]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/disasm.c
gdb: Use std::min and std::max throughout
[thirdparty/binutils-gdb.git] / gdb / disasm.c
1 /* Disassemble support for GDB.
2
3 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "ui-out.h"
24 #include "disasm.h"
25 #include "gdbcore.h"
26 #include "dis-asm.h"
27 #include "source.h"
28 #include <algorithm>
29
30 /* Disassemble functions.
31 FIXME: We should get rid of all the duplicate code in gdb that does
32 the same thing: disassemble_command() and the gdbtk variation. */
33
34 /* This structure is used to store line number information for the
35 deprecated /m option.
36 We need a different sort of line table from the normal one cuz we can't
37 depend upon implicit line-end pc's for lines to do the
38 reordering in this function. */
39
40 struct deprecated_dis_line_entry
41 {
42 int line;
43 CORE_ADDR start_pc;
44 CORE_ADDR end_pc;
45 };
46
47 /* This Structure is used to store line number information.
48 We need a different sort of line table from the normal one cuz we can't
49 depend upon implicit line-end pc's for lines to do the
50 reordering in this function. */
51
52 struct dis_line_entry
53 {
54 struct symtab *symtab;
55 int line;
56 };
57
58 /* Hash function for dis_line_entry. */
59
60 static hashval_t
61 hash_dis_line_entry (const void *item)
62 {
63 const struct dis_line_entry *dle = (const struct dis_line_entry *) item;
64
65 return htab_hash_pointer (dle->symtab) + dle->line;
66 }
67
68 /* Equal function for dis_line_entry. */
69
70 static int
71 eq_dis_line_entry (const void *item_lhs, const void *item_rhs)
72 {
73 const struct dis_line_entry *lhs = (const struct dis_line_entry *) item_lhs;
74 const struct dis_line_entry *rhs = (const struct dis_line_entry *) item_rhs;
75
76 return (lhs->symtab == rhs->symtab
77 && lhs->line == rhs->line);
78 }
79
80 /* Create the table to manage lines for mixed source/disassembly. */
81
82 static htab_t
83 allocate_dis_line_table (void)
84 {
85 return htab_create_alloc (41,
86 hash_dis_line_entry, eq_dis_line_entry,
87 xfree, xcalloc, xfree);
88 }
89
90 /* Add a new dis_line_entry containing SYMTAB and LINE to TABLE. */
91
92 static void
93 add_dis_line_entry (htab_t table, struct symtab *symtab, int line)
94 {
95 void **slot;
96 struct dis_line_entry dle, *dlep;
97
98 dle.symtab = symtab;
99 dle.line = line;
100 slot = htab_find_slot (table, &dle, INSERT);
101 if (*slot == NULL)
102 {
103 dlep = XNEW (struct dis_line_entry);
104 dlep->symtab = symtab;
105 dlep->line = line;
106 *slot = dlep;
107 }
108 }
109
110 /* Return non-zero if SYMTAB, LINE are in TABLE. */
111
112 static int
113 line_has_code_p (htab_t table, struct symtab *symtab, int line)
114 {
115 struct dis_line_entry dle;
116
117 dle.symtab = symtab;
118 dle.line = line;
119 return htab_find (table, &dle) != NULL;
120 }
121
122 /* Like target_read_memory, but slightly different parameters. */
123 static int
124 dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
125 struct disassemble_info *info)
126 {
127 return target_read_code (memaddr, myaddr, len);
128 }
129
130 /* Like memory_error with slightly different parameters. */
131 static void
132 dis_asm_memory_error (int err, bfd_vma memaddr,
133 struct disassemble_info *info)
134 {
135 memory_error (TARGET_XFER_E_IO, memaddr);
136 }
137
138 /* Like print_address with slightly different parameters. */
139 static void
140 dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
141 {
142 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
143
144 print_address (gdbarch, addr, (struct ui_file *) info->stream);
145 }
146
147 static int
148 compare_lines (const void *mle1p, const void *mle2p)
149 {
150 struct deprecated_dis_line_entry *mle1, *mle2;
151 int val;
152
153 mle1 = (struct deprecated_dis_line_entry *) mle1p;
154 mle2 = (struct deprecated_dis_line_entry *) mle2p;
155
156 /* End of sequence markers have a line number of 0 but don't want to
157 be sorted to the head of the list, instead sort by PC. */
158 if (mle1->line == 0 || mle2->line == 0)
159 {
160 val = mle1->start_pc - mle2->start_pc;
161 if (val == 0)
162 val = mle1->line - mle2->line;
163 }
164 else
