 case 'd':
1961 case 'D':
1962 if (len >= 3)
1963 {
1964 p += 2;
1965 base = 10;
1966 len -= 2;
1967 }
1968 break;
1969
1970 default:
1971 base = 8;
1972 break;
1973 }
1974
1975 while (len-- > 0)
1976 {
1977 c = *p++;
1978 if (c >= 'A' && c <= 'Z')
1979 c += 'a' - 'A';
1980 if (c != 'l' && c != 'u')
1981 n *= base;
1982 if (c >= '0' && c <= '9')
1983 {
1984 if (found_suffix)
1985 return ERROR;
1986 n += i = c - '0';
1987 }
1988 else
1989 {
1990 if (base > 10 && c >= 'a' && c <= 'f')
1991 {
1992 if (found_suffix)
1993 return ERROR;
1994 n += i = c - 'a' + 10;
1995 }
1996 else if (c == 'l')
1997 {
1998 ++long_p;
1999 found_suffix = 1;
2000 }
2001 else if (c == 'u')
2002 {
2003 unsigned_p = 1;
2004 found_suffix = 1;
2005 }
2006 else
2007 return ERROR; /* Char not a digit */
2008 }
2009 if (i >= base)
2010 return ERROR; /* Invalid digit in this base */
2011
2012 /* Portably test for overflow (only works for nonzero values, so make
2013 a second check for zero). FIXME: Can't we just make n and prevn
2014 unsigned and avoid this? */
2015 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
2016 unsigned_p = 1; /* Try something unsigned */
2017
2018 /* Portably test for unsigned overflow.
2019 FIXME: This check is wrong; for example it doesn't find overflow
2020 on 0x123456789 when LONGEST is 32 bits. */
2021 if (c != 'l' && c != 'u' && n != 0)
2022 {
2023 if (unsigned_p && prevn >= n)
2024 error (_("Numeric constant too large."));
2025 }
2026 prevn = n;
2027 }
2028
2029 /* An integer constant is an int, a long, or a long long. An L
2030 suffix forces it to be long; an LL suffix forces it to be long
2031 long. If not forced to a larger size, it gets the first type of
2032 the above that it fits in. To figure out whether it fits, we
2033 shift it right and see whether anything remains. Note that we
2034 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
2035 operation, because many compilers will warn about such a shift
2036 (which always produces a zero result). Sometimes gdbarch_int_bit
2037 or gdbarch_long_bit will be that big, sometimes not. To deal with
2038 the case where it is we just always shift the value more than
2039 once, with fewer bits each time. */
2040
2041 un = n >> 2;
2042 if (long_p == 0
2043 && (un >> (gdbarch_int_bit (par_state->gdbarch ()) - 2)) == 0)
2044 {
2045 high_bit
2046 = ((ULONGEST)1) << (gdbarch_int_bit (par_state->gdbarch ()) - 1);
2047
2048 /* A large decimal (not hex or octal) constant (between INT_MAX
2049 and UINT_MAX) is a long or unsigned long, according to ANSI,
2050 never an unsigned int, but this code treats it as unsigned
2051 int. This probably should be fixed. GCC gives a warning on
2052 such constants. */
2053
2054 unsigned_type = parse_type (par_state)->builtin_unsigned_int;
2055 signed_type = parse_type (par_state)->builtin_int;
2056 }
2057 else if (long_p <= 1
2058 && (un >> (gdbarch_long_bit (par_state->gdbarch ()) - 2)) == 0)
2059 {
2060 high_bit
2061 = ((ULONGEST)1) << (gdbarch_long_bit (par_state->gdbarch ()) - 1);
2062 unsigned_type = parse_type (par_state)->builtin_unsigned_long;
2063 signed_type = parse_type (par_state)->builtin_long;
2064 }
2065 else
2066 {
2067 int shift;
2068 if (sizeof (ULONGEST) * HOST_CHAR_BIT
2069 < gdbarch_long_long_bit (par_state->gdbarch ()))
2070 /* A long long does not fit in a LONGEST. */
2071 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
2072 else
2073 shift = (gdbarch_long_long_bit (par_state->gdbarch ()) - 1);
2074 high_bit = (ULONGEST) 1 << shift;
2075 unsigned_type = parse_type (par_state)->builtin_unsigned_long_long;
2076 signed_type = parse_type (par_state)->builtin_long_long;
2077 }
2078
2079 putithere->typed_val_int.val = n;
2080
2081 /* If the high bit of the worked out type is set then this number
2082 has to be unsigned. */
2083
2084 if (unsigned_p || (n & high_bit))
2085 {
2086 putithere->typed_val_int.type = unsigned_type;
2087 }
2088 else
2089 {
2090 putithere->typed_val_int.type = signed_type;
2091 }
2092
2093 return INT;
2094 }
2095
2096 /* Temporary obstack used for holding strings. */
2097 static struct obstack tempbuf;
2098 static int tempbuf_init;
2099
2100 /* Parse a C escape sequence. The initial backslash of the sequence
2101 is at (*PTR)[-1]. *PTR will be updated to point to just after the
2102 last character of the sequence. If OUTPUT is not NULL, the
2103 translated form of the escape sequence will be written there. If
2104 OUTPUT is NULL, no output is written and the call will only affect
2105 *PTR. If an escape sequence is expressed in target bytes, then the
2106 entire sequence will simply be copied to OUTPUT. Return 1 if any
2107 character was emitted, 0 otherwise. */
2108
2109 int
2110 c_parse_escape (const char **ptr, struct obstack *output)
2111 {
2112 const char *tokptr = *ptr;
2113 int result = 1;
2114
2115 /* Some escape sequences undergo character set conversion. Those we
2116 translate here. */
2117 switch (*tokptr)
2118 {
2119 /* Hex escapes do not undergo character set conversion, so keep
2120 the escape sequence for later. */
2121 case 'x':
2122 if (output)
2123 obstack_grow_str (output, "\\x");
2124 ++tokptr;
2125 if (!ISXDIGIT (*tokptr))
2126 error (_("\\x escape without a following hex digit"));
2127 while (ISXDIGIT (*tokptr))
2128 {
2129 if (output)
2130 obstack_1grow (output, *tokptr);
