]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dcache.c
PR remote/1966
[thirdparty/binutils-gdb.git] / gdb / dcache.c
1 /* Caching code for GDB, the GNU debugger.
2
3 Copyright (C) 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2003 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "dcache.h"
25 #include "gdbcmd.h"
26 #include "gdb_string.h"
27 #include "gdbcore.h"
28 #include "target.h"
29
30 /* The data cache could lead to incorrect results because it doesn't
31 know about volatile variables, thus making it impossible to debug
32 functions which use memory mapped I/O devices. Set the nocache
33 memory region attribute in those cases.
34
35 In general the dcache speeds up performance, some speed improvement
36 comes from the actual caching mechanism, but the major gain is in
37 the reduction of the remote protocol overhead; instead of reading
38 or writing a large area of memory in 4 byte requests, the cache
39 bundles up the requests into 32 byte (actually LINE_SIZE) chunks.
40 Reducing the overhead to an eighth of what it was. This is very
41 obvious when displaying a large amount of data,
42
43 eg, x/200x 0
44
45 caching | no yes
46 ----------------------------
47 first time | 4 sec 2 sec improvement due to chunking
48 second time | 4 sec 0 sec improvement due to caching
49
50 The cache structure is unusual, we keep a number of cache blocks
51 (DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory.
52 Within each line we remember the address of the line (always a
53 multiple of the LINE_SIZE) and a vector of bytes over the range.
54 There's another vector which contains the state of the bytes.
55
56 ENTRY_BAD means that the byte is just plain wrong, and has no
57 correspondence with anything else (as it would when the cache is
58 turned on, but nothing has been done to it.
59
60 ENTRY_DIRTY means that the byte has some data in it which should be
61 written out to the remote target one day, but contains correct
62 data.
63
64 ENTRY_OK means that the data is the same in the cache as it is in
65 remote memory.
66
67
68 The ENTRY_DIRTY state is necessary because GDB likes to write large
69 lumps of memory in small bits. If the caching mechanism didn't
70 maintain the DIRTY information, then something like a two byte
71 write would mean that the entire cache line would have to be read,
72 the two bytes modified and then written out again. The alternative
73 would be to not read in the cache line in the first place, and just
74 write the two bytes directly into target memory. The trouble with
75 that is that it really nails performance, because of the remote
76 protocol overhead. This way, all those little writes are bundled
77 up into an entire cache line write in one go, without having to
78 read the cache line in the first place.
79 */
80
81 /* NOTE: Interaction of dcache and memory region attributes
82
83 As there is no requirement that memory region attributes be aligned
84 to or be a multiple of the dcache page size, dcache_read_line() and
85 dcache_write_line() must break up the page by memory region. If a
86 chunk does not have the cache attribute set, an invalid memory type
87 is set, etc., then the chunk is skipped. Those chunks are handled
88 in target_xfer_memory() (or target_xfer_memory_partial()).
89
90 This doesn't occur very often. The most common occurance is when
91 the last bit of the .text segment and the first bit of the .data
92 segment fall within the same dcache page with a ro/cacheable memory
93 region defined for the .text segment and a rw/non-cacheable memory
94 region defined for the .data segment. */
95
96 /* This value regulates the number of cache blocks stored.
97 Smaller values reduce the time spent searching for a cache
98 line, and reduce memory requirements, but increase the risk
99 of a line not being in memory */
100
101 #define DCACHE_SIZE 64
102
103 /* This value regulates the size of a cache line. Smaller values
104 reduce the time taken to read a single byte, but reduce overall
105 throughput. */
106
107 #define LINE_SIZE_POWER (5)
108 #define LINE_SIZE (1 << LINE_SIZE_POWER)
109
110 /* Each cache block holds LINE_SIZE bytes of data
111 starting at a multiple-of-LINE_SIZE address. */
112
113 #define LINE_SIZE_MASK ((LINE_SIZE - 1))
114 #define XFORM(x) ((x) & LINE_SIZE_MASK)
115 #define MASK(x) ((x) & ~LINE_SIZE_MASK)
116
117
118 #define ENTRY_BAD 0 /* data at this byte is wrong */
119 #define ENTRY_DIRTY 1 /* data at this byte needs to be written back */
120 #define ENTRY_OK 2 /* data at this byte is same as in memory */
121
122
123 struct dcache_block
124 {
125 struct dcache_block *p; /* next in list */
126 CORE_ADDR addr; /* Address for which data is recorded. */
127 gdb_byte data[LINE_SIZE]; /* bytes at given address */
128 unsigned char state[LINE_SIZE]; /* what state the data is in */
129
130 /* whether anything in state is dirty - used to speed up the
131 dirty scan. */
132 int anydirty;
133
134 int refs;
135 };
136
137
138 /* FIXME: dcache_struct used to have a cache_has_stuff field that was
139 used to record whether the cache had been accessed. This was used
140 to invalidate the cache whenever caching was (re-)enabled (if the
141 cache was disabled and later re-enabled, it could contain stale
142 data). This was not needed because the cache is write through and
143 the code that enables, disables, and deletes memory region all
144 invalidate the cache.
