]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2/read.c
[gdb/symtab] Handle struct decl with DW_AT_signature
[thirdparty/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 struct variant_part_builder;
1086
1087 /* When reading a variant, we track a bit more information about the
1088 field, and store it in an object of this type. */
1089
1090 struct variant_field
1091 {
1092 int first_field = -1;
1093 int last_field = -1;
1094
1095 /* A variant can contain other variant parts. */
1096 std::vector<variant_part_builder> variant_parts;
1097
1098 /* If we see a DW_TAG_variant, then this will be set if this is the
1099 default branch. */
1100 bool default_branch = false;
1101 /* If we see a DW_AT_discr_value, then this will be the discriminant
1102 value. */
1103 ULONGEST discriminant_value = 0;
1104 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1105 data. */
1106 struct dwarf_block *discr_list_data = nullptr;
1107 };
1108
1109 /* This represents a DW_TAG_variant_part. */
1110
1111 struct variant_part_builder
1112 {
1113 /* The offset of the discriminant field. */
1114 sect_offset discriminant_offset {};
1115
1116 /* Variants that are direct children of this variant part. */
1117 std::vector<variant_field> variants;
1118
1119 /* True if we're currently reading a variant. */
1120 bool processing_variant = false;
1121 };
1122
1123 struct nextfield
1124 {
1125 int accessibility = 0;
1126 int virtuality = 0;
1127 /* Variant parts need to find the discriminant, which is a DIE
1128 reference. We track the section offset of each field to make
1129 this link. */
1130 sect_offset offset;
1131 struct field field {};
1132 };
1133
1134 struct fnfieldlist
1135 {
1136 const char *name = nullptr;
1137 std::vector<struct fn_field> fnfields;
1138 };
1139
1140 /* The routines that read and process dies for a C struct or C++ class
1141 pass lists of data member fields and lists of member function fields
1142 in an instance of a field_info structure, as defined below. */
1143 struct field_info
1144 {
1145 /* List of data member and baseclasses fields. */
1146 std::vector<struct nextfield> fields;
1147 std::vector<struct nextfield> baseclasses;
1148
1149 /* Set if the accessibility of one of the fields is not public. */
1150 int non_public_fields = 0;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 std::vector<struct fnfieldlist> fnfieldlists;
1156
1157 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1158 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1159 std::vector<struct decl_field> typedef_field_list;
1160
1161 /* Nested types defined by this class and the number of elements in this
1162 list. */
1163 std::vector<struct decl_field> nested_types_list;
1164
1165 /* If non-null, this is the variant part we are currently
1166 reading. */
1167 variant_part_builder *current_variant_part = nullptr;
1168 /* This holds all the top-level variant parts attached to the type
1169 we're reading. */
1170 std::vector<variant_part_builder> variant_parts;
1171
1172 /* Return the total number of fields (including baseclasses). */
1173 int nfields () const
1174 {
1175 return fields.size () + baseclasses.size ();
1176 }
1177 };
1178
1179 /* Loaded secondary compilation units are kept in memory until they
1180 have not been referenced for the processing of this many
1181 compilation units. Set this to zero to disable caching. Cache
1182 sizes of up to at least twenty will improve startup time for
1183 typical inter-CU-reference binaries, at an obvious memory cost. */
1184 static int dwarf_max_cache_age = 5;
1185 static void
1186 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1187 struct cmd_list_element *c, const char *value)
1188 {
1189 fprintf_filtered (file, _("The upper bound on the age of cached "
1190 "DWARF compilation units is %s.\n"),
1191 value);
1192 }
1193 \f
1194 /* local function prototypes */
1195
1196 static void dwarf2_find_base_address (struct die_info *die,
1197 struct dwarf2_cu *cu);
1198
1199 static dwarf2_psymtab *create_partial_symtab
1200 (struct dwarf2_per_cu_data *per_cu, const char *name);
1201
1202 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1203 const gdb_byte *info_ptr,
1204 struct die_info *type_unit_die);
1205
1206 static void dwarf2_build_psymtabs_hard
1207 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1208
1209 static void scan_partial_symbols (struct partial_die_info *,
1210 CORE_ADDR *, CORE_ADDR *,
1211 int, struct dwarf2_cu *);
1212
1213 static void add_partial_symbol (struct partial_die_info *,
1214 struct dwarf2_cu *);
1215
1216 static void add_partial_namespace (struct partial_die_info *pdi,
1217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1218 int set_addrmap, struct dwarf2_cu *cu);
1219
1220 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1221 CORE_ADDR *highpc, int set_addrmap,
1222 struct dwarf2_cu *cu);
1223
1224 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1225 struct dwarf2_cu *cu);
1226
1227 static void add_partial_subprogram (struct partial_die_info *pdi,
1228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1229 int need_pc, struct dwarf2_cu *cu);
1230
1231 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1232
1233 static struct partial_die_info *load_partial_dies
1234 (const struct die_reader_specs *, const gdb_byte *, int);
1235
1236 /* A pair of partial_die_info and compilation unit. */
1237 struct cu_partial_die_info
1238 {
1239 /* The compilation unit of the partial_die_info. */
1240 struct dwarf2_cu *cu;
1241 /* A partial_die_info. */
1242 struct partial_die_info *pdi;
1243
1244 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1245 : cu (cu),
1246 pdi (pdi)
1247 { /* Nothing. */ }
1248
1249 private:
1250 cu_partial_die_info () = delete;
1251 };
1252
1253 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1254 struct dwarf2_cu *);
1255
1256 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1257 struct attribute *, struct attr_abbrev *,
1258 const gdb_byte *, bool *need_reprocess);
1259
1260 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1261 struct attribute *attr);
1262
1263 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1264
1265 static sect_offset read_abbrev_offset
1266 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1267 struct dwarf2_section_info *, sect_offset);
1268
1269 static const char *read_indirect_string
1270 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1271 const struct comp_unit_head *, unsigned int *);
1272
1273 static const char *read_indirect_string_at_offset
1274 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1275
1276 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1277 const gdb_byte *,
1278 unsigned int *);
1279
1280 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1281 ULONGEST str_index);
1282
1283 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1284 ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1292 struct dwarf2_cu *cu);
1293
1294 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1295
1296 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1297 struct dwarf2_cu *cu);
1298
1299 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1300
1301 static struct die_info *die_specification (struct die_info *die,
1302 struct dwarf2_cu **);
1303
1304 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1305 struct dwarf2_cu *cu);
1306
1307 static void dwarf_decode_lines (struct line_header *, const char *,
1308 struct dwarf2_cu *, dwarf2_psymtab *,
1309 CORE_ADDR, int decode_mapping);
1310
1311 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1312 const char *);
1313
1314 static struct symbol *new_symbol (struct die_info *, struct type *,
1315 struct dwarf2_cu *, struct symbol * = NULL);
1316
1317 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_const_value_attr (const struct attribute *attr,
1321 struct type *type,
1322 const char *name,
1323 struct obstack *obstack,
1324 struct dwarf2_cu *cu, LONGEST *value,
1325 const gdb_byte **bytes,
1326 struct dwarf2_locexpr_baton **baton);
1327
1328 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1329
1330 static int need_gnat_info (struct dwarf2_cu *);
1331
1332 static struct type *die_descriptive_type (struct die_info *,
1333 struct dwarf2_cu *);
1334
1335 static void set_descriptive_type (struct type *, struct die_info *,
1336 struct dwarf2_cu *);
1337
1338 static struct type *die_containing_type (struct die_info *,
1339 struct dwarf2_cu *);
1340
1341 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1342 struct dwarf2_cu *);
1343
1344 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1345
1346 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1347
1348 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1349
1350 static char *typename_concat (struct obstack *obs, const char *prefix,
1351 const char *suffix, int physname,
1352 struct dwarf2_cu *cu);
1353
1354 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1355
1356 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1357
1358 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1359
1360 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1361
1362 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1363
1364 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1365
1366 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *, dwarf2_psymtab *);
1368
1369 /* Return the .debug_loclists section to use for cu. */
1370 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1371
1372 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1373 values. Keep the items ordered with increasing constraints compliance. */
1374 enum pc_bounds_kind
1375 {
1376 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1377 PC_BOUNDS_NOT_PRESENT,
1378
1379 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1380 were present but they do not form a valid range of PC addresses. */
1381 PC_BOUNDS_INVALID,
1382
1383 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1384 PC_BOUNDS_RANGES,
1385
1386 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1387 PC_BOUNDS_HIGH_LOW,
1388 };
1389
1390 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1391 CORE_ADDR *, CORE_ADDR *,
1392 struct dwarf2_cu *,
1393 dwarf2_psymtab *);
1394
1395 static void get_scope_pc_bounds (struct die_info *,
1396 CORE_ADDR *, CORE_ADDR *,
1397 struct dwarf2_cu *);
1398
1399 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1400 CORE_ADDR, struct dwarf2_cu *);
1401
1402 static void dwarf2_add_field (struct field_info *, struct die_info *,
1403 struct dwarf2_cu *);
1404
1405 static void dwarf2_attach_fields_to_type (struct field_info *,
1406 struct type *, struct dwarf2_cu *);
1407
1408 static void dwarf2_add_member_fn (struct field_info *,
1409 struct die_info *, struct type *,
1410 struct dwarf2_cu *);
1411
1412 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1413 struct type *,
1414 struct dwarf2_cu *);
1415
1416 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1419
1420 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1421
1422 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1423
1424 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1425
1426 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1427
1428 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1429
1430 static struct type *read_module_type (struct die_info *die,
1431 struct dwarf2_cu *cu);
1432
1433 static const char *namespace_name (struct die_info *die,
1434 int *is_anonymous, struct dwarf2_cu *);
1435
1436 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1439 bool * = nullptr);
1440
1441 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1442 struct dwarf2_cu *);
1443
1444 static struct die_info *read_die_and_siblings_1
1445 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1446 struct die_info *);
1447
1448 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1449 const gdb_byte *info_ptr,
1450 const gdb_byte **new_info_ptr,
1451 struct die_info *parent);
1452
1453 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1454 struct die_info **, const gdb_byte *,
1455 int);
1456
1457 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1458 struct die_info **, const gdb_byte *);
1459
1460 static void process_die (struct die_info *, struct dwarf2_cu *);
1461
1462 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1463 struct objfile *);
1464
1465 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1466
1467 static const char *dwarf2_full_name (const char *name,
1468 struct die_info *die,
1469 struct dwarf2_cu *cu);
1470
1471 static const char *dwarf2_physname (const char *name, struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct die_info *dwarf2_extension (struct die_info *die,
1475 struct dwarf2_cu **);
1476
1477 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1478
1479 static void dump_die_for_error (struct die_info *);
1480
1481 static void dump_die_1 (struct ui_file *, int level, int max_level,
1482 struct die_info *);
1483
1484 /*static*/ void dump_die (struct die_info *, int max_level);
1485
1486 static void store_in_ref_table (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510 static void read_signatured_type (struct signatured_type *);
1511
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516 /* memory allocation interface */
1517
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572 static void dwarf2_mark (struct dwarf2_cu *);
1573
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591 class dwarf2_queue_guard
1592 {
1593 public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610 private:
1611 dwarf2_per_objfile *m_per_objfile;
1612 };
1613
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1615 {
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624 }
1625
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629 struct file_and_directory
1630 {
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643 };
1644
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static htab_up allocate_signatured_type_table ();
1649
1650 static htab_up allocate_dwo_unit_table ();
1651
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668 /* A unique pointer to a dwo_file. */
1669
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674 static void check_producer (struct dwarf2_cu *cu);
1675
1676 static void free_line_header_voidp (void *arg);
1677 \f
1678 /* Various complaints about symbol reading that don't abort the process. */
1679
1680 static void
1681 dwarf2_debug_line_missing_file_complaint (void)
1682 {
1683 complaint (_(".debug_line section has line data without a file"));
1684 }
1685
1686 static void
1687 dwarf2_debug_line_missing_end_sequence_complaint (void)
1688 {
1689 complaint (_(".debug_line section has line "
1690 "program sequence without an end"));
1691 }
1692
1693 static void
1694 dwarf2_complex_location_expr_complaint (void)
1695 {
1696 complaint (_("location expression too complex"));
1697 }
1698
1699 static void
1700 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1701 int arg3)
1702 {
1703 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1704 arg1, arg2, arg3);
1705 }
1706
1707 static void
1708 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1709 {
1710 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1711 arg1, arg2);
1712 }
1713
1714 /* Hash function for line_header_hash. */
1715
1716 static hashval_t
1717 line_header_hash (const struct line_header *ofs)
1718 {
1719 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1720 }
1721
1722 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1723
1724 static hashval_t
1725 line_header_hash_voidp (const void *item)
1726 {
1727 const struct line_header *ofs = (const struct line_header *) item;
1728
1729 return line_header_hash (ofs);
1730 }
1731
1732 /* Equality function for line_header_hash. */
1733
1734 static int
1735 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1736 {
1737 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1738 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1739
1740 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1741 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1742 }
1743
1744 \f
1745
1746 /* See declaration. */
1747
1748 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1749 const dwarf2_debug_sections *names,
1750 bool can_copy_)
1751 : objfile (objfile_),
1752 can_copy (can_copy_)
1753 {
1754 if (names == NULL)
1755 names = &dwarf2_elf_names;
1756
1757 bfd *obfd = objfile->obfd;
1758
1759 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1760 locate_sections (obfd, sec, *names);
1761 }
1762
1763 dwarf2_per_objfile::~dwarf2_per_objfile ()
1764 {
1765 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1766 free_cached_comp_units ();
1767
1768 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1769 per_cu->imported_symtabs_free ();
1770
1771 for (signatured_type *sig_type : all_type_units)
1772 sig_type->per_cu.imported_symtabs_free ();
1773
1774 /* Everything else should be on the objfile obstack. */
1775 }
1776
1777 /* See declaration. */
1778
1779 void
1780 dwarf2_per_objfile::free_cached_comp_units ()
1781 {
1782 dwarf2_per_cu_data *per_cu = read_in_chain;
1783 dwarf2_per_cu_data **last_chain = &read_in_chain;
1784 while (per_cu != NULL)
1785 {
1786 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1787
1788 delete per_cu->cu;
1789 *last_chain = next_cu;
1790 per_cu = next_cu;
1791 }
1792 }
1793
1794 /* A helper class that calls free_cached_comp_units on
1795 destruction. */
1796
1797 class free_cached_comp_units
1798 {
1799 public:
1800
1801 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1802 : m_per_objfile (per_objfile)
1803 {
1804 }
1805
1806 ~free_cached_comp_units ()
1807 {
1808 m_per_objfile->free_cached_comp_units ();
1809 }
1810
1811 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1812
1813 private:
1814
1815 dwarf2_per_objfile *m_per_objfile;
1816 };
1817
1818 /* Try to locate the sections we need for DWARF 2 debugging
1819 information and return true if we have enough to do something.
1820 NAMES points to the dwarf2 section names, or is NULL if the standard
1821 ELF names are used. CAN_COPY is true for formats where symbol
1822 interposition is possible and so symbol values must follow copy
1823 relocation rules. */
1824
1825 int
1826 dwarf2_has_info (struct objfile *objfile,
1827 const struct dwarf2_debug_sections *names,
1828 bool can_copy)
1829 {
1830 if (objfile->flags & OBJF_READNEVER)
1831 return 0;
1832
1833 struct dwarf2_per_objfile *dwarf2_per_objfile
1834 = get_dwarf2_per_objfile (objfile);
1835
1836 if (dwarf2_per_objfile == NULL)
1837 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1838 names,
1839 can_copy);
1840
1841 return (!dwarf2_per_objfile->info.is_virtual
1842 && dwarf2_per_objfile->info.s.section != NULL
1843 && !dwarf2_per_objfile->abbrev.is_virtual
1844 && dwarf2_per_objfile->abbrev.s.section != NULL);
1845 }
1846
1847 /* When loading sections, we look either for uncompressed section or for
1848 compressed section names. */
1849
1850 static int
1851 section_is_p (const char *section_name,
1852 const struct dwarf2_section_names *names)
1853 {
1854 if (names->normal != NULL
1855 && strcmp (section_name, names->normal) == 0)
1856 return 1;
1857 if (names->compressed != NULL
1858 && strcmp (section_name, names->compressed) == 0)
1859 return 1;
1860 return 0;
1861 }
1862
1863 /* See declaration. */
1864
1865 void
1866 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1867 const dwarf2_debug_sections &names)
1868 {
1869 flagword aflag = bfd_section_flags (sectp);
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (elf_section_data (sectp)->this_hdr.sh_size
1875 > bfd_get_file_size (abfd))
1876 {
1877 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1878 warning (_("Discarding section %s which has a section size (%s"
1879 ") larger than the file size [in module %s]"),
1880 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1881 bfd_get_filename (abfd));
1882 }
1883 else if (section_is_p (sectp->name, &names.info))
1884 {
1885 this->info.s.section = sectp;
1886 this->info.size = bfd_section_size (sectp);
1887 }
1888 else if (section_is_p (sectp->name, &names.abbrev))
1889 {
1890 this->abbrev.s.section = sectp;
1891 this->abbrev.size = bfd_section_size (sectp);
1892 }
1893 else if (section_is_p (sectp->name, &names.line))
1894 {
1895 this->line.s.section = sectp;
1896 this->line.size = bfd_section_size (sectp);
1897 }
1898 else if (section_is_p (sectp->name, &names.loc))
1899 {
1900 this->loc.s.section = sectp;
1901 this->loc.size = bfd_section_size (sectp);
1902 }
1903 else if (section_is_p (sectp->name, &names.loclists))
1904 {
1905 this->loclists.s.section = sectp;
1906 this->loclists.size = bfd_section_size (sectp);
1907 }
1908 else if (section_is_p (sectp->name, &names.macinfo))
1909 {
1910 this->macinfo.s.section = sectp;
1911 this->macinfo.size = bfd_section_size (sectp);
1912 }
1913 else if (section_is_p (sectp->name, &names.macro))
1914 {
1915 this->macro.s.section = sectp;
1916 this->macro.size = bfd_section_size (sectp);
1917 }
1918 else if (section_is_p (sectp->name, &names.str))
1919 {
1920 this->str.s.section = sectp;
1921 this->str.size = bfd_section_size (sectp);
1922 }
1923 else if (section_is_p (sectp->name, &names.str_offsets))
1924 {
1925 this->str_offsets.s.section = sectp;
1926 this->str_offsets.size = bfd_section_size (sectp);
1927 }
1928 else if (section_is_p (sectp->name, &names.line_str))
1929 {
1930 this->line_str.s.section = sectp;
1931 this->line_str.size = bfd_section_size (sectp);
1932 }
1933 else if (section_is_p (sectp->name, &names.addr))
1934 {
1935 this->addr.s.section = sectp;
1936 this->addr.size = bfd_section_size (sectp);
1937 }
1938 else if (section_is_p (sectp->name, &names.frame))
1939 {
1940 this->frame.s.section = sectp;
1941 this->frame.size = bfd_section_size (sectp);
1942 }
1943 else if (section_is_p (sectp->name, &names.eh_frame))
1944 {
1945 this->eh_frame.s.section = sectp;
1946 this->eh_frame.size = bfd_section_size (sectp);
1947 }
1948 else if (section_is_p (sectp->name, &names.ranges))
1949 {
1950 this->ranges.s.section = sectp;
1951 this->ranges.size = bfd_section_size (sectp);
1952 }
1953 else if (section_is_p (sectp->name, &names.rnglists))
1954 {
1955 this->rnglists.s.section = sectp;
1956 this->rnglists.size = bfd_section_size (sectp);
1957 }
1958 else if (section_is_p (sectp->name, &names.types))
1959 {
1960 struct dwarf2_section_info type_section;
1961
1962 memset (&type_section, 0, sizeof (type_section));
1963 type_section.s.section = sectp;
1964 type_section.size = bfd_section_size (sectp);
1965
1966 this->types.push_back (type_section);
1967 }
1968 else if (section_is_p (sectp->name, &names.gdb_index))
1969 {
1970 this->gdb_index.s.section = sectp;
1971 this->gdb_index.size = bfd_section_size (sectp);
1972 }
1973 else if (section_is_p (sectp->name, &names.debug_names))
1974 {
1975 this->debug_names.s.section = sectp;
1976 this->debug_names.size = bfd_section_size (sectp);
1977 }
1978 else if (section_is_p (sectp->name, &names.debug_aranges))
1979 {
1980 this->debug_aranges.s.section = sectp;
1981 this->debug_aranges.size = bfd_section_size (sectp);
1982 }
1983
1984 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1985 && bfd_section_vma (sectp) == 0)
1986 this->has_section_at_zero = true;
1987 }
1988
1989 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1990 SECTION_NAME. */
1991
1992 void
1993 dwarf2_get_section_info (struct objfile *objfile,
1994 enum dwarf2_section_enum sect,
1995 asection **sectp, const gdb_byte **bufp,
1996 bfd_size_type *sizep)
1997 {
1998 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1999 struct dwarf2_section_info *info;
2000
2001 /* We may see an objfile without any DWARF, in which case we just
2002 return nothing. */
2003 if (data == NULL)
2004 {
2005 *sectp = NULL;
2006 *bufp = NULL;
2007 *sizep = 0;
2008 return;
2009 }
2010 switch (sect)
2011 {
2012 case DWARF2_DEBUG_FRAME:
2013 info = &data->frame;
2014 break;
2015 case DWARF2_EH_FRAME:
2016 info = &data->eh_frame;
2017 break;
2018 default:
2019 gdb_assert_not_reached ("unexpected section");
2020 }
2021
2022 info->read (objfile);
2023
2024 *sectp = info->get_bfd_section ();
2025 *bufp = info->buffer;
2026 *sizep = info->size;
2027 }
2028
2029 /* A helper function to find the sections for a .dwz file. */
2030
2031 static void
2032 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2033 {
2034 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2035
2036 /* Note that we only support the standard ELF names, because .dwz
2037 is ELF-only (at the time of writing). */
2038 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2039 {
2040 dwz_file->abbrev.s.section = sectp;
2041 dwz_file->abbrev.size = bfd_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2044 {
2045 dwz_file->info.s.section = sectp;
2046 dwz_file->info.size = bfd_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2049 {
2050 dwz_file->str.s.section = sectp;
2051 dwz_file->str.size = bfd_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2054 {
2055 dwz_file->line.s.section = sectp;
2056 dwz_file->line.size = bfd_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2059 {
2060 dwz_file->macro.s.section = sectp;
2061 dwz_file->macro.size = bfd_section_size (sectp);
2062 }
2063 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2064 {
2065 dwz_file->gdb_index.s.section = sectp;
2066 dwz_file->gdb_index.size = bfd_section_size (sectp);
2067 }
2068 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2069 {
2070 dwz_file->debug_names.s.section = sectp;
2071 dwz_file->debug_names.size = bfd_section_size (sectp);
2072 }
2073 }
2074
2075 /* See dwarf2read.h. */
2076
2077 struct dwz_file *
2078 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2079 {
2080 const char *filename;
2081 bfd_size_type buildid_len_arg;
2082 size_t buildid_len;
2083 bfd_byte *buildid;
2084
2085 if (dwarf2_per_objfile->dwz_file != NULL)
2086 return dwarf2_per_objfile->dwz_file.get ();
2087
2088 bfd_set_error (bfd_error_no_error);
2089 gdb::unique_xmalloc_ptr<char> data
2090 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2091 &buildid_len_arg, &buildid));
2092 if (data == NULL)
2093 {
2094 if (bfd_get_error () == bfd_error_no_error)
2095 return NULL;
2096 error (_("could not read '.gnu_debugaltlink' section: %s"),
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2101
2102 buildid_len = (size_t) buildid_len_arg;
2103
2104 filename = data.get ();
2105
2106 std::string abs_storage;
2107 if (!IS_ABSOLUTE_PATH (filename))
2108 {
2109 gdb::unique_xmalloc_ptr<char> abs
2110 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2111
2112 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2113 filename = abs_storage.c_str ();
2114 }
2115
2116 /* First try the file name given in the section. If that doesn't
2117 work, try to use the build-id instead. */
2118 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2119 if (dwz_bfd != NULL)
2120 {
2121 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2122 dwz_bfd.reset (nullptr);
2123 }
2124
2125 if (dwz_bfd == NULL)
2126 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2127
2128 if (dwz_bfd == nullptr)
2129 {
2130 gdb::unique_xmalloc_ptr<char> alt_filename;
2131 const char *origname = dwarf2_per_objfile->objfile->original_name;
2132
2133 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2134 buildid_len,
2135 origname,
2136 &alt_filename));
2137
2138 if (fd.get () >= 0)
2139 {
2140 /* File successfully retrieved from server. */
2141 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2142
2143 if (dwz_bfd == nullptr)
2144 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2145 alt_filename.get ());
2146 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2147 dwz_bfd.reset (nullptr);
2148 }
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 error (_("could not find '.gnu_debugaltlink' file for %s"),
2153 objfile_name (dwarf2_per_objfile->objfile));
2154
2155 std::unique_ptr<struct dwz_file> result
2156 (new struct dwz_file (std::move (dwz_bfd)));
2157
2158 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2159 result.get ());
2160
2161 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2162 result->dwz_bfd.get ());
2163 dwarf2_per_objfile->dwz_file = std::move (result);
2164 return dwarf2_per_objfile->dwz_file.get ();
2165 }
2166 \f
2167 /* DWARF quick_symbols_functions support. */
2168
2169 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2170 unique line tables, so we maintain a separate table of all .debug_line
2171 derived entries to support the sharing.
2172 All the quick functions need is the list of file names. We discard the
2173 line_header when we're done and don't need to record it here. */
2174 struct quick_file_names
2175 {
2176 /* The data used to construct the hash key. */
2177 struct stmt_list_hash hash;
2178
2179 /* The number of entries in file_names, real_names. */
2180 unsigned int num_file_names;
2181
2182 /* The file names from the line table, after being run through
2183 file_full_name. */
2184 const char **file_names;
2185
2186 /* The file names from the line table after being run through
2187 gdb_realpath. These are computed lazily. */
2188 const char **real_names;
2189 };
2190
2191 /* When using the index (and thus not using psymtabs), each CU has an
2192 object of this type. This is used to hold information needed by
2193 the various "quick" methods. */
2194 struct dwarf2_per_cu_quick_data
2195 {
2196 /* The file table. This can be NULL if there was no file table
2197 or it's currently not read in.
2198 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2199 struct quick_file_names *file_names;
2200
2201 /* The corresponding symbol table. This is NULL if symbols for this
2202 CU have not yet been read. */
2203 struct compunit_symtab *compunit_symtab;
2204
2205 /* A temporary mark bit used when iterating over all CUs in
2206 expand_symtabs_matching. */
2207 unsigned int mark : 1;
2208
2209 /* True if we've tried to read the file table and found there isn't one.
2210 There will be no point in trying to read it again next time. */
2211 unsigned int no_file_data : 1;
2212 };
2213
2214 /* Utility hash function for a stmt_list_hash. */
2215
2216 static hashval_t
2217 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2218 {
2219 hashval_t v = 0;
2220
2221 if (stmt_list_hash->dwo_unit != NULL)
2222 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2223 v += to_underlying (stmt_list_hash->line_sect_off);
2224 return v;
2225 }
2226
2227 /* Utility equality function for a stmt_list_hash. */
2228
2229 static int
2230 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2231 const struct stmt_list_hash *rhs)
2232 {
2233 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2234 return 0;
2235 if (lhs->dwo_unit != NULL
2236 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2237 return 0;
2238
2239 return lhs->line_sect_off == rhs->line_sect_off;
2240 }
2241
2242 /* Hash function for a quick_file_names. */
2243
2244 static hashval_t
2245 hash_file_name_entry (const void *e)
2246 {
2247 const struct quick_file_names *file_data
2248 = (const struct quick_file_names *) e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2259 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = (struct quick_file_names *) e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_up
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_up (htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree));
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2304
2305 if (per_cu->cu == NULL)
2306 return; /* Dummy CU. */
2307
2308 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2309 }
2310
2311 /* Read in the symbols for PER_CU. */
2312
2313 static void
2314 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2315 {
2316 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2317
2318 /* Skip type_unit_groups, reading the type units they contain
2319 is handled elsewhere. */
2320 if (per_cu->type_unit_group_p ())
2321 return;
2322
2323 /* The destructor of dwarf2_queue_guard frees any entries left on
2324 the queue. After this point we're guaranteed to leave this function
2325 with the dwarf queue empty. */
2326 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2327
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->compunit_symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu, skip_partial);
2334
2335 /* If we just loaded a CU from a DWO, and we're working with an index
2336 that may badly handle TUs, load all the TUs in that DWO as well.
2337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2338 if (!per_cu->is_debug_types
2339 && per_cu->cu != NULL
2340 && per_cu->cu->dwo_unit != NULL
2341 && dwarf2_per_objfile->index_table != NULL
2342 && dwarf2_per_objfile->index_table->version <= 7
2343 /* DWP files aren't supported yet. */
2344 && get_dwp_file (dwarf2_per_objfile) == NULL)
2345 queue_and_load_all_dwo_tus (per_cu);
2346 }
2347
2348 process_queue (dwarf2_per_objfile);
2349
2350 /* Age the cache, releasing compilation units that have not
2351 been used recently. */
2352 age_cached_comp_units (dwarf2_per_objfile);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct compunit_symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2361 {
2362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2363
2364 gdb_assert (dwarf2_per_objfile->using_index);
2365 if (!per_cu->v.quick->compunit_symtab)
2366 {
2367 free_cached_comp_units freer (dwarf2_per_objfile);
2368 scoped_restore decrementer = increment_reading_symtab ();
2369 dw2_do_instantiate_symtab (per_cu, skip_partial);
2370 process_cu_includes (dwarf2_per_objfile);
2371 }
2372
2373 return per_cu->v.quick->compunit_symtab;
2374 }
2375
2376 /* See declaration. */
2377
2378 dwarf2_per_cu_data *
2379 dwarf2_per_objfile::get_cutu (int index)
2380 {
2381 if (index >= this->all_comp_units.size ())
2382 {
2383 index -= this->all_comp_units.size ();
2384 gdb_assert (index < this->all_type_units.size ());
2385 return &this->all_type_units[index]->per_cu;
2386 }
2387
2388 return this->all_comp_units[index];
2389 }
2390
2391 /* See declaration. */
2392
2393 dwarf2_per_cu_data *
2394 dwarf2_per_objfile::get_cu (int index)
2395 {
2396 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2397
2398 return this->all_comp_units[index];
2399 }
2400
2401 /* See declaration. */
2402
2403 signatured_type *
2404 dwarf2_per_objfile::get_tu (int index)
2405 {
2406 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2407
2408 return this->all_type_units[index];
2409 }
2410
2411 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2412 objfile_obstack, and constructed with the specified field
2413 values. */
2414
2415 static dwarf2_per_cu_data *
2416 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2417 struct dwarf2_section_info *section,
2418 int is_dwz,
2419 sect_offset sect_off, ULONGEST length)
2420 {
2421 struct objfile *objfile = dwarf2_per_objfile->objfile;
2422 dwarf2_per_cu_data *the_cu
2423 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2424 struct dwarf2_per_cu_data);
2425 the_cu->sect_off = sect_off;
2426 the_cu->length = length;
2427 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2428 the_cu->section = section;
2429 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2430 struct dwarf2_per_cu_quick_data);
2431 the_cu->is_dwz = is_dwz;
2432 return the_cu;
2433 }
2434
2435 /* A helper for create_cus_from_index that handles a given list of
2436 CUs. */
2437
2438 static void
2439 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 const gdb_byte *cu_list, offset_type n_elements,
2441 struct dwarf2_section_info *section,
2442 int is_dwz)
2443 {
2444 for (offset_type i = 0; i < n_elements; i += 2)
2445 {
2446 gdb_static_assert (sizeof (ULONGEST) >= 8);
2447
2448 sect_offset sect_off
2449 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2450 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2451 cu_list += 2 * 8;
2452
2453 dwarf2_per_cu_data *per_cu
2454 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2455 sect_off, length);
2456 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2457 }
2458 }
2459
2460 /* Read the CU list from the mapped index, and use it to create all
2461 the CU objects for this objfile. */
2462
2463 static void
2464 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2465 const gdb_byte *cu_list, offset_type cu_list_elements,
2466 const gdb_byte *dwz_list, offset_type dwz_elements)
2467 {
2468 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2469 dwarf2_per_objfile->all_comp_units.reserve
2470 ((cu_list_elements + dwz_elements) / 2);
2471
2472 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2473 &dwarf2_per_objfile->info, 0);
2474
2475 if (dwz_elements == 0)
2476 return;
2477
2478 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2479 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2480 &dwz->info, 1);
2481 }
2482
2483 /* Create the signatured type hash table from the index. */
2484
2485 static void
2486 create_signatured_type_table_from_index
2487 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 struct dwarf2_section_info *section,
2489 const gdb_byte *bytes,
2490 offset_type elements)
2491 {
2492 struct objfile *objfile = dwarf2_per_objfile->objfile;
2493
2494 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2495 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2496
2497 htab_up sig_types_hash = allocate_signatured_type_table ();
2498
2499 for (offset_type i = 0; i < elements; i += 3)
2500 {
2501 struct signatured_type *sig_type;
2502 ULONGEST signature;
2503 void **slot;
2504 cu_offset type_offset_in_tu;
2505
2506 gdb_static_assert (sizeof (ULONGEST) >= 8);
2507 sect_offset sect_off
2508 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2509 type_offset_in_tu
2510 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2511 BFD_ENDIAN_LITTLE);
2512 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2513 bytes += 3 * 8;
2514
2515 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2516 struct signatured_type);
2517 sig_type->signature = signature;
2518 sig_type->type_offset_in_tu = type_offset_in_tu;
2519 sig_type->per_cu.is_debug_types = 1;
2520 sig_type->per_cu.section = section;
2521 sig_type->per_cu.sect_off = sect_off;
2522 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2523 sig_type->per_cu.v.quick
2524 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2525 struct dwarf2_per_cu_quick_data);
2526
2527 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2528 *slot = sig_type;
2529
2530 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2531 }
2532
2533 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2534 }
2535
2536 /* Create the signatured type hash table from .debug_names. */
2537
2538 static void
2539 create_signatured_type_table_from_debug_names
2540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2541 const mapped_debug_names &map,
2542 struct dwarf2_section_info *section,
2543 struct dwarf2_section_info *abbrev_section)
2544 {
2545 struct objfile *objfile = dwarf2_per_objfile->objfile;
2546
2547 section->read (objfile);
2548 abbrev_section->read (objfile);
2549
2550 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2551 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2552
2553 htab_up sig_types_hash = allocate_signatured_type_table ();
2554
2555 for (uint32_t i = 0; i < map.tu_count; ++i)
2556 {
2557 struct signatured_type *sig_type;
2558 void **slot;
2559
2560 sect_offset sect_off
2561 = (sect_offset) (extract_unsigned_integer
2562 (map.tu_table_reordered + i * map.offset_size,
2563 map.offset_size,
2564 map.dwarf5_byte_order));
2565
2566 comp_unit_head cu_header;
2567 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2568 abbrev_section,
2569 section->buffer + to_underlying (sect_off),
2570 rcuh_kind::TYPE);
2571
2572 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2573 struct signatured_type);
2574 sig_type->signature = cu_header.signature;
2575 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2576 sig_type->per_cu.is_debug_types = 1;
2577 sig_type->per_cu.section = section;
2578 sig_type->per_cu.sect_off = sect_off;
2579 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2580 sig_type->per_cu.v.quick
2581 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2582 struct dwarf2_per_cu_quick_data);
2583
2584 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2585 *slot = sig_type;
2586
2587 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2588 }
2589
2590 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2591 }
2592
2593 /* Read the address map data from the mapped index, and use it to
2594 populate the objfile's psymtabs_addrmap. */
2595
2596 static void
2597 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2598 struct mapped_index *index)
2599 {
2600 struct objfile *objfile = dwarf2_per_objfile->objfile;
2601 struct gdbarch *gdbarch = objfile->arch ();
2602 const gdb_byte *iter, *end;
2603 struct addrmap *mutable_map;
2604 CORE_ADDR baseaddr;
2605
2606 auto_obstack temp_obstack;
2607
2608 mutable_map = addrmap_create_mutable (&temp_obstack);
2609
2610 iter = index->address_table.data ();
2611 end = iter + index->address_table.size ();
2612
2613 baseaddr = objfile->text_section_offset ();
2614
2615 while (iter < end)
2616 {
2617 ULONGEST hi, lo, cu_index;
2618 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2619 iter += 8;
2620 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2621 iter += 8;
2622 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2623 iter += 4;
2624
2625 if (lo > hi)
2626 {
2627 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2628 hex_string (lo), hex_string (hi));
2629 continue;
2630 }
2631
2632 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2633 {
2634 complaint (_(".gdb_index address table has invalid CU number %u"),
2635 (unsigned) cu_index);
2636 continue;
2637 }
2638
2639 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2640 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2641 addrmap_set_empty (mutable_map, lo, hi - 1,
2642 dwarf2_per_objfile->get_cu (cu_index));
2643 }
2644
2645 objfile->partial_symtabs->psymtabs_addrmap
2646 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2647 }
2648
2649 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2650 populate the objfile's psymtabs_addrmap. */
2651
2652 static void
2653 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2654 struct dwarf2_section_info *section)
2655 {
2656 struct objfile *objfile = dwarf2_per_objfile->objfile;
2657 bfd *abfd = objfile->obfd;
2658 struct gdbarch *gdbarch = objfile->arch ();
2659 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2660
2661 auto_obstack temp_obstack;
2662 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2663
2664 std::unordered_map<sect_offset,
2665 dwarf2_per_cu_data *,
2666 gdb::hash_enum<sect_offset>>
2667 debug_info_offset_to_per_cu;
2668 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2669 {
2670 const auto insertpair
2671 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2672 if (!insertpair.second)
2673 {
2674 warning (_("Section .debug_aranges in %s has duplicate "
2675 "debug_info_offset %s, ignoring .debug_aranges."),
2676 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2677 return;
2678 }
2679 }
2680
2681 section->read (objfile);
2682
2683 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2684
2685 const gdb_byte *addr = section->buffer;
2686
2687 while (addr < section->buffer + section->size)
2688 {
2689 const gdb_byte *const entry_addr = addr;
2690 unsigned int bytes_read;
2691
2692 const LONGEST entry_length = read_initial_length (abfd, addr,
2693 &bytes_read);
2694 addr += bytes_read;
2695
2696 const gdb_byte *const entry_end = addr + entry_length;
2697 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2698 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2699 if (addr + entry_length > section->buffer + section->size)
2700 {
2701 warning (_("Section .debug_aranges in %s entry at offset %s "
2702 "length %s exceeds section length %s, "
2703 "ignoring .debug_aranges."),
2704 objfile_name (objfile),
2705 plongest (entry_addr - section->buffer),
2706 plongest (bytes_read + entry_length),
2707 pulongest (section->size));
2708 return;
2709 }
2710
2711 /* The version number. */
2712 const uint16_t version = read_2_bytes (abfd, addr);
2713 addr += 2;
2714 if (version != 2)
2715 {
2716 warning (_("Section .debug_aranges in %s entry at offset %s "
2717 "has unsupported version %d, ignoring .debug_aranges."),
2718 objfile_name (objfile),
2719 plongest (entry_addr - section->buffer), version);
2720 return;
2721 }
2722
2723 const uint64_t debug_info_offset
2724 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2725 addr += offset_size;
2726 const auto per_cu_it
2727 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2728 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2729 {
2730 warning (_("Section .debug_aranges in %s entry at offset %s "
2731 "debug_info_offset %s does not exists, "
2732 "ignoring .debug_aranges."),
2733 objfile_name (objfile),
2734 plongest (entry_addr - section->buffer),
2735 pulongest (debug_info_offset));
2736 return;
2737 }
2738 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2739
2740 const uint8_t address_size = *addr++;
2741 if (address_size < 1 || address_size > 8)
2742 {
2743 warning (_("Section .debug_aranges in %s entry at offset %s "
2744 "address_size %u is invalid, ignoring .debug_aranges."),
2745 objfile_name (objfile),
2746 plongest (entry_addr - section->buffer), address_size);
2747 return;
2748 }
2749
2750 const uint8_t segment_selector_size = *addr++;
2751 if (segment_selector_size != 0)
2752 {
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "segment_selector_size %u is not supported, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 segment_selector_size);
2759 return;
2760 }
2761
2762 /* Must pad to an alignment boundary that is twice the address
2763 size. It is undocumented by the DWARF standard but GCC does
2764 use it. */
2765 for (size_t padding = ((-(addr - section->buffer))
2766 & (2 * address_size - 1));
2767 padding > 0; padding--)
2768 if (*addr++ != 0)
2769 {
2770 warning (_("Section .debug_aranges in %s entry at offset %s "
2771 "padding is not zero, ignoring .debug_aranges."),
2772 objfile_name (objfile),
2773 plongest (entry_addr - section->buffer));
2774 return;
2775 }
2776
2777 for (;;)
2778 {
2779 if (addr + 2 * address_size > entry_end)
2780 {
2781 warning (_("Section .debug_aranges in %s entry at offset %s "
2782 "address list is not properly terminated, "
2783 "ignoring .debug_aranges."),
2784 objfile_name (objfile),
2785 plongest (entry_addr - section->buffer));
2786 return;
2787 }
2788 ULONGEST start = extract_unsigned_integer (addr, address_size,
2789 dwarf5_byte_order);
2790 addr += address_size;
2791 ULONGEST length = extract_unsigned_integer (addr, address_size,
2792 dwarf5_byte_order);
2793 addr += address_size;
2794 if (start == 0 && length == 0)
2795 break;
2796 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2797 {
2798 /* Symbol was eliminated due to a COMDAT group. */
2799 continue;
2800 }
2801 ULONGEST end = start + length;
2802 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2803 - baseaddr);
2804 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2805 - baseaddr);
2806 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2807 }
2808 }
2809
2810 objfile->partial_symtabs->psymtabs_addrmap
2811 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2812 }
2813
2814 /* Find a slot in the mapped index INDEX for the object named NAME.
2815 If NAME is found, set *VEC_OUT to point to the CU vector in the
2816 constant pool and return true. If NAME cannot be found, return
2817 false. */
2818
2819 static bool
2820 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2821 offset_type **vec_out)
2822 {
2823 offset_type hash;
2824 offset_type slot, step;
2825 int (*cmp) (const char *, const char *);
2826
2827 gdb::unique_xmalloc_ptr<char> without_params;
2828 if (current_language->la_language == language_cplus
2829 || current_language->la_language == language_fortran
2830 || current_language->la_language == language_d)
2831 {
2832 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2833 not contain any. */
2834
2835 if (strchr (name, '(') != NULL)
2836 {
2837 without_params = cp_remove_params (name);
2838
2839 if (without_params != NULL)
2840 name = without_params.get ();
2841 }
2842 }
2843
2844 /* Index version 4 did not support case insensitive searches. But the
2845 indices for case insensitive languages are built in lowercase, therefore
2846 simulate our NAME being searched is also lowercased. */
2847 hash = mapped_index_string_hash ((index->version == 4
2848 && case_sensitivity == case_sensitive_off
2849 ? 5 : index->version),
2850 name);
2851
2852 slot = hash & (index->symbol_table.size () - 1);
2853 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2854 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2855
2856 for (;;)
2857 {
2858 const char *str;
2859
2860 const auto &bucket = index->symbol_table[slot];
2861 if (bucket.name == 0 && bucket.vec == 0)
2862 return false;
2863
2864 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2865 if (!cmp (name, str))
2866 {
2867 *vec_out = (offset_type *) (index->constant_pool
2868 + MAYBE_SWAP (bucket.vec));
2869 return true;
2870 }
2871
2872 slot = (slot + step) & (index->symbol_table.size () - 1);
2873 }
2874 }
2875
2876 /* A helper function that reads the .gdb_index from BUFFER and fills
2877 in MAP. FILENAME is the name of the file containing the data;
2878 it is used for error reporting. DEPRECATED_OK is true if it is
2879 ok to use deprecated sections.
2880
2881 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2882 out parameters that are filled in with information about the CU and
2883 TU lists in the section.
2884
2885 Returns true if all went well, false otherwise. */
2886
2887 static bool
2888 read_gdb_index_from_buffer (const char *filename,
2889 bool deprecated_ok,
2890 gdb::array_view<const gdb_byte> buffer,
2891 struct mapped_index *map,
2892 const gdb_byte **cu_list,
2893 offset_type *cu_list_elements,
2894 const gdb_byte **types_list,
2895 offset_type *types_list_elements)
2896 {
2897 const gdb_byte *addr = &buffer[0];
2898
2899 /* Version check. */
2900 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2901 /* Versions earlier than 3 emitted every copy of a psymbol. This
2902 causes the index to behave very poorly for certain requests. Version 3
2903 contained incomplete addrmap. So, it seems better to just ignore such
2904 indices. */
2905 if (version < 4)
2906 {
2907 static int warning_printed = 0;
2908 if (!warning_printed)
2909 {
2910 warning (_("Skipping obsolete .gdb_index section in %s."),
2911 filename);
2912 warning_printed = 1;
2913 }
2914 return 0;
2915 }
2916 /* Index version 4 uses a different hash function than index version
2917 5 and later.
2918
2919 Versions earlier than 6 did not emit psymbols for inlined
2920 functions. Using these files will cause GDB not to be able to
2921 set breakpoints on inlined functions by name, so we ignore these
2922 indices unless the user has done
2923 "set use-deprecated-index-sections on". */
2924 if (version < 6 && !deprecated_ok)
2925 {
2926 static int warning_printed = 0;
2927 if (!warning_printed)
2928 {
2929 warning (_("\
2930 Skipping deprecated .gdb_index section in %s.\n\
2931 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2932 to use the section anyway."),
2933 filename);
2934 warning_printed = 1;
2935 }
2936 return 0;
2937 }
2938 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2939 of the TU (for symbols coming from TUs),
2940 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2941 Plus gold-generated indices can have duplicate entries for global symbols,
2942 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2943 These are just performance bugs, and we can't distinguish gdb-generated
2944 indices from gold-generated ones, so issue no warning here. */
2945
2946 /* Indexes with higher version than the one supported by GDB may be no
2947 longer backward compatible. */
2948 if (version > 8)
2949 return 0;
2950
2951 map->version = version;
2952
2953 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2954
2955 int i = 0;
2956 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2957 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2958 / 8);
2959 ++i;
2960
2961 *types_list = addr + MAYBE_SWAP (metadata[i]);
2962 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2963 - MAYBE_SWAP (metadata[i]))
2964 / 8);
2965 ++i;
2966
2967 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2968 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2969 map->address_table
2970 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2971 ++i;
2972
2973 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2974 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2975 map->symbol_table
2976 = gdb::array_view<mapped_index::symbol_table_slot>
2977 ((mapped_index::symbol_table_slot *) symbol_table,
2978 (mapped_index::symbol_table_slot *) symbol_table_end);
2979
2980 ++i;
2981 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2982
2983 return 1;
2984 }
2985
2986 /* Callback types for dwarf2_read_gdb_index. */
2987
2988 typedef gdb::function_view
2989 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2990 get_gdb_index_contents_ftype;
2991 typedef gdb::function_view
2992 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2993 get_gdb_index_contents_dwz_ftype;
2994
2995 /* Read .gdb_index. If everything went ok, initialize the "quick"
2996 elements of all the CUs and return 1. Otherwise, return 0. */
2997
2998 static int
2999 dwarf2_read_gdb_index
3000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 get_gdb_index_contents_ftype get_gdb_index_contents,
3002 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3003 {
3004 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3005 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3006 struct dwz_file *dwz;
3007 struct objfile *objfile = dwarf2_per_objfile->objfile;
3008
3009 gdb::array_view<const gdb_byte> main_index_contents
3010 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3011
3012 if (main_index_contents.empty ())
3013 return 0;
3014
3015 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3016 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3017 use_deprecated_index_sections,
3018 main_index_contents, map.get (), &cu_list,
3019 &cu_list_elements, &types_list,
3020 &types_list_elements))
3021 return 0;
3022
3023 /* Don't use the index if it's empty. */
3024 if (map->symbol_table.empty ())
3025 return 0;
3026
3027 /* If there is a .dwz file, read it so we can get its CU list as
3028 well. */
3029 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3030 if (dwz != NULL)
3031 {
3032 struct mapped_index dwz_map;
3033 const gdb_byte *dwz_types_ignore;
3034 offset_type dwz_types_elements_ignore;
3035
3036 gdb::array_view<const gdb_byte> dwz_index_content
3037 = get_gdb_index_contents_dwz (objfile, dwz);
3038
3039 if (dwz_index_content.empty ())
3040 return 0;
3041
3042 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3043 1, dwz_index_content, &dwz_map,
3044 &dwz_list, &dwz_list_elements,
3045 &dwz_types_ignore,
3046 &dwz_types_elements_ignore))
3047 {
3048 warning (_("could not read '.gdb_index' section from %s; skipping"),
3049 bfd_get_filename (dwz->dwz_bfd.get ()));
3050 return 0;
3051 }
3052 }
3053
3054 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3055 dwz_list, dwz_list_elements);
3056
3057 if (types_list_elements)
3058 {
3059 /* We can only handle a single .debug_types when we have an
3060 index. */
3061 if (dwarf2_per_objfile->types.size () != 1)
3062 return 0;
3063
3064 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3065
3066 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3067 types_list, types_list_elements);
3068 }
3069
3070 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3071
3072 dwarf2_per_objfile->index_table = std::move (map);
3073 dwarf2_per_objfile->using_index = 1;
3074 dwarf2_per_objfile->quick_file_names_table =
3075 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3076
3077 return 1;
3078 }
3079
3080 /* die_reader_func for dw2_get_file_names. */
3081
3082 static void
3083 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3084 const gdb_byte *info_ptr,
3085 struct die_info *comp_unit_die)
3086 {
3087 struct dwarf2_cu *cu = reader->cu;
3088 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3089 struct dwarf2_per_objfile *dwarf2_per_objfile
3090 = cu->per_cu->dwarf2_per_objfile;
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092 struct dwarf2_per_cu_data *lh_cu;
3093 struct attribute *attr;
3094 void **slot;
3095 struct quick_file_names *qfn;
3096
3097 gdb_assert (! this_cu->is_debug_types);
3098
3099 /* Our callers never want to match partial units -- instead they
3100 will match the enclosing full CU. */
3101 if (comp_unit_die->tag == DW_TAG_partial_unit)
3102 {
3103 this_cu->v.quick->no_file_data = 1;
3104 return;
3105 }
3106
3107 lh_cu = this_cu;
3108 slot = NULL;
3109
3110 line_header_up lh;
3111 sect_offset line_offset {};
3112
3113 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3114 if (attr != nullptr)
3115 {
3116 struct quick_file_names find_entry;
3117
3118 line_offset = (sect_offset) DW_UNSND (attr);
3119
3120 /* We may have already read in this line header (TU line header sharing).
3121 If we have we're done. */
3122 find_entry.hash.dwo_unit = cu->dwo_unit;
3123 find_entry.hash.line_sect_off = line_offset;
3124 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3125 &find_entry, INSERT);
3126 if (*slot != NULL)
3127 {
3128 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3129 return;
3130 }
3131
3132 lh = dwarf_decode_line_header (line_offset, cu);
3133 }
3134 if (lh == NULL)
3135 {
3136 lh_cu->v.quick->no_file_data = 1;
3137 return;
3138 }
3139
3140 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3141 qfn->hash.dwo_unit = cu->dwo_unit;
3142 qfn->hash.line_sect_off = line_offset;
3143 gdb_assert (slot != NULL);
3144 *slot = qfn;
3145
3146 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3147
3148 int offset = 0;
3149 if (strcmp (fnd.name, "<unknown>") != 0)
3150 ++offset;
3151
3152 qfn->num_file_names = offset + lh->file_names_size ();
3153 qfn->file_names =
3154 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3155 if (offset != 0)
3156 qfn->file_names[0] = xstrdup (fnd.name);
3157 for (int i = 0; i < lh->file_names_size (); ++i)
3158 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3159 fnd.comp_dir).release ();
3160 qfn->real_names = NULL;
3161
3162 lh_cu->v.quick->file_names = qfn;
3163 }
3164
3165 /* A helper for the "quick" functions which attempts to read the line
3166 table for THIS_CU. */
3167
3168 static struct quick_file_names *
3169 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3170 {
3171 /* This should never be called for TUs. */
3172 gdb_assert (! this_cu->is_debug_types);
3173 /* Nor type unit groups. */
3174 gdb_assert (! this_cu->type_unit_group_p ());
3175
3176 if (this_cu->v.quick->file_names != NULL)
3177 return this_cu->v.quick->file_names;
3178 /* If we know there is no line data, no point in looking again. */
3179 if (this_cu->v.quick->no_file_data)
3180 return NULL;
3181
3182 cutu_reader reader (this_cu);
3183 if (!reader.dummy_p)
3184 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3185
3186 if (this_cu->v.quick->no_file_data)
3187 return NULL;
3188 return this_cu->v.quick->file_names;
3189 }
3190
3191 /* A helper for the "quick" functions which computes and caches the
3192 real path for a given file name from the line table. */
3193
3194 static const char *
3195 dw2_get_real_path (struct objfile *objfile,
3196 struct quick_file_names *qfn, int index)
3197 {
3198 if (qfn->real_names == NULL)
3199 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3200 qfn->num_file_names, const char *);
3201
3202 if (qfn->real_names[index] == NULL)
3203 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3204
3205 return qfn->real_names[index];
3206 }
3207
3208 static struct symtab *
3209 dw2_find_last_source_symtab (struct objfile *objfile)
3210 {
3211 struct dwarf2_per_objfile *dwarf2_per_objfile
3212 = get_dwarf2_per_objfile (objfile);
3213 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3214 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3215
3216 if (cust == NULL)
3217 return NULL;
3218
3219 return compunit_primary_filetab (cust);
3220 }
3221
3222 /* Traversal function for dw2_forget_cached_source_info. */
3223
3224 static int
3225 dw2_free_cached_file_names (void **slot, void *info)
3226 {
3227 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3228
3229 if (file_data->real_names)
3230 {
3231 int i;
3232
3233 for (i = 0; i < file_data->num_file_names; ++i)
3234 {
3235 xfree ((void*) file_data->real_names[i]);
3236 file_data->real_names[i] = NULL;
3237 }
3238 }
3239
3240 return 1;
3241 }
3242
3243 static void
3244 dw2_forget_cached_source_info (struct objfile *objfile)
3245 {
3246 struct dwarf2_per_objfile *dwarf2_per_objfile
3247 = get_dwarf2_per_objfile (objfile);
3248
3249 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3250 dw2_free_cached_file_names, NULL);
3251 }
3252
3253 /* Helper function for dw2_map_symtabs_matching_filename that expands
3254 the symtabs and calls the iterator. */
3255
3256 static int
3257 dw2_map_expand_apply (struct objfile *objfile,
3258 struct dwarf2_per_cu_data *per_cu,
3259 const char *name, const char *real_path,
3260 gdb::function_view<bool (symtab *)> callback)
3261 {
3262 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3263
3264 /* Don't visit already-expanded CUs. */
3265 if (per_cu->v.quick->compunit_symtab)
3266 return 0;
3267
3268 /* This may expand more than one symtab, and we want to iterate over
3269 all of them. */
3270 dw2_instantiate_symtab (per_cu, false);
3271
3272 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3273 last_made, callback);
3274 }
3275
3276 /* Implementation of the map_symtabs_matching_filename method. */
3277
3278 static bool
3279 dw2_map_symtabs_matching_filename
3280 (struct objfile *objfile, const char *name, const char *real_path,
3281 gdb::function_view<bool (symtab *)> callback)
3282 {
3283 const char *name_basename = lbasename (name);
3284 struct dwarf2_per_objfile *dwarf2_per_objfile
3285 = get_dwarf2_per_objfile (objfile);
3286
3287 /* The rule is CUs specify all the files, including those used by
3288 any TU, so there's no need to scan TUs here. */
3289
3290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3291 {
3292 /* We only need to look at symtabs not already expanded. */
3293 if (per_cu->v.quick->compunit_symtab)
3294 continue;
3295
3296 quick_file_names *file_data = dw2_get_file_names (per_cu);
3297 if (file_data == NULL)
3298 continue;
3299
3300 for (int j = 0; j < file_data->num_file_names; ++j)
3301 {
3302 const char *this_name = file_data->file_names[j];
3303 const char *this_real_name;
3304
3305 if (compare_filenames_for_search (this_name, name))
3306 {
3307 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3308 callback))
3309 return true;
3310 continue;
3311 }
3312
3313 /* Before we invoke realpath, which can get expensive when many
3314 files are involved, do a quick comparison of the basenames. */
3315 if (! basenames_may_differ
3316 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3317 continue;
3318
3319 this_real_name = dw2_get_real_path (objfile, file_data, j);
3320 if (compare_filenames_for_search (this_real_name, name))
3321 {
3322 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3323 callback))
3324 return true;
3325 continue;
3326 }
3327
3328 if (real_path != NULL)
3329 {
3330 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3331 gdb_assert (IS_ABSOLUTE_PATH (name));
3332 if (this_real_name != NULL
3333 && FILENAME_CMP (real_path, this_real_name) == 0)
3334 {
3335 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3336 callback))
3337 return true;
3338 continue;
3339 }
3340 }
3341 }
3342 }
3343
3344 return false;
3345 }
3346
3347 /* Struct used to manage iterating over all CUs looking for a symbol. */
3348
3349 struct dw2_symtab_iterator
3350 {
3351 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3352 struct dwarf2_per_objfile *dwarf2_per_objfile;
3353 /* If set, only look for symbols that match that block. Valid values are
3354 GLOBAL_BLOCK and STATIC_BLOCK. */
3355 gdb::optional<block_enum> block_index;
3356 /* The kind of symbol we're looking for. */
3357 domain_enum domain;
3358 /* The list of CUs from the index entry of the symbol,
3359 or NULL if not found. */
3360 offset_type *vec;
3361 /* The next element in VEC to look at. */
3362 int next;
3363 /* The number of elements in VEC, or zero if there is no match. */
3364 int length;
3365 /* Have we seen a global version of the symbol?
3366 If so we can ignore all further global instances.
3367 This is to work around gold/15646, inefficient gold-generated
3368 indices. */
3369 int global_seen;
3370 };
3371
3372 /* Initialize the index symtab iterator ITER. */
3373
3374 static void
3375 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3376 struct dwarf2_per_objfile *dwarf2_per_objfile,
3377 gdb::optional<block_enum> block_index,
3378 domain_enum domain,
3379 const char *name)
3380 {
3381 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3382 iter->block_index = block_index;
3383 iter->domain = domain;
3384 iter->next = 0;
3385 iter->global_seen = 0;
3386
3387 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3388
3389 /* index is NULL if OBJF_READNOW. */
3390 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3391 iter->length = MAYBE_SWAP (*iter->vec);
3392 else
3393 {
3394 iter->vec = NULL;
3395 iter->length = 0;
3396 }
3397 }
3398
3399 /* Return the next matching CU or NULL if there are no more. */
3400
3401 static struct dwarf2_per_cu_data *
3402 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3403 {
3404 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3405
3406 for ( ; iter->next < iter->length; ++iter->next)
3407 {
3408 offset_type cu_index_and_attrs =
3409 MAYBE_SWAP (iter->vec[iter->next + 1]);
3410 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3411 gdb_index_symbol_kind symbol_kind =
3412 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3413 /* Only check the symbol attributes if they're present.
3414 Indices prior to version 7 don't record them,
3415 and indices >= 7 may elide them for certain symbols
3416 (gold does this). */
3417 int attrs_valid =
3418 (dwarf2_per_objfile->index_table->version >= 7
3419 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3420
3421 /* Don't crash on bad data. */
3422 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3423 + dwarf2_per_objfile->all_type_units.size ()))
3424 {
3425 complaint (_(".gdb_index entry has bad CU index"
3426 " [in module %s]"),
3427 objfile_name (dwarf2_per_objfile->objfile));
3428 continue;
3429 }
3430
3431 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3432
3433 /* Skip if already read in. */
3434 if (per_cu->v.quick->compunit_symtab)
3435 continue;
3436
3437 /* Check static vs global. */
3438 if (attrs_valid)
3439 {
3440 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3441
3442 if (iter->block_index.has_value ())
3443 {
3444 bool want_static = *iter->block_index == STATIC_BLOCK;
3445
3446 if (is_static != want_static)
3447 continue;
3448 }
3449
3450 /* Work around gold/15646. */
3451 if (!is_static && iter->global_seen)
3452 continue;
3453 if (!is_static)
3454 iter->global_seen = 1;
3455 }
3456
3457 /* Only check the symbol's kind if it has one. */
3458 if (attrs_valid)
3459 {
3460 switch (iter->domain)
3461 {
3462 case VAR_DOMAIN:
3463 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3464 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3465 /* Some types are also in VAR_DOMAIN. */
3466 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3467 continue;
3468 break;
3469 case STRUCT_DOMAIN:
3470 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3471 continue;
3472 break;
3473 case LABEL_DOMAIN:
3474 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3475 continue;
3476 break;
3477 case MODULE_DOMAIN:
3478 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3479 continue;
3480 break;
3481 default:
3482 break;
3483 }
3484 }
3485
3486 ++iter->next;
3487 return per_cu;
3488 }
3489
3490 return NULL;
3491 }
3492
3493 static struct compunit_symtab *
3494 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3495 const char *name, domain_enum domain)
3496 {
3497 struct compunit_symtab *stab_best = NULL;
3498 struct dwarf2_per_objfile *dwarf2_per_objfile
3499 = get_dwarf2_per_objfile (objfile);
3500
3501 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3502
3503 struct dw2_symtab_iterator iter;
3504 struct dwarf2_per_cu_data *per_cu;
3505
3506 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3507
3508 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3509 {
3510 struct symbol *sym, *with_opaque = NULL;
3511 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3512 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3513 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3514
3515 sym = block_find_symbol (block, name, domain,
3516 block_find_non_opaque_type_preferred,
3517 &with_opaque);
3518
3519 /* Some caution must be observed with overloaded functions
3520 and methods, since the index will not contain any overload
3521 information (but NAME might contain it). */
3522
3523 if (sym != NULL
3524 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3525 return stab;
3526 if (with_opaque != NULL
3527 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3528 stab_best = stab;
3529
3530 /* Keep looking through other CUs. */
3531 }
3532
3533 return stab_best;
3534 }
3535
3536 static void
3537 dw2_print_stats (struct objfile *objfile)
3538 {
3539 struct dwarf2_per_objfile *dwarf2_per_objfile
3540 = get_dwarf2_per_objfile (objfile);
3541 int total = (dwarf2_per_objfile->all_comp_units.size ()
3542 + dwarf2_per_objfile->all_type_units.size ());
3543 int count = 0;
3544
3545 for (int i = 0; i < total; ++i)
3546 {
3547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3548
3549 if (!per_cu->v.quick->compunit_symtab)
3550 ++count;
3551 }
3552 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3553 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3554 }
3555
3556 /* This dumps minimal information about the index.
3557 It is called via "mt print objfiles".
3558 One use is to verify .gdb_index has been loaded by the
3559 gdb.dwarf2/gdb-index.exp testcase. */
3560
3561 static void
3562 dw2_dump (struct objfile *objfile)
3563 {
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566
3567 gdb_assert (dwarf2_per_objfile->using_index);
3568 printf_filtered (".gdb_index:");
3569 if (dwarf2_per_objfile->index_table != NULL)
3570 {
3571 printf_filtered (" version %d\n",
3572 dwarf2_per_objfile->index_table->version);
3573 }
3574 else
3575 printf_filtered (" faked for \"readnow\"\n");
3576 printf_filtered ("\n");
3577 }
3578
3579 static void
3580 dw2_expand_symtabs_for_function (struct objfile *objfile,
3581 const char *func_name)
3582 {
3583 struct dwarf2_per_objfile *dwarf2_per_objfile
3584 = get_dwarf2_per_objfile (objfile);
3585
3586 struct dw2_symtab_iterator iter;
3587 struct dwarf2_per_cu_data *per_cu;
3588
3589 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3590
3591 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3592 dw2_instantiate_symtab (per_cu, false);
3593
3594 }
3595
3596 static void
3597 dw2_expand_all_symtabs (struct objfile *objfile)
3598 {
3599 struct dwarf2_per_objfile *dwarf2_per_objfile
3600 = get_dwarf2_per_objfile (objfile);
3601 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3602 + dwarf2_per_objfile->all_type_units.size ());
3603
3604 for (int i = 0; i < total_units; ++i)
3605 {
3606 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3607
3608 /* We don't want to directly expand a partial CU, because if we
3609 read it with the wrong language, then assertion failures can
3610 be triggered later on. See PR symtab/23010. So, tell
3611 dw2_instantiate_symtab to skip partial CUs -- any important
3612 partial CU will be read via DW_TAG_imported_unit anyway. */
3613 dw2_instantiate_symtab (per_cu, true);
3614 }
3615 }
3616
3617 static void
3618 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3619 const char *fullname)
3620 {
3621 struct dwarf2_per_objfile *dwarf2_per_objfile
3622 = get_dwarf2_per_objfile (objfile);
3623
3624 /* We don't need to consider type units here.
3625 This is only called for examining code, e.g. expand_line_sal.
3626 There can be an order of magnitude (or more) more type units
3627 than comp units, and we avoid them if we can. */
3628
3629 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3630 {
3631 /* We only need to look at symtabs not already expanded. */
3632 if (per_cu->v.quick->compunit_symtab)
3633 continue;
3634
3635 quick_file_names *file_data = dw2_get_file_names (per_cu);
3636 if (file_data == NULL)
3637 continue;
3638
3639 for (int j = 0; j < file_data->num_file_names; ++j)
3640 {
3641 const char *this_fullname = file_data->file_names[j];
3642
3643 if (filename_cmp (this_fullname, fullname) == 0)
3644 {
3645 dw2_instantiate_symtab (per_cu, false);
3646 break;
3647 }
3648 }
3649 }
3650 }
3651
3652 static void
3653 dw2_map_matching_symbols
3654 (struct objfile *objfile,
3655 const lookup_name_info &name, domain_enum domain,
3656 int global,
3657 gdb::function_view<symbol_found_callback_ftype> callback,
3658 symbol_compare_ftype *ordered_compare)
3659 {
3660 /* Used for Ada. */
3661 struct dwarf2_per_objfile *dwarf2_per_objfile
3662 = get_dwarf2_per_objfile (objfile);
3663
3664 if (dwarf2_per_objfile->index_table != nullptr)
3665 {
3666 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3667 here though if the current language is Ada for a non-Ada objfile
3668 using GNU index. As Ada does not look for non-Ada symbols this
3669 function should just return. */
3670 return;
3671 }
3672
3673 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3674 inline psym_map_matching_symbols here, assuming all partial symtabs have
3675 been read in. */
3676 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3677
3678 for (compunit_symtab *cust : objfile->compunits ())
3679 {
3680 const struct block *block;
3681
3682 if (cust == NULL)
3683 continue;
3684 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3685 if (!iterate_over_symbols_terminated (block, name,
3686 domain, callback))
3687 return;
3688 }
3689 }
3690
3691 /* Starting from a search name, return the string that finds the upper
3692 bound of all strings that start with SEARCH_NAME in a sorted name
3693 list. Returns the empty string to indicate that the upper bound is
3694 the end of the list. */
3695
3696 static std::string
3697 make_sort_after_prefix_name (const char *search_name)
3698 {
3699 /* When looking to complete "func", we find the upper bound of all
3700 symbols that start with "func" by looking for where we'd insert
3701 the closest string that would follow "func" in lexicographical
3702 order. Usually, that's "func"-with-last-character-incremented,
3703 i.e. "fund". Mind non-ASCII characters, though. Usually those
3704 will be UTF-8 multi-byte sequences, but we can't be certain.