165 {
166 val = mle1->line - mle2->line;
167 if (val == 0)
168 val = mle1->start_pc - mle2->start_pc;
169 }
170 return val;
171 }
172
173 /* See disasm.h. */
174
175 int
176 gdb_pretty_print_insn (struct gdbarch *gdbarch, struct ui_out *uiout,
177 struct disassemble_info * di,
178 const struct disasm_insn *insn, int flags,
179 struct ui_file *stb)
180 {
181 /* parts of the symbolic representation of the address */
182 int unmapped;
183 int offset;
184 int line;
185 int size;
186 struct cleanup *ui_out_chain;
187 char *filename = NULL;
188 char *name = NULL;
189 CORE_ADDR pc;
190
191 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
192 pc = insn->addr;
193
194 if (insn->number != 0)
195 {
196 ui_out_field_fmt (uiout, "insn-number", "%u", insn->number);
197 ui_out_text (uiout, "\t");
198 }
199
200 if ((flags & DISASSEMBLY_SPECULATIVE) != 0)
201 {
202 if (insn->is_speculative)
203 {
204 ui_out_field_string (uiout, "is-speculative", "?");
205
206 /* The speculative execution indication overwrites the first
207 character of the PC prefix.
208 We assume a PC prefix length of 3 characters. */
209 if ((flags & DISASSEMBLY_OMIT_PC) == 0)
210 ui_out_text (uiout, pc_prefix (pc) + 1);
211 else
212 ui_out_text (uiout, " ");
213 }
214 else if ((flags & DISASSEMBLY_OMIT_PC) == 0)
215 ui_out_text (uiout, pc_prefix (pc));
216 else
217 ui_out_text (uiout, " ");
218 }
219 else if ((flags & DISASSEMBLY_OMIT_PC) == 0)
220 ui_out_text (uiout, pc_prefix (pc));
221 ui_out_field_core_addr (uiout, "address", gdbarch, pc);
222
223 if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
224 &line, &unmapped))
225 {
226 /* We don't care now about line, filename and unmapped. But we might in
227 the future. */
228 ui_out_text (uiout, " <");
229 if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
230 ui_out_field_string (uiout, "func-name", name);
231 ui_out_text (uiout, "+");
232 ui_out_field_int (uiout, "offset", offset);
233 ui_out_text (uiout, ">:\t");
234 }
235 else
236 ui_out_text (uiout, ":\t");
237
238 if (filename != NULL)
239 xfree (filename);
240 if (name != NULL)
241 xfree (name);
242
243 ui_file_rewind (stb);
244 if (flags & DISASSEMBLY_RAW_INSN)
245 {
246 CORE_ADDR end_pc;
247 bfd_byte data;
248 int err;
249 const char *spacer = "";
250
251 /* Build the opcodes using a temporary stream so we can
252 write them out in a single go for the MI. */
253 struct ui_file *opcode_stream = mem_fileopen ();
254 struct cleanup *cleanups =
255 make_cleanup_ui_file_delete (opcode_stream);
256
257 size = gdbarch_print_insn (gdbarch, pc, di);
258 end_pc = pc + size;
259
260 for (;pc < end_pc; ++pc)
261 {
262 err = (*di->read_memory_func) (pc, &data, 1, di);
263 if (err != 0)
264 (*di->memory_error_func) (err, pc, di);
265 fprintf_filtered (opcode_stream, "%s%02x",
266 spacer, (unsigned) data);
267 spacer = " ";
268 }
269
270 ui_out_field_stream (uiout, "opcodes", opcode_stream);
271 ui_out_text (uiout, "\t");
272
273 do_cleanups (cleanups);
274 }
275 else
276 size = gdbarch_print_insn (gdbarch, pc, di);
277
278 ui_out_field_stream (uiout, "inst", stb);
279 ui_file_rewind (stb);
280 do_cleanups (ui_out_chain);
281 ui_out_text (uiout, "\n");
282
283 return size;
284 }
285
286 static int
287 dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout,
288 struct disassemble_info * di,
289 CORE_ADDR low, CORE_ADDR high,
290 int how_many, int flags, struct ui_file *stb,
291 CORE_ADDR *end_pc)
292 {
293 struct disasm_insn insn;
294 int num_displayed = 0;
295
296 memset (&insn, 0, sizeof (insn));
297 insn.addr = low;
298
299 while (insn.addr < high && (how_many < 0 || num_displayed < how_many))
300 {
301 int size;
302
303 size = gdb_pretty_print_insn (gdbarch, uiout, di, &insn, flags, stb);
304 if (size <= 0)
305 break;
306
307 ++num_displayed;
308 insn.addr += size;
309
310 /* Allow user to bail out with ^C. */
311 QUIT;
312 }
313
314 if (end_pc != NULL)
315 *end_pc = insn.addr;
316
317 return num_displayed;
318 }
319
320 /* The idea here is to present a source-O-centric view of a
321 function to the user. This means that things are presented
322 in source order, with (possibly) out of order assembly
323 immediately following.