2131 ++tokptr;
2132 }
2133 break;
2134
2135 /* Octal escapes do not undergo character set conversion, so
2136 keep the escape sequence for later. */
2137 case '0':
2138 case '1':
2139 case '2':
2140 case '3':
2141 case '4':
2142 case '5':
2143 case '6':
2144 case '7':
2145 {
2146 int i;
2147 if (output)
2148 obstack_grow_str (output, "\\");
2149 for (i = 0;
2150 i < 3 && ISDIGIT (*tokptr) && *tokptr != '8' && *tokptr != '9';
2151 ++i)
2152 {
2153 if (output)
2154 obstack_1grow (output, *tokptr);
2155 ++tokptr;
2156 }
2157 }
2158 break;
2159
2160 /* We handle UCNs later. We could handle them here, but that
2161 would mean a spurious error in the case where the UCN could
2162 be converted to the target charset but not the host
2163 charset. */
2164 case 'u':
2165 case 'U':
2166 {
2167 char c = *tokptr;
2168 int i, len = c == 'U' ? 8 : 4;
2169 if (output)
2170 {
2171 obstack_1grow (output, '\\');
2172 obstack_1grow (output, *tokptr);
2173 }
2174 ++tokptr;
2175 if (!ISXDIGIT (*tokptr))
2176 error (_("\\%c escape without a following hex digit"), c);
2177 for (i = 0; i < len && ISXDIGIT (*tokptr); ++i)
2178 {
2179 if (output)
2180 obstack_1grow (output, *tokptr);
2181 ++tokptr;
2182 }
2183 }
2184 break;
2185
2186 /* We must pass backslash through so that it does not
2187 cause quoting during the second expansion. */
2188 case '\\':
2189 if (output)
2190 obstack_grow_str (output, "\\\\");
2191 ++tokptr;
2192 break;
2193
2194 /* Escapes which undergo conversion. */
2195 case 'a':
2196 if (output)
2197 obstack_1grow (output, '\a');
2198 ++tokptr;
2199 break;
2200 case 'b':
2201 if (output)
2202 obstack_1grow (output, '\b');
2203 ++tokptr;
2204 break;
2205 case 'f':
2206 if (output)
2207 obstack_1grow (output, '\f');
2208 ++tokptr;
2209 break;
2210 case 'n':
2211 if (output)
2212 obstack_1grow (output, '\n');
2213 ++tokptr;
2214 break;
2215 case 'r':
2216 if (output)
2217 obstack_1grow (output, '\r');
2218 ++tokptr;
2219 break;
2220 case 't':
2221 if (output)
2222 obstack_1grow (output, '\t');
2223 ++tokptr;
2224 break;
2225 case 'v':
2226 if (output)
2227 obstack_1grow (output, '\v');
2228 ++tokptr;
2229 break;
2230
2231 /* GCC extension. */
2232 case 'e':
2233 if (output)
2234 obstack_1grow (output, HOST_ESCAPE_CHAR);
2235 ++tokptr;
2236 break;
2237
2238 /* Backslash-newline expands to nothing at all. */
2239 case '\n':
2240 ++tokptr;
2241 result = 0;
2242 break;
2243
2244 /* A few escapes just expand to the character itself. */
2245 case '\'':
2246 case '\"':
2247 case '?':
2248 /* GCC extensions. */
2249 case '(':
2250 case '{':
2251 case '[':
2252 case '%':
2253 /* Unrecognized escapes turn into the character itself. */
2254 default:
2255 if (output)
2256 obstack_1grow (output, *tokptr);
2257 ++tokptr;
2258 break;
2259 }
2260 *ptr = tokptr;
2261 return result;
2262 }
2263
2264 /* Parse a string or character literal from TOKPTR. The string or
2265 character may be wide or unicode. *OUTPTR is set to just after the
2266 end of the literal in the input string. The resulting token is
2267 stored in VALUE. This returns a token value, either STRING or
2268 CHAR, depending on what was parsed. *HOST_CHARS is set to the
2269 number of host characters in the literal. */
2270
2271 static int
2272 parse_string_or_char (const char *tokptr, const char **outptr,
2273 struct typed_stoken *value, int *host_chars)
2274 {
2275 int quote;
2276 c_string_type type;
2277 int is_objc = 0;
2278
2279 /* Build the gdb internal form of the input string in tempbuf. Note
2280 that the buffer is null byte terminated *only* for the
2281 convenience of debugging gdb itself and printing the buffer
2282 contents when the buffer contains no embedded nulls. Gdb does
2283 not depend upon the buffer being null byte terminated, it uses
2284 the length string instead. This allows gdb to handle C strings
2285 (as well as strings in other languages) with embedded null
2286 bytes */
2287
2288 if (!tempbuf_init)
2289 tempbuf_init = 1;
2290 else
2291 obstack_free (&tempbuf, NULL);
2292 obstack_init (&tempbuf);
2293
2294 /* Record the string type. */
2295 if (*tokptr == 'L')
2296 {
2297 type = C_WIDE_STRING;
2298 ++tokptr;
2299 }
2300 else if (*tokptr == 'u')
2301 {
2302 type = C_STRING_16;
2303 ++tokptr;
2304 }
2305 else if (*tokptr == 'U')
2306 {
2307 type = C_STRING_32;
2308 ++tokptr;
2309 }
2310 else if (*tokptr == '@')
2311 {
2312 /* An Objective C string. */
2313 is_objc = 1;
2314 type = C_STRING;
2315 ++tokptr;
2316 }
2317 else
2318 type = C_STRING;
2319
2320 /* Skip the quote. */
2321 quote = *tokptr;
2322 if (quote == '\'')
2323 type |= C_CHAR;
2324 ++tokptr;
2325
2326 *host_chars = 0;
2327
2328 while (*tokptr)
2329 {
2330 char c = *tokptr;
2331 if (c == '\\')
2332 {
2333 ++tokptr;
2334 *host_chars += c_parse_escape (&tokptr, &tempbuf);
2335 }
2336 else if (c == quote)
2337 break;
2338 else
2339 {
2340 obstack_1grow (&tempbuf, c);
2341 ++tokptr;
2342 /* FIXME: this does the wrong thing with multi-byte host
2343 characters. We could use mbrlen here, but that would
2344 make "set host-charset" a bit less useful. */
2345 ++*host_chars;
2346 }
2347 }
2348
2349 if (*tokptr != quote)
2350 {
2351 if (quote == '"')
2352 error (_("Unterminated string in expression."));
2353 else
2354 error (_("Unmatched single quote."));
2355 }
2356 ++tokptr;
2357
2358 value->type = type;