3705 Especially mind the 0xff character, which is a valid character in
3706 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3707 rule out compilers allowing it in identifiers. Note that
3708 conveniently, strcmp/strcasecmp are specified to compare
3709 characters interpreted as unsigned char. So what we do is treat
3710 the whole string as a base 256 number composed of a sequence of
3711 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3712 to 0, and carries 1 to the following more-significant position.
3713 If the very first character in SEARCH_NAME ends up incremented
3714 and carries/overflows, then the upper bound is the end of the
3715 list. The string after the empty string is also the empty
3716 string.
3717
3718 Some examples of this operation:
3719
3720 SEARCH_NAME => "+1" RESULT
3721
3722 "abc" => "abd"
3723 "ab\xff" => "ac"
3724 "\xff" "a" "\xff" => "\xff" "b"
3725 "\xff" => ""
3726 "\xff\xff" => ""
3727 "" => ""
3728
3729 Then, with these symbols for example:
3730
3731 func
3732 func1
3733 fund
3734
3735 completing "func" looks for symbols between "func" and
3736 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3737 which finds "func" and "func1", but not "fund".
3738
3739 And with:
3740
3741 funcÿ (Latin1 'ÿ' [0xff])
3742 funcÿ1
3743 fund
3744
3745 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3746 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3747
3748 And with:
3749
3750 ÿÿ (Latin1 'ÿ' [0xff])
3751 ÿÿ1
3752
3753 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3754 the end of the list.
3755 */
3756 std::string after = search_name;
3757 while (!after.empty () && (unsigned char) after.back () == 0xff)
3758 after.pop_back ();
3759 if (!after.empty ())
3760 after.back () = (unsigned char) after.back () + 1;
3761 return after;
3762 }
3763
3764 /* See declaration. */
3765
3766 std::pair<std::vector<name_component>::const_iterator,
3767 std::vector<name_component>::const_iterator>
3768 mapped_index_base::find_name_components_bounds
3769 (const lookup_name_info &lookup_name_without_params, language lang) const
3770 {
3771 auto *name_cmp
3772 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3773
3774 const char *lang_name
3775 = lookup_name_without_params.language_lookup_name (lang);
3776
3777 /* Comparison function object for lower_bound that matches against a
3778 given symbol name. */
3779 auto lookup_compare_lower = [&] (const name_component &elem,
3780 const char *name)
3781 {
3782 const char *elem_qualified = this->symbol_name_at (elem.idx);
3783 const char *elem_name = elem_qualified + elem.name_offset;
3784 return name_cmp (elem_name, name) < 0;
3785 };
3786
3787 /* Comparison function object for upper_bound that matches against a
3788 given symbol name. */
3789 auto lookup_compare_upper = [&] (const char *name,
3790 const name_component &elem)
3791 {
3792 const char *elem_qualified = this->symbol_name_at (elem.idx);
3793 const char *elem_name = elem_qualified + elem.name_offset;
3794 return name_cmp (name, elem_name) < 0;
3795 };
3796
3797 auto begin = this->name_components.begin ();
3798 auto end = this->name_components.end ();
3799
3800 /* Find the lower bound. */
3801 auto lower = [&] ()
3802 {
3803 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3804 return begin;
3805 else
3806 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3807 } ();
3808
3809 /* Find the upper bound. */
3810 auto upper = [&] ()
3811 {
3812 if (lookup_name_without_params.completion_mode ())
3813 {
3814 /* In completion mode, we want UPPER to point past all
3815 symbols names that have the same prefix. I.e., with
3816 these symbols, and completing "func":
3817
3818 function << lower bound
3819 function1
3820 other_function << upper bound
3821
3822 We find the upper bound by looking for the insertion
3823 point of "func"-with-last-character-incremented,
3824 i.e. "fund". */
3825 std::string after = make_sort_after_prefix_name (lang_name);
3826 if (after.empty ())
3827 return end;
3828 return std::lower_bound (lower, end, after.c_str (),
3829 lookup_compare_lower);
3830 }
3831 else
3832 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3833 } ();
3834
3835 return {lower, upper};
3836 }
3837
3838 /* See declaration. */
3839
3840 void
3841 mapped_index_base::build_name_components ()
3842 {
3843 if (!this->name_components.empty ())
3844 return;
3845
3846 this->name_components_casing = case_sensitivity;
3847 auto *name_cmp
3848 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3849
3850 /* The code below only knows how to break apart components of C++
3851 symbol names (and other languages that use '::' as
3852 namespace/module separator) and Ada symbol names. */
3853 auto count = this->symbol_name_count ();
3854 for (offset_type idx = 0; idx < count; idx++)
3855 {
3856 if (this->symbol_name_slot_invalid (idx))
3857 continue;
3858
3859 const char *name = this->symbol_name_at (idx);
3860
3861 /* Add each name component to the name component table. */
3862 unsigned int previous_len = 0;
3863
3864 if (strstr (name, "::") != nullptr)
3865 {
3866 for (unsigned int current_len = cp_find_first_component (name);
3867 name[current_len] != '\0';
3868 current_len += cp_find_first_component (name + current_len))
3869 {
3870 gdb_assert (name[current_len] == ':');
3871 this->name_components.push_back ({previous_len, idx});
3872 /* Skip the '::'. */
3873 current_len += 2;
3874 previous_len = current_len;
3875 }
3876 }
3877 else
3878 {
3879 /* Handle the Ada encoded (aka mangled) form here. */
3880 for (const char *iter = strstr (name, "__");
3881 iter != nullptr;
3882 iter = strstr (iter, "__"))
3883 {
3884 this->name_components.push_back ({previous_len, idx});
3885 iter += 2;
3886 previous_len = iter - name;
3887 }
3888 }
3889
3890 this->name_components.push_back ({previous_len, idx});
3891 }
3892
3893 /* Sort name_components elements by name. */
3894 auto name_comp_compare = [&] (const name_component &left,
3895 const name_component &right)
3896 {
3897 const char *left_qualified = this->symbol_name_at (left.idx);
3898 const char *right_qualified = this->symbol_name_at (right.idx);
3899
3900 const char *left_name = left_qualified + left.name_offset;
3901 const char *right_name = right_qualified + right.name_offset;
3902
3903 return name_cmp (left_name, right_name) < 0;
3904 };
3905
3906 std::sort (this->name_components.begin (),
3907 this->name_components.end (),
3908 name_comp_compare);
3909 }
3910
3911 /* Helper for dw2_expand_symtabs_matching that works with a
3912 mapped_index_base instead of the containing objfile. This is split
3913 to a separate function in order to be able to unit test the
3914 name_components matching using a mock mapped_index_base. For each
3915 symbol name that matches, calls MATCH_CALLBACK, passing it the
3916 symbol's index in the mapped_index_base symbol table. */
3917
3918 static void
3919 dw2_expand_symtabs_matching_symbol
3920 (mapped_index_base &index,
3921 const lookup_name_info &lookup_name_in,
3922 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3923 enum search_domain kind,
3924 gdb::function_view<bool (offset_type)> match_callback)
3925 {
3926 lookup_name_info lookup_name_without_params
3927 = lookup_name_in.make_ignore_params ();
3928
3929 /* Build the symbol name component sorted vector, if we haven't
3930 yet. */
3931 index.build_name_components ();
3932
3933 /* The same symbol may appear more than once in the range though.
3934 E.g., if we're looking for symbols that complete "w", and we have
3935 a symbol named "w1::w2", we'll find the two name components for
3936 that same symbol in the range. To be sure we only call the
3937 callback once per symbol, we first collect the symbol name
3938 indexes that matched in a temporary vector and ignore
3939 duplicates. */
3940 std::vector<offset_type> matches;
3941
3942 struct name_and_matcher
3943 {
3944 symbol_name_matcher_ftype *matcher;
3945 const char *name;
3946
3947 bool operator== (const name_and_matcher &other) const
3948 {
3949 return matcher == other.matcher && strcmp (name, other.name) == 0;
3950 }
3951 };
3952
3953 /* A vector holding all the different symbol name matchers, for all
3954 languages. */
3955 std::vector<name_and_matcher> matchers;
3956
3957 for (int i = 0; i < nr_languages; i++)
3958 {
3959 enum language lang_e = (enum language) i;
3960
3961 const language_defn *lang = language_def (lang_e);
3962 symbol_name_matcher_ftype *name_matcher
3963 = get_symbol_name_matcher (lang, lookup_name_without_params);
3964
3965 name_and_matcher key {
3966 name_matcher,
3967 lookup_name_without_params.language_lookup_name (lang_e)
3968 };
3969
3970 /* Don't insert the same comparison routine more than once.
3971 Note that we do this linear walk. This is not a problem in
3972 practice because the number of supported languages is
3973 low. */
3974 if (std::find (matchers.begin (), matchers.end (), key)
3975 != matchers.end ())
3976 continue;
3977 matchers.push_back (std::move (key));
3978
3979 auto bounds
3980 = index.find_name_components_bounds (lookup_name_without_params,
3981 lang_e);
3982
3983 /* Now for each symbol name in range, check to see if we have a name
3984 match, and if so, call the MATCH_CALLBACK callback. */
3985
3986 for (; bounds.first != bounds.second; ++bounds.first)
3987 {
3988 const char *qualified = index.symbol_name_at (bounds.first->idx);
3989
3990 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3991 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3992 continue;
3993
3994 matches.push_back (bounds.first->idx);
3995 }
3996 }
3997
3998 std::sort (matches.begin (), matches.end ());
3999
4000 /* Finally call the callback, once per match. */
4001 ULONGEST prev = -1;
4002 for (offset_type idx : matches)
4003 {
4004 if (prev != idx)
4005 {
4006 if (!match_callback (idx))
4007 break;
4008 prev = idx;
4009 }
4010 }
4011
4012 /* Above we use a type wider than idx's for 'prev', since 0 and
4013 (offset_type)-1 are both possible values. */
4014 static_assert (sizeof (prev) > sizeof (offset_type), "");
4015 }
4016
4017 #if GDB_SELF_TEST
4018
4019 namespace selftests { namespace dw2_expand_symtabs_matching {
4020
4021 /* A mock .gdb_index/.debug_names-like name index table, enough to
4022 exercise dw2_expand_symtabs_matching_symbol, which works with the
4023 mapped_index_base interface. Builds an index from the symbol list
4024 passed as parameter to the constructor. */
4025 class mock_mapped_index : public mapped_index_base
4026 {
4027 public:
4028 mock_mapped_index (gdb::array_view<const char *> symbols)
4029 : m_symbol_table (symbols)
4030 {}
4031
4032 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4033
4034 /* Return the number of names in the symbol table. */
4035 size_t symbol_name_count () const override
4036 {
4037 return m_symbol_table.size ();
4038 }
4039
4040 /* Get the name of the symbol at IDX in the symbol table. */
4041 const char *symbol_name_at (offset_type idx) const override
4042 {
4043 return m_symbol_table[idx];
4044 }
4045
4046 private:
4047 gdb::array_view<const char *> m_symbol_table;
4048 };
4049
4050 /* Convenience function that converts a NULL pointer to a "<null>"
4051 string, to pass to print routines. */
4052
4053 static const char *
4054 string_or_null (const char *str)
4055 {
4056 return str != NULL ? str : "<null>";
4057 }
4058
4059 /* Check if a lookup_name_info built from
4060 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4061 index. EXPECTED_LIST is the list of expected matches, in expected
4062 matching order. If no match expected, then an empty list is
4063 specified. Returns true on success. On failure prints a warning
4064 indicating the file:line that failed, and returns false. */
4065
4066 static bool
4067 check_match (const char *file, int line,
4068 mock_mapped_index &mock_index,
4069 const char *name, symbol_name_match_type match_type,
4070 bool completion_mode,
4071 std::initializer_list<const char *> expected_list)
4072 {
4073 lookup_name_info lookup_name (name, match_type, completion_mode);
4074
4075 bool matched = true;
4076
4077 auto mismatch = [&] (const char *expected_str,
4078 const char *got)
4079 {
4080 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4081 "expected=\"%s\", got=\"%s\"\n"),
4082 file, line,
4083 (match_type == symbol_name_match_type::FULL
4084 ? "FULL" : "WILD"),
4085 name, string_or_null (expected_str), string_or_null (got));
4086 matched = false;
4087 };
4088
4089 auto expected_it = expected_list.begin ();
4090 auto expected_end = expected_list.end ();
4091
4092 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4093 NULL, ALL_DOMAIN,
4094 [&] (offset_type idx)
4095 {
4096 const char *matched_name = mock_index.symbol_name_at (idx);
4097 const char *expected_str
4098 = expected_it == expected_end ? NULL : *expected_it++;
4099
4100 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4101 mismatch (expected_str, matched_name);
4102 return true;
4103 });
4104
4105 const char *expected_str
4106 = expected_it == expected_end ? NULL : *expected_it++;
4107 if (expected_str != NULL)
4108 mismatch (expected_str, NULL);
4109
4110 return matched;
4111 }
4112
4113 /* The symbols added to the mock mapped_index for testing (in
4114 canonical form). */
4115 static const char *test_symbols[] = {
4116 "function",
4117 "std::bar",
4118 "std::zfunction",
4119 "std::zfunction2",
4120 "w1::w2",
4121 "ns::foo<char*>",
4122 "ns::foo<int>",
4123 "ns::foo<long>",
4124 "ns2::tmpl<int>::foo2",
4125 "(anonymous namespace)::A::B::C",
4126
4127 /* These are used to check that the increment-last-char in the
4128 matching algorithm for completion doesn't match "t1_fund" when
4129 completing "t1_func". */
4130 "t1_func",
4131 "t1_func1",
4132 "t1_fund",
4133 "t1_fund1",
4134
4135 /* A UTF-8 name with multi-byte sequences to make sure that
4136 cp-name-parser understands this as a single identifier ("função"
4137 is "function" in PT). */
4138 u8"u8função",
4139
4140 /* \377 (0xff) is Latin1 'ÿ'. */
4141 "yfunc\377",
4142
4143 /* \377 (0xff) is Latin1 'ÿ'. */
4144 "\377",
4145 "\377\377123",
4146
4147 /* A name with all sorts of complications. Starts with "z" to make
4148 it easier for the completion tests below. */
4149 #define Z_SYM_NAME \
4150 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4151 "::tuple<(anonymous namespace)::ui*, " \
4152 "std::default_delete<(anonymous namespace)::ui>, void>"
4153
4154 Z_SYM_NAME
4155 };
4156
4157 /* Returns true if the mapped_index_base::find_name_component_bounds
4158 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4159 in completion mode. */
4160
4161 static bool
4162 check_find_bounds_finds (mapped_index_base &index,
4163 const char *search_name,
4164 gdb::array_view<const char *> expected_syms)
4165 {
4166 lookup_name_info lookup_name (search_name,
4167 symbol_name_match_type::FULL, true);
4168
4169 auto bounds = index.find_name_components_bounds (lookup_name,
4170 language_cplus);
4171
4172 size_t distance = std::distance (bounds.first, bounds.second);
4173 if (distance != expected_syms.size ())
4174 return false;
4175
4176 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4177 {
4178 auto nc_elem = bounds.first + exp_elem;
4179 const char *qualified = index.symbol_name_at (nc_elem->idx);
4180 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4181 return false;
4182 }
4183
4184 return true;
4185 }
4186
4187 /* Test the lower-level mapped_index::find_name_component_bounds
4188 method. */
4189
4190 static void
4191 test_mapped_index_find_name_component_bounds ()
4192 {
4193 mock_mapped_index mock_index (test_symbols);
4194
4195 mock_index.build_name_components ();
4196
4197 /* Test the lower-level mapped_index::find_name_component_bounds
4198 method in completion mode. */
4199 {
4200 static const char *expected_syms[] = {
4201 "t1_func",
4202 "t1_func1",
4203 };
4204
4205 SELF_CHECK (check_find_bounds_finds (mock_index,
4206 "t1_func", expected_syms));
4207 }
4208
4209 /* Check that the increment-last-char in the name matching algorithm
4210 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4211 {
4212 static const char *expected_syms1[] = {
4213 "\377",
4214 "\377\377123",
4215 };
4216 SELF_CHECK (check_find_bounds_finds (mock_index,
4217 "\377", expected_syms1));
4218
4219 static const char *expected_syms2[] = {
4220 "\377\377123",
4221 };
4222 SELF_CHECK (check_find_bounds_finds (mock_index,
4223 "\377\377", expected_syms2));
4224 }
4225 }
4226
4227 /* Test dw2_expand_symtabs_matching_symbol. */
4228
4229 static void
4230 test_dw2_expand_symtabs_matching_symbol ()
4231 {
4232 mock_mapped_index mock_index (test_symbols);
4233
4234 /* We let all tests run until the end even if some fails, for debug
4235 convenience. */
4236 bool any_mismatch = false;
4237
4238 /* Create the expected symbols list (an initializer_list). Needed
4239 because lists have commas, and we need to pass them to CHECK,
4240 which is a macro. */
4241 #define EXPECT(...) { __VA_ARGS__ }
4242
4243 /* Wrapper for check_match that passes down the current
4244 __FILE__/__LINE__. */
4245 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4246 any_mismatch |= !check_match (__FILE__, __LINE__, \
4247 mock_index, \
4248 NAME, MATCH_TYPE, COMPLETION_MODE, \
4249 EXPECTED_LIST)
4250
4251 /* Identity checks. */
4252 for (const char *sym : test_symbols)
4253 {
4254 /* Should be able to match all existing symbols. */
4255 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4256 EXPECT (sym));
4257
4258 /* Should be able to match all existing symbols with
4259 parameters. */
4260 std::string with_params = std::string (sym) + "(int)";
4261 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4262 EXPECT (sym));
4263
4264 /* Should be able to match all existing symbols with
4265 parameters and qualifiers. */
4266 with_params = std::string (sym) + " ( int ) const";
4267 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4268 EXPECT (sym));
4269
4270 /* This should really find sym, but cp-name-parser.y doesn't
4271 know about lvalue/rvalue qualifiers yet. */
4272 with_params = std::string (sym) + " ( int ) &&";
4273 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4274 {});
4275 }
4276
4277 /* Check that the name matching algorithm for completion doesn't get
4278 confused with Latin1 'ÿ' / 0xff. */
4279 {
4280 static const char str[] = "\377";
4281 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4282 EXPECT ("\377", "\377\377123"));
4283 }
4284
4285 /* Check that the increment-last-char in the matching algorithm for
4286 completion doesn't match "t1_fund" when completing "t1_func". */
4287 {
4288 static const char str[] = "t1_func";
4289 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4290 EXPECT ("t1_func", "t1_func1"));
4291 }
4292
4293 /* Check that completion mode works at each prefix of the expected
4294 symbol name. */
4295 {
4296 static const char str[] = "function(int)";
4297 size_t len = strlen (str);
4298 std::string lookup;
4299
4300 for (size_t i = 1; i < len; i++)
4301 {
4302 lookup.assign (str, i);
4303 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4304 EXPECT ("function"));
4305 }
4306 }
4307
4308 /* While "w" is a prefix of both components, the match function
4309 should still only be called once. */
4310 {
4311 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4312 EXPECT ("w1::w2"));
4313 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4314 EXPECT ("w1::w2"));
4315 }
4316
4317 /* Same, with a "complicated" symbol. */
4318 {
4319 static const char str[] = Z_SYM_NAME;
4320 size_t len = strlen (str);
4321 std::string lookup;
4322
4323 for (size_t i = 1; i < len; i++)
4324 {
4325 lookup.assign (str, i);
4326 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4327 EXPECT (Z_SYM_NAME));
4328 }
4329 }
4330
4331 /* In FULL mode, an incomplete symbol doesn't match. */
4332 {
4333 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4334 {});
4335 }
4336
4337 /* A complete symbol with parameters matches any overload, since the
4338 index has no overload info. */
4339 {
4340 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4341 EXPECT ("std::zfunction", "std::zfunction2"));
4342 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4343 EXPECT ("std::zfunction", "std::zfunction2"));
4344 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4345 EXPECT ("std::zfunction", "std::zfunction2"));
4346 }
4347
4348 /* Check that whitespace is ignored appropriately. A symbol with a
4349 template argument list. */
4350 {
4351 static const char expected[] = "ns::foo<int>";
4352 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4353 EXPECT (expected));
4354 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4355 EXPECT (expected));
4356 }
4357
4358 /* Check that whitespace is ignored appropriately. A symbol with a
4359 template argument list that includes a pointer. */
4360 {
4361 static const char expected[] = "ns::foo<char*>";
4362 /* Try both completion and non-completion modes. */
4363 static const bool completion_mode[2] = {false, true};
4364 for (size_t i = 0; i < 2; i++)
4365 {
4366 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4367 completion_mode[i], EXPECT (expected));
4368 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4369 completion_mode[i], EXPECT (expected));
4370
4371 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4372 completion_mode[i], EXPECT (expected));
4373 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4374 completion_mode[i], EXPECT (expected));
4375 }
4376 }
4377
4378 {
4379 /* Check method qualifiers are ignored. */
4380 static const char expected[] = "ns::foo<char*>";
4381 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4382 symbol_name_match_type::FULL, true, EXPECT (expected));
4383 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4384 symbol_name_match_type::FULL, true, EXPECT (expected));
4385 CHECK_MATCH ("foo < char * > ( int ) const",
4386 symbol_name_match_type::WILD, true, EXPECT (expected));
4387 CHECK_MATCH ("foo < char * > ( int ) &&",
4388 symbol_name_match_type::WILD, true, EXPECT (expected));
4389 }
4390
4391 /* Test lookup names that don't match anything. */
4392 {
4393 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4394 {});
4395
4396 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4397 {});
4398 }
4399
4400 /* Some wild matching tests, exercising "(anonymous namespace)",
4401 which should not be confused with a parameter list. */
4402 {
4403 static const char *syms[] = {
4404 "A::B::C",
4405 "B::C",
4406 "C",
4407 "A :: B :: C ( int )",
4408 "B :: C ( int )",
4409 "C ( int )",
4410 };
4411
4412 for (const char *s : syms)
4413 {
4414 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4415 EXPECT ("(anonymous namespace)::A::B::C"));
4416 }
4417 }
4418
4419 {
4420 static const char expected[] = "ns2::tmpl<int>::foo2";
4421 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4422 EXPECT (expected));
4423 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4424 EXPECT (expected));
4425 }
4426
4427 SELF_CHECK (!any_mismatch);
4428
4429 #undef EXPECT
4430 #undef CHECK_MATCH
4431 }
4432
4433 static void
4434 run_test ()
4435 {
4436 test_mapped_index_find_name_component_bounds ();
4437 test_dw2_expand_symtabs_matching_symbol ();
4438 }
4439
4440 }} // namespace selftests::dw2_expand_symtabs_matching
4441
4442 #endif /* GDB_SELF_TEST */
4443
4444 /* If FILE_MATCHER is NULL or if PER_CU has
4445 dwarf2_per_cu_quick_data::MARK set (see
4446 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4447 EXPANSION_NOTIFY on it. */
4448
4449 static void
4450 dw2_expand_symtabs_matching_one
4451 (struct dwarf2_per_cu_data *per_cu,
4452 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4453 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4454 {
4455 if (file_matcher == NULL || per_cu->v.quick->mark)
4456 {
4457 bool symtab_was_null
4458 = (per_cu->v.quick->compunit_symtab == NULL);
4459
4460 dw2_instantiate_symtab (per_cu, false);
4461
4462 if (expansion_notify != NULL
4463 && symtab_was_null
4464 && per_cu->v.quick->compunit_symtab != NULL)
4465 expansion_notify (per_cu->v.quick->compunit_symtab);
4466 }
4467 }
4468
4469 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4470 matched, to expand corresponding CUs that were marked. IDX is the
4471 index of the symbol name that matched. */
4472
4473 static void
4474 dw2_expand_marked_cus
4475 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4476 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4477 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4478 search_domain kind)
4479 {
4480 offset_type *vec, vec_len, vec_idx;
4481 bool global_seen = false;
4482 mapped_index &index = *dwarf2_per_objfile->index_table;
4483
4484 vec = (offset_type *) (index.constant_pool
4485 + MAYBE_SWAP (index.symbol_table[idx].vec));
4486 vec_len = MAYBE_SWAP (vec[0]);
4487 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4488 {
4489 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4490 /* This value is only valid for index versions >= 7. */
4491 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4492 gdb_index_symbol_kind symbol_kind =
4493 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4494 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4495 /* Only check the symbol attributes if they're present.
4496 Indices prior to version 7 don't record them,
4497 and indices >= 7 may elide them for certain symbols
4498 (gold does this). */
4499 int attrs_valid =
4500 (index.version >= 7
4501 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4502
4503 /* Work around gold/15646. */
4504 if (attrs_valid)
4505 {
4506 if (!is_static && global_seen)
4507 continue;
4508 if (!is_static)
4509 global_seen = true;
4510 }
4511
4512 /* Only check the symbol's kind if it has one. */
4513 if (attrs_valid)
4514 {
4515 switch (kind)
4516 {
4517 case VARIABLES_DOMAIN:
4518 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4519 continue;
4520 break;
4521 case FUNCTIONS_DOMAIN:
4522 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4523 continue;
4524 break;
4525 case TYPES_DOMAIN:
4526 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4527 continue;
4528 break;
4529 case MODULES_DOMAIN:
4530 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4531 continue;
4532 break;
4533 default:
4534 break;
4535 }
4536 }
4537
4538 /* Don't crash on bad data. */
4539 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4540 + dwarf2_per_objfile->all_type_units.size ()))
4541 {
4542 complaint (_(".gdb_index entry has bad CU index"
4543 " [in module %s]"),
4544 objfile_name (dwarf2_per_objfile->objfile));
4545 continue;
4546 }
4547
4548 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4549 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4550 expansion_notify);
4551 }
4552 }
4553
4554 /* If FILE_MATCHER is non-NULL, set all the
4555 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4556 that match FILE_MATCHER. */
4557
4558 static void
4559 dw_expand_symtabs_matching_file_matcher
4560 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4561 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4562 {
4563 if (file_matcher == NULL)
4564 return;
4565
4566 objfile *const objfile = dwarf2_per_objfile->objfile;
4567
4568 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4569 htab_eq_pointer,
4570 NULL, xcalloc, xfree));
4571 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4572 htab_eq_pointer,
4573 NULL, xcalloc, xfree));
4574
4575 /* The rule is CUs specify all the files, including those used by
4576 any TU, so there's no need to scan TUs here. */
4577
4578 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4579 {
4580 QUIT;
4581
4582 per_cu->v.quick->mark = 0;
4583
4584 /* We only need to look at symtabs not already expanded. */
4585 if (per_cu->v.quick->compunit_symtab)
4586 continue;
4587
4588 quick_file_names *file_data = dw2_get_file_names (per_cu);
4589 if (file_data == NULL)
4590 continue;
4591
4592 if (htab_find (visited_not_found.get (), file_data) != NULL)
4593 continue;
4594 else if (htab_find (visited_found.get (), file_data) != NULL)
4595 {
4596 per_cu->v.quick->mark = 1;
4597 continue;
4598 }
4599
4600 for (int j = 0; j < file_data->num_file_names; ++j)
4601 {
4602 const char *this_real_name;
4603
4604 if (file_matcher (file_data->file_names[j], false))
4605 {
4606 per_cu->v.quick->mark = 1;
4607 break;
4608 }
4609
4610 /* Before we invoke realpath, which can get expensive when many
4611 files are involved, do a quick comparison of the basenames. */
4612 if (!basenames_may_differ
4613 && !file_matcher (lbasename (file_data->file_names[j]),
4614 true))
4615 continue;
4616
4617 this_real_name = dw2_get_real_path (objfile, file_data, j);
4618 if (file_matcher (this_real_name, false))
4619 {
4620 per_cu->v.quick->mark = 1;
4621 break;
4622 }
4623 }
4624
4625 void **slot = htab_find_slot (per_cu->v.quick->mark
4626 ? visited_found.get ()
4627 : visited_not_found.get (),
4628 file_data, INSERT);
4629 *slot = file_data;
4630 }
4631 }
4632
4633 static void
4634 dw2_expand_symtabs_matching
4635 (struct objfile *objfile,
4636 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4637 const lookup_name_info *lookup_name,
4638 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4639 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4640 enum search_domain kind)
4641 {
4642 struct dwarf2_per_objfile *dwarf2_per_objfile
4643 = get_dwarf2_per_objfile (objfile);
4644
4645 /* index_table is NULL if OBJF_READNOW. */
4646 if (!dwarf2_per_objfile->index_table)
4647 return;
4648
4649 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4650
4651 if (symbol_matcher == NULL && lookup_name == NULL)
4652 {
4653 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4654 {
4655 QUIT;
4656
4657 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4658 expansion_notify);
4659 }
4660 return;
4661 }
4662
4663 mapped_index &index = *dwarf2_per_objfile->index_table;
4664
4665 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4666 symbol_matcher,
4667 kind, [&] (offset_type idx)
4668 {
4669 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4670 expansion_notify, kind);
4671 return true;
4672 });
4673 }
4674
4675 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4676 symtab. */
4677
4678 static struct compunit_symtab *
4679 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4680 CORE_ADDR pc)
4681 {
4682 int i;
4683
4684 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4685 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4686 return cust;
4687
4688 if (cust->includes == NULL)
4689 return NULL;
4690
4691 for (i = 0; cust->includes[i]; ++i)
4692 {
4693 struct compunit_symtab *s = cust->includes[i];
4694
4695 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4696 if (s != NULL)
4697 return s;
4698 }
4699
4700 return NULL;
4701 }
4702
4703 static struct compunit_symtab *
4704 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4705 struct bound_minimal_symbol msymbol,
4706 CORE_ADDR pc,
4707 struct obj_section *section,
4708 int warn_if_readin)
4709 {
4710 struct dwarf2_per_cu_data *data;
4711 struct compunit_symtab *result;
4712
4713 if (!objfile->partial_symtabs->psymtabs_addrmap)
4714 return NULL;
4715
4716 CORE_ADDR baseaddr = objfile->text_section_offset ();
4717 data = (struct dwarf2_per_cu_data *) addrmap_find
4718 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4719 if (!data)
4720 return NULL;
4721
4722 if (warn_if_readin && data->v.quick->compunit_symtab)
4723 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4724 paddress (objfile->arch (), pc));
4725
4726 result
4727 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4728 false),
4729 pc);
4730 gdb_assert (result != NULL);
4731 return result;
4732 }
4733
4734 static void
4735 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4736 void *data, int need_fullname)
4737 {
4738 struct dwarf2_per_objfile *dwarf2_per_objfile
4739 = get_dwarf2_per_objfile (objfile);
4740
4741 if (!dwarf2_per_objfile->filenames_cache)
4742 {
4743 dwarf2_per_objfile->filenames_cache.emplace ();
4744
4745 htab_up visited (htab_create_alloc (10,
4746 htab_hash_pointer, htab_eq_pointer,
4747 NULL, xcalloc, xfree));
4748
4749 /* The rule is CUs specify all the files, including those used
4750 by any TU, so there's no need to scan TUs here. We can
4751 ignore file names coming from already-expanded CUs. */
4752
4753 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4754 {
4755 if (per_cu->v.quick->compunit_symtab)
4756 {
4757 void **slot = htab_find_slot (visited.get (),
4758 per_cu->v.quick->file_names,
4759 INSERT);
4760
4761 *slot = per_cu->v.quick->file_names;
4762 }
4763 }
4764
4765 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4766 {
4767 /* We only need to look at symtabs not already expanded. */
4768 if (per_cu->v.quick->compunit_symtab)
4769 continue;
4770
4771 quick_file_names *file_data = dw2_get_file_names (per_cu);
4772 if (file_data == NULL)
4773 continue;
4774
4775 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4776 if (*slot)
4777 {
4778 /* Already visited. */
4779 continue;
4780 }
4781 *slot = file_data;
4782
4783 for (int j = 0; j < file_data->num_file_names; ++j)
4784 {
4785 const char *filename = file_data->file_names[j];
4786 dwarf2_per_objfile->filenames_cache->seen (filename);
4787 }
4788 }
4789 }
4790
4791 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4792 {
4793 gdb::unique_xmalloc_ptr<char> this_real_name;
4794
4795 if (need_fullname)
4796 this_real_name = gdb_realpath (filename);
4797 (*fun) (filename, this_real_name.get (), data);
4798 });
4799 }
4800
4801 static int
4802 dw2_has_symbols (struct objfile *objfile)
4803 {
4804 return 1;
4805 }
4806
4807 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4808 {
4809 dw2_has_symbols,
4810 dw2_find_last_source_symtab,
4811 dw2_forget_cached_source_info,
4812 dw2_map_symtabs_matching_filename,
4813 dw2_lookup_symbol,
4814 NULL,
4815 dw2_print_stats,
4816 dw2_dump,
4817 dw2_expand_symtabs_for_function,
4818 dw2_expand_all_symtabs,
4819 dw2_expand_symtabs_with_fullname,
4820 dw2_map_matching_symbols,
4821 dw2_expand_symtabs_matching,
4822 dw2_find_pc_sect_compunit_symtab,
4823 NULL,
4824 dw2_map_symbol_filenames
4825 };
4826
4827 /* DWARF-5 debug_names reader. */
4828
4829 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4830 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4831
4832 /* A helper function that reads the .debug_names section in SECTION
4833 and fills in MAP. FILENAME is the name of the file containing the
4834 section; it is used for error reporting.
4835
4836 Returns true if all went well, false otherwise. */
4837
4838 static bool
4839 read_debug_names_from_section (struct objfile *objfile,
4840 const char *filename,
4841 struct dwarf2_section_info *section,
4842 mapped_debug_names &map)
4843 {
4844 if (section->empty ())
4845 return false;
4846
4847 /* Older elfutils strip versions could keep the section in the main
4848 executable while splitting it for the separate debug info file. */
4849 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4850 return false;
4851
4852 section->read (objfile);
4853
4854 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4855
4856 const gdb_byte *addr = section->buffer;
4857
4858 bfd *const abfd = section->get_bfd_owner ();
4859
4860 unsigned int bytes_read;
4861 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4862 addr += bytes_read;
4863
4864 map.dwarf5_is_dwarf64 = bytes_read != 4;
4865 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4866 if (bytes_read + length != section->size)
4867 {
4868 /* There may be multiple per-CU indices. */
4869 warning (_("Section .debug_names in %s length %s does not match "
4870 "section length %s, ignoring .debug_names."),
4871 filename, plongest (bytes_read + length),
4872 pulongest (section->size));
4873 return false;
4874 }
4875
4876 /* The version number. */
4877 uint16_t version = read_2_bytes (abfd, addr);
4878 addr += 2;
4879 if (version != 5)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported version %d, "
4882 "ignoring .debug_names."),
4883 filename, version);
4884 return false;
4885 }
4886
4887 /* Padding. */
4888 uint16_t padding = read_2_bytes (abfd, addr);
4889 addr += 2;
4890 if (padding != 0)
4891 {
4892 warning (_("Section .debug_names in %s has unsupported padding %d, "
4893 "ignoring .debug_names."),
4894 filename, padding);
4895 return false;
4896 }
4897
4898 /* comp_unit_count - The number of CUs in the CU list. */
4899 map.cu_count = read_4_bytes (abfd, addr);
4900 addr += 4;
4901
4902 /* local_type_unit_count - The number of TUs in the local TU
4903 list. */
4904 map.tu_count = read_4_bytes (abfd, addr);
4905 addr += 4;
4906
4907 /* foreign_type_unit_count - The number of TUs in the foreign TU
4908 list. */
4909 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4910 addr += 4;
4911 if (foreign_tu_count != 0)
4912 {
4913 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4914 "ignoring .debug_names."),
4915 filename, static_cast<unsigned long> (foreign_tu_count));
4916 return false;
4917 }
4918
4919 /* bucket_count - The number of hash buckets in the hash lookup
4920 table. */
4921 map.bucket_count = read_4_bytes (abfd, addr);
4922 addr += 4;
4923
4924 /* name_count - The number of unique names in the index. */
4925 map.name_count = read_4_bytes (abfd, addr);
4926 addr += 4;
4927
4928 /* abbrev_table_size - The size in bytes of the abbreviations
4929 table. */
4930 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4931 addr += 4;
4932
4933 /* augmentation_string_size - The size in bytes of the augmentation
4934 string. This value is rounded up to a multiple of 4. */
4935 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4936 addr += 4;
4937 map.augmentation_is_gdb = ((augmentation_string_size
4938 == sizeof (dwarf5_augmentation))
4939 && memcmp (addr, dwarf5_augmentation,
4940 sizeof (dwarf5_augmentation)) == 0);
4941 augmentation_string_size += (-augmentation_string_size) & 3;
4942 addr += augmentation_string_size;
4943
4944 /* List of CUs */
4945 map.cu_table_reordered = addr;
4946 addr += map.cu_count * map.offset_size;
4947
4948 /* List of Local TUs */
4949 map.tu_table_reordered = addr;
4950 addr += map.tu_count * map.offset_size;
4951
4952 /* Hash Lookup Table */
4953 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4954 addr += map.bucket_count * 4;
4955 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4956 addr += map.name_count * 4;
4957
4958 /* Name Table */
4959 map.name_table_string_offs_reordered = addr;
4960 addr += map.name_count * map.offset_size;
4961 map.name_table_entry_offs_reordered = addr;
4962 addr += map.name_count * map.offset_size;
4963
4964 const gdb_byte *abbrev_table_start = addr;
4965 for (;;)
4966 {
4967 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4968 addr += bytes_read;
4969 if (index_num == 0)
4970 break;
4971
4972 const auto insertpair
4973 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4974 if (!insertpair.second)
4975 {
4976 warning (_("Section .debug_names in %s has duplicate index %s, "
4977 "ignoring .debug_names."),
4978 filename, pulongest (index_num));
4979 return false;
4980 }
4981 mapped_debug_names::index_val &indexval = insertpair.first->second;
4982 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4983 addr += bytes_read;
4984
4985 for (;;)
4986 {
4987 mapped_debug_names::index_val::attr attr;
4988 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4989 addr += bytes_read;
4990 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4991 addr += bytes_read;
4992 if (attr.form == DW_FORM_implicit_const)
4993 {
4994 attr.implicit_const = read_signed_leb128 (abfd, addr,
4995 &bytes_read);
4996 addr += bytes_read;
4997 }
4998 if (attr.dw_idx == 0 && attr.form == 0)
4999 break;
5000 indexval.attr_vec.push_back (std::move (attr));
5001 }
5002 }
5003 if (addr != abbrev_table_start + abbrev_table_size)
5004 {
5005 warning (_("Section .debug_names in %s has abbreviation_table "
5006 "of size %s vs. written as %u, ignoring .debug_names."),
5007 filename, plongest (addr - abbrev_table_start),
5008 abbrev_table_size);
5009 return false;
5010 }
5011 map.entry_pool = addr;
5012
5013 return true;
5014 }
5015
5016 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5017 list. */
5018
5019 static void
5020 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5021 const mapped_debug_names &map,
5022 dwarf2_section_info &section,
5023 bool is_dwz)
5024 {
5025 sect_offset sect_off_prev;
5026 for (uint32_t i = 0; i <= map.cu_count; ++i)
5027 {
5028 sect_offset sect_off_next;
5029 if (i < map.cu_count)
5030 {
5031 sect_off_next
5032 = (sect_offset) (extract_unsigned_integer
5033 (map.cu_table_reordered + i * map.offset_size,
5034 map.offset_size,
5035 map.dwarf5_byte_order));
5036 }
5037 else
5038 sect_off_next = (sect_offset) section.size;
5039 if (i >= 1)
5040 {
5041 const ULONGEST length = sect_off_next - sect_off_prev;
5042 dwarf2_per_cu_data *per_cu
5043 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5044 sect_off_prev, length);
5045 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5046 }
5047 sect_off_prev = sect_off_next;
5048 }
5049 }
5050
5051 /* Read the CU list from the mapped index, and use it to create all
5052 the CU objects for this dwarf2_per_objfile. */
5053
5054 static void
5055 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5056 const mapped_debug_names &map,
5057 const mapped_debug_names &dwz_map)
5058 {
5059 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5060 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5061
5062 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5063 dwarf2_per_objfile->info,
5064 false /* is_dwz */);
5065
5066 if (dwz_map.cu_count == 0)
5067 return;
5068
5069 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5070 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5071 true /* is_dwz */);
5072 }
5073
5074 /* Read .debug_names. If everything went ok, initialize the "quick"
5075 elements of all the CUs and return true. Otherwise, return false. */
5076
5077 static bool
5078 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5079 {
5080 std::unique_ptr<mapped_debug_names> map
5081 (new mapped_debug_names (dwarf2_per_objfile));
5082 mapped_debug_names dwz_map (dwarf2_per_objfile);
5083 struct objfile *objfile = dwarf2_per_objfile->objfile;
5084
5085 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5086 &dwarf2_per_objfile->debug_names,
5087 *map))
5088 return false;
5089
5090 /* Don't use the index if it's empty. */
5091 if (map->name_count == 0)
5092 return false;
5093
5094 /* If there is a .dwz file, read it so we can get its CU list as
5095 well. */
5096 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5097 if (dwz != NULL)
5098 {
5099 if (!read_debug_names_from_section (objfile,
5100 bfd_get_filename (dwz->dwz_bfd.get ()),
5101 &dwz->debug_names, dwz_map))
5102 {
5103 warning (_("could not read '.debug_names' section from %s; skipping"),
5104 bfd_get_filename (dwz->dwz_bfd.get ()));
5105 return false;
5106 }
5107 }
5108
5109 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5110
5111 if (map->tu_count != 0)
5112 {
5113 /* We can only handle a single .debug_types when we have an
5114 index. */
5115 if (dwarf2_per_objfile->types.size () != 1)
5116 return false;
5117
5118 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5119
5120 create_signatured_type_table_from_debug_names
5121 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5122 }
5123
5124 create_addrmap_from_aranges (dwarf2_per_objfile,
5125 &dwarf2_per_objfile->debug_aranges);
5126
5127 dwarf2_per_objfile->debug_names_table = std::move (map);
5128 dwarf2_per_objfile->using_index = 1;
5129 dwarf2_per_objfile->quick_file_names_table =
5130 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5131
5132 return true;
5133 }
5134
5135 /* Type used to manage iterating over all CUs looking for a symbol for
5136 .debug_names. */
5137
5138 class dw2_debug_names_iterator
5139 {
5140 public:
5141 dw2_debug_names_iterator (const mapped_debug_names &map,
5142 gdb::optional<block_enum> block_index,
5143 domain_enum domain,
5144 const char *name)
5145 : m_map (map), m_block_index (block_index), m_domain (domain),
5146 m_addr (find_vec_in_debug_names (map, name))
5147 {}
5148
5149 dw2_debug_names_iterator (const mapped_debug_names &map,
5150 search_domain search, uint32_t namei)
5151 : m_map (map),
5152 m_search (search),
5153 m_addr (find_vec_in_debug_names (map, namei))
5154 {}
5155
5156 dw2_debug_names_iterator (const mapped_debug_names &map,
5157 block_enum block_index, domain_enum domain,
5158 uint32_t namei)
5159 : m_map (map), m_block_index (block_index), m_domain (domain),
5160 m_addr (find_vec_in_debug_names (map, namei))
5161 {}
5162
5163 /* Return the next matching CU or NULL if there are no more. */
5164 dwarf2_per_cu_data *next ();
5165
5166 private:
5167 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5168 const char *name);
5169 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5170 uint32_t namei);
5171
5172 /* The internalized form of .debug_names. */
5173 const mapped_debug_names &m_map;
5174
5175 /* If set, only look for symbols that match that block. Valid values are
5176 GLOBAL_BLOCK and STATIC_BLOCK. */
5177 const gdb::optional<block_enum> m_block_index;
5178
5179 /* The kind of symbol we're looking for. */
5180 const domain_enum m_domain = UNDEF_DOMAIN;
5181 const search_domain m_search = ALL_DOMAIN;
5182
5183 /* The list of CUs from the index entry of the symbol, or NULL if
5184 not found. */
5185 const gdb_byte *m_addr;
5186 };
5187
5188 const char *
5189 mapped_debug_names::namei_to_name (uint32_t namei) const
5190 {
5191 const ULONGEST namei_string_offs
5192 = extract_unsigned_integer ((name_table_string_offs_reordered
5193 + namei * offset_size),
5194 offset_size,
5195 dwarf5_byte_order);
5196 return read_indirect_string_at_offset (dwarf2_per_objfile,
5197 namei_string_offs);
5198 }
5199
5200 /* Find a slot in .debug_names for the object named NAME. If NAME is
5201 found, return pointer to its pool data. If NAME cannot be found,
5202 return NULL. */
5203
5204 const gdb_byte *
5205 dw2_debug_names_iterator::find_vec_in_debug_names
5206 (const mapped_debug_names &map, const char *name)
5207 {
5208 int (*cmp) (const char *, const char *);
5209
5210 gdb::unique_xmalloc_ptr<char> without_params;
5211 if (current_language->la_language == language_cplus
5212 || current_language->la_language == language_fortran
5213 || current_language->la_language == language_d)
5214 {
5215 /* NAME is already canonical. Drop any qualifiers as
5216 .debug_names does not contain any. */
5217
5218 if (strchr (name, '(') != NULL)
5219 {
5220 without_params = cp_remove_params (name);
5221 if (without_params != NULL)
5222 name = without_params.get ();
5223 }
5224 }
5225
5226 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5227
5228 const uint32_t full_hash = dwarf5_djb_hash (name);
5229 uint32_t namei
5230 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5231 (map.bucket_table_reordered
5232 + (full_hash % map.bucket_count)), 4,
5233 map.dwarf5_byte_order);
5234 if (namei == 0)
5235 return NULL;
5236 --namei;
5237 if (namei >= map.name_count)
5238 {
5239 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5240 "[in module %s]"),
5241 namei, map.name_count,
5242 objfile_name (map.dwarf2_per_objfile->objfile));
5243 return NULL;
5244 }
5245
5246 for (;;)
5247 {
5248 const uint32_t namei_full_hash
5249 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5250 (map.hash_table_reordered + namei), 4,
5251 map.dwarf5_byte_order);
5252 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5253 return NULL;
5254
5255 if (full_hash == namei_full_hash)
5256 {
5257 const char *const namei_string = map.namei_to_name (namei);
5258
5259 #if 0 /* An expensive sanity check. */
5260 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5261 {
5262 complaint (_("Wrong .debug_names hash for string at index %u "
5263 "[in module %s]"),
5264 namei, objfile_name (dwarf2_per_objfile->objfile));
5265 return NULL;
5266 }
5267 #endif
5268
5269 if (cmp (namei_string, name) == 0)
5270 {
5271 const ULONGEST namei_entry_offs
5272 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5273 + namei * map.offset_size),
5274 map.offset_size, map.dwarf5_byte_order);
5275 return map.entry_pool + namei_entry_offs;
5276 }
5277 }
5278
5279 ++namei;
5280 if (namei >= map.name_count)
5281 return NULL;
5282 }
5283 }
5284
5285 const gdb_byte *
5286 dw2_debug_names_iterator::find_vec_in_debug_names
5287 (const mapped_debug_names &map, uint32_t namei)
5288 {
5289 if (namei >= map.name_count)
5290 {
5291 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5292 "[in module %s]"),
5293 namei, map.name_count,
5294 objfile_name (map.dwarf2_per_objfile->objfile));
5295 return NULL;
5296 }
5297
5298 const ULONGEST namei_entry_offs
5299 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5300 + namei * map.offset_size),
5301 map.offset_size, map.dwarf5_byte_order);
5302 return map.entry_pool + namei_entry_offs;
5303 }
5304
5305 /* See dw2_debug_names_iterator. */
5306
5307 dwarf2_per_cu_data *
5308 dw2_debug_names_iterator::next ()
5309 {
5310 if (m_addr == NULL)
5311 return NULL;
5312
5313 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5314 struct objfile *objfile = dwarf2_per_objfile->objfile;
5315 bfd *const abfd = objfile->obfd;
5316
5317 again:
5318
5319 unsigned int bytes_read;
5320 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5321 m_addr += bytes_read;
5322 if (abbrev == 0)
5323 return NULL;
5324
5325 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5326 if (indexval_it == m_map.abbrev_map.cend ())
5327 {
5328 complaint (_("Wrong .debug_names undefined abbrev code %s "
5329 "[in module %s]"),
5330 pulongest (abbrev), objfile_name (objfile));
5331 return NULL;
5332 }
5333 const mapped_debug_names::index_val &indexval = indexval_it->second;
5334 enum class symbol_linkage {
5335 unknown,
5336 static_,
5337 extern_,
5338 } symbol_linkage_ = symbol_linkage::unknown;
5339 dwarf2_per_cu_data *per_cu = NULL;
5340 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5341 {
5342 ULONGEST ull;
5343 switch (attr.form)
5344 {
5345 case DW_FORM_implicit_const:
5346 ull = attr.implicit_const;
5347 break;
5348 case DW_FORM_flag_present:
5349 ull = 1;
5350 break;
5351 case DW_FORM_udata:
5352 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5353 m_addr += bytes_read;
5354 break;
5355 default:
5356 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5357 dwarf_form_name (attr.form),
5358 objfile_name (objfile));
5359 return NULL;
5360 }
5361 switch (attr.dw_idx)
5362 {
5363 case DW_IDX_compile_unit:
5364 /* Don't crash on bad data. */
5365 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5366 {
5367 complaint (_(".debug_names entry has bad CU index %s"
5368 " [in module %s]"),
5369 pulongest (ull),
5370 objfile_name (dwarf2_per_objfile->objfile));
5371 continue;
5372 }
5373 per_cu = dwarf2_per_objfile->get_cutu (ull);
5374 break;
5375 case DW_IDX_type_unit:
5376 /* Don't crash on bad data. */
5377 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5378 {
5379 complaint (_(".debug_names entry has bad TU index %s"
5380 " [in module %s]"),
5381 pulongest (ull),
5382 objfile_name (dwarf2_per_objfile->objfile));
5383 continue;
5384 }
5385 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5386 break;
5387 case DW_IDX_GNU_internal:
5388 if (!m_map.augmentation_is_gdb)
5389 break;
5390 symbol_linkage_ = symbol_linkage::static_;
5391 break;
5392 case DW_IDX_GNU_external:
5393 if (!m_map.augmentation_is_gdb)
5394 break;
5395 symbol_linkage_ = symbol_linkage::extern_;
5396 break;
5397 }
5398 }
5399
5400 /* Skip if already read in. */
5401 if (per_cu->v.quick->compunit_symtab)
5402 goto again;
5403
5404 /* Check static vs global. */
5405 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5406 {
5407 const bool want_static = *m_block_index == STATIC_BLOCK;
5408 const bool symbol_is_static =
5409 symbol_linkage_ == symbol_linkage::static_;
5410 if (want_static != symbol_is_static)
5411 goto again;
5412 }
5413
5414 /* Match dw2_symtab_iter_next, symbol_kind
5415 and debug_names::psymbol_tag. */
5416 switch (m_domain)
5417 {
5418 case VAR_DOMAIN:
5419 switch (indexval.dwarf_tag)
5420 {
5421 case DW_TAG_variable:
5422 case DW_TAG_subprogram:
5423 /* Some types are also in VAR_DOMAIN. */
5424 case DW_TAG_typedef:
5425 case DW_TAG_structure_type:
5426 break;
5427 default:
5428 goto again;
5429 }
5430 break;
5431 case STRUCT_DOMAIN:
5432 switch (indexval.dwarf_tag)
5433 {
5434 case DW_TAG_typedef:
5435 case DW_TAG_structure_type:
5436 break;
5437 default:
5438 goto again;
5439 }
5440 break;
5441 case LABEL_DOMAIN:
5442 switch (indexval.dwarf_tag)
5443 {
5444 case 0:
5445 case DW_TAG_variable:
5446 break;
5447 default:
5448 goto again;
5449 }
5450 break;
5451 case MODULE_DOMAIN:
5452 switch (indexval.dwarf_tag)
5453 {
5454 case DW_TAG_module:
5455 break;
5456 default:
5457 goto again;
5458 }
5459 break;
5460 default:
5461 break;
5462 }
5463
5464 /* Match dw2_expand_symtabs_matching, symbol_kind and
5465 debug_names::psymbol_tag. */
5466 switch (m_search)
5467 {
5468 case VARIABLES_DOMAIN:
5469 switch (indexval.dwarf_tag)
5470 {
5471 case DW_TAG_variable:
5472 break;
5473 default:
5474 goto again;
5475 }
5476 break;
5477 case FUNCTIONS_DOMAIN:
5478 switch (indexval.dwarf_tag)
5479 {
5480 case DW_TAG_subprogram:
5481 break;
5482 default:
5483 goto again;
5484 }
5485 break;
5486 case TYPES_DOMAIN:
5487 switch (indexval.dwarf_tag)
5488 {
5489 case DW_TAG_typedef:
5490 case DW_TAG_structure_type:
5491 break;
5492 default:
5493 goto again;
5494 }
5495 break;
5496 case MODULES_DOMAIN:
5497 switch (indexval.dwarf_tag)
5498 {
5499 case DW_TAG_module:
5500 break;
5501 default:
5502 goto again;
5503 }
5504 default:
5505 break;
5506 }
5507
5508 return per_cu;
5509 }
5510
5511 static struct compunit_symtab *
5512 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5513 const char *name, domain_enum domain)
5514 {
5515 struct dwarf2_per_objfile *dwarf2_per_objfile
5516 = get_dwarf2_per_objfile (objfile);
5517
5518 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5519 if (!mapp)
5520 {
5521 /* index is NULL if OBJF_READNOW. */
5522 return NULL;
5523 }
5524 const auto &map = *mapp;
5525
5526 dw2_debug_names_iterator iter (map, block_index, domain, name);
5527
5528 struct compunit_symtab *stab_best = NULL;
5529 struct dwarf2_per_cu_data *per_cu;
5530 while ((per_cu = iter.next ()) != NULL)
5531 {
5532 struct symbol *sym, *with_opaque = NULL;
5533 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5534 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5535 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5536
5537 sym = block_find_symbol (block, name, domain,
5538 block_find_non_opaque_type_preferred,
5539 &with_opaque);
5540
5541 /* Some caution must be observed with overloaded functions and
5542 methods, since the index will not contain any overload
5543 information (but NAME might contain it). */
5544
5545 if (sym != NULL
5546 && strcmp_iw (sym->search_name (), name) == 0)
5547 return stab;
5548 if (with_opaque != NULL
5549 && strcmp_iw (with_opaque->search_name (), name) == 0)
5550 stab_best = stab;
5551
5552 /* Keep looking through other CUs. */
5553 }
5554
5555 return stab_best;
5556 }
5557
5558 /* This dumps minimal information about .debug_names. It is called
5559 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5560 uses this to verify that .debug_names has been loaded. */
5561
5562 static void
5563 dw2_debug_names_dump (struct objfile *objfile)
5564 {
5565 struct dwarf2_per_objfile *dwarf2_per_objfile
5566 = get_dwarf2_per_objfile (objfile);
5567
5568 gdb_assert (dwarf2_per_objfile->using_index);
5569 printf_filtered (".debug_names:");
5570 if (dwarf2_per_objfile->debug_names_table)
5571 printf_filtered (" exists\n");
5572 else
5573 printf_filtered (" faked for \"readnow\"\n");
5574 printf_filtered ("\n");
5575 }
5576
5577 static void
5578 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5579 const char *func_name)
5580 {
5581 struct dwarf2_per_objfile *dwarf2_per_objfile
5582 = get_dwarf2_per_objfile (objfile);
5583
5584 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5585 if (dwarf2_per_objfile->debug_names_table)
5586 {
5587 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5588
5589 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5590
5591 struct dwarf2_per_cu_data *per_cu;
5592 while ((per_cu = iter.next ()) != NULL)
5593 dw2_instantiate_symtab (per_cu, false);
5594 }
5595 }
5596
5597 static void
5598 dw2_debug_names_map_matching_symbols
5599 (struct objfile *objfile,
5600 const lookup_name_info &name, domain_enum domain,
5601 int global,
5602 gdb::function_view<symbol_found_callback_ftype> callback,
5603 symbol_compare_ftype *ordered_compare)
5604 {
5605 struct dwarf2_per_objfile *dwarf2_per_objfile
5606 = get_dwarf2_per_objfile (objfile);
5607
5608 /* debug_names_table is NULL if OBJF_READNOW. */
5609 if (!dwarf2_per_objfile->debug_names_table)
5610 return;
5611
5612 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5613 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5614
5615 const char *match_name = name.ada ().lookup_name ().c_str ();
5616 auto matcher = [&] (const char *symname)
5617 {
5618 if (ordered_compare == nullptr)
5619 return true;
5620 return ordered_compare (symname, match_name) == 0;
5621 };
5622
5623 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5624 [&] (offset_type namei)
5625 {
5626 /* The name was matched, now expand corresponding CUs that were
5627 marked. */
5628 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5629
5630 struct dwarf2_per_cu_data *per_cu;
5631 while ((per_cu = iter.next ()) != NULL)
5632 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5633 return true;
5634 });
5635
5636 /* It's a shame we couldn't do this inside the
5637 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5638 that have already been expanded. Instead, this loop matches what
5639 the psymtab code does. */
5640 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5641 {
5642 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5643 if (cust != nullptr)
5644 {
5645 const struct block *block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5647 if (!iterate_over_symbols_terminated (block, name,
5648 domain, callback))
5649 break;
5650 }
5651 }
5652 }
5653
5654 static void
5655 dw2_debug_names_expand_symtabs_matching
5656 (struct objfile *objfile,
5657 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5658 const lookup_name_info *lookup_name,
5659 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5660 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5661 enum search_domain kind)
5662 {
5663 struct dwarf2_per_objfile *dwarf2_per_objfile
5664 = get_dwarf2_per_objfile (objfile);
5665
5666 /* debug_names_table is NULL if OBJF_READNOW. */
5667 if (!dwarf2_per_objfile->debug_names_table)
5668 return;
5669
5670 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5671
5672 if (symbol_matcher == NULL && lookup_name == NULL)
5673 {
5674 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5675 {
5676 QUIT;
5677
5678 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5679 expansion_notify);
5680 }
5681 return;
5682 }
5683
5684 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5685
5686 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5687 symbol_matcher,
5688 kind, [&] (offset_type namei)
5689 {
5690 /* The name was matched, now expand corresponding CUs that were
5691 marked. */
5692 dw2_debug_names_iterator iter (map, kind, namei);
5693
5694 struct dwarf2_per_cu_data *per_cu;
5695 while ((per_cu = iter.next ()) != NULL)
5696 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5697 expansion_notify);
5698 return true;
5699 });
5700 }
5701
5702 const struct quick_symbol_functions dwarf2_debug_names_functions =
5703 {
5704 dw2_has_symbols,
5705 dw2_find_last_source_symtab,
5706 dw2_forget_cached_source_info,
5707 dw2_map_symtabs_matching_filename,
5708 dw2_debug_names_lookup_symbol,
5709 NULL,
5710 dw2_print_stats,
5711 dw2_debug_names_dump,
5712 dw2_debug_names_expand_symtabs_for_function,
5713 dw2_expand_all_symtabs,
5714 dw2_expand_symtabs_with_fullname,
5715 dw2_debug_names_map_matching_symbols,
5716 dw2_debug_names_expand_symtabs_matching,
5717 dw2_find_pc_sect_compunit_symtab,
5718 NULL,
5719 dw2_map_symbol_filenames
5720 };
5721
5722 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5723 to either a dwarf2_per_objfile or dwz_file object. */
5724
5725 template <typename T>
5726 static gdb::array_view<const gdb_byte>
5727 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5728 {
5729 dwarf2_section_info *section = &section_owner->gdb_index;
5730
5731 if (section->empty ())
5732 return {};
5733
5734 /* Older elfutils strip versions could keep the section in the main
5735 executable while splitting it for the separate debug info file. */
5736 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5737 return {};
5738
5739 section->read (obj);
5740
5741 /* dwarf2_section_info::size is a bfd_size_type, while
5742 gdb::array_view works with size_t. On 32-bit hosts, with
5743 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5744 is 32-bit. So we need an explicit narrowing conversion here.
5745 This is fine, because it's impossible to allocate or mmap an
5746 array/buffer larger than what size_t can represent. */
5747 return gdb::make_array_view (section->buffer, section->size);
5748 }
5749
5750 /* Lookup the index cache for the contents of the index associated to
5751 DWARF2_OBJ. */
5752
5753 static gdb::array_view<const gdb_byte>
5754 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5755 {
5756 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5757 if (build_id == nullptr)
5758 return {};
5759
5760 return global_index_cache.lookup_gdb_index (build_id,
5761 &dwarf2_obj->index_cache_res);
5762 }
5763
5764 /* Same as the above, but for DWZ. */
5765
5766 static gdb::array_view<const gdb_byte>
5767 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5768 {
5769 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5770 if (build_id == nullptr)
5771 return {};
5772
5773 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5774 }
5775
5776 /* See symfile.h. */
5777
5778 bool
5779 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5780 {
5781 struct dwarf2_per_objfile *dwarf2_per_objfile
5782 = get_dwarf2_per_objfile (objfile);
5783
5784 /* If we're about to read full symbols, don't bother with the
5785 indices. In this case we also don't care if some other debug
5786 format is making psymtabs, because they are all about to be
5787 expanded anyway. */
5788 if ((objfile->flags & OBJF_READNOW))
5789 {
5790 dwarf2_per_objfile->using_index = 1;
5791 create_all_comp_units (dwarf2_per_objfile);
5792 create_all_type_units (dwarf2_per_objfile);
5793 dwarf2_per_objfile->quick_file_names_table
5794 = create_quick_file_names_table
5795 (dwarf2_per_objfile->all_comp_units.size ());
5796
5797 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5798 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5799 {
5800 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5801
5802 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5803 struct dwarf2_per_cu_quick_data);
5804 }
5805
5806 /* Return 1 so that gdb sees the "quick" functions. However,
5807 these functions will be no-ops because we will have expanded
5808 all symtabs. */
5809 *index_kind = dw_index_kind::GDB_INDEX;
5810 return true;
5811 }
5812
5813 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5814 {
5815 *index_kind = dw_index_kind::DEBUG_NAMES;
5816 return true;
5817 }
5818
5819 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5820 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5821 get_gdb_index_contents_from_section<dwz_file>))
5822 {
5823 *index_kind = dw_index_kind::GDB_INDEX;
5824 return true;
5825 }
5826
5827 /* ... otherwise, try to find the index in the index cache. */
5828 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5829 get_gdb_index_contents_from_cache,
5830 get_gdb_index_contents_from_cache_dwz))
5831 {
5832 global_index_cache.hit ();
5833 *index_kind = dw_index_kind::GDB_INDEX;
5834 return true;
5835 }
5836
5837 global_index_cache.miss ();
5838 return false;
5839 }
5840
5841 \f
5842
5843 /* Build a partial symbol table. */
5844
5845 void
5846 dwarf2_build_psymtabs (struct objfile *objfile)
5847 {
5848 struct dwarf2_per_objfile *dwarf2_per_objfile
5849 = get_dwarf2_per_objfile (objfile);
5850
5851 init_psymbol_list (objfile, 1024);
5852
5853 try
5854 {
5855 /* This isn't really ideal: all the data we allocate on the
5856 objfile's obstack is still uselessly kept around. However,
5857 freeing it seems unsafe. */
5858 psymtab_discarder psymtabs (objfile);
5859 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5860 psymtabs.keep ();
5861
5862 /* (maybe) store an index in the cache. */
5863 global_index_cache.store (dwarf2_per_objfile);
5864 }
5865 catch (const gdb_exception_error &except)
5866 {
5867 exception_print (gdb_stderr, except);
5868 }
5869 }
5870
5871 /* Find the base address of the compilation unit for range lists and
5872 location lists. It will normally be specified by DW_AT_low_pc.
5873 In DWARF-3 draft 4, the base address could be overridden by
5874 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5875 compilation units with discontinuous ranges. */
5876
5877 static void
5878 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5879 {
5880 struct attribute *attr;
5881
5882 cu->base_address.reset ();
5883
5884 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5885 if (attr != nullptr)
5886 cu->base_address = attr->value_as_address ();
5887 else
5888 {
5889 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5890 if (attr != nullptr)
5891 cu->base_address = attr->value_as_address ();
5892 }
5893 }
5894
5895 /* Helper function that returns the proper abbrev section for
5896 THIS_CU. */
5897
5898 static struct dwarf2_section_info *
5899 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5900 {
5901 struct dwarf2_section_info *abbrev;
5902 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5903
5904 if (this_cu->is_dwz)
5905 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5906 else
5907 abbrev = &dwarf2_per_objfile->abbrev;
5908
5909 return abbrev;
5910 }
5911
5912 /* Fetch the abbreviation table offset from a comp or type unit header. */
5913
5914 static sect_offset
5915 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5916 struct dwarf2_section_info *section,
5917 sect_offset sect_off)
5918 {
5919 bfd *abfd = section->get_bfd_owner ();
5920 const gdb_byte *info_ptr;
5921 unsigned int initial_length_size, offset_size;
5922 uint16_t version;
5923
5924 section->read (dwarf2_per_objfile->objfile);
5925 info_ptr = section->buffer + to_underlying (sect_off);
5926 read_initial_length (abfd, info_ptr, &initial_length_size);
5927 offset_size = initial_length_size == 4 ? 4 : 8;
5928 info_ptr += initial_length_size;
5929
5930 version = read_2_bytes (abfd, info_ptr);
5931 info_ptr += 2;
5932 if (version >= 5)
5933 {
5934 /* Skip unit type and address size. */
5935 info_ptr += 2;
5936 }
5937
5938 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5939 }
5940
5941 /* A partial symtab that is used only for include files. */
5942 struct dwarf2_include_psymtab : public partial_symtab
5943 {
5944 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5945 : partial_symtab (filename, objfile)
5946 {
5947 }
5948
5949 void read_symtab (struct objfile *objfile) override
5950 {
5951 /* It's an include file, no symbols to read for it.