324
325 N.B. This view is deprecated. */
326
327 static void
328 do_mixed_source_and_assembly_deprecated
329 (struct gdbarch *gdbarch, struct ui_out *uiout,
330 struct disassemble_info *di, struct symtab *symtab,
331 CORE_ADDR low, CORE_ADDR high,
332 int how_many, int flags, struct ui_file *stb)
333 {
334 int newlines = 0;
335 int nlines;
336 struct linetable_entry *le;
337 struct deprecated_dis_line_entry *mle;
338 struct symtab_and_line sal;
339 int i;
340 int out_of_order = 0;
341 int next_line = 0;
342 int num_displayed = 0;
343 print_source_lines_flags psl_flags = 0;
344 struct cleanup *ui_out_chain;
345 struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
346 struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
347
348 gdb_assert (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL);
349
350 nlines = SYMTAB_LINETABLE (symtab)->nitems;
351 le = SYMTAB_LINETABLE (symtab)->item;
352
353 if (flags & DISASSEMBLY_FILENAME)
354 psl_flags |= PRINT_SOURCE_LINES_FILENAME;
355
356 mle = (struct deprecated_dis_line_entry *)
357 alloca (nlines * sizeof (struct deprecated_dis_line_entry));
358
359 /* Copy linetable entries for this function into our data
360 structure, creating end_pc's and setting out_of_order as
361 appropriate. */
362
363 /* First, skip all the preceding functions. */
364
365 for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
366
367 /* Now, copy all entries before the end of this function. */
368
369 for (; i < nlines - 1 && le[i].pc < high; i++)
370 {
371 if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
372 continue; /* Ignore duplicates. */
373
374 /* Skip any end-of-function markers. */
375 if (le[i].line == 0)
376 continue;
377
378 mle[newlines].line = le[i].line;
379 if (le[i].line > le[i + 1].line)
380 out_of_order = 1;
381 mle[newlines].start_pc = le[i].pc;
382 mle[newlines].end_pc = le[i + 1].pc;
383 newlines++;
384 }
385
386 /* If we're on the last line, and it's part of the function,
387 then we need to get the end pc in a special way. */
388
389 if (i == nlines - 1 && le[i].pc < high)
390 {
391 mle[newlines].line = le[i].line;
392 mle[newlines].start_pc = le[i].pc;
393 sal = find_pc_line (le[i].pc, 0);
394 mle[newlines].end_pc = sal.end;
395 newlines++;
396 }
397
398 /* Now, sort mle by line #s (and, then by addresses within lines). */
399
400 if (out_of_order)
401 qsort (mle, newlines, sizeof (struct deprecated_dis_line_entry),
402 compare_lines);
403
404 /* Now, for each line entry, emit the specified lines (unless
405 they have been emitted before), followed by the assembly code
406 for that line. */
407
408 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
409
410 for (i = 0; i < newlines; i++)
411 {
412 /* Print out everything from next_line to the current line. */
413 if (mle[i].line >= next_line)
414 {
415 if (next_line != 0)
416 {
417 /* Just one line to print. */
418 if (next_line == mle[i].line)
419 {
420 ui_out_tuple_chain
421 = make_cleanup_ui_out_tuple_begin_end (uiout,
422 "src_and_asm_line");
423 print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
424 }
425 else
426 {
427 /* Several source lines w/o asm instructions associated. */
428 for (; next_line < mle[i].line; next_line++)
429 {
430 struct cleanup *ui_out_list_chain_line;
431 struct cleanup *ui_out_tuple_chain_line;
432