2359 value->ptr = (char *) obstack_base (&tempbuf);
2360 value->length = obstack_object_size (&tempbuf);
2361
2362 *outptr = tokptr;
2363
2364 return quote == '"' ? (is_objc ? NSSTRING : STRING) : CHAR;
2365 }
2366
2367 /* This is used to associate some attributes with a token. */
2368
2369 enum token_flag
2370 {
2371 /* If this bit is set, the token is C++-only. */
2372
2373 FLAG_CXX = 1,
2374
2375 /* If this bit is set, the token is conditional: if there is a
2376 symbol of the same name, then the token is a symbol; otherwise,
2377 the token is a keyword. */
2378
2379 FLAG_SHADOW = 2
2380 };
2381 DEF_ENUM_FLAGS_TYPE (enum token_flag, token_flags);
2382
2383 struct token
2384 {
2385 const char *oper;
2386 int token;
2387 enum exp_opcode opcode;
2388 token_flags flags;
2389 };
2390
2391 static const struct token tokentab3[] =
2392 {
2393 {">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
2394 {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0},
2395 {"->*", ARROW_STAR, BINOP_END, FLAG_CXX},
2396 {"...", DOTDOTDOT, BINOP_END, 0}
2397 };
2398
2399 static const struct token tokentab2[] =
2400 {
2401 {"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
2402 {"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
2403 {"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
2404 {"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
2405 {"%=", ASSIGN_MODIFY, BINOP_REM, 0},
2406 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
2407 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
2408 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
2409 {"++", INCREMENT, BINOP_END, 0},
2410 {"--", DECREMENT, BINOP_END, 0},
2411 {"->", ARROW, BINOP_END, 0},
2412 {"&&", ANDAND, BINOP_END, 0},
2413 {"||", OROR, BINOP_END, 0},
2414 /* "::" is *not* only C++: gdb overrides its meaning in several
2415 different ways, e.g., 'filename'::func, function::variable. */
2416 {"::", COLONCOLON, BINOP_END, 0},
2417 {"<<", LSH, BINOP_END, 0},
2418 {">>", RSH, BINOP_END, 0},
2419 {"==", EQUAL, BINOP_END, 0},
2420 {"!=", NOTEQUAL, BINOP_END, 0},
2421 {"<=", LEQ, BINOP_END, 0},
2422 {">=", GEQ, BINOP_END, 0},
2423 {".*", DOT_STAR, BINOP_END, FLAG_CXX}
2424 };
2425
2426 /* Identifier-like tokens. Only type-specifiers than can appear in
2427 multi-word type names (for example 'double' can appear in 'long
2428 double') need to be listed here. type-specifiers that are only ever
2429 single word (like 'float') are handled by the classify_name function. */
2430 static const struct token ident_tokens[] =
2431 {
2432 {"unsigned", UNSIGNED, OP_NULL, 0},
2433 {"template", TEMPLATE, OP_NULL, FLAG_CXX},
2434 {"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
2435 {"struct", STRUCT, OP_NULL, 0},
2436 {"signed", SIGNED_KEYWORD, OP_NULL, 0},
2437 {"sizeof", SIZEOF, OP_NULL, 0},
2438 {"_Alignof", ALIGNOF, OP_NULL, 0},
2439 {"alignof", ALIGNOF, OP_NULL, FLAG_CXX},
2440 {"double", DOUBLE_KEYWORD, OP_NULL, 0},
2441 {"false", FALSEKEYWORD, OP_NULL, FLAG_CXX},
2442 {"class", CLASS, OP_NULL, FLAG_CXX},
2443 {"union", UNION, OP_NULL, 0},
2444 {"short", SHORT, OP_NULL, 0},
2445 {"const", CONST_KEYWORD, OP_NULL, 0},
2446 {"enum", ENUM, OP_NULL, 0},
2447 {"long", LONG, OP_NULL, 0},
2448 {"true", TRUEKEYWORD, OP_NULL, FLAG_CXX},
2449 {"int", INT_KEYWORD, OP_NULL, 0},
2450 {"new", NEW, OP_NULL, FLAG_CXX},
2451 {"delete", DELETE, OP_NULL, FLAG_CXX},
2452 {"operator", OPERATOR, OP_NULL, FLAG_CXX},
2453
2454 {"and", ANDAND, BINOP_END, FLAG_CXX},
2455 {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, FLAG_CXX},
2456 {"bitand", '&', OP_NULL, FLAG_CXX},
2457 {"bitor", '|', OP_NULL, FLAG_CXX},
2458 {"compl", '~', OP_NULL, FLAG_CXX},
2459 {"not", '!', OP_NULL, FLAG_CXX},
2460 {"not_eq", NOTEQUAL, BINOP_END, FLAG_CXX},
2461 {"or", OROR, BINOP_END, FLAG_CXX},
2462 {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, FLAG_CXX},
2463 {"xor", '^', OP_NULL, FLAG_CXX},
2464 {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, FLAG_CXX},
2465
2466 {"const_cast", CONST_CAST, OP_NULL, FLAG_CXX },
2467 {"dynamic_cast", DYNAMIC_CAST, OP_NULL, FLAG_CXX },
2468 {"static_cast", STATIC_CAST, OP_NULL, FLAG_CXX },
2469 {"reinterpret_cast", REINTERPRET_CAST, OP_NULL, FLAG_CXX },
2470
2471 {"__typeof__", TYPEOF, OP_TYPEOF, 0 },
2472 {"__typeof", TYPEOF, OP_TYPEOF, 0 },
2473 {"typeof", TYPEOF, OP_TYPEOF, FLAG_SHADOW },
2474 {"__decltype", DECLTYPE, OP_DECLTYPE, FLAG_CXX },
2475 {"decltype", DECLTYPE, OP_DECLTYPE, FLAG_CXX | FLAG_SHADOW },
2476
2477 {"typeid", TYPEID, OP_TYPEID, FLAG_CXX}
2478 };
2479
2480
2481 static void
2482 scan_macro_expansion (char *expansion)
2483 {
2484 char *copy;
2485
2486 /* We'd better not be trying to push the stack twice. */
2487 gdb_assert (! cpstate->macro_original_text);
2488
2489 /* Copy to the obstack, and then free the intermediate
2490 expansion. */
2491 copy = (char *) obstack_copy0 (&cpstate->expansion_obstack, expansion,
2492 strlen (expansion));
2493 xfree (expansion);
2494
2495 /* Save the old lexptr value, so we can return to it when we're done
2496 parsing the expanded text. */
2497 cpstate->macro_original_text = pstate->lexptr;
2498 pstate->lexptr = copy;
2499 }
2500
2501 static int
2502 scanning_macro_expansion (void)
2503 {
2504 return cpstate->macro_original_text != 0;
2505 }
2506
2507 static void
2508 finished_macro_expansion (void)
2509 {
