]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/cris-tdep.c
PR24435, buffer overflow reading dynamic entries
[thirdparty/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2-frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "osabi.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40
41 #include "objfiles.h"
42
43 #include "solib.h" /* Support for shared libraries. */
44 #include "solib-svr4.h"
45 #include "dis-asm.h"
46
47 #include "cris-tdep.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static unsigned int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *const cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* Sigtramp identification code copied from i386-linux-tdep.c. */
169
170 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
171 #define SIGTRAMP_OFFSET0 0
172 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
173 #define SIGTRAMP_OFFSET1 4
174
175 static const unsigned short sigtramp_code[] =
176 {
177 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
178 SIGTRAMP_INSN1 /* break 13 */
179 };
180
181 #define SIGTRAMP_LEN (sizeof sigtramp_code)
182
183 /* Note: same length as normal sigtramp code. */
184
185 static const unsigned short rt_sigtramp_code[] =
186 {
187 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
188 SIGTRAMP_INSN1 /* break 13 */
189 };
190
191 /* If PC is in a sigtramp routine, return the address of the start of
192 the routine. Otherwise, return 0. */
193
194 static CORE_ADDR
195 cris_sigtramp_start (struct frame_info *this_frame)
196 {
197 CORE_ADDR pc = get_frame_pc (this_frame);
198 gdb_byte buf[SIGTRAMP_LEN];
199
200 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
201 return 0;
202
203 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
204 {
205 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
206 return 0;
207
208 pc -= SIGTRAMP_OFFSET1;
209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
210 return 0;
211 }
212
213 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
214 return 0;
215
216 return pc;
217 }
218
219 /* If PC is in a RT sigtramp routine, return the address of the start of
220 the routine. Otherwise, return 0. */
221
222 static CORE_ADDR
223 cris_rt_sigtramp_start (struct frame_info *this_frame)
224 {
225 CORE_ADDR pc = get_frame_pc (this_frame);
226 gdb_byte buf[SIGTRAMP_LEN];
227
228 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
229 return 0;
230
231 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
232 {
233 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
234 return 0;
235
236 pc -= SIGTRAMP_OFFSET1;
237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
238 return 0;
239 }
240
241 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
242 return 0;
243
244 return pc;
245 }
246
247 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
248 return the address of the associated sigcontext structure. */
249
250 static CORE_ADDR
251 cris_sigcontext_addr (struct frame_info *this_frame)
252 {
253 struct gdbarch *gdbarch = get_frame_arch (this_frame);
254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
255 CORE_ADDR pc;
256 CORE_ADDR sp;
257 gdb_byte buf[4];
258
259 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
260 sp = extract_unsigned_integer (buf, 4, byte_order);
261
262 /* Look for normal sigtramp frame first. */
263 pc = cris_sigtramp_start (this_frame);
264 if (pc)
265 {
266 /* struct signal_frame (arch/cris/kernel/signal.c) contains
267 struct sigcontext as its first member, meaning the SP points to
268 it already. */
269 return sp;
270 }
271
272 pc = cris_rt_sigtramp_start (this_frame);
273 if (pc)
274 {
275 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
276 a struct ucontext, which in turn contains a struct sigcontext.
277 Magic digging:
278 4 + 4 + 128 to struct ucontext, then
279 4 + 4 + 12 to struct sigcontext. */
280 return (sp + 156);
281 }
282
283 error (_("Couldn't recognize signal trampoline."));
284 return 0;
285 }
286
287 struct cris_unwind_cache
288 {
289 /* The previous frame's inner most stack address. Used as this
290 frame ID's stack_addr. */
291 CORE_ADDR prev_sp;
292 /* The frame's base, optionally used by the high-level debug info. */
293 CORE_ADDR base;
294 int size;
295 /* How far the SP and r8 (FP) have been offset from the start of
296 the stack frame (as defined by the previous frame's stack
297 pointer). */
298 LONGEST sp_offset;
299 LONGEST r8_offset;
300 int uses_frame;
301
302 /* From old frame_extra_info struct. */
303 CORE_ADDR return_pc;
304 int leaf_function;
305
306 /* Table indicating the location of each and every register. */
307 struct trad_frame_saved_reg *saved_regs;
308 };
309
310 static struct cris_unwind_cache *
311 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
312 void **this_cache)
313 {
314 struct gdbarch *gdbarch = get_frame_arch (this_frame);
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 struct cris_unwind_cache *info;
318 CORE_ADDR addr;
319 gdb_byte buf[4];
320 int i;
321
322 if ((*this_cache))
323 return (struct cris_unwind_cache *) (*this_cache);
324
325 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
326 (*this_cache) = info;
327 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
328
329 /* Zero all fields. */
330 info->prev_sp = 0;
331 info->base = 0;
332 info->size = 0;
333 info->sp_offset = 0;
334 info->r8_offset = 0;
335 info->uses_frame = 0;
336 info->return_pc = 0;
337 info->leaf_function = 0;
338
339 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
340 info->base = extract_unsigned_integer (buf, 4, byte_order);
341
342 addr = cris_sigcontext_addr (this_frame);
343
344 /* Layout of the sigcontext struct:
345 struct sigcontext {
346 struct pt_regs regs;
347 unsigned long oldmask;
348 unsigned long usp;
349 }; */
350
351 if (tdep->cris_version == 10)
352 {
353 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
354 struct pt_regs. */
355 for (i = 0; i <= 13; i++)
356 info->saved_regs[i].addr = addr + ((15 - i) * 4);
357
358 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
359 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
360 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
361 /* Note: IRP is off by 2 at this point. There's no point in correcting
362 it though since that will mean that the backtrace will show a PC
363 different from what is shown when stopped. */
364 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
365 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
366 = info->saved_regs[IRP_REGNUM];
367 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
368 }
369 else
370 {
371 /* CRISv32. */
372 /* R0 to R13 are stored in order at offset (1 * 4) in
373 struct pt_regs. */
374 for (i = 0; i <= 13; i++)
375 info->saved_regs[i].addr = addr + ((i + 1) * 4);
376
377 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
378 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
379 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
380 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
381 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
383 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
384 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
385 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
386
387 /* FIXME: If ERP is in a delay slot at this point then the PC will
388 be wrong at this point. This problem manifests itself in the
389 sigaltstack.exp test case, which occasionally generates FAILs when
390 the signal is received while in a delay slot.
391
392 This could be solved by a couple of read_memory_unsigned_integer and a
393 trad_frame_set_value. */
394 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
395 = info->saved_regs[ERP_REGNUM];
396
397 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
398 = addr + (25 * 4);
399 }
400
401 return info;
402 }
403
404 static void
405 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
406 struct frame_id *this_id)
407 {
408 struct cris_unwind_cache *cache =
409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
411 }
412
413 /* Forward declaration. */
414
415 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
416 void **this_cache, int regnum);
417 static struct value *
418 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
419 void **this_cache, int regnum)
420 {
421 /* Make sure we've initialized the cache. */
422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423 return cris_frame_prev_register (this_frame, this_cache, regnum);
424 }
425
426 static int
427 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
428 struct frame_info *this_frame,
429 void **this_cache)
430 {
431 if (cris_sigtramp_start (this_frame)
432 || cris_rt_sigtramp_start (this_frame))
433 return 1;
434
435 return 0;
436 }
437
438 static const struct frame_unwind cris_sigtramp_frame_unwind =
439 {
440 SIGTRAMP_FRAME,
441 default_frame_unwind_stop_reason,
442 cris_sigtramp_frame_this_id,
443 cris_sigtramp_frame_prev_register,
444 NULL,
445 cris_sigtramp_frame_sniffer
446 };
447
448 static int
449 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
450 struct frame_info *this_frame)
451 {
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 ULONGEST erp;
454 int ret = 0;
455
456 if (tdep->cris_mode == cris_mode_guru)
457 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
458 else
459 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
460
461 if (erp & 0x1)
462 {
463 /* In delay slot - check if there's a breakpoint at the preceding
464 instruction. */
465 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
466 ret = 1;
467 }
468 return ret;
469 }
470
471 /* The instruction environment needed to find single-step breakpoints. */
472
473 typedef
474 struct instruction_environment
475 {
476 unsigned long reg[NUM_GENREGS];
477 unsigned long preg[NUM_SPECREGS];
478 unsigned long branch_break_address;
479 unsigned long delay_slot_pc;
480 unsigned long prefix_value;
481 int branch_found;
482 int prefix_found;
483 int invalid;
484 int slot_needed;
485 int delay_slot_pc_active;
486 int xflag_found;
487 int disable_interrupt;
488 enum bfd_endian byte_order;
489 } inst_env_type;
490
491 /* Machine-dependencies in CRIS for opcodes. */
492
493 /* Instruction sizes. */
494 enum cris_instruction_sizes
495 {
496 INST_BYTE_SIZE = 0,
497 INST_WORD_SIZE = 1,
498 INST_DWORD_SIZE = 2
499 };
500
501 /* Addressing modes. */
502 enum cris_addressing_modes
503 {
504 REGISTER_MODE = 1,
505 INDIRECT_MODE = 2,
506 AUTOINC_MODE = 3
507 };
508
509 /* Prefix addressing modes. */
510 enum cris_prefix_addressing_modes
511 {
512 PREFIX_INDEX_MODE = 2,
513 PREFIX_ASSIGN_MODE = 3,
514
515 /* Handle immediate byte offset addressing mode prefix format. */
516 PREFIX_OFFSET_MODE = 2
517 };
518
519 /* Masks for opcodes. */
520 enum cris_opcode_masks
521 {
522 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
523 SIGNED_EXTEND_BIT_MASK = 0x2,
524 SIGNED_BYTE_MASK = 0x80,
525 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
526 SIGNED_WORD_MASK = 0x8000,
527 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
528 SIGNED_DWORD_MASK = 0x80000000,
529 SIGNED_QUICK_VALUE_MASK = 0x20,
530 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
531 };
532
533 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
534 Bit 15 - 12 Operand2
535 11 - 10 Mode
536 9 - 6 Opcode
537 5 - 4 Size
538 3 - 0 Operand1 */
539
540 static int
541 cris_get_operand2 (unsigned short insn)
542 {
543 return ((insn & 0xF000) >> 12);
544 }
545
546 static int
547 cris_get_mode (unsigned short insn)
548 {
549 return ((insn & 0x0C00) >> 10);
550 }
551
552 static int
553 cris_get_opcode (unsigned short insn)
554 {
555 return ((insn & 0x03C0) >> 6);
556 }
557
558 static int
559 cris_get_size (unsigned short insn)
560 {
561 return ((insn & 0x0030) >> 4);
562 }
563
564 static int
565 cris_get_operand1 (unsigned short insn)
566 {
567 return (insn & 0x000F);
568 }
569
570 /* Additional functions in order to handle opcodes. */
571
572 static int
573 cris_get_quick_value (unsigned short insn)
574 {
575 return (insn & 0x003F);
576 }
577
578 static int
579 cris_get_bdap_quick_offset (unsigned short insn)
580 {
581 return (insn & 0x00FF);
582 }
583
584 static int
585 cris_get_branch_short_offset (unsigned short insn)
586 {
587 return (insn & 0x00FF);
588 }
589
590 static int
591 cris_get_asr_shift_steps (unsigned long value)
592 {
593 return (value & 0x3F);
594 }
595
596 static int
597 cris_get_clear_size (unsigned short insn)
598 {
599 return ((insn) & 0xC000);
600 }
601
602 static int
603 cris_is_signed_extend_bit_on (unsigned short insn)
604 {
605 return (((insn) & 0x20) == 0x20);
606 }
607
608 static int
609 cris_is_xflag_bit_on (unsigned short insn)
610 {
611 return (((insn) & 0x1000) == 0x1000);
612 }
613
614 static void
615 cris_set_size_to_dword (unsigned short *insn)
616 {
617 *insn &= 0xFFCF;
618 *insn |= 0x20;
619 }
620
621 static signed char
622 cris_get_signed_offset (unsigned short insn)
623 {
624 return ((signed char) (insn & 0x00FF));
625 }
626
627 /* Calls an op function given the op-type, working on the insn and the
628 inst_env. */
629 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
630 inst_env_type *);
631
632 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
633 struct gdbarch_list *);
634
635 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
636
637 static void set_cris_version (const char *ignore_args, int from_tty,
638 struct cmd_list_element *c);
639
640 static void set_cris_mode (const char *ignore_args, int from_tty,
641 struct cmd_list_element *c);
642
643 static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
644 struct cmd_list_element *c);
645
646 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
647 struct frame_info *this_frame,
648 struct cris_unwind_cache *info);
649
650 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
651 struct frame_info *this_frame,
652 struct cris_unwind_cache *info);
653
654 /* When arguments must be pushed onto the stack, they go on in reverse
655 order. The below implements a FILO (stack) to do this.