433 ui_out_tuple_chain_line
434 = make_cleanup_ui_out_tuple_begin_end (uiout,
435 "src_and_asm_line");
436 print_source_lines (symtab, next_line, next_line + 1,
437 psl_flags);
438 ui_out_list_chain_line
439 = make_cleanup_ui_out_list_begin_end (uiout,
440 "line_asm_insn");
441 do_cleanups (ui_out_list_chain_line);
442 do_cleanups (ui_out_tuple_chain_line);
443 }
444 /* Print the last line and leave list open for
445 asm instructions to be added. */
446 ui_out_tuple_chain
447 = make_cleanup_ui_out_tuple_begin_end (uiout,
448 "src_and_asm_line");
449 print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
450 }
451 }
452 else
453 {
454 ui_out_tuple_chain
455 = make_cleanup_ui_out_tuple_begin_end (uiout,
456 "src_and_asm_line");
457 print_source_lines (symtab, mle[i].line, mle[i].line + 1, psl_flags);
458 }
459
460 next_line = mle[i].line + 1;
461 ui_out_list_chain
462 = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
463 }
464
465 num_displayed += dump_insns (gdbarch, uiout, di,
466 mle[i].start_pc, mle[i].end_pc,
467 how_many, flags, stb, NULL);
468
469 /* When we've reached the end of the mle array, or we've seen the last
470 assembly range for this source line, close out the list/tuple. */
471 if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
472 {
473 do_cleanups (ui_out_list_chain);
474 do_cleanups (ui_out_tuple_chain);
475 ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
476 ui_out_list_chain = make_cleanup (null_cleanup, 0);
477 ui_out_text (uiout, "\n");
478 }
479 if (how_many >= 0 && num_displayed >= how_many)
480 break;
481 }
482 do_cleanups (ui_out_chain);
483 }
484
485 /* The idea here is to present a source-O-centric view of a
486 function to the user. This means that things are presented
487 in source order, with (possibly) out of order assembly
488 immediately following. */
489
490 static void
491 do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout,
492 struct disassemble_info *di,
493 struct symtab *main_symtab,
494 CORE_ADDR low, CORE_ADDR high,
495 int how_many, int flags, struct ui_file *stb)
496 {
497 const struct linetable_entry *le, *first_le;
498 int i, nlines;
499 int num_displayed = 0;
500 print_source_lines_flags psl_flags = 0;
501 struct cleanup *cleanups;
502 struct cleanup *ui_out_chain;
503 struct cleanup *ui_out_tuple_chain;
504 struct cleanup *ui_out_list_chain;
505 CORE_ADDR pc;
506 struct symtab *last_symtab;
507 int last_line;
508 htab_t dis_line_table;
509
510 gdb_assert (main_symtab != NULL && SYMTAB_LINETABLE (main_symtab) != NULL);
511
512 /* First pass: collect the list of all source files and lines.
513 We do this so that we can only print lines containing code once.
514 We try to print the source text leading up to the next instruction,
515 but if that text is for code that will be disassembled later, then
516 we'll want to defer printing it until later with its associated code. */
517
518 dis_line_table = allocate_dis_line_table ();
519 cleanups = make_cleanup_htab_delete (dis_line_table);
520
521 pc = low;
522
523 /* The prologue may be empty, but there may still be a line number entry
524 for the opening brace which is distinct from the first line of code.
525 If the prologue has been eliminated find_pc_line may return the source
526 line after the opening brace. We still want to print this opening brace.