5952 Everything is in the includer symtab. */
5953
5954 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5955 expansion of the includer psymtab. We use the dependencies[0] field to
5956 model the includer. But if we go the regular route of calling
5957 expand_psymtab here, and having expand_psymtab call expand_dependencies
5958 to expand the includer, we'll only use expand_psymtab on the includer
5959 (making it a non-toplevel psymtab), while if we expand the includer via
5960 another path, we'll use read_symtab (making it a toplevel psymtab).
5961 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5962 psymtab, and trigger read_symtab on the includer here directly. */
5963 includer ()->read_symtab (objfile);
5964 }
5965
5966 void expand_psymtab (struct objfile *objfile) override
5967 {
5968 /* This is not called by read_symtab, and should not be called by any
5969 expand_dependencies. */
5970 gdb_assert (false);
5971 }
5972
5973 bool readin_p () const override
5974 {
5975 return includer ()->readin_p ();
5976 }
5977
5978 struct compunit_symtab *get_compunit_symtab () const override
5979 {
5980 return nullptr;
5981 }
5982
5983 private:
5984 partial_symtab *includer () const
5985 {
5986 /* An include psymtab has exactly one dependency: the psymtab that
5987 includes it. */
5988 gdb_assert (this->number_of_dependencies == 1);
5989 return this->dependencies[0];
5990 }
5991 };
5992
5993 /* Allocate a new partial symtab for file named NAME and mark this new
5994 partial symtab as being an include of PST. */
5995
5996 static void
5997 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5998 struct objfile *objfile)
5999 {
6000 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6001
6002 if (!IS_ABSOLUTE_PATH (subpst->filename))
6003 {
6004 /* It shares objfile->objfile_obstack. */
6005 subpst->dirname = pst->dirname;
6006 }
6007
6008 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6009 subpst->dependencies[0] = pst;
6010 subpst->number_of_dependencies = 1;
6011 }
6012
6013 /* Read the Line Number Program data and extract the list of files
6014 included by the source file represented by PST. Build an include
6015 partial symtab for each of these included files. */
6016
6017 static void
6018 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6019 struct die_info *die,
6020 dwarf2_psymtab *pst)
6021 {
6022 line_header_up lh;
6023 struct attribute *attr;
6024
6025 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6026 if (attr != nullptr)
6027 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6028 if (lh == NULL)
6029 return; /* No linetable, so no includes. */
6030
6031 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6032 that we pass in the raw text_low here; that is ok because we're
6033 only decoding the line table to make include partial symtabs, and
6034 so the addresses aren't really used. */
6035 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6036 pst->raw_text_low (), 1);
6037 }
6038
6039 static hashval_t
6040 hash_signatured_type (const void *item)
6041 {
6042 const struct signatured_type *sig_type
6043 = (const struct signatured_type *) item;
6044
6045 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6046 return sig_type->signature;
6047 }
6048
6049 static int
6050 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6051 {
6052 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6053 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6054
6055 return lhs->signature == rhs->signature;
6056 }
6057
6058 /* Allocate a hash table for signatured types. */
6059
6060 static htab_up
6061 allocate_signatured_type_table ()
6062 {
6063 return htab_up (htab_create_alloc (41,
6064 hash_signatured_type,
6065 eq_signatured_type,
6066 NULL, xcalloc, xfree));
6067 }
6068
6069 /* A helper function to add a signatured type CU to a table. */
6070
6071 static int
6072 add_signatured_type_cu_to_table (void **slot, void *datum)
6073 {
6074 struct signatured_type *sigt = (struct signatured_type *) *slot;
6075 std::vector<signatured_type *> *all_type_units
6076 = (std::vector<signatured_type *> *) datum;
6077
6078 all_type_units->push_back (sigt);
6079
6080 return 1;
6081 }
6082
6083 /* A helper for create_debug_types_hash_table. Read types from SECTION
6084 and fill them into TYPES_HTAB. It will process only type units,
6085 therefore DW_UT_type. */
6086
6087 static void
6088 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6089 struct dwo_file *dwo_file,
6090 dwarf2_section_info *section, htab_up &types_htab,
6091 rcuh_kind section_kind)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_section_info *abbrev_section;
6095 bfd *abfd;
6096 const gdb_byte *info_ptr, *end_ptr;
6097
6098 abbrev_section = (dwo_file != NULL
6099 ? &dwo_file->sections.abbrev
6100 : &dwarf2_per_objfile->abbrev);
6101
6102 if (dwarf_read_debug)
6103 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6104 section->get_name (),
6105 abbrev_section->get_file_name ());
6106
6107 section->read (objfile);
6108 info_ptr = section->buffer;
6109
6110 if (info_ptr == NULL)
6111 return;
6112
6113 /* We can't set abfd until now because the section may be empty or
6114 not present, in which case the bfd is unknown. */
6115 abfd = section->get_bfd_owner ();
6116
6117 /* We don't use cutu_reader here because we don't need to read
6118 any dies: the signature is in the header. */
6119
6120 end_ptr = info_ptr + section->size;
6121 while (info_ptr < end_ptr)
6122 {
6123 struct signatured_type *sig_type;
6124 struct dwo_unit *dwo_tu;
6125 void **slot;
6126 const gdb_byte *ptr = info_ptr;
6127 struct comp_unit_head header;
6128 unsigned int length;
6129
6130 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6131
6132 /* Initialize it due to a false compiler warning. */
6133 header.signature = -1;
6134 header.type_cu_offset_in_tu = (cu_offset) -1;
6135
6136 /* We need to read the type's signature in order to build the hash
6137 table, but we don't need anything else just yet. */
6138
6139 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6140 abbrev_section, ptr, section_kind);
6141
6142 length = header.get_length ();
6143
6144 /* Skip dummy type units. */
6145 if (ptr >= info_ptr + length
6146 || peek_abbrev_code (abfd, ptr) == 0
6147 || header.unit_type != DW_UT_type)
6148 {
6149 info_ptr += length;
6150 continue;
6151 }
6152
6153 if (types_htab == NULL)
6154 {
6155 if (dwo_file)
6156 types_htab = allocate_dwo_unit_table ();
6157 else
6158 types_htab = allocate_signatured_type_table ();
6159 }
6160
6161 if (dwo_file)
6162 {
6163 sig_type = NULL;
6164 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6165 struct dwo_unit);
6166 dwo_tu->dwo_file = dwo_file;
6167 dwo_tu->signature = header.signature;
6168 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6169 dwo_tu->section = section;
6170 dwo_tu->sect_off = sect_off;
6171 dwo_tu->length = length;
6172 }
6173 else
6174 {
6175 /* N.B.: type_offset is not usable if this type uses a DWO file.
6176 The real type_offset is in the DWO file. */
6177 dwo_tu = NULL;
6178 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6179 struct signatured_type);
6180 sig_type->signature = header.signature;
6181 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6182 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6183 sig_type->per_cu.is_debug_types = 1;
6184 sig_type->per_cu.section = section;
6185 sig_type->per_cu.sect_off = sect_off;
6186 sig_type->per_cu.length = length;
6187 }
6188
6189 slot = htab_find_slot (types_htab.get (),
6190 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6191 INSERT);
6192 gdb_assert (slot != NULL);
6193 if (*slot != NULL)
6194 {
6195 sect_offset dup_sect_off;
6196
6197 if (dwo_file)
6198 {
6199 const struct dwo_unit *dup_tu
6200 = (const struct dwo_unit *) *slot;
6201
6202 dup_sect_off = dup_tu->sect_off;
6203 }
6204 else
6205 {
6206 const struct signatured_type *dup_tu
6207 = (const struct signatured_type *) *slot;
6208
6209 dup_sect_off = dup_tu->per_cu.sect_off;
6210 }
6211
6212 complaint (_("debug type entry at offset %s is duplicate to"
6213 " the entry at offset %s, signature %s"),
6214 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6215 hex_string (header.signature));
6216 }
6217 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6218
6219 if (dwarf_read_debug > 1)
6220 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6221 sect_offset_str (sect_off),
6222 hex_string (header.signature));
6223
6224 info_ptr += length;
6225 }
6226 }
6227
6228 /* Create the hash table of all entries in the .debug_types
6229 (or .debug_types.dwo) section(s).
6230 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6231 otherwise it is NULL.
6232
6233 The result is a pointer to the hash table or NULL if there are no types.
6234
6235 Note: This function processes DWO files only, not DWP files. */
6236
6237 static void
6238 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6239 struct dwo_file *dwo_file,
6240 gdb::array_view<dwarf2_section_info> type_sections,
6241 htab_up &types_htab)
6242 {
6243 for (dwarf2_section_info &section : type_sections)
6244 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6245 types_htab, rcuh_kind::TYPE);
6246 }
6247
6248 /* Create the hash table of all entries in the .debug_types section,
6249 and initialize all_type_units.
6250 The result is zero if there is an error (e.g. missing .debug_types section),
6251 otherwise non-zero. */
6252
6253 static int
6254 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6255 {
6256 htab_up types_htab;
6257
6258 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6259 &dwarf2_per_objfile->info, types_htab,
6260 rcuh_kind::COMPILE);
6261 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6262 dwarf2_per_objfile->types, types_htab);
6263 if (types_htab == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types = NULL;
6266 return 0;
6267 }
6268
6269 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6270
6271 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6272 dwarf2_per_objfile->all_type_units.reserve
6273 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6274
6275 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6276 add_signatured_type_cu_to_table,
6277 &dwarf2_per_objfile->all_type_units);
6278
6279 return 1;
6280 }
6281
6282 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6283 If SLOT is non-NULL, it is the entry to use in the hash table.
6284 Otherwise we find one. */
6285
6286 static struct signatured_type *
6287 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6288 void **slot)
6289 {
6290 struct objfile *objfile = dwarf2_per_objfile->objfile;
6291
6292 if (dwarf2_per_objfile->all_type_units.size ()
6293 == dwarf2_per_objfile->all_type_units.capacity ())
6294 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6295
6296 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6297 struct signatured_type);
6298
6299 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6300 sig_type->signature = sig;
6301 sig_type->per_cu.is_debug_types = 1;
6302 if (dwarf2_per_objfile->using_index)
6303 {
6304 sig_type->per_cu.v.quick =
6305 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6306 struct dwarf2_per_cu_quick_data);
6307 }
6308
6309 if (slot == NULL)
6310 {
6311 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6312 sig_type, INSERT);
6313 }
6314 gdb_assert (*slot == NULL);
6315 *slot = sig_type;
6316 /* The rest of sig_type must be filled in by the caller. */
6317 return sig_type;
6318 }
6319
6320 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6321 Fill in SIG_ENTRY with DWO_ENTRY. */
6322
6323 static void
6324 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6325 struct signatured_type *sig_entry,
6326 struct dwo_unit *dwo_entry)
6327 {
6328 /* Make sure we're not clobbering something we don't expect to. */
6329 gdb_assert (! sig_entry->per_cu.queued);
6330 gdb_assert (sig_entry->per_cu.cu == NULL);
6331 if (dwarf2_per_objfile->using_index)
6332 {
6333 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6334 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6335 }
6336 else
6337 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6338 gdb_assert (sig_entry->signature == dwo_entry->signature);
6339 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6340 gdb_assert (sig_entry->type_unit_group == NULL);
6341 gdb_assert (sig_entry->dwo_unit == NULL);
6342
6343 sig_entry->per_cu.section = dwo_entry->section;
6344 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6345 sig_entry->per_cu.length = dwo_entry->length;
6346 sig_entry->per_cu.reading_dwo_directly = 1;
6347 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6348 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6349 sig_entry->dwo_unit = dwo_entry;
6350 }
6351
6352 /* Subroutine of lookup_signatured_type.
6353 If we haven't read the TU yet, create the signatured_type data structure
6354 for a TU to be read in directly from a DWO file, bypassing the stub.
6355 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6356 using .gdb_index, then when reading a CU we want to stay in the DWO file
6357 containing that CU. Otherwise we could end up reading several other DWO
6358 files (due to comdat folding) to process the transitive closure of all the
6359 mentioned TUs, and that can be slow. The current DWO file will have every
6360 type signature that it needs.
6361 We only do this for .gdb_index because in the psymtab case we already have
6362 to read all the DWOs to build the type unit groups. */
6363
6364 static struct signatured_type *
6365 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6366 {
6367 struct dwarf2_per_objfile *dwarf2_per_objfile
6368 = cu->per_cu->dwarf2_per_objfile;
6369 struct dwo_file *dwo_file;
6370 struct dwo_unit find_dwo_entry, *dwo_entry;
6371 struct signatured_type find_sig_entry, *sig_entry;
6372 void **slot;
6373
6374 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6375
6376 /* If TU skeletons have been removed then we may not have read in any
6377 TUs yet. */
6378 if (dwarf2_per_objfile->signatured_types == NULL)
6379 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6380
6381 /* We only ever need to read in one copy of a signatured type.
6382 Use the global signatured_types array to do our own comdat-folding
6383 of types. If this is the first time we're reading this TU, and
6384 the TU has an entry in .gdb_index, replace the recorded data from
6385 .gdb_index with this TU. */
6386
6387 find_sig_entry.signature = sig;
6388 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6389 &find_sig_entry, INSERT);
6390 sig_entry = (struct signatured_type *) *slot;
6391
6392 /* We can get here with the TU already read, *or* in the process of being
6393 read. Don't reassign the global entry to point to this DWO if that's
6394 the case. Also note that if the TU is already being read, it may not
6395 have come from a DWO, the program may be a mix of Fission-compiled
6396 code and non-Fission-compiled code. */
6397
6398 /* Have we already tried to read this TU?
6399 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6400 needn't exist in the global table yet). */
6401 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6402 return sig_entry;
6403
6404 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6405 dwo_unit of the TU itself. */
6406 dwo_file = cu->dwo_unit->dwo_file;
6407
6408 /* Ok, this is the first time we're reading this TU. */
6409 if (dwo_file->tus == NULL)
6410 return NULL;
6411 find_dwo_entry.signature = sig;
6412 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6413 &find_dwo_entry);
6414 if (dwo_entry == NULL)
6415 return NULL;
6416
6417 /* If the global table doesn't have an entry for this TU, add one. */
6418 if (sig_entry == NULL)
6419 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6420
6421 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6422 sig_entry->per_cu.tu_read = 1;
6423 return sig_entry;
6424 }
6425
6426 /* Subroutine of lookup_signatured_type.
6427 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6428 then try the DWP file. If the TU stub (skeleton) has been removed then
6429 it won't be in .gdb_index. */
6430
6431 static struct signatured_type *
6432 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6433 {
6434 struct dwarf2_per_objfile *dwarf2_per_objfile
6435 = cu->per_cu->dwarf2_per_objfile;
6436 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6437 struct dwo_unit *dwo_entry;
6438 struct signatured_type find_sig_entry, *sig_entry;
6439 void **slot;
6440
6441 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6442 gdb_assert (dwp_file != NULL);
6443
6444 /* If TU skeletons have been removed then we may not have read in any
6445 TUs yet. */
6446 if (dwarf2_per_objfile->signatured_types == NULL)
6447 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6448
6449 find_sig_entry.signature = sig;
6450 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6451 &find_sig_entry, INSERT);
6452 sig_entry = (struct signatured_type *) *slot;
6453
6454 /* Have we already tried to read this TU?
6455 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6456 needn't exist in the global table yet). */
6457 if (sig_entry != NULL)
6458 return sig_entry;
6459
6460 if (dwp_file->tus == NULL)
6461 return NULL;
6462 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6463 sig, 1 /* is_debug_types */);
6464 if (dwo_entry == NULL)
6465 return NULL;
6466
6467 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6468 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6469
6470 return sig_entry;
6471 }
6472
6473 /* Lookup a signature based type for DW_FORM_ref_sig8.
6474 Returns NULL if signature SIG is not present in the table.
6475 It is up to the caller to complain about this. */
6476
6477 static struct signatured_type *
6478 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6479 {
6480 struct dwarf2_per_objfile *dwarf2_per_objfile
6481 = cu->per_cu->dwarf2_per_objfile;
6482
6483 if (cu->dwo_unit
6484 && dwarf2_per_objfile->using_index)
6485 {
6486 /* We're in a DWO/DWP file, and we're using .gdb_index.
6487 These cases require special processing. */
6488 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6489 return lookup_dwo_signatured_type (cu, sig);
6490 else
6491 return lookup_dwp_signatured_type (cu, sig);
6492 }
6493 else
6494 {
6495 struct signatured_type find_entry, *entry;
6496
6497 if (dwarf2_per_objfile->signatured_types == NULL)
6498 return NULL;
6499 find_entry.signature = sig;
6500 entry = ((struct signatured_type *)
6501 htab_find (dwarf2_per_objfile->signatured_types.get (),
6502 &find_entry));
6503 return entry;
6504 }
6505 }
6506
6507 /* Low level DIE reading support. */
6508
6509 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6510
6511 static void
6512 init_cu_die_reader (struct die_reader_specs *reader,
6513 struct dwarf2_cu *cu,
6514 struct dwarf2_section_info *section,
6515 struct dwo_file *dwo_file,
6516 struct abbrev_table *abbrev_table)
6517 {
6518 gdb_assert (section->readin && section->buffer != NULL);
6519 reader->abfd = section->get_bfd_owner ();
6520 reader->cu = cu;
6521 reader->dwo_file = dwo_file;
6522 reader->die_section = section;
6523 reader->buffer = section->buffer;
6524 reader->buffer_end = section->buffer + section->size;
6525 reader->abbrev_table = abbrev_table;
6526 }
6527
6528 /* Subroutine of cutu_reader to simplify it.
6529 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6530 There's just a lot of work to do, and cutu_reader is big enough
6531 already.
6532
6533 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6534 from it to the DIE in the DWO. If NULL we are skipping the stub.
6535 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6536 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6537 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6538 STUB_COMP_DIR may be non-NULL.
6539 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6540 are filled in with the info of the DIE from the DWO file.
6541 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6542 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6543 kept around for at least as long as *RESULT_READER.
6544
6545 The result is non-zero if a valid (non-dummy) DIE was found. */
6546
6547 static int
6548 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6549 struct dwo_unit *dwo_unit,
6550 struct die_info *stub_comp_unit_die,
6551 const char *stub_comp_dir,
6552 struct die_reader_specs *result_reader,
6553 const gdb_byte **result_info_ptr,
6554 struct die_info **result_comp_unit_die,
6555 abbrev_table_up *result_dwo_abbrev_table)
6556 {
6557 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6558 struct objfile *objfile = dwarf2_per_objfile->objfile;
6559 struct dwarf2_cu *cu = this_cu->cu;
6560 bfd *abfd;
6561 const gdb_byte *begin_info_ptr, *info_ptr;
6562 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6563 int i,num_extra_attrs;
6564 struct dwarf2_section_info *dwo_abbrev_section;
6565 struct die_info *comp_unit_die;
6566
6567 /* At most one of these may be provided. */
6568 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6569
6570 /* These attributes aren't processed until later:
6571 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6572 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6573 referenced later. However, these attributes are found in the stub
6574 which we won't have later. In order to not impose this complication
6575 on the rest of the code, we read them here and copy them to the
6576 DWO CU/TU die. */
6577
6578 stmt_list = NULL;
6579 low_pc = NULL;
6580 high_pc = NULL;
6581 ranges = NULL;
6582 comp_dir = NULL;
6583
6584 if (stub_comp_unit_die != NULL)
6585 {
6586 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6587 DWO file. */
6588 if (! this_cu->is_debug_types)
6589 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6590 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6591 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6592 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6593 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6594
6595 cu->addr_base = stub_comp_unit_die->addr_base ();
6596
6597 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6598 here (if needed). We need the value before we can process
6599 DW_AT_ranges. */
6600 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6601 }
6602 else if (stub_comp_dir != NULL)
6603 {
6604 /* Reconstruct the comp_dir attribute to simplify the code below. */
6605 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6606 comp_dir->name = DW_AT_comp_dir;
6607 comp_dir->form = DW_FORM_string;
6608 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6609 DW_STRING (comp_dir) = stub_comp_dir;
6610 }
6611
6612 /* Set up for reading the DWO CU/TU. */
6613 cu->dwo_unit = dwo_unit;
6614 dwarf2_section_info *section = dwo_unit->section;
6615 section->read (objfile);
6616 abfd = section->get_bfd_owner ();
6617 begin_info_ptr = info_ptr = (section->buffer
6618 + to_underlying (dwo_unit->sect_off));
6619 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6620
6621 if (this_cu->is_debug_types)
6622 {
6623 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6624
6625 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6626 &cu->header, section,
6627 dwo_abbrev_section,
6628 info_ptr, rcuh_kind::TYPE);
6629 /* This is not an assert because it can be caused by bad debug info. */
6630 if (sig_type->signature != cu->header.signature)
6631 {
6632 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6633 " TU at offset %s [in module %s]"),
6634 hex_string (sig_type->signature),
6635 hex_string (cu->header.signature),
6636 sect_offset_str (dwo_unit->sect_off),
6637 bfd_get_filename (abfd));
6638 }
6639 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6640 /* For DWOs coming from DWP files, we don't know the CU length
6641 nor the type's offset in the TU until now. */
6642 dwo_unit->length = cu->header.get_length ();
6643 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6644
6645 /* Establish the type offset that can be used to lookup the type.
6646 For DWO files, we don't know it until now. */
6647 sig_type->type_offset_in_section
6648 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6649 }
6650 else
6651 {
6652 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6653 &cu->header, section,
6654 dwo_abbrev_section,
6655 info_ptr, rcuh_kind::COMPILE);
6656 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6657 /* For DWOs coming from DWP files, we don't know the CU length
6658 until now. */
6659 dwo_unit->length = cu->header.get_length ();
6660 }
6661
6662 *result_dwo_abbrev_table
6663 = abbrev_table::read (objfile, dwo_abbrev_section,
6664 cu->header.abbrev_sect_off);
6665 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6666 result_dwo_abbrev_table->get ());
6667
6668 /* Read in the die, but leave space to copy over the attributes
6669 from the stub. This has the benefit of simplifying the rest of
6670 the code - all the work to maintain the illusion of a single
6671 DW_TAG_{compile,type}_unit DIE is done here. */
6672 num_extra_attrs = ((stmt_list != NULL)
6673 + (low_pc != NULL)
6674 + (high_pc != NULL)
6675 + (ranges != NULL)
6676 + (comp_dir != NULL));
6677 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6678 num_extra_attrs);
6679
6680 /* Copy over the attributes from the stub to the DIE we just read in. */
6681 comp_unit_die = *result_comp_unit_die;
6682 i = comp_unit_die->num_attrs;
6683 if (stmt_list != NULL)
6684 comp_unit_die->attrs[i++] = *stmt_list;
6685 if (low_pc != NULL)
6686 comp_unit_die->attrs[i++] = *low_pc;
6687 if (high_pc != NULL)
6688 comp_unit_die->attrs[i++] = *high_pc;
6689 if (ranges != NULL)
6690 comp_unit_die->attrs[i++] = *ranges;
6691 if (comp_dir != NULL)
6692 comp_unit_die->attrs[i++] = *comp_dir;
6693 comp_unit_die->num_attrs += num_extra_attrs;
6694
6695 if (dwarf_die_debug)
6696 {
6697 fprintf_unfiltered (gdb_stdlog,
6698 "Read die from %s@0x%x of %s:\n",
6699 section->get_name (),
6700 (unsigned) (begin_info_ptr - section->buffer),
6701 bfd_get_filename (abfd));
6702 dump_die (comp_unit_die, dwarf_die_debug);
6703 }
6704
6705 /* Skip dummy compilation units. */
6706 if (info_ptr >= begin_info_ptr + dwo_unit->length
6707 || peek_abbrev_code (abfd, info_ptr) == 0)
6708 return 0;
6709
6710 *result_info_ptr = info_ptr;
6711 return 1;
6712 }
6713
6714 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6715 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6716 signature is part of the header. */
6717 static gdb::optional<ULONGEST>
6718 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6719 {
6720 if (cu->header.version >= 5)
6721 return cu->header.signature;
6722 struct attribute *attr;
6723 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6724 if (attr == nullptr)
6725 return gdb::optional<ULONGEST> ();
6726 return DW_UNSND (attr);
6727 }
6728
6729 /* Subroutine of cutu_reader to simplify it.
6730 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6731 Returns NULL if the specified DWO unit cannot be found. */
6732
6733 static struct dwo_unit *
6734 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6735 struct die_info *comp_unit_die,
6736 const char *dwo_name)
6737 {
6738 struct dwarf2_cu *cu = this_cu->cu;
6739 struct dwo_unit *dwo_unit;
6740 const char *comp_dir;
6741
6742 gdb_assert (cu != NULL);
6743
6744 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6745 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6746 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6747
6748 if (this_cu->is_debug_types)
6749 {
6750 struct signatured_type *sig_type;
6751
6752 /* Since this_cu is the first member of struct signatured_type,
6753 we can go from a pointer to one to a pointer to the other. */
6754 sig_type = (struct signatured_type *) this_cu;
6755 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6756 }
6757 else
6758 {
6759 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6760 if (!signature.has_value ())
6761 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6762 " [in module %s]"),
6763 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6764 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6765 *signature);
6766 }
6767
6768 return dwo_unit;
6769 }
6770
6771 /* Subroutine of cutu_reader to simplify it.
6772 See it for a description of the parameters.
6773 Read a TU directly from a DWO file, bypassing the stub. */
6774
6775 void
6776 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6777 int use_existing_cu)
6778 {
6779 struct signatured_type *sig_type;
6780
6781 /* Verify we can do the following downcast, and that we have the
6782 data we need. */
6783 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6784 sig_type = (struct signatured_type *) this_cu;
6785 gdb_assert (sig_type->dwo_unit != NULL);
6786
6787 if (use_existing_cu && this_cu->cu != NULL)
6788 {
6789 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6790 /* There's no need to do the rereading_dwo_cu handling that
6791 cutu_reader does since we don't read the stub. */
6792 }
6793 else
6794 {
6795 /* If !use_existing_cu, this_cu->cu must be NULL. */
6796 gdb_assert (this_cu->cu == NULL);
6797 m_new_cu.reset (new dwarf2_cu (this_cu));
6798 }
6799
6800 /* A future optimization, if needed, would be to use an existing
6801 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6802 could share abbrev tables. */
6803
6804 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6805 NULL /* stub_comp_unit_die */,
6806 sig_type->dwo_unit->dwo_file->comp_dir,
6807 this, &info_ptr,
6808 &comp_unit_die,
6809 &m_dwo_abbrev_table) == 0)
6810 {
6811 /* Dummy die. */
6812 dummy_p = true;
6813 }
6814 }
6815
6816 /* Initialize a CU (or TU) and read its DIEs.
6817 If the CU defers to a DWO file, read the DWO file as well.
6818
6819 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6820 Otherwise the table specified in the comp unit header is read in and used.
6821 This is an optimization for when we already have the abbrev table.
6822
6823 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6824 Otherwise, a new CU is allocated with xmalloc. */
6825
6826 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6827 struct abbrev_table *abbrev_table,
6828 int use_existing_cu,
6829 bool skip_partial)
6830 : die_reader_specs {},
6831 m_this_cu (this_cu)
6832 {
6833 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6834 struct objfile *objfile = dwarf2_per_objfile->objfile;
6835 struct dwarf2_section_info *section = this_cu->section;
6836 bfd *abfd = section->get_bfd_owner ();
6837 struct dwarf2_cu *cu;
6838 const gdb_byte *begin_info_ptr;
6839 struct signatured_type *sig_type = NULL;
6840 struct dwarf2_section_info *abbrev_section;
6841 /* Non-zero if CU currently points to a DWO file and we need to
6842 reread it. When this happens we need to reread the skeleton die
6843 before we can reread the DWO file (this only applies to CUs, not TUs). */
6844 int rereading_dwo_cu = 0;
6845
6846 if (dwarf_die_debug)
6847 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6848 this_cu->is_debug_types ? "type" : "comp",
6849 sect_offset_str (this_cu->sect_off));
6850
6851 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6852 file (instead of going through the stub), short-circuit all of this. */
6853 if (this_cu->reading_dwo_directly)
6854 {
6855 /* Narrow down the scope of possibilities to have to understand. */
6856 gdb_assert (this_cu->is_debug_types);
6857 gdb_assert (abbrev_table == NULL);
6858 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6859 return;
6860 }
6861
6862 /* This is cheap if the section is already read in. */
6863 section->read (objfile);
6864
6865 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6866
6867 abbrev_section = get_abbrev_section_for_cu (this_cu);
6868
6869 if (use_existing_cu && this_cu->cu != NULL)
6870 {
6871 cu = this_cu->cu;
6872 /* If this CU is from a DWO file we need to start over, we need to
6873 refetch the attributes from the skeleton CU.
6874 This could be optimized by retrieving those attributes from when we
6875 were here the first time: the previous comp_unit_die was stored in
6876 comp_unit_obstack. But there's no data yet that we need this
6877 optimization. */
6878 if (cu->dwo_unit != NULL)
6879 rereading_dwo_cu = 1;
6880 }
6881 else
6882 {
6883 /* If !use_existing_cu, this_cu->cu must be NULL. */
6884 gdb_assert (this_cu->cu == NULL);
6885 m_new_cu.reset (new dwarf2_cu (this_cu));
6886 cu = m_new_cu.get ();
6887 }
6888
6889 /* Get the header. */
6890 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6891 {
6892 /* We already have the header, there's no need to read it in again. */
6893 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6894 }
6895 else
6896 {
6897 if (this_cu->is_debug_types)
6898 {
6899 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6900 &cu->header, section,
6901 abbrev_section, info_ptr,
6902 rcuh_kind::TYPE);
6903
6904 /* Since per_cu is the first member of struct signatured_type,
6905 we can go from a pointer to one to a pointer to the other. */
6906 sig_type = (struct signatured_type *) this_cu;
6907 gdb_assert (sig_type->signature == cu->header.signature);
6908 gdb_assert (sig_type->type_offset_in_tu
6909 == cu->header.type_cu_offset_in_tu);
6910 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6911
6912 /* LENGTH has not been set yet for type units if we're
6913 using .gdb_index. */
6914 this_cu->length = cu->header.get_length ();
6915
6916 /* Establish the type offset that can be used to lookup the type. */
6917 sig_type->type_offset_in_section =
6918 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6919
6920 this_cu->dwarf_version = cu->header.version;
6921 }
6922 else
6923 {
6924 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6925 &cu->header, section,
6926 abbrev_section,
6927 info_ptr,
6928 rcuh_kind::COMPILE);
6929
6930 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6931 gdb_assert (this_cu->length == cu->header.get_length ());
6932 this_cu->dwarf_version = cu->header.version;
6933 }
6934 }
6935
6936 /* Skip dummy compilation units. */
6937 if (info_ptr >= begin_info_ptr + this_cu->length
6938 || peek_abbrev_code (abfd, info_ptr) == 0)
6939 {
6940 dummy_p = true;
6941 return;
6942 }
6943
6944 /* If we don't have them yet, read the abbrevs for this compilation unit.
6945 And if we need to read them now, make sure they're freed when we're
6946 done. */
6947 if (abbrev_table != NULL)
6948 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6949 else
6950 {
6951 m_abbrev_table_holder
6952 = abbrev_table::read (objfile, abbrev_section,
6953 cu->header.abbrev_sect_off);
6954 abbrev_table = m_abbrev_table_holder.get ();
6955 }
6956
6957 /* Read the top level CU/TU die. */
6958 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6959 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6960
6961 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6962 {
6963 dummy_p = true;
6964 return;
6965 }
6966
6967 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6968 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6969 table from the DWO file and pass the ownership over to us. It will be
6970 referenced from READER, so we must make sure to free it after we're done
6971 with READER.
6972
6973 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6974 DWO CU, that this test will fail (the attribute will not be present). */
6975 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6976 if (dwo_name != nullptr)
6977 {
6978 struct dwo_unit *dwo_unit;
6979 struct die_info *dwo_comp_unit_die;
6980
6981 if (comp_unit_die->has_children)
6982 {
6983 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6984 " has children (offset %s) [in module %s]"),
6985 sect_offset_str (this_cu->sect_off),
6986 bfd_get_filename (abfd));
6987 }
6988 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6989 if (dwo_unit != NULL)
6990 {
6991 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6992 comp_unit_die, NULL,
6993 this, &info_ptr,
6994 &dwo_comp_unit_die,
6995 &m_dwo_abbrev_table) == 0)
6996 {
6997 /* Dummy die. */
6998 dummy_p = true;
6999 return;
7000 }
7001 comp_unit_die = dwo_comp_unit_die;
7002 }
7003 else
7004 {
7005 /* Yikes, we couldn't find the rest of the DIE, we only have
7006 the stub. A complaint has already been logged. There's
7007 not much more we can do except pass on the stub DIE to
7008 die_reader_func. We don't want to throw an error on bad
7009 debug info. */
7010 }
7011 }
7012 }
7013
7014 void
7015 cutu_reader::keep ()
7016 {
7017 /* Done, clean up. */
7018 gdb_assert (!dummy_p);
7019 if (m_new_cu != NULL)
7020 {
7021 struct dwarf2_per_objfile *dwarf2_per_objfile
7022 = m_this_cu->dwarf2_per_objfile;
7023 /* Link this CU into read_in_chain. */
7024 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7025 dwarf2_per_objfile->read_in_chain = m_this_cu;
7026 /* The chain owns it now. */
7027 m_new_cu.release ();
7028 }
7029 }
7030
7031 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7032 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7033 assumed to have already done the lookup to find the DWO file).
7034
7035 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7036 THIS_CU->is_debug_types, but nothing else.
7037
7038 We fill in THIS_CU->length.
7039
7040 THIS_CU->cu is always freed when done.
7041 This is done in order to not leave THIS_CU->cu in a state where we have
7042 to care whether it refers to the "main" CU or the DWO CU.
7043
7044 When parent_cu is passed, it is used to provide a default value for
7045 str_offsets_base and addr_base from the parent. */
7046
7047 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7048 struct dwarf2_cu *parent_cu,
7049 struct dwo_file *dwo_file)
7050 : die_reader_specs {},
7051 m_this_cu (this_cu)
7052 {
7053 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7054 struct objfile *objfile = dwarf2_per_objfile->objfile;
7055 struct dwarf2_section_info *section = this_cu->section;
7056 bfd *abfd = section->get_bfd_owner ();
7057 struct dwarf2_section_info *abbrev_section;
7058 const gdb_byte *begin_info_ptr, *info_ptr;
7059
7060 if (dwarf_die_debug)
7061 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7062 this_cu->is_debug_types ? "type" : "comp",
7063 sect_offset_str (this_cu->sect_off));
7064
7065 gdb_assert (this_cu->cu == NULL);
7066
7067 abbrev_section = (dwo_file != NULL
7068 ? &dwo_file->sections.abbrev
7069 : get_abbrev_section_for_cu (this_cu));
7070
7071 /* This is cheap if the section is already read in. */
7072 section->read (objfile);
7073
7074 m_new_cu.reset (new dwarf2_cu (this_cu));
7075
7076 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7077 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7078 &m_new_cu->header, section,
7079 abbrev_section, info_ptr,
7080 (this_cu->is_debug_types
7081 ? rcuh_kind::TYPE
7082 : rcuh_kind::COMPILE));
7083
7084 if (parent_cu != nullptr)
7085 {
7086 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7087 m_new_cu->addr_base = parent_cu->addr_base;
7088 }
7089 this_cu->length = m_new_cu->header.get_length ();
7090
7091 /* Skip dummy compilation units. */
7092 if (info_ptr >= begin_info_ptr + this_cu->length
7093 || peek_abbrev_code (abfd, info_ptr) == 0)
7094 {
7095 dummy_p = true;
7096 return;
7097 }
7098
7099 m_abbrev_table_holder
7100 = abbrev_table::read (objfile, abbrev_section,
7101 m_new_cu->header.abbrev_sect_off);
7102
7103 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7104 m_abbrev_table_holder.get ());
7105 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7106 }
7107
7108 \f
7109 /* Type Unit Groups.
7110
7111 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7112 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7113 so that all types coming from the same compilation (.o file) are grouped
7114 together. A future step could be to put the types in the same symtab as
7115 the CU the types ultimately came from. */
7116
7117 static hashval_t
7118 hash_type_unit_group (const void *item)
7119 {
7120 const struct type_unit_group *tu_group
7121 = (const struct type_unit_group *) item;
7122
7123 return hash_stmt_list_entry (&tu_group->hash);
7124 }
7125
7126 static int
7127 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7128 {
7129 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7130 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7131
7132 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7133 }
7134
7135 /* Allocate a hash table for type unit groups. */
7136
7137 static htab_up
7138 allocate_type_unit_groups_table ()
7139 {
7140 return htab_up (htab_create_alloc (3,
7141 hash_type_unit_group,
7142 eq_type_unit_group,
7143 NULL, xcalloc, xfree));
7144 }
7145
7146 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7147 partial symtabs. We combine several TUs per psymtab to not let the size
7148 of any one psymtab grow too big. */
7149 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7150 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7151
7152 /* Helper routine for get_type_unit_group.
7153 Create the type_unit_group object used to hold one or more TUs. */
7154
7155 static struct type_unit_group *
7156 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7157 {
7158 struct dwarf2_per_objfile *dwarf2_per_objfile
7159 = cu->per_cu->dwarf2_per_objfile;
7160 struct objfile *objfile = dwarf2_per_objfile->objfile;
7161 struct dwarf2_per_cu_data *per_cu;
7162 struct type_unit_group *tu_group;
7163
7164 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7165 struct type_unit_group);
7166 per_cu = &tu_group->per_cu;
7167 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7168
7169 if (dwarf2_per_objfile->using_index)
7170 {
7171 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7172 struct dwarf2_per_cu_quick_data);
7173 }
7174 else
7175 {
7176 unsigned int line_offset = to_underlying (line_offset_struct);
7177 dwarf2_psymtab *pst;
7178 std::string name;
7179
7180 /* Give the symtab a useful name for debug purposes. */
7181 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7182 name = string_printf ("<type_units_%d>",
7183 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7184 else
7185 name = string_printf ("<type_units_at_0x%x>", line_offset);
7186
7187 pst = create_partial_symtab (per_cu, name.c_str ());
7188 pst->anonymous = true;
7189 }
7190
7191 tu_group->hash.dwo_unit = cu->dwo_unit;
7192 tu_group->hash.line_sect_off = line_offset_struct;
7193
7194 return tu_group;
7195 }
7196
7197 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7198 STMT_LIST is a DW_AT_stmt_list attribute. */
7199
7200 static struct type_unit_group *
7201 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7202 {
7203 struct dwarf2_per_objfile *dwarf2_per_objfile
7204 = cu->per_cu->dwarf2_per_objfile;
7205 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7206 struct type_unit_group *tu_group;
7207 void **slot;
7208 unsigned int line_offset;
7209 struct type_unit_group type_unit_group_for_lookup;
7210
7211 if (dwarf2_per_objfile->type_unit_groups == NULL)
7212 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7213
7214 /* Do we need to create a new group, or can we use an existing one? */
7215
7216 if (stmt_list)
7217 {
7218 line_offset = DW_UNSND (stmt_list);
7219 ++tu_stats->nr_symtab_sharers;
7220 }
7221 else
7222 {
7223 /* Ugh, no stmt_list. Rare, but we have to handle it.
7224 We can do various things here like create one group per TU or
7225 spread them over multiple groups to split up the expansion work.
7226 To avoid worst case scenarios (too many groups or too large groups)
7227 we, umm, group them in bunches. */
7228 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7229 | (tu_stats->nr_stmt_less_type_units
7230 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7231 ++tu_stats->nr_stmt_less_type_units;
7232 }
7233
7234 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7235 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7236 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7237 &type_unit_group_for_lookup, INSERT);
7238 if (*slot != NULL)
7239 {
7240 tu_group = (struct type_unit_group *) *slot;
7241 gdb_assert (tu_group != NULL);
7242 }
7243 else
7244 {
7245 sect_offset line_offset_struct = (sect_offset) line_offset;
7246 tu_group = create_type_unit_group (cu, line_offset_struct);
7247 *slot = tu_group;
7248 ++tu_stats->nr_symtabs;
7249 }
7250
7251 return tu_group;
7252 }
7253 \f
7254 /* Partial symbol tables. */
7255
7256 /* Create a psymtab named NAME and assign it to PER_CU.
7257
7258 The caller must fill in the following details:
7259 dirname, textlow, texthigh. */
7260
7261 static dwarf2_psymtab *
7262 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7263 {
7264 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7265 dwarf2_psymtab *pst;
7266
7267 pst = new dwarf2_psymtab (name, objfile, per_cu);
7268
7269 pst->psymtabs_addrmap_supported = true;
7270
7271 /* This is the glue that links PST into GDB's symbol API. */
7272 per_cu->v.psymtab = pst;
7273
7274 return pst;
7275 }
7276
7277 /* DIE reader function for process_psymtab_comp_unit. */
7278
7279 static void
7280 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7281 const gdb_byte *info_ptr,
7282 struct die_info *comp_unit_die,
7283 enum language pretend_language)
7284 {
7285 struct dwarf2_cu *cu = reader->cu;
7286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7287 struct gdbarch *gdbarch = objfile->arch ();
7288 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7289 CORE_ADDR baseaddr;
7290 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7291 dwarf2_psymtab *pst;
7292 enum pc_bounds_kind cu_bounds_kind;
7293 const char *filename;
7294
7295 gdb_assert (! per_cu->is_debug_types);
7296
7297 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7298
7299 /* Allocate a new partial symbol table structure. */
7300 gdb::unique_xmalloc_ptr<char> debug_filename;
7301 static const char artificial[] = "<artificial>";
7302 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7303 if (filename == NULL)
7304 filename = "";
7305 else if (strcmp (filename, artificial) == 0)
7306 {
7307 debug_filename.reset (concat (artificial, "@",
7308 sect_offset_str (per_cu->sect_off),
7309 (char *) NULL));
7310 filename = debug_filename.get ();
7311 }
7312
7313 pst = create_partial_symtab (per_cu, filename);
7314
7315 /* This must be done before calling dwarf2_build_include_psymtabs. */
7316 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7317
7318 baseaddr = objfile->text_section_offset ();
7319
7320 dwarf2_find_base_address (comp_unit_die, cu);
7321
7322 /* Possibly set the default values of LOWPC and HIGHPC from
7323 `DW_AT_ranges'. */
7324 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7325 &best_highpc, cu, pst);
7326 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7327 {
7328 CORE_ADDR low
7329 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7330 - baseaddr);
7331 CORE_ADDR high
7332 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7333 - baseaddr - 1);
7334 /* Store the contiguous range if it is not empty; it can be
7335 empty for CUs with no code. */
7336 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7337 low, high, pst);
7338 }
7339
7340 /* Check if comp unit has_children.
7341 If so, read the rest of the partial symbols from this comp unit.
7342 If not, there's no more debug_info for this comp unit. */
7343 if (comp_unit_die->has_children)
7344 {
7345 struct partial_die_info *first_die;
7346 CORE_ADDR lowpc, highpc;
7347
7348 lowpc = ((CORE_ADDR) -1);
7349 highpc = ((CORE_ADDR) 0);
7350
7351 first_die = load_partial_dies (reader, info_ptr, 1);
7352
7353 scan_partial_symbols (first_die, &lowpc, &highpc,
7354 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7355
7356 /* If we didn't find a lowpc, set it to highpc to avoid
7357 complaints from `maint check'. */
7358 if (lowpc == ((CORE_ADDR) -1))
7359 lowpc = highpc;
7360
7361 /* If the compilation unit didn't have an explicit address range,
7362 then use the information extracted from its child dies. */
7363 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7364 {
7365 best_lowpc = lowpc;
7366 best_highpc = highpc;
7367 }
7368 }
7369 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7370 best_lowpc + baseaddr)
7371 - baseaddr);
7372 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7373 best_highpc + baseaddr)
7374 - baseaddr);
7375
7376 end_psymtab_common (objfile, pst);
7377
7378 if (!cu->per_cu->imported_symtabs_empty ())
7379 {
7380 int i;
7381 int len = cu->per_cu->imported_symtabs_size ();
7382
7383 /* Fill in 'dependencies' here; we fill in 'users' in a
7384 post-pass. */
7385 pst->number_of_dependencies = len;
7386 pst->dependencies
7387 = objfile->partial_symtabs->allocate_dependencies (len);
7388 for (i = 0; i < len; ++i)
7389 {
7390 pst->dependencies[i]
7391 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7392 }
7393
7394 cu->per_cu->imported_symtabs_free ();
7395 }
7396
7397 /* Get the list of files included in the current compilation unit,
7398 and build a psymtab for each of them. */
7399 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7400
7401 if (dwarf_read_debug)
7402 fprintf_unfiltered (gdb_stdlog,
7403 "Psymtab for %s unit @%s: %s - %s"
7404 ", %d global, %d static syms\n",
7405 per_cu->is_debug_types ? "type" : "comp",
7406 sect_offset_str (per_cu->sect_off),
7407 paddress (gdbarch, pst->text_low (objfile)),
7408 paddress (gdbarch, pst->text_high (objfile)),
7409 pst->n_global_syms, pst->n_static_syms);
7410 }
7411
7412 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7413 Process compilation unit THIS_CU for a psymtab. */
7414
7415 static void
7416 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7417 bool want_partial_unit,
7418 enum language pretend_language)
7419 {
7420 /* If this compilation unit was already read in, free the
7421 cached copy in order to read it in again. This is
7422 necessary because we skipped some symbols when we first
7423 read in the compilation unit (see load_partial_dies).
7424 This problem could be avoided, but the benefit is unclear. */
7425 if (this_cu->cu != NULL)
7426 free_one_cached_comp_unit (this_cu);
7427
7428 cutu_reader reader (this_cu, NULL, 0, false);
7429
7430 switch (reader.comp_unit_die->tag)
7431 {
7432 case DW_TAG_compile_unit:
7433 this_cu->unit_type = DW_UT_compile;
7434 break;
7435 case DW_TAG_partial_unit:
7436 this_cu->unit_type = DW_UT_partial;
7437 break;
7438 default:
7439 abort ();
7440 }
7441
7442 if (reader.dummy_p)
7443 {
7444 /* Nothing. */
7445 }
7446 else if (this_cu->is_debug_types)
7447 build_type_psymtabs_reader (&reader, reader.info_ptr,
7448 reader.comp_unit_die);
7449 else if (want_partial_unit
7450 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7451 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7452 reader.comp_unit_die,
7453 pretend_language);
7454
7455 this_cu->lang = this_cu->cu->language;
7456
7457 /* Age out any secondary CUs. */
7458 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7459 }
7460
7461 /* Reader function for build_type_psymtabs. */
7462
7463 static void
7464 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7465 const gdb_byte *info_ptr,
7466 struct die_info *type_unit_die)
7467 {
7468 struct dwarf2_per_objfile *dwarf2_per_objfile
7469 = reader->cu->per_cu->dwarf2_per_objfile;
7470 struct objfile *objfile = dwarf2_per_objfile->objfile;
7471 struct dwarf2_cu *cu = reader->cu;
7472 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7473 struct signatured_type *sig_type;
7474 struct type_unit_group *tu_group;
7475 struct attribute *attr;
7476 struct partial_die_info *first_die;
7477 CORE_ADDR lowpc, highpc;
7478 dwarf2_psymtab *pst;
7479
7480 gdb_assert (per_cu->is_debug_types);
7481 sig_type = (struct signatured_type *) per_cu;
7482
7483 if (! type_unit_die->has_children)
7484 return;
7485
7486 attr = type_unit_die->attr (DW_AT_stmt_list);
7487 tu_group = get_type_unit_group (cu, attr);
7488
7489 if (tu_group->tus == nullptr)
7490 tu_group->tus = new std::vector<signatured_type *>;
7491 tu_group->tus->push_back (sig_type);
7492
7493 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7494 pst = create_partial_symtab (per_cu, "");
7495 pst->anonymous = true;
7496
7497 first_die = load_partial_dies (reader, info_ptr, 1);
7498
7499 lowpc = (CORE_ADDR) -1;
7500 highpc = (CORE_ADDR) 0;
7501 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7502
7503 end_psymtab_common (objfile, pst);
7504 }
7505
7506 /* Struct used to sort TUs by their abbreviation table offset. */
7507
7508 struct tu_abbrev_offset
7509 {
7510 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7511 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7512 {}
7513
7514 signatured_type *sig_type;
7515 sect_offset abbrev_offset;
7516 };
7517
7518 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7519
7520 static bool
7521 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7522 const struct tu_abbrev_offset &b)
7523 {
7524 return a.abbrev_offset < b.abbrev_offset;
7525 }
7526
7527 /* Efficiently read all the type units.
7528 This does the bulk of the work for build_type_psymtabs.
7529
7530 The efficiency is because we sort TUs by the abbrev table they use and
7531 only read each abbrev table once. In one program there are 200K TUs
7532 sharing 8K abbrev tables.
7533
7534 The main purpose of this function is to support building the
7535 dwarf2_per_objfile->type_unit_groups table.
7536 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7537 can collapse the search space by grouping them by stmt_list.
7538 The savings can be significant, in the same program from above the 200K TUs
7539 share 8K stmt_list tables.
7540
7541 FUNC is expected to call get_type_unit_group, which will create the
7542 struct type_unit_group if necessary and add it to
7543 dwarf2_per_objfile->type_unit_groups. */
7544
7545 static void
7546 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7547 {
7548 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7549 abbrev_table_up abbrev_table;
7550 sect_offset abbrev_offset;
7551
7552 /* It's up to the caller to not call us multiple times. */
7553 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7554
7555 if (dwarf2_per_objfile->all_type_units.empty ())
7556 return;
7557
7558 /* TUs typically share abbrev tables, and there can be way more TUs than
7559 abbrev tables. Sort by abbrev table to reduce the number of times we
7560 read each abbrev table in.
7561 Alternatives are to punt or to maintain a cache of abbrev tables.
7562 This is simpler and efficient enough for now.
7563
7564 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7565 symtab to use). Typically TUs with the same abbrev offset have the same
7566 stmt_list value too so in practice this should work well.
7567
7568 The basic algorithm here is:
7569
7570 sort TUs by abbrev table
7571 for each TU with same abbrev table:
7572 read abbrev table if first user
7573 read TU top level DIE
7574 [IWBN if DWO skeletons had DW_AT_stmt_list]
7575 call FUNC */
7576
7577 if (dwarf_read_debug)
7578 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7579
7580 /* Sort in a separate table to maintain the order of all_type_units
7581 for .gdb_index: TU indices directly index all_type_units. */
7582 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7583 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7584
7585 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7586 sorted_by_abbrev.emplace_back
7587 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7588 sig_type->per_cu.section,
7589 sig_type->per_cu.sect_off));
7590
7591 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7592 sort_tu_by_abbrev_offset);
7593
7594 abbrev_offset = (sect_offset) ~(unsigned) 0;
7595
7596 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7597 {
7598 /* Switch to the next abbrev table if necessary. */
7599 if (abbrev_table == NULL
7600 || tu.abbrev_offset != abbrev_offset)
7601 {
7602 abbrev_offset = tu.abbrev_offset;
7603 abbrev_table =
7604 abbrev_table::read (dwarf2_per_objfile->objfile,
7605 &dwarf2_per_objfile->abbrev,
7606 abbrev_offset);
7607 ++tu_stats->nr_uniq_abbrev_tables;
7608 }
7609
7610 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7611 0, false);
7612 if (!reader.dummy_p)
7613 build_type_psymtabs_reader (&reader, reader.info_ptr,
7614 reader.comp_unit_die);
7615 }
7616 }
7617
7618 /* Print collected type unit statistics. */
7619
7620 static void
7621 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7622 {
7623 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7624
7625 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7626 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7627 dwarf2_per_objfile->all_type_units.size ());
7628 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7629 tu_stats->nr_uniq_abbrev_tables);
7630 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7631 tu_stats->nr_symtabs);
7632 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7633 tu_stats->nr_symtab_sharers);
7634 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7635 tu_stats->nr_stmt_less_type_units);
7636 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7637 tu_stats->nr_all_type_units_reallocs);
7638 }
7639
7640 /* Traversal function for build_type_psymtabs. */
7641
7642 static int
7643 build_type_psymtab_dependencies (void **slot, void *info)
7644 {
7645 struct dwarf2_per_objfile *dwarf2_per_objfile
7646 = (struct dwarf2_per_objfile *) info;
7647 struct objfile *objfile = dwarf2_per_objfile->objfile;
7648 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7649 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7650 dwarf2_psymtab *pst = per_cu->v.psymtab;
7651 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7652 int i;
7653
7654 gdb_assert (len > 0);
7655 gdb_assert (per_cu->type_unit_group_p ());
7656
7657 pst->number_of_dependencies = len;
7658 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7659 for (i = 0; i < len; ++i)
7660 {
7661 struct signatured_type *iter = tu_group->tus->at (i);
7662 gdb_assert (iter->per_cu.is_debug_types);
7663 pst->dependencies[i] = iter->per_cu.v.psymtab;
7664 iter->type_unit_group = tu_group;
7665 }
7666
7667 delete tu_group->tus;
7668 tu_group->tus = nullptr;
7669
7670 return 1;
7671 }
7672
7673 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7674 Build partial symbol tables for the .debug_types comp-units. */
7675
7676 static void
7677 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7678 {
7679 if (! create_all_type_units (dwarf2_per_objfile))
7680 return;
7681
7682 build_type_psymtabs_1 (dwarf2_per_objfile);
7683 }
7684
7685 /* Traversal function for process_skeletonless_type_unit.
7686 Read a TU in a DWO file and build partial symbols for it. */
7687
7688 static int
7689 process_skeletonless_type_unit (void **slot, void *info)
7690 {
7691 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7692 struct dwarf2_per_objfile *dwarf2_per_objfile
7693 = (struct dwarf2_per_objfile *) info;
7694 struct signatured_type find_entry, *entry;
7695
7696 /* If this TU doesn't exist in the global table, add it and read it in. */
7697
7698 if (dwarf2_per_objfile->signatured_types == NULL)
7699 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7700
7701 find_entry.signature = dwo_unit->signature;
7702 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7703 &find_entry, INSERT);
7704 /* If we've already seen this type there's nothing to do. What's happening
7705 is we're doing our own version of comdat-folding here. */
7706 if (*slot != NULL)
7707 return 1;
7708
7709 /* This does the job that create_all_type_units would have done for
7710 this TU. */
7711 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7712 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7713 *slot = entry;
7714
7715 /* This does the job that build_type_psymtabs_1 would have done. */
7716 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7717 if (!reader.dummy_p)
7718 build_type_psymtabs_reader (&reader, reader.info_ptr,
7719 reader.comp_unit_die);
7720
7721 return 1;
7722 }
7723
7724 /* Traversal function for process_skeletonless_type_units. */
7725
7726 static int
7727 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7728 {
7729 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7730
7731 if (dwo_file->tus != NULL)
7732 htab_traverse_noresize (dwo_file->tus.get (),
7733 process_skeletonless_type_unit, info);
7734
7735 return 1;
7736 }
7737
7738 /* Scan all TUs of DWO files, verifying we've processed them.
7739 This is needed in case a TU was emitted without its skeleton.
7740 Note: This can't be done until we know what all the DWO files are. */
7741
7742 static void
7743 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7744 {
7745 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7746 if (get_dwp_file (dwarf2_per_objfile) == NULL
7747 && dwarf2_per_objfile->dwo_files != NULL)
7748 {
7749 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7750 process_dwo_file_for_skeletonless_type_units,
7751 dwarf2_per_objfile);
7752 }
7753 }
7754
7755 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7756
7757 static void
7758 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7759 {
7760 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7761 {
7762 dwarf2_psymtab *pst = per_cu->v.psymtab;
7763
7764 if (pst == NULL)
7765 continue;
7766
7767 for (int j = 0; j < pst->number_of_dependencies; ++j)
7768 {
7769 /* Set the 'user' field only if it is not already set. */
7770 if (pst->dependencies[j]->user == NULL)
7771 pst->dependencies[j]->user = pst;
7772 }
7773 }
7774 }
7775
7776 /* Build the partial symbol table by doing a quick pass through the
7777 .debug_info and .debug_abbrev sections. */
7778
7779 static void
7780 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7781 {
7782 struct objfile *objfile = dwarf2_per_objfile->objfile;
7783
7784 if (dwarf_read_debug)
7785 {
7786 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7787 objfile_name (objfile));
7788 }
7789
7790 scoped_restore restore_reading_psyms
7791 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7792 true);
7793
7794 dwarf2_per_objfile->info.read (objfile);
7795
7796 /* Any cached compilation units will be linked by the per-objfile
7797 read_in_chain. Make sure to free them when we're done. */
7798 free_cached_comp_units freer (dwarf2_per_objfile);
7799
7800 build_type_psymtabs (dwarf2_per_objfile);
7801
7802 create_all_comp_units (dwarf2_per_objfile);
7803
7804 /* Create a temporary address map on a temporary obstack. We later
7805 copy this to the final obstack. */
7806 auto_obstack temp_obstack;
7807
7808 scoped_restore save_psymtabs_addrmap
7809 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7810 addrmap_create_mutable (&temp_obstack));
7811
7812 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7813 {
7814 if (per_cu->v.psymtab != NULL)
7815 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7816 continue;
7817 process_psymtab_comp_unit (per_cu, false, language_minimal);
7818 }
7819
7820 /* This has to wait until we read the CUs, we need the list of DWOs. */
7821 process_skeletonless_type_units (dwarf2_per_objfile);
7822
7823 /* Now that all TUs have been processed we can fill in the dependencies. */
7824 if (dwarf2_per_objfile->type_unit_groups != NULL)
7825 {
7826 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7827 build_type_psymtab_dependencies, dwarf2_per_objfile);
7828 }
7829
7830 if (dwarf_read_debug)
7831 print_tu_stats (dwarf2_per_objfile);
7832
7833 set_partial_user (dwarf2_per_objfile);
7834
7835 objfile->partial_symtabs->psymtabs_addrmap
7836 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7837 objfile->partial_symtabs->obstack ());
7838 /* At this point we want to keep the address map. */
7839 save_psymtabs_addrmap.release ();
7840
7841 if (dwarf_read_debug)
7842 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7843 objfile_name (objfile));
7844 }
7845
7846 /* Load the partial DIEs for a secondary CU into memory.
7847 This is also used when rereading a primary CU with load_all_dies. */
7848
7849 static void
7850 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7851 {
7852 cutu_reader reader (this_cu, NULL, 1, false);
7853
7854 if (!reader.dummy_p)
7855 {
7856 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7857 language_minimal);
7858
7859 /* Check if comp unit has_children.
7860 If so, read the rest of the partial symbols from this comp unit.
7861 If not, there's no more debug_info for this comp unit. */
7862 if (reader.comp_unit_die->has_children)
7863 load_partial_dies (&reader, reader.info_ptr, 0);
7864
7865 reader.keep ();
7866 }
7867 }
7868
7869 static void
7870 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7871 struct dwarf2_section_info *section,
7872 struct dwarf2_section_info *abbrev_section,
7873 unsigned int is_dwz)
7874 {
7875 const gdb_byte *info_ptr;
7876 struct objfile *objfile = dwarf2_per_objfile->objfile;
7877
7878 if (dwarf_read_debug)
7879 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7880 section->get_name (),
7881 section->get_file_name ());
7882
7883 section->read (objfile);
7884
7885 info_ptr = section->buffer;
7886
7887 while (info_ptr < section->buffer + section->size)
7888 {
7889 struct dwarf2_per_cu_data *this_cu;
7890
7891 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7892
7893 comp_unit_head cu_header;
7894 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7895 abbrev_section, info_ptr,
7896 rcuh_kind::COMPILE);
7897
7898 /* Save the compilation unit for later lookup. */
7899 if (cu_header.unit_type != DW_UT_type)
7900 {
7901 this_cu = XOBNEW (&objfile->objfile_obstack,
7902 struct dwarf2_per_cu_data);
7903 memset (this_cu, 0, sizeof (*this_cu));
7904 }
7905 else
7906 {
7907 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7908 struct signatured_type);
7909 memset (sig_type, 0, sizeof (*sig_type));
7910 sig_type->signature = cu_header.signature;
7911 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7912 this_cu = &sig_type->per_cu;
7913 }
7914 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7915 this_cu->sect_off = sect_off;
7916 this_cu->length = cu_header.length + cu_header.initial_length_size;
7917 this_cu->is_dwz = is_dwz;
7918 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7919 this_cu->section = section;
7920
7921 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7922
7923 info_ptr = info_ptr + this_cu->length;
7924 }
7925 }
7926
7927 /* Create a list of all compilation units in OBJFILE.
7928 This is only done for -readnow and building partial symtabs. */
7929
7930 static void
7931 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7932 {
7933 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7934 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7935 &dwarf2_per_objfile->abbrev, 0);
7936
7937 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7938 if (dwz != NULL)
7939 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7940 1);
7941 }
7942
7943 /* Process all loaded DIEs for compilation unit CU, starting at
7944 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7945 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7946 DW_AT_ranges). See the comments of add_partial_subprogram on how
7947 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7948
7949 static void
7950 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7951 CORE_ADDR *highpc, int set_addrmap,
7952 struct dwarf2_cu *cu)
7953 {
7954 struct partial_die_info *pdi;
7955
7956 /* Now, march along the PDI's, descending into ones which have
7957 interesting children but skipping the children of the other ones,
7958 until we reach the end of the compilation unit. */
7959
7960 pdi = first_die;
7961
7962 while (pdi != NULL)
7963 {
7964 pdi->fixup (cu);
7965
7966 /* Anonymous namespaces or modules have no name but have interesting
7967 children, so we need to look at them. Ditto for anonymous
7968 enums. */
7969
7970 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7971 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7972 || pdi->tag == DW_TAG_imported_unit
7973 || pdi->tag == DW_TAG_inlined_subroutine)
7974 {
7975 switch (pdi->tag)
7976 {
7977 case DW_TAG_subprogram:
7978 case DW_TAG_inlined_subroutine:
7979 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7980 break;
7981 case DW_TAG_constant:
7982 case DW_TAG_variable:
7983 case DW_TAG_typedef:
7984 case DW_TAG_union_type:
7985 if (!pdi->is_declaration
7986 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7987 {
7988 add_partial_symbol (pdi, cu);
7989 }
7990 break;
7991 case DW_TAG_class_type:
7992 case DW_TAG_interface_type:
7993 case DW_TAG_structure_type:
7994 if (!pdi->is_declaration)
7995 {
7996 add_partial_symbol (pdi, cu);
7997 }
7998 if ((cu->language == language_rust
7999 || cu->language == language_cplus) && pdi->has_children)
8000 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8001 set_addrmap, cu);
8002 break;
8003 case DW_TAG_enumeration_type:
8004 if (!pdi->is_declaration)
8005 add_partial_enumeration (pdi, cu);
8006 break;
8007 case DW_TAG_base_type:
8008 case DW_TAG_subrange_type:
8009 /* File scope base type definitions are added to the partial
8010 symbol table. */
8011 add_partial_symbol (pdi, cu);
8012 break;
8013 case DW_TAG_namespace:
8014 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8015 break;
8016 case DW_TAG_module:
8017 if (!pdi->is_declaration)
8018 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8019 break;
8020 case DW_TAG_imported_unit:
8021 {
8022 struct dwarf2_per_cu_data *per_cu;
8023
8024 /* For now we don't handle imported units in type units. */
8025 if (cu->per_cu->is_debug_types)
8026 {
8027 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8028 " supported in type units [in module %s]"),
8029 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8030 }
8031
8032 per_cu = dwarf2_find_containing_comp_unit
8033 (pdi->d.sect_off, pdi->is_dwz,
8034 cu->per_cu->dwarf2_per_objfile);
8035
8036 /* Go read the partial unit, if needed. */
8037 if (per_cu->v.psymtab == NULL)
8038 process_psymtab_comp_unit (per_cu, true, cu->language);
8039
8040 cu->per_cu->imported_symtabs_push (per_cu);
8041 }
8042 break;
8043 case DW_TAG_imported_declaration:
8044 add_partial_symbol (pdi, cu);
8045 break;
8046 default:
8047 break;
8048 }
8049 }
8050
8051 /* If the die has a sibling, skip to the sibling. */
8052
8053 pdi = pdi->die_sibling;
8054 }
8055 }
8056
8057 /* Functions used to compute the fully scoped name of a partial DIE.
8058
8059 Normally, this is simple. For C++, the parent DIE's fully scoped
8060 name is concatenated with "::" and the partial DIE's name.
8061 Enumerators are an exception; they use the scope of their parent
8062 enumeration type, i.e. the name of the enumeration type is not
8063 prepended to the enumerator.