145
146 This is overkill, since it also invalidates cache lines from
147 unrelated regions. One way this could be addressed by adding a
148 new function that takes an address and a length and invalidates
149 only those cache lines that match. */
150
151 struct dcache_struct
152 {
153 /* free list */
154 struct dcache_block *free_head;
155 struct dcache_block *free_tail;
156
157 /* in use list */
158 struct dcache_block *valid_head;
159 struct dcache_block *valid_tail;
160
161 /* The cache itself. */
162 struct dcache_block *the_cache;
163 };
164
165 static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);
166
167 static int dcache_write_line (DCACHE *dcache, struct dcache_block *db);
168
169 static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);
170
171 static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);
172
173 static int dcache_writeback (DCACHE *dcache);
174
175 static void dcache_info (char *exp, int tty);
176
177 void _initialize_dcache (void);
178
179 static int dcache_enabled_p = 0;
180 static void
181 show_dcache_enabled_p (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file, _("Cache use for remote targets is %s.\n"), value);
185 }
186
187
188 DCACHE *last_cache; /* Used by info dcache */
189
190
191 /* Free all the data cache blocks, thus discarding all cached data. */
192
193 void
194 dcache_invalidate (DCACHE *dcache)
195 {
196 int i;
197 dcache->valid_head = 0;
198 dcache->valid_tail = 0;
199
200 dcache->free_head = 0;
201 dcache->free_tail = 0;
202
203 for (i = 0; i < DCACHE_SIZE; i++)
204 {
205 struct dcache_block *db = dcache->the_cache + i;
206
207 if (!dcache->free_head)
208 dcache->free_head = db;
209 else
210 dcache->free_tail->p = db;
211 dcache->free_tail = db;
212 db->p = 0;
213 }
214
215 return;
216 }
217
218 /* If addr is present in the dcache, return the address of the block
219 containing it. */
220
221 static struct dcache_block *
222 dcache_hit (DCACHE *dcache, CORE_ADDR addr)
223 {
224 struct dcache_block *db;
225
226 /* Search all cache blocks for one that is at this address. */
227 db = dcache->valid_head;
228
229 while (db)
230 {
231 if (MASK (addr) == db->addr)
232 {
233 db->refs++;
234 return db;
235 }
236 db = db->p;
237 }
238
239 return NULL;
240 }
241
242 /* Make sure that anything in this line which needs to
243 be written is. */
244
245 static int
246 dcache_write_line (DCACHE *dcache, struct dcache_block *db)
247 {
248 CORE_ADDR memaddr;
249 gdb_byte *myaddr;
250 int len;
251 int res;
252 int reg_len;
253 struct mem_region *region;
254
255 if (!db->anydirty)
256 return 1;
257
258 len = LINE_SIZE;
259 memaddr = db->addr;
260 myaddr = db->data;
261
262 while (len > 0)
263 {
264 int s;
265 int e;
266 int dirty_len;
267
268 region = lookup_mem_region(memaddr);
269 if (memaddr + len < region->hi)
270 reg_len = len;
271 else
272 reg_len = region->hi - memaddr;
273
274 if (!region->attrib.cache || region->attrib.mode == MEM_RO)
275 {
276 memaddr += reg_len;
277 myaddr += reg_len;
278 len -= reg_len;
279 continue;
280 }
281
282 while (reg_len > 0)
283 {
284 s = XFORM(memaddr);
285 while (reg_len > 0) {
286 if (db->state[s] == ENTRY_DIRTY)
287 break;
288 s++;
289 reg_len--;
290
291 memaddr++;
292 myaddr++;
293 len--;
294 }
295
296 e = s;
297 while (reg_len > 0) {
298 if (db->state[e] != ENTRY_DIRTY)
299 break;
300 e++;
301 reg_len--;