527 first_le is used to implement this. */
528
529 nlines = SYMTAB_LINETABLE (main_symtab)->nitems;
530 le = SYMTAB_LINETABLE (main_symtab)->item;
531 first_le = NULL;
532
533 /* Skip all the preceding functions. */
534 for (i = 0; i < nlines && le[i].pc < low; i++)
535 continue;
536
537 if (i < nlines && le[i].pc < high)
538 first_le = &le[i];
539
540 /* Add lines for every pc value. */
541 while (pc < high)
542 {
543 struct symtab_and_line sal;
544 int length;
545
546 sal = find_pc_line (pc, 0);
547 length = gdb_insn_length (gdbarch, pc);
548 pc += length;
549
550 if (sal.symtab != NULL)
551 add_dis_line_entry (dis_line_table, sal.symtab, sal.line);
552 }
553
554 /* Second pass: print the disassembly.
555
556 Output format, from an MI perspective:
557 The result is a ui_out list, field name "asm_insns", where elements have
558 name "src_and_asm_line".
559 Each element is a tuple of source line specs (field names line, file,
560 fullname), and field "line_asm_insn" which contains the disassembly.
561 Field "line_asm_insn" is a list of tuples: address, func-name, offset,
562 opcodes, inst.
563
564 CLI output works on top of this because MI ignores ui_out_text output,
565 which is where we put file name and source line contents output.
566
567 Cleanup usage:
568 cleanups:
569 For things created at the beginning of this function and need to be
570 kept until the end of this function.
571 ui_out_chain
572 Handles the outer "asm_insns" list.
573 ui_out_tuple_chain
574 The tuples for each group of consecutive disassemblies.
575 ui_out_list_chain
576 List of consecutive source lines or disassembled insns. */
577
578 if (flags & DISASSEMBLY_FILENAME)
579 psl_flags |= PRINT_SOURCE_LINES_FILENAME;
580
581 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
582
583 ui_out_tuple_chain = NULL;
584 ui_out_list_chain = NULL;
585
586 last_symtab = NULL;
587 last_line = 0;
588 pc = low;
589
590 while (pc < high)
591 {
592 struct symtab_and_line sal;
593 CORE_ADDR end_pc;
594 int start_preceding_line_to_display = 0;
595 int end_preceding_line_to_display = 0;
596 int new_source_line = 0;
597
598 sal = find_pc_line (pc, 0);
599
600 if (sal.symtab != last_symtab)
601 {
602 /* New source file. */
603 new_source_line = 1;
604
605 /* If this is the first line of output, check for any preceding
606 lines. */
607 if (last_line == 0
608 && first_le != NULL
609 && first_le->line < sal.line)
610 {
611 start_preceding_line_to_display = first_le->line;
612 end_preceding_line_to_display = sal.line;
613 }
614 }
615 else
616 {
617 /* Same source file as last time. */
618 if (sal.symtab != NULL)
619 {
620 if (sal.line > last_line + 1 && last_line != 0)
621 {
622 int l;
623
624 /* Several preceding source lines. Print the trailing ones
625 not associated with code that we'll print later. */
626 for (l = sal.line - 1; l > last_line; --l)
627 {
628 if (line_has_code_p (dis_line_table, sal.symtab, l))
629 break;
630 }
631 if (l < sal.line - 1)
632 {
633 start_preceding_line_to_display = l + 1;
634 end_preceding_line_to_display = sal.line;
635 }
636 }
637 if (sal.line != last_line)
638 new_source_line = 1;
639 else
640 {
641 /* Same source line as last time. This can happen, depending
642 on the debug info. */
643 }
644 }
645 }
646
647 if (new_source_line)
648 {
649 /* Skip the newline if this is the first instruction. */
650 if (pc > low)
651 ui_out_text (uiout, "\n");
652 if (ui_out_tuple_chain != NULL)
653 {
654 gdb_assert (ui_out_list_chain != NULL);
655 do_cleanups (ui_out_list_chain);
656 do_cleanups (ui_out_tuple_chain);
657 }
658 if (sal.symtab != last_symtab
659 && !(flags & DISASSEMBLY_FILENAME))
660 {
661 /* Remember MI ignores ui_out_text.
662 We don't have to do anything here for MI because MI
663 output includes the source specs for each line. */
664 if (sal.symtab != NULL)
665 {
666 ui_out_text (uiout,
667 symtab_to_filename_for_display (sal.symtab));
668 }
669 else
670 ui_out_text (uiout, "unknown");
671 ui_out_text (uiout, ":\n");
672 }
673 if (start_preceding_line_to_display > 0)
674 {
675 /* Several source lines w/o asm instructions associated.