8064
8065 There are two complexities. One is DW_AT_specification; in this
8066 case "parent" means the parent of the target of the specification,
8067 instead of the direct parent of the DIE. The other is compilers
8068 which do not emit DW_TAG_namespace; in this case we try to guess
8069 the fully qualified name of structure types from their members'
8070 linkage names. This must be done using the DIE's children rather
8071 than the children of any DW_AT_specification target. We only need
8072 to do this for structures at the top level, i.e. if the target of
8073 any DW_AT_specification (if any; otherwise the DIE itself) does not
8074 have a parent. */
8075
8076 /* Compute the scope prefix associated with PDI's parent, in
8077 compilation unit CU. The result will be allocated on CU's
8078 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8079 field. NULL is returned if no prefix is necessary. */
8080 static const char *
8081 partial_die_parent_scope (struct partial_die_info *pdi,
8082 struct dwarf2_cu *cu)
8083 {
8084 const char *grandparent_scope;
8085 struct partial_die_info *parent, *real_pdi;
8086
8087 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8088 then this means the parent of the specification DIE. */
8089
8090 real_pdi = pdi;
8091 while (real_pdi->has_specification)
8092 {
8093 auto res = find_partial_die (real_pdi->spec_offset,
8094 real_pdi->spec_is_dwz, cu);
8095 real_pdi = res.pdi;
8096 cu = res.cu;
8097 }
8098
8099 parent = real_pdi->die_parent;
8100 if (parent == NULL)
8101 return NULL;
8102
8103 if (parent->scope_set)
8104 return parent->scope;
8105
8106 parent->fixup (cu);
8107
8108 grandparent_scope = partial_die_parent_scope (parent, cu);
8109
8110 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8111 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8112 Work around this problem here. */
8113 if (cu->language == language_cplus
8114 && parent->tag == DW_TAG_namespace
8115 && strcmp (parent->name, "::") == 0
8116 && grandparent_scope == NULL)
8117 {
8118 parent->scope = NULL;
8119 parent->scope_set = 1;
8120 return NULL;
8121 }
8122
8123 /* Nested subroutines in Fortran get a prefix. */
8124 if (pdi->tag == DW_TAG_enumerator)
8125 /* Enumerators should not get the name of the enumeration as a prefix. */
8126 parent->scope = grandparent_scope;
8127 else if (parent->tag == DW_TAG_namespace
8128 || parent->tag == DW_TAG_module
8129 || parent->tag == DW_TAG_structure_type
8130 || parent->tag == DW_TAG_class_type
8131 || parent->tag == DW_TAG_interface_type
8132 || parent->tag == DW_TAG_union_type
8133 || parent->tag == DW_TAG_enumeration_type
8134 || (cu->language == language_fortran
8135 && parent->tag == DW_TAG_subprogram
8136 && pdi->tag == DW_TAG_subprogram))
8137 {
8138 if (grandparent_scope == NULL)
8139 parent->scope = parent->name;
8140 else
8141 parent->scope = typename_concat (&cu->comp_unit_obstack,
8142 grandparent_scope,
8143 parent->name, 0, cu);
8144 }
8145 else
8146 {
8147 /* FIXME drow/2004-04-01: What should we be doing with
8148 function-local names? For partial symbols, we should probably be
8149 ignoring them. */
8150 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8151 dwarf_tag_name (parent->tag),
8152 sect_offset_str (pdi->sect_off));
8153 parent->scope = grandparent_scope;
8154 }
8155
8156 parent->scope_set = 1;
8157 return parent->scope;
8158 }
8159
8160 /* Return the fully scoped name associated with PDI, from compilation unit
8161 CU. The result will be allocated with malloc. */
8162
8163 static gdb::unique_xmalloc_ptr<char>
8164 partial_die_full_name (struct partial_die_info *pdi,
8165 struct dwarf2_cu *cu)
8166 {
8167 const char *parent_scope;
8168
8169 /* If this is a template instantiation, we can not work out the
8170 template arguments from partial DIEs. So, unfortunately, we have
8171 to go through the full DIEs. At least any work we do building
8172 types here will be reused if full symbols are loaded later. */
8173 if (pdi->has_template_arguments)
8174 {
8175 pdi->fixup (cu);
8176
8177 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8178 {
8179 struct die_info *die;
8180 struct attribute attr;
8181 struct dwarf2_cu *ref_cu = cu;
8182
8183 /* DW_FORM_ref_addr is using section offset. */
8184 attr.name = (enum dwarf_attribute) 0;
8185 attr.form = DW_FORM_ref_addr;
8186 attr.u.unsnd = to_underlying (pdi->sect_off);
8187 die = follow_die_ref (NULL, &attr, &ref_cu);
8188
8189 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8190 }
8191 }
8192
8193 parent_scope = partial_die_parent_scope (pdi, cu);
8194 if (parent_scope == NULL)
8195 return NULL;
8196 else
8197 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8198 pdi->name, 0, cu));
8199 }
8200
8201 static void
8202 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8203 {
8204 struct dwarf2_per_objfile *dwarf2_per_objfile
8205 = cu->per_cu->dwarf2_per_objfile;
8206 struct objfile *objfile = dwarf2_per_objfile->objfile;
8207 struct gdbarch *gdbarch = objfile->arch ();
8208 CORE_ADDR addr = 0;
8209 const char *actual_name = NULL;
8210 CORE_ADDR baseaddr;
8211
8212 baseaddr = objfile->text_section_offset ();
8213
8214 gdb::unique_xmalloc_ptr<char> built_actual_name
8215 = partial_die_full_name (pdi, cu);
8216 if (built_actual_name != NULL)
8217 actual_name = built_actual_name.get ();
8218
8219 if (actual_name == NULL)
8220 actual_name = pdi->name;
8221
8222 partial_symbol psymbol;
8223 memset (&psymbol, 0, sizeof (psymbol));
8224 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8225 psymbol.ginfo.section = -1;
8226
8227 /* The code below indicates that the psymbol should be installed by
8228 setting this. */
8229 gdb::optional<psymbol_placement> where;
8230
8231 switch (pdi->tag)
8232 {
8233 case DW_TAG_inlined_subroutine:
8234 case DW_TAG_subprogram:
8235 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8236 - baseaddr);
8237 if (pdi->is_external
8238 || cu->language == language_ada
8239 || (cu->language == language_fortran
8240 && pdi->die_parent != NULL
8241 && pdi->die_parent->tag == DW_TAG_subprogram))
8242 {
8243 /* Normally, only "external" DIEs are part of the global scope.
8244 But in Ada and Fortran, we want to be able to access nested
8245 procedures globally. So all Ada and Fortran subprograms are
8246 stored in the global scope. */
8247 where = psymbol_placement::GLOBAL;
8248 }
8249 else
8250 where = psymbol_placement::STATIC;
8251
8252 psymbol.domain = VAR_DOMAIN;
8253 psymbol.aclass = LOC_BLOCK;
8254 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8255 psymbol.ginfo.value.address = addr;
8256
8257 if (pdi->main_subprogram && actual_name != NULL)
8258 set_objfile_main_name (objfile, actual_name, cu->language);
8259 break;
8260 case DW_TAG_constant:
8261 psymbol.domain = VAR_DOMAIN;
8262 psymbol.aclass = LOC_STATIC;
8263 where = (pdi->is_external
8264 ? psymbol_placement::GLOBAL
8265 : psymbol_placement::STATIC);
8266 break;
8267 case DW_TAG_variable:
8268 if (pdi->d.locdesc)
8269 addr = decode_locdesc (pdi->d.locdesc, cu);
8270
8271 if (pdi->d.locdesc
8272 && addr == 0
8273 && !dwarf2_per_objfile->has_section_at_zero)
8274 {
8275 /* A global or static variable may also have been stripped
8276 out by the linker if unused, in which case its address
8277 will be nullified; do not add such variables into partial
8278 symbol table then. */
8279 }
8280 else if (pdi->is_external)
8281 {
8282 /* Global Variable.
8283 Don't enter into the minimal symbol tables as there is
8284 a minimal symbol table entry from the ELF symbols already.
8285 Enter into partial symbol table if it has a location
8286 descriptor or a type.
8287 If the location descriptor is missing, new_symbol will create
8288 a LOC_UNRESOLVED symbol, the address of the variable will then
8289 be determined from the minimal symbol table whenever the variable
8290 is referenced.
8291 The address for the partial symbol table entry is not
8292 used by GDB, but it comes in handy for debugging partial symbol
8293 table building. */
8294
8295 if (pdi->d.locdesc || pdi->has_type)
8296 {
8297 psymbol.domain = VAR_DOMAIN;
8298 psymbol.aclass = LOC_STATIC;
8299 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8300 psymbol.ginfo.value.address = addr;
8301 where = psymbol_placement::GLOBAL;
8302 }
8303 }
8304 else
8305 {
8306 int has_loc = pdi->d.locdesc != NULL;
8307
8308 /* Static Variable. Skip symbols whose value we cannot know (those
8309 without location descriptors or constant values). */
8310 if (!has_loc && !pdi->has_const_value)
8311 return;
8312
8313 psymbol.domain = VAR_DOMAIN;
8314 psymbol.aclass = LOC_STATIC;
8315 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8316 if (has_loc)
8317 psymbol.ginfo.value.address = addr;
8318 where = psymbol_placement::STATIC;
8319 }
8320 break;
8321 case DW_TAG_typedef:
8322 case DW_TAG_base_type:
8323 case DW_TAG_subrange_type:
8324 psymbol.domain = VAR_DOMAIN;
8325 psymbol.aclass = LOC_TYPEDEF;
8326 where = psymbol_placement::STATIC;
8327 break;
8328 case DW_TAG_imported_declaration:
8329 case DW_TAG_namespace:
8330 psymbol.domain = VAR_DOMAIN;
8331 psymbol.aclass = LOC_TYPEDEF;
8332 where = psymbol_placement::GLOBAL;
8333 break;
8334 case DW_TAG_module:
8335 /* With Fortran 77 there might be a "BLOCK DATA" module
8336 available without any name. If so, we skip the module as it
8337 doesn't bring any value. */
8338 if (actual_name != nullptr)
8339 {
8340 psymbol.domain = MODULE_DOMAIN;
8341 psymbol.aclass = LOC_TYPEDEF;
8342 where = psymbol_placement::GLOBAL;
8343 }
8344 break;
8345 case DW_TAG_class_type:
8346 case DW_TAG_interface_type:
8347 case DW_TAG_structure_type:
8348 case DW_TAG_union_type:
8349 case DW_TAG_enumeration_type:
8350 /* Skip external references. The DWARF standard says in the section
8351 about "Structure, Union, and Class Type Entries": "An incomplete
8352 structure, union or class type is represented by a structure,
8353 union or class entry that does not have a byte size attribute
8354 and that has a DW_AT_declaration attribute." */
8355 if (!pdi->has_byte_size && pdi->is_declaration)
8356 return;
8357
8358 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8359 static vs. global. */
8360 psymbol.domain = STRUCT_DOMAIN;
8361 psymbol.aclass = LOC_TYPEDEF;
8362 where = (cu->language == language_cplus
8363 ? psymbol_placement::GLOBAL
8364 : psymbol_placement::STATIC);
8365 break;
8366 case DW_TAG_enumerator:
8367 psymbol.domain = VAR_DOMAIN;
8368 psymbol.aclass = LOC_CONST;
8369 where = (cu->language == language_cplus
8370 ? psymbol_placement::GLOBAL
8371 : psymbol_placement::STATIC);
8372 break;
8373 default:
8374 break;
8375 }
8376
8377 if (where.has_value ())
8378 {
8379 if (built_actual_name != nullptr)
8380 actual_name = objfile->intern (actual_name);
8381 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8382 psymbol.ginfo.set_linkage_name (actual_name);
8383 else
8384 {
8385 psymbol.ginfo.set_demangled_name (actual_name,
8386 &objfile->objfile_obstack);
8387 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8388 }
8389 add_psymbol_to_list (psymbol, *where, objfile);
8390 }
8391 }
8392
8393 /* Read a partial die corresponding to a namespace; also, add a symbol
8394 corresponding to that namespace to the symbol table. NAMESPACE is
8395 the name of the enclosing namespace. */
8396
8397 static void
8398 add_partial_namespace (struct partial_die_info *pdi,
8399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8400 int set_addrmap, struct dwarf2_cu *cu)
8401 {
8402 /* Add a symbol for the namespace. */
8403
8404 add_partial_symbol (pdi, cu);
8405
8406 /* Now scan partial symbols in that namespace. */
8407
8408 if (pdi->has_children)
8409 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8410 }
8411
8412 /* Read a partial die corresponding to a Fortran module. */
8413
8414 static void
8415 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8416 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8417 {
8418 /* Add a symbol for the namespace. */
8419
8420 add_partial_symbol (pdi, cu);
8421
8422 /* Now scan partial symbols in that module. */
8423
8424 if (pdi->has_children)
8425 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8426 }
8427
8428 /* Read a partial die corresponding to a subprogram or an inlined
8429 subprogram and create a partial symbol for that subprogram.
8430 When the CU language allows it, this routine also defines a partial
8431 symbol for each nested subprogram that this subprogram contains.
8432 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8433 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8434
8435 PDI may also be a lexical block, in which case we simply search
8436 recursively for subprograms defined inside that lexical block.
8437 Again, this is only performed when the CU language allows this
8438 type of definitions. */
8439
8440 static void
8441 add_partial_subprogram (struct partial_die_info *pdi,
8442 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8443 int set_addrmap, struct dwarf2_cu *cu)
8444 {
8445 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8446 {
8447 if (pdi->has_pc_info)
8448 {
8449 if (pdi->lowpc < *lowpc)
8450 *lowpc = pdi->lowpc;
8451 if (pdi->highpc > *highpc)
8452 *highpc = pdi->highpc;
8453 if (set_addrmap)
8454 {
8455 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8456 struct gdbarch *gdbarch = objfile->arch ();
8457 CORE_ADDR baseaddr;
8458 CORE_ADDR this_highpc;
8459 CORE_ADDR this_lowpc;
8460
8461 baseaddr = objfile->text_section_offset ();
8462 this_lowpc
8463 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8464 pdi->lowpc + baseaddr)
8465 - baseaddr);
8466 this_highpc
8467 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8468 pdi->highpc + baseaddr)
8469 - baseaddr);
8470 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8471 this_lowpc, this_highpc - 1,
8472 cu->per_cu->v.psymtab);
8473 }
8474 }
8475
8476 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8477 {
8478 if (!pdi->is_declaration)
8479 /* Ignore subprogram DIEs that do not have a name, they are
8480 illegal. Do not emit a complaint at this point, we will
8481 do so when we convert this psymtab into a symtab. */
8482 if (pdi->name)
8483 add_partial_symbol (pdi, cu);
8484 }
8485 }
8486
8487 if (! pdi->has_children)
8488 return;
8489
8490 if (cu->language == language_ada || cu->language == language_fortran)
8491 {
8492 pdi = pdi->die_child;
8493 while (pdi != NULL)
8494 {
8495 pdi->fixup (cu);
8496 if (pdi->tag == DW_TAG_subprogram
8497 || pdi->tag == DW_TAG_inlined_subroutine
8498 || pdi->tag == DW_TAG_lexical_block)
8499 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8500 pdi = pdi->die_sibling;
8501 }
8502 }
8503 }
8504
8505 /* Read a partial die corresponding to an enumeration type. */
8506
8507 static void
8508 add_partial_enumeration (struct partial_die_info *enum_pdi,
8509 struct dwarf2_cu *cu)
8510 {
8511 struct partial_die_info *pdi;
8512
8513 if (enum_pdi->name != NULL)
8514 add_partial_symbol (enum_pdi, cu);
8515
8516 pdi = enum_pdi->die_child;
8517 while (pdi)
8518 {
8519 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8520 complaint (_("malformed enumerator DIE ignored"));
8521 else
8522 add_partial_symbol (pdi, cu);
8523 pdi = pdi->die_sibling;
8524 }
8525 }
8526
8527 /* Return the initial uleb128 in the die at INFO_PTR. */
8528
8529 static unsigned int
8530 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8531 {
8532 unsigned int bytes_read;
8533
8534 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8535 }
8536
8537 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8538 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8539
8540 Return the corresponding abbrev, or NULL if the number is zero (indicating
8541 an empty DIE). In either case *BYTES_READ will be set to the length of
8542 the initial number. */
8543
8544 static struct abbrev_info *
8545 peek_die_abbrev (const die_reader_specs &reader,
8546 const gdb_byte *info_ptr, unsigned int *bytes_read)
8547 {
8548 dwarf2_cu *cu = reader.cu;
8549 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8550 unsigned int abbrev_number
8551 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8552
8553 if (abbrev_number == 0)
8554 return NULL;
8555
8556 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8557 if (!abbrev)
8558 {
8559 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8560 " at offset %s [in module %s]"),
8561 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8562 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8563 }
8564
8565 return abbrev;
8566 }
8567
8568 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8569 Returns a pointer to the end of a series of DIEs, terminated by an empty
8570 DIE. Any children of the skipped DIEs will also be skipped. */
8571
8572 static const gdb_byte *
8573 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8574 {
8575 while (1)
8576 {
8577 unsigned int bytes_read;
8578 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8579
8580 if (abbrev == NULL)
8581 return info_ptr + bytes_read;
8582 else
8583 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8584 }
8585 }
8586
8587 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8588 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8589 abbrev corresponding to that skipped uleb128 should be passed in
8590 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8591 children. */
8592
8593 static const gdb_byte *
8594 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8595 struct abbrev_info *abbrev)
8596 {
8597 unsigned int bytes_read;
8598 struct attribute attr;
8599 bfd *abfd = reader->abfd;
8600 struct dwarf2_cu *cu = reader->cu;
8601 const gdb_byte *buffer = reader->buffer;
8602 const gdb_byte *buffer_end = reader->buffer_end;
8603 unsigned int form, i;
8604
8605 for (i = 0; i < abbrev->num_attrs; i++)
8606 {
8607 /* The only abbrev we care about is DW_AT_sibling. */
8608 if (abbrev->attrs[i].name == DW_AT_sibling)
8609 {
8610 bool ignored;
8611 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8612 &ignored);
8613 if (attr.form == DW_FORM_ref_addr)
8614 complaint (_("ignoring absolute DW_AT_sibling"));
8615 else
8616 {
8617 sect_offset off = attr.get_ref_die_offset ();
8618 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8619
8620 if (sibling_ptr < info_ptr)
8621 complaint (_("DW_AT_sibling points backwards"));
8622 else if (sibling_ptr > reader->buffer_end)
8623 reader->die_section->overflow_complaint ();
8624 else
8625 return sibling_ptr;
8626 }
8627 }
8628
8629 /* If it isn't DW_AT_sibling, skip this attribute. */
8630 form = abbrev->attrs[i].form;
8631 skip_attribute:
8632 switch (form)
8633 {
8634 case DW_FORM_ref_addr:
8635 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8636 and later it is offset sized. */
8637 if (cu->header.version == 2)
8638 info_ptr += cu->header.addr_size;
8639 else
8640 info_ptr += cu->header.offset_size;
8641 break;
8642 case DW_FORM_GNU_ref_alt:
8643 info_ptr += cu->header.offset_size;
8644 break;
8645 case DW_FORM_addr:
8646 info_ptr += cu->header.addr_size;
8647 break;
8648 case DW_FORM_data1:
8649 case DW_FORM_ref1:
8650 case DW_FORM_flag:
8651 case DW_FORM_strx1:
8652 info_ptr += 1;
8653 break;
8654 case DW_FORM_flag_present:
8655 case DW_FORM_implicit_const:
8656 break;
8657 case DW_FORM_data2:
8658 case DW_FORM_ref2:
8659 case DW_FORM_strx2:
8660 info_ptr += 2;
8661 break;
8662 case DW_FORM_strx3:
8663 info_ptr += 3;
8664 break;
8665 case DW_FORM_data4:
8666 case DW_FORM_ref4:
8667 case DW_FORM_strx4:
8668 info_ptr += 4;
8669 break;
8670 case DW_FORM_data8:
8671 case DW_FORM_ref8:
8672 case DW_FORM_ref_sig8:
8673 info_ptr += 8;
8674 break;
8675 case DW_FORM_data16:
8676 info_ptr += 16;
8677 break;
8678 case DW_FORM_string:
8679 read_direct_string (abfd, info_ptr, &bytes_read);
8680 info_ptr += bytes_read;
8681 break;
8682 case DW_FORM_sec_offset:
8683 case DW_FORM_strp:
8684 case DW_FORM_GNU_strp_alt:
8685 info_ptr += cu->header.offset_size;
8686 break;
8687 case DW_FORM_exprloc:
8688 case DW_FORM_block:
8689 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8690 info_ptr += bytes_read;
8691 break;
8692 case DW_FORM_block1:
8693 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8694 break;
8695 case DW_FORM_block2:
8696 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8697 break;
8698 case DW_FORM_block4:
8699 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8700 break;
8701 case DW_FORM_addrx:
8702 case DW_FORM_strx:
8703 case DW_FORM_sdata:
8704 case DW_FORM_udata:
8705 case DW_FORM_ref_udata:
8706 case DW_FORM_GNU_addr_index:
8707 case DW_FORM_GNU_str_index:
8708 case DW_FORM_rnglistx:
8709 case DW_FORM_loclistx:
8710 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8711 break;
8712 case DW_FORM_indirect:
8713 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8714 info_ptr += bytes_read;
8715 /* We need to continue parsing from here, so just go back to
8716 the top. */
8717 goto skip_attribute;
8718
8719 default:
8720 error (_("Dwarf Error: Cannot handle %s "
8721 "in DWARF reader [in module %s]"),
8722 dwarf_form_name (form),
8723 bfd_get_filename (abfd));
8724 }
8725 }
8726
8727 if (abbrev->has_children)
8728 return skip_children (reader, info_ptr);
8729 else
8730 return info_ptr;
8731 }
8732
8733 /* Locate ORIG_PDI's sibling.
8734 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8735
8736 static const gdb_byte *
8737 locate_pdi_sibling (const struct die_reader_specs *reader,
8738 struct partial_die_info *orig_pdi,
8739 const gdb_byte *info_ptr)
8740 {
8741 /* Do we know the sibling already? */
8742
8743 if (orig_pdi->sibling)
8744 return orig_pdi->sibling;
8745
8746 /* Are there any children to deal with? */
8747
8748 if (!orig_pdi->has_children)
8749 return info_ptr;
8750
8751 /* Skip the children the long way. */
8752
8753 return skip_children (reader, info_ptr);
8754 }
8755
8756 /* Expand this partial symbol table into a full symbol table. SELF is
8757 not NULL. */
8758
8759 void
8760 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8761 {
8762 struct dwarf2_per_objfile *dwarf2_per_objfile
8763 = get_dwarf2_per_objfile (objfile);
8764
8765 gdb_assert (!readin);
8766 /* If this psymtab is constructed from a debug-only objfile, the
8767 has_section_at_zero flag will not necessarily be correct. We
8768 can get the correct value for this flag by looking at the data
8769 associated with the (presumably stripped) associated objfile. */
8770 if (objfile->separate_debug_objfile_backlink)
8771 {
8772 struct dwarf2_per_objfile *dpo_backlink
8773 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8774
8775 dwarf2_per_objfile->has_section_at_zero
8776 = dpo_backlink->has_section_at_zero;
8777 }
8778
8779 expand_psymtab (objfile);
8780
8781 process_cu_includes (dwarf2_per_objfile);
8782 }
8783 \f
8784 /* Reading in full CUs. */
8785
8786 /* Add PER_CU to the queue. */
8787
8788 static void
8789 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8790 enum language pretend_language)
8791 {
8792 per_cu->queued = 1;
8793 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8794 }
8795
8796 /* If PER_CU is not yet queued, add it to the queue.
8797 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8798 dependency.
8799 The result is non-zero if PER_CU was queued, otherwise the result is zero
8800 meaning either PER_CU is already queued or it is already loaded.
8801
8802 N.B. There is an invariant here that if a CU is queued then it is loaded.
8803 The caller is required to load PER_CU if we return non-zero. */
8804
8805 static int
8806 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8807 struct dwarf2_per_cu_data *per_cu,
8808 enum language pretend_language)
8809 {
8810 /* We may arrive here during partial symbol reading, if we need full
8811 DIEs to process an unusual case (e.g. template arguments). Do
8812 not queue PER_CU, just tell our caller to load its DIEs. */
8813 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8814 {
8815 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8816 return 1;
8817 return 0;
8818 }
8819
8820 /* Mark the dependence relation so that we don't flush PER_CU
8821 too early. */
8822 if (dependent_cu != NULL)
8823 dwarf2_add_dependence (dependent_cu, per_cu);
8824
8825 /* If it's already on the queue, we have nothing to do. */
8826 if (per_cu->queued)
8827 return 0;
8828
8829 /* If the compilation unit is already loaded, just mark it as
8830 used. */
8831 if (per_cu->cu != NULL)
8832 {
8833 per_cu->cu->last_used = 0;
8834 return 0;
8835 }
8836
8837 /* Add it to the queue. */
8838 queue_comp_unit (per_cu, pretend_language);
8839
8840 return 1;
8841 }
8842
8843 /* Process the queue. */
8844
8845 static void
8846 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8847 {
8848 if (dwarf_read_debug)
8849 {
8850 fprintf_unfiltered (gdb_stdlog,
8851 "Expanding one or more symtabs of objfile %s ...\n",
8852 objfile_name (dwarf2_per_objfile->objfile));
8853 }
8854
8855 /* The queue starts out with one item, but following a DIE reference
8856 may load a new CU, adding it to the end of the queue. */
8857 while (!dwarf2_per_objfile->queue.empty ())
8858 {
8859 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8860
8861 if ((dwarf2_per_objfile->using_index
8862 ? !item.per_cu->v.quick->compunit_symtab
8863 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8864 /* Skip dummy CUs. */
8865 && item.per_cu->cu != NULL)
8866 {
8867 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8868 unsigned int debug_print_threshold;
8869 char buf[100];
8870
8871 if (per_cu->is_debug_types)
8872 {
8873 struct signatured_type *sig_type =
8874 (struct signatured_type *) per_cu;
8875
8876 sprintf (buf, "TU %s at offset %s",
8877 hex_string (sig_type->signature),
8878 sect_offset_str (per_cu->sect_off));
8879 /* There can be 100s of TUs.
8880 Only print them in verbose mode. */
8881 debug_print_threshold = 2;
8882 }
8883 else
8884 {
8885 sprintf (buf, "CU at offset %s",
8886 sect_offset_str (per_cu->sect_off));
8887 debug_print_threshold = 1;
8888 }
8889
8890 if (dwarf_read_debug >= debug_print_threshold)
8891 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8892
8893 if (per_cu->is_debug_types)
8894 process_full_type_unit (per_cu, item.pretend_language);
8895 else
8896 process_full_comp_unit (per_cu, item.pretend_language);
8897
8898 if (dwarf_read_debug >= debug_print_threshold)
8899 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8900 }
8901
8902 item.per_cu->queued = 0;
8903 dwarf2_per_objfile->queue.pop ();
8904 }
8905
8906 if (dwarf_read_debug)
8907 {
8908 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8909 objfile_name (dwarf2_per_objfile->objfile));
8910 }
8911 }
8912
8913 /* Read in full symbols for PST, and anything it depends on. */
8914
8915 void
8916 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8917 {
8918 gdb_assert (!readin);
8919
8920 expand_dependencies (objfile);
8921
8922 dw2_do_instantiate_symtab (per_cu_data, false);
8923 gdb_assert (get_compunit_symtab () != nullptr);
8924 }
8925
8926 /* Trivial hash function for die_info: the hash value of a DIE
8927 is its offset in .debug_info for this objfile. */
8928
8929 static hashval_t
8930 die_hash (const void *item)
8931 {
8932 const struct die_info *die = (const struct die_info *) item;
8933
8934 return to_underlying (die->sect_off);
8935 }
8936
8937 /* Trivial comparison function for die_info structures: two DIEs
8938 are equal if they have the same offset. */
8939
8940 static int
8941 die_eq (const void *item_lhs, const void *item_rhs)
8942 {
8943 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8944 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8945
8946 return die_lhs->sect_off == die_rhs->sect_off;
8947 }
8948
8949 /* Load the DIEs associated with PER_CU into memory. */
8950
8951 static void
8952 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8953 bool skip_partial,
8954 enum language pretend_language)
8955 {
8956 gdb_assert (! this_cu->is_debug_types);
8957
8958 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8959 if (reader.dummy_p)
8960 return;
8961
8962 struct dwarf2_cu *cu = reader.cu;
8963 const gdb_byte *info_ptr = reader.info_ptr;
8964
8965 gdb_assert (cu->die_hash == NULL);
8966 cu->die_hash =
8967 htab_create_alloc_ex (cu->header.length / 12,
8968 die_hash,
8969 die_eq,
8970 NULL,
8971 &cu->comp_unit_obstack,
8972 hashtab_obstack_allocate,
8973 dummy_obstack_deallocate);
8974
8975 if (reader.comp_unit_die->has_children)
8976 reader.comp_unit_die->child
8977 = read_die_and_siblings (&reader, reader.info_ptr,
8978 &info_ptr, reader.comp_unit_die);
8979 cu->dies = reader.comp_unit_die;
8980 /* comp_unit_die is not stored in die_hash, no need. */
8981
8982 /* We try not to read any attributes in this function, because not
8983 all CUs needed for references have been loaded yet, and symbol
8984 table processing isn't initialized. But we have to set the CU language,
8985 or we won't be able to build types correctly.
8986 Similarly, if we do not read the producer, we can not apply
8987 producer-specific interpretation. */
8988 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8989
8990 reader.keep ();
8991 }
8992
8993 /* Add a DIE to the delayed physname list. */
8994
8995 static void
8996 add_to_method_list (struct type *type, int fnfield_index, int index,
8997 const char *name, struct die_info *die,
8998 struct dwarf2_cu *cu)
8999 {
9000 struct delayed_method_info mi;
9001 mi.type = type;
9002 mi.fnfield_index = fnfield_index;
9003 mi.index = index;
9004 mi.name = name;
9005 mi.die = die;
9006 cu->method_list.push_back (mi);
9007 }
9008
9009 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9010 "const" / "volatile". If so, decrements LEN by the length of the
9011 modifier and return true. Otherwise return false. */
9012
9013 template<size_t N>
9014 static bool
9015 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9016 {
9017 size_t mod_len = sizeof (mod) - 1;
9018 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9019 {
9020 len -= mod_len;
9021 return true;
9022 }
9023 return false;
9024 }
9025
9026 /* Compute the physnames of any methods on the CU's method list.
9027
9028 The computation of method physnames is delayed in order to avoid the
9029 (bad) condition that one of the method's formal parameters is of an as yet
9030 incomplete type. */
9031
9032 static void
9033 compute_delayed_physnames (struct dwarf2_cu *cu)
9034 {
9035 /* Only C++ delays computing physnames. */
9036 if (cu->method_list.empty ())
9037 return;
9038 gdb_assert (cu->language == language_cplus);
9039
9040 for (const delayed_method_info &mi : cu->method_list)
9041 {
9042 const char *physname;
9043 struct fn_fieldlist *fn_flp
9044 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9045 physname = dwarf2_physname (mi.name, mi.die, cu);
9046 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9047 = physname ? physname : "";
9048
9049 /* Since there's no tag to indicate whether a method is a
9050 const/volatile overload, extract that information out of the
9051 demangled name. */
9052 if (physname != NULL)
9053 {
9054 size_t len = strlen (physname);
9055
9056 while (1)
9057 {
9058 if (physname[len] == ')') /* shortcut */
9059 break;
9060 else if (check_modifier (physname, len, " const"))
9061 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9062 else if (check_modifier (physname, len, " volatile"))
9063 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9064 else
9065 break;
9066 }
9067 }
9068 }
9069
9070 /* The list is no longer needed. */
9071 cu->method_list.clear ();
9072 }
9073
9074 /* Go objects should be embedded in a DW_TAG_module DIE,
9075 and it's not clear if/how imported objects will appear.
9076 To keep Go support simple until that's worked out,
9077 go back through what we've read and create something usable.
9078 We could do this while processing each DIE, and feels kinda cleaner,
9079 but that way is more invasive.
9080 This is to, for example, allow the user to type "p var" or "b main"
9081 without having to specify the package name, and allow lookups
9082 of module.object to work in contexts that use the expression
9083 parser. */
9084
9085 static void
9086 fixup_go_packaging (struct dwarf2_cu *cu)
9087 {
9088 gdb::unique_xmalloc_ptr<char> package_name;
9089 struct pending *list;
9090 int i;
9091
9092 for (list = *cu->get_builder ()->get_global_symbols ();
9093 list != NULL;
9094 list = list->next)
9095 {
9096 for (i = 0; i < list->nsyms; ++i)
9097 {
9098 struct symbol *sym = list->symbol[i];
9099
9100 if (sym->language () == language_go
9101 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9102 {
9103 gdb::unique_xmalloc_ptr<char> this_package_name
9104 (go_symbol_package_name (sym));
9105
9106 if (this_package_name == NULL)
9107 continue;
9108 if (package_name == NULL)
9109 package_name = std::move (this_package_name);
9110 else
9111 {
9112 struct objfile *objfile
9113 = cu->per_cu->dwarf2_per_objfile->objfile;
9114 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9115 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9116 (symbol_symtab (sym) != NULL
9117 ? symtab_to_filename_for_display
9118 (symbol_symtab (sym))
9119 : objfile_name (objfile)),
9120 this_package_name.get (), package_name.get ());
9121 }
9122 }
9123 }
9124 }
9125
9126 if (package_name != NULL)
9127 {
9128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9129 const char *saved_package_name = objfile->intern (package_name.get ());
9130 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9131 saved_package_name);
9132 struct symbol *sym;
9133
9134 sym = allocate_symbol (objfile);
9135 sym->set_language (language_go, &objfile->objfile_obstack);
9136 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9137 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9138 e.g., "main" finds the "main" module and not C's main(). */
9139 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9140 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9141 SYMBOL_TYPE (sym) = type;
9142
9143 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9144 }
9145 }
9146
9147 /* Allocate a fully-qualified name consisting of the two parts on the
9148 obstack. */
9149
9150 static const char *
9151 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9152 {
9153 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9154 }
9155
9156 /* A helper that allocates a variant part to attach to a Rust enum
9157 type. OBSTACK is where the results should be allocated. TYPE is
9158 the type we're processing. DISCRIMINANT_INDEX is the index of the
9159 discriminant. It must be the index of one of the fields of TYPE.
9160 DEFAULT_INDEX is the index of the default field; or -1 if there is
9161 no default. RANGES is indexed by "effective" field number (the
9162 field index, but omitting the discriminant and default fields) and
9163 must hold the discriminant values used by the variants. Note that
9164 RANGES must have a lifetime at least as long as OBSTACK -- either
9165 already allocated on it, or static. */
9166
9167 static void
9168 alloc_rust_variant (struct obstack *obstack, struct type *type,
9169 int discriminant_index, int default_index,
9170 gdb::array_view<discriminant_range> ranges)
9171 {
9172 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9173 must be handled by the caller. */
9174 gdb_assert (discriminant_index >= 0
9175 && discriminant_index < TYPE_NFIELDS (type));
9176 gdb_assert (default_index == -1
9177 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9178
9179 /* We have one variant for each non-discriminant field. */
9180 int n_variants = TYPE_NFIELDS (type) - 1;
9181
9182 variant *variants = new (obstack) variant[n_variants];
9183 int var_idx = 0;
9184 int range_idx = 0;
9185 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9186 {
9187 if (i == discriminant_index)
9188 continue;
9189
9190 variants[var_idx].first_field = i;
9191 variants[var_idx].last_field = i + 1;
9192
9193 /* The default field does not need a range, but other fields do.
9194 We skipped the discriminant above. */
9195 if (i != default_index)
9196 {
9197 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9198 ++range_idx;
9199 }
9200
9201 ++var_idx;
9202 }
9203
9204 gdb_assert (range_idx == ranges.size ());
9205 gdb_assert (var_idx == n_variants);
9206
9207 variant_part *part = new (obstack) variant_part;
9208 part->discriminant_index = discriminant_index;
9209 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9210 discriminant_index));
9211 part->variants = gdb::array_view<variant> (variants, n_variants);
9212
9213 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9214 gdb::array_view<variant_part> *prop_value
9215 = new (storage) gdb::array_view<variant_part> (part, 1);
9216
9217 struct dynamic_prop prop;
9218 prop.kind = PROP_VARIANT_PARTS;
9219 prop.data.variant_parts = prop_value;
9220
9221 add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop, type);
9222 }
9223
9224 /* Some versions of rustc emitted enums in an unusual way.
9225
9226 Ordinary enums were emitted as unions. The first element of each
9227 structure in the union was named "RUST$ENUM$DISR". This element
9228 held the discriminant.
9229
9230 These versions of Rust also implemented the "non-zero"
9231 optimization. When the enum had two values, and one is empty and
9232 the other holds a pointer that cannot be zero, the pointer is used
9233 as the discriminant, with a zero value meaning the empty variant.
9234 Here, the union's first member is of the form
9235 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9236 where the fieldnos are the indices of the fields that should be
9237 traversed in order to find the field (which may be several fields deep)
9238 and the variantname is the name of the variant of the case when the
9239 field is zero.
9240
9241 This function recognizes whether TYPE is of one of these forms,
9242 and, if so, smashes it to be a variant type. */
9243
9244 static void
9245 quirk_rust_enum (struct type *type, struct objfile *objfile)
9246 {
9247 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9248
9249 /* We don't need to deal with empty enums. */
9250 if (TYPE_NFIELDS (type) == 0)
9251 return;
9252
9253 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9254 if (TYPE_NFIELDS (type) == 1
9255 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9256 {
9257 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9258
9259 /* Decode the field name to find the offset of the
9260 discriminant. */
9261 ULONGEST bit_offset = 0;
9262 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9263 while (name[0] >= '0' && name[0] <= '9')
9264 {
9265 char *tail;
9266 unsigned long index = strtoul (name, &tail, 10);
9267 name = tail;
9268 if (*name != '$'
9269 || index >= TYPE_NFIELDS (field_type)
9270 || (TYPE_FIELD_LOC_KIND (field_type, index)
9271 != FIELD_LOC_KIND_BITPOS))
9272 {
9273 complaint (_("Could not parse Rust enum encoding string \"%s\""
9274 "[in module %s]"),
9275 TYPE_FIELD_NAME (type, 0),
9276 objfile_name (objfile));
9277 return;
9278 }
9279 ++name;
9280
9281 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9282 field_type = TYPE_FIELD_TYPE (field_type, index);
9283 }
9284
9285 /* Smash this type to be a structure type. We have to do this
9286 because the type has already been recorded. */
9287 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9288 TYPE_NFIELDS (type) = 3;
9289 /* Save the field we care about. */
9290 struct field saved_field = TYPE_FIELD (type, 0);
9291 TYPE_FIELDS (type)
9292 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9293
9294 /* Put the discriminant at index 0. */
9295 TYPE_FIELD_TYPE (type, 0) = field_type;
9296 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9297 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9298 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), bit_offset);
9299
9300 /* The order of fields doesn't really matter, so put the real
9301 field at index 1 and the data-less field at index 2. */
9302 TYPE_FIELD (type, 1) = saved_field;
9303 TYPE_FIELD_NAME (type, 1)
9304 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, 1)));
9305 TYPE_NAME (TYPE_FIELD_TYPE (type, 1))
9306 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9307 TYPE_FIELD_NAME (type, 1));
9308
9309 const char *dataless_name
9310 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9311 name);
9312 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9313 dataless_name);
9314 TYPE_FIELD_TYPE (type, 2) = dataless_type;
9315 /* NAME points into the original discriminant name, which
9316 already has the correct lifetime. */
9317 TYPE_FIELD_NAME (type, 2) = name;
9318 SET_FIELD_BITPOS (TYPE_FIELD (type, 2), 0);
9319
9320 /* Indicate that this is a variant type. */
9321 static discriminant_range ranges[1] = { { 0, 0 } };
9322 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9323 }
9324 /* A union with a single anonymous field is probably an old-style
9325 univariant enum. */
9326 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9327 {
9328 /* Smash this type to be a structure type. We have to do this
9329 because the type has already been recorded. */
9330 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9331
9332 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9333 const char *variant_name
9334 = rust_last_path_segment (TYPE_NAME (field_type));
9335 TYPE_FIELD_NAME (type, 0) = variant_name;
9336 TYPE_NAME (field_type)
9337 = rust_fully_qualify (&objfile->objfile_obstack,
9338 TYPE_NAME (type), variant_name);
9339 }
9340 else
9341 {
9342 struct type *disr_type = nullptr;
9343 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9344 {
9345 disr_type = TYPE_FIELD_TYPE (type, i);
9346
9347 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9348 {
9349 /* All fields of a true enum will be structs. */
9350 return;
9351 }
9352 else if (TYPE_NFIELDS (disr_type) == 0)
9353 {
9354 /* Could be data-less variant, so keep going. */
9355 disr_type = nullptr;
9356 }
9357 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9358 "RUST$ENUM$DISR") != 0)
9359 {
9360 /* Not a Rust enum. */
9361 return;
9362 }
9363 else
9364 {
9365 /* Found one. */
9366 break;
9367 }
9368 }
9369
9370 /* If we got here without a discriminant, then it's probably
9371 just a union. */
9372 if (disr_type == nullptr)
9373 return;
9374
9375 /* Smash this type to be a structure type. We have to do this
9376 because the type has already been recorded. */
9377 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9378
9379 /* Make space for the discriminant field. */
9380 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9381 field *new_fields
9382 = (struct field *) TYPE_ZALLOC (type, (TYPE_NFIELDS (type)
9383 * sizeof (struct field)));
9384 memcpy (new_fields + 1, TYPE_FIELDS (type),
9385 TYPE_NFIELDS (type) * sizeof (struct field));
9386 TYPE_FIELDS (type) = new_fields;
9387 TYPE_NFIELDS (type) = TYPE_NFIELDS (type) + 1;
9388
9389 /* Install the discriminant at index 0 in the union. */
9390 TYPE_FIELD (type, 0) = *disr_field;
9391 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9392 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9393
9394 /* We need a way to find the correct discriminant given a
9395 variant name. For convenience we build a map here. */
9396 struct type *enum_type = FIELD_TYPE (*disr_field);
9397 std::unordered_map<std::string, ULONGEST> discriminant_map;
9398 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9399 {
9400 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9401 {
9402 const char *name
9403 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9404 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9405 }
9406 }
9407
9408 int n_fields = TYPE_NFIELDS (type);
9409 /* We don't need a range entry for the discriminant, but we do
9410 need one for every other field, as there is no default
9411 variant. */
9412 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9413 discriminant_range,
9414 n_fields - 1);
9415 /* Skip the discriminant here. */
9416 for (int i = 1; i < n_fields; ++i)
9417 {
9418 /* Find the final word in the name of this variant's type.
9419 That name can be used to look up the correct
9420 discriminant. */
9421 const char *variant_name
9422 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, i)));
9423
9424 auto iter = discriminant_map.find (variant_name);
9425 if (iter != discriminant_map.end ())
9426 {
9427 ranges[i].low = iter->second;
9428 ranges[i].high = iter->second;
9429 }
9430
9431 /* Remove the discriminant field, if it exists. */
9432 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9433 if (TYPE_NFIELDS (sub_type) > 0)
9434 {
9435 --TYPE_NFIELDS (sub_type);
9436 ++TYPE_FIELDS (sub_type);
9437 }
9438 TYPE_FIELD_NAME (type, i) = variant_name;
9439 TYPE_NAME (sub_type)
9440 = rust_fully_qualify (&objfile->objfile_obstack,
9441 TYPE_NAME (type), variant_name);
9442 }
9443
9444 /* Indicate that this is a variant type. */
9445 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9446 gdb::array_view<discriminant_range> (ranges,
9447 n_fields - 1));
9448 }
9449 }
9450
9451 /* Rewrite some Rust unions to be structures with variants parts. */
9452
9453 static void
9454 rust_union_quirks (struct dwarf2_cu *cu)
9455 {
9456 gdb_assert (cu->language == language_rust);
9457 for (type *type_ : cu->rust_unions)
9458 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9459 /* We don't need this any more. */
9460 cu->rust_unions.clear ();
9461 }
9462
9463 /* Return the symtab for PER_CU. This works properly regardless of
9464 whether we're using the index or psymtabs. */
9465
9466 static struct compunit_symtab *
9467 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9468 {
9469 return (per_cu->dwarf2_per_objfile->using_index
9470 ? per_cu->v.quick->compunit_symtab
9471 : per_cu->v.psymtab->compunit_symtab);
9472 }
9473
9474 /* A helper function for computing the list of all symbol tables
9475 included by PER_CU. */
9476
9477 static void
9478 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9479 htab_t all_children, htab_t all_type_symtabs,
9480 struct dwarf2_per_cu_data *per_cu,
9481 struct compunit_symtab *immediate_parent)
9482 {
9483 void **slot;
9484 struct compunit_symtab *cust;
9485
9486 slot = htab_find_slot (all_children, per_cu, INSERT);
9487 if (*slot != NULL)
9488 {
9489 /* This inclusion and its children have been processed. */
9490 return;
9491 }
9492
9493 *slot = per_cu;
9494 /* Only add a CU if it has a symbol table. */
9495 cust = get_compunit_symtab (per_cu);
9496 if (cust != NULL)
9497 {
9498 /* If this is a type unit only add its symbol table if we haven't
9499 seen it yet (type unit per_cu's can share symtabs). */
9500 if (per_cu->is_debug_types)
9501 {
9502 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9503 if (*slot == NULL)
9504 {
9505 *slot = cust;
9506 result->push_back (cust);
9507 if (cust->user == NULL)
9508 cust->user = immediate_parent;
9509 }
9510 }
9511 else
9512 {
9513 result->push_back (cust);
9514 if (cust->user == NULL)
9515 cust->user = immediate_parent;
9516 }
9517 }
9518
9519 if (!per_cu->imported_symtabs_empty ())
9520 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9521 {
9522 recursively_compute_inclusions (result, all_children,
9523 all_type_symtabs, ptr, cust);
9524 }
9525 }
9526
9527 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9528 PER_CU. */
9529
9530 static void
9531 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9532 {
9533 gdb_assert (! per_cu->is_debug_types);
9534
9535 if (!per_cu->imported_symtabs_empty ())
9536 {
9537 int len;
9538 std::vector<compunit_symtab *> result_symtabs;
9539 htab_t all_children, all_type_symtabs;
9540 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9541
9542 /* If we don't have a symtab, we can just skip this case. */
9543 if (cust == NULL)
9544 return;
9545
9546 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9547 NULL, xcalloc, xfree);
9548 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9549 NULL, xcalloc, xfree);
9550
9551 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9552 {
9553 recursively_compute_inclusions (&result_symtabs, all_children,
9554 all_type_symtabs, ptr, cust);
9555 }
9556
9557 /* Now we have a transitive closure of all the included symtabs. */
9558 len = result_symtabs.size ();
9559 cust->includes
9560 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9561 struct compunit_symtab *, len + 1);
9562 memcpy (cust->includes, result_symtabs.data (),
9563 len * sizeof (compunit_symtab *));
9564 cust->includes[len] = NULL;
9565
9566 htab_delete (all_children);
9567 htab_delete (all_type_symtabs);
9568 }
9569 }
9570
9571 /* Compute the 'includes' field for the symtabs of all the CUs we just
9572 read. */
9573
9574 static void
9575 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9576 {
9577 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9578 {
9579 if (! iter->is_debug_types)
9580 compute_compunit_symtab_includes (iter);
9581 }
9582
9583 dwarf2_per_objfile->just_read_cus.clear ();
9584 }
9585
9586 /* Generate full symbol information for PER_CU, whose DIEs have
9587 already been loaded into memory. */
9588
9589 static void
9590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9591 enum language pretend_language)
9592 {
9593 struct dwarf2_cu *cu = per_cu->cu;
9594 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9595 struct objfile *objfile = dwarf2_per_objfile->objfile;
9596 struct gdbarch *gdbarch = objfile->arch ();
9597 CORE_ADDR lowpc, highpc;
9598 struct compunit_symtab *cust;
9599 CORE_ADDR baseaddr;
9600 struct block *static_block;
9601 CORE_ADDR addr;
9602
9603 baseaddr = objfile->text_section_offset ();
9604
9605 /* Clear the list here in case something was left over. */
9606 cu->method_list.clear ();
9607
9608 cu->language = pretend_language;
9609 cu->language_defn = language_def (cu->language);
9610
9611 /* Do line number decoding in read_file_scope () */
9612 process_die (cu->dies, cu);
9613
9614 /* For now fudge the Go package. */
9615 if (cu->language == language_go)
9616 fixup_go_packaging (cu);
9617
9618 /* Now that we have processed all the DIEs in the CU, all the types
9619 should be complete, and it should now be safe to compute all of the
9620 physnames. */
9621 compute_delayed_physnames (cu);
9622
9623 if (cu->language == language_rust)
9624 rust_union_quirks (cu);
9625
9626 /* Some compilers don't define a DW_AT_high_pc attribute for the
9627 compilation unit. If the DW_AT_high_pc is missing, synthesize
9628 it, by scanning the DIE's below the compilation unit. */
9629 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9630
9631 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9632 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9633
9634 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9635 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9636 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9637 addrmap to help ensure it has an accurate map of pc values belonging to
9638 this comp unit. */
9639 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9640
9641 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9642 SECT_OFF_TEXT (objfile),
9643 0);
9644
9645 if (cust != NULL)
9646 {
9647 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9648
9649 /* Set symtab language to language from DW_AT_language. If the
9650 compilation is from a C file generated by language preprocessors, do
9651 not set the language if it was already deduced by start_subfile. */
9652 if (!(cu->language == language_c
9653 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9654 COMPUNIT_FILETABS (cust)->language = cu->language;
9655
9656 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9657 produce DW_AT_location with location lists but it can be possibly
9658 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9659 there were bugs in prologue debug info, fixed later in GCC-4.5
9660 by "unwind info for epilogues" patch (which is not directly related).
9661
9662 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9663 needed, it would be wrong due to missing DW_AT_producer there.
9664
9665 Still one can confuse GDB by using non-standard GCC compilation
9666 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9667 */
9668 if (cu->has_loclist && gcc_4_minor >= 5)
9669 cust->locations_valid = 1;
9670
9671 if (gcc_4_minor >= 5)
9672 cust->epilogue_unwind_valid = 1;
9673
9674 cust->call_site_htab = cu->call_site_htab;
9675 }
9676
9677 if (dwarf2_per_objfile->using_index)
9678 per_cu->v.quick->compunit_symtab = cust;
9679 else
9680 {
9681 dwarf2_psymtab *pst = per_cu->v.psymtab;
9682 pst->compunit_symtab = cust;
9683 pst->readin = true;
9684 }
9685
9686 /* Push it for inclusion processing later. */
9687 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9688
9689 /* Not needed any more. */
9690 cu->reset_builder ();
9691 }
9692
9693 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9694 already been loaded into memory. */
9695
9696 static void
9697 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9698 enum language pretend_language)
9699 {
9700 struct dwarf2_cu *cu = per_cu->cu;
9701 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9702 struct objfile *objfile = dwarf2_per_objfile->objfile;
9703 struct compunit_symtab *cust;
9704 struct signatured_type *sig_type;
9705
9706 gdb_assert (per_cu->is_debug_types);
9707 sig_type = (struct signatured_type *) per_cu;
9708
9709 /* Clear the list here in case something was left over. */
9710 cu->method_list.clear ();
9711
9712 cu->language = pretend_language;
9713 cu->language_defn = language_def (cu->language);
9714
9715 /* The symbol tables are set up in read_type_unit_scope. */
9716 process_die (cu->dies, cu);
9717
9718 /* For now fudge the Go package. */
9719 if (cu->language == language_go)
9720 fixup_go_packaging (cu);
9721
9722 /* Now that we have processed all the DIEs in the CU, all the types
9723 should be complete, and it should now be safe to compute all of the
9724 physnames. */
9725 compute_delayed_physnames (cu);
9726
9727 if (cu->language == language_rust)
9728 rust_union_quirks (cu);
9729
9730 /* TUs share symbol tables.
9731 If this is the first TU to use this symtab, complete the construction
9732 of it with end_expandable_symtab. Otherwise, complete the addition of
9733 this TU's symbols to the existing symtab. */
9734 if (sig_type->type_unit_group->compunit_symtab == NULL)
9735 {
9736 buildsym_compunit *builder = cu->get_builder ();
9737 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9738 sig_type->type_unit_group->compunit_symtab = cust;
9739
9740 if (cust != NULL)
9741 {
9742 /* Set symtab language to language from DW_AT_language. If the
9743 compilation is from a C file generated by language preprocessors,
9744 do not set the language if it was already deduced by
9745 start_subfile. */
9746 if (!(cu->language == language_c
9747 && COMPUNIT_FILETABS (cust)->language != language_c))
9748 COMPUNIT_FILETABS (cust)->language = cu->language;
9749 }
9750 }
9751 else
9752 {
9753 cu->get_builder ()->augment_type_symtab ();
9754 cust = sig_type->type_unit_group->compunit_symtab;
9755 }
9756
9757 if (dwarf2_per_objfile->using_index)
9758 per_cu->v.quick->compunit_symtab = cust;
9759 else
9760 {
9761 dwarf2_psymtab *pst = per_cu->v.psymtab;
9762 pst->compunit_symtab = cust;
9763 pst->readin = true;
9764 }
9765
9766 /* Not needed any more. */
9767 cu->reset_builder ();
9768 }
9769
9770 /* Process an imported unit DIE. */
9771
9772 static void
9773 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9774 {
9775 struct attribute *attr;
9776
9777 /* For now we don't handle imported units in type units. */
9778 if (cu->per_cu->is_debug_types)
9779 {
9780 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9781 " supported in type units [in module %s]"),
9782 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9783 }
9784
9785 attr = dwarf2_attr (die, DW_AT_import, cu);
9786 if (attr != NULL)
9787 {
9788 sect_offset sect_off = attr->get_ref_die_offset ();
9789 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9790 dwarf2_per_cu_data *per_cu
9791 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9792 cu->per_cu->dwarf2_per_objfile);
9793
9794 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9795 into another compilation unit, at root level. Regard this as a hint,
9796 and ignore it. */
9797 if (die->parent && die->parent->parent == NULL
9798 && per_cu->unit_type == DW_UT_compile
9799 && per_cu->lang == language_cplus)
9800 return;
9801
9802 /* If necessary, add it to the queue and load its DIEs. */
9803 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9804 load_full_comp_unit (per_cu, false, cu->language);
9805
9806 cu->per_cu->imported_symtabs_push (per_cu);
9807 }
9808 }
9809
9810 /* RAII object that represents a process_die scope: i.e.,
9811 starts/finishes processing a DIE. */
9812 class process_die_scope
9813 {
9814 public:
9815 process_die_scope (die_info *die, dwarf2_cu *cu)
9816 : m_die (die), m_cu (cu)
9817 {
9818 /* We should only be processing DIEs not already in process. */
9819 gdb_assert (!m_die->in_process);
9820 m_die->in_process = true;
9821 }
9822
9823 ~process_die_scope ()
9824 {
9825 m_die->in_process = false;
9826
9827 /* If we're done processing the DIE for the CU that owns the line
9828 header, we don't need the line header anymore. */
9829 if (m_cu->line_header_die_owner == m_die)
9830 {
9831 delete m_cu->line_header;
9832 m_cu->line_header = NULL;
9833 m_cu->line_header_die_owner = NULL;
9834 }
9835 }
9836
9837 private:
9838 die_info *m_die;
9839 dwarf2_cu *m_cu;
9840 };
9841
9842 /* Process a die and its children. */
9843
9844 static void
9845 process_die (struct die_info *die, struct dwarf2_cu *cu)
9846 {
9847 process_die_scope scope (die, cu);
9848
9849 switch (die->tag)
9850 {
9851 case DW_TAG_padding:
9852 break;
9853 case DW_TAG_compile_unit:
9854 case DW_TAG_partial_unit:
9855 read_file_scope (die, cu);
9856 break;
9857 case DW_TAG_type_unit:
9858 read_type_unit_scope (die, cu);
9859 break;
9860 case DW_TAG_subprogram:
9861 /* Nested subprograms in Fortran get a prefix. */
9862 if (cu->language == language_fortran
9863 && die->parent != NULL
9864 && die->parent->tag == DW_TAG_subprogram)
9865 cu->processing_has_namespace_info = true;
9866 /* Fall through. */
9867 case DW_TAG_inlined_subroutine:
9868 read_func_scope (die, cu);
9869 break;
9870 case DW_TAG_lexical_block:
9871 case DW_TAG_try_block:
9872 case DW_TAG_catch_block:
9873 read_lexical_block_scope (die, cu);
9874 break;
9875 case DW_TAG_call_site:
9876 case DW_TAG_GNU_call_site:
9877 read_call_site_scope (die, cu);
9878 break;
9879 case DW_TAG_class_type:
9880 case DW_TAG_interface_type:
9881 case DW_TAG_structure_type:
9882 case DW_TAG_union_type:
9883 process_structure_scope (die, cu);
9884 break;
9885 case DW_TAG_enumeration_type:
9886 process_enumeration_scope (die, cu);
9887 break;
9888
9889 /* These dies have a type, but processing them does not create
9890 a symbol or recurse to process the children. Therefore we can
9891 read them on-demand through read_type_die. */
9892 case DW_TAG_subroutine_type:
9893 case DW_TAG_set_type:
9894 case DW_TAG_array_type:
9895 case DW_TAG_pointer_type:
9896 case DW_TAG_ptr_to_member_type:
9897 case DW_TAG_reference_type:
9898 case DW_TAG_rvalue_reference_type:
9899 case DW_TAG_string_type:
9900 break;
9901
9902 case DW_TAG_base_type:
9903 case DW_TAG_subrange_type:
9904 case DW_TAG_typedef:
9905 /* Add a typedef symbol for the type definition, if it has a
9906 DW_AT_name. */
9907 new_symbol (die, read_type_die (die, cu), cu);
9908 break;
9909 case DW_TAG_common_block:
9910 read_common_block (die, cu);
9911 break;
9912 case DW_TAG_common_inclusion:
9913 break;
9914 case DW_TAG_namespace:
9915 cu->processing_has_namespace_info = true;
9916 read_namespace (die, cu);
9917 break;
9918 case DW_TAG_module:
9919 cu->processing_has_namespace_info = true;
9920 read_module (die, cu);
9921 break;
9922 case DW_TAG_imported_declaration:
9923 cu->processing_has_namespace_info = true;
9924 if (read_namespace_alias (die, cu))
9925 break;
9926 /* The declaration is not a global namespace alias. */
9927 /* Fall through. */
9928 case DW_TAG_imported_module:
9929 cu->processing_has_namespace_info = true;
9930 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9931 || cu->language != language_fortran))
9932 complaint (_("Tag '%s' has unexpected children"),
9933 dwarf_tag_name (die->tag));
9934 read_import_statement (die, cu);
9935 break;
9936
9937 case DW_TAG_imported_unit:
9938 process_imported_unit_die (die, cu);
9939 break;
9940
9941 case DW_TAG_variable:
9942 read_variable (die, cu);
9943 break;
9944
9945 default:
9946 new_symbol (die, NULL, cu);
9947 break;
9948 }
9949 }
9950 \f
9951 /* DWARF name computation. */
9952
9953 /* A helper function for dwarf2_compute_name which determines whether DIE
9954 needs to have the name of the scope prepended to the name listed in the
9955 die. */
9956
9957 static int
9958 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9959 {
9960 struct attribute *attr;
9961
9962 switch (die->tag)
9963 {
9964 case DW_TAG_namespace:
9965 case DW_TAG_typedef:
9966 case DW_TAG_class_type:
9967 case DW_TAG_interface_type:
9968 case DW_TAG_structure_type:
9969 case DW_TAG_union_type:
9970 case DW_TAG_enumeration_type:
9971 case DW_TAG_enumerator:
9972 case DW_TAG_subprogram:
9973 case DW_TAG_inlined_subroutine:
9974 case DW_TAG_member:
9975 case DW_TAG_imported_declaration:
9976 return 1;
9977
9978 case DW_TAG_variable:
9979 case DW_TAG_constant:
9980 /* We only need to prefix "globally" visible variables. These include
9981 any variable marked with DW_AT_external or any variable that
9982 lives in a namespace. [Variables in anonymous namespaces
9983 require prefixing, but they are not DW_AT_external.] */
9984
9985 if (dwarf2_attr (die, DW_AT_specification, cu))
9986 {
9987 struct dwarf2_cu *spec_cu = cu;
9988
9989 return die_needs_namespace (die_specification (die, &spec_cu),
9990 spec_cu);
9991 }
9992
9993 attr = dwarf2_attr (die, DW_AT_external, cu);
9994 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9995 && die->parent->tag != DW_TAG_module)
9996 return 0;
9997 /* A variable in a lexical block of some kind does not need a
9998 namespace, even though in C++ such variables may be external
9999 and have a mangled name. */
10000 if (die->parent->tag == DW_TAG_lexical_block
10001 || die->parent->tag == DW_TAG_try_block
10002 || die->parent->tag == DW_TAG_catch_block
10003 || die->parent->tag == DW_TAG_subprogram)
10004 return 0;
10005 return 1;
10006
10007 default:
10008 return 0;
10009 }
10010 }
10011
10012 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10013 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10014 defined for the given DIE. */
10015
10016 static struct attribute *
10017 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10018 {
10019 struct attribute *attr;
10020
10021 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10022 if (attr == NULL)
10023 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10024
10025 return attr;
10026 }
10027
10028 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10029 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10030 defined for the given DIE. */
10031
10032 static const char *
10033 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10034 {
10035 const char *linkage_name;
10036
10037 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10038 if (linkage_name == NULL)
10039 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10040
10041 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10042 See https://github.com/rust-lang/rust/issues/32925. */
10043 if (cu->language == language_rust && linkage_name != NULL
10044 && strchr (linkage_name, '{') != NULL)
10045 linkage_name = NULL;
10046
10047 return linkage_name;
10048 }
10049
10050 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10051 compute the physname for the object, which include a method's:
10052 - formal parameters (C++),
10053 - receiver type (Go),
10054
10055 The term "physname" is a bit confusing.
10056 For C++, for example, it is the demangled name.
10057 For Go, for example, it's the mangled name.
10058
10059 For Ada, return the DIE's linkage name rather than the fully qualified
10060 name. PHYSNAME is ignored..
10061
10062 The result is allocated on the objfile_obstack and canonicalized. */
10063
10064 static const char *
10065 dwarf2_compute_name (const char *name,
10066 struct die_info *die, struct dwarf2_cu *cu,
10067 int physname)
10068 {
10069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10070
10071 if (name == NULL)
10072 name = dwarf2_name (die, cu);
10073
10074 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10075 but otherwise compute it by typename_concat inside GDB.
10076 FIXME: Actually this is not really true, or at least not always true.
10077 It's all very confusing. compute_and_set_names doesn't try to demangle
10078 Fortran names because there is no mangling standard. So new_symbol
10079 will set the demangled name to the result of dwarf2_full_name, and it is
10080 the demangled name that GDB uses if it exists. */
10081 if (cu->language == language_ada
10082 || (cu->language == language_fortran && physname))
10083 {
10084 /* For Ada unit, we prefer the linkage name over the name, as
10085 the former contains the exported name, which the user expects
10086 to be able to reference. Ideally, we want the user to be able
10087 to reference this entity using either natural or linkage name,
10088 but we haven't started looking at this enhancement yet. */
10089 const char *linkage_name = dw2_linkage_name (die, cu);
10090
10091 if (linkage_name != NULL)
10092 return linkage_name;
10093 }
10094
10095 /* These are the only languages we know how to qualify names in. */
10096 if (name != NULL
10097 && (cu->language == language_cplus
10098 || cu->language == language_fortran || cu->language == language_d
10099 || cu->language == language_rust))
10100 {
10101 if (die_needs_namespace (die, cu))
10102 {
10103 const char *prefix;
10104 const char *canonical_name = NULL;
10105
10106 string_file buf;
10107
10108 prefix = determine_prefix (die, cu);
10109 if (*prefix != '\0')
10110 {
10111 gdb::unique_xmalloc_ptr<char> prefixed_name
10112 (typename_concat (NULL, prefix, name, physname, cu));
10113
10114 buf.puts (prefixed_name.get ());
10115 }
10116 else
10117 buf.puts (name);
10118
10119 /* Template parameters may be specified in the DIE's DW_AT_name, or
10120 as children with DW_TAG_template_type_param or
10121 DW_TAG_value_type_param. If the latter, add them to the name
10122 here. If the name already has template parameters, then
10123 skip this step; some versions of GCC emit both, and
10124 it is more efficient to use the pre-computed name.
10125
10126 Something to keep in mind about this process: it is very
10127 unlikely, or in some cases downright impossible, to produce
10128 something that will match the mangled name of a function.
10129 If the definition of the function has the same debug info,
10130 we should be able to match up with it anyway. But fallbacks
10131 using the minimal symbol, for instance to find a method
10132 implemented in a stripped copy of libstdc++, will not work.
10133 If we do not have debug info for the definition, we will have to
10134 match them up some other way.
10135
10136 When we do name matching there is a related problem with function
10137 templates; two instantiated function templates are allowed to
10138 differ only by their return types, which we do not add here. */
10139
10140 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10141 {
10142 struct attribute *attr;
10143 struct die_info *child;
10144 int first = 1;
10145
10146 die->building_fullname = 1;
10147
10148 for (child = die->child; child != NULL; child = child->sibling)
10149 {
10150 struct type *type;
10151 LONGEST value;
10152 const gdb_byte *bytes;
10153 struct dwarf2_locexpr_baton *baton;
10154 struct value *v;
10155
10156 if (child->tag != DW_TAG_template_type_param
10157 && child->tag != DW_TAG_template_value_param)
10158 continue;
10159
10160 if (first)
10161 {
10162 buf.puts ("<");
10163 first = 0;
10164 }
10165 else
10166 buf.puts (", ");
10167
10168 attr = dwarf2_attr (child, DW_AT_type, cu);
10169 if (attr == NULL)
10170 {
10171 complaint (_("template parameter missing DW_AT_type"));
10172 buf.puts ("UNKNOWN_TYPE");
10173 continue;
10174 }
10175 type = die_type (child, cu);
10176
10177 if (child->tag == DW_TAG_template_type_param)
10178 {
10179 c_print_type (type, "", &buf, -1, 0, cu->language,
10180 &type_print_raw_options);
10181 continue;
10182 }
10183
10184 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10185 if (attr == NULL)
10186 {
10187 complaint (_("template parameter missing "
10188 "DW_AT_const_value"));
10189 buf.puts ("UNKNOWN_VALUE");
10190 continue;
10191 }
10192
10193 dwarf2_const_value_attr (attr, type, name,
10194 &cu->comp_unit_obstack, cu,
10195 &value, &bytes, &baton);
10196
10197 if (TYPE_NOSIGN (type))
10198 /* GDB prints characters as NUMBER 'CHAR'. If that's
10199 changed, this can use value_print instead. */
10200 c_printchar (value, type, &buf);
10201 else
10202 {
10203 struct value_print_options opts;
10204
10205 if (baton != NULL)
10206 v = dwarf2_evaluate_loc_desc (type, NULL,
10207 baton->data,
10208 baton->size,
10209 baton->per_cu);
10210 else if (bytes != NULL)
10211 {
10212 v = allocate_value (type);
10213 memcpy (value_contents_writeable (v), bytes,
10214 TYPE_LENGTH (type));
10215 }
10216 else
10217 v = value_from_longest (type, value);
10218
10219 /* Specify decimal so that we do not depend on
10220 the radix. */
10221 get_formatted_print_options (&opts, 'd');
10222 opts.raw = 1;
10223 value_print (v, &buf, &opts);
10224 release_value (v);
10225 }
10226 }
10227
10228 die->building_fullname = 0;
10229
10230 if (!first)
10231 {
10232 /* Close the argument list, with a space if necessary
10233 (nested templates). */
10234 if (!buf.empty () && buf.string ().back () == '>')
10235 buf.puts (" >");
10236 else
10237 buf.puts (">");
10238 }
10239 }
10240
10241 /* For C++ methods, append formal parameter type
10242 information, if PHYSNAME. */
10243
10244 if (physname && die->tag == DW_TAG_subprogram
10245 && cu->language == language_cplus)
10246 {
10247 struct type *type = read_type_die (die, cu);
10248
10249 c_type_print_args (type, &buf, 1, cu->language,
10250 &type_print_raw_options);
10251
10252 if (cu->language == language_cplus)
10253 {
10254 /* Assume that an artificial first parameter is
10255 "this", but do not crash if it is not. RealView
10256 marks unnamed (and thus unused) parameters as
10257 artificial; there is no way to differentiate
10258 the two cases. */
10259 if (TYPE_NFIELDS (type) > 0
10260 && TYPE_FIELD_ARTIFICIAL (type, 0)
10261 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10262 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10263 0))))
10264 buf.puts (" const");
10265 }
10266 }
10267
10268 const std::string &intermediate_name = buf.string ();
10269
10270 if (cu->language == language_cplus)
10271 canonical_name
10272 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10273 objfile);
10274
10275 /* If we only computed INTERMEDIATE_NAME, or if
10276 INTERMEDIATE_NAME is already canonical, then we need to
10277 intern it. */
10278 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10279 name = objfile->intern (intermediate_name);
10280 else
10281 name = canonical_name;
10282 }
10283 }
10284
10285 return name;
10286 }
10287
10288 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10289 If scope qualifiers are appropriate they will be added. The result
10290 will be allocated on the storage_obstack, or NULL if the DIE does
10291 not have a name. NAME may either be from a previous call to
10292 dwarf2_name or NULL.