656 Copied from d10v-tdep.c. */
657
658 struct stack_item
659 {
660 int len;
661 struct stack_item *prev;
662 gdb_byte *data;
663 };
664
665 static struct stack_item *
666 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
667 {
668 struct stack_item *si = XNEW (struct stack_item);
669 si->data = (gdb_byte *) xmalloc (len);
670 si->len = len;
671 si->prev = prev;
672 memcpy (si->data, contents, len);
673 return si;
674 }
675
676 static struct stack_item *
677 pop_stack_item (struct stack_item *si)
678 {
679 struct stack_item *dead = si;
680 si = si->prev;
681 xfree (dead->data);
682 xfree (dead);
683 return si;
684 }
685
686 /* Put here the code to store, into fi->saved_regs, the addresses of
687 the saved registers of frame described by FRAME_INFO. This
688 includes special registers such as pc and fp saved in special ways
689 in the stack frame. sp is even more special: the address we return
690 for it IS the sp for the next frame. */
691
692 static struct cris_unwind_cache *
693 cris_frame_unwind_cache (struct frame_info *this_frame,
694 void **this_prologue_cache)
695 {
696 struct gdbarch *gdbarch = get_frame_arch (this_frame);
697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
698 struct cris_unwind_cache *info;
699
700 if ((*this_prologue_cache))
701 return (struct cris_unwind_cache *) (*this_prologue_cache);
702
703 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
704 (*this_prologue_cache) = info;
705 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
706
707 /* Zero all fields. */
708 info->prev_sp = 0;
709 info->base = 0;
710 info->size = 0;
711 info->sp_offset = 0;
712 info->r8_offset = 0;
713 info->uses_frame = 0;
714 info->return_pc = 0;
715 info->leaf_function = 0;
716
717 /* Prologue analysis does the rest... */
718 if (tdep->cris_version == 32)
719 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
720 else
721 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
722
723 return info;
724 }
725
726 /* Given a GDB frame, determine the address of the calling function's
727 frame. This will be used to create a new GDB frame struct. */
728
729 static void
730 cris_frame_this_id (struct frame_info *this_frame,
731 void **this_prologue_cache,
732 struct frame_id *this_id)
733 {
734 struct cris_unwind_cache *info
735 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
736 CORE_ADDR base;
737 CORE_ADDR func;
738 struct frame_id id;
739
740 /* The FUNC is easy. */
741 func = get_frame_func (this_frame);
742
743 /* Hopefully the prologue analysis either correctly determined the
744 frame's base (which is the SP from the previous frame), or set
745 that base to "NULL". */
746 base = info->prev_sp;
747 if (base == 0)
748 return;
749
750 id = frame_id_build (base, func);
751
752 (*this_id) = id;
753 }
754
755 static struct value *
756 cris_frame_prev_register (struct frame_info *this_frame,
757 void **this_prologue_cache, int regnum)
758 {
759 struct cris_unwind_cache *info
760 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
761 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
762 }
763
764 static CORE_ADDR
765 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
766 {
767 /* Align to the size of an instruction (so that they can safely be
768 pushed onto the stack). */
769 return sp & ~3;
770 }
771
772 static CORE_ADDR
773 cris_push_dummy_code (struct gdbarch *gdbarch,
774 CORE_ADDR sp, CORE_ADDR funaddr,
775 struct value **args, int nargs,
776 struct type *value_type,
777 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
778 struct regcache *regcache)
779 {
780 /* Allocate space sufficient for a breakpoint. */
781 sp = (sp - 4) & ~3;
782 /* Store the address of that breakpoint */
783 *bp_addr = sp;
784 /* CRIS always starts the call at the callee's entry point. */
785 *real_pc = funaddr;
786 return sp;
787 }
788
789 static CORE_ADDR
790 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
791 struct regcache *regcache, CORE_ADDR bp_addr,
792 int nargs, struct value **args, CORE_ADDR sp,
793 function_call_return_method return_method,
794 CORE_ADDR struct_addr)
795 {
796 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
797 int argreg;
798 int argnum;
799
800 struct stack_item *si = NULL;
801
802 /* Push the return address. */
803 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
804
805 /* Are we returning a value using a structure return or a normal value
806 return? struct_addr is the address of the reserved space for the return
807 structure to be written on the stack. */
808 if (return_method == return_method_struct)
809 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
810
811 /* Now load as many as possible of the first arguments into registers,
812 and push the rest onto the stack. */
813 argreg = ARG1_REGNUM;
814
815 for (argnum = 0; argnum < nargs; argnum++)
816 {
817 int len;
818 const gdb_byte *val;
819 int reg_demand;
820 int i;
821
822 len = TYPE_LENGTH (value_type (args[argnum]));
823 val = value_contents (args[argnum]);
824
825 /* How may registers worth of storage do we need for this argument? */
826 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
827
828 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
829 {
830 /* Data passed by value. Fits in available register(s). */
831 for (i = 0; i < reg_demand; i++)
832 {
833 regcache->cooked_write (argreg, val);
834 argreg++;
835 val += 4;
836 }
837 }
838 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
839 {
840 /* Data passed by value. Does not fit in available register(s).
841 Use the register(s) first, then the stack. */
842 for (i = 0; i < reg_demand; i++)
843 {
844 if (argreg <= ARG4_REGNUM)
845 {
846 regcache->cooked_write (argreg, val);
847 argreg++;
848 val += 4;
849 }
850 else
851 {
852 /* Push item for later so that pushed arguments
853 come in the right order. */
854 si = push_stack_item (si, val, 4);
855 val += 4;
856 }
857 }
858 }
859 else if (len > (2 * 4))
860 {
861 /* Data passed by reference. Push copy of data onto stack
862 and pass pointer to this copy as argument. */
863 sp = (sp - len) & ~3;
864 write_memory (sp, val, len);
865
866 if (argreg <= ARG4_REGNUM)
867 {
868 regcache_cooked_write_unsigned (regcache, argreg, sp);
869 argreg++;
870 }
871 else
872 {
873 gdb_byte buf[4];
874 store_unsigned_integer (buf, 4, byte_order, sp);
875 si = push_stack_item (si, buf, 4);
876 }
877 }
878 else
879 {
880 /* Data passed by value. No available registers. Put it on
881 the stack. */
882 si = push_stack_item (si, val, len);
883 }
884 }
885
886 while (si)
887 {
888 /* fp_arg must be word-aligned (i.e., don't += len) to match
889 the function prologue. */
890 sp = (sp - si->len) & ~3;
891 write_memory (sp, si->data, si->len);
892 si = pop_stack_item (si);
893 }
894
895 /* Finally, update the SP register. */
896 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
897
898 return sp;
899 }
900
901 static const struct frame_unwind cris_frame_unwind =
902 {
903 NORMAL_FRAME,
904 default_frame_unwind_stop_reason,
905 cris_frame_this_id,
906 cris_frame_prev_register,
907 NULL,
908 default_frame_sniffer
909 };
910
911 static CORE_ADDR
912 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
913 {
914 struct cris_unwind_cache *info
915 = cris_frame_unwind_cache (this_frame, this_cache);
916 return info->base;
917 }
918
919 static const struct frame_base cris_frame_base =
920 {
921 &cris_frame_unwind,
922 cris_frame_base_address,
923 cris_frame_base_address,
924 cris_frame_base_address
925 };
926
927 /* Frames information. The definition of the struct frame_info is
928
929 CORE_ADDR frame
930 CORE_ADDR pc
931 enum frame_type type;
932 CORE_ADDR return_pc
933 int leaf_function
934
935 If the compilation option -fno-omit-frame-pointer is present the
936 variable frame will be set to the content of R8 which is the frame
937 pointer register.
938
939 The variable pc contains the address where execution is performed
940 in the present frame. The innermost frame contains the current content
941 of the register PC. All other frames contain the content of the
942 register PC in the next frame.
943
944 The variable `type' indicates the frame's type: normal, SIGTRAMP
945 (associated with a signal handler), dummy (associated with a dummy
946 frame).
947
948 The variable return_pc contains the address where execution should be
949 resumed when the present frame has finished, the return address.
950
951 The variable leaf_function is 1 if the return address is in the register
952 SRP, and 0 if it is on the stack.
953
954 Prologue instructions C-code.
955 The prologue may consist of (-fno-omit-frame-pointer)
956 1) 2)
957 push srp
958 push r8 push r8
959 move.d sp,r8 move.d sp,r8
960 subq X,sp subq X,sp
961 movem rY,[sp] movem rY,[sp]
962 move.S rZ,[r8-U] move.S rZ,[r8-U]
963
964 where 1 is a non-terminal function, and 2 is a leaf-function.
965
966 Note that this assumption is extremely brittle, and will break at the
967 slightest change in GCC's prologue.
968
969 If local variables are declared or register contents are saved on stack
970 the subq-instruction will be present with X as the number of bytes
971 needed for storage. The reshuffle with respect to r8 may be performed
972 with any size S (b, w, d) and any of the general registers Z={0..13}.
973 The offset U should be representable by a signed 8-bit value in all cases.
974 Thus, the prefix word is assumed to be immediate byte offset mode followed
975 by another word containing the instruction.
976
977 Degenerate cases:
978 3)
979 push r8
980 move.d sp,r8
981 move.d r8,sp
982 pop r8
983
984 Prologue instructions C++-code.
985 Case 1) and 2) in the C-code may be followed by
986
987 move.d r10,rS ; this
988 move.d r11,rT ; P1
989 move.d r12,rU ; P2
990 move.d r13,rV ; P3
991 move.S [r8+U],rZ ; P4
992
993 if any of the call parameters are stored. The host expects these
994 instructions to be executed in order to get the call parameters right. */
995
996 /* Examine the prologue of a function. The variable ip is the address of
997 the first instruction of the prologue. The variable limit is the address
998 of the first instruction after the prologue. The variable fi contains the
999 information in struct frame_info. The variable frameless_p controls whether
1000 the entire prologue is examined (0) or just enough instructions to
1001 determine that it is a prologue (1). */
1002
1003 static CORE_ADDR
1004 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1005 struct cris_unwind_cache *info)
1006 {
1007 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1009
1010 /* Present instruction. */
1011 unsigned short insn;
1012
1013 /* Next instruction, lookahead. */
1014 unsigned short insn_next;
1015 int regno;
1016
1017 /* Number of byte on stack used for local variables and movem. */
1018 int val;
1019
1020 /* Highest register number in a movem. */
1021 int regsave;
1022
1023 /* move.d r<source_register>,rS */
1024 short source_register;
1025
1026 /* Scan limit. */
1027 int limit;
1028
1029 /* This frame is with respect to a leaf until a push srp is found. */
1030 if (info)
1031 {
1032 info->leaf_function = 1;
1033 }
1034
1035 /* Assume nothing on stack. */
1036 val = 0;
1037 regsave = -1;
1038
1039 /* If we were called without a this_frame, that means we were called
1040 from cris_skip_prologue which already tried to find the end of the
1041 prologue through the symbol information. 64 instructions past current
1042 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1043 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1044
1045 /* Find the prologue instructions. */
1046 while (pc > 0 && pc < limit)
1047 {
1048 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1049 pc += 2;
1050 if (insn == 0xE1FC)
1051 {
1052 /* push <reg> 32 bit instruction. */
1053 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1054 pc += 2;
1055 regno = cris_get_operand2 (insn_next);
1056 if (info)
1057 {
1058 info->sp_offset += 4;
1059 }
1060 /* This check, meant to recognize srp, used to be regno ==
1061 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1062 if (insn_next == 0xBE7E)
1063 {
1064 if (info)
1065 {
1066 info->leaf_function = 0;
1067 }
1068 }
1069 else if (insn_next == 0x8FEE)
1070 {
1071 /* push $r8 */
1072 if (info)
1073 {
1074 info->r8_offset = info->sp_offset;
1075 }
1076 }
1077 }
1078 else if (insn == 0x866E)
1079 {
1080 /* move.d sp,r8 */
1081 if (info)
1082 {
1083 info->uses_frame = 1;
1084 }
1085 continue;
1086 }
1087 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1088 && cris_get_mode (insn) == 0x0000
1089 && cris_get_opcode (insn) == 0x000A)
1090 {
1091 /* subq <val>,sp */
1092 if (info)
1093 {
1094 info->sp_offset += cris_get_quick_value (insn);
1095 }
1096 }
1097 else if (cris_get_mode (insn) == 0x0002
1098 && cris_get_opcode (insn) == 0x000F
1099 && cris_get_size (insn) == 0x0003
1100 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1101 {
1102 /* movem r<regsave>,[sp] */
1103 regsave = cris_get_operand2 (insn);
1104 }
1105 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1106 && ((insn & 0x0F00) >> 8) == 0x0001
1107 && (cris_get_signed_offset (insn) < 0))
1108 {
1109 /* Immediate byte offset addressing prefix word with sp as base
1110 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1111 is between 64 and 128.