676 We need to preserve the structure of the output, so output
677 a bunch of line tuples with no asm entries. */
678 int l;
679 struct cleanup *ui_out_list_chain_line;
680 struct cleanup *ui_out_tuple_chain_line;
681
682 gdb_assert (sal.symtab != NULL);
683 for (l = start_preceding_line_to_display;
684 l < end_preceding_line_to_display;
685 ++l)
686 {
687 ui_out_tuple_chain_line
688 = make_cleanup_ui_out_tuple_begin_end (uiout,
689 "src_and_asm_line");
690 print_source_lines (sal.symtab, l, l + 1, psl_flags);
691 ui_out_list_chain_line
692 = make_cleanup_ui_out_list_begin_end (uiout,
693 "line_asm_insn");
694 do_cleanups (ui_out_list_chain_line);
695 do_cleanups (ui_out_tuple_chain_line);
696 }
697 }
698 ui_out_tuple_chain
699 = make_cleanup_ui_out_tuple_begin_end (uiout, "src_and_asm_line");
700 if (sal.symtab != NULL)
701 print_source_lines (sal.symtab, sal.line, sal.line + 1, psl_flags);
702 else
703 ui_out_text (uiout, _("--- no source info for this pc ---\n"));
704 ui_out_list_chain
705 = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
706 }
707 else
708 {
709 /* Here we're appending instructions to an existing line.
710 By construction the very first insn will have a symtab
711 and follow the new_source_line path above. */
712 gdb_assert (ui_out_tuple_chain != NULL);
713 gdb_assert (ui_out_list_chain != NULL);
714 }
715
716 if (sal.end != 0)
717 end_pc = std::min (sal.end, high);
718 else
719 end_pc = pc + 1;
720 num_displayed += dump_insns (gdbarch, uiout, di, pc, end_pc,
721 how_many, flags, stb, &end_pc);
722 pc = end_pc;
723
724 if (how_many >= 0 && num_displayed >= how_many)
725 break;
726
727 last_symtab = sal.symtab;
728 last_line = sal.line;
729 }
730
731 do_cleanups (ui_out_chain);
732 do_cleanups (cleanups);
733 }
734
735 static void
736 do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
737 struct disassemble_info * di,
738 CORE_ADDR low, CORE_ADDR high,
739 int how_many, int flags, struct ui_file *stb)
740 {
741 struct cleanup *ui_out_chain;
742
743 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
744
745 dump_insns (gdbarch, uiout, di, low, high, how_many, flags, stb, NULL);
746
747 do_cleanups (ui_out_chain);
748 }
749
750 /* Initialize the disassemble info struct ready for the specified
751 stream. */
752
753 static int ATTRIBUTE_PRINTF (2, 3)
754 fprintf_disasm (void *stream, const char *format, ...)
755 {
756 va_list args;
757
758 va_start (args, format);
759 vfprintf_filtered ((struct ui_file *) stream, format, args);
760 va_end (args);
761 /* Something non -ve. */
762 return 0;
763 }
764
765 struct disassemble_info
766 gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
767 {
768 struct disassemble_info di;
769
770 init_disassemble_info (&di, file, fprintf_disasm);
771 di.flavour = bfd_target_unknown_flavour;
772 di.memory_error_func = dis_asm_memory_error;
773 di.print_address_func = dis_asm_print_address;
774 /* NOTE: cagney/2003-04-28: The original code, from the old Insight
775 disassembler had a local optomization here. By default it would
776 access the executable file, instead of the target memory (there
777 was a growing list of exceptions though). Unfortunately, the
778 heuristic was flawed. Commands like "disassemble &variable"
779 didn't work as they relied on the access going to the target.