10293
10294 The output string will be canonicalized (if C++). */
10295
10296 static const char *
10297 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10298 {
10299 return dwarf2_compute_name (name, die, cu, 0);
10300 }
10301
10302 /* Construct a physname for the given DIE in CU. NAME may either be
10303 from a previous call to dwarf2_name or NULL. The result will be
10304 allocated on the objfile_objstack or NULL if the DIE does not have a
10305 name.
10306
10307 The output string will be canonicalized (if C++). */
10308
10309 static const char *
10310 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10311 {
10312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10313 const char *retval, *mangled = NULL, *canon = NULL;
10314 int need_copy = 1;
10315
10316 /* In this case dwarf2_compute_name is just a shortcut not building anything
10317 on its own. */
10318 if (!die_needs_namespace (die, cu))
10319 return dwarf2_compute_name (name, die, cu, 1);
10320
10321 if (cu->language != language_rust)
10322 mangled = dw2_linkage_name (die, cu);
10323
10324 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10325 has computed. */
10326 gdb::unique_xmalloc_ptr<char> demangled;
10327 if (mangled != NULL)
10328 {
10329
10330 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10331 {
10332 /* Do nothing (do not demangle the symbol name). */
10333 }
10334 else if (cu->language == language_go)
10335 {
10336 /* This is a lie, but we already lie to the caller new_symbol.
10337 new_symbol assumes we return the mangled name.
10338 This just undoes that lie until things are cleaned up. */
10339 }
10340 else
10341 {
10342 /* Use DMGL_RET_DROP for C++ template functions to suppress
10343 their return type. It is easier for GDB users to search
10344 for such functions as `name(params)' than `long name(params)'.
10345 In such case the minimal symbol names do not match the full
10346 symbol names but for template functions there is never a need
10347 to look up their definition from their declaration so
10348 the only disadvantage remains the minimal symbol variant
10349 `long name(params)' does not have the proper inferior type. */
10350 demangled.reset (gdb_demangle (mangled,
10351 (DMGL_PARAMS | DMGL_ANSI
10352 | DMGL_RET_DROP)));
10353 }
10354 if (demangled)
10355 canon = demangled.get ();
10356 else
10357 {
10358 canon = mangled;
10359 need_copy = 0;
10360 }
10361 }
10362
10363 if (canon == NULL || check_physname)
10364 {
10365 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10366
10367 if (canon != NULL && strcmp (physname, canon) != 0)
10368 {
10369 /* It may not mean a bug in GDB. The compiler could also
10370 compute DW_AT_linkage_name incorrectly. But in such case
10371 GDB would need to be bug-to-bug compatible. */
10372
10373 complaint (_("Computed physname <%s> does not match demangled <%s> "
10374 "(from linkage <%s>) - DIE at %s [in module %s]"),
10375 physname, canon, mangled, sect_offset_str (die->sect_off),
10376 objfile_name (objfile));
10377
10378 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10379 is available here - over computed PHYSNAME. It is safer
10380 against both buggy GDB and buggy compilers. */
10381
10382 retval = canon;
10383 }
10384 else
10385 {
10386 retval = physname;
10387 need_copy = 0;
10388 }
10389 }
10390 else
10391 retval = canon;
10392
10393 if (need_copy)
10394 retval = objfile->intern (retval);
10395
10396 return retval;
10397 }
10398
10399 /* Inspect DIE in CU for a namespace alias. If one exists, record
10400 a new symbol for it.
10401
10402 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10403
10404 static int
10405 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10406 {
10407 struct attribute *attr;
10408
10409 /* If the die does not have a name, this is not a namespace
10410 alias. */
10411 attr = dwarf2_attr (die, DW_AT_name, cu);
10412 if (attr != NULL)
10413 {
10414 int num;
10415 struct die_info *d = die;
10416 struct dwarf2_cu *imported_cu = cu;
10417
10418 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10419 keep inspecting DIEs until we hit the underlying import. */
10420 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10421 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10422 {
10423 attr = dwarf2_attr (d, DW_AT_import, cu);
10424 if (attr == NULL)
10425 break;
10426
10427 d = follow_die_ref (d, attr, &imported_cu);
10428 if (d->tag != DW_TAG_imported_declaration)
10429 break;
10430 }
10431
10432 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10433 {
10434 complaint (_("DIE at %s has too many recursively imported "
10435 "declarations"), sect_offset_str (d->sect_off));
10436 return 0;
10437 }
10438
10439 if (attr != NULL)
10440 {
10441 struct type *type;
10442 sect_offset sect_off = attr->get_ref_die_offset ();
10443
10444 type = get_die_type_at_offset (sect_off, cu->per_cu);
10445 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10446 {
10447 /* This declaration is a global namespace alias. Add
10448 a symbol for it whose type is the aliased namespace. */
10449 new_symbol (die, type, cu);
10450 return 1;
10451 }
10452 }
10453 }
10454
10455 return 0;
10456 }
10457
10458 /* Return the using directives repository (global or local?) to use in the
10459 current context for CU.
10460
10461 For Ada, imported declarations can materialize renamings, which *may* be
10462 global. However it is impossible (for now?) in DWARF to distinguish
10463 "external" imported declarations and "static" ones. As all imported
10464 declarations seem to be static in all other languages, make them all CU-wide
10465 global only in Ada. */
10466
10467 static struct using_direct **
10468 using_directives (struct dwarf2_cu *cu)
10469 {
10470 if (cu->language == language_ada
10471 && cu->get_builder ()->outermost_context_p ())
10472 return cu->get_builder ()->get_global_using_directives ();
10473 else
10474 return cu->get_builder ()->get_local_using_directives ();
10475 }
10476
10477 /* Read the import statement specified by the given die and record it. */
10478
10479 static void
10480 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10481 {
10482 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10483 struct attribute *import_attr;
10484 struct die_info *imported_die, *child_die;
10485 struct dwarf2_cu *imported_cu;
10486 const char *imported_name;
10487 const char *imported_name_prefix;
10488 const char *canonical_name;
10489 const char *import_alias;
10490 const char *imported_declaration = NULL;
10491 const char *import_prefix;
10492 std::vector<const char *> excludes;
10493
10494 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10495 if (import_attr == NULL)
10496 {
10497 complaint (_("Tag '%s' has no DW_AT_import"),
10498 dwarf_tag_name (die->tag));
10499 return;
10500 }
10501
10502 imported_cu = cu;
10503 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10504 imported_name = dwarf2_name (imported_die, imported_cu);
10505 if (imported_name == NULL)
10506 {
10507 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10508
10509 The import in the following code:
10510 namespace A
10511 {
10512 typedef int B;
10513 }
10514
10515 int main ()
10516 {
10517 using A::B;
10518 B b;
10519 return b;
10520 }
10521
10522 ...
10523 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10524 <52> DW_AT_decl_file : 1
10525 <53> DW_AT_decl_line : 6
10526 <54> DW_AT_import : <0x75>
10527 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10528 <59> DW_AT_name : B
10529 <5b> DW_AT_decl_file : 1
10530 <5c> DW_AT_decl_line : 2
10531 <5d> DW_AT_type : <0x6e>
10532 ...
10533 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10534 <76> DW_AT_byte_size : 4
10535 <77> DW_AT_encoding : 5 (signed)
10536
10537 imports the wrong die ( 0x75 instead of 0x58 ).
10538 This case will be ignored until the gcc bug is fixed. */
10539 return;
10540 }
10541
10542 /* Figure out the local name after import. */
10543 import_alias = dwarf2_name (die, cu);
10544
10545 /* Figure out where the statement is being imported to. */
10546 import_prefix = determine_prefix (die, cu);
10547
10548 /* Figure out what the scope of the imported die is and prepend it
10549 to the name of the imported die. */
10550 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10551
10552 if (imported_die->tag != DW_TAG_namespace
10553 && imported_die->tag != DW_TAG_module)
10554 {
10555 imported_declaration = imported_name;
10556 canonical_name = imported_name_prefix;
10557 }
10558 else if (strlen (imported_name_prefix) > 0)
10559 canonical_name = obconcat (&objfile->objfile_obstack,
10560 imported_name_prefix,
10561 (cu->language == language_d ? "." : "::"),
10562 imported_name, (char *) NULL);
10563 else
10564 canonical_name = imported_name;
10565
10566 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10567 for (child_die = die->child; child_die && child_die->tag;
10568 child_die = child_die->sibling)
10569 {
10570 /* DWARF-4: A Fortran use statement with a “rename list” may be
10571 represented by an imported module entry with an import attribute
10572 referring to the module and owned entries corresponding to those
10573 entities that are renamed as part of being imported. */
10574
10575 if (child_die->tag != DW_TAG_imported_declaration)
10576 {
10577 complaint (_("child DW_TAG_imported_declaration expected "
10578 "- DIE at %s [in module %s]"),
10579 sect_offset_str (child_die->sect_off),
10580 objfile_name (objfile));
10581 continue;
10582 }
10583
10584 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10585 if (import_attr == NULL)
10586 {
10587 complaint (_("Tag '%s' has no DW_AT_import"),
10588 dwarf_tag_name (child_die->tag));
10589 continue;
10590 }
10591
10592 imported_cu = cu;
10593 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10594 &imported_cu);
10595 imported_name = dwarf2_name (imported_die, imported_cu);
10596 if (imported_name == NULL)
10597 {
10598 complaint (_("child DW_TAG_imported_declaration has unknown "
10599 "imported name - DIE at %s [in module %s]"),
10600 sect_offset_str (child_die->sect_off),
10601 objfile_name (objfile));
10602 continue;
10603 }
10604
10605 excludes.push_back (imported_name);
10606
10607 process_die (child_die, cu);
10608 }
10609
10610 add_using_directive (using_directives (cu),
10611 import_prefix,
10612 canonical_name,
10613 import_alias,
10614 imported_declaration,
10615 excludes,
10616 0,
10617 &objfile->objfile_obstack);
10618 }
10619
10620 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10621 types, but gives them a size of zero. Starting with version 14,
10622 ICC is compatible with GCC. */
10623
10624 static bool
10625 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10626 {
10627 if (!cu->checked_producer)
10628 check_producer (cu);
10629
10630 return cu->producer_is_icc_lt_14;
10631 }
10632
10633 /* ICC generates a DW_AT_type for C void functions. This was observed on
10634 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10635 which says that void functions should not have a DW_AT_type. */
10636
10637 static bool
10638 producer_is_icc (struct dwarf2_cu *cu)
10639 {
10640 if (!cu->checked_producer)
10641 check_producer (cu);
10642
10643 return cu->producer_is_icc;
10644 }
10645
10646 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10647 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10648 this, it was first present in GCC release 4.3.0. */
10649
10650 static bool
10651 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10652 {
10653 if (!cu->checked_producer)
10654 check_producer (cu);
10655
10656 return cu->producer_is_gcc_lt_4_3;
10657 }
10658
10659 static file_and_directory
10660 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10661 {
10662 file_and_directory res;
10663
10664 /* Find the filename. Do not use dwarf2_name here, since the filename
10665 is not a source language identifier. */
10666 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10667 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10668
10669 if (res.comp_dir == NULL
10670 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10671 && IS_ABSOLUTE_PATH (res.name))
10672 {
10673 res.comp_dir_storage = ldirname (res.name);
10674 if (!res.comp_dir_storage.empty ())
10675 res.comp_dir = res.comp_dir_storage.c_str ();
10676 }
10677 if (res.comp_dir != NULL)
10678 {
10679 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10680 directory, get rid of it. */
10681 const char *cp = strchr (res.comp_dir, ':');
10682
10683 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10684 res.comp_dir = cp + 1;
10685 }
10686
10687 if (res.name == NULL)
10688 res.name = "<unknown>";
10689
10690 return res;
10691 }
10692
10693 /* Handle DW_AT_stmt_list for a compilation unit.
10694 DIE is the DW_TAG_compile_unit die for CU.
10695 COMP_DIR is the compilation directory. LOWPC is passed to
10696 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10697
10698 static void
10699 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10700 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10701 {
10702 struct dwarf2_per_objfile *dwarf2_per_objfile
10703 = cu->per_cu->dwarf2_per_objfile;
10704 struct attribute *attr;
10705 struct line_header line_header_local;
10706 hashval_t line_header_local_hash;
10707 void **slot;
10708 int decode_mapping;
10709
10710 gdb_assert (! cu->per_cu->is_debug_types);
10711
10712 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10713 if (attr == NULL)
10714 return;
10715
10716 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10717
10718 /* The line header hash table is only created if needed (it exists to
10719 prevent redundant reading of the line table for partial_units).
10720 If we're given a partial_unit, we'll need it. If we're given a
10721 compile_unit, then use the line header hash table if it's already
10722 created, but don't create one just yet. */
10723
10724 if (dwarf2_per_objfile->line_header_hash == NULL
10725 && die->tag == DW_TAG_partial_unit)
10726 {
10727 dwarf2_per_objfile->line_header_hash
10728 .reset (htab_create_alloc (127, line_header_hash_voidp,
10729 line_header_eq_voidp,
10730 free_line_header_voidp,
10731 xcalloc, xfree));
10732 }
10733
10734 line_header_local.sect_off = line_offset;
10735 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10736 line_header_local_hash = line_header_hash (&line_header_local);
10737 if (dwarf2_per_objfile->line_header_hash != NULL)
10738 {
10739 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10740 &line_header_local,
10741 line_header_local_hash, NO_INSERT);
10742
10743 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10744 is not present in *SLOT (since if there is something in *SLOT then
10745 it will be for a partial_unit). */
10746 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10747 {
10748 gdb_assert (*slot != NULL);
10749 cu->line_header = (struct line_header *) *slot;
10750 return;
10751 }
10752 }
10753
10754 /* dwarf_decode_line_header does not yet provide sufficient information.
10755 We always have to call also dwarf_decode_lines for it. */
10756 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10757 if (lh == NULL)
10758 return;
10759
10760 cu->line_header = lh.release ();
10761 cu->line_header_die_owner = die;
10762
10763 if (dwarf2_per_objfile->line_header_hash == NULL)
10764 slot = NULL;
10765 else
10766 {
10767 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10768 &line_header_local,
10769 line_header_local_hash, INSERT);
10770 gdb_assert (slot != NULL);
10771 }
10772 if (slot != NULL && *slot == NULL)
10773 {
10774 /* This newly decoded line number information unit will be owned
10775 by line_header_hash hash table. */
10776 *slot = cu->line_header;
10777 cu->line_header_die_owner = NULL;
10778 }
10779 else
10780 {
10781 /* We cannot free any current entry in (*slot) as that struct line_header
10782 may be already used by multiple CUs. Create only temporary decoded
10783 line_header for this CU - it may happen at most once for each line
10784 number information unit. And if we're not using line_header_hash
10785 then this is what we want as well. */
10786 gdb_assert (die->tag != DW_TAG_partial_unit);
10787 }
10788 decode_mapping = (die->tag != DW_TAG_partial_unit);
10789 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10790 decode_mapping);
10791
10792 }
10793
10794 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10795
10796 static void
10797 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10798 {
10799 struct dwarf2_per_objfile *dwarf2_per_objfile
10800 = cu->per_cu->dwarf2_per_objfile;
10801 struct objfile *objfile = dwarf2_per_objfile->objfile;
10802 struct gdbarch *gdbarch = objfile->arch ();
10803 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10804 CORE_ADDR highpc = ((CORE_ADDR) 0);
10805 struct attribute *attr;
10806 struct die_info *child_die;
10807 CORE_ADDR baseaddr;
10808
10809 prepare_one_comp_unit (cu, die, cu->language);
10810 baseaddr = objfile->text_section_offset ();
10811
10812 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10813
10814 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10815 from finish_block. */
10816 if (lowpc == ((CORE_ADDR) -1))
10817 lowpc = highpc;
10818 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10819
10820 file_and_directory fnd = find_file_and_directory (die, cu);
10821
10822 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10823 standardised yet. As a workaround for the language detection we fall
10824 back to the DW_AT_producer string. */
10825 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10826 cu->language = language_opencl;
10827
10828 /* Similar hack for Go. */
10829 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10830 set_cu_language (DW_LANG_Go, cu);
10831
10832 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10833
10834 /* Decode line number information if present. We do this before
10835 processing child DIEs, so that the line header table is available
10836 for DW_AT_decl_file. */
10837 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10838
10839 /* Process all dies in compilation unit. */
10840 if (die->child != NULL)
10841 {
10842 child_die = die->child;
10843 while (child_die && child_die->tag)
10844 {
10845 process_die (child_die, cu);
10846 child_die = child_die->sibling;
10847 }
10848 }
10849
10850 /* Decode macro information, if present. Dwarf 2 macro information
10851 refers to information in the line number info statement program
10852 header, so we can only read it if we've read the header
10853 successfully. */
10854 attr = dwarf2_attr (die, DW_AT_macros, cu);
10855 if (attr == NULL)
10856 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10857 if (attr && cu->line_header)
10858 {
10859 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10860 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10861
10862 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10863 }
10864 else
10865 {
10866 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10867 if (attr && cu->line_header)
10868 {
10869 unsigned int macro_offset = DW_UNSND (attr);
10870
10871 dwarf_decode_macros (cu, macro_offset, 0);
10872 }
10873 }
10874 }
10875
10876 void
10877 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10878 {
10879 struct type_unit_group *tu_group;
10880 int first_time;
10881 struct attribute *attr;
10882 unsigned int i;
10883 struct signatured_type *sig_type;
10884
10885 gdb_assert (per_cu->is_debug_types);
10886 sig_type = (struct signatured_type *) per_cu;
10887
10888 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10889
10890 /* If we're using .gdb_index (includes -readnow) then
10891 per_cu->type_unit_group may not have been set up yet. */
10892 if (sig_type->type_unit_group == NULL)
10893 sig_type->type_unit_group = get_type_unit_group (this, attr);
10894 tu_group = sig_type->type_unit_group;
10895
10896 /* If we've already processed this stmt_list there's no real need to
10897 do it again, we could fake it and just recreate the part we need
10898 (file name,index -> symtab mapping). If data shows this optimization
10899 is useful we can do it then. */
10900 first_time = tu_group->compunit_symtab == NULL;
10901
10902 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10903 debug info. */
10904 line_header_up lh;
10905 if (attr != NULL)
10906 {
10907 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10908 lh = dwarf_decode_line_header (line_offset, this);
10909 }
10910 if (lh == NULL)
10911 {
10912 if (first_time)
10913 start_symtab ("", NULL, 0);
10914 else
10915 {
10916 gdb_assert (tu_group->symtabs == NULL);
10917 gdb_assert (m_builder == nullptr);
10918 struct compunit_symtab *cust = tu_group->compunit_symtab;
10919 m_builder.reset (new struct buildsym_compunit
10920 (COMPUNIT_OBJFILE (cust), "",
10921 COMPUNIT_DIRNAME (cust),
10922 compunit_language (cust),
10923 0, cust));
10924 }
10925 return;
10926 }
10927
10928 line_header = lh.release ();
10929 line_header_die_owner = die;
10930
10931 if (first_time)
10932 {
10933 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10934
10935 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10936 still initializing it, and our caller (a few levels up)
10937 process_full_type_unit still needs to know if this is the first
10938 time. */
10939
10940 tu_group->symtabs
10941 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10942 struct symtab *, line_header->file_names_size ());
10943
10944 auto &file_names = line_header->file_names ();
10945 for (i = 0; i < file_names.size (); ++i)
10946 {
10947 file_entry &fe = file_names[i];
10948 dwarf2_start_subfile (this, fe.name,
10949 fe.include_dir (line_header));
10950 buildsym_compunit *b = get_builder ();
10951 if (b->get_current_subfile ()->symtab == NULL)
10952 {
10953 /* NOTE: start_subfile will recognize when it's been
10954 passed a file it has already seen. So we can't
10955 assume there's a simple mapping from
10956 cu->line_header->file_names to subfiles, plus
10957 cu->line_header->file_names may contain dups. */
10958 b->get_current_subfile ()->symtab
10959 = allocate_symtab (cust, b->get_current_subfile ()->name);
10960 }
10961
10962 fe.symtab = b->get_current_subfile ()->symtab;
10963 tu_group->symtabs[i] = fe.symtab;
10964 }
10965 }
10966 else
10967 {
10968 gdb_assert (m_builder == nullptr);
10969 struct compunit_symtab *cust = tu_group->compunit_symtab;
10970 m_builder.reset (new struct buildsym_compunit
10971 (COMPUNIT_OBJFILE (cust), "",
10972 COMPUNIT_DIRNAME (cust),
10973 compunit_language (cust),
10974 0, cust));
10975
10976 auto &file_names = line_header->file_names ();
10977 for (i = 0; i < file_names.size (); ++i)
10978 {
10979 file_entry &fe = file_names[i];
10980 fe.symtab = tu_group->symtabs[i];
10981 }
10982 }
10983
10984 /* The main symtab is allocated last. Type units don't have DW_AT_name
10985 so they don't have a "real" (so to speak) symtab anyway.
10986 There is later code that will assign the main symtab to all symbols
10987 that don't have one. We need to handle the case of a symbol with a
10988 missing symtab (DW_AT_decl_file) anyway. */
10989 }
10990
10991 /* Process DW_TAG_type_unit.
10992 For TUs we want to skip the first top level sibling if it's not the
10993 actual type being defined by this TU. In this case the first top
10994 level sibling is there to provide context only. */
10995
10996 static void
10997 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10998 {
10999 struct die_info *child_die;
11000
11001 prepare_one_comp_unit (cu, die, language_minimal);
11002
11003 /* Initialize (or reinitialize) the machinery for building symtabs.
11004 We do this before processing child DIEs, so that the line header table
11005 is available for DW_AT_decl_file. */
11006 cu->setup_type_unit_groups (die);
11007
11008 if (die->child != NULL)
11009 {
11010 child_die = die->child;
11011 while (child_die && child_die->tag)
11012 {
11013 process_die (child_die, cu);
11014 child_die = child_die->sibling;
11015 }
11016 }
11017 }
11018 \f
11019 /* DWO/DWP files.
11020
11021 http://gcc.gnu.org/wiki/DebugFission
11022 http://gcc.gnu.org/wiki/DebugFissionDWP
11023
11024 To simplify handling of both DWO files ("object" files with the DWARF info)
11025 and DWP files (a file with the DWOs packaged up into one file), we treat
11026 DWP files as having a collection of virtual DWO files. */
11027
11028 static hashval_t
11029 hash_dwo_file (const void *item)
11030 {
11031 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11032 hashval_t hash;
11033
11034 hash = htab_hash_string (dwo_file->dwo_name);
11035 if (dwo_file->comp_dir != NULL)
11036 hash += htab_hash_string (dwo_file->comp_dir);
11037 return hash;
11038 }
11039
11040 static int
11041 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11042 {
11043 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11044 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11045
11046 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11047 return 0;
11048 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11049 return lhs->comp_dir == rhs->comp_dir;
11050 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11051 }
11052
11053 /* Allocate a hash table for DWO files. */
11054
11055 static htab_up
11056 allocate_dwo_file_hash_table ()
11057 {
11058 auto delete_dwo_file = [] (void *item)
11059 {
11060 struct dwo_file *dwo_file = (struct dwo_file *) item;
11061
11062 delete dwo_file;
11063 };
11064
11065 return htab_up (htab_create_alloc (41,
11066 hash_dwo_file,
11067 eq_dwo_file,
11068 delete_dwo_file,
11069 xcalloc, xfree));
11070 }
11071
11072 /* Lookup DWO file DWO_NAME. */
11073
11074 static void **
11075 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11076 const char *dwo_name,
11077 const char *comp_dir)
11078 {
11079 struct dwo_file find_entry;
11080 void **slot;
11081
11082 if (dwarf2_per_objfile->dwo_files == NULL)
11083 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11084
11085 find_entry.dwo_name = dwo_name;
11086 find_entry.comp_dir = comp_dir;
11087 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11088 INSERT);
11089
11090 return slot;
11091 }
11092
11093 static hashval_t
11094 hash_dwo_unit (const void *item)
11095 {
11096 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11097
11098 /* This drops the top 32 bits of the id, but is ok for a hash. */
11099 return dwo_unit->signature;
11100 }
11101
11102 static int
11103 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11104 {
11105 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11106 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11107
11108 /* The signature is assumed to be unique within the DWO file.
11109 So while object file CU dwo_id's always have the value zero,
11110 that's OK, assuming each object file DWO file has only one CU,
11111 and that's the rule for now. */
11112 return lhs->signature == rhs->signature;
11113 }
11114
11115 /* Allocate a hash table for DWO CUs,TUs.
11116 There is one of these tables for each of CUs,TUs for each DWO file. */
11117
11118 static htab_up
11119 allocate_dwo_unit_table ()
11120 {
11121 /* Start out with a pretty small number.
11122 Generally DWO files contain only one CU and maybe some TUs. */
11123 return htab_up (htab_create_alloc (3,
11124 hash_dwo_unit,
11125 eq_dwo_unit,
11126 NULL, xcalloc, xfree));
11127 }
11128
11129 /* die_reader_func for create_dwo_cu. */
11130
11131 static void
11132 create_dwo_cu_reader (const struct die_reader_specs *reader,
11133 const gdb_byte *info_ptr,
11134 struct die_info *comp_unit_die,
11135 struct dwo_file *dwo_file,
11136 struct dwo_unit *dwo_unit)
11137 {
11138 struct dwarf2_cu *cu = reader->cu;
11139 sect_offset sect_off = cu->per_cu->sect_off;
11140 struct dwarf2_section_info *section = cu->per_cu->section;
11141
11142 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11143 if (!signature.has_value ())
11144 {
11145 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11146 " its dwo_id [in module %s]"),
11147 sect_offset_str (sect_off), dwo_file->dwo_name);
11148 return;
11149 }
11150
11151 dwo_unit->dwo_file = dwo_file;
11152 dwo_unit->signature = *signature;
11153 dwo_unit->section = section;
11154 dwo_unit->sect_off = sect_off;
11155 dwo_unit->length = cu->per_cu->length;
11156
11157 if (dwarf_read_debug)
11158 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11159 sect_offset_str (sect_off),
11160 hex_string (dwo_unit->signature));
11161 }
11162
11163 /* Create the dwo_units for the CUs in a DWO_FILE.
11164 Note: This function processes DWO files only, not DWP files. */
11165
11166 static void
11167 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11168 dwarf2_cu *cu, struct dwo_file &dwo_file,
11169 dwarf2_section_info &section, htab_up &cus_htab)
11170 {
11171 struct objfile *objfile = dwarf2_per_objfile->objfile;
11172 const gdb_byte *info_ptr, *end_ptr;
11173
11174 section.read (objfile);
11175 info_ptr = section.buffer;
11176
11177 if (info_ptr == NULL)
11178 return;
11179
11180 if (dwarf_read_debug)
11181 {
11182 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11183 section.get_name (),
11184 section.get_file_name ());
11185 }
11186
11187 end_ptr = info_ptr + section.size;
11188 while (info_ptr < end_ptr)
11189 {
11190 struct dwarf2_per_cu_data per_cu;
11191 struct dwo_unit read_unit {};
11192 struct dwo_unit *dwo_unit;
11193 void **slot;
11194 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11195
11196 memset (&per_cu, 0, sizeof (per_cu));
11197 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11198 per_cu.is_debug_types = 0;
11199 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11200 per_cu.section = &section;
11201
11202 cutu_reader reader (&per_cu, cu, &dwo_file);
11203 if (!reader.dummy_p)
11204 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11205 &dwo_file, &read_unit);
11206 info_ptr += per_cu.length;
11207
11208 // If the unit could not be parsed, skip it.
11209 if (read_unit.dwo_file == NULL)
11210 continue;
11211
11212 if (cus_htab == NULL)
11213 cus_htab = allocate_dwo_unit_table ();
11214
11215 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11216 *dwo_unit = read_unit;
11217 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11218 gdb_assert (slot != NULL);
11219 if (*slot != NULL)
11220 {
11221 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11222 sect_offset dup_sect_off = dup_cu->sect_off;
11223
11224 complaint (_("debug cu entry at offset %s is duplicate to"
11225 " the entry at offset %s, signature %s"),
11226 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11227 hex_string (dwo_unit->signature));
11228 }
11229 *slot = (void *)dwo_unit;
11230 }
11231 }
11232
11233 /* DWP file .debug_{cu,tu}_index section format:
11234 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11235
11236 DWP Version 1:
11237
11238 Both index sections have the same format, and serve to map a 64-bit
11239 signature to a set of section numbers. Each section begins with a header,
11240 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11241 indexes, and a pool of 32-bit section numbers. The index sections will be
11242 aligned at 8-byte boundaries in the file.
11243
11244 The index section header consists of:
11245
11246 V, 32 bit version number
11247 -, 32 bits unused
11248 N, 32 bit number of compilation units or type units in the index
11249 M, 32 bit number of slots in the hash table
11250
11251 Numbers are recorded using the byte order of the application binary.
11252
11253 The hash table begins at offset 16 in the section, and consists of an array
11254 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11255 order of the application binary). Unused slots in the hash table are 0.
11256 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11257
11258 The parallel table begins immediately after the hash table
11259 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11260 array of 32-bit indexes (using the byte order of the application binary),
11261 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11262 table contains a 32-bit index into the pool of section numbers. For unused
11263 hash table slots, the corresponding entry in the parallel table will be 0.
11264
11265 The pool of section numbers begins immediately following the hash table
11266 (at offset 16 + 12 * M from the beginning of the section). The pool of
11267 section numbers consists of an array of 32-bit words (using the byte order
11268 of the application binary). Each item in the array is indexed starting
11269 from 0. The hash table entry provides the index of the first section
11270 number in the set. Additional section numbers in the set follow, and the
11271 set is terminated by a 0 entry (section number 0 is not used in ELF).
11272
11273 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11274 section must be the first entry in the set, and the .debug_abbrev.dwo must
11275 be the second entry. Other members of the set may follow in any order.
11276
11277 ---
11278
11279 DWP Version 2:
11280
11281 DWP Version 2 combines all the .debug_info, etc. sections into one,
11282 and the entries in the index tables are now offsets into these sections.
11283 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11284 section.
11285
11286 Index Section Contents:
11287 Header
11288 Hash Table of Signatures dwp_hash_table.hash_table
11289 Parallel Table of Indices dwp_hash_table.unit_table
11290 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11291 Table of Section Sizes dwp_hash_table.v2.sizes
11292
11293 The index section header consists of:
11294
11295 V, 32 bit version number
11296 L, 32 bit number of columns in the table of section offsets
11297 N, 32 bit number of compilation units or type units in the index
11298 M, 32 bit number of slots in the hash table
11299
11300 Numbers are recorded using the byte order of the application binary.
11301
11302 The hash table has the same format as version 1.
11303 The parallel table of indices has the same format as version 1,
11304 except that the entries are origin-1 indices into the table of sections
11305 offsets and the table of section sizes.
11306
11307 The table of offsets begins immediately following the parallel table
11308 (at offset 16 + 12 * M from the beginning of the section). The table is
11309 a two-dimensional array of 32-bit words (using the byte order of the
11310 application binary), with L columns and N+1 rows, in row-major order.
11311 Each row in the array is indexed starting from 0. The first row provides
11312 a key to the remaining rows: each column in this row provides an identifier
11313 for a debug section, and the offsets in the same column of subsequent rows
11314 refer to that section. The section identifiers are:
11315
11316 DW_SECT_INFO 1 .debug_info.dwo
11317 DW_SECT_TYPES 2 .debug_types.dwo
11318 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11319 DW_SECT_LINE 4 .debug_line.dwo
11320 DW_SECT_LOC 5 .debug_loc.dwo
11321 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11322 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11323 DW_SECT_MACRO 8 .debug_macro.dwo
11324
11325 The offsets provided by the CU and TU index sections are the base offsets
11326 for the contributions made by each CU or TU to the corresponding section
11327 in the package file. Each CU and TU header contains an abbrev_offset
11328 field, used to find the abbreviations table for that CU or TU within the
11329 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11330 be interpreted as relative to the base offset given in the index section.
11331 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11332 should be interpreted as relative to the base offset for .debug_line.dwo,
11333 and offsets into other debug sections obtained from DWARF attributes should
11334 also be interpreted as relative to the corresponding base offset.
11335
11336 The table of sizes begins immediately following the table of offsets.
11337 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11338 with L columns and N rows, in row-major order. Each row in the array is
11339 indexed starting from 1 (row 0 is shared by the two tables).
11340
11341 ---
11342
11343 Hash table lookup is handled the same in version 1 and 2:
11344
11345 We assume that N and M will not exceed 2^32 - 1.
11346 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11347
11348 Given a 64-bit compilation unit signature or a type signature S, an entry
11349 in the hash table is located as follows:
11350
11351 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11352 the low-order k bits all set to 1.
11353
11354 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11355
11356 3) If the hash table entry at index H matches the signature, use that
11357 entry. If the hash table entry at index H is unused (all zeroes),
11358 terminate the search: the signature is not present in the table.
11359
11360 4) Let H = (H + H') modulo M. Repeat at Step 3.
11361
11362 Because M > N and H' and M are relatively prime, the search is guaranteed
11363 to stop at an unused slot or find the match. */
11364
11365 /* Create a hash table to map DWO IDs to their CU/TU entry in
11366 .debug_{info,types}.dwo in DWP_FILE.
11367 Returns NULL if there isn't one.
11368 Note: This function processes DWP files only, not DWO files. */
11369
11370 static struct dwp_hash_table *
11371 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11372 struct dwp_file *dwp_file, int is_debug_types)
11373 {
11374 struct objfile *objfile = dwarf2_per_objfile->objfile;
11375 bfd *dbfd = dwp_file->dbfd.get ();
11376 const gdb_byte *index_ptr, *index_end;
11377 struct dwarf2_section_info *index;
11378 uint32_t version, nr_columns, nr_units, nr_slots;
11379 struct dwp_hash_table *htab;
11380
11381 if (is_debug_types)
11382 index = &dwp_file->sections.tu_index;
11383 else
11384 index = &dwp_file->sections.cu_index;
11385
11386 if (index->empty ())
11387 return NULL;
11388 index->read (objfile);
11389
11390 index_ptr = index->buffer;
11391 index_end = index_ptr + index->size;
11392
11393 version = read_4_bytes (dbfd, index_ptr);
11394 index_ptr += 4;
11395 if (version == 2)
11396 nr_columns = read_4_bytes (dbfd, index_ptr);
11397 else
11398 nr_columns = 0;
11399 index_ptr += 4;
11400 nr_units = read_4_bytes (dbfd, index_ptr);
11401 index_ptr += 4;
11402 nr_slots = read_4_bytes (dbfd, index_ptr);
11403 index_ptr += 4;
11404
11405 if (version != 1 && version != 2)
11406 {
11407 error (_("Dwarf Error: unsupported DWP file version (%s)"
11408 " [in module %s]"),
11409 pulongest (version), dwp_file->name);
11410 }
11411 if (nr_slots != (nr_slots & -nr_slots))
11412 {
11413 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11414 " is not power of 2 [in module %s]"),
11415 pulongest (nr_slots), dwp_file->name);
11416 }
11417
11418 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11419 htab->version = version;
11420 htab->nr_columns = nr_columns;
11421 htab->nr_units = nr_units;
11422 htab->nr_slots = nr_slots;
11423 htab->hash_table = index_ptr;
11424 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11425
11426 /* Exit early if the table is empty. */
11427 if (nr_slots == 0 || nr_units == 0
11428 || (version == 2 && nr_columns == 0))
11429 {
11430 /* All must be zero. */
11431 if (nr_slots != 0 || nr_units != 0
11432 || (version == 2 && nr_columns != 0))
11433 {
11434 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11435 " all zero [in modules %s]"),
11436 dwp_file->name);
11437 }
11438 return htab;
11439 }
11440
11441 if (version == 1)
11442 {
11443 htab->section_pool.v1.indices =
11444 htab->unit_table + sizeof (uint32_t) * nr_slots;
11445 /* It's harder to decide whether the section is too small in v1.
11446 V1 is deprecated anyway so we punt. */
11447 }
11448 else
11449 {
11450 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11451 int *ids = htab->section_pool.v2.section_ids;
11452 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11453 /* Reverse map for error checking. */
11454 int ids_seen[DW_SECT_MAX + 1];
11455 int i;
11456
11457 if (nr_columns < 2)
11458 {
11459 error (_("Dwarf Error: bad DWP hash table, too few columns"
11460 " in section table [in module %s]"),
11461 dwp_file->name);
11462 }
11463 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11464 {
11465 error (_("Dwarf Error: bad DWP hash table, too many columns"
11466 " in section table [in module %s]"),
11467 dwp_file->name);
11468 }
11469 memset (ids, 255, sizeof_ids);
11470 memset (ids_seen, 255, sizeof (ids_seen));
11471 for (i = 0; i < nr_columns; ++i)
11472 {
11473 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11474
11475 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11476 {
11477 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11478 " in section table [in module %s]"),
11479 id, dwp_file->name);
11480 }
11481 if (ids_seen[id] != -1)
11482 {
11483 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11484 " id %d in section table [in module %s]"),
11485 id, dwp_file->name);
11486 }
11487 ids_seen[id] = i;
11488 ids[i] = id;
11489 }
11490 /* Must have exactly one info or types section. */
11491 if (((ids_seen[DW_SECT_INFO] != -1)
11492 + (ids_seen[DW_SECT_TYPES] != -1))
11493 != 1)
11494 {
11495 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11496 " DWO info/types section [in module %s]"),
11497 dwp_file->name);
11498 }
11499 /* Must have an abbrev section. */
11500 if (ids_seen[DW_SECT_ABBREV] == -1)
11501 {
11502 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11503 " section [in module %s]"),
11504 dwp_file->name);
11505 }
11506 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11507 htab->section_pool.v2.sizes =
11508 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11509 * nr_units * nr_columns);
11510 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11511 * nr_units * nr_columns))
11512 > index_end)
11513 {
11514 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11515 " [in module %s]"),
11516 dwp_file->name);
11517 }
11518 }
11519
11520 return htab;
11521 }
11522
11523 /* Update SECTIONS with the data from SECTP.
11524
11525 This function is like the other "locate" section routines that are
11526 passed to bfd_map_over_sections, but in this context the sections to
11527 read comes from the DWP V1 hash table, not the full ELF section table.
11528
11529 The result is non-zero for success, or zero if an error was found. */
11530
11531 static int
11532 locate_v1_virtual_dwo_sections (asection *sectp,
11533 struct virtual_v1_dwo_sections *sections)
11534 {
11535 const struct dwop_section_names *names = &dwop_section_names;
11536
11537 if (section_is_p (sectp->name, &names->abbrev_dwo))
11538 {
11539 /* There can be only one. */
11540 if (sections->abbrev.s.section != NULL)
11541 return 0;
11542 sections->abbrev.s.section = sectp;
11543 sections->abbrev.size = bfd_section_size (sectp);
11544 }
11545 else if (section_is_p (sectp->name, &names->info_dwo)
11546 || section_is_p (sectp->name, &names->types_dwo))
11547 {
11548 /* There can be only one. */
11549 if (sections->info_or_types.s.section != NULL)
11550 return 0;
11551 sections->info_or_types.s.section = sectp;
11552 sections->info_or_types.size = bfd_section_size (sectp);
11553 }
11554 else if (section_is_p (sectp->name, &names->line_dwo))
11555 {
11556 /* There can be only one. */
11557 if (sections->line.s.section != NULL)
11558 return 0;
11559 sections->line.s.section = sectp;
11560 sections->line.size = bfd_section_size (sectp);
11561 }
11562 else if (section_is_p (sectp->name, &names->loc_dwo))
11563 {
11564 /* There can be only one. */
11565 if (sections->loc.s.section != NULL)
11566 return 0;
11567 sections->loc.s.section = sectp;
11568 sections->loc.size = bfd_section_size (sectp);
11569 }
11570 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11571 {
11572 /* There can be only one. */
11573 if (sections->macinfo.s.section != NULL)
11574 return 0;
11575 sections->macinfo.s.section = sectp;
11576 sections->macinfo.size = bfd_section_size (sectp);
11577 }
11578 else if (section_is_p (sectp->name, &names->macro_dwo))
11579 {
11580 /* There can be only one. */
11581 if (sections->macro.s.section != NULL)
11582 return 0;
11583 sections->macro.s.section = sectp;
11584 sections->macro.size = bfd_section_size (sectp);
11585 }
11586 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11587 {
11588 /* There can be only one. */
11589 if (sections->str_offsets.s.section != NULL)
11590 return 0;
11591 sections->str_offsets.s.section = sectp;
11592 sections->str_offsets.size = bfd_section_size (sectp);
11593 }
11594 else
11595 {
11596 /* No other kind of section is valid. */
11597 return 0;
11598 }
11599
11600 return 1;
11601 }
11602
11603 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11604 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11605 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11606 This is for DWP version 1 files. */
11607
11608 static struct dwo_unit *
11609 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11610 struct dwp_file *dwp_file,
11611 uint32_t unit_index,
11612 const char *comp_dir,
11613 ULONGEST signature, int is_debug_types)
11614 {
11615 struct objfile *objfile = dwarf2_per_objfile->objfile;
11616 const struct dwp_hash_table *dwp_htab =
11617 is_debug_types ? dwp_file->tus : dwp_file->cus;
11618 bfd *dbfd = dwp_file->dbfd.get ();
11619 const char *kind = is_debug_types ? "TU" : "CU";
11620 struct dwo_file *dwo_file;
11621 struct dwo_unit *dwo_unit;
11622 struct virtual_v1_dwo_sections sections;
11623 void **dwo_file_slot;
11624 int i;
11625
11626 gdb_assert (dwp_file->version == 1);
11627
11628 if (dwarf_read_debug)
11629 {
11630 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11631 kind,
11632 pulongest (unit_index), hex_string (signature),
11633 dwp_file->name);
11634 }
11635
11636 /* Fetch the sections of this DWO unit.
11637 Put a limit on the number of sections we look for so that bad data
11638 doesn't cause us to loop forever. */
11639
11640 #define MAX_NR_V1_DWO_SECTIONS \
11641 (1 /* .debug_info or .debug_types */ \
11642 + 1 /* .debug_abbrev */ \
11643 + 1 /* .debug_line */ \
11644 + 1 /* .debug_loc */ \
11645 + 1 /* .debug_str_offsets */ \
11646 + 1 /* .debug_macro or .debug_macinfo */ \
11647 + 1 /* trailing zero */)
11648
11649 memset (&sections, 0, sizeof (sections));
11650
11651 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11652 {
11653 asection *sectp;
11654 uint32_t section_nr =
11655 read_4_bytes (dbfd,
11656 dwp_htab->section_pool.v1.indices
11657 + (unit_index + i) * sizeof (uint32_t));
11658
11659 if (section_nr == 0)
11660 break;
11661 if (section_nr >= dwp_file->num_sections)
11662 {
11663 error (_("Dwarf Error: bad DWP hash table, section number too large"
11664 " [in module %s]"),
11665 dwp_file->name);
11666 }
11667
11668 sectp = dwp_file->elf_sections[section_nr];
11669 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11670 {
11671 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11672 " [in module %s]"),
11673 dwp_file->name);
11674 }
11675 }
11676
11677 if (i < 2
11678 || sections.info_or_types.empty ()
11679 || sections.abbrev.empty ())
11680 {
11681 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11682 " [in module %s]"),
11683 dwp_file->name);
11684 }
11685 if (i == MAX_NR_V1_DWO_SECTIONS)
11686 {
11687 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11688 " [in module %s]"),
11689 dwp_file->name);
11690 }
11691
11692 /* It's easier for the rest of the code if we fake a struct dwo_file and
11693 have dwo_unit "live" in that. At least for now.
11694
11695 The DWP file can be made up of a random collection of CUs and TUs.
11696 However, for each CU + set of TUs that came from the same original DWO
11697 file, we can combine them back into a virtual DWO file to save space
11698 (fewer struct dwo_file objects to allocate). Remember that for really
11699 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11700
11701 std::string virtual_dwo_name =
11702 string_printf ("virtual-dwo/%d-%d-%d-%d",
11703 sections.abbrev.get_id (),
11704 sections.line.get_id (),
11705 sections.loc.get_id (),
11706 sections.str_offsets.get_id ());
11707 /* Can we use an existing virtual DWO file? */
11708 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11709 virtual_dwo_name.c_str (),
11710 comp_dir);
11711 /* Create one if necessary. */
11712 if (*dwo_file_slot == NULL)
11713 {
11714 if (dwarf_read_debug)
11715 {
11716 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11717 virtual_dwo_name.c_str ());
11718 }
11719 dwo_file = new struct dwo_file;
11720 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11721 dwo_file->comp_dir = comp_dir;
11722 dwo_file->sections.abbrev = sections.abbrev;
11723 dwo_file->sections.line = sections.line;
11724 dwo_file->sections.loc = sections.loc;
11725 dwo_file->sections.macinfo = sections.macinfo;
11726 dwo_file->sections.macro = sections.macro;
11727 dwo_file->sections.str_offsets = sections.str_offsets;
11728 /* The "str" section is global to the entire DWP file. */
11729 dwo_file->sections.str = dwp_file->sections.str;
11730 /* The info or types section is assigned below to dwo_unit,
11731 there's no need to record it in dwo_file.
11732 Also, we can't simply record type sections in dwo_file because
11733 we record a pointer into the vector in dwo_unit. As we collect more
11734 types we'll grow the vector and eventually have to reallocate space
11735 for it, invalidating all copies of pointers into the previous
11736 contents. */
11737 *dwo_file_slot = dwo_file;
11738 }
11739 else
11740 {
11741 if (dwarf_read_debug)
11742 {
11743 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11744 virtual_dwo_name.c_str ());
11745 }
11746 dwo_file = (struct dwo_file *) *dwo_file_slot;
11747 }
11748
11749 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11750 dwo_unit->dwo_file = dwo_file;
11751 dwo_unit->signature = signature;
11752 dwo_unit->section =
11753 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11754 *dwo_unit->section = sections.info_or_types;
11755 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11756
11757 return dwo_unit;
11758 }
11759
11760 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11761 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11762 piece within that section used by a TU/CU, return a virtual section
11763 of just that piece. */
11764
11765 static struct dwarf2_section_info
11766 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11767 struct dwarf2_section_info *section,
11768 bfd_size_type offset, bfd_size_type size)
11769 {
11770 struct dwarf2_section_info result;
11771 asection *sectp;
11772
11773 gdb_assert (section != NULL);
11774 gdb_assert (!section->is_virtual);
11775
11776 memset (&result, 0, sizeof (result));
11777 result.s.containing_section = section;
11778 result.is_virtual = true;
11779
11780 if (size == 0)
11781 return result;
11782
11783 sectp = section->get_bfd_section ();
11784
11785 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11786 bounds of the real section. This is a pretty-rare event, so just
11787 flag an error (easier) instead of a warning and trying to cope. */
11788 if (sectp == NULL
11789 || offset + size > bfd_section_size (sectp))
11790 {
11791 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11792 " in section %s [in module %s]"),
11793 sectp ? bfd_section_name (sectp) : "<unknown>",
11794 objfile_name (dwarf2_per_objfile->objfile));
11795 }
11796
11797 result.virtual_offset = offset;
11798 result.size = size;
11799 return result;
11800 }
11801
11802 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11803 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11804 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11805 This is for DWP version 2 files. */
11806
11807 static struct dwo_unit *
11808 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11809 struct dwp_file *dwp_file,
11810 uint32_t unit_index,
11811 const char *comp_dir,
11812 ULONGEST signature, int is_debug_types)
11813 {
11814 struct objfile *objfile = dwarf2_per_objfile->objfile;
11815 const struct dwp_hash_table *dwp_htab =
11816 is_debug_types ? dwp_file->tus : dwp_file->cus;
11817 bfd *dbfd = dwp_file->dbfd.get ();
11818 const char *kind = is_debug_types ? "TU" : "CU";
11819 struct dwo_file *dwo_file;
11820 struct dwo_unit *dwo_unit;
11821 struct virtual_v2_dwo_sections sections;
11822 void **dwo_file_slot;
11823 int i;
11824
11825 gdb_assert (dwp_file->version == 2);
11826
11827 if (dwarf_read_debug)
11828 {
11829 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11830 kind,
11831 pulongest (unit_index), hex_string (signature),
11832 dwp_file->name);
11833 }
11834
11835 /* Fetch the section offsets of this DWO unit. */
11836
11837 memset (&sections, 0, sizeof (sections));
11838
11839 for (i = 0; i < dwp_htab->nr_columns; ++i)
11840 {
11841 uint32_t offset = read_4_bytes (dbfd,
11842 dwp_htab->section_pool.v2.offsets
11843 + (((unit_index - 1) * dwp_htab->nr_columns
11844 + i)
11845 * sizeof (uint32_t)));
11846 uint32_t size = read_4_bytes (dbfd,
11847 dwp_htab->section_pool.v2.sizes
11848 + (((unit_index - 1) * dwp_htab->nr_columns
11849 + i)
11850 * sizeof (uint32_t)));
11851
11852 switch (dwp_htab->section_pool.v2.section_ids[i])
11853 {
11854 case DW_SECT_INFO:
11855 case DW_SECT_TYPES:
11856 sections.info_or_types_offset = offset;
11857 sections.info_or_types_size = size;
11858 break;
11859 case DW_SECT_ABBREV:
11860 sections.abbrev_offset = offset;
11861 sections.abbrev_size = size;
11862 break;
11863 case DW_SECT_LINE:
11864 sections.line_offset = offset;
11865 sections.line_size = size;
11866 break;
11867 case DW_SECT_LOC:
11868 sections.loc_offset = offset;
11869 sections.loc_size = size;
11870 break;
11871 case DW_SECT_STR_OFFSETS:
11872 sections.str_offsets_offset = offset;
11873 sections.str_offsets_size = size;
11874 break;
11875 case DW_SECT_MACINFO:
11876 sections.macinfo_offset = offset;
11877 sections.macinfo_size = size;
11878 break;
11879 case DW_SECT_MACRO:
11880 sections.macro_offset = offset;
11881 sections.macro_size = size;
11882 break;
11883 }
11884 }
11885
11886 /* It's easier for the rest of the code if we fake a struct dwo_file and
11887 have dwo_unit "live" in that. At least for now.
11888
11889 The DWP file can be made up of a random collection of CUs and TUs.
11890 However, for each CU + set of TUs that came from the same original DWO
11891 file, we can combine them back into a virtual DWO file to save space
11892 (fewer struct dwo_file objects to allocate). Remember that for really
11893 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11894
11895 std::string virtual_dwo_name =
11896 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11897 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11898 (long) (sections.line_size ? sections.line_offset : 0),
11899 (long) (sections.loc_size ? sections.loc_offset : 0),
11900 (long) (sections.str_offsets_size
11901 ? sections.str_offsets_offset : 0));
11902 /* Can we use an existing virtual DWO file? */
11903 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11904 virtual_dwo_name.c_str (),
11905 comp_dir);
11906 /* Create one if necessary. */
11907 if (*dwo_file_slot == NULL)
11908 {
11909 if (dwarf_read_debug)
11910 {
11911 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11912 virtual_dwo_name.c_str ());
11913 }
11914 dwo_file = new struct dwo_file;
11915 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11916 dwo_file->comp_dir = comp_dir;
11917 dwo_file->sections.abbrev =
11918 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11919 sections.abbrev_offset, sections.abbrev_size);
11920 dwo_file->sections.line =
11921 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11922 sections.line_offset, sections.line_size);
11923 dwo_file->sections.loc =
11924 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11925 sections.loc_offset, sections.loc_size);
11926 dwo_file->sections.macinfo =
11927 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11928 sections.macinfo_offset, sections.macinfo_size);
11929 dwo_file->sections.macro =
11930 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11931 sections.macro_offset, sections.macro_size);
11932 dwo_file->sections.str_offsets =
11933 create_dwp_v2_section (dwarf2_per_objfile,
11934 &dwp_file->sections.str_offsets,
11935 sections.str_offsets_offset,
11936 sections.str_offsets_size);
11937 /* The "str" section is global to the entire DWP file. */
11938 dwo_file->sections.str = dwp_file->sections.str;
11939 /* The info or types section is assigned below to dwo_unit,
11940 there's no need to record it in dwo_file.
11941 Also, we can't simply record type sections in dwo_file because
11942 we record a pointer into the vector in dwo_unit. As we collect more
11943 types we'll grow the vector and eventually have to reallocate space
11944 for it, invalidating all copies of pointers into the previous
11945 contents. */
11946 *dwo_file_slot = dwo_file;
11947 }
11948 else
11949 {
11950 if (dwarf_read_debug)
11951 {
11952 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11953 virtual_dwo_name.c_str ());
11954 }
11955 dwo_file = (struct dwo_file *) *dwo_file_slot;
11956 }
11957
11958 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11959 dwo_unit->dwo_file = dwo_file;
11960 dwo_unit->signature = signature;
11961 dwo_unit->section =
11962 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11963 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11964 is_debug_types
11965 ? &dwp_file->sections.types
11966 : &dwp_file->sections.info,
11967 sections.info_or_types_offset,
11968 sections.info_or_types_size);
11969 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11970
11971 return dwo_unit;
11972 }
11973
11974 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11975 Returns NULL if the signature isn't found. */
11976
11977 static struct dwo_unit *
11978 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11979 struct dwp_file *dwp_file, const char *comp_dir,
11980 ULONGEST signature, int is_debug_types)
11981 {
11982 const struct dwp_hash_table *dwp_htab =
11983 is_debug_types ? dwp_file->tus : dwp_file->cus;
11984 bfd *dbfd = dwp_file->dbfd.get ();
11985 uint32_t mask = dwp_htab->nr_slots - 1;
11986 uint32_t hash = signature & mask;
11987 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11988 unsigned int i;
11989 void **slot;
11990 struct dwo_unit find_dwo_cu;
11991
11992 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11993 find_dwo_cu.signature = signature;
11994 slot = htab_find_slot (is_debug_types
11995 ? dwp_file->loaded_tus.get ()
11996 : dwp_file->loaded_cus.get (),
11997 &find_dwo_cu, INSERT);
11998
11999 if (*slot != NULL)
12000 return (struct dwo_unit *) *slot;
12001
12002 /* Use a for loop so that we don't loop forever on bad debug info. */
12003 for (i = 0; i < dwp_htab->nr_slots; ++i)
12004 {
12005 ULONGEST signature_in_table;
12006
12007 signature_in_table =
12008 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12009 if (signature_in_table == signature)
12010 {
12011 uint32_t unit_index =
12012 read_4_bytes (dbfd,
12013 dwp_htab->unit_table + hash * sizeof (uint32_t));
12014
12015 if (dwp_file->version == 1)
12016 {
12017 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12018 dwp_file, unit_index,
12019 comp_dir, signature,
12020 is_debug_types);
12021 }
12022 else
12023 {
12024 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12025 dwp_file, unit_index,
12026 comp_dir, signature,
12027 is_debug_types);
12028 }
12029 return (struct dwo_unit *) *slot;
12030 }
12031 if (signature_in_table == 0)
12032 return NULL;
12033 hash = (hash + hash2) & mask;
12034 }
12035
12036 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12037 " [in module %s]"),
12038 dwp_file->name);
12039 }
12040
12041 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12042 Open the file specified by FILE_NAME and hand it off to BFD for
12043 preliminary analysis. Return a newly initialized bfd *, which
12044 includes a canonicalized copy of FILE_NAME.
12045 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12046 SEARCH_CWD is true if the current directory is to be searched.
12047 It will be searched before debug-file-directory.
12048 If successful, the file is added to the bfd include table of the
12049 objfile's bfd (see gdb_bfd_record_inclusion).
12050 If unable to find/open the file, return NULL.
12051 NOTE: This function is derived from symfile_bfd_open. */
12052
12053 static gdb_bfd_ref_ptr
12054 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12055 const char *file_name, int is_dwp, int search_cwd)
12056 {
12057 int desc;
12058 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12059 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12060 to debug_file_directory. */
12061 const char *search_path;
12062 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12063
12064 gdb::unique_xmalloc_ptr<char> search_path_holder;
12065 if (search_cwd)
12066 {
12067 if (*debug_file_directory != '\0')
12068 {
12069 search_path_holder.reset (concat (".", dirname_separator_string,
12070 debug_file_directory,
12071 (char *) NULL));
12072 search_path = search_path_holder.get ();
12073 }
12074 else
12075 search_path = ".";
12076 }
12077 else
12078 search_path = debug_file_directory;
12079
12080 openp_flags flags = OPF_RETURN_REALPATH;
12081 if (is_dwp)
12082 flags |= OPF_SEARCH_IN_PATH;
12083
12084 gdb::unique_xmalloc_ptr<char> absolute_name;
12085 desc = openp (search_path, flags, file_name,
12086 O_RDONLY | O_BINARY, &absolute_name);
12087 if (desc < 0)
12088 return NULL;
12089
12090 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12091 gnutarget, desc));
12092 if (sym_bfd == NULL)
12093 return NULL;
12094 bfd_set_cacheable (sym_bfd.get (), 1);
12095
12096 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12097 return NULL;
12098
12099 /* Success. Record the bfd as having been included by the objfile's bfd.
12100 This is important because things like demangled_names_hash lives in the
12101 objfile's per_bfd space and may have references to things like symbol
12102 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12103 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12104
12105 return sym_bfd;
12106 }
12107
12108 /* Try to open DWO file FILE_NAME.
12109 COMP_DIR is the DW_AT_comp_dir attribute.
12110 The result is the bfd handle of the file.
12111 If there is a problem finding or opening the file, return NULL.
12112 Upon success, the canonicalized path of the file is stored in the bfd,
12113 same as symfile_bfd_open. */
12114
12115 static gdb_bfd_ref_ptr
12116 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12117 const char *file_name, const char *comp_dir)
12118 {
12119 if (IS_ABSOLUTE_PATH (file_name))
12120 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12121 0 /*is_dwp*/, 0 /*search_cwd*/);
12122
12123 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12124
12125 if (comp_dir != NULL)
12126 {
12127 gdb::unique_xmalloc_ptr<char> path_to_try
12128 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12129
12130 /* NOTE: If comp_dir is a relative path, this will also try the
12131 search path, which seems useful. */
12132 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12133 path_to_try.get (),
12134 0 /*is_dwp*/,
12135 1 /*search_cwd*/));
12136 if (abfd != NULL)
12137 return abfd;
12138 }
12139
12140 /* That didn't work, try debug-file-directory, which, despite its name,
12141 is a list of paths. */
12142
12143 if (*debug_file_directory == '\0')
12144 return NULL;
12145
12146 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12147 0 /*is_dwp*/, 1 /*search_cwd*/);
12148 }
12149
12150 /* This function is mapped across the sections and remembers the offset and
12151 size of each of the DWO debugging sections we are interested in. */
12152
12153 static void
12154 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12155 {
12156 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12157 const struct dwop_section_names *names = &dwop_section_names;
12158
12159 if (section_is_p (sectp->name, &names->abbrev_dwo))
12160 {
12161 dwo_sections->abbrev.s.section = sectp;
12162 dwo_sections->abbrev.size = bfd_section_size (sectp);
12163 }
12164 else if (section_is_p (sectp->name, &names->info_dwo))
12165 {
12166 dwo_sections->info.s.section = sectp;
12167 dwo_sections->info.size = bfd_section_size (sectp);
12168 }
12169 else if (section_is_p (sectp->name, &names->line_dwo))
12170 {
12171 dwo_sections->line.s.section = sectp;
12172 dwo_sections->line.size = bfd_section_size (sectp);
12173 }
12174 else if (section_is_p (sectp->name, &names->loc_dwo))
12175 {
12176 dwo_sections->loc.s.section = sectp;
12177 dwo_sections->loc.size = bfd_section_size (sectp);
12178 }
12179 else if (section_is_p (sectp->name, &names->loclists_dwo))
12180 {
12181 dwo_sections->loclists.s.section = sectp;
12182 dwo_sections->loclists.size = bfd_section_size (sectp);
12183 }
12184 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12185 {
12186 dwo_sections->macinfo.s.section = sectp;
12187 dwo_sections->macinfo.size = bfd_section_size (sectp);
12188 }
12189 else if (section_is_p (sectp->name, &names->macro_dwo))
12190 {
12191 dwo_sections->macro.s.section = sectp;
12192 dwo_sections->macro.size = bfd_section_size (sectp);
12193 }
12194 else if (section_is_p (sectp->name, &names->str_dwo))
12195 {
12196 dwo_sections->str.s.section = sectp;
12197 dwo_sections->str.size = bfd_section_size (sectp);
12198 }
12199 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12200 {
12201 dwo_sections->str_offsets.s.section = sectp;
12202 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12203 }
12204 else if (section_is_p (sectp->name, &names->types_dwo))
12205 {
12206 struct dwarf2_section_info type_section;
12207
12208 memset (&type_section, 0, sizeof (type_section));
12209 type_section.s.section = sectp;
12210 type_section.size = bfd_section_size (sectp);
12211 dwo_sections->types.push_back (type_section);
12212 }
12213 }
12214
12215 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12216 by PER_CU. This is for the non-DWP case.
12217 The result is NULL if DWO_NAME can't be found. */
12218
12219 static struct dwo_file *
12220 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12221 const char *dwo_name, const char *comp_dir)
12222 {
12223 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12224
12225 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12226 if (dbfd == NULL)
12227 {
12228 if (dwarf_read_debug)
12229 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12230 return NULL;
12231 }
12232
12233 dwo_file_up dwo_file (new struct dwo_file);
12234 dwo_file->dwo_name = dwo_name;
12235 dwo_file->comp_dir = comp_dir;
12236 dwo_file->dbfd = std::move (dbfd);
12237
12238 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12239 &dwo_file->sections);
12240
12241 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12242 dwo_file->sections.info, dwo_file->cus);
12243
12244 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12245 dwo_file->sections.types, dwo_file->tus);
12246
12247 if (dwarf_read_debug)
12248 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12249
12250 return dwo_file.release ();
12251 }
12252
12253 /* This function is mapped across the sections and remembers the offset and
12254 size of each of the DWP debugging sections common to version 1 and 2 that
12255 we are interested in. */
12256
12257 static void
12258 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12259 void *dwp_file_ptr)
12260 {
12261 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12262 const struct dwop_section_names *names = &dwop_section_names;
12263 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12264
12265 /* Record the ELF section number for later lookup: this is what the
12266 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12267 gdb_assert (elf_section_nr < dwp_file->num_sections);
12268 dwp_file->elf_sections[elf_section_nr] = sectp;
12269
12270 /* Look for specific sections that we need. */
12271 if (section_is_p (sectp->name, &names->str_dwo))
12272 {
12273 dwp_file->sections.str.s.section = sectp;
12274 dwp_file->sections.str.size = bfd_section_size (sectp);
12275 }
12276 else if (section_is_p (sectp->name, &names->cu_index))
12277 {
12278 dwp_file->sections.cu_index.s.section = sectp;
12279 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12280 }
12281 else if (section_is_p (sectp->name, &names->tu_index))
12282 {
12283 dwp_file->sections.tu_index.s.section = sectp;
12284 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12285 }
12286 }
12287
12288 /* This function is mapped across the sections and remembers the offset and
12289 size of each of the DWP version 2 debugging sections that we are interested
12290 in. This is split into a separate function because we don't know if we
12291 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12292
12293 static void
12294 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12295 {
12296 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12297 const struct dwop_section_names *names = &dwop_section_names;
12298 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12299
12300 /* Record the ELF section number for later lookup: this is what the
12301 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12302 gdb_assert (elf_section_nr < dwp_file->num_sections);
12303 dwp_file->elf_sections[elf_section_nr] = sectp;
12304
12305 /* Look for specific sections that we need. */
12306 if (section_is_p (sectp->name, &names->abbrev_dwo))
12307 {
12308 dwp_file->sections.abbrev.s.section = sectp;
12309 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12310 }
12311 else if (section_is_p (sectp->name, &names->info_dwo))
12312 {
12313 dwp_file->sections.info.s.section = sectp;
12314 dwp_file->sections.info.size = bfd_section_size (sectp);
12315 }
12316 else if (section_is_p (sectp->name, &names->line_dwo))
12317 {
12318 dwp_file->sections.line.s.section = sectp;
12319 dwp_file->sections.line.size = bfd_section_size (sectp);
12320 }
12321 else if (section_is_p (sectp->name, &names->loc_dwo))
12322 {
12323 dwp_file->sections.loc.s.section = sectp;
12324 dwp_file->sections.loc.size = bfd_section_size (sectp);
12325 }
12326 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12327 {
12328 dwp_file->sections.macinfo.s.section = sectp;
12329 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12330 }
12331 else if (section_is_p (sectp->name, &names->macro_dwo))
12332 {
12333 dwp_file->sections.macro.s.section = sectp;
12334 dwp_file->sections.macro.size = bfd_section_size (sectp);
12335 }
12336 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12337 {
12338 dwp_file->sections.str_offsets.s.section = sectp;
12339 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12340 }
12341 else if (section_is_p (sectp->name, &names->types_dwo))
12342 {
12343 dwp_file->sections.types.s.section = sectp;
12344 dwp_file->sections.types.size = bfd_section_size (sectp);
12345 }
12346 }
12347
12348 /* Hash function for dwp_file loaded CUs/TUs. */
12349
12350 static hashval_t
12351 hash_dwp_loaded_cutus (const void *item)
12352 {
12353 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12354
12355 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12356 return dwo_unit->signature;
12357 }
12358
12359 /* Equality function for dwp_file loaded CUs/TUs. */
12360
12361 static int
12362 eq_dwp_loaded_cutus (const void *a, const void *b)
12363 {
12364 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12365 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12366
12367 return dua->signature == dub->signature;
12368 }
12369
12370 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12371
12372 static htab_up
12373 allocate_dwp_loaded_cutus_table ()
12374 {
12375 return htab_up (htab_create_alloc (3,
12376 hash_dwp_loaded_cutus,
12377 eq_dwp_loaded_cutus,
12378 NULL, xcalloc, xfree));
12379 }
12380
12381 /* Try to open DWP file FILE_NAME.