302 }
303
304 dirty_len = e - s;
305 res = target_write (&current_target, TARGET_OBJECT_RAW_MEMORY,
306 NULL, myaddr, memaddr, dirty_len);
307 if (res < dirty_len)
308 return 0;
309
310 memset (&db->state[XFORM(memaddr)], ENTRY_OK, res);
311 memaddr += res;
312 myaddr += res;
313 len -= res;
314 }
315 }
316
317 db->anydirty = 0;
318 return 1;
319 }
320
321 /* Read cache line */
322 static int
323 dcache_read_line (DCACHE *dcache, struct dcache_block *db)
324 {
325 CORE_ADDR memaddr;
326 gdb_byte *myaddr;
327 int len;
328 int res;
329 int reg_len;
330 struct mem_region *region;
331
332 /* If there are any dirty bytes in the line, it must be written
333 before a new line can be read */
334 if (db->anydirty)
335 {
336 if (!dcache_write_line (dcache, db))
337 return 0;
338 }
339
340 len = LINE_SIZE;
341 memaddr = db->addr;
342 myaddr = db->data;
343
344 while (len > 0)
345 {
346 region = lookup_mem_region(memaddr);
347 if (memaddr + len < region->hi)
348 reg_len = len;
349 else
350 reg_len = region->hi - memaddr;
351
352 if (!region->attrib.cache || region->attrib.mode == MEM_WO)
353 {
354 memaddr += reg_len;
355 myaddr += reg_len;
356 len -= reg_len;
357 continue;
358 }
359
360 res = target_read (&current_target, TARGET_OBJECT_RAW_MEMORY,
361 NULL, myaddr, memaddr, reg_len);
362 if (res < reg_len)
363 return 0;
364
365 memaddr += res;
366 myaddr += res;
367 len -= res;
368 }
369
370 memset (db->state, ENTRY_OK, sizeof (db->data));
371 db->anydirty = 0;
372
373 return 1;
374 }
375
376 /* Get a free cache block, put or keep it on the valid list,
377 and return its address. */
378
379 static struct dcache_block *
380 dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
381 {
382 struct dcache_block *db;
383
384 /* Take something from the free list */
385 db = dcache->free_head;
386 if (db)
387 {
388 dcache->free_head = db->p;
389 }
390 else
391 {
392 /* Nothing left on free list, so grab one from the valid list */
393 db = dcache->valid_head;
394
395 if (!dcache_write_line (dcache, db))
396 return NULL;
397
398 dcache->valid_head = db->p;
399 }
400
401 db->addr = MASK(addr);
402 db->refs = 0;
403 db->anydirty = 0;
404 memset (db->state, ENTRY_BAD, sizeof (db->data));
405
406 /* append this line to end of valid list */
407 if (!dcache->valid_head)
408 dcache->valid_head = db;
409 else
410 dcache->valid_tail->p = db;
411 dcache->valid_tail = db;
412 db->p = 0;
413
414 return db;
415 }
416
417 /* Writeback any dirty lines. */
418 static int
419 dcache_writeback (DCACHE *dcache)
420 {
421 struct dcache_block *db;
422
423 db = dcache->valid_head;
424
425 while (db)
426 {
427 if (!dcache_write_line (dcache, db))
428 return 0;
429 db = db->p;
430 }
431 return 1;
432 }
433
434
435 /* Using the data cache DCACHE return the contents of the byte at
436 address ADDR in the remote machine.
437
438 Returns 0 on error. */
439
440 static int
441 dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, gdb_byte *ptr)
442 {
443 struct dcache_block *db = dcache_hit (dcache, addr);
444
445 if (!db)
446 {
447 db = dcache_alloc (dcache, addr);
448 if (!db)
449 return 0;
450 }
451
452 if (db->state[XFORM (addr)] == ENTRY_BAD)
453 {
454 if (!dcache_read_line(dcache, db))
455 return 0;
456 }
457
458 *ptr = db->data[XFORM (addr)];
459 return 1;
460 }
461
462
463 /* Write the byte at PTR into ADDR in the data cache.