2510 /* There'd better be something to pop back to. */
2511 gdb_assert (cpstate->macro_original_text);
2512
2513 /* Pop back to the original text. */
2514 pstate->lexptr = cpstate->macro_original_text;
2515 cpstate->macro_original_text = 0;
2516 }
2517
2518 /* Return true iff the token represents a C++ cast operator. */
2519
2520 static int
2521 is_cast_operator (const char *token, int len)
2522 {
2523 return (! strncmp (token, "dynamic_cast", len)
2524 || ! strncmp (token, "static_cast", len)
2525 || ! strncmp (token, "reinterpret_cast", len)
2526 || ! strncmp (token, "const_cast", len));
2527 }
2528
2529 /* The scope used for macro expansion. */
2530 static struct macro_scope *expression_macro_scope;
2531
2532 /* This is set if a NAME token appeared at the very end of the input
2533 string, with no whitespace separating the name from the EOF. This
2534 is used only when parsing to do field name completion. */
2535 static int saw_name_at_eof;
2536
2537 /* This is set if the previously-returned token was a structure
2538 operator -- either '.' or ARROW. */
2539 static bool last_was_structop;
2540
2541 /* Depth of parentheses. */
2542 static int paren_depth;
2543
2544 /* Read one token, getting characters through lexptr. */
2545
2546 static int
2547 lex_one_token (struct parser_state *par_state, bool *is_quoted_name)
2548 {
2549 int c;
2550 int namelen;
2551 unsigned int i;
2552 const char *tokstart;
2553 bool saw_structop = last_was_structop;
2554 char *copy;
2555
2556 last_was_structop = false;
2557 *is_quoted_name = false;
2558
2559 retry:
2560
2561 /* Check if this is a macro invocation that we need to expand. */
2562 if (! scanning_macro_expansion ())
2563 {
2564 char *expanded = macro_expand_next (&pstate->lexptr,
2565 standard_macro_lookup,
2566 expression_macro_scope);
2567
2568 if (expanded)
2569 scan_macro_expansion (expanded);
2570 }
2571
2572 pstate->prev_lexptr = pstate->lexptr;
2573
2574 tokstart = pstate->lexptr;
2575 /* See if it is a special token of length 3. */
2576 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
2577 if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
2578 {
2579 if ((tokentab3[i].flags & FLAG_CXX) != 0
2580 && par_state->language ()->la_language != language_cplus)
2581 break;
2582
2583 pstate->lexptr += 3;
2584 yylval.opcode = tokentab3[i].opcode;
2585 return tokentab3[i].token;
2586 }
2587
2588 /* See if it is a special token of length 2. */
2589 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
2590 if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
2591 {
2592 if ((tokentab2[i].flags & FLAG_CXX) != 0
2593 && par_state->language ()->la_language != language_cplus)
2594 break;
2595
2596 pstate->lexptr += 2;
2597 yylval.opcode = tokentab2[i].opcode;
2598 if (tokentab2[i].token == ARROW)
2599 last_was_structop = 1;
2600 return tokentab2[i].token;
2601 }
2602
2603 switch (c = *tokstart)
2604 {
2605 case 0:
2606 /* If we were just scanning the result of a macro expansion,
2607 then we need to resume scanning the original text.
2608 If we're parsing for field name completion, and the previous
2609 token allows such completion, return a COMPLETE token.
2610 Otherwise, we were already scanning the original text, and
2611 we're really done. */
2612 if (scanning_macro_expansion ())
2613 {
2614 finished_macro_expansion ();
2615 goto retry;
2616 }
2617 else if (saw_name_at_eof)
2618 {
2619 saw_name_at_eof = 0;
2620 return COMPLETE;
2621 }
2622 else if (par_state->parse_completion && saw_structop)
2623 return COMPLETE;
2624 else
2625 return 0;
2626
2627 case ' ':
2628 case '\t':
2629 case '\n':
2630 pstate->lexptr++;
2631 goto retry;
2632
2633 case '[':
2634 case '(':
2635 paren_depth++;
2636 pstate->lexptr++;
2637 if (par_state->language ()->la_language == language_objc
2638 && c == '[')
2639 return OBJC_LBRAC;
2640 return c;
2641
2642 case ']':
2643 case ')':
2644 if (paren_depth == 0)
2645 return 0;
2646 paren_depth--;
2647 pstate->lexptr++;
2648 return c;
2649
2650 case ',':
2651 if (pstate->comma_terminates
2652 && paren_depth == 0
2653 && ! scanning_macro_expansion ())
2654 return 0;
2655 pstate->lexptr++;
2656 return c;
2657
2658 case '.':
2659 /* Might be a floating point number. */
2660 if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
2661 {
2662 last_was_structop = true;
2663 goto symbol; /* Nope, must be a symbol. */
2664 }
2665 /* FALL THRU. */
2666
2667 case '0':
2668 case '1':
2669 case '2':
2670 case '3':
2671 case '4':
2672 case '5':
2673 case '6':
2674 case '7':
2675 case '8':
2676 case '9':
2677 {
2678 /* It's a number. */
2679 int got_dot = 0, got_e = 0, toktype;
2680 const char *p = tokstart;
2681 int hex = input_radix > 10;
2682
2683 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
2684 {
2685 p += 2;
2686 hex = 1;
2687 }
2688 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
2689 {
2690 p += 2;
2691 hex = 0;
2692 }
2693
2694 for (;; ++p)
2695 {
2696 /* This test includes !hex because 'e' is a valid hex digit
2697 and thus does not indicate a floating point number when
2698 the radix is hex. */
2699 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
2700 got_dot = got_e = 1;
2701 /* This test does not include !hex, because a '.' always indicates
2702 a decimal floating point number regardless of the radix. */
2703 else if (!got_dot && *p == '.')