12382 The result is the bfd handle of the file.
12383 If there is a problem finding or opening the file, return NULL.
12384 Upon success, the canonicalized path of the file is stored in the bfd,
12385 same as symfile_bfd_open. */
12386
12387 static gdb_bfd_ref_ptr
12388 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12389 const char *file_name)
12390 {
12391 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12392 1 /*is_dwp*/,
12393 1 /*search_cwd*/));
12394 if (abfd != NULL)
12395 return abfd;
12396
12397 /* Work around upstream bug 15652.
12398 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12399 [Whether that's a "bug" is debatable, but it is getting in our way.]
12400 We have no real idea where the dwp file is, because gdb's realpath-ing
12401 of the executable's path may have discarded the needed info.
12402 [IWBN if the dwp file name was recorded in the executable, akin to
12403 .gnu_debuglink, but that doesn't exist yet.]
12404 Strip the directory from FILE_NAME and search again. */
12405 if (*debug_file_directory != '\0')
12406 {
12407 /* Don't implicitly search the current directory here.
12408 If the user wants to search "." to handle this case,
12409 it must be added to debug-file-directory. */
12410 return try_open_dwop_file (dwarf2_per_objfile,
12411 lbasename (file_name), 1 /*is_dwp*/,
12412 0 /*search_cwd*/);
12413 }
12414
12415 return NULL;
12416 }
12417
12418 /* Initialize the use of the DWP file for the current objfile.
12419 By convention the name of the DWP file is ${objfile}.dwp.
12420 The result is NULL if it can't be found. */
12421
12422 static std::unique_ptr<struct dwp_file>
12423 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12424 {
12425 struct objfile *objfile = dwarf2_per_objfile->objfile;
12426
12427 /* Try to find first .dwp for the binary file before any symbolic links
12428 resolving. */
12429
12430 /* If the objfile is a debug file, find the name of the real binary
12431 file and get the name of dwp file from there. */
12432 std::string dwp_name;
12433 if (objfile->separate_debug_objfile_backlink != NULL)
12434 {
12435 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12436 const char *backlink_basename = lbasename (backlink->original_name);
12437
12438 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12439 }
12440 else
12441 dwp_name = objfile->original_name;
12442
12443 dwp_name += ".dwp";
12444
12445 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12446 if (dbfd == NULL
12447 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12448 {
12449 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12450 dwp_name = objfile_name (objfile);
12451 dwp_name += ".dwp";
12452 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12453 }
12454
12455 if (dbfd == NULL)
12456 {
12457 if (dwarf_read_debug)
12458 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12459 return std::unique_ptr<dwp_file> ();
12460 }
12461
12462 const char *name = bfd_get_filename (dbfd.get ());
12463 std::unique_ptr<struct dwp_file> dwp_file
12464 (new struct dwp_file (name, std::move (dbfd)));
12465
12466 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12467 dwp_file->elf_sections =
12468 OBSTACK_CALLOC (&objfile->objfile_obstack,
12469 dwp_file->num_sections, asection *);
12470
12471 bfd_map_over_sections (dwp_file->dbfd.get (),
12472 dwarf2_locate_common_dwp_sections,
12473 dwp_file.get ());
12474
12475 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12476 0);
12477
12478 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12479 1);
12480
12481 /* The DWP file version is stored in the hash table. Oh well. */
12482 if (dwp_file->cus && dwp_file->tus
12483 && dwp_file->cus->version != dwp_file->tus->version)
12484 {
12485 /* Technically speaking, we should try to limp along, but this is
12486 pretty bizarre. We use pulongest here because that's the established
12487 portability solution (e.g, we cannot use %u for uint32_t). */
12488 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12489 " TU version %s [in DWP file %s]"),
12490 pulongest (dwp_file->cus->version),
12491 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12492 }
12493
12494 if (dwp_file->cus)
12495 dwp_file->version = dwp_file->cus->version;
12496 else if (dwp_file->tus)
12497 dwp_file->version = dwp_file->tus->version;
12498 else
12499 dwp_file->version = 2;
12500
12501 if (dwp_file->version == 2)
12502 bfd_map_over_sections (dwp_file->dbfd.get (),
12503 dwarf2_locate_v2_dwp_sections,
12504 dwp_file.get ());
12505
12506 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12507 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12508
12509 if (dwarf_read_debug)
12510 {
12511 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12512 fprintf_unfiltered (gdb_stdlog,
12513 " %s CUs, %s TUs\n",
12514 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12515 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12516 }
12517
12518 return dwp_file;
12519 }
12520
12521 /* Wrapper around open_and_init_dwp_file, only open it once. */
12522
12523 static struct dwp_file *
12524 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12525 {
12526 if (! dwarf2_per_objfile->dwp_checked)
12527 {
12528 dwarf2_per_objfile->dwp_file
12529 = open_and_init_dwp_file (dwarf2_per_objfile);
12530 dwarf2_per_objfile->dwp_checked = 1;
12531 }
12532 return dwarf2_per_objfile->dwp_file.get ();
12533 }
12534
12535 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12536 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12537 or in the DWP file for the objfile, referenced by THIS_UNIT.
12538 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12539 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12540
12541 This is called, for example, when wanting to read a variable with a
12542 complex location. Therefore we don't want to do file i/o for every call.
12543 Therefore we don't want to look for a DWO file on every call.
12544 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12545 then we check if we've already seen DWO_NAME, and only THEN do we check
12546 for a DWO file.
12547
12548 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12549 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12550
12551 static struct dwo_unit *
12552 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12553 const char *dwo_name, const char *comp_dir,
12554 ULONGEST signature, int is_debug_types)
12555 {
12556 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12557 struct objfile *objfile = dwarf2_per_objfile->objfile;
12558 const char *kind = is_debug_types ? "TU" : "CU";
12559 void **dwo_file_slot;
12560 struct dwo_file *dwo_file;
12561 struct dwp_file *dwp_file;
12562
12563 /* First see if there's a DWP file.
12564 If we have a DWP file but didn't find the DWO inside it, don't
12565 look for the original DWO file. It makes gdb behave differently
12566 depending on whether one is debugging in the build tree. */
12567
12568 dwp_file = get_dwp_file (dwarf2_per_objfile);
12569 if (dwp_file != NULL)
12570 {
12571 const struct dwp_hash_table *dwp_htab =
12572 is_debug_types ? dwp_file->tus : dwp_file->cus;
12573
12574 if (dwp_htab != NULL)
12575 {
12576 struct dwo_unit *dwo_cutu =
12577 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12578 signature, is_debug_types);
12579
12580 if (dwo_cutu != NULL)
12581 {
12582 if (dwarf_read_debug)
12583 {
12584 fprintf_unfiltered (gdb_stdlog,
12585 "Virtual DWO %s %s found: @%s\n",
12586 kind, hex_string (signature),
12587 host_address_to_string (dwo_cutu));
12588 }
12589 return dwo_cutu;
12590 }
12591 }
12592 }
12593 else
12594 {
12595 /* No DWP file, look for the DWO file. */
12596
12597 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12598 dwo_name, comp_dir);
12599 if (*dwo_file_slot == NULL)
12600 {
12601 /* Read in the file and build a table of the CUs/TUs it contains. */
12602 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12603 }
12604 /* NOTE: This will be NULL if unable to open the file. */
12605 dwo_file = (struct dwo_file *) *dwo_file_slot;
12606
12607 if (dwo_file != NULL)
12608 {
12609 struct dwo_unit *dwo_cutu = NULL;
12610
12611 if (is_debug_types && dwo_file->tus)
12612 {
12613 struct dwo_unit find_dwo_cutu;
12614
12615 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12616 find_dwo_cutu.signature = signature;
12617 dwo_cutu
12618 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12619 &find_dwo_cutu);
12620 }
12621 else if (!is_debug_types && dwo_file->cus)
12622 {
12623 struct dwo_unit find_dwo_cutu;
12624
12625 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12626 find_dwo_cutu.signature = signature;
12627 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12628 &find_dwo_cutu);
12629 }
12630
12631 if (dwo_cutu != NULL)
12632 {
12633 if (dwarf_read_debug)
12634 {
12635 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12636 kind, dwo_name, hex_string (signature),
12637 host_address_to_string (dwo_cutu));
12638 }
12639 return dwo_cutu;
12640 }
12641 }
12642 }
12643
12644 /* We didn't find it. This could mean a dwo_id mismatch, or
12645 someone deleted the DWO/DWP file, or the search path isn't set up
12646 correctly to find the file. */
12647
12648 if (dwarf_read_debug)
12649 {
12650 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12651 kind, dwo_name, hex_string (signature));
12652 }
12653
12654 /* This is a warning and not a complaint because it can be caused by
12655 pilot error (e.g., user accidentally deleting the DWO). */
12656 {
12657 /* Print the name of the DWP file if we looked there, helps the user
12658 better diagnose the problem. */
12659 std::string dwp_text;
12660
12661 if (dwp_file != NULL)
12662 dwp_text = string_printf (" [in DWP file %s]",
12663 lbasename (dwp_file->name));
12664
12665 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12666 " [in module %s]"),
12667 kind, dwo_name, hex_string (signature),
12668 dwp_text.c_str (),
12669 this_unit->is_debug_types ? "TU" : "CU",
12670 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12671 }
12672 return NULL;
12673 }
12674
12675 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12676 See lookup_dwo_cutu_unit for details. */
12677
12678 static struct dwo_unit *
12679 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12680 const char *dwo_name, const char *comp_dir,
12681 ULONGEST signature)
12682 {
12683 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12684 }
12685
12686 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12687 See lookup_dwo_cutu_unit for details. */
12688
12689 static struct dwo_unit *
12690 lookup_dwo_type_unit (struct signatured_type *this_tu,
12691 const char *dwo_name, const char *comp_dir)
12692 {
12693 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12694 }
12695
12696 /* Traversal function for queue_and_load_all_dwo_tus. */
12697
12698 static int
12699 queue_and_load_dwo_tu (void **slot, void *info)
12700 {
12701 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12702 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12703 ULONGEST signature = dwo_unit->signature;
12704 struct signatured_type *sig_type =
12705 lookup_dwo_signatured_type (per_cu->cu, signature);
12706
12707 if (sig_type != NULL)
12708 {
12709 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12710
12711 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12712 a real dependency of PER_CU on SIG_TYPE. That is detected later
12713 while processing PER_CU. */
12714 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12715 load_full_type_unit (sig_cu);
12716 per_cu->imported_symtabs_push (sig_cu);
12717 }
12718
12719 return 1;
12720 }
12721
12722 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12723 The DWO may have the only definition of the type, though it may not be
12724 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12725 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12726
12727 static void
12728 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12729 {
12730 struct dwo_unit *dwo_unit;
12731 struct dwo_file *dwo_file;
12732
12733 gdb_assert (!per_cu->is_debug_types);
12734 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12735 gdb_assert (per_cu->cu != NULL);
12736
12737 dwo_unit = per_cu->cu->dwo_unit;
12738 gdb_assert (dwo_unit != NULL);
12739
12740 dwo_file = dwo_unit->dwo_file;
12741 if (dwo_file->tus != NULL)
12742 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12743 per_cu);
12744 }
12745
12746 /* Read in various DIEs. */
12747
12748 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12749 Inherit only the children of the DW_AT_abstract_origin DIE not being
12750 already referenced by DW_AT_abstract_origin from the children of the
12751 current DIE. */
12752
12753 static void
12754 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12755 {
12756 struct die_info *child_die;
12757 sect_offset *offsetp;
12758 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12759 struct die_info *origin_die;
12760 /* Iterator of the ORIGIN_DIE children. */
12761 struct die_info *origin_child_die;
12762 struct attribute *attr;
12763 struct dwarf2_cu *origin_cu;
12764 struct pending **origin_previous_list_in_scope;
12765
12766 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12767 if (!attr)
12768 return;
12769
12770 /* Note that following die references may follow to a die in a
12771 different cu. */
12772
12773 origin_cu = cu;
12774 origin_die = follow_die_ref (die, attr, &origin_cu);
12775
12776 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12777 symbols in. */
12778 origin_previous_list_in_scope = origin_cu->list_in_scope;
12779 origin_cu->list_in_scope = cu->list_in_scope;
12780
12781 if (die->tag != origin_die->tag
12782 && !(die->tag == DW_TAG_inlined_subroutine
12783 && origin_die->tag == DW_TAG_subprogram))
12784 complaint (_("DIE %s and its abstract origin %s have different tags"),
12785 sect_offset_str (die->sect_off),
12786 sect_offset_str (origin_die->sect_off));
12787
12788 std::vector<sect_offset> offsets;
12789
12790 for (child_die = die->child;
12791 child_die && child_die->tag;
12792 child_die = child_die->sibling)
12793 {
12794 struct die_info *child_origin_die;
12795 struct dwarf2_cu *child_origin_cu;
12796
12797 /* We are trying to process concrete instance entries:
12798 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12799 it's not relevant to our analysis here. i.e. detecting DIEs that are
12800 present in the abstract instance but not referenced in the concrete
12801 one. */
12802 if (child_die->tag == DW_TAG_call_site
12803 || child_die->tag == DW_TAG_GNU_call_site)
12804 continue;
12805
12806 /* For each CHILD_DIE, find the corresponding child of
12807 ORIGIN_DIE. If there is more than one layer of
12808 DW_AT_abstract_origin, follow them all; there shouldn't be,
12809 but GCC versions at least through 4.4 generate this (GCC PR
12810 40573). */
12811 child_origin_die = child_die;
12812 child_origin_cu = cu;
12813 while (1)
12814 {
12815 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12816 child_origin_cu);
12817 if (attr == NULL)
12818 break;
12819 child_origin_die = follow_die_ref (child_origin_die, attr,
12820 &child_origin_cu);
12821 }
12822
12823 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12824 counterpart may exist. */
12825 if (child_origin_die != child_die)
12826 {
12827 if (child_die->tag != child_origin_die->tag
12828 && !(child_die->tag == DW_TAG_inlined_subroutine
12829 && child_origin_die->tag == DW_TAG_subprogram))
12830 complaint (_("Child DIE %s and its abstract origin %s have "
12831 "different tags"),
12832 sect_offset_str (child_die->sect_off),
12833 sect_offset_str (child_origin_die->sect_off));
12834 if (child_origin_die->parent != origin_die)
12835 complaint (_("Child DIE %s and its abstract origin %s have "
12836 "different parents"),
12837 sect_offset_str (child_die->sect_off),
12838 sect_offset_str (child_origin_die->sect_off));
12839 else
12840 offsets.push_back (child_origin_die->sect_off);
12841 }
12842 }
12843 std::sort (offsets.begin (), offsets.end ());
12844 sect_offset *offsets_end = offsets.data () + offsets.size ();
12845 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12846 if (offsetp[-1] == *offsetp)
12847 complaint (_("Multiple children of DIE %s refer "
12848 "to DIE %s as their abstract origin"),
12849 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12850
12851 offsetp = offsets.data ();
12852 origin_child_die = origin_die->child;
12853 while (origin_child_die && origin_child_die->tag)
12854 {
12855 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12856 while (offsetp < offsets_end
12857 && *offsetp < origin_child_die->sect_off)
12858 offsetp++;
12859 if (offsetp >= offsets_end
12860 || *offsetp > origin_child_die->sect_off)
12861 {
12862 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12863 Check whether we're already processing ORIGIN_CHILD_DIE.
12864 This can happen with mutually referenced abstract_origins.
12865 PR 16581. */
12866 if (!origin_child_die->in_process)
12867 process_die (origin_child_die, origin_cu);
12868 }
12869 origin_child_die = origin_child_die->sibling;
12870 }
12871 origin_cu->list_in_scope = origin_previous_list_in_scope;
12872
12873 if (cu != origin_cu)
12874 compute_delayed_physnames (origin_cu);
12875 }
12876
12877 static void
12878 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12879 {
12880 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12881 struct gdbarch *gdbarch = objfile->arch ();
12882 struct context_stack *newobj;
12883 CORE_ADDR lowpc;
12884 CORE_ADDR highpc;
12885 struct die_info *child_die;
12886 struct attribute *attr, *call_line, *call_file;
12887 const char *name;
12888 CORE_ADDR baseaddr;
12889 struct block *block;
12890 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12891 std::vector<struct symbol *> template_args;
12892 struct template_symbol *templ_func = NULL;
12893
12894 if (inlined_func)
12895 {
12896 /* If we do not have call site information, we can't show the
12897 caller of this inlined function. That's too confusing, so
12898 only use the scope for local variables. */
12899 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12900 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12901 if (call_line == NULL || call_file == NULL)
12902 {
12903 read_lexical_block_scope (die, cu);
12904 return;
12905 }
12906 }
12907
12908 baseaddr = objfile->text_section_offset ();
12909
12910 name = dwarf2_name (die, cu);
12911
12912 /* Ignore functions with missing or empty names. These are actually
12913 illegal according to the DWARF standard. */
12914 if (name == NULL)
12915 {
12916 complaint (_("missing name for subprogram DIE at %s"),
12917 sect_offset_str (die->sect_off));
12918 return;
12919 }
12920
12921 /* Ignore functions with missing or invalid low and high pc attributes. */
12922 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12923 <= PC_BOUNDS_INVALID)
12924 {
12925 attr = dwarf2_attr (die, DW_AT_external, cu);
12926 if (!attr || !DW_UNSND (attr))
12927 complaint (_("cannot get low and high bounds "
12928 "for subprogram DIE at %s"),
12929 sect_offset_str (die->sect_off));
12930 return;
12931 }
12932
12933 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12934 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12935
12936 /* If we have any template arguments, then we must allocate a
12937 different sort of symbol. */
12938 for (child_die = die->child; child_die; child_die = child_die->sibling)
12939 {
12940 if (child_die->tag == DW_TAG_template_type_param
12941 || child_die->tag == DW_TAG_template_value_param)
12942 {
12943 templ_func = allocate_template_symbol (objfile);
12944 templ_func->subclass = SYMBOL_TEMPLATE;
12945 break;
12946 }
12947 }
12948
12949 newobj = cu->get_builder ()->push_context (0, lowpc);
12950 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12951 (struct symbol *) templ_func);
12952
12953 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12954 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12955 cu->language);
12956
12957 /* If there is a location expression for DW_AT_frame_base, record
12958 it. */
12959 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12960 if (attr != nullptr)
12961 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12962
12963 /* If there is a location for the static link, record it. */
12964 newobj->static_link = NULL;
12965 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12966 if (attr != nullptr)
12967 {
12968 newobj->static_link
12969 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12970 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12971 cu->per_cu->addr_type ());
12972 }
12973
12974 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12975
12976 if (die->child != NULL)
12977 {
12978 child_die = die->child;
12979 while (child_die && child_die->tag)
12980 {
12981 if (child_die->tag == DW_TAG_template_type_param
12982 || child_die->tag == DW_TAG_template_value_param)
12983 {
12984 struct symbol *arg = new_symbol (child_die, NULL, cu);
12985
12986 if (arg != NULL)
12987 template_args.push_back (arg);
12988 }
12989 else
12990 process_die (child_die, cu);
12991 child_die = child_die->sibling;
12992 }
12993 }
12994
12995 inherit_abstract_dies (die, cu);
12996
12997 /* If we have a DW_AT_specification, we might need to import using
12998 directives from the context of the specification DIE. See the
12999 comment in determine_prefix. */
13000 if (cu->language == language_cplus
13001 && dwarf2_attr (die, DW_AT_specification, cu))
13002 {
13003 struct dwarf2_cu *spec_cu = cu;
13004 struct die_info *spec_die = die_specification (die, &spec_cu);
13005
13006 while (spec_die)
13007 {
13008 child_die = spec_die->child;
13009 while (child_die && child_die->tag)
13010 {
13011 if (child_die->tag == DW_TAG_imported_module)
13012 process_die (child_die, spec_cu);
13013 child_die = child_die->sibling;
13014 }
13015
13016 /* In some cases, GCC generates specification DIEs that
13017 themselves contain DW_AT_specification attributes. */
13018 spec_die = die_specification (spec_die, &spec_cu);
13019 }
13020 }
13021
13022 struct context_stack cstk = cu->get_builder ()->pop_context ();
13023 /* Make a block for the local symbols within. */
13024 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13025 cstk.static_link, lowpc, highpc);
13026
13027 /* For C++, set the block's scope. */
13028 if ((cu->language == language_cplus
13029 || cu->language == language_fortran
13030 || cu->language == language_d
13031 || cu->language == language_rust)
13032 && cu->processing_has_namespace_info)
13033 block_set_scope (block, determine_prefix (die, cu),
13034 &objfile->objfile_obstack);
13035
13036 /* If we have address ranges, record them. */
13037 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13038
13039 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13040
13041 /* Attach template arguments to function. */
13042 if (!template_args.empty ())
13043 {
13044 gdb_assert (templ_func != NULL);
13045
13046 templ_func->n_template_arguments = template_args.size ();
13047 templ_func->template_arguments
13048 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13049 templ_func->n_template_arguments);
13050 memcpy (templ_func->template_arguments,
13051 template_args.data (),
13052 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13053
13054 /* Make sure that the symtab is set on the new symbols. Even
13055 though they don't appear in this symtab directly, other parts
13056 of gdb assume that symbols do, and this is reasonably
13057 true. */
13058 for (symbol *sym : template_args)
13059 symbol_set_symtab (sym, symbol_symtab (templ_func));
13060 }
13061
13062 /* In C++, we can have functions nested inside functions (e.g., when
13063 a function declares a class that has methods). This means that
13064 when we finish processing a function scope, we may need to go
13065 back to building a containing block's symbol lists. */
13066 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13067 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13068
13069 /* If we've finished processing a top-level function, subsequent
13070 symbols go in the file symbol list. */
13071 if (cu->get_builder ()->outermost_context_p ())
13072 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13073 }
13074
13075 /* Process all the DIES contained within a lexical block scope. Start
13076 a new scope, process the dies, and then close the scope. */
13077
13078 static void
13079 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13080 {
13081 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13082 struct gdbarch *gdbarch = objfile->arch ();
13083 CORE_ADDR lowpc, highpc;
13084 struct die_info *child_die;
13085 CORE_ADDR baseaddr;
13086
13087 baseaddr = objfile->text_section_offset ();
13088
13089 /* Ignore blocks with missing or invalid low and high pc attributes. */
13090 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13091 as multiple lexical blocks? Handling children in a sane way would
13092 be nasty. Might be easier to properly extend generic blocks to
13093 describe ranges. */
13094 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13095 {
13096 case PC_BOUNDS_NOT_PRESENT:
13097 /* DW_TAG_lexical_block has no attributes, process its children as if
13098 there was no wrapping by that DW_TAG_lexical_block.
13099 GCC does no longer produces such DWARF since GCC r224161. */
13100 for (child_die = die->child;
13101 child_die != NULL && child_die->tag;
13102 child_die = child_die->sibling)
13103 process_die (child_die, cu);
13104 return;
13105 case PC_BOUNDS_INVALID:
13106 return;
13107 }
13108 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13109 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13110
13111 cu->get_builder ()->push_context (0, lowpc);
13112 if (die->child != NULL)
13113 {
13114 child_die = die->child;
13115 while (child_die && child_die->tag)
13116 {
13117 process_die (child_die, cu);
13118 child_die = child_die->sibling;
13119 }
13120 }
13121 inherit_abstract_dies (die, cu);
13122 struct context_stack cstk = cu->get_builder ()->pop_context ();
13123
13124 if (*cu->get_builder ()->get_local_symbols () != NULL
13125 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13126 {
13127 struct block *block
13128 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13129 cstk.start_addr, highpc);
13130
13131 /* Note that recording ranges after traversing children, as we
13132 do here, means that recording a parent's ranges entails
13133 walking across all its children's ranges as they appear in
13134 the address map, which is quadratic behavior.
13135
13136 It would be nicer to record the parent's ranges before
13137 traversing its children, simply overriding whatever you find
13138 there. But since we don't even decide whether to create a
13139 block until after we've traversed its children, that's hard
13140 to do. */
13141 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13142 }
13143 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13144 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13145 }
13146
13147 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13148
13149 static void
13150 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13151 {
13152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13153 struct gdbarch *gdbarch = objfile->arch ();
13154 CORE_ADDR pc, baseaddr;
13155 struct attribute *attr;
13156 struct call_site *call_site, call_site_local;
13157 void **slot;
13158 int nparams;
13159 struct die_info *child_die;
13160
13161 baseaddr = objfile->text_section_offset ();
13162
13163 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13164 if (attr == NULL)
13165 {
13166 /* This was a pre-DWARF-5 GNU extension alias
13167 for DW_AT_call_return_pc. */
13168 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13169 }
13170 if (!attr)
13171 {
13172 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13173 "DIE %s [in module %s]"),
13174 sect_offset_str (die->sect_off), objfile_name (objfile));
13175 return;
13176 }
13177 pc = attr->value_as_address () + baseaddr;
13178 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13179
13180 if (cu->call_site_htab == NULL)
13181 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13182 NULL, &objfile->objfile_obstack,
13183 hashtab_obstack_allocate, NULL);
13184 call_site_local.pc = pc;
13185 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13186 if (*slot != NULL)
13187 {
13188 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13189 "DIE %s [in module %s]"),
13190 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13191 objfile_name (objfile));
13192 return;
13193 }
13194
13195 /* Count parameters at the caller. */
13196
13197 nparams = 0;
13198 for (child_die = die->child; child_die && child_die->tag;
13199 child_die = child_die->sibling)
13200 {
13201 if (child_die->tag != DW_TAG_call_site_parameter
13202 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13203 {
13204 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13205 "DW_TAG_call_site child DIE %s [in module %s]"),
13206 child_die->tag, sect_offset_str (child_die->sect_off),
13207 objfile_name (objfile));
13208 continue;
13209 }
13210
13211 nparams++;
13212 }
13213
13214 call_site
13215 = ((struct call_site *)
13216 obstack_alloc (&objfile->objfile_obstack,
13217 sizeof (*call_site)
13218 + (sizeof (*call_site->parameter) * (nparams - 1))));
13219 *slot = call_site;
13220 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13221 call_site->pc = pc;
13222
13223 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13224 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13225 {
13226 struct die_info *func_die;
13227
13228 /* Skip also over DW_TAG_inlined_subroutine. */
13229 for (func_die = die->parent;
13230 func_die && func_die->tag != DW_TAG_subprogram
13231 && func_die->tag != DW_TAG_subroutine_type;
13232 func_die = func_die->parent);
13233
13234 /* DW_AT_call_all_calls is a superset
13235 of DW_AT_call_all_tail_calls. */
13236 if (func_die
13237 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13238 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13239 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13240 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13241 {
13242 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13243 not complete. But keep CALL_SITE for look ups via call_site_htab,
13244 both the initial caller containing the real return address PC and
13245 the final callee containing the current PC of a chain of tail
13246 calls do not need to have the tail call list complete. But any
13247 function candidate for a virtual tail call frame searched via
13248 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13249 determined unambiguously. */
13250 }
13251 else
13252 {
13253 struct type *func_type = NULL;
13254
13255 if (func_die)
13256 func_type = get_die_type (func_die, cu);
13257 if (func_type != NULL)
13258 {
13259 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13260
13261 /* Enlist this call site to the function. */
13262 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13263 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13264 }
13265 else
13266 complaint (_("Cannot find function owning DW_TAG_call_site "
13267 "DIE %s [in module %s]"),
13268 sect_offset_str (die->sect_off), objfile_name (objfile));
13269 }
13270 }
13271
13272 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13273 if (attr == NULL)
13274 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13275 if (attr == NULL)
13276 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13277 if (attr == NULL)
13278 {
13279 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13280 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13281 }
13282 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13283 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13284 /* Keep NULL DWARF_BLOCK. */;
13285 else if (attr->form_is_block ())
13286 {
13287 struct dwarf2_locexpr_baton *dlbaton;
13288
13289 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13290 dlbaton->data = DW_BLOCK (attr)->data;
13291 dlbaton->size = DW_BLOCK (attr)->size;
13292 dlbaton->per_cu = cu->per_cu;
13293
13294 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13295 }
13296 else if (attr->form_is_ref ())
13297 {
13298 struct dwarf2_cu *target_cu = cu;
13299 struct die_info *target_die;
13300
13301 target_die = follow_die_ref (die, attr, &target_cu);
13302 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13303 if (die_is_declaration (target_die, target_cu))
13304 {
13305 const char *target_physname;
13306
13307 /* Prefer the mangled name; otherwise compute the demangled one. */
13308 target_physname = dw2_linkage_name (target_die, target_cu);
13309 if (target_physname == NULL)
13310 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13311 if (target_physname == NULL)
13312 complaint (_("DW_AT_call_target target DIE has invalid "
13313 "physname, for referencing DIE %s [in module %s]"),
13314 sect_offset_str (die->sect_off), objfile_name (objfile));
13315 else
13316 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13317 }
13318 else
13319 {
13320 CORE_ADDR lowpc;
13321
13322 /* DW_AT_entry_pc should be preferred. */
13323 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13324 <= PC_BOUNDS_INVALID)
13325 complaint (_("DW_AT_call_target target DIE has invalid "
13326 "low pc, for referencing DIE %s [in module %s]"),
13327 sect_offset_str (die->sect_off), objfile_name (objfile));
13328 else
13329 {
13330 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13331 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13332 }
13333 }
13334 }
13335 else
13336 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13337 "block nor reference, for DIE %s [in module %s]"),
13338 sect_offset_str (die->sect_off), objfile_name (objfile));
13339
13340 call_site->per_cu = cu->per_cu;
13341
13342 for (child_die = die->child;
13343 child_die && child_die->tag;
13344 child_die = child_die->sibling)
13345 {
13346 struct call_site_parameter *parameter;
13347 struct attribute *loc, *origin;
13348
13349 if (child_die->tag != DW_TAG_call_site_parameter
13350 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13351 {
13352 /* Already printed the complaint above. */
13353 continue;
13354 }
13355
13356 gdb_assert (call_site->parameter_count < nparams);
13357 parameter = &call_site->parameter[call_site->parameter_count];
13358
13359 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13360 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13361 register is contained in DW_AT_call_value. */
13362
13363 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13364 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13365 if (origin == NULL)
13366 {
13367 /* This was a pre-DWARF-5 GNU extension alias
13368 for DW_AT_call_parameter. */
13369 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13370 }
13371 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13372 {
13373 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13374
13375 sect_offset sect_off = origin->get_ref_die_offset ();
13376 if (!cu->header.offset_in_cu_p (sect_off))
13377 {
13378 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13379 binding can be done only inside one CU. Such referenced DIE
13380 therefore cannot be even moved to DW_TAG_partial_unit. */
13381 complaint (_("DW_AT_call_parameter offset is not in CU for "
13382 "DW_TAG_call_site child DIE %s [in module %s]"),
13383 sect_offset_str (child_die->sect_off),
13384 objfile_name (objfile));
13385 continue;
13386 }
13387 parameter->u.param_cu_off
13388 = (cu_offset) (sect_off - cu->header.sect_off);
13389 }
13390 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13391 {
13392 complaint (_("No DW_FORM_block* DW_AT_location for "
13393 "DW_TAG_call_site child DIE %s [in module %s]"),
13394 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13395 continue;
13396 }
13397 else
13398 {
13399 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13400 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13401 if (parameter->u.dwarf_reg != -1)
13402 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13403 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13404 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13405 &parameter->u.fb_offset))
13406 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13407 else
13408 {
13409 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13410 "for DW_FORM_block* DW_AT_location is supported for "
13411 "DW_TAG_call_site child DIE %s "
13412 "[in module %s]"),
13413 sect_offset_str (child_die->sect_off),
13414 objfile_name (objfile));
13415 continue;
13416 }
13417 }
13418
13419 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13420 if (attr == NULL)
13421 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13422 if (attr == NULL || !attr->form_is_block ())
13423 {
13424 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13425 "DW_TAG_call_site child DIE %s [in module %s]"),
13426 sect_offset_str (child_die->sect_off),
13427 objfile_name (objfile));
13428 continue;
13429 }
13430 parameter->value = DW_BLOCK (attr)->data;
13431 parameter->value_size = DW_BLOCK (attr)->size;
13432
13433 /* Parameters are not pre-cleared by memset above. */
13434 parameter->data_value = NULL;
13435 parameter->data_value_size = 0;
13436 call_site->parameter_count++;
13437
13438 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13439 if (attr == NULL)
13440 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13441 if (attr != nullptr)
13442 {
13443 if (!attr->form_is_block ())
13444 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13445 "DW_TAG_call_site child DIE %s [in module %s]"),
13446 sect_offset_str (child_die->sect_off),
13447 objfile_name (objfile));
13448 else
13449 {
13450 parameter->data_value = DW_BLOCK (attr)->data;
13451 parameter->data_value_size = DW_BLOCK (attr)->size;
13452 }
13453 }
13454 }
13455 }
13456
13457 /* Helper function for read_variable. If DIE represents a virtual
13458 table, then return the type of the concrete object that is
13459 associated with the virtual table. Otherwise, return NULL. */
13460
13461 static struct type *
13462 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13463 {
13464 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13465 if (attr == NULL)
13466 return NULL;
13467
13468 /* Find the type DIE. */
13469 struct die_info *type_die = NULL;
13470 struct dwarf2_cu *type_cu = cu;
13471
13472 if (attr->form_is_ref ())
13473 type_die = follow_die_ref (die, attr, &type_cu);
13474 if (type_die == NULL)
13475 return NULL;
13476
13477 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13478 return NULL;
13479 return die_containing_type (type_die, type_cu);
13480 }
13481
13482 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13483
13484 static void
13485 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13486 {
13487 struct rust_vtable_symbol *storage = NULL;
13488
13489 if (cu->language == language_rust)
13490 {
13491 struct type *containing_type = rust_containing_type (die, cu);
13492
13493 if (containing_type != NULL)
13494 {
13495 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13496
13497 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13498 initialize_objfile_symbol (storage);
13499 storage->concrete_type = containing_type;
13500 storage->subclass = SYMBOL_RUST_VTABLE;
13501 }
13502 }
13503
13504 struct symbol *res = new_symbol (die, NULL, cu, storage);
13505 struct attribute *abstract_origin
13506 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13507 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13508 if (res == NULL && loc && abstract_origin)
13509 {
13510 /* We have a variable without a name, but with a location and an abstract
13511 origin. This may be a concrete instance of an abstract variable
13512 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13513 later. */
13514 struct dwarf2_cu *origin_cu = cu;
13515 struct die_info *origin_die
13516 = follow_die_ref (die, abstract_origin, &origin_cu);
13517 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13518 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13519 }
13520 }
13521
13522 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13523 reading .debug_rnglists.
13524 Callback's type should be:
13525 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13526 Return true if the attributes are present and valid, otherwise,
13527 return false. */
13528
13529 template <typename Callback>
13530 static bool
13531 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13532 Callback &&callback)
13533 {
13534 struct dwarf2_per_objfile *dwarf2_per_objfile
13535 = cu->per_cu->dwarf2_per_objfile;
13536 struct objfile *objfile = dwarf2_per_objfile->objfile;
13537 bfd *obfd = objfile->obfd;
13538 /* Base address selection entry. */
13539 gdb::optional<CORE_ADDR> base;
13540 const gdb_byte *buffer;
13541 CORE_ADDR baseaddr;
13542 bool overflow = false;
13543
13544 base = cu->base_address;
13545
13546 dwarf2_per_objfile->rnglists.read (objfile);
13547 if (offset >= dwarf2_per_objfile->rnglists.size)
13548 {
13549 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13550 offset);
13551 return false;
13552 }
13553 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13554
13555 baseaddr = objfile->text_section_offset ();
13556
13557 while (1)
13558 {
13559 /* Initialize it due to a false compiler warning. */
13560 CORE_ADDR range_beginning = 0, range_end = 0;
13561 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13562 + dwarf2_per_objfile->rnglists.size);
13563 unsigned int bytes_read;
13564
13565 if (buffer == buf_end)
13566 {
13567 overflow = true;
13568 break;
13569 }
13570 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13571 switch (rlet)
13572 {
13573 case DW_RLE_end_of_list:
13574 break;
13575 case DW_RLE_base_address:
13576 if (buffer + cu->header.addr_size > buf_end)
13577 {
13578 overflow = true;
13579 break;
13580 }
13581 base = cu->header.read_address (obfd, buffer, &bytes_read);
13582 buffer += bytes_read;
13583 break;
13584 case DW_RLE_start_length:
13585 if (buffer + cu->header.addr_size > buf_end)
13586 {
13587 overflow = true;
13588 break;
13589 }
13590 range_beginning = cu->header.read_address (obfd, buffer,
13591 &bytes_read);
13592 buffer += bytes_read;
13593 range_end = (range_beginning
13594 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13595 buffer += bytes_read;
13596 if (buffer > buf_end)
13597 {
13598 overflow = true;
13599 break;
13600 }
13601 break;
13602 case DW_RLE_offset_pair:
13603 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13604 buffer += bytes_read;
13605 if (buffer > buf_end)
13606 {
13607 overflow = true;
13608 break;
13609 }
13610 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13611 buffer += bytes_read;
13612 if (buffer > buf_end)
13613 {
13614 overflow = true;
13615 break;
13616 }
13617 break;
13618 case DW_RLE_start_end:
13619 if (buffer + 2 * cu->header.addr_size > buf_end)
13620 {
13621 overflow = true;
13622 break;
13623 }
13624 range_beginning = cu->header.read_address (obfd, buffer,
13625 &bytes_read);
13626 buffer += bytes_read;
13627 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13628 buffer += bytes_read;
13629 break;
13630 default:
13631 complaint (_("Invalid .debug_rnglists data (no base address)"));
13632 return false;
13633 }
13634 if (rlet == DW_RLE_end_of_list || overflow)
13635 break;
13636 if (rlet == DW_RLE_base_address)
13637 continue;
13638
13639 if (!base.has_value ())
13640 {
13641 /* We have no valid base address for the ranges
13642 data. */
13643 complaint (_("Invalid .debug_rnglists data (no base address)"));
13644 return false;
13645 }
13646
13647 if (range_beginning > range_end)
13648 {
13649 /* Inverted range entries are invalid. */
13650 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13651 return false;
13652 }
13653
13654 /* Empty range entries have no effect. */
13655 if (range_beginning == range_end)
13656 continue;
13657
13658 range_beginning += *base;
13659 range_end += *base;
13660
13661 /* A not-uncommon case of bad debug info.
13662 Don't pollute the addrmap with bad data. */
13663 if (range_beginning + baseaddr == 0
13664 && !dwarf2_per_objfile->has_section_at_zero)
13665 {
13666 complaint (_(".debug_rnglists entry has start address of zero"
13667 " [in module %s]"), objfile_name (objfile));
13668 continue;
13669 }
13670
13671 callback (range_beginning, range_end);
13672 }
13673
13674 if (overflow)
13675 {
13676 complaint (_("Offset %d is not terminated "
13677 "for DW_AT_ranges attribute"),
13678 offset);
13679 return false;
13680 }
13681
13682 return true;
13683 }
13684
13685 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13686 Callback's type should be:
13687 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13688 Return 1 if the attributes are present and valid, otherwise, return 0. */
13689
13690 template <typename Callback>
13691 static int
13692 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13693 Callback &&callback)
13694 {
13695 struct dwarf2_per_objfile *dwarf2_per_objfile
13696 = cu->per_cu->dwarf2_per_objfile;
13697 struct objfile *objfile = dwarf2_per_objfile->objfile;
13698 struct comp_unit_head *cu_header = &cu->header;
13699 bfd *obfd = objfile->obfd;
13700 unsigned int addr_size = cu_header->addr_size;
13701 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13702 /* Base address selection entry. */
13703 gdb::optional<CORE_ADDR> base;
13704 unsigned int dummy;
13705 const gdb_byte *buffer;
13706 CORE_ADDR baseaddr;
13707
13708 if (cu_header->version >= 5)
13709 return dwarf2_rnglists_process (offset, cu, callback);
13710
13711 base = cu->base_address;
13712
13713 dwarf2_per_objfile->ranges.read (objfile);
13714 if (offset >= dwarf2_per_objfile->ranges.size)
13715 {
13716 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13717 offset);
13718 return 0;
13719 }
13720 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13721
13722 baseaddr = objfile->text_section_offset ();
13723
13724 while (1)
13725 {
13726 CORE_ADDR range_beginning, range_end;
13727
13728 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13729 buffer += addr_size;
13730 range_end = cu->header.read_address (obfd, buffer, &dummy);
13731 buffer += addr_size;
13732 offset += 2 * addr_size;
13733
13734 /* An end of list marker is a pair of zero addresses. */
13735 if (range_beginning == 0 && range_end == 0)
13736 /* Found the end of list entry. */
13737 break;
13738
13739 /* Each base address selection entry is a pair of 2 values.
13740 The first is the largest possible address, the second is
13741 the base address. Check for a base address here. */
13742 if ((range_beginning & mask) == mask)
13743 {
13744 /* If we found the largest possible address, then we already
13745 have the base address in range_end. */
13746 base = range_end;
13747 continue;
13748 }
13749
13750 if (!base.has_value ())
13751 {
13752 /* We have no valid base address for the ranges
13753 data. */
13754 complaint (_("Invalid .debug_ranges data (no base address)"));
13755 return 0;
13756 }
13757
13758 if (range_beginning > range_end)
13759 {
13760 /* Inverted range entries are invalid. */
13761 complaint (_("Invalid .debug_ranges data (inverted range)"));
13762 return 0;
13763 }
13764
13765 /* Empty range entries have no effect. */
13766 if (range_beginning == range_end)
13767 continue;
13768
13769 range_beginning += *base;
13770 range_end += *base;
13771
13772 /* A not-uncommon case of bad debug info.
13773 Don't pollute the addrmap with bad data. */
13774 if (range_beginning + baseaddr == 0
13775 && !dwarf2_per_objfile->has_section_at_zero)
13776 {
13777 complaint (_(".debug_ranges entry has start address of zero"
13778 " [in module %s]"), objfile_name (objfile));
13779 continue;
13780 }
13781
13782 callback (range_beginning, range_end);
13783 }
13784
13785 return 1;
13786 }
13787
13788 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13789 Return 1 if the attributes are present and valid, otherwise, return 0.
13790 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13791
13792 static int
13793 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13794 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13795 dwarf2_psymtab *ranges_pst)
13796 {
13797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13798 struct gdbarch *gdbarch = objfile->arch ();
13799 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13800 int low_set = 0;
13801 CORE_ADDR low = 0;
13802 CORE_ADDR high = 0;
13803 int retval;
13804
13805 retval = dwarf2_ranges_process (offset, cu,
13806 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13807 {
13808 if (ranges_pst != NULL)
13809 {
13810 CORE_ADDR lowpc;
13811 CORE_ADDR highpc;
13812
13813 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13814 range_beginning + baseaddr)
13815 - baseaddr);
13816 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13817 range_end + baseaddr)
13818 - baseaddr);
13819 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13820 lowpc, highpc - 1, ranges_pst);
13821 }
13822
13823 /* FIXME: This is recording everything as a low-high
13824 segment of consecutive addresses. We should have a
13825 data structure for discontiguous block ranges
13826 instead. */
13827 if (! low_set)
13828 {
13829 low = range_beginning;
13830 high = range_end;
13831 low_set = 1;
13832 }
13833 else
13834 {
13835 if (range_beginning < low)
13836 low = range_beginning;
13837 if (range_end > high)
13838 high = range_end;
13839 }
13840 });
13841 if (!retval)
13842 return 0;
13843
13844 if (! low_set)
13845 /* If the first entry is an end-of-list marker, the range
13846 describes an empty scope, i.e. no instructions. */
13847 return 0;
13848
13849 if (low_return)
13850 *low_return = low;
13851 if (high_return)
13852 *high_return = high;
13853 return 1;
13854 }
13855
13856 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13857 definition for the return value. *LOWPC and *HIGHPC are set iff
13858 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13859
13860 static enum pc_bounds_kind
13861 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13862 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13863 dwarf2_psymtab *pst)
13864 {
13865 struct dwarf2_per_objfile *dwarf2_per_objfile
13866 = cu->per_cu->dwarf2_per_objfile;
13867 struct attribute *attr;
13868 struct attribute *attr_high;
13869 CORE_ADDR low = 0;
13870 CORE_ADDR high = 0;
13871 enum pc_bounds_kind ret;
13872
13873 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13874 if (attr_high)
13875 {
13876 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13877 if (attr != nullptr)
13878 {
13879 low = attr->value_as_address ();
13880 high = attr_high->value_as_address ();
13881 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13882 high += low;
13883 }
13884 else
13885 /* Found high w/o low attribute. */
13886 return PC_BOUNDS_INVALID;
13887
13888 /* Found consecutive range of addresses. */
13889 ret = PC_BOUNDS_HIGH_LOW;
13890 }
13891 else
13892 {
13893 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13894 if (attr != NULL)
13895 {
13896 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13897 We take advantage of the fact that DW_AT_ranges does not appear
13898 in DW_TAG_compile_unit of DWO files. */
13899 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13900 unsigned int ranges_offset = (DW_UNSND (attr)
13901 + (need_ranges_base
13902 ? cu->ranges_base
13903 : 0));
13904
13905 /* Value of the DW_AT_ranges attribute is the offset in the
13906 .debug_ranges section. */
13907 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13908 return PC_BOUNDS_INVALID;
13909 /* Found discontinuous range of addresses. */
13910 ret = PC_BOUNDS_RANGES;
13911 }
13912 else
13913 return PC_BOUNDS_NOT_PRESENT;
13914 }
13915
13916 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13917 if (high <= low)
13918 return PC_BOUNDS_INVALID;
13919
13920 /* When using the GNU linker, .gnu.linkonce. sections are used to
13921 eliminate duplicate copies of functions and vtables and such.
13922 The linker will arbitrarily choose one and discard the others.
13923 The AT_*_pc values for such functions refer to local labels in
13924 these sections. If the section from that file was discarded, the
13925 labels are not in the output, so the relocs get a value of 0.
13926 If this is a discarded function, mark the pc bounds as invalid,
13927 so that GDB will ignore it. */
13928 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13929 return PC_BOUNDS_INVALID;
13930
13931 *lowpc = low;
13932 if (highpc)
13933 *highpc = high;
13934 return ret;
13935 }
13936
13937 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13938 its low and high PC addresses. Do nothing if these addresses could not
13939 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13940 and HIGHPC to the high address if greater than HIGHPC. */
13941
13942 static void
13943 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13944 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13945 struct dwarf2_cu *cu)
13946 {
13947 CORE_ADDR low, high;
13948 struct die_info *child = die->child;
13949
13950 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13951 {
13952 *lowpc = std::min (*lowpc, low);
13953 *highpc = std::max (*highpc, high);
13954 }
13955
13956 /* If the language does not allow nested subprograms (either inside
13957 subprograms or lexical blocks), we're done. */
13958 if (cu->language != language_ada)
13959 return;
13960
13961 /* Check all the children of the given DIE. If it contains nested
13962 subprograms, then check their pc bounds. Likewise, we need to
13963 check lexical blocks as well, as they may also contain subprogram
13964 definitions. */
13965 while (child && child->tag)
13966 {
13967 if (child->tag == DW_TAG_subprogram
13968 || child->tag == DW_TAG_lexical_block)
13969 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13970 child = child->sibling;
13971 }
13972 }
13973
13974 /* Get the low and high pc's represented by the scope DIE, and store
13975 them in *LOWPC and *HIGHPC. If the correct values can't be
13976 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13977
13978 static void
13979 get_scope_pc_bounds (struct die_info *die,
13980 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13981 struct dwarf2_cu *cu)
13982 {
13983 CORE_ADDR best_low = (CORE_ADDR) -1;
13984 CORE_ADDR best_high = (CORE_ADDR) 0;
13985 CORE_ADDR current_low, current_high;
13986
13987 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13988 >= PC_BOUNDS_RANGES)
13989 {
13990 best_low = current_low;
13991 best_high = current_high;
13992 }
13993 else
13994 {
13995 struct die_info *child = die->child;
13996
13997 while (child && child->tag)
13998 {
13999 switch (child->tag) {
14000 case DW_TAG_subprogram:
14001 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14002 break;
14003 case DW_TAG_namespace:
14004 case DW_TAG_module:
14005 /* FIXME: carlton/2004-01-16: Should we do this for
14006 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14007 that current GCC's always emit the DIEs corresponding
14008 to definitions of methods of classes as children of a
14009 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14010 the DIEs giving the declarations, which could be
14011 anywhere). But I don't see any reason why the
14012 standards says that they have to be there. */
14013 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14014
14015 if (current_low != ((CORE_ADDR) -1))
14016 {
14017 best_low = std::min (best_low, current_low);
14018 best_high = std::max (best_high, current_high);
14019 }
14020 break;
14021 default:
14022 /* Ignore. */
14023 break;
14024 }
14025
14026 child = child->sibling;
14027 }
14028 }
14029
14030 *lowpc = best_low;
14031 *highpc = best_high;
14032 }
14033
14034 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14035 in DIE. */
14036
14037 static void
14038 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14039 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14040 {
14041 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14042 struct gdbarch *gdbarch = objfile->arch ();
14043 struct attribute *attr;
14044 struct attribute *attr_high;
14045
14046 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14047 if (attr_high)
14048 {
14049 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14050 if (attr != nullptr)
14051 {
14052 CORE_ADDR low = attr->value_as_address ();
14053 CORE_ADDR high = attr_high->value_as_address ();
14054
14055 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14056 high += low;
14057
14058 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14059 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14060 cu->get_builder ()->record_block_range (block, low, high - 1);
14061 }
14062 }
14063
14064 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14065 if (attr != nullptr)
14066 {
14067 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14068 We take advantage of the fact that DW_AT_ranges does not appear
14069 in DW_TAG_compile_unit of DWO files. */
14070 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14071
14072 /* The value of the DW_AT_ranges attribute is the offset of the
14073 address range list in the .debug_ranges section. */
14074 unsigned long offset = (DW_UNSND (attr)
14075 + (need_ranges_base ? cu->ranges_base : 0));
14076
14077 std::vector<blockrange> blockvec;
14078 dwarf2_ranges_process (offset, cu,
14079 [&] (CORE_ADDR start, CORE_ADDR end)
14080 {
14081 start += baseaddr;
14082 end += baseaddr;
14083 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14084 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14085 cu->get_builder ()->record_block_range (block, start, end - 1);
14086 blockvec.emplace_back (start, end);
14087 });
14088
14089 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14090 }
14091 }
14092
14093 /* Check whether the producer field indicates either of GCC < 4.6, or the
14094 Intel C/C++ compiler, and cache the result in CU. */
14095
14096 static void
14097 check_producer (struct dwarf2_cu *cu)
14098 {
14099 int major, minor;
14100
14101 if (cu->producer == NULL)
14102 {
14103 /* For unknown compilers expect their behavior is DWARF version
14104 compliant.
14105
14106 GCC started to support .debug_types sections by -gdwarf-4 since
14107 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14108 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14109 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14110 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14111 }
14112 else if (producer_is_gcc (cu->producer, &major, &minor))
14113 {
14114 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14115 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14116 }
14117 else if (producer_is_icc (cu->producer, &major, &minor))
14118 {
14119 cu->producer_is_icc = true;
14120 cu->producer_is_icc_lt_14 = major < 14;
14121 }
14122 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14123 cu->producer_is_codewarrior = true;
14124 else
14125 {
14126 /* For other non-GCC compilers, expect their behavior is DWARF version
14127 compliant. */
14128 }
14129
14130 cu->checked_producer = true;
14131 }
14132
14133 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14134 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14135 during 4.6.0 experimental. */
14136
14137 static bool
14138 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14139 {
14140 if (!cu->checked_producer)
14141 check_producer (cu);
14142
14143 return cu->producer_is_gxx_lt_4_6;
14144 }
14145
14146
14147 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14148 with incorrect is_stmt attributes. */
14149
14150 static bool
14151 producer_is_codewarrior (struct dwarf2_cu *cu)
14152 {
14153 if (!cu->checked_producer)
14154 check_producer (cu);
14155
14156 return cu->producer_is_codewarrior;
14157 }
14158
14159 /* Return the default accessibility type if it is not overridden by
14160 DW_AT_accessibility. */
14161
14162 static enum dwarf_access_attribute
14163 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14164 {
14165 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14166 {
14167 /* The default DWARF 2 accessibility for members is public, the default
14168 accessibility for inheritance is private. */
14169
14170 if (die->tag != DW_TAG_inheritance)
14171 return DW_ACCESS_public;
14172 else
14173 return DW_ACCESS_private;
14174 }
14175 else
14176 {
14177 /* DWARF 3+ defines the default accessibility a different way. The same
14178 rules apply now for DW_TAG_inheritance as for the members and it only
14179 depends on the container kind. */
14180
14181 if (die->parent->tag == DW_TAG_class_type)
14182 return DW_ACCESS_private;
14183 else
14184 return DW_ACCESS_public;
14185 }
14186 }
14187
14188 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14189 offset. If the attribute was not found return 0, otherwise return
14190 1. If it was found but could not properly be handled, set *OFFSET
14191 to 0. */
14192
14193 static int
14194 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14195 LONGEST *offset)
14196 {
14197 struct attribute *attr;
14198
14199 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14200 if (attr != NULL)
14201 {
14202 *offset = 0;
14203
14204 /* Note that we do not check for a section offset first here.
14205 This is because DW_AT_data_member_location is new in DWARF 4,
14206 so if we see it, we can assume that a constant form is really
14207 a constant and not a section offset. */
14208 if (attr->form_is_constant ())
14209 *offset = attr->constant_value (0);
14210 else if (attr->form_is_section_offset ())
14211 dwarf2_complex_location_expr_complaint ();
14212 else if (attr->form_is_block ())
14213 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14214 else
14215 dwarf2_complex_location_expr_complaint ();
14216
14217 return 1;
14218 }
14219
14220 return 0;
14221 }
14222
14223 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14224
14225 static void
14226 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14227 struct field *field)
14228 {
14229 struct attribute *attr;
14230
14231 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14232 if (attr != NULL)
14233 {
14234 if (attr->form_is_constant ())
14235 {
14236 LONGEST offset = attr->constant_value (0);
14237 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14238 }
14239 else if (attr->form_is_section_offset ())
14240 dwarf2_complex_location_expr_complaint ();
14241 else if (attr->form_is_block ())
14242 {
14243 bool handled;
14244 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14245 if (handled)
14246 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14247 else
14248 {
14249 struct objfile *objfile
14250 = cu->per_cu->dwarf2_per_objfile->objfile;
14251 struct dwarf2_locexpr_baton *dlbaton
14252 = XOBNEW (&objfile->objfile_obstack,
14253 struct dwarf2_locexpr_baton);
14254 dlbaton->data = DW_BLOCK (attr)->data;
14255 dlbaton->size = DW_BLOCK (attr)->size;
14256 /* When using this baton, we want to compute the address
14257 of the field, not the value. This is why
14258 is_reference is set to false here. */
14259 dlbaton->is_reference = false;
14260 dlbaton->per_cu = cu->per_cu;
14261
14262 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14263 }
14264 }
14265 else
14266 dwarf2_complex_location_expr_complaint ();
14267 }
14268 }
14269
14270 /* Add an aggregate field to the field list. */
14271
14272 static void
14273 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14274 struct dwarf2_cu *cu)
14275 {
14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14277 struct gdbarch *gdbarch = objfile->arch ();
14278 struct nextfield *new_field;
14279 struct attribute *attr;
14280 struct field *fp;
14281 const char *fieldname = "";
14282
14283 if (die->tag == DW_TAG_inheritance)
14284 {
14285 fip->baseclasses.emplace_back ();
14286 new_field = &fip->baseclasses.back ();
14287 }
14288 else
14289 {
14290 fip->fields.emplace_back ();
14291 new_field = &fip->fields.back ();
14292 }
14293
14294 new_field->offset = die->sect_off;
14295
14296 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14297 if (attr != nullptr)
14298 new_field->accessibility = DW_UNSND (attr);
14299 else
14300 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14301 if (new_field->accessibility != DW_ACCESS_public)
14302 fip->non_public_fields = 1;
14303
14304 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14305 if (attr != nullptr)
14306 new_field->virtuality = DW_UNSND (attr);
14307 else
14308 new_field->virtuality = DW_VIRTUALITY_none;
14309
14310 fp = &new_field->field;
14311
14312 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14313 {
14314 /* Data member other than a C++ static data member. */
14315
14316 /* Get type of field. */
14317 fp->type = die_type (die, cu);
14318
14319 SET_FIELD_BITPOS (*fp, 0);
14320
14321 /* Get bit size of field (zero if none). */
14322 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14323 if (attr != nullptr)
14324 {
14325 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14326 }
14327 else
14328 {
14329 FIELD_BITSIZE (*fp) = 0;
14330 }
14331
14332 /* Get bit offset of field. */
14333 handle_data_member_location (die, cu, fp);
14334 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14335 if (attr != nullptr)
14336 {
14337 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14338 {
14339 /* For big endian bits, the DW_AT_bit_offset gives the
14340 additional bit offset from the MSB of the containing
14341 anonymous object to the MSB of the field. We don't
14342 have to do anything special since we don't need to
14343 know the size of the anonymous object. */
14344 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14345 }
14346 else
14347 {
14348 /* For little endian bits, compute the bit offset to the
14349 MSB of the anonymous object, subtract off the number of
14350 bits from the MSB of the field to the MSB of the
14351 object, and then subtract off the number of bits of
14352 the field itself. The result is the bit offset of
14353 the LSB of the field. */
14354 int anonymous_size;
14355 int bit_offset = DW_UNSND (attr);
14356
14357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14358 if (attr != nullptr)
14359 {
14360 /* The size of the anonymous object containing
14361 the bit field is explicit, so use the
14362 indicated size (in bytes). */
14363 anonymous_size = DW_UNSND (attr);
14364 }
14365 else
14366 {
14367 /* The size of the anonymous object containing
14368 the bit field must be inferred from the type
14369 attribute of the data member containing the
14370 bit field. */
14371 anonymous_size = TYPE_LENGTH (fp->type);
14372 }
14373 SET_FIELD_BITPOS (*fp,
14374 (FIELD_BITPOS (*fp)
14375 + anonymous_size * bits_per_byte
14376 - bit_offset - FIELD_BITSIZE (*fp)));
14377 }
14378 }
14379 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14380 if (attr != NULL)
14381 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14382 + attr->constant_value (0)));
14383
14384 /* Get name of field. */
14385 fieldname = dwarf2_name (die, cu);
14386 if (fieldname == NULL)
14387 fieldname = "";
14388
14389 /* The name is already allocated along with this objfile, so we don't
14390 need to duplicate it for the type. */
14391 fp->name = fieldname;
14392
14393 /* Change accessibility for artificial fields (e.g. virtual table
14394 pointer or virtual base class pointer) to private. */
14395 if (dwarf2_attr (die, DW_AT_artificial, cu))
14396 {
14397 FIELD_ARTIFICIAL (*fp) = 1;
14398 new_field->accessibility = DW_ACCESS_private;
14399 fip->non_public_fields = 1;
14400 }
14401 }
14402 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14403 {
14404 /* C++ static member. */
14405
14406 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14407 is a declaration, but all versions of G++ as of this writing
14408 (so through at least 3.2.1) incorrectly generate
14409 DW_TAG_variable tags. */
14410
14411 const char *physname;
14412
14413 /* Get name of field. */
14414 fieldname = dwarf2_name (die, cu);
14415 if (fieldname == NULL)
14416 return;
14417
14418 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14419 if (attr
14420 /* Only create a symbol if this is an external value.
14421 new_symbol checks this and puts the value in the global symbol
14422 table, which we want. If it is not external, new_symbol
14423 will try to put the value in cu->list_in_scope which is wrong. */
14424 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14425 {
14426 /* A static const member, not much different than an enum as far as
14427 we're concerned, except that we can support more types. */
14428 new_symbol (die, NULL, cu);
14429 }
14430
14431 /* Get physical name. */
14432 physname = dwarf2_physname (fieldname, die, cu);
14433
14434 /* The name is already allocated along with this objfile, so we don't
14435 need to duplicate it for the type. */
14436 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14437 FIELD_TYPE (*fp) = die_type (die, cu);
14438 FIELD_NAME (*fp) = fieldname;
14439 }
14440 else if (die->tag == DW_TAG_inheritance)
14441 {
14442 /* C++ base class field. */
14443 handle_data_member_location (die, cu, fp);
14444 FIELD_BITSIZE (*fp) = 0;
14445 FIELD_TYPE (*fp) = die_type (die, cu);
14446 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14447 }
14448 else
14449 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14450 }
14451
14452 /* Can the type given by DIE define another type? */
14453
14454 static bool
14455 type_can_define_types (const struct die_info *die)
14456 {
14457 switch (die->tag)
14458 {
14459 case DW_TAG_typedef:
14460 case DW_TAG_class_type:
14461 case DW_TAG_structure_type:
14462 case DW_TAG_union_type:
14463 case DW_TAG_enumeration_type:
14464 return true;
14465
14466 default:
14467 return false;
14468 }
14469 }
14470
14471 /* Add a type definition defined in the scope of the FIP's class. */
14472
14473 static void
14474 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14475 struct dwarf2_cu *cu)
14476 {
14477 struct decl_field fp;
14478 memset (&fp, 0, sizeof (fp));
14479
14480 gdb_assert (type_can_define_types (die));
14481
14482 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14483 fp.name = dwarf2_name (die, cu);
14484 fp.type = read_type_die (die, cu);
14485
14486 /* Save accessibility. */
14487 enum dwarf_access_attribute accessibility;
14488 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14489 if (attr != NULL)
14490 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14491 else
14492 accessibility = dwarf2_default_access_attribute (die, cu);
14493 switch (accessibility)
14494 {
14495 case DW_ACCESS_public:
14496 /* The assumed value if neither private nor protected. */
14497 break;
14498 case DW_ACCESS_private:
14499 fp.is_private = 1;
14500 break;
14501 case DW_ACCESS_protected:
14502 fp.is_protected = 1;
14503 break;
14504 default:
14505 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14506 }
14507
14508 if (die->tag == DW_TAG_typedef)
14509 fip->typedef_field_list.push_back (fp);
14510 else
14511 fip->nested_types_list.push_back (fp);
14512 }
14513
14514 /* A convenience typedef that's used when finding the discriminant
14515 field for a variant part. */
14516 typedef std::unordered_map<sect_offset, int> offset_map_type;
14517
14518 /* Compute the discriminant range for a given variant. OBSTACK is
14519 where the results will be stored. VARIANT is the variant to
14520 process. IS_UNSIGNED indicates whether the discriminant is signed
14521 or unsigned. */
14522
14523 static const gdb::array_view<discriminant_range>
14524 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14525 bool is_unsigned)
14526 {
14527 std::vector<discriminant_range> ranges;
14528
14529 if (variant.default_branch)
14530 return {};
14531
14532 if (variant.discr_list_data == nullptr)
14533 {
14534 discriminant_range r
14535 = {variant.discriminant_value, variant.discriminant_value};
14536 ranges.push_back (r);
14537 }
14538 else
14539 {
14540 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14541 variant.discr_list_data->size);
14542 while (!data.empty ())
14543 {
14544 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14545 {
14546 complaint (_("invalid discriminant marker: %d"), data[0]);
14547 break;
14548 }
14549 bool is_range = data[0] == DW_DSC_range;
14550 data = data.slice (1);
14551
14552 ULONGEST low, high;
14553 unsigned int bytes_read;
14554
14555 if (data.empty ())
14556 {
14557 complaint (_("DW_AT_discr_list missing low value"));
14558 break;
14559 }
14560 if (is_unsigned)
14561 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14562 else
14563 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14564 &bytes_read);
14565 data = data.slice (bytes_read);
14566
14567 if (is_range)
14568 {
14569 if (data.empty ())
14570 {
14571 complaint (_("DW_AT_discr_list missing high value"));
14572 break;
14573 }
14574 if (is_unsigned)
14575 high = read_unsigned_leb128 (nullptr, data.data (),
14576 &bytes_read);
14577 else
14578 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14579 &bytes_read);
14580 data = data.slice (bytes_read);
14581 }
14582 else
14583 high = low;
14584
14585 ranges.push_back ({ low, high });
14586 }
14587 }
14588
14589 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14590 ranges.size ());
14591 std::copy (ranges.begin (), ranges.end (), result);
14592 return gdb::array_view<discriminant_range> (result, ranges.size ());
14593 }
14594
14595 static const gdb::array_view<variant_part> create_variant_parts
14596 (struct obstack *obstack,
14597 const offset_map_type &offset_map,
14598 struct field_info *fi,
14599 const std::vector<variant_part_builder> &variant_parts);
14600
14601 /* Fill in a "struct variant" for a given variant field. RESULT is
14602 the variant to fill in. OBSTACK is where any needed allocations
14603 will be done. OFFSET_MAP holds the mapping from section offsets to
14604 fields for the type. FI describes the fields of the type we're
14605 processing. FIELD is the variant field we're converting. */
14606
14607 static void
14608 create_one_variant (variant &result, struct obstack *obstack,
14609 const offset_map_type &offset_map,
14610 struct field_info *fi, const variant_field &field)
14611 {
14612 result.discriminants = convert_variant_range (obstack, field, false);
14613 result.first_field = field.first_field + fi->baseclasses.size ();
14614 result.last_field = field.last_field + fi->baseclasses.size ();
14615 result.parts = create_variant_parts (obstack, offset_map, fi,
14616 field.variant_parts);
14617 }
14618
14619 /* Fill in a "struct variant_part" for a given variant part. RESULT
14620 is the variant part to fill in. OBSTACK is where any needed
14621 allocations will be done. OFFSET_MAP holds the mapping from
14622 section offsets to fields for the type. FI describes the fields of
14623 the type we're processing. BUILDER is the variant part to be
14624 converted. */
14625
14626 static void
14627 create_one_variant_part (variant_part &result,
14628 struct obstack *obstack,
14629 const offset_map_type &offset_map,
14630 struct field_info *fi,
14631 const variant_part_builder &builder)
14632 {
14633 auto iter = offset_map.find (builder.discriminant_offset);
14634 if (iter == offset_map.end ())
14635 {
14636 result.discriminant_index = -1;
14637 /* Doesn't matter. */
14638 result.is_unsigned = false;
14639 }
14640 else
14641 {
14642 result.discriminant_index = iter->second;
14643 result.is_unsigned
14644 = TYPE_UNSIGNED (FIELD_TYPE
14645 (fi->fields[result.discriminant_index].field));
14646 }
14647
14648 size_t n = builder.variants.size ();
14649 variant *output = new (obstack) variant[n];
14650 for (size_t i = 0; i < n; ++i)
14651 create_one_variant (output[i], obstack, offset_map, fi,
14652 builder.variants[i]);
14653
14654 result.variants = gdb::array_view<variant> (output, n);
14655 }
14656
14657 /* Create a vector of variant parts that can be attached to a type.