1112 movem r<regsave>,[sp=sp-<val>] */
1113 if (info)
1114 {
1115 info->sp_offset += -cris_get_signed_offset (insn);
1116 }
1117 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1118 pc += 2;
1119 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1120 && cris_get_opcode (insn_next) == 0x000F
1121 && cris_get_size (insn_next) == 0x0003
1122 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1123 (gdbarch))
1124 {
1125 regsave = cris_get_operand2 (insn_next);
1126 }
1127 else
1128 {
1129 /* The prologue ended before the limit was reached. */
1130 pc -= 4;
1131 break;
1132 }
1133 }
1134 else if (cris_get_mode (insn) == 0x0001
1135 && cris_get_opcode (insn) == 0x0009
1136 && cris_get_size (insn) == 0x0002)
1137 {
1138 /* move.d r<10..13>,r<0..15> */
1139 source_register = cris_get_operand1 (insn);
1140
1141 /* FIXME? In the glibc solibs, the prologue might contain something
1142 like (this example taken from relocate_doit):
1143 move.d $pc,$r0
1144 sub.d 0xfffef426,$r0
1145 which isn't covered by the source_register check below. Question
1146 is whether to add a check for this combo, or make better use of
1147 the limit variable instead. */
1148 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1149 {
1150 /* The prologue ended before the limit was reached. */
1151 pc -= 2;
1152 break;
1153 }
1154 }
1155 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1156 /* The size is a fixed-size. */
1157 && ((insn & 0x0F00) >> 8) == 0x0001
1158 /* A negative offset. */
1159 && (cris_get_signed_offset (insn) < 0))
1160 {
1161 /* move.S rZ,[r8-U] (?) */
1162 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1163 pc += 2;
1164 regno = cris_get_operand2 (insn_next);
1165 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1166 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1167 && cris_get_opcode (insn_next) == 0x000F)
1168 {
1169 /* move.S rZ,[r8-U] */
1170 continue;
1171 }
1172 else
1173 {
1174 /* The prologue ended before the limit was reached. */
1175 pc -= 4;
1176 break;
1177 }
1178 }
1179 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1180 /* The size is a fixed-size. */
1181 && ((insn & 0x0F00) >> 8) == 0x0001
1182 /* A positive offset. */
1183 && (cris_get_signed_offset (insn) > 0))
1184 {
1185 /* move.S [r8+U],rZ (?) */
1186 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1187 pc += 2;
1188 regno = cris_get_operand2 (insn_next);
1189 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1190 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1191 && cris_get_opcode (insn_next) == 0x0009
1192 && cris_get_operand1 (insn_next) == regno)
1193 {
1194 /* move.S [r8+U],rZ */
1195 continue;
1196 }
1197 else
1198 {
1199 /* The prologue ended before the limit was reached. */
1200 pc -= 4;
1201 break;
1202 }
1203 }
1204 else
1205 {
1206 /* The prologue ended before the limit was reached. */
1207 pc -= 2;
1208 break;
1209 }
1210 }
1211
1212 /* We only want to know the end of the prologue when this_frame and info
1213 are NULL (called from cris_skip_prologue i.e.). */
1214 if (this_frame == NULL && info == NULL)
1215 {
1216 return pc;
1217 }
1218
1219 info->size = info->sp_offset;
1220
1221 /* Compute the previous frame's stack pointer (which is also the
1222 frame's ID's stack address), and this frame's base pointer. */
1223 if (info->uses_frame)
1224 {
1225 ULONGEST this_base;
1226 /* The SP was moved to the FP. This indicates that a new frame
1227 was created. Get THIS frame's FP value by unwinding it from
1228 the next frame. */
1229 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1230 info->base = this_base;
1231 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1232
1233 /* The FP points at the last saved register. Adjust the FP back
1234 to before the first saved register giving the SP. */
1235 info->prev_sp = info->base + info->r8_offset;
1236 }
1237 else
1238 {
1239 ULONGEST this_base;
1240 /* Assume that the FP is this frame's SP but with that pushed
1241 stack space added back. */
1242 this_base = get_frame_register_unsigned (this_frame,
1243 gdbarch_sp_regnum (gdbarch));
1244 info->base = this_base;
1245 info->prev_sp = info->base + info->size;
1246 }
1247
1248 /* Calculate the addresses for the saved registers on the stack. */
1249 /* FIXME: The address calculation should really be done on the fly while
1250 we're analyzing the prologue (we only hold one regsave value as it is
1251 now). */
1252 val = info->sp_offset;
1253
1254 for (regno = regsave; regno >= 0; regno--)
1255 {
1256 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1257 val -= 4;
1258 }
1259
1260 /* The previous frame's SP needed to be computed. Save the computed
1261 value. */
1262 trad_frame_set_value (info->saved_regs,
1263 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1264
1265 if (!info->leaf_function)
1266 {
1267 /* SRP saved on the stack. But where? */
1268 if (info->r8_offset == 0)
1269 {
1270 /* R8 not pushed yet. */
1271 info->saved_regs[SRP_REGNUM].addr = info->base;
1272 }
1273 else
1274 {
1275 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1276 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1277 }
1278 }
1279
1280 /* The PC is found in SRP (the actual register or located on the stack). */
1281 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1282 = info->saved_regs[SRP_REGNUM];
1283
1284 return pc;
1285 }
1286
1287 static CORE_ADDR
1288 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1289 struct cris_unwind_cache *info)
1290 {
1291 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1292 ULONGEST this_base;
1293
1294 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1295 meant to be a full-fledged prologue scanner. It is only needed for
1296 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1297
1298 * PLT stubs (library calls)
1299 * call dummys
1300 * signal trampolines
1301
1302 For those cases, it is assumed that there is no actual prologue; that
1303 the stack pointer is not adjusted, and (as a consequence) the return
1304 address is not pushed onto the stack. */
1305
1306 /* We only want to know the end of the prologue when this_frame and info
1307 are NULL (called from cris_skip_prologue i.e.). */
1308 if (this_frame == NULL && info == NULL)
1309 {
1310 return pc;
1311 }
1312
1313 /* The SP is assumed to be unaltered. */
1314 this_base = get_frame_register_unsigned (this_frame,
1315 gdbarch_sp_regnum (gdbarch));
1316 info->base = this_base;
1317 info->prev_sp = this_base;
1318
1319 /* The PC is assumed to be found in SRP. */
1320 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1321 = info->saved_regs[SRP_REGNUM];
1322
1323 return pc;
1324 }
1325
1326 /* Advance pc beyond any function entry prologue instructions at pc
1327 to reach some "real" code. */
1328
1329 /* Given a PC value corresponding to the start of a function, return the PC
1330 of the first instruction after the function prologue. */
1331
1332 static CORE_ADDR
1333 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1334 {
1335 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1336 CORE_ADDR func_addr, func_end;
1337 struct symtab_and_line sal;
1338 CORE_ADDR pc_after_prologue;
1339
1340 /* If we have line debugging information, then the end of the prologue
1341 should the first assembly instruction of the first source line. */
1342 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1343 {
1344 sal = find_pc_line (func_addr, 0);
1345 if (sal.end > 0 && sal.end < func_end)
1346 return sal.end;
1347 }
1348
1349 if (tdep->cris_version == 32)
1350 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1351 else
1352 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1353
1354 return pc_after_prologue;
1355 }
1356
1357 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1358
1359 static int
1360 cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1361 {
1362 return 2;
1363 }
1364
1365 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1366
1367 static const gdb_byte *
1368 cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1369 {
1370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1371 static unsigned char break8_insn[] = {0x38, 0xe9};
1372 static unsigned char break15_insn[] = {0x3f, 0xe9};
1373
1374 *size = kind;
1375
1376 if (tdep->cris_mode == cris_mode_guru)
1377 return break15_insn;
1378 else
1379 return break8_insn;
1380 }
1381
1382 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1383 0 otherwise. */
1384
1385 static int
1386 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1387 struct cris_spec_reg spec_reg)
1388 {
1389 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1390 unsigned int version = tdep->cris_version;
1391
1392 switch (spec_reg.applicable_version)
1393 {
1394 case cris_ver_version_all:
1395 return 1;
1396 case cris_ver_warning:
1397 /* Indeterminate/obsolete. */
1398 return 0;
1399 case cris_ver_v0_3:
1400 return in_inclusive_range (version, 0U, 3U);
1401 case cris_ver_v3p:
1402 return (version >= 3);
1403 case cris_ver_v8:
1404 return in_inclusive_range (version, 8U, 9U);
1405 case cris_ver_v8p:
1406 return (version >= 8);
1407 case cris_ver_v0_10:
1408 return in_inclusive_range (version, 0U, 10U);
1409 case cris_ver_v3_10:
1410 return in_inclusive_range (version, 3U, 10U);
1411 case cris_ver_v8_10:
1412 return in_inclusive_range (version, 8U, 10U);
1413 case cris_ver_v10:
1414 return (version == 10);
1415 case cris_ver_v10p:
1416 return (version >= 10);
1417 case cris_ver_v32p:
1418 return (version >= 32);
1419 default:
1420 /* Invalid cris version. */
1421 return 0;
1422 }
1423 }
1424
1425 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1426 register, -1 for an invalid register. */
1427
1428 static int
1429 cris_register_size (struct gdbarch *gdbarch, int regno)
1430 {
1431 int i;
1432 int spec_regno;
1433
1434 if (regno >= 0 && regno < NUM_GENREGS)
1435 {
1436 /* General registers (R0 - R15) are 32 bits. */
1437 return 4;
1438 }
1439 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1440 {
1441 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1442 Adjust regno accordingly. */
1443 spec_regno = regno - NUM_GENREGS;
1444
1445 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1446 {
1447 if (cris_spec_regs[i].number == spec_regno
1448 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1449 /* Go with the first applicable register. */
1450 return cris_spec_regs[i].reg_size;
1451 }
1452 /* Special register not applicable to this CRIS version. */
1453 return 0;
1454 }
1455 else if (regno >= gdbarch_pc_regnum (gdbarch)
1456 && regno < gdbarch_num_regs (gdbarch))
1457 {
1458 /* This will apply to CRISv32 only where there are additional registers
1459 after the special registers (pseudo PC and support registers). */
1460 return 4;
1461 }
1462
1463
1464 return -1;
1465 }
1466
1467 /* Nonzero if regno should not be fetched from the target. This is the case
1468 for unimplemented (size 0) and non-existant registers. */
1469
1470 static int
1471 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1472 {
1473 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1474 || (cris_register_size (gdbarch, regno) == 0));
1475 }
1476
1477 /* Nonzero if regno should not be written to the target, for various
1478 reasons. */
1479
1480 static int
1481 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1482 {
1483 /* There are three kinds of registers we refuse to write to.
1484 1. Those that not implemented.
1485 2. Those that are read-only (depends on the processor mode).
1486 3. Those registers to which a write has no effect. */
1487
1488 if (regno < 0
1489 || regno >= gdbarch_num_regs (gdbarch)
1490 || cris_register_size (gdbarch, regno) == 0)
1491 /* Not implemented. */
1492 return 1;
1493
1494 else if (regno == VR_REGNUM)
1495 /* Read-only. */
1496 return 1;
1497
1498 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1499 /* Writing has no effect. */
1500 return 1;
1501
1502 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1503 agent decide whether they are writable. */
1504
1505 return 0;
1506 }
1507
1508 /* Nonzero if regno should not be fetched from the target. This is the case
1509 for unimplemented (size 0) and non-existant registers. */
1510
1511 static int
1512 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1513 {
1514 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1515 || (cris_register_size (gdbarch, regno) == 0));
1516 }
1517
1518 /* Nonzero if regno should not be written to the target, for various
1519 reasons. */
1520
1521 static int
1522 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1523 {
1524 /* There are three kinds of registers we refuse to write to.
1525 1. Those that not implemented.
1526 2. Those that are read-only (depends on the processor mode).
1527 3. Those registers to which a write has no effect. */
1528
1529 if (regno < 0
1530 || regno >= gdbarch_num_regs (gdbarch)
1531 || cris_register_size (gdbarch, regno) == 0)
1532 /* Not implemented. */
1533 return 1;
1534
1535 else if (regno == VR_REGNUM)
1536 /* Read-only. */
1537 return 1;
1538
1539 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1540 /* Writing has no effect. */
1541 return 1;
1542
1543 /* Many special registers are read-only in user mode. Let the debug
1544 agent decide whether they are writable. */
1545
1546 return 0;
1547 }
1548
1549 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1550 of data in register regno. */
1551
1552 static struct type *
1553 cris_register_type (struct gdbarch *gdbarch, int regno)
1554 {
1555 if (regno == gdbarch_pc_regnum (gdbarch))
1556 return builtin_type (gdbarch)->builtin_func_ptr;
1557 else if (regno == gdbarch_sp_regnum (gdbarch)
1558 || regno == CRIS_FP_REGNUM)
1559 return builtin_type (gdbarch)->builtin_data_ptr;
1560 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1561 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1562 /* Note: R8 taken care of previous clause. */
1563 return builtin_type (gdbarch)->builtin_uint32;
1564 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1565 return builtin_type (gdbarch)->builtin_uint16;
1566 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1567 return builtin_type (gdbarch)->builtin_uint8;
1568 else
1569 /* Invalid (unimplemented) register. */
1570 return builtin_type (gdbarch)->builtin_int0;
1571 }
1572
1573 static struct type *
1574 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1575 {
1576 if (regno == gdbarch_pc_regnum (gdbarch))
1577 return builtin_type (gdbarch)->builtin_func_ptr;
1578 else if (regno == gdbarch_sp_regnum (gdbarch)
1579 || regno == CRIS_FP_REGNUM)
1580 return builtin_type (gdbarch)->builtin_data_ptr;
1581 else if ((regno >= 0 && regno <= ACR_REGNUM)
1582 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1583 || (regno == PID_REGNUM)
1584 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1585 /* Note: R8 and SP taken care of by previous clause. */
1586 return builtin_type (gdbarch)->builtin_uint32;
1587 else if (regno == WZ_REGNUM)
1588 return builtin_type (gdbarch)->builtin_uint16;
1589 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1590 return builtin_type (gdbarch)->builtin_uint8;
1591 else
1592 {
1593 /* Invalid (unimplemented) register. Should not happen as there are
1594 no unimplemented CRISv32 registers. */
1595 warning (_("crisv32_register_type: unknown regno %d"), regno);
1596 return builtin_type (gdbarch)->builtin_int0;
1597 }
1598 }
1599
1600 /* Stores a function return value of type type, where valbuf is the address
1601 of the value to be stored. */
1602
1603 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1604
1605 static void
1606 cris_store_return_value (struct type *type, struct regcache *regcache,
1607 const gdb_byte *valbuf)
1608 {
1609 struct gdbarch *gdbarch = regcache->arch ();
1610 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1611 ULONGEST val;
1612 int len = TYPE_LENGTH (type);
1613
1614 if (len <= 4)
1615 {
1616 /* Put the return value in R10. */
1617 val = extract_unsigned_integer (valbuf, len, byte_order);
1618 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1619 }
1620 else if (len <= 8)
1621 {
1622 /* Put the return value in R10 and R11. */
1623 val = extract_unsigned_integer (valbuf, 4, byte_order);
1624 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1625 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
1626 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1627 }
1628 else
1629 error (_("cris_store_return_value: type length too large."));
1630 }
1631
1632 /* Return the name of register regno as a string. Return NULL for an
1633 invalid or unimplemented register. */
1634
1635 static const char *
1636 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1637 {
1638 int spec_regno;
1639 int i;
1640
1641 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1642 Adjust regno accordingly. */
1643 spec_regno = regno - NUM_GENREGS;
1644
1645 /* Assume nothing about the layout of the cris_spec_regs struct
1646 when searching. */
1647 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1648 {
1649 if (cris_spec_regs[i].number == spec_regno
1650 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1651 /* Go with the first applicable register. */
1652 return cris_spec_regs[i].name;
1653 }
1654 /* Special register not applicable to this CRIS version. */
1655 return NULL;
1656 }
1657
1658 static const char *
1659 cris_register_name (struct gdbarch *gdbarch, int regno)
1660 {
1661 static const char *cris_genreg_names[] =
1662 { "r0", "r1", "r2", "r3", \
1663 "r4", "r5", "r6", "r7", \
1664 "r8", "r9", "r10", "r11", \
1665 "r12", "r13", "sp", "pc" };
1666
1667 if (regno >= 0 && regno < NUM_GENREGS)
1668 {
1669 /* General register. */
1670 return cris_genreg_names[regno];
1671 }
1672 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1673 {
1674 return cris_special_register_name (gdbarch, regno);
1675 }
1676 else
1677 {
1678 /* Invalid register. */
1679 return NULL;
1680 }
1681 }
1682
1683 static const char *
1684 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1685 {
1686 static const char *crisv32_genreg_names[] =
1687 { "r0", "r1", "r2", "r3", \
1688 "r4", "r5", "r6", "r7", \
1689 "r8", "r9", "r10", "r11", \
1690 "r12", "r13", "sp", "acr"
1691 };
1692
1693 static const char *crisv32_sreg_names[] =
1694 { "s0", "s1", "s2", "s3", \
1695 "s4", "s5", "s6", "s7", \
1696 "s8", "s9", "s10", "s11", \
1697 "s12", "s13", "s14", "s15"
1698 };
1699
1700 if (regno >= 0 && regno < NUM_GENREGS)
1701 {
1702 /* General register. */
1703 return crisv32_genreg_names[regno];
1704 }
1705 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1706 {
1707 return cris_special_register_name (gdbarch, regno);
1708 }
1709 else if (regno == gdbarch_pc_regnum (gdbarch))
1710 {
1711 return "pc";
1712 }
1713 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1714 {
1715 return crisv32_sreg_names[regno - S0_REGNUM];
1716 }
1717 else
1718 {
1719 /* Invalid register. */
1720 return NULL;
1721 }
1722 }
1723
1724 /* Convert DWARF register number REG to the appropriate register
1725 number used by GDB. */
1726
1727 static int
1728 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1729 {
1730 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1731 numbering, MOF is 18).