2704 got_dot = 1;
2705 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
2706 && (*p == '-' || *p == '+'))
2707 /* This is the sign of the exponent, not the end of the
2708 number. */
2709 continue;
2710 /* We will take any letters or digits. parse_number will
2711 complain if past the radix, or if L or U are not final. */
2712 else if ((*p < '0' || *p > '9')
2713 && ((*p < 'a' || *p > 'z')
2714 && (*p < 'A' || *p > 'Z')))
2715 break;
2716 }
2717 toktype = parse_number (par_state, tokstart, p - tokstart,
2718 got_dot|got_e, &yylval);
2719 if (toktype == ERROR)
2720 {
2721 char *err_copy = (char *) alloca (p - tokstart + 1);
2722
2723 memcpy (err_copy, tokstart, p - tokstart);
2724 err_copy[p - tokstart] = 0;
2725 error (_("Invalid number \"%s\"."), err_copy);
2726 }
2727 pstate->lexptr = p;
2728 return toktype;
2729 }
2730
2731 case '@':
2732 {
2733 const char *p = &tokstart[1];
2734
2735 if (par_state->language ()->la_language == language_objc)
2736 {
2737 size_t len = strlen ("selector");
2738
2739 if (strncmp (p, "selector", len) == 0
2740 && (p[len] == '\0' || ISSPACE (p[len])))
2741 {
2742 pstate->lexptr = p + len;
2743 return SELECTOR;
2744 }
2745 else if (*p == '"')
2746 goto parse_string;
2747 }
2748
2749 while (ISSPACE (*p))
2750 p++;
2751 size_t len = strlen ("entry");
2752 if (strncmp (p, "entry", len) == 0 && !c_ident_is_alnum (p[len])
2753 && p[len] != '_')
2754 {
2755 pstate->lexptr = &p[len];
2756 return ENTRY;
2757 }
2758 }
2759 /* FALLTHRU */
2760 case '+':
2761 case '-':
2762 case '*':
2763 case '/':
2764 case '%':
2765 case '|':
2766 case '&':
2767 case '^':
2768 case '~':
2769 case '!':
2770 case '<':
2771 case '>':
2772 case '?':
2773 case ':':
2774 case '=':
2775 case '{':
2776 case '}':
2777 symbol:
2778 pstate->lexptr++;
2779 return c;
2780
2781 case 'L':
2782 case 'u':
2783 case 'U':
2784 if (tokstart[1] != '"' && tokstart[1] != '\'')
2785 break;
2786 /* Fall through. */
2787 case '\'':
2788 case '"':
2789
2790 parse_string:
2791 {
2792 int host_len;
2793 int result = parse_string_or_char (tokstart, &pstate->lexptr,
2794 &yylval.tsval, &host_len);
2795 if (result == CHAR)
2796 {
2797 if (host_len == 0)
2798 error (_("Empty character constant."));
2799 else if (host_len > 2 && c == '\'')
2800 {
2801 ++tokstart;
2802 namelen = pstate->lexptr - tokstart - 1;
2803 *is_quoted_name = true;
2804
2805 goto tryname;
2806 }
2807 else if (host_len > 1)
2808 error (_("Invalid character constant."));
2809 }
2810 return result;
2811 }
2812 }
2813
2814 if (!(c == '_' || c == '$' || c_ident_is_alpha (c)))
2815 /* We must have come across a bad character (e.g. ';'). */
2816 error (_("Invalid character '%c' in expression."), c);
2817
2818 /* It's a name. See how long it is. */
2819 namelen = 0;
2820 for (c = tokstart[namelen];
2821 (c == '_' || c == '$' || c_ident_is_alnum (c) || c == '<');)
2822 {
2823 /* Template parameter lists are part of the name.
2824 FIXME: This mishandles `print $a<4&&$a>3'. */
2825
2826 if (c == '<')
2827 {
2828 if (! is_cast_operator (tokstart, namelen))
2829 {
2830 /* Scan ahead to get rest of the template specification. Note
2831 that we look ahead only when the '<' adjoins non-whitespace
2832 characters; for comparison expressions, e.g. "a < b > c",
2833 there must be spaces before the '<', etc. */
2834 const char *p = find_template_name_end (tokstart + namelen);
2835
2836 if (p)
2837 namelen = p - tokstart;
2838 }
2839 break;
2840 }
2841 c = tokstart[++namelen];
2842 }
2843
2844 /* The token "if" terminates the expression and is NOT removed from
2845 the input stream. It doesn't count if it appears in the
2846 expansion of a macro. */
2847 if (namelen == 2
2848 && tokstart[0] == 'i'
2849 && tokstart[1] == 'f'
2850 && ! scanning_macro_expansion ())
2851 {
2852 return 0;
2853 }
2854
2855 /* For the same reason (breakpoint conditions), "thread N"
2856 terminates the expression. "thread" could be an identifier, but
2857 an identifier is never followed by a number without intervening
2858 punctuation. "task" is similar. Handle abbreviations of these,
2859 similarly to breakpoint.c:find_condition_and_thread. */
2860 if (namelen >= 1
2861 && (strncmp (tokstart, "thread", namelen) == 0
2862 || strncmp (tokstart, "task", namelen) == 0)
2863 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t')
2864 && ! scanning_macro_expansion ())
2865 {
2866 const char *p = tokstart + namelen + 1;
2867
2868 while (*p == ' ' || *p == '\t')
2869 p++;
2870 if (*p >= '0' && *p <= '9')
2871 return 0;
2872 }
2873
2874 pstate->lexptr += namelen;
2875
2876 tryname:
2877
2878 yylval.sval.ptr = tokstart;
2879 yylval.sval.length = namelen;
2880
2881 /* Catch specific keywords. */
2882 copy = copy_name (yylval.sval);
2883 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
2884 if (strcmp (copy, ident_tokens[i].oper) == 0)
2885 {
2886 if ((ident_tokens[i].flags & FLAG_CXX) != 0
