]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dcache.c
Implement TARGET_OBJECT_STACK_MEMORY.
[thirdparty/binutils-gdb.git] / gdb / dcache.c
1 /* Caching code for GDB, the GNU debugger.
2
3 Copyright (C) 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2003, 2007,
4 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "dcache.h"
23 #include "gdbcmd.h"
24 #include "gdb_string.h"
25 #include "gdbcore.h"
26 #include "target.h"
27 #include "inferior.h"
28 #include "splay-tree.h"
29
30 /* The data cache could lead to incorrect results because it doesn't
31 know about volatile variables, thus making it impossible to debug
32 functions which use memory mapped I/O devices. Set the nocache
33 memory region attribute in those cases.
34
35 In general the dcache speeds up performance. Some speed improvement
36 comes from the actual caching mechanism, but the major gain is in
37 the reduction of the remote protocol overhead; instead of reading
38 or writing a large area of memory in 4 byte requests, the cache
39 bundles up the requests into LINE_SIZE chunks, reducing overhead
40 significantly. This is most useful when accessing a large amount
41 of data, such as when performing a backtrace.
42
43 The cache is a splay tree along with a linked list for replacement.
44 Each block caches a LINE_SIZE area of memory. Wtihin each line we remember
45 the address of the line (which must be a multiple of LINE_SIZE) and the
46 actual data block.
47
48 Lines are only allocated as needed, so DCACHE_SIZE really specifies the
49 *maximum* number of lines in the cache.
50
51 At present, the cache is write-through rather than writeback: as soon
52 as data is written to the cache, it is also immediately written to
53 the target. Therefore, cache lines are never "dirty". Whether a given
54 line is valid or not depends on where it is stored in the dcache_struct;
55 there is no per-block valid flag. */
56
57 /* NOTE: Interaction of dcache and memory region attributes
58
59 As there is no requirement that memory region attributes be aligned
60 to or be a multiple of the dcache page size, dcache_read_line() and
61 dcache_write_line() must break up the page by memory region. If a
62 chunk does not have the cache attribute set, an invalid memory type
63 is set, etc., then the chunk is skipped. Those chunks are handled
64 in target_xfer_memory() (or target_xfer_memory_partial()).
65
66 This doesn't occur very often. The most common occurance is when
67 the last bit of the .text segment and the first bit of the .data
68 segment fall within the same dcache page with a ro/cacheable memory
69 region defined for the .text segment and a rw/non-cacheable memory
70 region defined for the .data segment. */
71
72 /* The maximum number of lines stored. The total size of the cache is
73 equal to DCACHE_SIZE times LINE_SIZE. */
74 #define DCACHE_SIZE 4096
75
76 /* The size of a cache line. Smaller values reduce the time taken to
77 read a single byte and make the cache more granular, but increase
78 overhead and reduce the effectiveness of the cache as a prefetcher. */
79 #define LINE_SIZE_POWER 6
80 #define LINE_SIZE (1 << LINE_SIZE_POWER)
81
82 /* Each cache block holds LINE_SIZE bytes of data
83 starting at a multiple-of-LINE_SIZE address. */
84
85 #define LINE_SIZE_MASK ((LINE_SIZE - 1))
86 #define XFORM(x) ((x) & LINE_SIZE_MASK)
87 #define MASK(x) ((x) & ~LINE_SIZE_MASK)
88
89 struct dcache_block
90 {
91 struct dcache_block *newer; /* for LRU and free list */
92 CORE_ADDR addr; /* address of data */
93 gdb_byte data[LINE_SIZE]; /* bytes at given address */
94 int refs; /* # hits */
95 };
96
97 struct dcache_struct
98 {
99 splay_tree tree;
100 struct dcache_block *oldest;
101 struct dcache_block *newest;
102
103 struct dcache_block *freelist;
104
105 /* The number of in-use lines in the cache. */
106 int size;
107
108 /* The ptid of last inferior to use cache or null_ptid. */
109 ptid_t ptid;
110 };
111
112 static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);
113
114 static int dcache_write_line (DCACHE *dcache, struct dcache_block *db);
115