14658 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14659 holds the mapping from section offsets to fields for the type. FI
14660 describes the fields of the type we're processing. VARIANT_PARTS
14661 is the vector to convert. */
14662
14663 static const gdb::array_view<variant_part>
14664 create_variant_parts (struct obstack *obstack,
14665 const offset_map_type &offset_map,
14666 struct field_info *fi,
14667 const std::vector<variant_part_builder> &variant_parts)
14668 {
14669 if (variant_parts.empty ())
14670 return {};
14671
14672 size_t n = variant_parts.size ();
14673 variant_part *result = new (obstack) variant_part[n];
14674 for (size_t i = 0; i < n; ++i)
14675 create_one_variant_part (result[i], obstack, offset_map, fi,
14676 variant_parts[i]);
14677
14678 return gdb::array_view<variant_part> (result, n);
14679 }
14680
14681 /* Compute the variant part vector for FIP, attaching it to TYPE when
14682 done. */
14683
14684 static void
14685 add_variant_property (struct field_info *fip, struct type *type,
14686 struct dwarf2_cu *cu)
14687 {
14688 /* Map section offsets of fields to their field index. Note the
14689 field index here does not take the number of baseclasses into
14690 account. */
14691 offset_map_type offset_map;
14692 for (int i = 0; i < fip->fields.size (); ++i)
14693 offset_map[fip->fields[i].offset] = i;
14694
14695 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14696 gdb::array_view<variant_part> parts
14697 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14698 fip->variant_parts);
14699
14700 struct dynamic_prop prop;
14701 prop.kind = PROP_VARIANT_PARTS;
14702 prop.data.variant_parts
14703 = ((gdb::array_view<variant_part> *)
14704 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14705
14706 add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop, type);
14707 }
14708
14709 /* Create the vector of fields, and attach it to the type. */
14710
14711 static void
14712 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14713 struct dwarf2_cu *cu)
14714 {
14715 int nfields = fip->nfields ();
14716
14717 /* Record the field count, allocate space for the array of fields,
14718 and create blank accessibility bitfields if necessary. */
14719 TYPE_NFIELDS (type) = nfields;
14720 TYPE_FIELDS (type) = (struct field *)
14721 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14722
14723 if (fip->non_public_fields && cu->language != language_ada)
14724 {
14725 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14726
14727 TYPE_FIELD_PRIVATE_BITS (type) =
14728 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14729 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14730
14731 TYPE_FIELD_PROTECTED_BITS (type) =
14732 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14733 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14734
14735 TYPE_FIELD_IGNORE_BITS (type) =
14736 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14737 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14738 }
14739
14740 /* If the type has baseclasses, allocate and clear a bit vector for
14741 TYPE_FIELD_VIRTUAL_BITS. */
14742 if (!fip->baseclasses.empty () && cu->language != language_ada)
14743 {
14744 int num_bytes = B_BYTES (fip->baseclasses.size ());
14745 unsigned char *pointer;
14746
14747 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14748 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14749 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14750 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14751 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14752 }
14753
14754 if (!fip->variant_parts.empty ())
14755 add_variant_property (fip, type, cu);
14756
14757 /* Copy the saved-up fields into the field vector. */
14758 for (int i = 0; i < nfields; ++i)
14759 {
14760 struct nextfield &field
14761 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14762 : fip->fields[i - fip->baseclasses.size ()]);
14763
14764 TYPE_FIELD (type, i) = field.field;
14765 switch (field.accessibility)
14766 {
14767 case DW_ACCESS_private:
14768 if (cu->language != language_ada)
14769 SET_TYPE_FIELD_PRIVATE (type, i);
14770 break;
14771
14772 case DW_ACCESS_protected:
14773 if (cu->language != language_ada)
14774 SET_TYPE_FIELD_PROTECTED (type, i);
14775 break;
14776
14777 case DW_ACCESS_public:
14778 break;
14779
14780 default:
14781 /* Unknown accessibility. Complain and treat it as public. */
14782 {
14783 complaint (_("unsupported accessibility %d"),
14784 field.accessibility);
14785 }
14786 break;
14787 }
14788 if (i < fip->baseclasses.size ())
14789 {
14790 switch (field.virtuality)
14791 {
14792 case DW_VIRTUALITY_virtual:
14793 case DW_VIRTUALITY_pure_virtual:
14794 if (cu->language == language_ada)
14795 error (_("unexpected virtuality in component of Ada type"));
14796 SET_TYPE_FIELD_VIRTUAL (type, i);
14797 break;
14798 }
14799 }
14800 }
14801 }
14802
14803 /* Return true if this member function is a constructor, false
14804 otherwise. */
14805
14806 static int
14807 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14808 {
14809 const char *fieldname;
14810 const char *type_name;
14811 int len;
14812
14813 if (die->parent == NULL)
14814 return 0;
14815
14816 if (die->parent->tag != DW_TAG_structure_type
14817 && die->parent->tag != DW_TAG_union_type
14818 && die->parent->tag != DW_TAG_class_type)
14819 return 0;
14820
14821 fieldname = dwarf2_name (die, cu);
14822 type_name = dwarf2_name (die->parent, cu);
14823 if (fieldname == NULL || type_name == NULL)
14824 return 0;
14825
14826 len = strlen (fieldname);
14827 return (strncmp (fieldname, type_name, len) == 0
14828 && (type_name[len] == '\0' || type_name[len] == '<'));
14829 }
14830
14831 /* Check if the given VALUE is a recognized enum
14832 dwarf_defaulted_attribute constant according to DWARF5 spec,
14833 Table 7.24. */
14834
14835 static bool
14836 is_valid_DW_AT_defaulted (ULONGEST value)
14837 {
14838 switch (value)
14839 {
14840 case DW_DEFAULTED_no:
14841 case DW_DEFAULTED_in_class:
14842 case DW_DEFAULTED_out_of_class:
14843 return true;
14844 }
14845
14846 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14847 return false;
14848 }
14849
14850 /* Add a member function to the proper fieldlist. */
14851
14852 static void
14853 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14854 struct type *type, struct dwarf2_cu *cu)
14855 {
14856 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14857 struct attribute *attr;
14858 int i;
14859 struct fnfieldlist *flp = nullptr;
14860 struct fn_field *fnp;
14861 const char *fieldname;
14862 struct type *this_type;
14863 enum dwarf_access_attribute accessibility;
14864
14865 if (cu->language == language_ada)
14866 error (_("unexpected member function in Ada type"));
14867
14868 /* Get name of member function. */
14869 fieldname = dwarf2_name (die, cu);
14870 if (fieldname == NULL)
14871 return;
14872
14873 /* Look up member function name in fieldlist. */
14874 for (i = 0; i < fip->fnfieldlists.size (); i++)
14875 {
14876 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14877 {
14878 flp = &fip->fnfieldlists[i];
14879 break;
14880 }
14881 }
14882
14883 /* Create a new fnfieldlist if necessary. */
14884 if (flp == nullptr)
14885 {
14886 fip->fnfieldlists.emplace_back ();
14887 flp = &fip->fnfieldlists.back ();
14888 flp->name = fieldname;
14889 i = fip->fnfieldlists.size () - 1;
14890 }
14891
14892 /* Create a new member function field and add it to the vector of
14893 fnfieldlists. */
14894 flp->fnfields.emplace_back ();
14895 fnp = &flp->fnfields.back ();
14896
14897 /* Delay processing of the physname until later. */
14898 if (cu->language == language_cplus)
14899 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14900 die, cu);
14901 else
14902 {
14903 const char *physname = dwarf2_physname (fieldname, die, cu);
14904 fnp->physname = physname ? physname : "";
14905 }
14906
14907 fnp->type = alloc_type (objfile);
14908 this_type = read_type_die (die, cu);
14909 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14910 {
14911 int nparams = TYPE_NFIELDS (this_type);
14912
14913 /* TYPE is the domain of this method, and THIS_TYPE is the type
14914 of the method itself (TYPE_CODE_METHOD). */
14915 smash_to_method_type (fnp->type, type,
14916 TYPE_TARGET_TYPE (this_type),
14917 TYPE_FIELDS (this_type),
14918 TYPE_NFIELDS (this_type),
14919 TYPE_VARARGS (this_type));
14920
14921 /* Handle static member functions.
14922 Dwarf2 has no clean way to discern C++ static and non-static
14923 member functions. G++ helps GDB by marking the first
14924 parameter for non-static member functions (which is the this
14925 pointer) as artificial. We obtain this information from
14926 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14927 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14928 fnp->voffset = VOFFSET_STATIC;
14929 }
14930 else
14931 complaint (_("member function type missing for '%s'"),
14932 dwarf2_full_name (fieldname, die, cu));
14933
14934 /* Get fcontext from DW_AT_containing_type if present. */
14935 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14936 fnp->fcontext = die_containing_type (die, cu);
14937
14938 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14939 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14940
14941 /* Get accessibility. */
14942 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14943 if (attr != nullptr)
14944 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14945 else
14946 accessibility = dwarf2_default_access_attribute (die, cu);
14947 switch (accessibility)
14948 {
14949 case DW_ACCESS_private:
14950 fnp->is_private = 1;
14951 break;
14952 case DW_ACCESS_protected:
14953 fnp->is_protected = 1;
14954 break;
14955 }
14956
14957 /* Check for artificial methods. */
14958 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14959 if (attr && DW_UNSND (attr) != 0)
14960 fnp->is_artificial = 1;
14961
14962 /* Check for defaulted methods. */
14963 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14964 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14965 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14966
14967 /* Check for deleted methods. */
14968 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14969 if (attr != nullptr && DW_UNSND (attr) != 0)
14970 fnp->is_deleted = 1;
14971
14972 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14973
14974 /* Get index in virtual function table if it is a virtual member
14975 function. For older versions of GCC, this is an offset in the
14976 appropriate virtual table, as specified by DW_AT_containing_type.
14977 For everyone else, it is an expression to be evaluated relative
14978 to the object address. */
14979
14980 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14981 if (attr != nullptr)
14982 {
14983 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14984 {
14985 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14986 {
14987 /* Old-style GCC. */
14988 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14989 }
14990 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14991 || (DW_BLOCK (attr)->size > 1
14992 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14993 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14994 {
14995 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14996 if ((fnp->voffset % cu->header.addr_size) != 0)
14997 dwarf2_complex_location_expr_complaint ();
14998 else
14999 fnp->voffset /= cu->header.addr_size;
15000 fnp->voffset += 2;
15001 }
15002 else
15003 dwarf2_complex_location_expr_complaint ();
15004
15005 if (!fnp->fcontext)
15006 {
15007 /* If there is no `this' field and no DW_AT_containing_type,
15008 we cannot actually find a base class context for the
15009 vtable! */
15010 if (TYPE_NFIELDS (this_type) == 0
15011 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15012 {
15013 complaint (_("cannot determine context for virtual member "
15014 "function \"%s\" (offset %s)"),
15015 fieldname, sect_offset_str (die->sect_off));
15016 }
15017 else
15018 {
15019 fnp->fcontext
15020 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15021 }
15022 }
15023 }
15024 else if (attr->form_is_section_offset ())
15025 {
15026 dwarf2_complex_location_expr_complaint ();
15027 }
15028 else
15029 {
15030 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15031 fieldname);
15032 }
15033 }
15034 else
15035 {
15036 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15037 if (attr && DW_UNSND (attr))
15038 {
15039 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15040 complaint (_("Member function \"%s\" (offset %s) is virtual "
15041 "but the vtable offset is not specified"),
15042 fieldname, sect_offset_str (die->sect_off));
15043 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15044 TYPE_CPLUS_DYNAMIC (type) = 1;
15045 }
15046 }
15047 }
15048
15049 /* Create the vector of member function fields, and attach it to the type. */
15050
15051 static void
15052 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15053 struct dwarf2_cu *cu)
15054 {
15055 if (cu->language == language_ada)
15056 error (_("unexpected member functions in Ada type"));
15057
15058 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15059 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15060 TYPE_ALLOC (type,
15061 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15062
15063 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15064 {
15065 struct fnfieldlist &nf = fip->fnfieldlists[i];
15066 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15067
15068 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15069 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15070 fn_flp->fn_fields = (struct fn_field *)
15071 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15072
15073 for (int k = 0; k < nf.fnfields.size (); ++k)
15074 fn_flp->fn_fields[k] = nf.fnfields[k];
15075 }
15076
15077 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15078 }
15079
15080 /* Returns non-zero if NAME is the name of a vtable member in CU's
15081 language, zero otherwise. */
15082 static int
15083 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15084 {
15085 static const char vptr[] = "_vptr";
15086
15087 /* Look for the C++ form of the vtable. */
15088 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15089 return 1;
15090
15091 return 0;
15092 }
15093
15094 /* GCC outputs unnamed structures that are really pointers to member
15095 functions, with the ABI-specified layout. If TYPE describes
15096 such a structure, smash it into a member function type.
15097
15098 GCC shouldn't do this; it should just output pointer to member DIEs.
15099 This is GCC PR debug/28767. */
15100
15101 static void
15102 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15103 {
15104 struct type *pfn_type, *self_type, *new_type;
15105
15106 /* Check for a structure with no name and two children. */
15107 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15108 return;
15109
15110 /* Check for __pfn and __delta members. */
15111 if (TYPE_FIELD_NAME (type, 0) == NULL
15112 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15113 || TYPE_FIELD_NAME (type, 1) == NULL
15114 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15115 return;
15116
15117 /* Find the type of the method. */
15118 pfn_type = TYPE_FIELD_TYPE (type, 0);
15119 if (pfn_type == NULL
15120 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15121 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15122 return;
15123
15124 /* Look for the "this" argument. */
15125 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15126 if (TYPE_NFIELDS (pfn_type) == 0
15127 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15128 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15129 return;
15130
15131 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15132 new_type = alloc_type (objfile);
15133 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15134 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15135 TYPE_VARARGS (pfn_type));
15136 smash_to_methodptr_type (type, new_type);
15137 }
15138
15139 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15140 appropriate error checking and issuing complaints if there is a
15141 problem. */
15142
15143 static ULONGEST
15144 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15145 {
15146 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15147
15148 if (attr == nullptr)
15149 return 0;
15150
15151 if (!attr->form_is_constant ())
15152 {
15153 complaint (_("DW_AT_alignment must have constant form"
15154 " - DIE at %s [in module %s]"),
15155 sect_offset_str (die->sect_off),
15156 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15157 return 0;
15158 }
15159
15160 ULONGEST align;
15161 if (attr->form == DW_FORM_sdata)
15162 {
15163 LONGEST val = DW_SND (attr);
15164 if (val < 0)
15165 {
15166 complaint (_("DW_AT_alignment value must not be negative"
15167 " - DIE at %s [in module %s]"),
15168 sect_offset_str (die->sect_off),
15169 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15170 return 0;
15171 }
15172 align = val;
15173 }
15174 else
15175 align = DW_UNSND (attr);
15176
15177 if (align == 0)
15178 {
15179 complaint (_("DW_AT_alignment value must not be zero"
15180 " - DIE at %s [in module %s]"),
15181 sect_offset_str (die->sect_off),
15182 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15183 return 0;
15184 }
15185 if ((align & (align - 1)) != 0)
15186 {
15187 complaint (_("DW_AT_alignment value must be a power of 2"
15188 " - DIE at %s [in module %s]"),
15189 sect_offset_str (die->sect_off),
15190 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15191 return 0;
15192 }
15193
15194 return align;
15195 }
15196
15197 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15198 the alignment for TYPE. */
15199
15200 static void
15201 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15202 struct type *type)
15203 {
15204 if (!set_type_align (type, get_alignment (cu, die)))
15205 complaint (_("DW_AT_alignment value too large"
15206 " - DIE at %s [in module %s]"),
15207 sect_offset_str (die->sect_off),
15208 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15209 }
15210
15211 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15212 constant for a type, according to DWARF5 spec, Table 5.5. */
15213
15214 static bool
15215 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15216 {
15217 switch (value)
15218 {
15219 case DW_CC_normal:
15220 case DW_CC_pass_by_reference:
15221 case DW_CC_pass_by_value:
15222 return true;
15223
15224 default:
15225 complaint (_("unrecognized DW_AT_calling_convention value "
15226 "(%s) for a type"), pulongest (value));
15227 return false;
15228 }
15229 }
15230
15231 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15232 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15233 also according to GNU-specific values (see include/dwarf2.h). */
15234
15235 static bool
15236 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15237 {
15238 switch (value)
15239 {
15240 case DW_CC_normal:
15241 case DW_CC_program:
15242 case DW_CC_nocall:
15243 return true;
15244
15245 case DW_CC_GNU_renesas_sh:
15246 case DW_CC_GNU_borland_fastcall_i386:
15247 case DW_CC_GDB_IBM_OpenCL:
15248 return true;
15249
15250 default:
15251 complaint (_("unrecognized DW_AT_calling_convention value "
15252 "(%s) for a subroutine"), pulongest (value));
15253 return false;
15254 }
15255 }
15256
15257 /* Called when we find the DIE that starts a structure or union scope
15258 (definition) to create a type for the structure or union. Fill in
15259 the type's name and general properties; the members will not be
15260 processed until process_structure_scope. A symbol table entry for
15261 the type will also not be done until process_structure_scope (assuming
15262 the type has a name).
15263
15264 NOTE: we need to call these functions regardless of whether or not the
15265 DIE has a DW_AT_name attribute, since it might be an anonymous
15266 structure or union. This gets the type entered into our set of
15267 user defined types. */
15268
15269 static struct type *
15270 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15271 {
15272 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15273 struct type *type;
15274 struct attribute *attr;
15275 const char *name;
15276
15277 /* If the definition of this type lives in .debug_types, read that type.
15278 Don't follow DW_AT_specification though, that will take us back up
15279 the chain and we want to go down. */
15280 attr = die->attr (DW_AT_signature);
15281 if (attr != nullptr)
15282 {
15283 type = get_DW_AT_signature_type (die, attr, cu);
15284
15285 /* The type's CU may not be the same as CU.
15286 Ensure TYPE is recorded with CU in die_type_hash. */
15287 return set_die_type (die, type, cu);
15288 }
15289
15290 type = alloc_type (objfile);
15291 INIT_CPLUS_SPECIFIC (type);
15292
15293 name = dwarf2_name (die, cu);
15294 if (name != NULL)
15295 {
15296 if (cu->language == language_cplus
15297 || cu->language == language_d
15298 || cu->language == language_rust)
15299 {
15300 const char *full_name = dwarf2_full_name (name, die, cu);
15301
15302 /* dwarf2_full_name might have already finished building the DIE's
15303 type. If so, there is no need to continue. */
15304 if (get_die_type (die, cu) != NULL)
15305 return get_die_type (die, cu);
15306
15307 TYPE_NAME (type) = full_name;
15308 }
15309 else
15310 {
15311 /* The name is already allocated along with this objfile, so
15312 we don't need to duplicate it for the type. */
15313 TYPE_NAME (type) = name;
15314 }
15315 }
15316
15317 if (die->tag == DW_TAG_structure_type)
15318 {
15319 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15320 }
15321 else if (die->tag == DW_TAG_union_type)
15322 {
15323 TYPE_CODE (type) = TYPE_CODE_UNION;
15324 }
15325 else
15326 {
15327 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15328 }
15329
15330 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15331 TYPE_DECLARED_CLASS (type) = 1;
15332
15333 /* Store the calling convention in the type if it's available in
15334 the die. Otherwise the calling convention remains set to
15335 the default value DW_CC_normal. */
15336 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15337 if (attr != nullptr
15338 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15339 {
15340 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15341 TYPE_CPLUS_CALLING_CONVENTION (type)
15342 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15343 }
15344
15345 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15346 if (attr != nullptr)
15347 {
15348 if (attr->form_is_constant ())
15349 TYPE_LENGTH (type) = DW_UNSND (attr);
15350 else
15351 {
15352 struct dynamic_prop prop;
15353 if (attr_to_dynamic_prop (attr, die, cu, &prop,
15354 cu->per_cu->addr_type ()))
15355 add_dyn_prop (DYN_PROP_BYTE_SIZE, prop, type);
15356 TYPE_LENGTH (type) = 0;
15357 }
15358 }
15359 else
15360 {
15361 TYPE_LENGTH (type) = 0;
15362 }
15363
15364 maybe_set_alignment (cu, die, type);
15365
15366 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15367 {
15368 /* ICC<14 does not output the required DW_AT_declaration on
15369 incomplete types, but gives them a size of zero. */
15370 TYPE_STUB (type) = 1;
15371 }
15372 else
15373 TYPE_STUB_SUPPORTED (type) = 1;
15374
15375 if (die_is_declaration (die, cu))
15376 TYPE_STUB (type) = 1;
15377 else if (attr == NULL && die->child == NULL
15378 && producer_is_realview (cu->producer))
15379 /* RealView does not output the required DW_AT_declaration
15380 on incomplete types. */
15381 TYPE_STUB (type) = 1;
15382
15383 /* We need to add the type field to the die immediately so we don't
15384 infinitely recurse when dealing with pointers to the structure
15385 type within the structure itself. */
15386 set_die_type (die, type, cu);
15387
15388 /* set_die_type should be already done. */
15389 set_descriptive_type (type, die, cu);
15390
15391 return type;
15392 }
15393
15394 static void handle_struct_member_die
15395 (struct die_info *child_die,
15396 struct type *type,
15397 struct field_info *fi,
15398 std::vector<struct symbol *> *template_args,
15399 struct dwarf2_cu *cu);
15400
15401 /* A helper for handle_struct_member_die that handles
15402 DW_TAG_variant_part. */
15403
15404 static void
15405 handle_variant_part (struct die_info *die, struct type *type,
15406 struct field_info *fi,
15407 std::vector<struct symbol *> *template_args,
15408 struct dwarf2_cu *cu)
15409 {
15410 variant_part_builder *new_part;
15411 if (fi->current_variant_part == nullptr)
15412 {
15413 fi->variant_parts.emplace_back ();
15414 new_part = &fi->variant_parts.back ();
15415 }
15416 else if (!fi->current_variant_part->processing_variant)
15417 {
15418 complaint (_("nested DW_TAG_variant_part seen "
15419 "- DIE at %s [in module %s]"),
15420 sect_offset_str (die->sect_off),
15421 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15422 return;
15423 }
15424 else
15425 {
15426 variant_field &current = fi->current_variant_part->variants.back ();
15427 current.variant_parts.emplace_back ();
15428 new_part = &current.variant_parts.back ();
15429 }
15430
15431 /* When we recurse, we want callees to add to this new variant
15432 part. */
15433 scoped_restore save_current_variant_part
15434 = make_scoped_restore (&fi->current_variant_part, new_part);
15435
15436 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15437 if (discr == NULL)
15438 {
15439 /* It's a univariant form, an extension we support. */
15440 }
15441 else if (discr->form_is_ref ())
15442 {
15443 struct dwarf2_cu *target_cu = cu;
15444 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15445
15446 new_part->discriminant_offset = target_die->sect_off;
15447 }
15448 else
15449 {
15450 complaint (_("DW_AT_discr does not have DIE reference form"
15451 " - DIE at %s [in module %s]"),
15452 sect_offset_str (die->sect_off),
15453 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15454 }
15455
15456 for (die_info *child_die = die->child;
15457 child_die != NULL;
15458 child_die = child_die->sibling)
15459 handle_struct_member_die (child_die, type, fi, template_args, cu);
15460 }
15461
15462 /* A helper for handle_struct_member_die that handles
15463 DW_TAG_variant. */
15464
15465 static void
15466 handle_variant (struct die_info *die, struct type *type,
15467 struct field_info *fi,
15468 std::vector<struct symbol *> *template_args,
15469 struct dwarf2_cu *cu)
15470 {
15471 if (fi->current_variant_part == nullptr)
15472 {
15473 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15474 "- DIE at %s [in module %s]"),
15475 sect_offset_str (die->sect_off),
15476 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15477 return;
15478 }
15479 if (fi->current_variant_part->processing_variant)
15480 {
15481 complaint (_("nested DW_TAG_variant seen "
15482 "- DIE at %s [in module %s]"),
15483 sect_offset_str (die->sect_off),
15484 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15485 return;
15486 }
15487
15488 scoped_restore save_processing_variant
15489 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15490 true);
15491
15492 fi->current_variant_part->variants.emplace_back ();
15493 variant_field &variant = fi->current_variant_part->variants.back ();
15494 variant.first_field = fi->fields.size ();
15495
15496 /* In a variant we want to get the discriminant and also add a
15497 field for our sole member child. */
15498 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15499 if (discr == nullptr)
15500 {
15501 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15502 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15503 variant.default_branch = true;
15504 else
15505 variant.discr_list_data = DW_BLOCK (discr);
15506 }
15507 else
15508 variant.discriminant_value = DW_UNSND (discr);
15509
15510 for (die_info *variant_child = die->child;
15511 variant_child != NULL;
15512 variant_child = variant_child->sibling)
15513 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15514
15515 variant.last_field = fi->fields.size ();
15516 }
15517
15518 /* A helper for process_structure_scope that handles a single member
15519 DIE. */
15520
15521 static void
15522 handle_struct_member_die (struct die_info *child_die, struct type *type,
15523 struct field_info *fi,
15524 std::vector<struct symbol *> *template_args,
15525 struct dwarf2_cu *cu)
15526 {
15527 if (child_die->tag == DW_TAG_member
15528 || child_die->tag == DW_TAG_variable)
15529 {
15530 /* NOTE: carlton/2002-11-05: A C++ static data member
15531 should be a DW_TAG_member that is a declaration, but
15532 all versions of G++ as of this writing (so through at
15533 least 3.2.1) incorrectly generate DW_TAG_variable
15534 tags for them instead. */
15535 dwarf2_add_field (fi, child_die, cu);
15536 }
15537 else if (child_die->tag == DW_TAG_subprogram)
15538 {
15539 /* Rust doesn't have member functions in the C++ sense.
15540 However, it does emit ordinary functions as children
15541 of a struct DIE. */
15542 if (cu->language == language_rust)
15543 read_func_scope (child_die, cu);
15544 else
15545 {
15546 /* C++ member function. */
15547 dwarf2_add_member_fn (fi, child_die, type, cu);
15548 }
15549 }
15550 else if (child_die->tag == DW_TAG_inheritance)
15551 {
15552 /* C++ base class field. */
15553 dwarf2_add_field (fi, child_die, cu);
15554 }
15555 else if (type_can_define_types (child_die))
15556 dwarf2_add_type_defn (fi, child_die, cu);
15557 else if (child_die->tag == DW_TAG_template_type_param
15558 || child_die->tag == DW_TAG_template_value_param)
15559 {
15560 struct symbol *arg = new_symbol (child_die, NULL, cu);
15561
15562 if (arg != NULL)
15563 template_args->push_back (arg);
15564 }
15565 else if (child_die->tag == DW_TAG_variant_part)
15566 handle_variant_part (child_die, type, fi, template_args, cu);
15567 else if (child_die->tag == DW_TAG_variant)
15568 handle_variant (child_die, type, fi, template_args, cu);
15569 }
15570
15571 /* Finish creating a structure or union type, including filling in
15572 its members and creating a symbol for it. */
15573
15574 static void
15575 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15576 {
15577 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15578 struct die_info *child_die;
15579 struct type *type;
15580
15581 type = get_die_type (die, cu);
15582 if (type == NULL)
15583 type = read_structure_type (die, cu);
15584
15585 bool has_template_parameters = false;
15586 if (die->child != NULL && ! die_is_declaration (die, cu))
15587 {
15588 struct field_info fi;
15589 std::vector<struct symbol *> template_args;
15590
15591 child_die = die->child;
15592
15593 while (child_die && child_die->tag)
15594 {
15595 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15596 child_die = child_die->sibling;
15597 }
15598
15599 /* Attach template arguments to type. */
15600 if (!template_args.empty ())
15601 {
15602 has_template_parameters = true;
15603 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15604 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15605 TYPE_TEMPLATE_ARGUMENTS (type)
15606 = XOBNEWVEC (&objfile->objfile_obstack,
15607 struct symbol *,
15608 TYPE_N_TEMPLATE_ARGUMENTS (type));
15609 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15610 template_args.data (),
15611 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15612 * sizeof (struct symbol *)));
15613 }
15614
15615 /* Attach fields and member functions to the type. */
15616 if (fi.nfields () > 0)
15617 dwarf2_attach_fields_to_type (&fi, type, cu);
15618 if (!fi.fnfieldlists.empty ())
15619 {
15620 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15621
15622 /* Get the type which refers to the base class (possibly this
15623 class itself) which contains the vtable pointer for the current
15624 class from the DW_AT_containing_type attribute. This use of
15625 DW_AT_containing_type is a GNU extension. */
15626
15627 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15628 {
15629 struct type *t = die_containing_type (die, cu);
15630
15631 set_type_vptr_basetype (type, t);
15632 if (type == t)
15633 {
15634 int i;
15635
15636 /* Our own class provides vtbl ptr. */
15637 for (i = TYPE_NFIELDS (t) - 1;
15638 i >= TYPE_N_BASECLASSES (t);
15639 --i)
15640 {
15641 const char *fieldname = TYPE_FIELD_NAME (t, i);
15642
15643 if (is_vtable_name (fieldname, cu))
15644 {
15645 set_type_vptr_fieldno (type, i);
15646 break;
15647 }
15648 }
15649
15650 /* Complain if virtual function table field not found. */
15651 if (i < TYPE_N_BASECLASSES (t))
15652 complaint (_("virtual function table pointer "
15653 "not found when defining class '%s'"),
15654 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15655 }
15656 else
15657 {
15658 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15659 }
15660 }
15661 else if (cu->producer
15662 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15663 {
15664 /* The IBM XLC compiler does not provide direct indication
15665 of the containing type, but the vtable pointer is
15666 always named __vfp. */
15667
15668 int i;
15669
15670 for (i = TYPE_NFIELDS (type) - 1;
15671 i >= TYPE_N_BASECLASSES (type);
15672 --i)
15673 {
15674 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15675 {
15676 set_type_vptr_fieldno (type, i);
15677 set_type_vptr_basetype (type, type);
15678 break;
15679 }
15680 }
15681 }
15682 }
15683
15684 /* Copy fi.typedef_field_list linked list elements content into the
15685 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15686 if (!fi.typedef_field_list.empty ())
15687 {
15688 int count = fi.typedef_field_list.size ();
15689
15690 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15691 TYPE_TYPEDEF_FIELD_ARRAY (type)
15692 = ((struct decl_field *)
15693 TYPE_ALLOC (type,
15694 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15695 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15696
15697 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15698 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15699 }
15700
15701 /* Copy fi.nested_types_list linked list elements content into the
15702 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15703 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15704 {
15705 int count = fi.nested_types_list.size ();
15706
15707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15708 TYPE_NESTED_TYPES_ARRAY (type)
15709 = ((struct decl_field *)
15710 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15711 TYPE_NESTED_TYPES_COUNT (type) = count;
15712
15713 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15714 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15715 }
15716 }
15717
15718 quirk_gcc_member_function_pointer (type, objfile);
15719 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15720 cu->rust_unions.push_back (type);
15721
15722 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15723 snapshots) has been known to create a die giving a declaration
15724 for a class that has, as a child, a die giving a definition for a
15725 nested class. So we have to process our children even if the
15726 current die is a declaration. Normally, of course, a declaration
15727 won't have any children at all. */
15728
15729 child_die = die->child;
15730
15731 while (child_die != NULL && child_die->tag)
15732 {
15733 if (child_die->tag == DW_TAG_member
15734 || child_die->tag == DW_TAG_variable
15735 || child_die->tag == DW_TAG_inheritance
15736 || child_die->tag == DW_TAG_template_value_param
15737 || child_die->tag == DW_TAG_template_type_param)
15738 {
15739 /* Do nothing. */
15740 }
15741 else
15742 process_die (child_die, cu);
15743
15744 child_die = child_die->sibling;
15745 }
15746
15747 /* Do not consider external references. According to the DWARF standard,
15748 these DIEs are identified by the fact that they have no byte_size
15749 attribute, and a declaration attribute. */
15750 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15751 || !die_is_declaration (die, cu)
15752 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15753 {
15754 struct symbol *sym = new_symbol (die, type, cu);
15755
15756 if (has_template_parameters)
15757 {
15758 struct symtab *symtab;
15759 if (sym != nullptr)
15760 symtab = symbol_symtab (sym);
15761 else if (cu->line_header != nullptr)
15762 {
15763 /* Any related symtab will do. */
15764 symtab
15765 = cu->line_header->file_names ()[0].symtab;
15766 }
15767 else
15768 {
15769 symtab = nullptr;
15770 complaint (_("could not find suitable "
15771 "symtab for template parameter"
15772 " - DIE at %s [in module %s]"),
15773 sect_offset_str (die->sect_off),
15774 objfile_name (objfile));
15775 }
15776
15777 if (symtab != nullptr)
15778 {
15779 /* Make sure that the symtab is set on the new symbols.
15780 Even though they don't appear in this symtab directly,
15781 other parts of gdb assume that symbols do, and this is
15782 reasonably true. */
15783 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15784 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15785 }
15786 }
15787 }
15788 }
15789
15790 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15791 update TYPE using some information only available in DIE's children. */
15792
15793 static void
15794 update_enumeration_type_from_children (struct die_info *die,
15795 struct type *type,
15796 struct dwarf2_cu *cu)
15797 {
15798 struct die_info *child_die;
15799 int unsigned_enum = 1;
15800 int flag_enum = 1;
15801
15802 auto_obstack obstack;
15803
15804 for (child_die = die->child;
15805 child_die != NULL && child_die->tag;
15806 child_die = child_die->sibling)
15807 {
15808 struct attribute *attr;
15809 LONGEST value;
15810 const gdb_byte *bytes;
15811 struct dwarf2_locexpr_baton *baton;
15812 const char *name;
15813
15814 if (child_die->tag != DW_TAG_enumerator)
15815 continue;
15816
15817 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15818 if (attr == NULL)
15819 continue;
15820
15821 name = dwarf2_name (child_die, cu);
15822 if (name == NULL)
15823 name = "<anonymous enumerator>";
15824
15825 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15826 &value, &bytes, &baton);
15827 if (value < 0)
15828 {
15829 unsigned_enum = 0;
15830 flag_enum = 0;
15831 }
15832 else
15833 {
15834 if (count_one_bits_ll (value) >= 2)
15835 flag_enum = 0;
15836 }
15837
15838 /* If we already know that the enum type is neither unsigned, nor
15839 a flag type, no need to look at the rest of the enumerates. */
15840 if (!unsigned_enum && !flag_enum)
15841 break;
15842 }
15843
15844 if (unsigned_enum)
15845 TYPE_UNSIGNED (type) = 1;
15846 if (flag_enum)
15847 TYPE_FLAG_ENUM (type) = 1;
15848 }
15849
15850 /* Given a DW_AT_enumeration_type die, set its type. We do not
15851 complete the type's fields yet, or create any symbols. */
15852
15853 static struct type *
15854 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15855 {
15856 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15857 struct type *type;
15858 struct attribute *attr;
15859 const char *name;
15860
15861 /* If the definition of this type lives in .debug_types, read that type.
15862 Don't follow DW_AT_specification though, that will take us back up
15863 the chain and we want to go down. */
15864 attr = die->attr (DW_AT_signature);
15865 if (attr != nullptr)
15866 {
15867 type = get_DW_AT_signature_type (die, attr, cu);
15868
15869 /* The type's CU may not be the same as CU.
15870 Ensure TYPE is recorded with CU in die_type_hash. */
15871 return set_die_type (die, type, cu);
15872 }
15873
15874 type = alloc_type (objfile);
15875
15876 TYPE_CODE (type) = TYPE_CODE_ENUM;
15877 name = dwarf2_full_name (NULL, die, cu);
15878 if (name != NULL)
15879 TYPE_NAME (type) = name;
15880
15881 attr = dwarf2_attr (die, DW_AT_type, cu);
15882 if (attr != NULL)
15883 {
15884 struct type *underlying_type = die_type (die, cu);
15885
15886 TYPE_TARGET_TYPE (type) = underlying_type;
15887 }
15888
15889 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15890 if (attr != nullptr)
15891 {
15892 TYPE_LENGTH (type) = DW_UNSND (attr);
15893 }
15894 else
15895 {
15896 TYPE_LENGTH (type) = 0;
15897 }
15898
15899 maybe_set_alignment (cu, die, type);
15900
15901 /* The enumeration DIE can be incomplete. In Ada, any type can be
15902 declared as private in the package spec, and then defined only
15903 inside the package body. Such types are known as Taft Amendment
15904 Types. When another package uses such a type, an incomplete DIE
15905 may be generated by the compiler. */
15906 if (die_is_declaration (die, cu))
15907 TYPE_STUB (type) = 1;
15908
15909 /* Finish the creation of this type by using the enum's children.
15910 We must call this even when the underlying type has been provided
15911 so that we can determine if we're looking at a "flag" enum. */
15912 update_enumeration_type_from_children (die, type, cu);
15913
15914 /* If this type has an underlying type that is not a stub, then we
15915 may use its attributes. We always use the "unsigned" attribute
15916 in this situation, because ordinarily we guess whether the type
15917 is unsigned -- but the guess can be wrong and the underlying type
15918 can tell us the reality. However, we defer to a local size
15919 attribute if one exists, because this lets the compiler override
15920 the underlying type if needed. */
15921 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15922 {
15923 struct type *underlying_type = TYPE_TARGET_TYPE (type);
15924 underlying_type = check_typedef (underlying_type);
15925 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
15926 if (TYPE_LENGTH (type) == 0)
15927 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
15928 if (TYPE_RAW_ALIGN (type) == 0
15929 && TYPE_RAW_ALIGN (underlying_type) != 0)
15930 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
15931 }
15932
15933 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15934
15935 return set_die_type (die, type, cu);
15936 }
15937
15938 /* Given a pointer to a die which begins an enumeration, process all
15939 the dies that define the members of the enumeration, and create the
15940 symbol for the enumeration type.
15941
15942 NOTE: We reverse the order of the element list. */
15943
15944 static void
15945 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15946 {
15947 struct type *this_type;
15948
15949 this_type = get_die_type (die, cu);
15950 if (this_type == NULL)
15951 this_type = read_enumeration_type (die, cu);
15952
15953 if (die->child != NULL)
15954 {
15955 struct die_info *child_die;
15956 struct symbol *sym;
15957 std::vector<struct field> fields;
15958 const char *name;
15959
15960 child_die = die->child;
15961 while (child_die && child_die->tag)
15962 {
15963 if (child_die->tag != DW_TAG_enumerator)
15964 {
15965 process_die (child_die, cu);
15966 }
15967 else
15968 {
15969 name = dwarf2_name (child_die, cu);
15970 if (name)
15971 {
15972 sym = new_symbol (child_die, this_type, cu);
15973
15974 fields.emplace_back ();
15975 struct field &field = fields.back ();
15976
15977 FIELD_NAME (field) = sym->linkage_name ();
15978 FIELD_TYPE (field) = NULL;
15979 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15980 FIELD_BITSIZE (field) = 0;
15981 }
15982 }
15983
15984 child_die = child_die->sibling;
15985 }
15986
15987 if (!fields.empty ())
15988 {
15989 TYPE_NFIELDS (this_type) = fields.size ();
15990 TYPE_FIELDS (this_type) = (struct field *)
15991 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15992 memcpy (TYPE_FIELDS (this_type), fields.data (),
15993 sizeof (struct field) * fields.size ());
15994 }
15995 }
15996
15997 /* If we are reading an enum from a .debug_types unit, and the enum
15998 is a declaration, and the enum is not the signatured type in the
15999 unit, then we do not want to add a symbol for it. Adding a
16000 symbol would in some cases obscure the true definition of the
16001 enum, giving users an incomplete type when the definition is
16002 actually available. Note that we do not want to do this for all
16003 enums which are just declarations, because C++0x allows forward
16004 enum declarations. */
16005 if (cu->per_cu->is_debug_types
16006 && die_is_declaration (die, cu))
16007 {
16008 struct signatured_type *sig_type;
16009
16010 sig_type = (struct signatured_type *) cu->per_cu;
16011 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16012 if (sig_type->type_offset_in_section != die->sect_off)
16013 return;
16014 }
16015
16016 new_symbol (die, this_type, cu);
16017 }
16018
16019 /* Extract all information from a DW_TAG_array_type DIE and put it in
16020 the DIE's type field. For now, this only handles one dimensional
16021 arrays. */
16022
16023 static struct type *
16024 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16025 {
16026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16027 struct die_info *child_die;
16028 struct type *type;
16029 struct type *element_type, *range_type, *index_type;
16030 struct attribute *attr;
16031 const char *name;
16032 struct dynamic_prop *byte_stride_prop = NULL;
16033 unsigned int bit_stride = 0;
16034
16035 element_type = die_type (die, cu);
16036
16037 /* The die_type call above may have already set the type for this DIE. */
16038 type = get_die_type (die, cu);
16039 if (type)
16040 return type;
16041
16042 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16043 if (attr != NULL)
16044 {
16045 int stride_ok;
16046 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
16047
16048 byte_stride_prop
16049 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16050 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16051 prop_type);
16052 if (!stride_ok)
16053 {
16054 complaint (_("unable to read array DW_AT_byte_stride "
16055 " - DIE at %s [in module %s]"),
16056 sect_offset_str (die->sect_off),
16057 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16058 /* Ignore this attribute. We will likely not be able to print
16059 arrays of this type correctly, but there is little we can do
16060 to help if we cannot read the attribute's value. */
16061 byte_stride_prop = NULL;
16062 }
16063 }
16064
16065 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16066 if (attr != NULL)
16067 bit_stride = DW_UNSND (attr);
16068
16069 /* Irix 6.2 native cc creates array types without children for
16070 arrays with unspecified length. */
16071 if (die->child == NULL)
16072 {
16073 index_type = objfile_type (objfile)->builtin_int;
16074 range_type = create_static_range_type (NULL, index_type, 0, -1);
16075 type = create_array_type_with_stride (NULL, element_type, range_type,
16076 byte_stride_prop, bit_stride);
16077 return set_die_type (die, type, cu);
16078 }
16079
16080 std::vector<struct type *> range_types;
16081 child_die = die->child;
16082 while (child_die && child_die->tag)
16083 {
16084 if (child_die->tag == DW_TAG_subrange_type)
16085 {
16086 struct type *child_type = read_type_die (child_die, cu);
16087
16088 if (child_type != NULL)
16089 {
16090 /* The range type was succesfully read. Save it for the
16091 array type creation. */
16092 range_types.push_back (child_type);
16093 }
16094 }
16095 child_die = child_die->sibling;
16096 }
16097
16098 /* Dwarf2 dimensions are output from left to right, create the
16099 necessary array types in backwards order. */
16100
16101 type = element_type;
16102
16103 if (read_array_order (die, cu) == DW_ORD_col_major)
16104 {
16105 int i = 0;
16106
16107 while (i < range_types.size ())
16108 type = create_array_type_with_stride (NULL, type, range_types[i++],
16109 byte_stride_prop, bit_stride);
16110 }
16111 else
16112 {
16113 size_t ndim = range_types.size ();
16114 while (ndim-- > 0)
16115 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16116 byte_stride_prop, bit_stride);
16117 }
16118
16119 /* Understand Dwarf2 support for vector types (like they occur on
16120 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16121 array type. This is not part of the Dwarf2/3 standard yet, but a
16122 custom vendor extension. The main difference between a regular
16123 array and the vector variant is that vectors are passed by value
16124 to functions. */
16125 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16126 if (attr != nullptr)
16127 make_vector_type (type);
16128
16129 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16130 implementation may choose to implement triple vectors using this
16131 attribute. */
16132 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16133 if (attr != nullptr)
16134 {
16135 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16136 TYPE_LENGTH (type) = DW_UNSND (attr);
16137 else
16138 complaint (_("DW_AT_byte_size for array type smaller "
16139 "than the total size of elements"));
16140 }
16141
16142 name = dwarf2_name (die, cu);
16143 if (name)
16144 TYPE_NAME (type) = name;
16145
16146 maybe_set_alignment (cu, die, type);
16147
16148 /* Install the type in the die. */
16149 set_die_type (die, type, cu);
16150
16151 /* set_die_type should be already done. */
16152 set_descriptive_type (type, die, cu);
16153
16154 return type;
16155 }
16156
16157 static enum dwarf_array_dim_ordering
16158 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16159 {
16160 struct attribute *attr;
16161
16162 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16163
16164 if (attr != nullptr)
16165 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16166
16167 /* GNU F77 is a special case, as at 08/2004 array type info is the
16168 opposite order to the dwarf2 specification, but data is still
16169 laid out as per normal fortran.
16170
16171 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16172 version checking. */
16173
16174 if (cu->language == language_fortran
16175 && cu->producer && strstr (cu->producer, "GNU F77"))
16176 {
16177 return DW_ORD_row_major;
16178 }
16179
16180 switch (cu->language_defn->la_array_ordering)
16181 {
16182 case array_column_major:
16183 return DW_ORD_col_major;
16184 case array_row_major:
16185 default:
16186 return DW_ORD_row_major;
16187 };
16188 }
16189
16190 /* Extract all information from a DW_TAG_set_type DIE and put it in
16191 the DIE's type field. */
16192
16193 static struct type *
16194 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16195 {
16196 struct type *domain_type, *set_type;
16197 struct attribute *attr;
16198
16199 domain_type = die_type (die, cu);
16200
16201 /* The die_type call above may have already set the type for this DIE. */
16202 set_type = get_die_type (die, cu);
16203 if (set_type)
16204 return set_type;
16205
16206 set_type = create_set_type (NULL, domain_type);
16207
16208 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16209 if (attr != nullptr)
16210 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16211
16212 maybe_set_alignment (cu, die, set_type);
16213
16214 return set_die_type (die, set_type, cu);
16215 }
16216
16217 /* A helper for read_common_block that creates a locexpr baton.
16218 SYM is the symbol which we are marking as computed.
16219 COMMON_DIE is the DIE for the common block.
16220 COMMON_LOC is the location expression attribute for the common
16221 block itself.
16222 MEMBER_LOC is the location expression attribute for the particular
16223 member of the common block that we are processing.
16224 CU is the CU from which the above come. */
16225
16226 static void
16227 mark_common_block_symbol_computed (struct symbol *sym,
16228 struct die_info *common_die,
16229 struct attribute *common_loc,
16230 struct attribute *member_loc,
16231 struct dwarf2_cu *cu)
16232 {
16233 struct dwarf2_per_objfile *dwarf2_per_objfile
16234 = cu->per_cu->dwarf2_per_objfile;
16235 struct objfile *objfile = dwarf2_per_objfile->objfile;
16236 struct dwarf2_locexpr_baton *baton;
16237 gdb_byte *ptr;
16238 unsigned int cu_off;
16239 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16240 LONGEST offset = 0;
16241
16242 gdb_assert (common_loc && member_loc);
16243 gdb_assert (common_loc->form_is_block ());
16244 gdb_assert (member_loc->form_is_block ()
16245 || member_loc->form_is_constant ());
16246
16247 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16248 baton->per_cu = cu->per_cu;
16249 gdb_assert (baton->per_cu);
16250
16251 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16252
16253 if (member_loc->form_is_constant ())
16254 {
16255 offset = member_loc->constant_value (0);
16256 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16257 }
16258 else
16259 baton->size += DW_BLOCK (member_loc)->size;
16260
16261 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16262 baton->data = ptr;
16263
16264 *ptr++ = DW_OP_call4;
16265 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16266 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16267 ptr += 4;
16268
16269 if (member_loc->form_is_constant ())
16270 {
16271 *ptr++ = DW_OP_addr;
16272 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16273 ptr += cu->header.addr_size;
16274 }
16275 else
16276 {
16277 /* We have to copy the data here, because DW_OP_call4 will only
16278 use a DW_AT_location attribute. */
16279 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16280 ptr += DW_BLOCK (member_loc)->size;
16281 }
16282
16283 *ptr++ = DW_OP_plus;
16284 gdb_assert (ptr - baton->data == baton->size);
16285
16286 SYMBOL_LOCATION_BATON (sym) = baton;
16287 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16288 }
16289
16290 /* Create appropriate locally-scoped variables for all the
16291 DW_TAG_common_block entries. Also create a struct common_block
16292 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16293 is used to separate the common blocks name namespace from regular
16294 variable names. */
16295
16296 static void
16297 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16298 {
16299 struct attribute *attr;
16300
16301 attr = dwarf2_attr (die, DW_AT_location, cu);
16302 if (attr != nullptr)
16303 {
16304 /* Support the .debug_loc offsets. */
16305 if (attr->form_is_block ())
16306 {
16307 /* Ok. */
16308 }
16309 else if (attr->form_is_section_offset ())
16310 {
16311 dwarf2_complex_location_expr_complaint ();
16312 attr = NULL;
16313 }
16314 else
16315 {
16316 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16317 "common block member");
16318 attr = NULL;
16319 }
16320 }
16321
16322 if (die->child != NULL)
16323 {
16324 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16325 struct die_info *child_die;
16326 size_t n_entries = 0, size;
16327 struct common_block *common_block;
16328 struct symbol *sym;
16329
16330 for (child_die = die->child;
16331 child_die && child_die->tag;
16332 child_die = child_die->sibling)
16333 ++n_entries;
16334
16335 size = (sizeof (struct common_block)
16336 + (n_entries - 1) * sizeof (struct symbol *));
16337 common_block
16338 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16339 size);
16340 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16341 common_block->n_entries = 0;
16342
16343 for (child_die = die->child;
16344 child_die && child_die->tag;
16345 child_die = child_die->sibling)
16346 {
16347 /* Create the symbol in the DW_TAG_common_block block in the current
16348 symbol scope. */
16349 sym = new_symbol (child_die, NULL, cu);
16350 if (sym != NULL)
16351 {
16352 struct attribute *member_loc;
16353
16354 common_block->contents[common_block->n_entries++] = sym;
16355
16356 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16357 cu);
16358 if (member_loc)
16359 {
16360 /* GDB has handled this for a long time, but it is
16361 not specified by DWARF. It seems to have been
16362 emitted by gfortran at least as recently as:
16363 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16364 complaint (_("Variable in common block has "
16365 "DW_AT_data_member_location "
16366 "- DIE at %s [in module %s]"),
16367 sect_offset_str (child_die->sect_off),
16368 objfile_name (objfile));
16369
16370 if (member_loc->form_is_section_offset ())
16371 dwarf2_complex_location_expr_complaint ();
16372 else if (member_loc->form_is_constant ()
16373 || member_loc->form_is_block ())
16374 {
16375 if (attr != nullptr)
16376 mark_common_block_symbol_computed (sym, die, attr,
16377 member_loc, cu);
16378 }
16379 else
16380 dwarf2_complex_location_expr_complaint ();
16381 }
16382 }
16383 }
16384
16385 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16386 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16387 }
16388 }
16389
16390 /* Create a type for a C++ namespace. */
16391
16392 static struct type *
16393 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16394 {
16395 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16396 const char *previous_prefix, *name;
16397 int is_anonymous;
16398 struct type *type;
16399
16400 /* For extensions, reuse the type of the original namespace. */
16401 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16402 {
16403 struct die_info *ext_die;
16404 struct dwarf2_cu *ext_cu = cu;
16405
16406 ext_die = dwarf2_extension (die, &ext_cu);
16407 type = read_type_die (ext_die, ext_cu);
16408
16409 /* EXT_CU may not be the same as CU.
16410 Ensure TYPE is recorded with CU in die_type_hash. */
16411 return set_die_type (die, type, cu);
16412 }
16413
16414 name = namespace_name (die, &is_anonymous, cu);
16415
16416 /* Now build the name of the current namespace. */
16417
16418 previous_prefix = determine_prefix (die, cu);
16419 if (previous_prefix[0] != '\0')
16420 name = typename_concat (&objfile->objfile_obstack,
16421 previous_prefix, name, 0, cu);
16422
16423 /* Create the type. */
16424 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16425
16426 return set_die_type (die, type, cu);
16427 }
16428
16429 /* Read a namespace scope. */
16430
16431 static void
16432 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16433 {
16434 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16435 int is_anonymous;
16436
16437 /* Add a symbol associated to this if we haven't seen the namespace
16438 before. Also, add a using directive if it's an anonymous
16439 namespace. */
16440
16441 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16442 {
16443 struct type *type;
16444
16445 type = read_type_die (die, cu);
16446 new_symbol (die, type, cu);
16447
16448 namespace_name (die, &is_anonymous, cu);
16449 if (is_anonymous)
16450 {
16451 const char *previous_prefix = determine_prefix (die, cu);
16452
16453 std::vector<const char *> excludes;
16454 add_using_directive (using_directives (cu),
16455 previous_prefix, TYPE_NAME (type), NULL,
16456 NULL, excludes, 0, &objfile->objfile_obstack);
16457 }
16458 }
16459
16460 if (die->child != NULL)
16461 {
16462 struct die_info *child_die = die->child;
16463
16464 while (child_die && child_die->tag)
16465 {
16466 process_die (child_die, cu);
16467 child_die = child_die->sibling;
16468 }
16469 }
16470 }
16471
16472 /* Read a Fortran module as type. This DIE can be only a declaration used for
16473 imported module. Still we need that type as local Fortran "use ... only"
16474 declaration imports depend on the created type in determine_prefix. */
16475
16476 static struct type *
16477 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16478 {
16479 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16480 const char *module_name;
16481 struct type *type;
16482
16483 module_name = dwarf2_name (die, cu);
16484 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16485
16486 return set_die_type (die, type, cu);
16487 }
16488
16489 /* Read a Fortran module. */
16490
16491 static void
16492 read_module (struct die_info *die, struct dwarf2_cu *cu)
16493 {
16494 struct die_info *child_die = die->child;
16495 struct type *type;
16496
16497 type = read_type_die (die, cu);
16498 new_symbol (die, type, cu);
16499
16500 while (child_die && child_die->tag)
16501 {
16502 process_die (child_die, cu);
16503 child_die = child_die->sibling;
16504 }
16505 }
16506
16507 /* Return the name of the namespace represented by DIE. Set
16508 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16509 namespace. */
16510
16511 static const char *
16512 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16513 {
16514 struct die_info *current_die;
16515 const char *name = NULL;
16516
16517 /* Loop through the extensions until we find a name. */
16518
16519 for (current_die = die;
16520 current_die != NULL;
16521 current_die = dwarf2_extension (die, &cu))
16522 {
16523 /* We don't use dwarf2_name here so that we can detect the absence
16524 of a name -> anonymous namespace. */
16525 name = dwarf2_string_attr (die, DW_AT_name, cu);
16526
16527 if (name != NULL)
16528 break;
16529 }
16530
16531 /* Is it an anonymous namespace? */
16532
16533 *is_anonymous = (name == NULL);
16534 if (*is_anonymous)
16535 name = CP_ANONYMOUS_NAMESPACE_STR;
16536
16537 return name;
16538 }
16539
16540 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16541 the user defined type vector. */
16542
16543 static struct type *
16544 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16545 {
16546 struct gdbarch *gdbarch
16547 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16548 struct comp_unit_head *cu_header = &cu->header;
16549 struct type *type;
16550 struct attribute *attr_byte_size;
16551 struct attribute *attr_address_class;
16552 int byte_size, addr_class;
16553 struct type *target_type;
16554
16555 target_type = die_type (die, cu);
16556
16557 /* The die_type call above may have already set the type for this DIE. */
16558 type = get_die_type (die, cu);
16559 if (type)
16560 return type;
16561
16562 type = lookup_pointer_type (target_type);
16563
16564 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16565 if (attr_byte_size)
16566 byte_size = DW_UNSND (attr_byte_size);
16567 else
16568 byte_size = cu_header->addr_size;
16569
16570 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16571 if (attr_address_class)
16572 addr_class = DW_UNSND (attr_address_class);
16573 else
16574 addr_class = DW_ADDR_none;
16575
16576 ULONGEST alignment = get_alignment (cu, die);
16577
16578 /* If the pointer size, alignment, or address class is different
16579 than the default, create a type variant marked as such and set
16580 the length accordingly. */
16581 if (TYPE_LENGTH (type) != byte_size
16582 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16583 && alignment != TYPE_RAW_ALIGN (type))
16584 || addr_class != DW_ADDR_none)
16585 {
16586 if (gdbarch_address_class_type_flags_p (gdbarch))
16587 {
16588 int type_flags;
16589
16590 type_flags = gdbarch_address_class_type_flags
16591 (gdbarch, byte_size, addr_class);
16592 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16593 == 0);
16594 type = make_type_with_address_space (type, type_flags);
16595 }
16596 else if (TYPE_LENGTH (type) != byte_size)
16597 {
16598 complaint (_("invalid pointer size %d"), byte_size);
16599 }
16600 else if (TYPE_RAW_ALIGN (type) != alignment)
16601 {
16602 complaint (_("Invalid DW_AT_alignment"
16603 " - DIE at %s [in module %s]"),
16604 sect_offset_str (die->sect_off),
16605 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16606 }
16607 else
16608 {
16609 /* Should we also complain about unhandled address classes? */
16610 }
16611 }
16612
16613 TYPE_LENGTH (type) = byte_size;
16614 set_type_align (type, alignment);
16615 return set_die_type (die, type, cu);
16616 }
16617
16618 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16619 the user defined type vector. */
16620
16621 static struct type *
16622 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16623 {
16624 struct type *type;
16625 struct type *to_type;
16626 struct type *domain;
16627
16628 to_type = die_type (die, cu);
16629 domain = die_containing_type (die, cu);
16630
16631 /* The calls above may have already set the type for this DIE. */
16632 type = get_die_type (die, cu);
16633 if (type)
16634 return type;
16635
16636 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16637 type = lookup_methodptr_type (to_type);
16638 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16639 {
16640 struct type *new_type
16641 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16642
16643 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16644 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16645 TYPE_VARARGS (to_type));
16646 type = lookup_methodptr_type (new_type);
16647 }
16648 else
16649 type = lookup_memberptr_type (to_type, domain);
16650
16651 return set_die_type (die, type, cu);
16652 }
16653
16654 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16655 the user defined type vector. */
16656
16657 static struct type *
16658 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16659 enum type_code refcode)
16660 {
16661 struct comp_unit_head *cu_header = &cu->header;
16662 struct type *type, *target_type;
16663 struct attribute *attr;
16664
16665 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16666
16667 target_type = die_type (die, cu);
16668
16669 /* The die_type call above may have already set the type for this DIE. */
16670 type = get_die_type (die, cu);
16671 if (type)
16672 return type;
16673
16674 type = lookup_reference_type (target_type, refcode);
16675 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16676 if (attr != nullptr)
16677 {
16678 TYPE_LENGTH (type) = DW_UNSND (attr);
16679 }
16680 else
16681 {
16682 TYPE_LENGTH (type) = cu_header->addr_size;
16683 }
16684 maybe_set_alignment (cu, die, type);
16685 return set_die_type (die, type, cu);
16686 }
16687
16688 /* Add the given cv-qualifiers to the element type of the array. GCC
16689 outputs DWARF type qualifiers that apply to an array, not the
16690 element type. But GDB relies on the array element type to carry
16691 the cv-qualifiers. This mimics section 6.7.3 of the C99
16692 specification. */
16693
16694 static struct type *
16695 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16696 struct type *base_type, int cnst, int voltl)
16697 {
16698 struct type *el_type, *inner_array;
16699
16700 base_type = copy_type (base_type);
16701 inner_array = base_type;
16702
16703 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16704 {
16705 TYPE_TARGET_TYPE (inner_array) =
16706 copy_type (TYPE_TARGET_TYPE (inner_array));
16707 inner_array = TYPE_TARGET_TYPE (inner_array);
16708 }
16709
16710 el_type = TYPE_TARGET_TYPE (inner_array);
16711 cnst |= TYPE_CONST (el_type);
16712 voltl |= TYPE_VOLATILE (el_type);
16713 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16714
16715 return set_die_type (die, base_type, cu);
16716 }
16717
16718 static struct type *
16719 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16720 {
16721 struct type *base_type, *cv_type;
16722
16723 base_type = die_type (die, cu);
16724
16725 /* The die_type call above may have already set the type for this DIE. */
16726 cv_type = get_die_type (die, cu);
16727 if (cv_type)
16728 return cv_type;
16729
16730 /* In case the const qualifier is applied to an array type, the element type
16731 is so qualified, not the array type (section 6.7.3 of C99). */
16732 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16733 return add_array_cv_type (die, cu, base_type, 1, 0);
16734
16735 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16736 return set_die_type (die, cv_type, cu);
16737 }
16738
16739 static struct type *
16740 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16741 {
16742 struct type *base_type, *cv_type;
16743
16744 base_type = die_type (die, cu);
16745
16746 /* The die_type call above may have already set the type for this DIE. */
16747 cv_type = get_die_type (die, cu);
16748 if (cv_type)
16749 return cv_type;
16750
16751 /* In case the volatile qualifier is applied to an array type, the
16752 element type is so qualified, not the array type (section 6.7.3
16753 of C99). */
16754 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16755 return add_array_cv_type (die, cu, base_type, 0, 1);
16756
16757 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16758 return set_die_type (die, cv_type, cu);
16759 }
16760
16761 /* Handle DW_TAG_restrict_type. */
16762
16763 static struct type *
16764 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16765 {
16766 struct type *base_type, *cv_type;
16767
16768 base_type = die_type (die, cu);
16769
16770 /* The die_type call above may have already set the type for this DIE. */
16771 cv_type = get_die_type (die, cu);
16772 if (cv_type)
16773 return cv_type;
16774
16775 cv_type = make_restrict_type (base_type);
16776 return set_die_type (die, cv_type, cu);
16777 }
16778
16779 /* Handle DW_TAG_atomic_type. */
16780
16781 static struct type *
16782 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16783 {
16784 struct type *base_type, *cv_type;
16785
16786 base_type = die_type (die, cu);
16787
16788 /* The die_type call above may have already set the type for this DIE. */
16789 cv_type = get_die_type (die, cu);
16790 if (cv_type)
16791 return cv_type;
16792
16793 cv_type = make_atomic_type (base_type);
16794 return set_die_type (die, cv_type, cu);
16795 }
16796
16797 /* Extract all information from a DW_TAG_string_type DIE and add to
16798 the user defined type vector. It isn't really a user defined type,
16799 but it behaves like one, with other DIE's using an AT_user_def_type
16800 attribute to reference it. */
16801
16802 static struct type *
16803 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16804 {
16805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16806 struct gdbarch *gdbarch = objfile->arch ();
16807 struct type *type, *range_type, *index_type, *char_type;
16808 struct attribute *attr;
16809 struct dynamic_prop prop;
16810 bool length_is_constant = true;
16811 LONGEST length;
16812
16813 /* There are a couple of places where bit sizes might be made use of
16814 when parsing a DW_TAG_string_type, however, no producer that we know
16815 of make use of these. Handling bit sizes that are a multiple of the
16816 byte size is easy enough, but what about other bit sizes? Lets deal
16817 with that problem when we have to. Warn about these attributes being
16818 unsupported, then parse the type and ignore them like we always
16819 have. */
16820 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16821 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16822 {
16823 static bool warning_printed = false;
16824 if (!warning_printed)
16825 {
16826 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16827 "currently supported on DW_TAG_string_type."));
16828 warning_printed = true;
16829 }
16830 }
16831
16832 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16833 if (attr != nullptr && !attr->form_is_constant ())
16834 {
16835 /* The string length describes the location at which the length of
16836 the string can be found. The size of the length field can be
16837 specified with one of the attributes below. */
16838 struct type *prop_type;
16839 struct attribute *len
16840 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16841 if (len == nullptr)
16842 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16843 if (len != nullptr && len->form_is_constant ())
16844 {
16845 /* Pass 0 as the default as we know this attribute is constant
16846 and the default value will not be returned. */
16847 LONGEST sz = len->constant_value (0);
16848 prop_type = cu->per_cu->int_type (sz, true);
16849 }
16850 else
16851 {
16852 /* If the size is not specified then we assume it is the size of
16853 an address on this target. */
16854 prop_type = cu->per_cu->addr_sized_int_type (true);
16855 }
16856
16857 /* Convert the attribute into a dynamic property. */
16858 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16859 length = 1;
16860 else
16861 length_is_constant = false;
16862 }
16863 else if (attr != nullptr)
16864 {
16865 /* This DW_AT_string_length just contains the length with no
16866 indirection. There's no need to create a dynamic property in this
16867 case. Pass 0 for the default value as we know it will not be
16868 returned in this case. */
16869 length = attr->constant_value (0);
16870 }
16871 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16872 {
16873 /* We don't currently support non-constant byte sizes for strings. */
16874 length = attr->constant_value (1);
16875 }
16876 else
16877 {
16878 /* Use 1 as a fallback length if we have nothing else. */
16879 length = 1;
16880 }
16881
16882 index_type = objfile_type (objfile)->builtin_int;
16883 if (length_is_constant)
16884 range_type = create_static_range_type (NULL, index_type, 1, length);
16885 else
16886 {
16887 struct dynamic_prop low_bound;
16888
16889 low_bound.kind = PROP_CONST;
16890 low_bound.data.const_val = 1;
16891 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16892 }
16893 char_type = language_string_char_type (cu->language_defn, gdbarch);
16894 type = create_string_type (NULL, char_type, range_type);
16895
16896 return set_die_type (die, type, cu);
16897 }
16898
16899 /* Assuming that DIE corresponds to a function, returns nonzero
16900 if the function is prototyped. */
16901
16902 static int
16903 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16904 {
16905 struct attribute *attr;
16906
16907 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16908 if (attr && (DW_UNSND (attr) != 0))
16909 return 1;
16910
16911 /* The DWARF standard implies that the DW_AT_prototyped attribute
16912 is only meaningful for C, but the concept also extends to other
16913 languages that allow unprototyped functions (Eg: Objective C).