2887 && par_state->language ()->la_language != language_cplus)
2888 break;
2889
2890 if ((ident_tokens[i].flags & FLAG_SHADOW) != 0)
2891 {
2892 struct field_of_this_result is_a_field_of_this;
2893
2894 if (lookup_symbol (copy,
2895 pstate->expression_context_block,
2896 VAR_DOMAIN,
2897 (par_state->language ()->la_language
2898 == language_cplus ? &is_a_field_of_this
2899 : NULL)).symbol
2900 != NULL)
2901 {
2902 /* The keyword is shadowed. */
2903 break;
2904 }
2905 }
2906
2907 /* It is ok to always set this, even though we don't always
2908 strictly need to. */
2909 yylval.opcode = ident_tokens[i].opcode;
2910 return ident_tokens[i].token;
2911 }
2912
2913 if (*tokstart == '$')
2914 return DOLLAR_VARIABLE;
2915
2916 if (pstate->parse_completion && *pstate->lexptr == '\0')
2917 saw_name_at_eof = 1;
2918
2919 yylval.ssym.stoken = yylval.sval;
2920 yylval.ssym.sym.symbol = NULL;
2921 yylval.ssym.sym.block = NULL;
2922 yylval.ssym.is_a_field_of_this = 0;
2923 return NAME;
2924 }
2925
2926 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
2927 struct token_and_value
2928 {
2929 int token;
2930 YYSTYPE value;
2931 };
2932
2933 /* A FIFO of tokens that have been read but not yet returned to the
2934 parser. */
2935 static std::vector<token_and_value> token_fifo;
2936
2937 /* Non-zero if the lexer should return tokens from the FIFO. */
2938 static int popping;
2939
2940 /* Temporary storage for c_lex; this holds symbol names as they are
2941 built up. */
2942 auto_obstack name_obstack;
2943
2944 /* Classify a NAME token. The contents of the token are in `yylval'.
2945 Updates yylval and returns the new token type. BLOCK is the block
2946 in which lookups start; this can be NULL to mean the global scope.
2947 IS_QUOTED_NAME is non-zero if the name token was originally quoted
2948 in single quotes. IS_AFTER_STRUCTOP is true if this name follows
2949 a structure operator -- either '.' or ARROW */
2950
2951 static int
2952 classify_name (struct parser_state *par_state, const struct block *block,
2953 bool is_quoted_name, bool is_after_structop)
2954 {
2955 struct block_symbol bsym;
2956 char *copy;
2957 struct field_of_this_result is_a_field_of_this;
2958
2959 copy = copy_name (yylval.sval);
2960
2961 /* Initialize this in case we *don't* use it in this call; that way
2962 we can refer to it unconditionally below. */
2963 memset (&is_a_field_of_this, 0, sizeof (is_a_field_of_this));
2964
2965 bsym = lookup_symbol (copy, block, VAR_DOMAIN,
2966 par_state->language ()->la_name_of_this
2967 ? &is_a_field_of_this : NULL);
2968
2969 if (bsym.symbol && SYMBOL_CLASS (bsym.symbol) == LOC_BLOCK)
2970 {
2971 yylval.ssym.sym = bsym;
2972 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
2973 return BLOCKNAME;
2974 }
2975 else if (!bsym.symbol)
2976 {
2977 /* If we found a field of 'this', we might have erroneously
2978 found a constructor where we wanted a type name. Handle this
2979 case by noticing that we found a constructor and then look up
2980 the type tag instead. */
2981 if (is_a_field_of_this.type != NULL
2982 && is_a_field_of_this.fn_field != NULL
2983 && TYPE_FN_FIELD_CONSTRUCTOR (is_a_field_of_this.fn_field->fn_fields,
2984 0))
2985 {
2986 struct field_of_this_result inner_is_a_field_of_this;
2987
2988 bsym = lookup_symbol (copy, block, STRUCT_DOMAIN,
2989 &inner_is_a_field_of_this);
2990 if (bsym.symbol != NULL)
2991 {
2992 yylval.tsym.type = SYMBOL_TYPE (bsym.symbol);
2993 return TYPENAME;
2994 }
2995 }
2996
2997 /* If we found a field on the "this" object, or we are looking
2998 up a field on a struct, then we want to prefer it over a
2999 filename. However, if the name was quoted, then it is better
3000 to check for a filename or a block, since this is the only
3001 way the user has of requiring the extension to be used. */
3002 if ((is_a_field_of_this.type == NULL && !is_after_structop)
3003 || is_quoted_name)
3004 {
3005 /* See if it's a file name. */
3006 struct symtab *symtab;
3007
3008 symtab = lookup_symtab (copy);
3009 if (symtab)
3010 {
3011 yylval.bval = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symtab),
3012 STATIC_BLOCK);
3013 return FILENAME;
3014 }
3015 }
3016 }
3017
3018 if (bsym.symbol && SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF)
3019 {
3020 yylval.tsym.type = SYMBOL_TYPE (bsym.symbol);
3021 return TYPENAME;
3022 }
3023
3024 /* See if it's an ObjC classname. */
3025 if (par_state->language ()->la_language == language_objc && !bsym.symbol)
3026 {
3027 CORE_ADDR Class = lookup_objc_class (par_state->gdbarch (), copy);
3028 if (Class)
3029 {
3030 struct symbol *sym;
3031
3032 yylval.theclass.theclass = Class;
3033 sym = lookup_struct_typedef (copy,
3034 par_state->expression_context_block, 1);
3035 if (sym)
3036 yylval.theclass.type = SYMBOL_TYPE (sym);
3037 return CLASSNAME;
3038 }
3039 }
3040
3041 /* Input names that aren't symbols but ARE valid hex numbers, when