1732 Adapted from gcc/config/cris/cris.h. */
1733 static int cris_dwarf_regmap[] = {
1734 0, 1, 2, 3,
1735 4, 5, 6, 7,
1736 8, 9, 10, 11,
1737 12, 13, 14, 15,
1738 27, -1, -1, -1,
1739 -1, -1, -1, 23,
1740 -1, -1, -1, 27,
1741 -1, -1, -1, -1
1742 };
1743 int regnum = -1;
1744
1745 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1746 regnum = cris_dwarf_regmap[reg];
1747
1748 return regnum;
1749 }
1750
1751 /* DWARF-2 frame support. */
1752
1753 static void
1754 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1755 struct dwarf2_frame_state_reg *reg,
1756 struct frame_info *this_frame)
1757 {
1758 /* The return address column. */
1759 if (regnum == gdbarch_pc_regnum (gdbarch))
1760 reg->how = DWARF2_FRAME_REG_RA;
1761
1762 /* The call frame address. */
1763 else if (regnum == gdbarch_sp_regnum (gdbarch))
1764 reg->how = DWARF2_FRAME_REG_CFA;
1765 }
1766
1767 /* Extract from an array regbuf containing the raw register state a function
1768 return value of type type, and copy that, in virtual format, into
1769 valbuf. */
1770
1771 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1772
1773 static void
1774 cris_extract_return_value (struct type *type, struct regcache *regcache,
1775 gdb_byte *valbuf)
1776 {
1777 struct gdbarch *gdbarch = regcache->arch ();
1778 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1779 ULONGEST val;
1780 int len = TYPE_LENGTH (type);
1781
1782 if (len <= 4)
1783 {
1784 /* Get the return value from R10. */
1785 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1786 store_unsigned_integer (valbuf, len, byte_order, val);
1787 }
1788 else if (len <= 8)
1789 {
1790 /* Get the return value from R10 and R11. */
1791 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1792 store_unsigned_integer (valbuf, 4, byte_order, val);
1793 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1794 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
1795 }
1796 else
1797 error (_("cris_extract_return_value: type length too large"));
1798 }
1799
1800 /* Handle the CRIS return value convention. */
1801
1802 static enum return_value_convention
1803 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1804 struct type *type, struct regcache *regcache,
1805 gdb_byte *readbuf, const gdb_byte *writebuf)
1806 {
1807 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1808 || TYPE_CODE (type) == TYPE_CODE_UNION
1809 || TYPE_LENGTH (type) > 8)
1810 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1811 goes on the stack. */
1812 return RETURN_VALUE_STRUCT_CONVENTION;
1813
1814 if (readbuf)
1815 cris_extract_return_value (type, regcache, readbuf);
1816 if (writebuf)
1817 cris_store_return_value (type, regcache, writebuf);
1818
1819 return RETURN_VALUE_REGISTER_CONVENTION;
1820 }
1821
1822 /* Calculates a value that measures how good inst_args constraints an
1823 instruction. It stems from cris_constraint, found in cris-dis.c. */
1824
1825 static int
1826 constraint (unsigned int insn, const char *inst_args,
1827 inst_env_type *inst_env)
1828 {
1829 int retval = 0;
1830 int tmp, i;
1831
1832 const gdb_byte *s = (const gdb_byte *) inst_args;
1833
1834 for (; *s; s++)
1835 switch (*s)
1836 {
1837 case 'm':
1838 if ((insn & 0x30) == 0x30)
1839 return -1;
1840 break;
1841
1842 case 'S':
1843 /* A prefix operand. */
1844 if (inst_env->prefix_found)
1845 break;
1846 else
1847 return -1;
1848
1849 case 'B':
1850 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1851 valid "push" size. In case of special register, it may be != 4. */
1852 if (inst_env->prefix_found)
1853 break;
1854 else
1855 return -1;
1856
1857 case 'D':
1858 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1859 if (!retval)
1860 return -1;
1861 else
1862 retval += 4;
1863 break;
1864
1865 case 'P':
1866 tmp = (insn >> 0xC) & 0xF;
1867
1868 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1869 {
1870 /* Since we match four bits, we will give a value of
1871 4 - 1 = 3 in a match. If there is a corresponding
1872 exact match of a special register in another pattern, it
1873 will get a value of 4, which will be higher. This should
1874 be correct in that an exact pattern would match better that
1875 a general pattern.
1876 Note that there is a reason for not returning zero; the
1877 pattern for "clear" is partly matched in the bit-pattern
1878 (the two lower bits must be zero), while the bit-pattern
1879 for a move from a special register is matched in the
1880 register constraint.
1881 This also means we will will have a race condition if
1882 there is a partly match in three bits in the bit pattern. */
1883 if (tmp == cris_spec_regs[i].number)
1884 {
1885 retval += 3;
1886 break;
1887 }
1888 }
1889
1890 if (cris_spec_regs[i].name == NULL)
1891 return -1;
1892 break;
1893 }
1894 return retval;
1895 }
1896
1897 /* Returns the number of bits set in the variable value. */
1898
1899 static int
1900 number_of_bits (unsigned int value)
1901 {
1902 int number_of_bits = 0;
1903
1904 while (value != 0)
1905 {
1906 number_of_bits += 1;
1907 value &= (value - 1);
1908 }
1909 return number_of_bits;
1910 }
1911
1912 /* Finds the address that should contain the single step breakpoint(s).
1913 It stems from code in cris-dis.c. */
1914
1915 static int
1916 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1917 {
1918 int i;
1919 int max_level_of_match = -1;
1920 int max_matched = -1;
1921 int level_of_match;
1922
1923 for (i = 0; cris_opcodes[i].name != NULL; i++)
1924 {
1925 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1926 && ((cris_opcodes[i].lose & insn) == 0)
1927 /* Only CRISv10 instructions, please. */
1928 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1929 {
1930 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1931 if (level_of_match >= 0)
1932 {
1933 level_of_match +=
1934 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1935 if (level_of_match > max_level_of_match)
1936 {
1937 max_matched = i;
1938 max_level_of_match = level_of_match;
1939 if (level_of_match == 16)
1940 {
1941 /* All bits matched, cannot find better. */
1942 break;
1943 }
1944 }
1945 }
1946 }
1947 }
1948 return max_matched;
1949 }
1950
1951 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1952 actually an internal error. */
1953
1954 static int
1955 find_step_target (struct regcache *regcache, inst_env_type *inst_env)
1956 {
1957 int i;
1958 int offset;
1959 unsigned short insn;
1960 struct gdbarch *gdbarch = regcache->arch ();
1961 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1962
1963 /* Create a local register image and set the initial state. */
1964 for (i = 0; i < NUM_GENREGS; i++)
1965 {
1966 inst_env->reg[i] =
1967 (unsigned long) regcache_raw_get_unsigned (regcache, i);
1968 }
1969 offset = NUM_GENREGS;
1970 for (i = 0; i < NUM_SPECREGS; i++)
1971 {
1972 inst_env->preg[i] =
1973 (unsigned long) regcache_raw_get_unsigned (regcache, offset + i);
1974 }
1975 inst_env->branch_found = 0;
1976 inst_env->slot_needed = 0;
1977 inst_env->delay_slot_pc_active = 0;
1978 inst_env->prefix_found = 0;
1979 inst_env->invalid = 0;
1980 inst_env->xflag_found = 0;
1981 inst_env->disable_interrupt = 0;
1982 inst_env->byte_order = byte_order;
1983
1984 /* Look for a step target. */
1985 do
1986 {
1987 /* Read an instruction from the client. */
1988 insn = read_memory_unsigned_integer
1989 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
1990
1991 /* If the instruction is not in a delay slot the new content of the
1992 PC is [PC] + 2. If the instruction is in a delay slot it is not
1993 that simple. Since a instruction in a delay slot cannot change
1994 the content of the PC, it does not matter what value PC will have.
1995 Just make sure it is a valid instruction. */
1996 if (!inst_env->delay_slot_pc_active)
1997 {
1998 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
1999 }
2000 else
2001 {
2002 inst_env->delay_slot_pc_active = 0;
2003 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2004 = inst_env->delay_slot_pc;
2005 }
2006 /* Analyse the present instruction. */
2007 i = find_cris_op (insn, inst_env);
2008 if (i == -1)
2009 {
2010 inst_env->invalid = 1;
2011 }
2012 else
2013 {
2014 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2015 }
2016 } while (!inst_env->invalid
2017 && (inst_env->prefix_found || inst_env->xflag_found
2018 || inst_env->slot_needed));
2019 return i;
2020 }
2021
2022 /* There is no hardware single-step support. The function find_step_target
2023 digs through the opcodes in order to find all possible targets.