780 Further, it has been supperseeded by trust-read-only-sections
781 (although that should be superseeded by target_trust..._p()). */
782 di.read_memory_func = dis_asm_read_memory;
783 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
784 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
785 di.endian = gdbarch_byte_order (gdbarch);
786 di.endian_code = gdbarch_byte_order_for_code (gdbarch);
787 di.application_data = gdbarch;
788 disassemble_init_for_target (&di);
789 return di;
790 }
791
792 void
793 gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
794 char *file_string, int flags, int how_many,
795 CORE_ADDR low, CORE_ADDR high)
796 {
797 struct ui_file *stb = mem_fileopen ();
798 struct cleanup *cleanups = make_cleanup_ui_file_delete (stb);
799 struct disassemble_info di = gdb_disassemble_info (gdbarch, stb);
800 struct symtab *symtab;
801 int nlines = -1;
802
803 /* Assume symtab is valid for whole PC range. */
804 symtab = find_pc_line_symtab (low);
805
806 if (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL)
807 nlines = SYMTAB_LINETABLE (symtab)->nitems;
808
809 if (!(flags & (DISASSEMBLY_SOURCE_DEPRECATED | DISASSEMBLY_SOURCE))
810 || nlines <= 0)
811 do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb);
812
813 else if (flags & DISASSEMBLY_SOURCE)
814 do_mixed_source_and_assembly (gdbarch, uiout, &di, symtab, low, high,
815 how_many, flags, stb);
816
817 else if (flags & DISASSEMBLY_SOURCE_DEPRECATED)
818 do_mixed_source_and_assembly_deprecated (gdbarch, uiout, &di, symtab,
819 low, high, how_many, flags, stb);
820
821 do_cleanups (cleanups);
822 gdb_flush (gdb_stdout);
823 }
824
825 /* Print the instruction at address MEMADDR in debugged memory,
826 on STREAM. Returns the length of the instruction, in bytes,
827 and, if requested, the number of branch delay slot instructions. */
828
829 int
830 gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
831 struct ui_file *stream, int *branch_delay_insns)
832 {
833 struct disassemble_info di;
834 int length;
835
836 di = gdb_disassemble_info (gdbarch, stream);
837 length = gdbarch_print_insn (gdbarch, memaddr, &di);
838 if (branch_delay_insns)
839 {
840 if (di.insn_info_valid)
841 *branch_delay_insns = di.branch_delay_insns;
842 else
843 *branch_delay_insns = 0;
844 }
845 return length;
846 }
847
848 static void
849 do_ui_file_delete (void *arg)
850 {
851 ui_file_delete ((struct ui_file *) arg);
852 }
853
854 /* Return the length in bytes of the instruction at address MEMADDR in
855 debugged memory. */
856
857 int
858 gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
859 {
860 static struct ui_file *null_stream = NULL;
861
862 /* Dummy file descriptor for the disassembler. */
863 if (!null_stream)
864 {
865 null_stream = ui_file_new ();
866 make_final_cleanup (do_ui_file_delete, null_stream);
867 }
868
869 return gdb_print_insn (gdbarch, addr, null_stream, NULL);
870 }
871
872 /* fprintf-function for gdb_buffered_insn_length. This function is a
873 nop, we don't want to print anything, we just want to compute the
874 length of the insn. */
875
876 static int ATTRIBUTE_PRINTF (2, 3)
877 gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
878 {
879 return 0;
880 }
881
882 /* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
883
884 static void
885 gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
886 struct disassemble_info *di,
887 const gdb_byte *insn, int max_len,
888 CORE_ADDR addr)
889 {
890 init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
891
892 /* init_disassemble_info installs buffer_read_memory, etc.
893 so we don't need to do that here.
894 The cast is necessary until disassemble_info is const-ified. */
895 di->buffer = (gdb_byte *) insn;
896 di->buffer_length = max_len;
897 di->buffer_vma = addr;
898
899 di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
900 di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
901 di->endian = gdbarch_byte_order (gdbarch);
902 di->endian_code = gdbarch_byte_order_for_code (gdbarch);
903
904 disassemble_init_for_target (di);
905 }
906
907 /* Return the length in bytes of INSN. MAX_LEN is the size of the
908 buffer containing INSN. */
909
910 int
911 gdb_buffered_insn_length (struct gdbarch *gdbarch,
912 const gdb_byte *insn, int max_len, CORE_ADDR addr)
913 {
914 struct disassemble_info di;
915
916 gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
917
918 return gdbarch_print_insn (gdbarch, addr, &di);
919 }