3042 the input radix permits them, can be names or numbers depending
3043 on the parse. Note we support radixes > 16 here. */
3044 if (!bsym.symbol
3045 && ((copy[0] >= 'a' && copy[0] < 'a' + input_radix - 10)
3046 || (copy[0] >= 'A' && copy[0] < 'A' + input_radix - 10)))
3047 {
3048 YYSTYPE newlval; /* Its value is ignored. */
3049 int hextype = parse_number (par_state, copy, yylval.sval.length,
3050 0, &newlval);
3051
3052 if (hextype == INT)
3053 {
3054 yylval.ssym.sym = bsym;
3055 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
3056 return NAME_OR_INT;
3057 }
3058 }
3059
3060 /* Any other kind of symbol */
3061 yylval.ssym.sym = bsym;
3062 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
3063
3064 if (bsym.symbol == NULL
3065 && par_state->language ()->la_language == language_cplus
3066 && is_a_field_of_this.type == NULL
3067 && lookup_minimal_symbol (copy, NULL, NULL).minsym == NULL)
3068 return UNKNOWN_CPP_NAME;
3069
3070 return NAME;
3071 }
3072
3073 /* Like classify_name, but used by the inner loop of the lexer, when a
3074 name might have already been seen. CONTEXT is the context type, or
3075 NULL if this is the first component of a name. */
3076
3077 static int
3078 classify_inner_name (struct parser_state *par_state,
3079 const struct block *block, struct type *context)
3080 {
3081 struct type *type;
3082 char *copy;
3083
3084 if (context == NULL)
3085 return classify_name (par_state, block, false, false);
3086
3087 type = check_typedef (context);
3088 if (!type_aggregate_p (type))
3089 return ERROR;
3090
3091 copy = copy_name (yylval.ssym.stoken);
3092 /* N.B. We assume the symbol can only be in VAR_DOMAIN. */
3093 yylval.ssym.sym = cp_lookup_nested_symbol (type, copy, block, VAR_DOMAIN);
3094
3095 /* If no symbol was found, search for a matching base class named
3096 COPY. This will allow users to enter qualified names of class members
3097 relative to the `this' pointer. */
3098 if (yylval.ssym.sym.symbol == NULL)
3099 {
3100 struct type *base_type = cp_find_type_baseclass_by_name (type, copy);
3101
3102 if (base_type != NULL)
3103 {
3104 yylval.tsym.type = base_type;
3105 return TYPENAME;
3106 }
3107
3108 return ERROR;
3109 }
3110
3111 switch (SYMBOL_CLASS (yylval.ssym.sym.symbol))
3112 {
3113 case LOC_BLOCK:
3114 case LOC_LABEL:
3115 /* cp_lookup_nested_symbol might have accidentally found a constructor
3116 named COPY when we really wanted a base class of the same name.
3117 Double-check this case by looking for a base class. */
3118 {
3119 struct type *base_type = cp_find_type_baseclass_by_name (type, copy);
3120
3121 if (base_type != NULL)
3122 {
3123 yylval.tsym.type = base_type;
3124 return TYPENAME;
3125 }
3126 }
3127 return ERROR;
3128
3129 case LOC_TYPEDEF:
3130 yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
3131 return TYPENAME;
3132
3133 default:
3134 return NAME;
3135 }
3136 internal_error (__FILE__, __LINE__, _("not reached"));
3137 }
3138
3139 /* The outer level of a two-level lexer. This calls the inner lexer
3140 to return tokens. It then either returns these tokens, or
3141 aggregates them into a larger token. This lets us work around a
3142 problem in our parsing approach, where the parser could not
3143 distinguish between qualified names and qualified types at the
3144 right point.
3145
3146 This approach is still not ideal, because it mishandles template
3147 types. See the comment in lex_one_token for an example. However,
3148 this is still an improvement over the earlier approach, and will
3149 suffice until we move to better parsing technology. */
3150
3151 static int
3152 yylex (void)
3153 {
3154 token_and_value current;
3155 int first_was_coloncolon, last_was_coloncolon;
3156 struct type *context_type = NULL;
3157 int last_to_examine, next_to_examine, checkpoint;
3158 const struct block *search_block;
3159 bool is_quoted_name, last_lex_was_structop;
3160
3161 if (popping && !token_fifo.empty ())
3162 goto do_pop;
3163 popping = 0;
3164
3165 last_lex_was_structop = last_was_structop;
3166
3167 /* Read the first token and decide what to do. Most of the
3168 subsequent code is C++-only; but also depends on seeing a "::" or
3169 name-like token. */
3170 current.token = lex_one_token (pstate, &is_quoted_name);
3171 if (current.token == NAME)
3172 current.token = classify_name (pstate, pstate->expression_context_block,
3173 is_quoted_name, last_lex_was_structop);
3174 if (pstate->language ()->la_language != language_cplus
3175 || (current.token != TYPENAME && current.token != COLONCOLON
3176 && current.token != FILENAME))
3177 return current.token;
3178
3179 /* Read any sequence of alternating "::" and name-like tokens into
3180 the token FIFO. */
3181 current.value = yylval;
3182 token_fifo.push_back (current);
3183 last_was_coloncolon = current.token == COLONCOLON;
3184 while (1)
3185 {
3186 bool ignore;
3187
3188 /* We ignore quoted names other than the very first one.