2024 Either one ordinary target or two targets for branches may be found. */
2025
2026 static std::vector<CORE_ADDR>
2027 cris_software_single_step (struct regcache *regcache)
2028 {
2029 struct gdbarch *gdbarch = regcache->arch ();
2030 inst_env_type inst_env;
2031 std::vector<CORE_ADDR> next_pcs;
2032
2033 /* Analyse the present instruction environment and insert
2034 breakpoints. */
2035 int status = find_step_target (regcache, &inst_env);
2036 if (status == -1)
2037 {
2038 /* Could not find a target. Things are likely to go downhill
2039 from here. */
2040 warning (_("CRIS software single step could not find a step target."));
2041 }
2042 else
2043 {
2044 /* Insert at most two breakpoints. One for the next PC content
2045 and possibly another one for a branch, jump, etc. */
2046 CORE_ADDR next_pc
2047 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2048
2049 next_pcs.push_back (next_pc);
2050 if (inst_env.branch_found
2051 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2052 {
2053 CORE_ADDR branch_target_address
2054 = (CORE_ADDR) inst_env.branch_break_address;
2055
2056 next_pcs.push_back (branch_target_address);
2057 }
2058 }
2059
2060 return next_pcs;
2061 }
2062
2063 /* Calculates the prefix value for quick offset addressing mode. */
2064
2065 static void
2066 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2067 {
2068 /* It's invalid to be in a delay slot. You can't have a prefix to this
2069 instruction (not 100% sure). */
2070 if (inst_env->slot_needed || inst_env->prefix_found)
2071 {
2072 inst_env->invalid = 1;
2073 return;
2074 }
2075
2076 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2077 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2078
2079 /* A prefix doesn't change the xflag_found. But the rest of the flags
2080 need updating. */
2081 inst_env->slot_needed = 0;
2082 inst_env->prefix_found = 1;
2083 }
2084
2085 /* Updates the autoincrement register. The size of the increment is derived
2086 from the size of the operation. The PC is always kept aligned on even
2087 word addresses. */
2088
2089 static void
2090 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2091 {
2092 if (size == INST_BYTE_SIZE)
2093 {
2094 inst_env->reg[cris_get_operand1 (inst)] += 1;
2095
2096 /* The PC must be word aligned, so increase the PC with one
2097 word even if the size is byte. */
2098 if (cris_get_operand1 (inst) == REG_PC)
2099 {
2100 inst_env->reg[REG_PC] += 1;
2101 }
2102 }
2103 else if (size == INST_WORD_SIZE)
2104 {
2105 inst_env->reg[cris_get_operand1 (inst)] += 2;
2106 }
2107 else if (size == INST_DWORD_SIZE)
2108 {
2109 inst_env->reg[cris_get_operand1 (inst)] += 4;
2110 }
2111 else
2112 {
2113 /* Invalid size. */
2114 inst_env->invalid = 1;
2115 }
2116 }
2117
2118 /* Just a forward declaration. */
2119
2120 static unsigned long get_data_from_address (unsigned short *inst,
2121 CORE_ADDR address,
2122 enum bfd_endian byte_order);
2123
2124 /* Calculates the prefix value for the general case of offset addressing
2125 mode. */
2126
2127 static void
2128 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2129 {
2130 /* It's invalid to be in a delay slot. */
2131 if (inst_env->slot_needed || inst_env->prefix_found)
2132 {
2133 inst_env->invalid = 1;
2134 return;
2135 }
2136
2137 /* The calculation of prefix_value used to be after process_autoincrement,
2138 but that fails for an instruction such as jsr [$r0+12] which is encoded
2139 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2140 mustn't be incremented until we have read it and what it points at. */
2141 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2142
2143 /* The offset is an indirection of the contents of the operand1 register. */
2144 inst_env->prefix_value +=
2145 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2146 inst_env->byte_order);
2147
2148 if (cris_get_mode (inst) == AUTOINC_MODE)
2149 {
2150 process_autoincrement (cris_get_size (inst), inst, inst_env);
2151 }
2152
2153 /* A prefix doesn't change the xflag_found. But the rest of the flags
2154 need updating. */
2155 inst_env->slot_needed = 0;
2156 inst_env->prefix_found = 1;
2157 }
2158
2159 /* Calculates the prefix value for the index addressing mode. */
2160
2161 static void
2162 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2163 {
2164 /* It's invalid to be in a delay slot. I can't see that it's possible to
2165 have a prefix to this instruction. So I will treat this as invalid. */
2166 if (inst_env->slot_needed || inst_env->prefix_found)
2167 {
2168 inst_env->invalid = 1;
2169 return;
2170 }
2171
2172 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2173
2174 /* The offset is the operand2 value shifted the size of the instruction
2175 to the left. */
2176 inst_env->prefix_value +=
2177 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2178
2179 /* If the PC is operand1 (base) the address used is the address after
2180 the main instruction, i.e. address + 2 (the PC is already compensated
2181 for the prefix operation). */
2182 if (cris_get_operand1 (inst) == REG_PC)
2183 {
2184 inst_env->prefix_value += 2;
2185 }
2186
2187 /* A prefix doesn't change the xflag_found. But the rest of the flags
2188 need updating. */
2189 inst_env->slot_needed = 0;
2190 inst_env->xflag_found = 0;
2191 inst_env->prefix_found = 1;
2192 }
2193
2194 /* Calculates the prefix value for the double indirect addressing mode. */
2195
2196 static void
2197 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2198 {
2199
2200 CORE_ADDR address;
2201
2202 /* It's invalid to be in a delay slot. */
2203 if (inst_env->slot_needed || inst_env->prefix_found)
2204 {
2205 inst_env->invalid = 1;
2206 return;
2207 }
2208
2209 /* The prefix value is one dereference of the contents of the operand1
2210 register. */
2211 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2212 inst_env->prefix_value
2213 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2214
2215 /* Check if the mode is autoincrement. */
2216 if (cris_get_mode (inst) == AUTOINC_MODE)
2217 {
2218 inst_env->reg[cris_get_operand1 (inst)] += 4;
2219 }
2220
2221 /* A prefix doesn't change the xflag_found. But the rest of the flags
2222 need updating. */
2223 inst_env->slot_needed = 0;
2224 inst_env->xflag_found = 0;
2225 inst_env->prefix_found = 1;
2226 }
2227
2228 /* Finds the destination for a branch with 8-bits offset. */
2229
2230 static void
2231 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2232 {
2233
2234 short offset;
2235
2236 /* If we have a prefix or are in a delay slot it's bad. */
2237 if (inst_env->slot_needed || inst_env->prefix_found)
2238 {
2239 inst_env->invalid = 1;
2240 return;
2241 }
2242
2243 /* We have a branch, find out where the branch will land. */
2244 offset = cris_get_branch_short_offset (inst);
2245
2246 /* Check if the offset is signed. */
2247 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2248 {
2249 offset |= 0xFF00;
2250 }
2251
2252 /* The offset ends with the sign bit, set it to zero. The address
2253 should always be word aligned. */
2254 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2255
2256 inst_env->branch_found = 1;
2257 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2258
2259 inst_env->slot_needed = 1;
2260 inst_env->prefix_found = 0;
2261 inst_env->xflag_found = 0;
2262 inst_env->disable_interrupt = 1;
2263 }
2264
2265 /* Finds the destination for a branch with 16-bits offset. */
2266
2267 static void
2268 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2269 {
2270 short offset;
2271
2272 /* If we have a prefix or is in a delay slot it's bad. */
2273 if (inst_env->slot_needed || inst_env->prefix_found)
2274 {
2275 inst_env->invalid = 1;
2276 return;
2277 }
2278
2279 /* We have a branch, find out the offset for the branch. */
2280 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2281 inst_env->byte_order);
2282
2283 /* The instruction is one word longer than normal, so add one word
2284 to the PC. */
2285 inst_env->reg[REG_PC] += 2;
2286
2287 inst_env->branch_found = 1;
2288 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2289
2290
2291 inst_env->slot_needed = 1;
2292 inst_env->prefix_found = 0;
2293 inst_env->xflag_found = 0;
2294 inst_env->disable_interrupt = 1;
2295 }
2296
2297 /* Handles the ABS instruction. */
2298
2299 static void
2300 abs_op (unsigned short inst, inst_env_type *inst_env)
2301 {
2302
2303 long value;
2304
2305 /* ABS can't have a prefix, so it's bad if it does. */
2306 if (inst_env->prefix_found)
2307 {
2308 inst_env->invalid = 1;
2309 return;
2310 }
2311
2312 /* Check if the operation affects the PC. */
2313 if (cris_get_operand2 (inst) == REG_PC)
2314 {
2315
2316 /* It's invalid to change to the PC if we are in a delay slot. */
2317 if (inst_env->slot_needed)
2318 {
2319 inst_env->invalid = 1;
2320 return;
2321 }
2322
2323 value = (long) inst_env->reg[REG_PC];
2324
2325 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2326 if (value != SIGNED_DWORD_MASK)
2327 {
2328 value = -value;
2329 inst_env->reg[REG_PC] = (long) value;
2330 }
2331 }
2332
2333 inst_env->slot_needed = 0;
2334 inst_env->prefix_found = 0;
2335 inst_env->xflag_found = 0;
2336 inst_env->disable_interrupt = 0;
2337 }
2338
2339 /* Handles the ADDI instruction. */
2340
2341 static void
2342 addi_op (unsigned short inst, inst_env_type *inst_env)
2343 {
2344 /* It's invalid to have the PC as base register. And ADDI can't have
2345 a prefix. */
2346 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2347 {
2348 inst_env->invalid = 1;
2349 return;
2350 }
2351
2352 inst_env->slot_needed = 0;
2353 inst_env->prefix_found = 0;
2354 inst_env->xflag_found = 0;
2355 inst_env->disable_interrupt = 0;
2356 }
2357
2358 /* Handles the ASR instruction. */
2359
2360 static void
2361 asr_op (unsigned short inst, inst_env_type *inst_env)
2362 {
2363 int shift_steps;
2364 unsigned long value;
2365 unsigned long signed_extend_mask = 0;
2366
2367 /* ASR can't have a prefix, so check that it doesn't. */
2368 if (inst_env->prefix_found)
2369 {
2370 inst_env->invalid = 1;
2371 return;
2372 }
2373
2374 /* Check if the PC is the target register. */
2375 if (cris_get_operand2 (inst) == REG_PC)
2376 {
2377 /* It's invalid to change the PC in a delay slot. */
2378 if (inst_env->slot_needed)
2379 {
2380 inst_env->invalid = 1;
2381 return;
2382 }
2383 /* Get the number of bits to shift. */
2384 shift_steps
2385 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2386 value = inst_env->reg[REG_PC];
2387
2388 /* Find out how many bits the operation should apply to. */
2389 if (cris_get_size (inst) == INST_BYTE_SIZE)
2390 {
2391 if (value & SIGNED_BYTE_MASK)
2392 {
2393 signed_extend_mask = 0xFF;
2394 signed_extend_mask = signed_extend_mask >> shift_steps;
2395 signed_extend_mask = ~signed_extend_mask;
2396 }
2397 value = value >> shift_steps;
2398 value |= signed_extend_mask;
2399 value &= 0xFF;
2400 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2401 inst_env->reg[REG_PC] |= value;
2402 }
2403 else if (cris_get_size (inst) == INST_WORD_SIZE)
2404 {
2405 if (value & SIGNED_WORD_MASK)
2406 {
2407 signed_extend_mask = 0xFFFF;
2408 signed_extend_mask = signed_extend_mask >> shift_steps;
2409 signed_extend_mask = ~signed_extend_mask;
2410 }
2411 value = value >> shift_steps;
2412 value |= signed_extend_mask;
2413 value &= 0xFFFF;
2414 inst_env->reg[REG_PC] &= 0xFFFF0000;
2415 inst_env->reg[REG_PC] |= value;
2416 }
2417 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2418 {
2419 if (value & SIGNED_DWORD_MASK)
2420 {
2421 signed_extend_mask = 0xFFFFFFFF;
2422 signed_extend_mask = signed_extend_mask >> shift_steps;
2423 signed_extend_mask = ~signed_extend_mask;
2424 }
2425 value = value >> shift_steps;
2426 value |= signed_extend_mask;
2427 inst_env->reg[REG_PC] = value;
2428 }
2429 }
2430 inst_env->slot_needed = 0;
2431 inst_env->prefix_found = 0;
2432 inst_env->xflag_found = 0;
2433 inst_env->disable_interrupt = 0;
2434 }
2435
2436 /* Handles the ASRQ instruction. */
2437
2438 static void
2439 asrq_op (unsigned short inst, inst_env_type *inst_env)
2440 {
2441
2442 int shift_steps;
2443 unsigned long value;
2444 unsigned long signed_extend_mask = 0;
2445
2446 /* ASRQ can't have a prefix, so check that it doesn't. */
2447 if (inst_env->prefix_found)
2448 {
2449 inst_env->invalid = 1;
2450 return;
2451 }
2452
2453 /* Check if the PC is the target register. */
2454 if (cris_get_operand2 (inst) == REG_PC)
2455 {
2456
2457 /* It's invalid to change the PC in a delay slot. */
2458 if (inst_env->slot_needed)
2459 {
2460 inst_env->invalid = 1;
2461 return;
2462 }
2463 /* The shift size is given as a 5 bit quick value, i.e. we don't
2464 want the sign bit of the quick value. */
2465 shift_steps = cris_get_asr_shift_steps (inst);
2466 value = inst_env->reg[REG_PC];
2467 if (value & SIGNED_DWORD_MASK)
2468 {
2469 signed_extend_mask = 0xFFFFFFFF;
2470 signed_extend_mask = signed_extend_mask >> shift_steps;
2471 signed_extend_mask = ~signed_extend_mask;
2472 }
2473 value = value >> shift_steps;
2474 value |= signed_extend_mask;
2475 inst_env->reg[REG_PC] = value;
2476 }
2477 inst_env->slot_needed = 0;
2478 inst_env->prefix_found = 0;
2479 inst_env->xflag_found = 0;
2480 inst_env->disable_interrupt = 0;
2481 }
2482
2483 /* Handles the AX, EI and SETF instruction. */
2484
2485 static void
2486 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2487 {
2488 if (inst_env->prefix_found)
2489 {
2490 inst_env->invalid = 1;
2491 return;
2492 }
2493 /* Check if the instruction is setting the X flag. */
2494 if (cris_is_xflag_bit_on (inst))
2495 {
2496 inst_env->xflag_found = 1;
2497 }
2498 else
2499 {
2500 inst_env->xflag_found = 0;
2501 }
2502 inst_env->slot_needed = 0;
2503 inst_env->prefix_found = 0;
2504 inst_env->disable_interrupt = 1;
2505 }
2506
2507 /* Checks if the instruction is in assign mode. If so, it updates the assign
2508 register. Note that check_assign assumes that the caller has checked that
2509 there is a prefix to this instruction. The mode check depends on this. */
2510
2511 static void
2512 check_assign (unsigned short inst, inst_env_type *inst_env)
2513 {
2514 /* Check if it's an assign addressing mode. */
2515 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2516 {
2517 /* Assign the prefix value to operand 1. */
2518 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2519 }
2520 }
2521
2522 /* Handles the 2-operand BOUND instruction. */
2523
2524 static void
2525 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2526 {
2527 /* It's invalid to have the PC as the index operand. */
2528 if (cris_get_operand2 (inst) == REG_PC)
2529 {
2530 inst_env->invalid = 1;
2531 return;
2532 }
2533 /* Check if we have a prefix. */
2534 if (inst_env->prefix_found)
2535 {
2536 check_assign (inst, inst_env);
2537 }
2538 /* Check if this is an autoincrement mode. */
2539 else if (cris_get_mode (inst) == AUTOINC_MODE)
2540 {
2541 /* It's invalid to change the PC in a delay slot. */
2542 if (inst_env->slot_needed)
2543 {
2544 inst_env->invalid = 1;
2545 return;
2546 }
2547 process_autoincrement (cris_get_size (inst), inst, inst_env);
2548 }
2549 inst_env->slot_needed = 0;
2550 inst_env->prefix_found = 0;
2551 inst_env->xflag_found = 0;
2552 inst_env->disable_interrupt = 0;
2553 }
2554
2555 /* Handles the 3-operand BOUND instruction. */
2556
2557 static void
2558 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2559 {
2560 /* It's an error if we haven't got a prefix. And it's also an error
2561 if the PC is the destination register. */
2562 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2563 {
2564 inst_env->invalid = 1;
2565 return;
2566 }
2567 inst_env->slot_needed = 0;
2568 inst_env->prefix_found = 0;
2569 inst_env->xflag_found = 0;
2570 inst_env->disable_interrupt = 0;
2571 }
2572
2573 /* Clears the status flags in inst_env. */
2574
2575 static void
2576 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2577 {
2578 /* It's an error if we have got a prefix. */
2579 if (inst_env->prefix_found)
2580 {
2581 inst_env->invalid = 1;
2582 return;
2583 }
2584
2585 inst_env->slot_needed = 0;
2586 inst_env->prefix_found = 0;
2587 inst_env->xflag_found = 0;
2588 inst_env->disable_interrupt = 0;
2589 }
2590
2591 /* Clears the status flags in inst_env. */
2592
2593 static void
2594 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2595 {
2596 /* It's an error if we have got a prefix. */
2597 if (inst_env->prefix_found)
2598 {
2599 inst_env->invalid = 1;
2600 return;
2601 }
2602
2603 inst_env->slot_needed = 0;
2604 inst_env->prefix_found = 0;
2605 inst_env->xflag_found = 0;
2606 inst_env->disable_interrupt = 1;
2607 }
2608
2609 /* Handles the CLEAR instruction if it's in register mode. */
2610
2611 static void
2612 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2613 {
2614 /* Check if the target is the PC. */
2615 if (cris_get_operand2 (inst) == REG_PC)
2616 {
2617 /* The instruction will clear the instruction's size bits. */
2618 int clear_size = cris_get_clear_size (inst);