116 static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);
117
118 static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);
119
120 static void dcache_info (char *exp, int tty);
121
122 void _initialize_dcache (void);
123
124 static int dcache_enabled_p = 0; /* OBSOLETE */
125
126 static void
127 show_dcache_enabled_p (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c, const char *value)
129 {
130 fprintf_filtered (file, _("Deprecated remotecache flag is %s.\n"), value);
131 }
132
133 static DCACHE *last_cache; /* Used by info dcache */
134
135 /* Free all the data cache blocks, thus discarding all cached data. */
136
137 void
138 dcache_invalidate (DCACHE *dcache)
139 {
140 struct dcache_block *block, *next;
141
142 block = dcache->oldest;
143
144 while (block)
145 {
146 splay_tree_remove (dcache->tree, (splay_tree_key) block->addr);
147 next = block->newer;
148
149 block->newer = dcache->freelist;
150 dcache->freelist = block;
151
152 block = next;
153 }
154
155 dcache->oldest = NULL;
156 dcache->newest = NULL;
157 dcache->size = 0;
158 dcache->ptid = null_ptid;
159 }
160
161 /* Invalidate the line associated with ADDR. */
162
163 static void
164 dcache_invalidate_line (DCACHE *dcache, CORE_ADDR addr)
165 {
166 struct dcache_block *db = dcache_hit (dcache, addr);
167
168 if (db)
169 {
170 splay_tree_remove (dcache->tree, (splay_tree_key) db->addr);
171 db->newer = dcache->freelist;
172 dcache->freelist = db;
173 --dcache->size;
174 }
175 }
176
177 /* If addr is present in the dcache, return the address of the block
178 containing it. */
179
180 static struct dcache_block *
181 dcache_hit (DCACHE *dcache, CORE_ADDR addr)
182 {
183 struct dcache_block *db;
184
185 splay_tree_node node = splay_tree_lookup (dcache->tree,
186 (splay_tree_key) MASK (addr));
187
188 if (!node)
189 return NULL;
190
191 db = (struct dcache_block *) node->value;
192 db->refs++;
193 return db;
194 }
195
196 /* Fill a cache line from target memory. */
197
198 static int
199 dcache_read_line (DCACHE *dcache, struct dcache_block *db)
200 {
201 CORE_ADDR memaddr;
202 gdb_byte *myaddr;
203 int len;
204 int res;
205 int reg_len;
206 struct mem_region *region;
207
208 len = LINE_SIZE;
209 memaddr = db->addr;
210 myaddr = db->data;
211
212 while (len > 0)
213 {
214 /* Don't overrun if this block is right at the end of the region. */
215 region = lookup_mem_region (memaddr);
216 if (region->hi == 0 || memaddr + len < region->hi)
217 reg_len = len;
218 else
219 reg_len = region->hi - memaddr;
220
221 /* Skip non-readable regions. The cache attribute can be ignored,
222 since we may be loading this for a stack access. */
223 if (region->attrib.mode == MEM_WO)
224 {
225 memaddr += reg_len;
226 myaddr += reg_len;
227 len -= reg_len;
228 continue;
229 }
230
231 res = target_read (&current_target, TARGET_OBJECT_RAW_MEMORY,
232 NULL, myaddr, memaddr, reg_len);
233 if (res < reg_len)
234 return 0;
235
236 memaddr += res;
237 myaddr += res;
238 len -= res;
239 }
240
241 return 1;
242 }
243
244 /* Get a free cache block, put or keep it on the valid list,
245 and return its address. */
246
247 static struct dcache_block *
248 dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
249 {
250 struct dcache_block *db;
251
252 if (dcache->size >= DCACHE_SIZE)
253 {
254 /* Evict the least recently used line. */
255 db = dcache->oldest;
256 dcache->oldest = db->newer;
257
258 splay_tree_remove (dcache->tree, (splay_tree_key) db->addr);
259 }
260 else
261 {
262 db = dcache->freelist;
263 if (db)
264 dcache->freelist = db->newer;
265 else
266 db = xmalloc (sizeof (struct dcache_block));
267
268 dcache->size++;
269 }
270
271 db->addr = MASK (addr);
272 db->newer = NULL;
273 db->refs = 0;
274
275 if (dcache->newest)
276 dcache->newest->newer = db;
277
278 dcache->newest = db;
279
280 if (!dcache->oldest)
281 dcache->oldest = db;
282
283 splay_tree_insert (dcache->tree, (splay_tree_key) db->addr,
284 (splay_tree_value) db);
285
286 return db;
287 }
288
289 /* Using the data cache DCACHE return the contents of the byte at
290 address ADDR in the remote machine.