464 Return zero on write error.
465 */
466
467 static int
468 dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, gdb_byte *ptr)
469 {
470 struct dcache_block *db = dcache_hit (dcache, addr);
471
472 if (!db)
473 {
474 db = dcache_alloc (dcache, addr);
475 if (!db)
476 return 0;
477 }
478
479 db->data[XFORM (addr)] = *ptr;
480 db->state[XFORM (addr)] = ENTRY_DIRTY;
481 db->anydirty = 1;
482 return 1;
483 }
484
485 /* Initialize the data cache. */
486 DCACHE *
487 dcache_init (void)
488 {
489 int csize = sizeof (struct dcache_block) * DCACHE_SIZE;
490 DCACHE *dcache;
491
492 dcache = (DCACHE *) xmalloc (sizeof (*dcache));
493
494 dcache->the_cache = (struct dcache_block *) xmalloc (csize);
495 memset (dcache->the_cache, 0, csize);
496
497 dcache_invalidate (dcache);
498
499 last_cache = dcache;
500 return dcache;
501 }
502
503 /* Free a data cache */
504 void
505 dcache_free (DCACHE *dcache)
506 {
507 if (last_cache == dcache)
508 last_cache = NULL;
509
510 xfree (dcache->the_cache);
511 xfree (dcache);
512 }
513
514 /* Read or write LEN bytes from inferior memory at MEMADDR, transferring
515 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
516 nonzero.
517
518 Returns length of data written or read; 0 for error.
519
520 This routine is indended to be called by remote_xfer_ functions. */
521
522 int
523 dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, gdb_byte *myaddr,
524 int len, int should_write)
525 {
526 int i;
527 int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, gdb_byte *ptr);
528 xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;
529
530 for (i = 0; i < len; i++)
531 {
532 if (!xfunc (dcache, memaddr + i, myaddr + i))
533 return 0;
534 }
535
536 /* FIXME: There may be some benefit from moving the cache writeback
537 to a higher layer, as it could occur after a sequence of smaller
538 writes have been completed (as when a stack frame is constructed
539 for an inferior function call). Note that only moving it up one
540 level to target_xfer_memory() (also target_xfer_memory_partial())
541 is not sufficent, since we want to coalesce memory transfers that
542 are "logically" connected but not actually a single call to one
543 of the memory transfer functions. */
544
545 if (should_write)
546 dcache_writeback (dcache);
547
548 return len;
549 }
550
551 static void
552 dcache_info (char *exp, int tty)
553 {
554 struct dcache_block *p;
555
556 printf_filtered (_("Dcache line width %d, depth %d\n"),
557 LINE_SIZE, DCACHE_SIZE);
558
559 if (last_cache)
560 {
561 printf_filtered (_("Cache state:\n"));
562
563 for (p = last_cache->valid_head; p; p = p->p)
564 {
565 int j;
566 printf_filtered (_("Line at %s, referenced %d times\n"),
567 paddr (p->addr), p->refs);
568
569 for (j = 0; j < LINE_SIZE; j++)
570 printf_filtered ("%02x", p->data[j] & 0xFF);
571 printf_filtered (("\n"));
572
573 for (j = 0; j < LINE_SIZE; j++)
574 printf_filtered ("%2x", p->state[j]);
575 printf_filtered ("\n");
576 }
577 }
578 }
579
580 void
581 _initialize_dcache (void)
582 {
583 add_setshow_boolean_cmd ("remotecache", class_support,
584 &dcache_enabled_p, _("\
585 Set cache use for remote targets."), _("\
586 Show cache use for remote targets."), _("\
587 When on, use data caching for remote targets. For many remote targets\n\
588 this option can offer better throughput for reading target memory.\n\
589 Unfortunately, gdb does not currently know anything about volatile\n\
590 registers and thus data caching will produce incorrect results with\n\
591 volatile registers are in use. By default, this option is off."),
592 NULL,
593 show_dcache_enabled_p,
594 &setlist, &showlist);
595
596 add_info ("dcache", dcache_info,
597 _("Print information on the dcache performance."));
598
599 }