2619 if (clear_size == INST_BYTE_SIZE)
2620 {
2621 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2622 }
2623 if (clear_size == INST_WORD_SIZE)
2624 {
2625 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2626 }
2627 if (clear_size == INST_DWORD_SIZE)
2628 {
2629 inst_env->delay_slot_pc = 0x0;
2630 }
2631 /* The jump will be delayed with one delay slot. So we need a delay
2632 slot. */
2633 inst_env->slot_needed = 1;
2634 inst_env->delay_slot_pc_active = 1;
2635 }
2636 else
2637 {
2638 /* The PC will not change => no delay slot. */
2639 inst_env->slot_needed = 0;
2640 }
2641 inst_env->prefix_found = 0;
2642 inst_env->xflag_found = 0;
2643 inst_env->disable_interrupt = 0;
2644 }
2645
2646 /* Handles the TEST instruction if it's in register mode. */
2647
2648 static void
2649 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2650 {
2651 /* It's an error if we have got a prefix. */
2652 if (inst_env->prefix_found)
2653 {
2654 inst_env->invalid = 1;
2655 return;
2656 }
2657 inst_env->slot_needed = 0;
2658 inst_env->prefix_found = 0;
2659 inst_env->xflag_found = 0;
2660 inst_env->disable_interrupt = 0;
2661
2662 }
2663
2664 /* Handles the CLEAR and TEST instruction if the instruction isn't
2665 in register mode. */
2666
2667 static void
2668 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2669 {
2670 /* Check if we are in a prefix mode. */
2671 if (inst_env->prefix_found)
2672 {
2673 /* The only way the PC can change is if this instruction is in
2674 assign addressing mode. */
2675 check_assign (inst, inst_env);
2676 }
2677 /* Indirect mode can't change the PC so just check if the mode is
2678 autoincrement. */
2679 else if (cris_get_mode (inst) == AUTOINC_MODE)
2680 {
2681 process_autoincrement (cris_get_size (inst), inst, inst_env);
2682 }
2683 inst_env->slot_needed = 0;
2684 inst_env->prefix_found = 0;
2685 inst_env->xflag_found = 0;
2686 inst_env->disable_interrupt = 0;
2687 }
2688
2689 /* Checks that the PC isn't the destination register or the instructions has
2690 a prefix. */
2691
2692 static void
2693 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2694 {
2695 /* It's invalid to have the PC as the destination. The instruction can't
2696 have a prefix. */
2697 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2698 {
2699 inst_env->invalid = 1;
2700 return;
2701 }
2702
2703 inst_env->slot_needed = 0;
2704 inst_env->prefix_found = 0;
2705 inst_env->xflag_found = 0;
2706 inst_env->disable_interrupt = 0;
2707 }
2708
2709 /* Checks that the instruction doesn't have a prefix. */
2710
2711 static void
2712 break_op (unsigned short inst, inst_env_type *inst_env)
2713 {
2714 /* The instruction can't have a prefix. */
2715 if (inst_env->prefix_found)
2716 {
2717 inst_env->invalid = 1;
2718 return;
2719 }
2720
2721 inst_env->slot_needed = 0;
2722 inst_env->prefix_found = 0;
2723 inst_env->xflag_found = 0;
2724 inst_env->disable_interrupt = 1;
2725 }
2726
2727 /* Checks that the PC isn't the destination register and that the instruction
2728 doesn't have a prefix. */
2729
2730 static void
2731 scc_op (unsigned short inst, inst_env_type *inst_env)
2732 {
2733 /* It's invalid to have the PC as the destination. The instruction can't
2734 have a prefix. */
2735 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2736 {
2737 inst_env->invalid = 1;
2738 return;
2739 }
2740
2741 inst_env->slot_needed = 0;
2742 inst_env->prefix_found = 0;
2743 inst_env->xflag_found = 0;
2744 inst_env->disable_interrupt = 1;
2745 }
2746
2747 /* Handles the register mode JUMP instruction. */
2748
2749 static void
2750 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2751 {
2752 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2753 you can't have a prefix. */
2754 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2755 {
2756 inst_env->invalid = 1;
2757 return;
2758 }
2759
2760 /* Just change the PC. */
2761 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2762 inst_env->slot_needed = 0;
2763 inst_env->prefix_found = 0;
2764 inst_env->xflag_found = 0;
2765 inst_env->disable_interrupt = 1;
2766 }
2767
2768 /* Handles the JUMP instruction for all modes except register. */
2769
2770 static void
2771 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2772 {
2773 unsigned long newpc;
2774 CORE_ADDR address;
2775
2776 /* It's invalid to do a JUMP in a delay slot. */
2777 if (inst_env->slot_needed)
2778 {
2779 inst_env->invalid = 1;
2780 }
2781 else
2782 {
2783 /* Check if we have a prefix. */
2784 if (inst_env->prefix_found)
2785 {
2786 check_assign (inst, inst_env);
2787
2788 /* Get the new value for the PC. */
2789 newpc =
2790 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2791 4, inst_env->byte_order);
2792 }
2793 else
2794 {
2795 /* Get the new value for the PC. */
2796 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2797 newpc = read_memory_unsigned_integer (address,
2798 4, inst_env->byte_order);
2799
2800 /* Check if we should increment a register. */
2801 if (cris_get_mode (inst) == AUTOINC_MODE)
2802 {
2803 inst_env->reg[cris_get_operand1 (inst)] += 4;
2804 }
2805 }
2806 inst_env->reg[REG_PC] = newpc;
2807 }
2808 inst_env->slot_needed = 0;
2809 inst_env->prefix_found = 0;
2810 inst_env->xflag_found = 0;
2811 inst_env->disable_interrupt = 1;
2812 }
2813
2814 /* Handles moves to special registers (aka P-register) for all modes. */
2815
2816 static void
2817 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2818 inst_env_type *inst_env)
2819 {
2820 if (inst_env->prefix_found)
2821 {
2822 /* The instruction has a prefix that means we are only interested if
2823 the instruction is in assign mode. */
2824 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2825 {
2826 /* The prefix handles the problem if we are in a delay slot. */
2827 if (cris_get_operand1 (inst) == REG_PC)
2828 {
2829 /* Just take care of the assign. */
2830 check_assign (inst, inst_env);
2831 }
2832 }
2833 }
2834 else if (cris_get_mode (inst) == AUTOINC_MODE)
2835 {
2836 /* The instruction doesn't have a prefix, the only case left that we
2837 are interested in is the autoincrement mode. */
2838 if (cris_get_operand1 (inst) == REG_PC)
2839 {
2840 /* If the PC is to be incremented it's invalid to be in a
2841 delay slot. */
2842 if (inst_env->slot_needed)
2843 {
2844 inst_env->invalid = 1;
2845 return;
2846 }
2847
2848 /* The increment depends on the size of the special register. */
2849 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2850 {
2851 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2852 }
2853 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2854 {
2855 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2856 }
2857 else
2858 {
2859 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2860 }
2861 }
2862 }
2863 inst_env->slot_needed = 0;
2864 inst_env->prefix_found = 0;
2865 inst_env->xflag_found = 0;
2866 inst_env->disable_interrupt = 1;
2867 }
2868
2869 /* Handles moves from special registers (aka P-register) for all modes
2870 except register. */
2871
2872 static void
2873 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2874 inst_env_type *inst_env)
2875 {
2876 if (inst_env->prefix_found)
2877 {
2878 /* The instruction has a prefix that means we are only interested if
2879 the instruction is in assign mode. */
2880 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2881 {
2882 /* The prefix handles the problem if we are in a delay slot. */
2883 if (cris_get_operand1 (inst) == REG_PC)
2884 {
2885 /* Just take care of the assign. */
2886 check_assign (inst, inst_env);
2887 }
2888 }
2889 }
2890 /* The instruction doesn't have a prefix, the only case left that we
2891 are interested in is the autoincrement mode. */
2892 else if (cris_get_mode (inst) == AUTOINC_MODE)
2893 {
2894 if (cris_get_operand1 (inst) == REG_PC)
2895 {
2896 /* If the PC is to be incremented it's invalid to be in a
2897 delay slot. */
2898 if (inst_env->slot_needed)
2899 {
2900 inst_env->invalid = 1;
2901 return;
2902 }
2903
2904 /* The increment depends on the size of the special register. */
2905 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2906 {
2907 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2908 }
2909 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2910 {
2911 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2912 }
2913 else
2914 {
2915 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2916 }
2917 }
2918 }
2919 inst_env->slot_needed = 0;
2920 inst_env->prefix_found = 0;
2921 inst_env->xflag_found = 0;
2922 inst_env->disable_interrupt = 1;
2923 }
2924
2925 /* Handles moves from special registers (aka P-register) when the mode
2926 is register. */
2927
2928 static void
2929 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2930 {
2931 /* Register mode move from special register can't have a prefix. */
2932 if (inst_env->prefix_found)
2933 {
2934 inst_env->invalid = 1;
2935 return;
2936 }
2937
2938 if (cris_get_operand1 (inst) == REG_PC)
2939 {
2940 /* It's invalid to change the PC in a delay slot. */
2941 if (inst_env->slot_needed)
2942 {
2943 inst_env->invalid = 1;
2944 return;
2945 }
2946 /* The destination is the PC, the jump will have a delay slot. */
2947 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2948 inst_env->slot_needed = 1;
2949 inst_env->delay_slot_pc_active = 1;
2950 }
2951 else
2952 {
2953 /* If the destination isn't PC, there will be no jump. */
2954 inst_env->slot_needed = 0;
2955 }
2956 inst_env->prefix_found = 0;
2957 inst_env->xflag_found = 0;
2958 inst_env->disable_interrupt = 1;
2959 }
2960
2961 /* Handles the MOVEM from memory to general register instruction. */
2962
2963 static void
2964 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2965 {
2966 if (inst_env->prefix_found)
2967 {
2968 /* The prefix handles the problem if we are in a delay slot. Is the
2969 MOVEM instruction going to change the PC? */
2970 if (cris_get_operand2 (inst) >= REG_PC)
2971 {
2972 inst_env->reg[REG_PC] =
2973 read_memory_unsigned_integer (inst_env->prefix_value,
2974 4, inst_env->byte_order);
2975 }
2976 /* The assign value is the value after the increment. Normally, the
2977 assign value is the value before the increment. */
2978 if ((cris_get_operand1 (inst) == REG_PC)
2979 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2980 {
2981 inst_env->reg[REG_PC] = inst_env->prefix_value;
2982 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2983 }
2984 }
2985 else
2986 {
2987 /* Is the MOVEM instruction going to change the PC? */
2988 if (cris_get_operand2 (inst) == REG_PC)
2989 {
2990 /* It's invalid to change the PC in a delay slot. */
2991 if (inst_env->slot_needed)
2992 {
2993 inst_env->invalid = 1;
2994 return;
2995 }
2996 inst_env->reg[REG_PC] =
2997 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2998 4, inst_env->byte_order);
2999 }
3000 /* The increment is not depending on the size, instead it's depending
3001 on the number of registers loaded from memory. */
3002 if ((cris_get_operand1 (inst) == REG_PC)
3003 && (cris_get_mode (inst) == AUTOINC_MODE))
3004 {
3005 /* It's invalid to change the PC in a delay slot. */
3006 if (inst_env->slot_needed)
3007 {
3008 inst_env->invalid = 1;
3009 return;
3010 }
3011 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3012 }
3013 }
3014 inst_env->slot_needed = 0;
3015 inst_env->prefix_found = 0;
3016 inst_env->xflag_found = 0;
3017 inst_env->disable_interrupt = 0;
3018 }
3019
3020 /* Handles the MOVEM to memory from general register instruction. */
3021
3022 static void
3023 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3024 {
3025 if (inst_env->prefix_found)
3026 {
3027 /* The assign value is the value after the increment. Normally, the
3028 assign value is the value before the increment. */
3029 if ((cris_get_operand1 (inst) == REG_PC)
3030 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3031 {
3032 /* The prefix handles the problem if we are in a delay slot. */
3033 inst_env->reg[REG_PC] = inst_env->prefix_value;
3034 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3035 }
3036 }
3037 else
3038 {
3039 /* The increment is not depending on the size, instead it's depending
3040 on the number of registers loaded to memory. */
3041 if ((cris_get_operand1 (inst) == REG_PC)
3042 && (cris_get_mode (inst) == AUTOINC_MODE))
3043 {
3044 /* It's invalid to change the PC in a delay slot. */
3045 if (inst_env->slot_needed)
3046 {
3047 inst_env->invalid = 1;
3048 return;
3049 }
3050 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3051 }
3052 }
3053 inst_env->slot_needed = 0;
3054 inst_env->prefix_found = 0;
3055 inst_env->xflag_found = 0;
3056 inst_env->disable_interrupt = 0;
3057 }
3058
3059 /* Handles the intructions that's not yet implemented, by setting
3060 inst_env->invalid to true. */
3061
3062 static void
3063 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3064 {
3065 inst_env->invalid = 1;
3066 }
3067
3068 /* Handles the XOR instruction. */
3069
3070 static void
3071 xor_op (unsigned short inst, inst_env_type *inst_env)
3072 {
3073 /* XOR can't have a prefix. */
3074 if (inst_env->prefix_found)
3075 {
3076 inst_env->invalid = 1;
3077 return;
3078 }
3079
3080 /* Check if the PC is the target. */
3081 if (cris_get_operand2 (inst) == REG_PC)
3082 {
3083 /* It's invalid to change the PC in a delay slot. */
3084 if (inst_env->slot_needed)
3085 {
3086 inst_env->invalid = 1;
3087 return;
3088 }
3089 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3090 }
3091 inst_env->slot_needed = 0;
3092 inst_env->prefix_found = 0;
3093 inst_env->xflag_found = 0;
3094 inst_env->disable_interrupt = 0;
3095 }
3096
3097 /* Handles the MULS instruction. */
3098
3099 static void
3100 muls_op (unsigned short inst, inst_env_type *inst_env)
3101 {
3102 /* MULS/U can't have a prefix. */
3103 if (inst_env->prefix_found)
3104 {
3105 inst_env->invalid = 1;
3106 return;
3107 }
3108
3109 /* Consider it invalid if the PC is the target. */
3110 if (cris_get_operand2 (inst) == REG_PC)
3111 {
3112 inst_env->invalid = 1;
3113 return;
3114 }
3115 inst_env->slot_needed = 0;
3116 inst_env->prefix_found = 0;
3117 inst_env->xflag_found = 0;
3118 inst_env->disable_interrupt = 0;
3119 }
3120
3121 /* Handles the MULU instruction. */
3122
3123 static void
3124 mulu_op (unsigned short inst, inst_env_type *inst_env)
3125 {
3126 /* MULS/U can't have a prefix. */
3127 if (inst_env->prefix_found)
3128 {
3129 inst_env->invalid = 1;
3130 return;
3131 }
3132
3133 /* Consider it invalid if the PC is the target. */
3134 if (cris_get_operand2 (inst) == REG_PC)
3135 {
3136 inst_env->invalid = 1;
3137 return;
3138 }
3139 inst_env->slot_needed = 0;
3140 inst_env->prefix_found = 0;
3141 inst_env->xflag_found = 0;
3142 inst_env->disable_interrupt = 0;
3143 }
3144
3145 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3146 The MOVE instruction is the move from source to register. */
3147
3148 static void
3149 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3150 unsigned long source1, unsigned long source2)
3151 {
3152 unsigned long pc_mask;
3153 unsigned long operation_mask;
3154
3155 /* Find out how many bits the operation should apply to. */
3156 if (cris_get_size (inst) == INST_BYTE_SIZE)
3157 {
3158 pc_mask = 0xFFFFFF00;
3159 operation_mask = 0xFF;
3160 }
3161 else if (cris_get_size (inst) == INST_WORD_SIZE)
3162 {
3163 pc_mask = 0xFFFF0000;
3164 operation_mask = 0xFFFF;
3165 }
3166 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3167 {
3168 pc_mask = 0x0;
3169 operation_mask = 0xFFFFFFFF;
3170 }
3171 else
3172 {
3173 /* The size is out of range. */
3174 inst_env->invalid = 1;
3175 return;
3176 }
3177
3178 /* The instruction just works on uw_operation_mask bits. */
3179 source2 &= operation_mask;
3180 source1 &= operation_mask;
3181
3182 /* Now calculate the result. The opcode's 3 first bits separates
3183 the different actions. */
3184 switch (cris_get_opcode (inst) & 7)
3185 {
3186 case 0: /* add */
3187 source1 += source2;
3188 break;
3189
3190 case 1: /* move */
3191 source1 = source2;
3192 break;
3193
3194 case 2: /* subtract */
3195 source1 -= source2;
3196 break;
3197
3198 case 3: /* compare */
3199 break;
3200
3201 case 4: /* and */
3202 source1 &= source2;
3203 break;
3204
3205 case 5: /* or */
3206 source1 |= source2;
3207 break;
3208
3209 default:
3210 inst_env->invalid = 1;
3211 return;
3212
3213 break;
3214 }
3215
3216 /* Make sure that the result doesn't contain more than the instruction
3217 size bits. */
3218 source2 &= operation_mask;
3219
3220 /* Calculate the new breakpoint address. */
3221 inst_env->reg[REG_PC] &= pc_mask;
3222 inst_env->reg[REG_PC] |= source1;
3223
3224 }
3225
3226 /* Extends the value from either byte or word size to a dword. If the mode
3227 is zero extend then the value is extended with zero. If instead the mode
3228 is signed extend the sign bit of the value is taken into consideration. */
3229
3230 static unsigned long
3231 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3232 {
3233 /* The size can be either byte or word, check which one it is.