291
292 Returns 1 for success, 0 for error. */
293
294 static int
295 dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, gdb_byte *ptr)
296 {
297 struct dcache_block *db = dcache_hit (dcache, addr);
298
299 if (!db)
300 {
301 db = dcache_alloc (dcache, addr);
302
303 if (!dcache_read_line (dcache, db))
304 return 0;
305 }
306
307 *ptr = db->data[XFORM (addr)];
308 return 1;
309 }
310
311 /* Write the byte at PTR into ADDR in the data cache.
312
313 The caller is responsible for also promptly writing the data
314 through to target memory.
315
316 If addr is not in cache, this function does nothing; writing to
317 an area of memory which wasn't present in the cache doesn't cause
318 it to be loaded in.
319
320 Always return 1 (meaning success) to simplify dcache_xfer_memory. */
321
322 static int
323 dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, gdb_byte *ptr)
324 {
325 struct dcache_block *db = dcache_hit (dcache, addr);
326
327 if (db)
328 db->data[XFORM (addr)] = *ptr;
329
330 return 1;
331 }
332
333 static int
334 dcache_splay_tree_compare (splay_tree_key a, splay_tree_key b)
335 {
336 if (a > b)
337 return 1;
338 else if (a == b)
339 return 0;
340 else
341 return -1;
342 }
343
344 /* Initialize the data cache. */
345
346 DCACHE *
347 dcache_init (void)
348 {
349 DCACHE *dcache;
350 int i;
351
352 dcache = (DCACHE *) xmalloc (sizeof (*dcache));
353
354 dcache->tree = splay_tree_new (dcache_splay_tree_compare,
355 NULL,
356 NULL);
357
358 dcache->oldest = NULL;
359 dcache->newest = NULL;
360 dcache->freelist = NULL;
361 dcache->size = 0;
362 dcache->ptid = null_ptid;
363 last_cache = dcache;
364
365 return dcache;
366 }
367
368 /* Free a data cache. */
369
370 void
371 dcache_free (DCACHE *dcache)
372 {
373 struct dcache_block *db, *next;
374
375 if (last_cache == dcache)
376 last_cache = NULL;
377
378 splay_tree_delete (dcache->tree);
379 for (db = dcache->freelist; db != NULL; db = next)
380 {
381 next = db->newer;
382 xfree (db);
383 }
384 xfree (dcache);
385 }
386
387 /* Read or write LEN bytes from inferior memory at MEMADDR, transferring
388 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
389 nonzero.
390
391 The meaning of the result is the same as for target_write. */
392
393 int
394 dcache_xfer_memory (struct target_ops *ops, DCACHE *dcache,
395 CORE_ADDR memaddr, gdb_byte *myaddr,
396 int len, int should_write)
397 {
398 int i;
399 int res;
400 int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, gdb_byte *ptr);
401 xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;
402
403 /* If this is a different inferior from what we've recorded,
404 flush the cache. */
405
406 if (! ptid_equal (inferior_ptid, dcache->ptid))
407 {
408 dcache_invalidate (dcache);
409 dcache->ptid = inferior_ptid;
410 }
411
412 /* Do write-through first, so that if it fails, we don't write to
413 the cache at all. */
414
415 if (should_write)
416 {
417 res = target_write (ops, TARGET_OBJECT_RAW_MEMORY,
418 NULL, myaddr, memaddr, len);
419 if (res <= 0)
420 return res;
421 /* Update LEN to what was actually written. */
422 len = res;
423 }
424
425 for (i = 0; i < len; i++)
426 {
427 if (!xfunc (dcache, memaddr + i, myaddr + i))
428 {
429 /* That failed. Discard its cache line so we don't have a
430 partially read line. */
431 dcache_invalidate_line (dcache, memaddr + i);
432 /* If we're writing, we still wrote LEN bytes. */
433 if (should_write)
434 return len;
435 else
436 return i;
437 }
438 }
439
440 return len;
441 }
442
443 /* FIXME: There would be some benefit to making the cache write-back and
444 moving the writeback operation to a higher layer, as it could occur
445 after a sequence of smaller writes have been completed (as when a stack