3189 Subsequent ones do not have any special meaning. */
3190 current.token = lex_one_token (pstate, &ignore);
3191 current.value = yylval;
3192 token_fifo.push_back (current);
3193
3194 if ((last_was_coloncolon && current.token != NAME)
3195 || (!last_was_coloncolon && current.token != COLONCOLON))
3196 break;
3197 last_was_coloncolon = !last_was_coloncolon;
3198 }
3199 popping = 1;
3200
3201 /* We always read one extra token, so compute the number of tokens
3202 to examine accordingly. */
3203 last_to_examine = token_fifo.size () - 2;
3204 next_to_examine = 0;
3205
3206 current = token_fifo[next_to_examine];
3207 ++next_to_examine;
3208
3209 name_obstack.clear ();
3210 checkpoint = 0;
3211 if (current.token == FILENAME)
3212 search_block = current.value.bval;
3213 else if (current.token == COLONCOLON)
3214 search_block = NULL;
3215 else
3216 {
3217 gdb_assert (current.token == TYPENAME);
3218 search_block = pstate->expression_context_block;
3219 obstack_grow (&name_obstack, current.value.sval.ptr,
3220 current.value.sval.length);
3221 context_type = current.value.tsym.type;
3222 checkpoint = 1;
3223 }
3224
3225 first_was_coloncolon = current.token == COLONCOLON;
3226 last_was_coloncolon = first_was_coloncolon;
3227
3228 while (next_to_examine <= last_to_examine)
3229 {
3230 token_and_value next;
3231
3232 next = token_fifo[next_to_examine];
3233 ++next_to_examine;
3234
3235 if (next.token == NAME && last_was_coloncolon)
3236 {
3237 int classification;
3238
3239 yylval = next.value;
3240 classification = classify_inner_name (pstate, search_block,
3241 context_type);
3242 /* We keep going until we either run out of names, or until
3243 we have a qualified name which is not a type. */
3244 if (classification != TYPENAME && classification != NAME)
3245 break;
3246
3247 /* Accept up to this token. */
3248 checkpoint = next_to_examine;
3249
3250 /* Update the partial name we are constructing. */
3251 if (context_type != NULL)
3252 {
3253 /* We don't want to put a leading "::" into the name. */
3254 obstack_grow_str (&name_obstack, "::");
3255 }
3256 obstack_grow (&name_obstack, next.value.sval.ptr,
3257 next.value.sval.length);
3258
3259 yylval.sval.ptr = (const char *) obstack_base (&name_obstack);
3260 yylval.sval.length = obstack_object_size (&name_obstack);
3261 current.value = yylval;
3262 current.token = classification;
3263
3264 last_was_coloncolon = 0;
3265
3266 if (classification == NAME)
3267 break;
3268
3269 context_type = yylval.tsym.type;
3270 }
3271 else if (next.token == COLONCOLON && !last_was_coloncolon)
3272 last_was_coloncolon = 1;
3273 else
3274 {
3275 /* We've reached the end of the name. */
3276 break;
3277 }
3278 }
3279
3280 /* If we have a replacement token, install it as the first token in
3281 the FIFO, and delete the other constituent tokens. */
3282 if (checkpoint > 0)
3283 {
3284 current.value.sval.ptr
3285 = (const char *) obstack_copy0 (&cpstate->expansion_obstack,
3286 current.value.sval.ptr,
3287 current.value.sval.length);
3288
3289 token_fifo[0] = current;
3290 if (checkpoint > 1)
3291 token_fifo.erase (token_fifo.begin () + 1,
3292 token_fifo.begin () + checkpoint);
3293 }
3294
3295 do_pop:
3296 current = token_fifo[0];
3297 token_fifo.erase (token_fifo.begin ());
3298 yylval = current.value;
3299 return current.token;
3300 }
3301
3302 int
3303 c_parse (struct parser_state *par_state)
3304 {
3305 /* Setting up the parser state. */
3306 scoped_restore pstate_restore = make_scoped_restore (&pstate);
3307 gdb_assert (par_state != NULL);
3308 pstate = par_state;
3309
3310 c_parse_state cstate;
3311 scoped_restore cstate_restore = make_scoped_restore (&cpstate, &cstate);
3312
3313 gdb::unique_xmalloc_ptr<struct macro_scope> macro_scope;
3314
3315 if (par_state->expression_context_block)
3316 macro_scope
3317 = sal_macro_scope (find_pc_line (par_state->expression_context_pc, 0));
3318 else
3319 macro_scope = default_macro_scope ();
3320 if (! macro_scope)
3321 macro_scope = user_macro_scope ();
3322
3323 scoped_restore restore_macro_scope
3324 = make_scoped_restore (&expression_macro_scope, macro_scope.get ());
3325
3326 scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
3327 parser_debug);
3328
3329 /* Initialize some state used by the lexer. */
3330 last_was_structop = false;
3331 saw_name_at_eof = 0;
3332 paren_depth = 0;
3333
3334 token_fifo.clear ();
3335 popping = 0;
3336 name_obstack.clear ();
3337
3338 return yyparse ();
3339 }
3340
3341 #ifdef YYBISON
3342
3343 /* This is called via the YYPRINT macro when parser debugging is
3344 enabled. It prints a token's value. */
3345
3346 static void
3347 c_print_token (FILE *file, int type, YYSTYPE value)
3348 {
3349 switch (type)
3350 {
3351 case INT:
3352 parser_fprintf (file, "typed_val_int<%s, %s>",
3353 TYPE_SAFE_NAME (value.typed_val_int.type),
3354 pulongest (value.typed_val_int.val));
3355 break;
3356
3357 case CHAR:
3358 case STRING:
3359 {
3360 char *copy = (char *) alloca (value.tsval.length + 1);
3361
3362 memcpy (copy, value.tsval.ptr, value.tsval.length);
3363 copy[value.tsval.length] = '\0';
3364
3365 parser_fprintf (file, "tsval<type=%d, %s>", value.tsval.type, copy);
3366 }
3367 break;
3368
3369 case NSSTRING:
3370 case DOLLAR_VARIABLE:
3371 parser_fprintf (file, "sval<%s>", copy_name (value.sval));
3372 break;
3373
3374 case TYPENAME:
3375 parser_fprintf (file, "tsym<type=%s, name=%s>",
3376 TYPE_SAFE_NAME (value.tsym.type),
3377 copy_name (value.tsym.stoken));
3378 break;
3379
3380 case NAME:
3381 case UNKNOWN_CPP_NAME:
3382 case NAME_OR_INT:
3383 case BLOCKNAME:
3384 parser_fprintf (file, "ssym<name=%s, sym=%s, field_of_this=%d>",
3385 copy_name (value.ssym.stoken),
3386 (value.ssym.sym.symbol == NULL
3387 ? "(null)" : SYMBOL_PRINT_NAME (value.ssym.sym.symbol)),
3388 value.ssym.is_a_field_of_this);
3389 break;
3390
3391 case FILENAME:
3392 parser_fprintf (file, "bval<%s>", host_address_to_string (value.bval));
3393 break;
3394 }
3395 }
3396
3397 #endif
3398
3399 static void
3400 yyerror (const char *msg)
3401 {
3402 if (pstate->prev_lexptr)
3403 pstate->lexptr = pstate->prev_lexptr;
3404
3405 error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
3406 }