3234 Don't check the highest bit, it's indicating if it's a zero
3235 or sign extend. */
3236 if (cris_get_size (*inst) & INST_WORD_SIZE)
3237 {
3238 /* Word size. */
3239 value &= 0xFFFF;
3240
3241 /* Check if the instruction is signed extend. If so, check if value has
3242 the sign bit on. */
3243 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3244 {
3245 value |= SIGNED_WORD_EXTEND_MASK;
3246 }
3247 }
3248 else
3249 {
3250 /* Byte size. */
3251 value &= 0xFF;
3252
3253 /* Check if the instruction is signed extend. If so, check if value has
3254 the sign bit on. */
3255 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3256 {
3257 value |= SIGNED_BYTE_EXTEND_MASK;
3258 }
3259 }
3260 /* The size should now be dword. */
3261 cris_set_size_to_dword (inst);
3262 return value;
3263 }
3264
3265 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3266 instruction. The MOVE instruction is the move from source to register. */
3267
3268 static void
3269 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3270 inst_env_type *inst_env)
3271 {
3272 unsigned long operand1;
3273 unsigned long operand2;
3274
3275 /* It's invalid to have a prefix to the instruction. This is a register
3276 mode instruction and can't have a prefix. */
3277 if (inst_env->prefix_found)
3278 {
3279 inst_env->invalid = 1;
3280 return;
3281 }
3282 /* Check if the instruction has PC as its target. */
3283 if (cris_get_operand2 (inst) == REG_PC)
3284 {
3285 if (inst_env->slot_needed)
3286 {
3287 inst_env->invalid = 1;
3288 return;
3289 }
3290 /* The instruction has the PC as its target register. */
3291 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3292 operand2 = inst_env->reg[REG_PC];
3293
3294 /* Check if it's a extend, signed or zero instruction. */
3295 if (cris_get_opcode (inst) < 4)
3296 {
3297 operand1 = do_sign_or_zero_extend (operand1, &inst);
3298 }
3299 /* Calculate the PC value after the instruction, i.e. where the
3300 breakpoint should be. The order of the udw_operands is vital. */
3301 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3302 }
3303 inst_env->slot_needed = 0;
3304 inst_env->prefix_found = 0;
3305 inst_env->xflag_found = 0;
3306 inst_env->disable_interrupt = 0;
3307 }
3308
3309 /* Returns the data contained at address. The size of the data is derived from
3310 the size of the operation. If the instruction is a zero or signed
3311 extend instruction, the size field is changed in instruction. */
3312
3313 static unsigned long
3314 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3315 enum bfd_endian byte_order)
3316 {
3317 int size = cris_get_size (*inst);
3318 unsigned long value;
3319
3320 /* If it's an extend instruction we don't want the signed extend bit,
3321 because it influences the size. */
3322 if (cris_get_opcode (*inst) < 4)
3323 {
3324 size &= ~SIGNED_EXTEND_BIT_MASK;
3325 }
3326 /* Is there a need for checking the size? Size should contain the number of
3327 bytes to read. */
3328 size = 1 << size;
3329 value = read_memory_unsigned_integer (address, size, byte_order);
3330
3331 /* Check if it's an extend, signed or zero instruction. */
3332 if (cris_get_opcode (*inst) < 4)
3333 {
3334 value = do_sign_or_zero_extend (value, inst);
3335 }
3336 return value;
3337 }
3338
3339 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3340 instructions. The MOVE instruction is the move from source to register. */
3341
3342 static void
3343 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3344 inst_env_type *inst_env)
3345 {
3346 unsigned long operand2;
3347 unsigned long operand3;
3348
3349 check_assign (inst, inst_env);
3350 if (cris_get_operand2 (inst) == REG_PC)
3351 {
3352 operand2 = inst_env->reg[REG_PC];
3353
3354 /* Get the value of the third operand. */
3355 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3356 inst_env->byte_order);
3357
3358 /* Calculate the PC value after the instruction, i.e. where the
3359 breakpoint should be. The order of the udw_operands is vital. */
3360 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3361 }
3362 inst_env->slot_needed = 0;
3363 inst_env->prefix_found = 0;
3364 inst_env->xflag_found = 0;
3365 inst_env->disable_interrupt = 0;
3366 }
3367
3368 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3369 OR instructions. Note that for this to work as expected, the calling
3370 function must have made sure that there is a prefix to this instruction. */
3371
3372 static void
3373 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3374 inst_env_type *inst_env)
3375 {
3376 unsigned long operand2;
3377 unsigned long operand3;
3378
3379 if (cris_get_operand1 (inst) == REG_PC)
3380 {
3381 /* The PC will be changed by the instruction. */
3382 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3383
3384 /* Get the value of the third operand. */
3385 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3386 inst_env->byte_order);
3387
3388 /* Calculate the PC value after the instruction, i.e. where the
3389 breakpoint should be. */
3390 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3391 }
3392 inst_env->slot_needed = 0;
3393 inst_env->prefix_found = 0;
3394 inst_env->xflag_found = 0;
3395 inst_env->disable_interrupt = 0;
3396 }
3397
3398 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3399 instructions. The MOVE instruction is the move from source to register. */
3400
3401 static void
3402 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3403 inst_env_type *inst_env)
3404 {
3405 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3406 {
3407 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3408 SUB, AND or OR something weird is going on (if everything works these
3409 instructions should end up in the three operand version). */
3410 inst_env->invalid = 1;
3411 return;
3412 }
3413 else
3414 {
3415 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3416 so use it. */
3417 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3418 }
3419 inst_env->slot_needed = 0;
3420 inst_env->prefix_found = 0;
3421 inst_env->xflag_found = 0;
3422 inst_env->disable_interrupt = 0;
3423 }
3424
3425 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3426 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3427 source to register. */
3428
3429 static void
3430 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3431 inst_env_type *inst_env)
3432 {
3433 unsigned long operand1;
3434 unsigned long operand2;
3435 unsigned long operand3;
3436 int size;
3437
3438 /* The instruction is either an indirect or autoincrement addressing mode.
3439 Check if the destination register is the PC. */
3440 if (cris_get_operand2 (inst) == REG_PC)
3441 {
3442 /* Must be done here, get_data_from_address may change the size
3443 field. */
3444 size = cris_get_size (inst);
3445 operand2 = inst_env->reg[REG_PC];
3446
3447 /* Get the value of the third operand, i.e. the indirect operand. */
3448 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3449 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3450
3451 /* Calculate the PC value after the instruction, i.e. where the
3452 breakpoint should be. The order of the udw_operands is vital. */
3453 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3454 }
3455 /* If this is an autoincrement addressing mode, check if the increment
3456 changes the PC. */
3457 if ((cris_get_operand1 (inst) == REG_PC)
3458 && (cris_get_mode (inst) == AUTOINC_MODE))
3459 {
3460 /* Get the size field. */
3461 size = cris_get_size (inst);
3462
3463 /* If it's an extend instruction we don't want the signed extend bit,
3464 because it influences the size. */
3465 if (cris_get_opcode (inst) < 4)
3466 {
3467 size &= ~SIGNED_EXTEND_BIT_MASK;
3468 }
3469 process_autoincrement (size, inst, inst_env);
3470 }
3471 inst_env->slot_needed = 0;
3472 inst_env->prefix_found = 0;
3473 inst_env->xflag_found = 0;
3474 inst_env->disable_interrupt = 0;
3475 }
3476
3477 /* Handles the two-operand addressing mode, all modes except register, for
3478 the ADD, SUB CMP, AND and OR instruction. */
3479
3480 static void
3481 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3482 inst_env_type *inst_env)
3483 {
3484 if (inst_env->prefix_found)
3485 {
3486 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3487 {
3488 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3489 }
3490 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3491 {
3492 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3493 }
3494 else
3495 {
3496 /* The mode is invalid for a prefixed base instruction. */
3497 inst_env->invalid = 1;
3498 return;
3499 }
3500 }
3501 else
3502 {
3503 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3504 }
3505 }
3506
3507 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3508
3509 static void
3510 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3511 {
3512 unsigned long operand1;
3513 unsigned long operand2;
3514
3515 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3516 instruction and can't have a prefix. */
3517 if (inst_env->prefix_found)
3518 {
3519 inst_env->invalid = 1;
3520 return;
3521 }
3522
3523 /* Check if the instruction has PC as its target. */
3524 if (cris_get_operand2 (inst) == REG_PC)
3525 {
3526 if (inst_env->slot_needed)
3527 {
3528 inst_env->invalid = 1;
3529 return;
3530 }
3531 operand1 = cris_get_quick_value (inst);
3532 operand2 = inst_env->reg[REG_PC];
3533
3534 /* The size should now be dword. */
3535 cris_set_size_to_dword (&inst);
3536
3537 /* Calculate the PC value after the instruction, i.e. where the
3538 breakpoint should be. */
3539 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3540 }
3541 inst_env->slot_needed = 0;
3542 inst_env->prefix_found = 0;
3543 inst_env->xflag_found = 0;
3544 inst_env->disable_interrupt = 0;
3545 }
3546
3547 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3548
3549 static void
3550 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3551 {
3552 unsigned long operand1;
3553 unsigned long operand2;
3554
3555 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3556 instruction and can't have a prefix. */
3557 if (inst_env->prefix_found)
3558 {
3559 inst_env->invalid = 1;
3560 return;
3561 }
3562 /* Check if the instruction has PC as its target. */
3563 if (cris_get_operand2 (inst) == REG_PC)
3564 {
3565 if (inst_env->slot_needed)
3566 {
3567 inst_env->invalid = 1;
3568 return;
3569 }
3570 /* The instruction has the PC as its target register. */
3571 operand1 = cris_get_quick_value (inst);
3572 operand2 = inst_env->reg[REG_PC];
3573
3574 /* The quick value is signed, so check if we must do a signed extend. */
3575 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3576 {
3577 /* sign extend */
3578 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3579 }
3580 /* The size should now be dword. */
3581 cris_set_size_to_dword (&inst);
3582
3583 /* Calculate the PC value after the instruction, i.e. where the
3584 breakpoint should be. */
3585 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3586 }
3587 inst_env->slot_needed = 0;
3588 inst_env->prefix_found = 0;
3589 inst_env->xflag_found = 0;
3590 inst_env->disable_interrupt = 0;
3591 }
3592
3593 /* Translate op_type to a function and call it. */
3594
3595 static void
3596 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3597 unsigned short inst, inst_env_type *inst_env)
3598 {
3599 switch (op_type)
3600 {
3601 case cris_not_implemented_op:
3602 not_implemented_op (inst, inst_env);
3603 break;
3604
3605 case cris_abs_op:
3606 abs_op (inst, inst_env);
3607 break;
3608
3609 case cris_addi_op:
3610 addi_op (inst, inst_env);
3611 break;
3612
3613 case cris_asr_op:
3614 asr_op (inst, inst_env);
3615 break;
3616
3617 case cris_asrq_op:
3618 asrq_op (inst, inst_env);
3619 break;
3620
3621 case cris_ax_ei_setf_op:
3622 ax_ei_setf_op (inst, inst_env);
3623 break;
3624
3625 case cris_bdap_prefix:
3626 bdap_prefix (inst, inst_env);
3627 break;
3628
3629 case cris_biap_prefix:
3630 biap_prefix (inst, inst_env);
3631 break;
3632
3633 case cris_break_op:
3634 break_op (inst, inst_env);
3635 break;
3636
3637 case cris_btst_nop_op:
3638 btst_nop_op (inst, inst_env);
3639 break;
3640
3641 case cris_clearf_di_op:
3642 clearf_di_op (inst, inst_env);
3643 break;
3644
3645 case cris_dip_prefix:
3646 dip_prefix (inst, inst_env);
3647 break;
3648
3649 case cris_dstep_logshift_mstep_neg_not_op:
3650 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3651 break;
3652
3653 case cris_eight_bit_offset_branch_op:
3654 eight_bit_offset_branch_op (inst, inst_env);
3655 break;
3656
3657 case cris_move_mem_to_reg_movem_op:
3658 move_mem_to_reg_movem_op (inst, inst_env);
3659 break;
3660
3661 case cris_move_reg_to_mem_movem_op:
3662 move_reg_to_mem_movem_op (inst, inst_env);
3663 break;
3664
3665 case cris_move_to_preg_op:
3666 move_to_preg_op (gdbarch, inst, inst_env);
3667 break;
3668
3669 case cris_muls_op:
3670 muls_op (inst, inst_env);
3671 break;
3672
3673 case cris_mulu_op:
3674 mulu_op (inst, inst_env);
3675 break;
3676
3677 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3678 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3679 break;
3680
3681 case cris_none_reg_mode_clear_test_op:
3682 none_reg_mode_clear_test_op (inst, inst_env);
3683 break;
3684
3685 case cris_none_reg_mode_jump_op:
3686 none_reg_mode_jump_op (inst, inst_env);
3687 break;
3688
3689 case cris_none_reg_mode_move_from_preg_op:
3690 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3691 break;
3692
3693 case cris_quick_mode_add_sub_op:
3694 quick_mode_add_sub_op (inst, inst_env);
3695 break;
3696
3697 case cris_quick_mode_and_cmp_move_or_op:
3698 quick_mode_and_cmp_move_or_op (inst, inst_env);
3699 break;
3700
3701 case cris_quick_mode_bdap_prefix:
3702 quick_mode_bdap_prefix (inst, inst_env);
3703 break;
3704
3705 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3706 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3707 break;
3708
3709 case cris_reg_mode_clear_op:
3710 reg_mode_clear_op (inst, inst_env);
3711 break;
3712
3713 case cris_reg_mode_jump_op:
3714 reg_mode_jump_op (inst, inst_env);
3715 break;
3716
3717 case cris_reg_mode_move_from_preg_op:
3718 reg_mode_move_from_preg_op (inst, inst_env);
3719 break;
3720
3721 case cris_reg_mode_test_op:
3722 reg_mode_test_op (inst, inst_env);
3723 break;
3724
3725 case cris_scc_op:
3726 scc_op (inst, inst_env);
3727 break;
3728
3729 case cris_sixteen_bit_offset_branch_op:
3730 sixteen_bit_offset_branch_op (inst, inst_env);
3731 break;
3732
3733 case cris_three_operand_add_sub_cmp_and_or_op:
3734 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3735 break;
3736
3737 case cris_three_operand_bound_op:
3738 three_operand_bound_op (inst, inst_env);
3739 break;
3740
3741 case cris_two_operand_bound_op:
3742 two_operand_bound_op (inst, inst_env);
3743 break;
3744
3745 case cris_xor_op:
3746 xor_op (inst, inst_env);
3747 break;
3748 }
3749 }
3750
3751 /* Originally from <asm/elf.h>. */
3752 typedef unsigned char cris_elf_greg_t[4];
3753
3754 /* Same as user_regs_struct struct in <asm/user.h>. */
3755 #define CRISV10_ELF_NGREG 35
3756 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
3757
3758 #define CRISV32_ELF_NGREG 32
3759 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3760
3761 /* Unpack a cris_elf_gregset_t into GDB's register cache. */
3762
3763 static void
3764 cris_supply_gregset (struct regcache *regcache, cris_elf_gregset_t *gregsetp)
3765 {
3766 struct gdbarch *gdbarch = regcache->arch ();
3767 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3768 int i;
3769 cris_elf_greg_t *regp = *gregsetp;
3770
3771 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3772 knows about the actual size of each register so that's no problem. */
3773 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3774 {
3775 regcache->raw_supply (i, (char *)&regp[i]);
3776 }
3777
3778 if (tdep->cris_version == 32)
3779 {
3780 /* Needed to set pseudo-register PC for CRISv32. */
3781 /* FIXME: If ERP is in a delay slot at this point then the PC will
3782 be wrong. Issue a warning to alert the user. */
3783 regcache->raw_supply (gdbarch_pc_regnum (gdbarch),
3784 (char *)&regp[ERP_REGNUM]);
3785
3786 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3787 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3788 }
3789 }
3790
3791 /* Use a local version of this function to get the correct types for
3792 regsets, until multi-arch core support is ready. */
3793
3794 static void
3795 fetch_core_registers (struct regcache *regcache,
3796 char *core_reg_sect, unsigned core_reg_size,
3797 int which, CORE_ADDR reg_addr)
3798 {
3799 cris_elf_gregset_t gregset;
3800
3801 switch (which)
3802 {
3803 case 0:
3804 if (core_reg_size != sizeof (cris_elf_gregset_t)
3805 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3806 {
3807 warning (_("wrong size gregset struct in core file"));
3808 }
3809 else
3810 {
3811 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3812 cris_supply_gregset (regcache, &gregset);
3813 }
3814
3815 default:
3816 /* We've covered all the kinds of registers we know about here,
3817 so this must be something we wouldn't know what to do with
3818 anyway. Just ignore it. */
3819 break;
3820 }
3821 }
3822
3823 static struct core_fns cris_elf_core_fns =
3824 {
3825 bfd_target_elf_flavour, /* core_flavour */
3826 default_check_format, /* check_format */
3827 default_core_sniffer, /* core_sniffer */
3828 fetch_core_registers, /* core_read_registers */
3829 NULL /* next */
3830 };
3831
3832 void
3833 _initialize_cris_tdep (void)
3834 {
3835 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3836
3837 /* CRIS-specific user-commands. */
3838 add_setshow_zuinteger_cmd ("cris-version", class_support,
3839 &usr_cmd_cris_version,
3840 _("Set the current CRIS version."),
3841 _("Show the current CRIS version."),
3842 _("\
3843 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3844 Defaults to 10. "),
3845 set_cris_version,
3846 NULL, /* FIXME: i18n: Current CRIS version
3847 is %s. */
3848 &setlist, &showlist);
3849
3850 add_setshow_enum_cmd ("cris-mode", class_support,
3851 cris_modes, &usr_cmd_cris_mode,
3852 _("Set the current CRIS mode."),
3853 _("Show the current CRIS mode."),
3854 _("\
3855 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3856 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3857 set_cris_mode,
3858 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3859 &setlist, &showlist);
3860
3861 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3862 &usr_cmd_cris_dwarf2_cfi,
3863 _("Set the usage of Dwarf-2 CFI for CRIS."),
3864 _("Show the usage of Dwarf-2 CFI for CRIS."),
3865 _("Set this to \"off\" if using gcc-cris < R59."),
3866 set_cris_dwarf2_cfi,
3867 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3868 for CRIS is %d. */
3869 &setlist, &showlist);
3870
3871 deprecated_add_core_fns (&cris_elf_core_fns);
3872 }
3873
3874 /* Prints out all target specific values. */
3875
3876 static void
3877 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3878 {
3879 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3880 if (tdep != NULL)
3881 {
3882 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3883 tdep->cris_version);
3884 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3885 tdep->cris_mode);
3886 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3887 tdep->cris_dwarf2_cfi);
3888 }
3889 }
3890
3891 static void
3892 set_cris_version (const char *ignore_args, int from_tty,
3893 struct cmd_list_element *c)
3894 {
3895 struct gdbarch_info info;
3896
3897 usr_cmd_cris_version_valid = 1;
3898
3899 /* Update the current architecture, if needed. */
3900 gdbarch_info_init (&info);
3901 if (!gdbarch_update_p (info))
3902 internal_error (__FILE__, __LINE__,
3903 _("cris_gdbarch_update: failed to update architecture."));
3904 }
3905
3906 static void
3907 set_cris_mode (const char *ignore_args, int from_tty,
3908 struct cmd_list_element *c)
3909 {
3910 struct gdbarch_info info;
3911
3912 /* Update the current architecture, if needed. */
3913 gdbarch_info_init (&info);
3914 if (!gdbarch_update_p (info))
3915 internal_error (__FILE__, __LINE__,
3916 "cris_gdbarch_update: failed to update architecture.");
3917 }
3918
3919 static void
3920 set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
3921 struct cmd_list_element *c)
3922 {
3923 struct gdbarch_info info;
3924
3925 /* Update the current architecture, if needed. */
3926 gdbarch_info_init (&info);
3927 if (!gdbarch_update_p (info))
3928 internal_error (__FILE__, __LINE__,
3929 _("cris_gdbarch_update: failed to update architecture."));
3930 }
3931
3932 static struct gdbarch *
3933 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3934 {
3935 struct gdbarch *gdbarch;
3936 struct gdbarch_tdep *tdep;
3937 unsigned int cris_version;
3938
3939 if (usr_cmd_cris_version_valid)
3940 {
3941 /* Trust the user's CRIS version setting. */
3942 cris_version = usr_cmd_cris_version;
3943 }
3944 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3945 {
3946 cris_version = 32;
3947 }
3948 else
3949 {
3950 /* Assume it's CRIS version 10. */
3951 cris_version = 10;
3952 }
3953
3954 /* Make the current settings visible to the user. */
3955 usr_cmd_cris_version = cris_version;
3956
3957 /* Find a candidate among the list of pre-declared architectures. */
3958 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3959 arches != NULL;
3960 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3961 {
3962 if ((gdbarch_tdep (arches->gdbarch)->cris_version
3963 == usr_cmd_cris_version)
3964 && (gdbarch_tdep (arches->gdbarch)->cris_mode
3965 == usr_cmd_cris_mode)
3966 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
3967 == usr_cmd_cris_dwarf2_cfi))
3968 return arches->gdbarch;
3969 }
3970
3971 /* No matching architecture was found. Create a new one. */
3972 tdep = XCNEW (struct gdbarch_tdep);
3973 info.byte_order = BFD_ENDIAN_LITTLE;
3974 gdbarch = gdbarch_alloc (&info, tdep);
3975
3976 tdep->cris_version = usr_cmd_cris_version;
3977 tdep->cris_mode = usr_cmd_cris_mode;
3978 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
3979
3980 set_gdbarch_return_value (gdbarch, cris_return_value);
3981 set_gdbarch_sp_regnum (gdbarch, 14);
3982
3983 /* Length of ordinary registers used in push_word and a few other
3984 places. register_size() is the real way to know how big a
3985 register is. */
3986
3987 set_gdbarch_double_bit (gdbarch, 64);
3988 /* The default definition of a long double is 2 * gdbarch_double_bit,
3989 which means we have to set this explicitly. */
3990 set_gdbarch_long_double_bit (gdbarch, 64);
3991
3992 /* The total amount of space needed to store (in an array called registers)
3993 GDB's copy of the machine's register state. Note: We can not use
3994 cris_register_size at this point, since it relies on gdbarch
3995 being set. */
3996 switch (tdep->cris_version)
3997 {
3998 case 0:
3999 case 1:
4000 case 2:
4001 case 3:
4002 case 8:
4003 case 9:
4004 /* Old versions; not supported. */
4005 return 0;
4006
4007 case 10:
4008 case 11:
4009 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4010 P7 (32 bits), and P15 (32 bits) have been implemented. */
4011 set_gdbarch_pc_regnum (gdbarch, 15);
4012 set_gdbarch_register_type (gdbarch, cris_register_type);
4013 /* There are 32 registers (some of which may not be implemented). */
4014 set_gdbarch_num_regs (gdbarch, 32);
4015 set_gdbarch_register_name (gdbarch, cris_register_name);
4016 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4017 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4018
4019 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4020 break;
4021
4022 case 32:
4023 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4024 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4025 and pseudo-register PC (32 bits). */
4026 set_gdbarch_pc_regnum (gdbarch, 32);
4027 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4028 /* 32 registers + pseudo-register PC + 16 support registers. */
4029 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4030 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4031
4032 set_gdbarch_cannot_store_register
4033 (gdbarch, crisv32_cannot_store_register);
4034 set_gdbarch_cannot_fetch_register
4035 (gdbarch, crisv32_cannot_fetch_register);
4036
4037 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4038
4039 set_gdbarch_single_step_through_delay
4040 (gdbarch, crisv32_single_step_through_delay);
4041
4042 break;
4043
4044 default:
4045 /* Unknown version. */
4046 return 0;
4047 }
4048
4049 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4050 have the same ABI). */
4051 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4052 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4053 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4054 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4055
4056 /* The stack grows downward. */
4057 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4058
4059 set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
4060 set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
4061
4062 if (tdep->cris_dwarf2_cfi == 1)
4063 {
4064 /* Hook in the Dwarf-2 frame sniffer. */
4065 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4066 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4067 dwarf2_append_unwinders (gdbarch);
4068 }
4069
4070 if (tdep->cris_mode != cris_mode_guru)
4071 {
4072 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4073 }
4074
4075 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4076 frame_base_set_default (gdbarch, &cris_frame_base);
4077
4078 /* Hook in ABI-specific overrides, if they have been registered. */
4079 gdbarch_init_osabi (info, gdbarch);
4080
4081 return gdbarch;
4082 }