446 frame is constructed for an inferior function call). Note that only
447 moving it up one level to target_xfer_memory[_partial]() is not
448 sufficient since we want to coalesce memory transfers that are
449 "logically" connected but not actually a single call to one of the
450 memory transfer functions. */
451
452 /* Just update any cache lines which are already present. This is called
453 by memory_xfer_partial in cases where the access would otherwise not go
454 through the cache. */
455
456 void
457 dcache_update (DCACHE *dcache, CORE_ADDR memaddr, gdb_byte *myaddr, int len)
458 {
459 int i;
460 for (i = 0; i < len; i++)
461 dcache_poke_byte (dcache, memaddr + i, myaddr + i);
462 }
463
464 static void
465 dcache_print_line (int index)
466 {
467 splay_tree_node n;
468 struct dcache_block *db;
469 int i, j;
470
471 if (!last_cache)
472 {
473 printf_filtered (_("No data cache available.\n"));
474 return;
475 }
476
477 n = splay_tree_min (last_cache->tree);
478
479 for (i = index; i > 0; --i)
480 {
481 if (!n)
482 break;
483 n = splay_tree_successor (last_cache->tree, n->key);
484 }
485
486 if (!n)
487 {
488 printf_filtered (_("No such cache line exists.\n"));
489 return;
490 }
491
492 db = (struct dcache_block *) n->value;
493
494 printf_filtered (_("Line %d: address %s [%d hits]\n"),
495 index, paddress (target_gdbarch, db->addr), db->refs);
496
497 for (j = 0; j < LINE_SIZE; j++)
498 {
499 printf_filtered ("%02x ", db->data[j]);
500
501 /* Print a newline every 16 bytes (48 characters) */
502 if ((j % 16 == 15) && (j != LINE_SIZE - 1))
503 printf_filtered ("\n");
504 }
505 printf_filtered ("\n");
506 }
507
508 static void
509 dcache_info (char *exp, int tty)
510 {
511 splay_tree_node n;
512 int i, refcount, lineno;
513
514 if (exp)
515 {
516 char *linestart;
517 i = strtol (exp, &linestart, 10);
518 if (linestart == exp || i < 0)
519 {
520 printf_filtered (_("Usage: info dcache [linenumber]\n"));
521 return;
522 }
523
524 dcache_print_line (i);
525 return;
526 }
527
528 printf_filtered (_("Dcache line width %d, maximum size %d\n"),
529 LINE_SIZE, DCACHE_SIZE);
530
531 if (!last_cache || ptid_equal (last_cache->ptid, null_ptid))
532 {
533 printf_filtered (_("No data cache available.\n"));
534 return;
535 }
536
537 printf_filtered (_("Contains data for %s\n"),
538 target_pid_to_str (last_cache->ptid));
539
540 refcount = 0;
541
542 n = splay_tree_min (last_cache->tree);
543 i = 0;
544
545 while (n)
546 {
547 struct dcache_block *db = (struct dcache_block *) n->value;
548
549 printf_filtered (_("Line %d: address %s [%d hits]\n"),
550 i, paddress (target_gdbarch, db->addr), db->refs);
551 i++;
552 refcount += db->refs;
553
554 n = splay_tree_successor (last_cache->tree, n->key);
555 }
556
557 printf_filtered (_("Cache state: %d active lines, %d hits\n"), i, refcount);
558 }
559
560 void
561 _initialize_dcache (void)
562 {
563 add_setshow_boolean_cmd ("remotecache", class_support,
564 &dcache_enabled_p, _("\
565 Set cache use for remote targets."), _("\
566 Show cache use for remote targets."), _("\
567 This used to enable the data cache for remote targets. The cache\n\
568 functionality is now controlled by the memory region system and the\n\
569 \"stack-cache\" flag; \"remotecache\" now does nothing and\n\
570 exists only for compatibility reasons."),
571 NULL,
572 show_dcache_enabled_p,
573 &setlist, &showlist);
574
575 add_info ("dcache", dcache_info,
576 _("\
577 Print information on the dcache performance.\n\
578 With no arguments, this command prints the cache configuration and a\n\
579 summary of each line in the cache. Use \"info dcache <lineno> to dump\"\n\
580 the contents of a given line."));
581 }