16914 For all other languages, assume that functions are always
16915 prototyped. */
16916 if (cu->language != language_c
16917 && cu->language != language_objc
16918 && cu->language != language_opencl)
16919 return 1;
16920
16921 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16922 prototyped and unprototyped functions; default to prototyped,
16923 since that is more common in modern code (and RealView warns
16924 about unprototyped functions). */
16925 if (producer_is_realview (cu->producer))
16926 return 1;
16927
16928 return 0;
16929 }
16930
16931 /* Handle DIES due to C code like:
16932
16933 struct foo
16934 {
16935 int (*funcp)(int a, long l);
16936 int b;
16937 };
16938
16939 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16940
16941 static struct type *
16942 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16943 {
16944 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16945 struct type *type; /* Type that this function returns. */
16946 struct type *ftype; /* Function that returns above type. */
16947 struct attribute *attr;
16948
16949 type = die_type (die, cu);
16950
16951 /* The die_type call above may have already set the type for this DIE. */
16952 ftype = get_die_type (die, cu);
16953 if (ftype)
16954 return ftype;
16955
16956 ftype = lookup_function_type (type);
16957
16958 if (prototyped_function_p (die, cu))
16959 TYPE_PROTOTYPED (ftype) = 1;
16960
16961 /* Store the calling convention in the type if it's available in
16962 the subroutine die. Otherwise set the calling convention to
16963 the default value DW_CC_normal. */
16964 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16965 if (attr != nullptr
16966 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16967 TYPE_CALLING_CONVENTION (ftype)
16968 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16969 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16970 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16971 else
16972 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16973
16974 /* Record whether the function returns normally to its caller or not
16975 if the DWARF producer set that information. */
16976 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16977 if (attr && (DW_UNSND (attr) != 0))
16978 TYPE_NO_RETURN (ftype) = 1;
16979
16980 /* We need to add the subroutine type to the die immediately so
16981 we don't infinitely recurse when dealing with parameters
16982 declared as the same subroutine type. */
16983 set_die_type (die, ftype, cu);
16984
16985 if (die->child != NULL)
16986 {
16987 struct type *void_type = objfile_type (objfile)->builtin_void;
16988 struct die_info *child_die;
16989 int nparams, iparams;
16990
16991 /* Count the number of parameters.
16992 FIXME: GDB currently ignores vararg functions, but knows about
16993 vararg member functions. */
16994 nparams = 0;
16995 child_die = die->child;
16996 while (child_die && child_die->tag)
16997 {
16998 if (child_die->tag == DW_TAG_formal_parameter)
16999 nparams++;
17000 else if (child_die->tag == DW_TAG_unspecified_parameters)
17001 TYPE_VARARGS (ftype) = 1;
17002 child_die = child_die->sibling;
17003 }
17004
17005 /* Allocate storage for parameters and fill them in. */
17006 TYPE_NFIELDS (ftype) = nparams;
17007 TYPE_FIELDS (ftype) = (struct field *)
17008 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17009
17010 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17011 even if we error out during the parameters reading below. */
17012 for (iparams = 0; iparams < nparams; iparams++)
17013 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17014
17015 iparams = 0;
17016 child_die = die->child;
17017 while (child_die && child_die->tag)
17018 {
17019 if (child_die->tag == DW_TAG_formal_parameter)
17020 {
17021 struct type *arg_type;
17022
17023 /* DWARF version 2 has no clean way to discern C++
17024 static and non-static member functions. G++ helps
17025 GDB by marking the first parameter for non-static
17026 member functions (which is the this pointer) as
17027 artificial. We pass this information to
17028 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17029
17030 DWARF version 3 added DW_AT_object_pointer, which GCC
17031 4.5 does not yet generate. */
17032 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17033 if (attr != nullptr)
17034 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17035 else
17036 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17037 arg_type = die_type (child_die, cu);
17038
17039 /* RealView does not mark THIS as const, which the testsuite
17040 expects. GCC marks THIS as const in method definitions,
17041 but not in the class specifications (GCC PR 43053). */
17042 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17043 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17044 {
17045 int is_this = 0;
17046 struct dwarf2_cu *arg_cu = cu;
17047 const char *name = dwarf2_name (child_die, cu);
17048
17049 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17050 if (attr != nullptr)
17051 {
17052 /* If the compiler emits this, use it. */
17053 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17054 is_this = 1;
17055 }
17056 else if (name && strcmp (name, "this") == 0)
17057 /* Function definitions will have the argument names. */
17058 is_this = 1;
17059 else if (name == NULL && iparams == 0)
17060 /* Declarations may not have the names, so like
17061 elsewhere in GDB, assume an artificial first
17062 argument is "this". */
17063 is_this = 1;
17064
17065 if (is_this)
17066 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17067 arg_type, 0);
17068 }
17069
17070 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17071 iparams++;
17072 }
17073 child_die = child_die->sibling;
17074 }
17075 }
17076
17077 return ftype;
17078 }
17079
17080 static struct type *
17081 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17082 {
17083 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17084 const char *name = NULL;
17085 struct type *this_type, *target_type;
17086
17087 name = dwarf2_full_name (NULL, die, cu);
17088 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17089 TYPE_TARGET_STUB (this_type) = 1;
17090 set_die_type (die, this_type, cu);
17091 target_type = die_type (die, cu);
17092 if (target_type != this_type)
17093 TYPE_TARGET_TYPE (this_type) = target_type;
17094 else
17095 {
17096 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17097 spec and cause infinite loops in GDB. */
17098 complaint (_("Self-referential DW_TAG_typedef "
17099 "- DIE at %s [in module %s]"),
17100 sect_offset_str (die->sect_off), objfile_name (objfile));
17101 TYPE_TARGET_TYPE (this_type) = NULL;
17102 }
17103 if (name == NULL)
17104 {
17105 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17106 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17107 Handle these by just returning the target type, rather than
17108 constructing an anonymous typedef type and trying to handle this
17109 elsewhere. */
17110 set_die_type (die, target_type, cu);
17111 return target_type;
17112 }
17113 return this_type;
17114 }
17115
17116 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17117 (which may be different from NAME) to the architecture back-end to allow
17118 it to guess the correct format if necessary. */
17119
17120 static struct type *
17121 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17122 const char *name_hint, enum bfd_endian byte_order)
17123 {
17124 struct gdbarch *gdbarch = objfile->arch ();
17125 const struct floatformat **format;
17126 struct type *type;
17127
17128 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17129 if (format)
17130 type = init_float_type (objfile, bits, name, format, byte_order);
17131 else
17132 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17133
17134 return type;
17135 }
17136
17137 /* Allocate an integer type of size BITS and name NAME. */
17138
17139 static struct type *
17140 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17141 int bits, int unsigned_p, const char *name)
17142 {
17143 struct type *type;
17144
17145 /* Versions of Intel's C Compiler generate an integer type called "void"
17146 instead of using DW_TAG_unspecified_type. This has been seen on
17147 at least versions 14, 17, and 18. */
17148 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17149 && strcmp (name, "void") == 0)
17150 type = objfile_type (objfile)->builtin_void;
17151 else
17152 type = init_integer_type (objfile, bits, unsigned_p, name);
17153
17154 return type;
17155 }
17156
17157 /* Initialise and return a floating point type of size BITS suitable for
17158 use as a component of a complex number. The NAME_HINT is passed through
17159 when initialising the floating point type and is the name of the complex
17160 type.
17161
17162 As DWARF doesn't currently provide an explicit name for the components
17163 of a complex number, but it can be helpful to have these components
17164 named, we try to select a suitable name based on the size of the
17165 component. */
17166 static struct type *
17167 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17168 struct objfile *objfile,
17169 int bits, const char *name_hint,
17170 enum bfd_endian byte_order)
17171 {
17172 gdbarch *gdbarch = objfile->arch ();
17173 struct type *tt = nullptr;
17174
17175 /* Try to find a suitable floating point builtin type of size BITS.
17176 We're going to use the name of this type as the name for the complex
17177 target type that we are about to create. */
17178 switch (cu->language)
17179 {
17180 case language_fortran:
17181 switch (bits)
17182 {
17183 case 32:
17184 tt = builtin_f_type (gdbarch)->builtin_real;
17185 break;
17186 case 64:
17187 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17188 break;
17189 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17190 case 128:
17191 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17192 break;
17193 }
17194 break;
17195 default:
17196 switch (bits)
17197 {
17198 case 32:
17199 tt = builtin_type (gdbarch)->builtin_float;
17200 break;
17201 case 64:
17202 tt = builtin_type (gdbarch)->builtin_double;
17203 break;
17204 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17205 case 128:
17206 tt = builtin_type (gdbarch)->builtin_long_double;
17207 break;
17208 }
17209 break;
17210 }
17211
17212 /* If the type we found doesn't match the size we were looking for, then
17213 pretend we didn't find a type at all, the complex target type we
17214 create will then be nameless. */
17215 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17216 tt = nullptr;
17217
17218 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17219 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17220 }
17221
17222 /* Find a representation of a given base type and install
17223 it in the TYPE field of the die. */
17224
17225 static struct type *
17226 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17227 {
17228 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17229 struct type *type;
17230 struct attribute *attr;
17231 int encoding = 0, bits = 0;
17232 const char *name;
17233 gdbarch *arch;
17234
17235 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17236 if (attr != nullptr)
17237 encoding = DW_UNSND (attr);
17238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17239 if (attr != nullptr)
17240 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17241 name = dwarf2_name (die, cu);
17242 if (!name)
17243 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17244
17245 arch = objfile->arch ();
17246 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17247
17248 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17249 if (attr)
17250 {
17251 int endianity = DW_UNSND (attr);
17252
17253 switch (endianity)
17254 {
17255 case DW_END_big:
17256 byte_order = BFD_ENDIAN_BIG;
17257 break;
17258 case DW_END_little:
17259 byte_order = BFD_ENDIAN_LITTLE;
17260 break;
17261 default:
17262 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17263 break;
17264 }
17265 }
17266
17267 switch (encoding)
17268 {
17269 case DW_ATE_address:
17270 /* Turn DW_ATE_address into a void * pointer. */
17271 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17272 type = init_pointer_type (objfile, bits, name, type);
17273 break;
17274 case DW_ATE_boolean:
17275 type = init_boolean_type (objfile, bits, 1, name);
17276 break;
17277 case DW_ATE_complex_float:
17278 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17279 byte_order);
17280 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
17281 {
17282 if (name == nullptr)
17283 {
17284 struct obstack *obstack
17285 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17286 name = obconcat (obstack, "_Complex ", TYPE_NAME (type),
17287 nullptr);
17288 }
17289 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17290 }
17291 else
17292 type = init_complex_type (name, type);
17293 break;
17294 case DW_ATE_decimal_float:
17295 type = init_decfloat_type (objfile, bits, name);
17296 break;
17297 case DW_ATE_float:
17298 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17299 break;
17300 case DW_ATE_signed:
17301 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17302 break;
17303 case DW_ATE_unsigned:
17304 if (cu->language == language_fortran
17305 && name
17306 && startswith (name, "character("))
17307 type = init_character_type (objfile, bits, 1, name);
17308 else
17309 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17310 break;
17311 case DW_ATE_signed_char:
17312 if (cu->language == language_ada || cu->language == language_m2
17313 || cu->language == language_pascal
17314 || cu->language == language_fortran)
17315 type = init_character_type (objfile, bits, 0, name);
17316 else
17317 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17318 break;
17319 case DW_ATE_unsigned_char:
17320 if (cu->language == language_ada || cu->language == language_m2
17321 || cu->language == language_pascal
17322 || cu->language == language_fortran
17323 || cu->language == language_rust)
17324 type = init_character_type (objfile, bits, 1, name);
17325 else
17326 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17327 break;
17328 case DW_ATE_UTF:
17329 {
17330 if (bits == 16)
17331 type = builtin_type (arch)->builtin_char16;
17332 else if (bits == 32)
17333 type = builtin_type (arch)->builtin_char32;
17334 else
17335 {
17336 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17337 bits);
17338 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17339 }
17340 return set_die_type (die, type, cu);
17341 }
17342 break;
17343
17344 default:
17345 complaint (_("unsupported DW_AT_encoding: '%s'"),
17346 dwarf_type_encoding_name (encoding));
17347 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17348 break;
17349 }
17350
17351 if (name && strcmp (name, "char") == 0)
17352 TYPE_NOSIGN (type) = 1;
17353
17354 maybe_set_alignment (cu, die, type);
17355
17356 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17357
17358 return set_die_type (die, type, cu);
17359 }
17360
17361 /* Parse dwarf attribute if it's a block, reference or constant and put the
17362 resulting value of the attribute into struct bound_prop.
17363 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17364
17365 static int
17366 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17367 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17368 struct type *default_type)
17369 {
17370 struct dwarf2_property_baton *baton;
17371 struct obstack *obstack
17372 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17373
17374 gdb_assert (default_type != NULL);
17375
17376 if (attr == NULL || prop == NULL)
17377 return 0;
17378
17379 if (attr->form_is_block ())
17380 {
17381 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17382 baton->property_type = default_type;
17383 baton->locexpr.per_cu = cu->per_cu;
17384 baton->locexpr.size = DW_BLOCK (attr)->size;
17385 baton->locexpr.data = DW_BLOCK (attr)->data;
17386 switch (attr->name)
17387 {
17388 case DW_AT_string_length:
17389 baton->locexpr.is_reference = true;
17390 break;
17391 default:
17392 baton->locexpr.is_reference = false;
17393 break;
17394 }
17395 prop->data.baton = baton;
17396 prop->kind = PROP_LOCEXPR;
17397 gdb_assert (prop->data.baton != NULL);
17398 }
17399 else if (attr->form_is_ref ())
17400 {
17401 struct dwarf2_cu *target_cu = cu;
17402 struct die_info *target_die;
17403 struct attribute *target_attr;
17404
17405 target_die = follow_die_ref (die, attr, &target_cu);
17406 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17407 if (target_attr == NULL)
17408 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17409 target_cu);
17410 if (target_attr == NULL)
17411 return 0;
17412
17413 switch (target_attr->name)
17414 {
17415 case DW_AT_location:
17416 if (target_attr->form_is_section_offset ())
17417 {
17418 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17419 baton->property_type = die_type (target_die, target_cu);
17420 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17421 prop->data.baton = baton;
17422 prop->kind = PROP_LOCLIST;
17423 gdb_assert (prop->data.baton != NULL);
17424 }
17425 else if (target_attr->form_is_block ())
17426 {
17427 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17428 baton->property_type = die_type (target_die, target_cu);
17429 baton->locexpr.per_cu = cu->per_cu;
17430 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17431 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17432 baton->locexpr.is_reference = true;
17433 prop->data.baton = baton;
17434 prop->kind = PROP_LOCEXPR;
17435 gdb_assert (prop->data.baton != NULL);
17436 }
17437 else
17438 {
17439 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17440 "dynamic property");
17441 return 0;
17442 }
17443 break;
17444 case DW_AT_data_member_location:
17445 {
17446 LONGEST offset;
17447
17448 if (!handle_data_member_location (target_die, target_cu,
17449 &offset))
17450 return 0;
17451
17452 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17453 baton->property_type = read_type_die (target_die->parent,
17454 target_cu);
17455 baton->offset_info.offset = offset;
17456 baton->offset_info.type = die_type (target_die, target_cu);
17457 prop->data.baton = baton;
17458 prop->kind = PROP_ADDR_OFFSET;
17459 break;
17460 }
17461 }
17462 }
17463 else if (attr->form_is_constant ())
17464 {
17465 prop->data.const_val = attr->constant_value (0);
17466 prop->kind = PROP_CONST;
17467 }
17468 else
17469 {
17470 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17471 dwarf2_name (die, cu));
17472 return 0;
17473 }
17474
17475 return 1;
17476 }
17477
17478 /* See read.h. */
17479
17480 struct type *
17481 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17482 {
17483 struct objfile *objfile = dwarf2_per_objfile->objfile;
17484 struct type *int_type;
17485
17486 /* Helper macro to examine the various builtin types. */
17487 #define TRY_TYPE(F) \
17488 int_type = (unsigned_p \
17489 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17490 : objfile_type (objfile)->builtin_ ## F); \
17491 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17492 return int_type
17493
17494 TRY_TYPE (char);
17495 TRY_TYPE (short);
17496 TRY_TYPE (int);
17497 TRY_TYPE (long);
17498 TRY_TYPE (long_long);
17499
17500 #undef TRY_TYPE
17501
17502 gdb_assert_not_reached ("unable to find suitable integer type");
17503 }
17504
17505 /* See read.h. */
17506
17507 struct type *
17508 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17509 {
17510 int addr_size = this->addr_size ();
17511 return int_type (addr_size, unsigned_p);
17512 }
17513
17514 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17515 present (which is valid) then compute the default type based on the
17516 compilation units address size. */
17517
17518 static struct type *
17519 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17520 {
17521 struct type *index_type = die_type (die, cu);
17522
17523 /* Dwarf-2 specifications explicitly allows to create subrange types
17524 without specifying a base type.
17525 In that case, the base type must be set to the type of
17526 the lower bound, upper bound or count, in that order, if any of these
17527 three attributes references an object that has a type.
17528 If no base type is found, the Dwarf-2 specifications say that
17529 a signed integer type of size equal to the size of an address should
17530 be used.
17531 For the following C code: `extern char gdb_int [];'
17532 GCC produces an empty range DIE.
17533 FIXME: muller/2010-05-28: Possible references to object for low bound,
17534 high bound or count are not yet handled by this code. */
17535 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17536 index_type = cu->per_cu->addr_sized_int_type (false);
17537
17538 return index_type;
17539 }
17540
17541 /* Read the given DW_AT_subrange DIE. */
17542
17543 static struct type *
17544 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17545 {
17546 struct type *base_type, *orig_base_type;
17547 struct type *range_type;
17548 struct attribute *attr;
17549 struct dynamic_prop low, high;
17550 int low_default_is_valid;
17551 int high_bound_is_count = 0;
17552 const char *name;
17553 ULONGEST negative_mask;
17554
17555 orig_base_type = read_subrange_index_type (die, cu);
17556
17557 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17558 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17559 creating the range type, but we use the result of check_typedef
17560 when examining properties of the type. */
17561 base_type = check_typedef (orig_base_type);
17562
17563 /* The die_type call above may have already set the type for this DIE. */
17564 range_type = get_die_type (die, cu);
17565 if (range_type)
17566 return range_type;
17567
17568 low.kind = PROP_CONST;
17569 high.kind = PROP_CONST;
17570 high.data.const_val = 0;
17571
17572 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17573 omitting DW_AT_lower_bound. */
17574 switch (cu->language)
17575 {
17576 case language_c:
17577 case language_cplus:
17578 low.data.const_val = 0;
17579 low_default_is_valid = 1;
17580 break;
17581 case language_fortran:
17582 low.data.const_val = 1;
17583 low_default_is_valid = 1;
17584 break;
17585 case language_d:
17586 case language_objc:
17587 case language_rust:
17588 low.data.const_val = 0;
17589 low_default_is_valid = (cu->header.version >= 4);
17590 break;
17591 case language_ada:
17592 case language_m2:
17593 case language_pascal:
17594 low.data.const_val = 1;
17595 low_default_is_valid = (cu->header.version >= 4);
17596 break;
17597 default:
17598 low.data.const_val = 0;
17599 low_default_is_valid = 0;
17600 break;
17601 }
17602
17603 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17604 if (attr != nullptr)
17605 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17606 else if (!low_default_is_valid)
17607 complaint (_("Missing DW_AT_lower_bound "
17608 "- DIE at %s [in module %s]"),
17609 sect_offset_str (die->sect_off),
17610 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17611
17612 struct attribute *attr_ub, *attr_count;
17613 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17614 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17615 {
17616 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17617 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17618 {
17619 /* If bounds are constant do the final calculation here. */
17620 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17621 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17622 else
17623 high_bound_is_count = 1;
17624 }
17625 else
17626 {
17627 if (attr_ub != NULL)
17628 complaint (_("Unresolved DW_AT_upper_bound "
17629 "- DIE at %s [in module %s]"),
17630 sect_offset_str (die->sect_off),
17631 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17632 if (attr_count != NULL)
17633 complaint (_("Unresolved DW_AT_count "
17634 "- DIE at %s [in module %s]"),
17635 sect_offset_str (die->sect_off),
17636 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17637 }
17638 }
17639
17640 LONGEST bias = 0;
17641 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17642 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17643 bias = bias_attr->constant_value (0);
17644
17645 /* Normally, the DWARF producers are expected to use a signed
17646 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17647 But this is unfortunately not always the case, as witnessed
17648 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17649 is used instead. To work around that ambiguity, we treat
17650 the bounds as signed, and thus sign-extend their values, when
17651 the base type is signed. */
17652 negative_mask =
17653 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17654 if (low.kind == PROP_CONST
17655 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17656 low.data.const_val |= negative_mask;
17657 if (high.kind == PROP_CONST
17658 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17659 high.data.const_val |= negative_mask;
17660
17661 /* Check for bit and byte strides. */
17662 struct dynamic_prop byte_stride_prop;
17663 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17664 if (attr_byte_stride != nullptr)
17665 {
17666 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17667 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17668 prop_type);
17669 }
17670
17671 struct dynamic_prop bit_stride_prop;
17672 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17673 if (attr_bit_stride != nullptr)
17674 {
17675 /* It only makes sense to have either a bit or byte stride. */
17676 if (attr_byte_stride != nullptr)
17677 {
17678 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17679 "- DIE at %s [in module %s]"),
17680 sect_offset_str (die->sect_off),
17681 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17682 attr_bit_stride = nullptr;
17683 }
17684 else
17685 {
17686 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17687 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17688 prop_type);
17689 }
17690 }
17691
17692 if (attr_byte_stride != nullptr
17693 || attr_bit_stride != nullptr)
17694 {
17695 bool byte_stride_p = (attr_byte_stride != nullptr);
17696 struct dynamic_prop *stride
17697 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17698
17699 range_type
17700 = create_range_type_with_stride (NULL, orig_base_type, &low,
17701 &high, bias, stride, byte_stride_p);
17702 }
17703 else
17704 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17705
17706 if (high_bound_is_count)
17707 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17708
17709 /* Ada expects an empty array on no boundary attributes. */
17710 if (attr == NULL && cu->language != language_ada)
17711 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17712
17713 name = dwarf2_name (die, cu);
17714 if (name)
17715 TYPE_NAME (range_type) = name;
17716
17717 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17718 if (attr != nullptr)
17719 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17720
17721 maybe_set_alignment (cu, die, range_type);
17722
17723 set_die_type (die, range_type, cu);
17724
17725 /* set_die_type should be already done. */
17726 set_descriptive_type (range_type, die, cu);
17727
17728 return range_type;
17729 }
17730
17731 static struct type *
17732 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17733 {
17734 struct type *type;
17735
17736 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17737 NULL);
17738 TYPE_NAME (type) = dwarf2_name (die, cu);
17739
17740 /* In Ada, an unspecified type is typically used when the description
17741 of the type is deferred to a different unit. When encountering
17742 such a type, we treat it as a stub, and try to resolve it later on,
17743 when needed. */
17744 if (cu->language == language_ada)
17745 TYPE_STUB (type) = 1;
17746
17747 return set_die_type (die, type, cu);
17748 }
17749
17750 /* Read a single die and all its descendents. Set the die's sibling
17751 field to NULL; set other fields in the die correctly, and set all
17752 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17753 location of the info_ptr after reading all of those dies. PARENT
17754 is the parent of the die in question. */
17755
17756 static struct die_info *
17757 read_die_and_children (const struct die_reader_specs *reader,
17758 const gdb_byte *info_ptr,
17759 const gdb_byte **new_info_ptr,
17760 struct die_info *parent)
17761 {
17762 struct die_info *die;
17763 const gdb_byte *cur_ptr;
17764
17765 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17766 if (die == NULL)
17767 {
17768 *new_info_ptr = cur_ptr;
17769 return NULL;
17770 }
17771 store_in_ref_table (die, reader->cu);
17772
17773 if (die->has_children)
17774 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17775 else
17776 {
17777 die->child = NULL;
17778 *new_info_ptr = cur_ptr;
17779 }
17780
17781 die->sibling = NULL;
17782 die->parent = parent;
17783 return die;
17784 }
17785
17786 /* Read a die, all of its descendents, and all of its siblings; set
17787 all of the fields of all of the dies correctly. Arguments are as
17788 in read_die_and_children. */
17789
17790 static struct die_info *
17791 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17792 const gdb_byte *info_ptr,
17793 const gdb_byte **new_info_ptr,
17794 struct die_info *parent)
17795 {
17796 struct die_info *first_die, *last_sibling;
17797 const gdb_byte *cur_ptr;
17798
17799 cur_ptr = info_ptr;
17800 first_die = last_sibling = NULL;
17801
17802 while (1)
17803 {
17804 struct die_info *die
17805 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17806
17807 if (die == NULL)
17808 {
17809 *new_info_ptr = cur_ptr;
17810 return first_die;
17811 }
17812
17813 if (!first_die)
17814 first_die = die;
17815 else
17816 last_sibling->sibling = die;
17817
17818 last_sibling = die;
17819 }
17820 }
17821
17822 /* Read a die, all of its descendents, and all of its siblings; set
17823 all of the fields of all of the dies correctly. Arguments are as
17824 in read_die_and_children.
17825 This the main entry point for reading a DIE and all its children. */
17826
17827 static struct die_info *
17828 read_die_and_siblings (const struct die_reader_specs *reader,
17829 const gdb_byte *info_ptr,
17830 const gdb_byte **new_info_ptr,
17831 struct die_info *parent)
17832 {
17833 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17834 new_info_ptr, parent);
17835
17836 if (dwarf_die_debug)
17837 {
17838 fprintf_unfiltered (gdb_stdlog,
17839 "Read die from %s@0x%x of %s:\n",
17840 reader->die_section->get_name (),
17841 (unsigned) (info_ptr - reader->die_section->buffer),
17842 bfd_get_filename (reader->abfd));
17843 dump_die (die, dwarf_die_debug);
17844 }
17845
17846 return die;
17847 }
17848
17849 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17850 attributes.
17851 The caller is responsible for filling in the extra attributes
17852 and updating (*DIEP)->num_attrs.
17853 Set DIEP to point to a newly allocated die with its information,
17854 except for its child, sibling, and parent fields. */
17855
17856 static const gdb_byte *
17857 read_full_die_1 (const struct die_reader_specs *reader,
17858 struct die_info **diep, const gdb_byte *info_ptr,
17859 int num_extra_attrs)
17860 {
17861 unsigned int abbrev_number, bytes_read, i;
17862 struct abbrev_info *abbrev;
17863 struct die_info *die;
17864 struct dwarf2_cu *cu = reader->cu;
17865 bfd *abfd = reader->abfd;
17866
17867 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17868 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17869 info_ptr += bytes_read;
17870 if (!abbrev_number)
17871 {
17872 *diep = NULL;
17873 return info_ptr;
17874 }
17875
17876 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17877 if (!abbrev)
17878 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17879 abbrev_number,
17880 bfd_get_filename (abfd));
17881
17882 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17883 die->sect_off = sect_off;
17884 die->tag = abbrev->tag;
17885 die->abbrev = abbrev_number;
17886 die->has_children = abbrev->has_children;
17887
17888 /* Make the result usable.
17889 The caller needs to update num_attrs after adding the extra
17890 attributes. */
17891 die->num_attrs = abbrev->num_attrs;
17892
17893 std::vector<int> indexes_that_need_reprocess;
17894 for (i = 0; i < abbrev->num_attrs; ++i)
17895 {
17896 bool need_reprocess;
17897 info_ptr =
17898 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17899 info_ptr, &need_reprocess);
17900 if (need_reprocess)
17901 indexes_that_need_reprocess.push_back (i);
17902 }
17903
17904 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17905 if (attr != nullptr)
17906 cu->str_offsets_base = DW_UNSND (attr);
17907
17908 attr = die->attr (DW_AT_loclists_base);
17909 if (attr != nullptr)
17910 cu->loclist_base = DW_UNSND (attr);
17911
17912 auto maybe_addr_base = die->addr_base ();
17913 if (maybe_addr_base.has_value ())
17914 cu->addr_base = *maybe_addr_base;
17915 for (int index : indexes_that_need_reprocess)
17916 read_attribute_reprocess (reader, &die->attrs[index]);
17917 *diep = die;
17918 return info_ptr;
17919 }
17920
17921 /* Read a die and all its attributes.
17922 Set DIEP to point to a newly allocated die with its information,
17923 except for its child, sibling, and parent fields. */
17924
17925 static const gdb_byte *
17926 read_full_die (const struct die_reader_specs *reader,
17927 struct die_info **diep, const gdb_byte *info_ptr)
17928 {
17929 const gdb_byte *result;
17930
17931 result = read_full_die_1 (reader, diep, info_ptr, 0);
17932
17933 if (dwarf_die_debug)
17934 {
17935 fprintf_unfiltered (gdb_stdlog,
17936 "Read die from %s@0x%x of %s:\n",
17937 reader->die_section->get_name (),
17938 (unsigned) (info_ptr - reader->die_section->buffer),
17939 bfd_get_filename (reader->abfd));
17940 dump_die (*diep, dwarf_die_debug);
17941 }
17942
17943 return result;
17944 }
17945 \f
17946
17947 /* Returns nonzero if TAG represents a type that we might generate a partial
17948 symbol for. */
17949
17950 static int
17951 is_type_tag_for_partial (int tag)
17952 {
17953 switch (tag)
17954 {
17955 #if 0
17956 /* Some types that would be reasonable to generate partial symbols for,
17957 that we don't at present. */
17958 case DW_TAG_array_type:
17959 case DW_TAG_file_type:
17960 case DW_TAG_ptr_to_member_type:
17961 case DW_TAG_set_type:
17962 case DW_TAG_string_type:
17963 case DW_TAG_subroutine_type:
17964 #endif
17965 case DW_TAG_base_type:
17966 case DW_TAG_class_type:
17967 case DW_TAG_interface_type:
17968 case DW_TAG_enumeration_type:
17969 case DW_TAG_structure_type:
17970 case DW_TAG_subrange_type:
17971 case DW_TAG_typedef:
17972 case DW_TAG_union_type:
17973 return 1;
17974 default:
17975 return 0;
17976 }
17977 }
17978
17979 /* Load all DIEs that are interesting for partial symbols into memory. */
17980
17981 static struct partial_die_info *
17982 load_partial_dies (const struct die_reader_specs *reader,
17983 const gdb_byte *info_ptr, int building_psymtab)
17984 {
17985 struct dwarf2_cu *cu = reader->cu;
17986 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17987 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17988 unsigned int bytes_read;
17989 unsigned int load_all = 0;
17990 int nesting_level = 1;
17991
17992 parent_die = NULL;
17993 last_die = NULL;
17994
17995 gdb_assert (cu->per_cu != NULL);
17996 if (cu->per_cu->load_all_dies)
17997 load_all = 1;
17998
17999 cu->partial_dies
18000 = htab_create_alloc_ex (cu->header.length / 12,
18001 partial_die_hash,
18002 partial_die_eq,
18003 NULL,
18004 &cu->comp_unit_obstack,
18005 hashtab_obstack_allocate,
18006 dummy_obstack_deallocate);
18007
18008 while (1)
18009 {
18010 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18011
18012 /* A NULL abbrev means the end of a series of children. */
18013 if (abbrev == NULL)
18014 {
18015 if (--nesting_level == 0)
18016 return first_die;
18017
18018 info_ptr += bytes_read;
18019 last_die = parent_die;
18020 parent_die = parent_die->die_parent;
18021 continue;
18022 }
18023
18024 /* Check for template arguments. We never save these; if
18025 they're seen, we just mark the parent, and go on our way. */
18026 if (parent_die != NULL
18027 && cu->language == language_cplus
18028 && (abbrev->tag == DW_TAG_template_type_param
18029 || abbrev->tag == DW_TAG_template_value_param))
18030 {
18031 parent_die->has_template_arguments = 1;
18032
18033 if (!load_all)
18034 {
18035 /* We don't need a partial DIE for the template argument. */
18036 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18037 continue;
18038 }
18039 }
18040
18041 /* We only recurse into c++ subprograms looking for template arguments.
18042 Skip their other children. */
18043 if (!load_all
18044 && cu->language == language_cplus
18045 && parent_die != NULL
18046 && parent_die->tag == DW_TAG_subprogram)
18047 {
18048 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18049 continue;
18050 }
18051
18052 /* Check whether this DIE is interesting enough to save. Normally
18053 we would not be interested in members here, but there may be
18054 later variables referencing them via DW_AT_specification (for
18055 static members). */
18056 if (!load_all
18057 && !is_type_tag_for_partial (abbrev->tag)
18058 && abbrev->tag != DW_TAG_constant
18059 && abbrev->tag != DW_TAG_enumerator
18060 && abbrev->tag != DW_TAG_subprogram
18061 && abbrev->tag != DW_TAG_inlined_subroutine
18062 && abbrev->tag != DW_TAG_lexical_block
18063 && abbrev->tag != DW_TAG_variable
18064 && abbrev->tag != DW_TAG_namespace
18065 && abbrev->tag != DW_TAG_module
18066 && abbrev->tag != DW_TAG_member
18067 && abbrev->tag != DW_TAG_imported_unit
18068 && abbrev->tag != DW_TAG_imported_declaration)
18069 {
18070 /* Otherwise we skip to the next sibling, if any. */
18071 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18072 continue;
18073 }
18074
18075 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18076 abbrev);
18077
18078 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18079
18080 /* This two-pass algorithm for processing partial symbols has a
18081 high cost in cache pressure. Thus, handle some simple cases
18082 here which cover the majority of C partial symbols. DIEs
18083 which neither have specification tags in them, nor could have
18084 specification tags elsewhere pointing at them, can simply be
18085 processed and discarded.
18086
18087 This segment is also optional; scan_partial_symbols and
18088 add_partial_symbol will handle these DIEs if we chain
18089 them in normally. When compilers which do not emit large
18090 quantities of duplicate debug information are more common,
18091 this code can probably be removed. */
18092
18093 /* Any complete simple types at the top level (pretty much all
18094 of them, for a language without namespaces), can be processed
18095 directly. */
18096 if (parent_die == NULL
18097 && pdi.has_specification == 0
18098 && pdi.is_declaration == 0
18099 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18100 || pdi.tag == DW_TAG_base_type
18101 || pdi.tag == DW_TAG_subrange_type))
18102 {
18103 if (building_psymtab && pdi.name != NULL)
18104 add_psymbol_to_list (pdi.name, false,
18105 VAR_DOMAIN, LOC_TYPEDEF, -1,
18106 psymbol_placement::STATIC,
18107 0, cu->language, objfile);
18108 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18109 continue;
18110 }
18111
18112 /* The exception for DW_TAG_typedef with has_children above is
18113 a workaround of GCC PR debug/47510. In the case of this complaint
18114 type_name_or_error will error on such types later.
18115
18116 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18117 it could not find the child DIEs referenced later, this is checked
18118 above. In correct DWARF DW_TAG_typedef should have no children. */
18119
18120 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18121 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18122 "- DIE at %s [in module %s]"),
18123 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18124
18125 /* If we're at the second level, and we're an enumerator, and
18126 our parent has no specification (meaning possibly lives in a
18127 namespace elsewhere), then we can add the partial symbol now
18128 instead of queueing it. */
18129 if (pdi.tag == DW_TAG_enumerator
18130 && parent_die != NULL
18131 && parent_die->die_parent == NULL
18132 && parent_die->tag == DW_TAG_enumeration_type
18133 && parent_die->has_specification == 0)
18134 {
18135 if (pdi.name == NULL)
18136 complaint (_("malformed enumerator DIE ignored"));
18137 else if (building_psymtab)
18138 add_psymbol_to_list (pdi.name, false,
18139 VAR_DOMAIN, LOC_CONST, -1,
18140 cu->language == language_cplus
18141 ? psymbol_placement::GLOBAL
18142 : psymbol_placement::STATIC,
18143 0, cu->language, objfile);
18144
18145 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18146 continue;
18147 }
18148
18149 struct partial_die_info *part_die
18150 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18151
18152 /* We'll save this DIE so link it in. */
18153 part_die->die_parent = parent_die;
18154 part_die->die_sibling = NULL;
18155 part_die->die_child = NULL;
18156
18157 if (last_die && last_die == parent_die)
18158 last_die->die_child = part_die;
18159 else if (last_die)
18160 last_die->die_sibling = part_die;
18161
18162 last_die = part_die;
18163
18164 if (first_die == NULL)
18165 first_die = part_die;
18166
18167 /* Maybe add the DIE to the hash table. Not all DIEs that we
18168 find interesting need to be in the hash table, because we
18169 also have the parent/sibling/child chains; only those that we
18170 might refer to by offset later during partial symbol reading.
18171
18172 For now this means things that might have be the target of a
18173 DW_AT_specification, DW_AT_abstract_origin, or
18174 DW_AT_extension. DW_AT_extension will refer only to
18175 namespaces; DW_AT_abstract_origin refers to functions (and
18176 many things under the function DIE, but we do not recurse
18177 into function DIEs during partial symbol reading) and
18178 possibly variables as well; DW_AT_specification refers to
18179 declarations. Declarations ought to have the DW_AT_declaration
18180 flag. It happens that GCC forgets to put it in sometimes, but
18181 only for functions, not for types.
18182
18183 Adding more things than necessary to the hash table is harmless
18184 except for the performance cost. Adding too few will result in
18185 wasted time in find_partial_die, when we reread the compilation
18186 unit with load_all_dies set. */
18187
18188 if (load_all
18189 || abbrev->tag == DW_TAG_constant
18190 || abbrev->tag == DW_TAG_subprogram
18191 || abbrev->tag == DW_TAG_variable
18192 || abbrev->tag == DW_TAG_namespace
18193 || part_die->is_declaration)
18194 {
18195 void **slot;
18196
18197 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18198 to_underlying (part_die->sect_off),
18199 INSERT);
18200 *slot = part_die;
18201 }
18202
18203 /* For some DIEs we want to follow their children (if any). For C
18204 we have no reason to follow the children of structures; for other
18205 languages we have to, so that we can get at method physnames
18206 to infer fully qualified class names, for DW_AT_specification,
18207 and for C++ template arguments. For C++, we also look one level
18208 inside functions to find template arguments (if the name of the
18209 function does not already contain the template arguments).
18210
18211 For Ada and Fortran, we need to scan the children of subprograms
18212 and lexical blocks as well because these languages allow the
18213 definition of nested entities that could be interesting for the
18214 debugger, such as nested subprograms for instance. */
18215 if (last_die->has_children
18216 && (load_all
18217 || last_die->tag == DW_TAG_namespace
18218 || last_die->tag == DW_TAG_module
18219 || last_die->tag == DW_TAG_enumeration_type
18220 || (cu->language == language_cplus
18221 && last_die->tag == DW_TAG_subprogram
18222 && (last_die->name == NULL
18223 || strchr (last_die->name, '<') == NULL))
18224 || (cu->language != language_c
18225 && (last_die->tag == DW_TAG_class_type
18226 || last_die->tag == DW_TAG_interface_type
18227 || last_die->tag == DW_TAG_structure_type
18228 || last_die->tag == DW_TAG_union_type))
18229 || ((cu->language == language_ada
18230 || cu->language == language_fortran)
18231 && (last_die->tag == DW_TAG_subprogram
18232 || last_die->tag == DW_TAG_lexical_block))))
18233 {
18234 nesting_level++;
18235 parent_die = last_die;
18236 continue;
18237 }
18238
18239 /* Otherwise we skip to the next sibling, if any. */
18240 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18241
18242 /* Back to the top, do it again. */
18243 }
18244 }
18245
18246 partial_die_info::partial_die_info (sect_offset sect_off_,
18247 struct abbrev_info *abbrev)
18248 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18249 {
18250 }
18251
18252 /* Read a minimal amount of information into the minimal die structure.
18253 INFO_PTR should point just after the initial uleb128 of a DIE. */
18254
18255 const gdb_byte *
18256 partial_die_info::read (const struct die_reader_specs *reader,
18257 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18258 {
18259 struct dwarf2_cu *cu = reader->cu;
18260 struct dwarf2_per_objfile *dwarf2_per_objfile
18261 = cu->per_cu->dwarf2_per_objfile;
18262 unsigned int i;
18263 int has_low_pc_attr = 0;
18264 int has_high_pc_attr = 0;
18265 int high_pc_relative = 0;
18266
18267 for (i = 0; i < abbrev.num_attrs; ++i)
18268 {
18269 attribute attr;
18270 bool need_reprocess;
18271 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18272 info_ptr, &need_reprocess);
18273 /* String and address offsets that need to do the reprocessing have
18274 already been read at this point, so there is no need to wait until
18275 the loop terminates to do the reprocessing. */
18276 if (need_reprocess)
18277 read_attribute_reprocess (reader, &attr);
18278 /* Store the data if it is of an attribute we want to keep in a
18279 partial symbol table. */
18280 switch (attr.name)
18281 {
18282 case DW_AT_name:
18283 switch (tag)
18284 {
18285 case DW_TAG_compile_unit:
18286 case DW_TAG_partial_unit:
18287 case DW_TAG_type_unit:
18288 /* Compilation units have a DW_AT_name that is a filename, not
18289 a source language identifier. */
18290 case DW_TAG_enumeration_type:
18291 case DW_TAG_enumerator:
18292 /* These tags always have simple identifiers already; no need
18293 to canonicalize them. */
18294 name = DW_STRING (&attr);
18295 break;
18296 default:
18297 {
18298 struct objfile *objfile = dwarf2_per_objfile->objfile;
18299
18300 name
18301 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18302 }
18303 break;
18304 }
18305 break;
18306 case DW_AT_linkage_name:
18307 case DW_AT_MIPS_linkage_name:
18308 /* Note that both forms of linkage name might appear. We
18309 assume they will be the same, and we only store the last
18310 one we see. */
18311 linkage_name = attr.value_as_string ();
18312 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18313 See https://github.com/rust-lang/rust/issues/32925. */
18314 if (cu->language == language_rust && linkage_name != NULL
18315 && strchr (linkage_name, '{') != NULL)
18316 linkage_name = NULL;
18317 break;
18318 case DW_AT_low_pc:
18319 has_low_pc_attr = 1;
18320 lowpc = attr.value_as_address ();
18321 break;
18322 case DW_AT_high_pc:
18323 has_high_pc_attr = 1;
18324 highpc = attr.value_as_address ();
18325 if (cu->header.version >= 4 && attr.form_is_constant ())
18326 high_pc_relative = 1;
18327 break;
18328 case DW_AT_location:
18329 /* Support the .debug_loc offsets. */
18330 if (attr.form_is_block ())
18331 {
18332 d.locdesc = DW_BLOCK (&attr);
18333 }
18334 else if (attr.form_is_section_offset ())
18335 {
18336 dwarf2_complex_location_expr_complaint ();
18337 }
18338 else
18339 {
18340 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18341 "partial symbol information");
18342 }
18343 break;
18344 case DW_AT_external:
18345 is_external = DW_UNSND (&attr);
18346 break;
18347 case DW_AT_declaration:
18348 is_declaration = DW_UNSND (&attr);
18349 break;
18350 case DW_AT_type:
18351 has_type = 1;
18352 break;
18353 case DW_AT_abstract_origin:
18354 case DW_AT_specification:
18355 case DW_AT_extension:
18356 has_specification = 1;
18357 spec_offset = attr.get_ref_die_offset ();
18358 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18359 || cu->per_cu->is_dwz);
18360 break;
18361 case DW_AT_sibling:
18362 /* Ignore absolute siblings, they might point outside of
18363 the current compile unit. */
18364 if (attr.form == DW_FORM_ref_addr)
18365 complaint (_("ignoring absolute DW_AT_sibling"));
18366 else
18367 {
18368 const gdb_byte *buffer = reader->buffer;
18369 sect_offset off = attr.get_ref_die_offset ();
18370 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18371
18372 if (sibling_ptr < info_ptr)
18373 complaint (_("DW_AT_sibling points backwards"));
18374 else if (sibling_ptr > reader->buffer_end)
18375 reader->die_section->overflow_complaint ();
18376 else
18377 sibling = sibling_ptr;
18378 }
18379 break;
18380 case DW_AT_byte_size:
18381 has_byte_size = 1;
18382 break;
18383 case DW_AT_const_value:
18384 has_const_value = 1;
18385 break;
18386 case DW_AT_calling_convention:
18387 /* DWARF doesn't provide a way to identify a program's source-level
18388 entry point. DW_AT_calling_convention attributes are only meant
18389 to describe functions' calling conventions.
18390
18391 However, because it's a necessary piece of information in
18392 Fortran, and before DWARF 4 DW_CC_program was the only
18393 piece of debugging information whose definition refers to
18394 a 'main program' at all, several compilers marked Fortran
18395 main programs with DW_CC_program --- even when those
18396 functions use the standard calling conventions.
18397
18398 Although DWARF now specifies a way to provide this
18399 information, we support this practice for backward
18400 compatibility. */
18401 if (DW_UNSND (&attr) == DW_CC_program
18402 && cu->language == language_fortran)
18403 main_subprogram = 1;
18404 break;
18405 case DW_AT_inline:
18406 if (DW_UNSND (&attr) == DW_INL_inlined
18407 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18408 may_be_inlined = 1;
18409 break;
18410
18411 case DW_AT_import:
18412 if (tag == DW_TAG_imported_unit)
18413 {
18414 d.sect_off = attr.get_ref_die_offset ();
18415 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18416 || cu->per_cu->is_dwz);
18417 }
18418 break;
18419
18420 case DW_AT_main_subprogram:
18421 main_subprogram = DW_UNSND (&attr);
18422 break;
18423
18424 case DW_AT_ranges:
18425 {
18426 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18427 but that requires a full DIE, so instead we just
18428 reimplement it. */
18429 int need_ranges_base = tag != DW_TAG_compile_unit;
18430 unsigned int ranges_offset = (DW_UNSND (&attr)
18431 + (need_ranges_base
18432 ? cu->ranges_base
18433 : 0));
18434
18435 /* Value of the DW_AT_ranges attribute is the offset in the
18436 .debug_ranges section. */
18437 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18438 nullptr))
18439 has_pc_info = 1;
18440 }
18441 break;
18442
18443 default:
18444 break;
18445 }
18446 }
18447
18448 /* For Ada, if both the name and the linkage name appear, we prefer
18449 the latter. This lets "catch exception" work better, regardless
18450 of the order in which the name and linkage name were emitted.
18451 Really, though, this is just a workaround for the fact that gdb
18452 doesn't store both the name and the linkage name. */
18453 if (cu->language == language_ada && linkage_name != nullptr)
18454 name = linkage_name;
18455
18456 if (high_pc_relative)
18457 highpc += lowpc;
18458
18459 if (has_low_pc_attr && has_high_pc_attr)
18460 {
18461 /* When using the GNU linker, .gnu.linkonce. sections are used to
18462 eliminate duplicate copies of functions and vtables and such.
18463 The linker will arbitrarily choose one and discard the others.
18464 The AT_*_pc values for such functions refer to local labels in
18465 these sections. If the section from that file was discarded, the
18466 labels are not in the output, so the relocs get a value of 0.
18467 If this is a discarded function, mark the pc bounds as invalid,
18468 so that GDB will ignore it. */
18469 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18470 {
18471 struct objfile *objfile = dwarf2_per_objfile->objfile;
18472 struct gdbarch *gdbarch = objfile->arch ();
18473
18474 complaint (_("DW_AT_low_pc %s is zero "
18475 "for DIE at %s [in module %s]"),
18476 paddress (gdbarch, lowpc),
18477 sect_offset_str (sect_off),
18478 objfile_name (objfile));
18479 }
18480 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18481 else if (lowpc >= highpc)
18482 {
18483 struct objfile *objfile = dwarf2_per_objfile->objfile;
18484 struct gdbarch *gdbarch = objfile->arch ();
18485
18486 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18487 "for DIE at %s [in module %s]"),
18488 paddress (gdbarch, lowpc),
18489 paddress (gdbarch, highpc),
18490 sect_offset_str (sect_off),
18491 objfile_name (objfile));
18492 }
18493 else
18494 has_pc_info = 1;
18495 }
18496
18497 return info_ptr;
18498 }
18499
18500 /* Find a cached partial DIE at OFFSET in CU. */
18501
18502 struct partial_die_info *
18503 dwarf2_cu::find_partial_die (sect_offset sect_off)
18504 {
18505 struct partial_die_info *lookup_die = NULL;
18506 struct partial_die_info part_die (sect_off);
18507
18508 lookup_die = ((struct partial_die_info *)
18509 htab_find_with_hash (partial_dies, &part_die,
18510 to_underlying (sect_off)));
18511
18512 return lookup_die;
18513 }
18514
18515 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18516 except in the case of .debug_types DIEs which do not reference
18517 outside their CU (they do however referencing other types via
18518 DW_FORM_ref_sig8). */
18519
18520 static const struct cu_partial_die_info
18521 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18522 {
18523 struct dwarf2_per_objfile *dwarf2_per_objfile
18524 = cu->per_cu->dwarf2_per_objfile;
18525 struct objfile *objfile = dwarf2_per_objfile->objfile;
18526 struct dwarf2_per_cu_data *per_cu = NULL;
18527 struct partial_die_info *pd = NULL;
18528
18529 if (offset_in_dwz == cu->per_cu->is_dwz
18530 && cu->header.offset_in_cu_p (sect_off))
18531 {
18532 pd = cu->find_partial_die (sect_off);
18533 if (pd != NULL)
18534 return { cu, pd };
18535 /* We missed recording what we needed.
18536 Load all dies and try again. */
18537 per_cu = cu->per_cu;
18538 }
18539 else
18540 {
18541 /* TUs don't reference other CUs/TUs (except via type signatures). */
18542 if (cu->per_cu->is_debug_types)
18543 {
18544 error (_("Dwarf Error: Type Unit at offset %s contains"
18545 " external reference to offset %s [in module %s].\n"),
18546 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18547 bfd_get_filename (objfile->obfd));
18548 }
18549 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18550 dwarf2_per_objfile);
18551
18552 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18553 load_partial_comp_unit (per_cu);
18554
18555 per_cu->cu->last_used = 0;
18556 pd = per_cu->cu->find_partial_die (sect_off);
18557 }
18558
18559 /* If we didn't find it, and not all dies have been loaded,
18560 load them all and try again. */
18561
18562 if (pd == NULL && per_cu->load_all_dies == 0)
18563 {
18564 per_cu->load_all_dies = 1;
18565
18566 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18567 THIS_CU->cu may already be in use. So we can't just free it and
18568 replace its DIEs with the ones we read in. Instead, we leave those
18569 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18570 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18571 set. */
18572 load_partial_comp_unit (per_cu);
18573
18574 pd = per_cu->cu->find_partial_die (sect_off);
18575 }
18576
18577 if (pd == NULL)
18578 internal_error (__FILE__, __LINE__,
18579 _("could not find partial DIE %s "
18580 "in cache [from module %s]\n"),
18581 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18582 return { per_cu->cu, pd };
18583 }
18584
18585 /* See if we can figure out if the class lives in a namespace. We do
18586 this by looking for a member function; its demangled name will
18587 contain namespace info, if there is any. */
18588
18589 static void
18590 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18591 struct dwarf2_cu *cu)
18592 {
18593 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18594 what template types look like, because the demangler
18595 frequently doesn't give the same name as the debug info. We
18596 could fix this by only using the demangled name to get the
18597 prefix (but see comment in read_structure_type). */
18598
18599 struct partial_die_info *real_pdi;
18600 struct partial_die_info *child_pdi;
18601
18602 /* If this DIE (this DIE's specification, if any) has a parent, then
18603 we should not do this. We'll prepend the parent's fully qualified
18604 name when we create the partial symbol. */
18605
18606 real_pdi = struct_pdi;
18607 while (real_pdi->has_specification)
18608 {
18609 auto res = find_partial_die (real_pdi->spec_offset,
18610 real_pdi->spec_is_dwz, cu);
18611 real_pdi = res.pdi;
18612 cu = res.cu;
18613 }
18614
18615 if (real_pdi->die_parent != NULL)
18616 return;
18617
18618 for (child_pdi = struct_pdi->die_child;
18619 child_pdi != NULL;
18620 child_pdi = child_pdi->die_sibling)
18621 {
18622 if (child_pdi->tag == DW_TAG_subprogram
18623 && child_pdi->linkage_name != NULL)
18624 {
18625 gdb::unique_xmalloc_ptr<char> actual_class_name
18626 (language_class_name_from_physname (cu->language_defn,
18627 child_pdi->linkage_name));
18628 if (actual_class_name != NULL)
18629 {
18630 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18631 struct_pdi->name = objfile->intern (actual_class_name.get ());
18632 }
18633 break;
18634 }
18635 }
18636 }
18637
18638 /* Return true if a DIE with TAG may have the DW_AT_const_value
18639 attribute. */
18640
18641 static bool
18642 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18643 {
18644 switch (tag)
18645 {
18646 case DW_TAG_constant:
18647 case DW_TAG_enumerator:
18648 case DW_TAG_formal_parameter:
18649 case DW_TAG_template_value_param:
18650 case DW_TAG_variable:
18651 return true;
18652 }
18653
18654 return false;
18655 }
18656
18657 void
18658 partial_die_info::fixup (struct dwarf2_cu *cu)
18659 {
18660 /* Once we've fixed up a die, there's no point in doing so again.
18661 This also avoids a memory leak if we were to call
18662 guess_partial_die_structure_name multiple times. */
18663 if (fixup_called)
18664 return;
18665
18666 /* If we found a reference attribute and the DIE has no name, try
18667 to find a name in the referred to DIE. */
18668
18669 if (name == NULL && has_specification)
18670 {
18671 struct partial_die_info *spec_die;
18672
18673 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18674 spec_die = res.pdi;
18675 cu = res.cu;
18676
18677 spec_die->fixup (cu);
18678
18679 if (spec_die->name)
18680 {
18681 name = spec_die->name;
18682
18683 /* Copy DW_AT_external attribute if it is set. */
18684 if (spec_die->is_external)
18685 is_external = spec_die->is_external;
18686 }
18687 }
18688
18689 if (!has_const_value && has_specification
18690 && can_have_DW_AT_const_value_p (tag))
18691 {
18692 struct partial_die_info *spec_die;
18693
18694 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18695 spec_die = res.pdi;
18696 cu = res.cu;
18697
18698 spec_die->fixup (cu);
18699
18700 if (spec_die->has_const_value)
18701 {
18702 /* Copy DW_AT_const_value attribute if it is set. */
18703 has_const_value = spec_die->has_const_value;
18704 }
18705 }
18706
18707 /* Set default names for some unnamed DIEs. */
18708
18709 if (name == NULL && tag == DW_TAG_namespace)
18710 name = CP_ANONYMOUS_NAMESPACE_STR;
18711
18712 /* If there is no parent die to provide a namespace, and there are
18713 children, see if we can determine the namespace from their linkage
18714 name. */
18715 if (cu->language == language_cplus
18716 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18717 && die_parent == NULL
18718 && has_children
18719 && (tag == DW_TAG_class_type
18720 || tag == DW_TAG_structure_type
18721 || tag == DW_TAG_union_type))
18722 guess_partial_die_structure_name (this, cu);
18723
18724 /* GCC might emit a nameless struct or union that has a linkage
18725 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18726 if (name == NULL
18727 && (tag == DW_TAG_class_type
18728 || tag == DW_TAG_interface_type
18729 || tag == DW_TAG_structure_type
18730 || tag == DW_TAG_union_type)
18731 && linkage_name != NULL)
18732 {
18733 gdb::unique_xmalloc_ptr<char> demangled
18734 (gdb_demangle (linkage_name, DMGL_TYPES));
18735 if (demangled != nullptr)
18736 {
18737 const char *base;
18738
18739 /* Strip any leading namespaces/classes, keep only the base name.
18740 DW_AT_name for named DIEs does not contain the prefixes. */
18741 base = strrchr (demangled.get (), ':');
18742 if (base && base > demangled.get () && base[-1] == ':')
18743 base++;
18744 else
18745 base = demangled.get ();
18746
18747 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18748 name = objfile->intern (base);
18749 }
18750 }
18751
18752 fixup_called = 1;
18753 }
18754
18755 /* Read the .debug_loclists header contents from the given SECTION in the
18756 HEADER. */
18757 static void
18758 read_loclist_header (struct loclist_header *header,
18759 struct dwarf2_section_info *section)
18760 {
18761 unsigned int bytes_read;
18762 bfd *abfd = section->get_bfd_owner ();
18763 const gdb_byte *info_ptr = section->buffer;
18764 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18765 info_ptr += bytes_read;
18766 header->version = read_2_bytes (abfd, info_ptr);
18767 info_ptr += 2;
18768 header->addr_size = read_1_byte (abfd, info_ptr);
18769 info_ptr += 1;
18770 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18771 info_ptr += 1;
18772 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18773 }
18774
18775 /* Return the DW_AT_loclists_base value for the CU. */
18776 static ULONGEST
18777 lookup_loclist_base (struct dwarf2_cu *cu)
18778 {
18779 /* For the .dwo unit, the loclist_base points to the first offset following
18780 the header. The header consists of the following entities-
18781 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18782 bit format)
18783 2. version (2 bytes)
18784 3. address size (1 byte)
18785 4. segment selector size (1 byte)
18786 5. offset entry count (4 bytes)
18787 These sizes are derived as per the DWARFv5 standard. */
18788 if (cu->dwo_unit != nullptr)
18789 {
18790 if (cu->header.initial_length_size == 4)
18791 return LOCLIST_HEADER_SIZE32;
18792 return LOCLIST_HEADER_SIZE64;
18793 }
18794 return cu->loclist_base;
18795 }
18796
18797 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18798 array of offsets in the .debug_loclists section. */
18799 static CORE_ADDR
18800 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18801 {
18802 struct dwarf2_per_objfile *dwarf2_per_objfile
18803 = cu->per_cu->dwarf2_per_objfile;
18804 struct objfile *objfile = dwarf2_per_objfile->objfile;
18805 bfd *abfd = objfile->obfd;
18806 ULONGEST loclist_base = lookup_loclist_base (cu);
18807 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18808
18809 section->read (objfile);
18810 if (section->buffer == NULL)
18811 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18812 "section [in module %s]"), objfile_name (objfile));
18813 struct loclist_header header;
18814 read_loclist_header (&header, section);
18815 if (loclist_index >= header.offset_entry_count)
18816 complaint (_("DW_FORM_loclistx pointing outside of "
18817 ".debug_loclists offset array [in module %s]"),
18818 objfile_name (objfile));
18819 if (loclist_base + loclist_index * cu->header.offset_size
18820 >= section->size)
18821 complaint (_("DW_FORM_loclistx pointing outside of "
18822 ".debug_loclists section [in module %s]"),
18823 objfile_name (objfile));
18824 const gdb_byte *info_ptr
18825 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18826
18827 if (cu->header.offset_size == 4)
18828 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18829 else
18830 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18831 }
18832
18833 /* Process the attributes that had to be skipped in the first round. These
18834 attributes are the ones that need str_offsets_base or addr_base attributes.
18835 They could not have been processed in the first round, because at the time
18836 the values of str_offsets_base or addr_base may not have been known. */
18837 static void
18838 read_attribute_reprocess (const struct die_reader_specs *reader,
18839 struct attribute *attr)
18840 {
18841 struct dwarf2_cu *cu = reader->cu;
18842 switch (attr->form)
18843 {
18844 case DW_FORM_addrx:
18845 case DW_FORM_GNU_addr_index:
18846 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18847 break;
18848 case DW_FORM_loclistx:
18849 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18850 break;
18851 case DW_FORM_strx:
18852 case DW_FORM_strx1:
18853 case DW_FORM_strx2:
18854 case DW_FORM_strx3:
18855 case DW_FORM_strx4:
18856 case DW_FORM_GNU_str_index:
18857 {
18858 unsigned int str_index = DW_UNSND (attr);
18859 if (reader->dwo_file != NULL)
18860 {
18861 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18862 DW_STRING_IS_CANONICAL (attr) = 0;
18863 }
18864 else
18865 {
18866 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18867 DW_STRING_IS_CANONICAL (attr) = 0;
18868 }
18869 break;
18870 }
18871 default:
18872 gdb_assert_not_reached (_("Unexpected DWARF form."));
18873 }
18874 }
18875
18876 /* Read an attribute value described by an attribute form. */
18877
18878 static const gdb_byte *
18879 read_attribute_value (const struct die_reader_specs *reader,
18880 struct attribute *attr, unsigned form,
18881 LONGEST implicit_const, const gdb_byte *info_ptr,
18882 bool *need_reprocess)
18883 {
18884 struct dwarf2_cu *cu = reader->cu;
18885 struct dwarf2_per_objfile *dwarf2_per_objfile
18886 = cu->per_cu->dwarf2_per_objfile;
18887 struct objfile *objfile = dwarf2_per_objfile->objfile;
18888 bfd *abfd = reader->abfd;
18889 struct comp_unit_head *cu_header = &cu->header;
18890 unsigned int bytes_read;
18891 struct dwarf_block *blk;
18892 *need_reprocess = false;
18893
18894 attr->form = (enum dwarf_form) form;
18895 switch (form)
18896 {
18897 case DW_FORM_ref_addr:
18898 if (cu->header.version == 2)
18899 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18900 &bytes_read);
18901 else
18902 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18903 &bytes_read);
18904 info_ptr += bytes_read;
18905 break;
18906 case DW_FORM_GNU_ref_alt:
18907 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18908 info_ptr += bytes_read;
18909 break;
18910 case DW_FORM_addr:
18911 {
18912 struct gdbarch *gdbarch = objfile->arch ();
18913 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18914 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18915 info_ptr += bytes_read;
18916 }
18917 break;
18918 case DW_FORM_block2:
18919 blk = dwarf_alloc_block (cu);
18920 blk->size = read_2_bytes (abfd, info_ptr);
18921 info_ptr += 2;
18922 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18923 info_ptr += blk->size;
18924 DW_BLOCK (attr) = blk;
18925 break;
18926 case DW_FORM_block4:
18927 blk = dwarf_alloc_block (cu);
18928 blk->size = read_4_bytes (abfd, info_ptr);
18929 info_ptr += 4;
18930 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18931 info_ptr += blk->size;
18932 DW_BLOCK (attr) = blk;
18933 break;
18934 case DW_FORM_data2:
18935 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18936 info_ptr += 2;
18937 break;
18938 case DW_FORM_data4:
18939 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18940 info_ptr += 4;
18941 break;
18942 case DW_FORM_data8:
18943 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18944 info_ptr += 8;
18945 break;
18946 case DW_FORM_data16:
18947 blk = dwarf_alloc_block (cu);
18948 blk->size = 16;
18949 blk->data = read_n_bytes (abfd, info_ptr, 16);
18950 info_ptr += 16;
18951 DW_BLOCK (attr) = blk;
18952 break;
18953 case DW_FORM_sec_offset:
18954 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18955 info_ptr += bytes_read;
18956 break;
18957 case DW_FORM_loclistx:
18958 {
18959 *need_reprocess = true;
18960 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18961 info_ptr += bytes_read;
18962 }
18963 break;
18964 case DW_FORM_string:
18965 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18966 DW_STRING_IS_CANONICAL (attr) = 0;
18967 info_ptr += bytes_read;
18968 break;
18969 case DW_FORM_strp:
18970 if (!cu->per_cu->is_dwz)
18971 {
18972 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18973 abfd, info_ptr, cu_header,
18974 &bytes_read);
18975 DW_STRING_IS_CANONICAL (attr) = 0;
18976 info_ptr += bytes_read;
18977 break;
18978 }
18979 /* FALLTHROUGH */
18980 case DW_FORM_line_strp:
18981 if (!cu->per_cu->is_dwz)
18982 {
18983 DW_STRING (attr)
18984 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
18985 &bytes_read);
18986 DW_STRING_IS_CANONICAL (attr) = 0;
18987 info_ptr += bytes_read;
18988 break;
18989 }
18990 /* FALLTHROUGH */
18991 case DW_FORM_GNU_strp_alt:
18992 {
18993 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18994 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18995 &bytes_read);
18996
18997 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
18998 DW_STRING_IS_CANONICAL (attr) = 0;
18999 info_ptr += bytes_read;
19000 }
19001 break;
19002 case DW_FORM_exprloc:
19003 case DW_FORM_block:
19004 blk = dwarf_alloc_block (cu);
19005 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19006 info_ptr += bytes_read;
19007 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19008 info_ptr += blk->size;
19009 DW_BLOCK (attr) = blk;
19010 break;
19011 case DW_FORM_block1:
19012 blk = dwarf_alloc_block (cu);
19013 blk->size = read_1_byte (abfd, info_ptr);
19014 info_ptr += 1;
19015 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19016 info_ptr += blk->size;
19017 DW_BLOCK (attr) = blk;
19018 break;
19019 case DW_FORM_data1:
19020 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19021 info_ptr += 1;
19022 break;
19023 case DW_FORM_flag:
19024 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19025 info_ptr += 1;
19026 break;
19027 case DW_FORM_flag_present:
19028 DW_UNSND (attr) = 1;
19029 break;
19030 case DW_FORM_sdata:
19031 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19032 info_ptr += bytes_read;
19033 break;
19034 case DW_FORM_udata:
19035 case DW_FORM_rnglistx:
19036 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19037 info_ptr += bytes_read;
19038 break;
19039 case DW_FORM_ref1:
19040 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19041 + read_1_byte (abfd, info_ptr));
19042 info_ptr += 1;
19043 break;
19044 case DW_FORM_ref2:
19045 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19046 + read_2_bytes (abfd, info_ptr));
19047 info_ptr += 2;
19048 break;
19049 case DW_FORM_ref4:
19050 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19051 + read_4_bytes (abfd, info_ptr));
19052 info_ptr += 4;
19053 break;
19054 case DW_FORM_ref8:
19055 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19056 + read_8_bytes (abfd, info_ptr));
19057 info_ptr += 8;
19058 break;
19059 case DW_FORM_ref_sig8:
19060 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19061 info_ptr += 8;
19062 break;
19063 case DW_FORM_ref_udata:
19064 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19065 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19066 info_ptr += bytes_read;
19067 break;
19068 case DW_FORM_indirect:
19069 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19070 info_ptr += bytes_read;
19071 if (form == DW_FORM_implicit_const)
19072 {
19073 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19074 info_ptr += bytes_read;
19075 }
19076 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19077 info_ptr, need_reprocess);
19078 break;
19079 case DW_FORM_implicit_const:
19080 DW_SND (attr) = implicit_const;
19081 break;
19082 case DW_FORM_addrx:
19083 case DW_FORM_GNU_addr_index:
19084 *need_reprocess = true;
19085 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19086 info_ptr += bytes_read;
19087 break;
19088 case DW_FORM_strx:
19089 case DW_FORM_strx1:
19090 case DW_FORM_strx2:
19091 case DW_FORM_strx3:
19092 case DW_FORM_strx4:
19093 case DW_FORM_GNU_str_index:
19094 {
19095 ULONGEST str_index;
19096 if (form == DW_FORM_strx1)
19097 {
19098 str_index = read_1_byte (abfd, info_ptr);
19099 info_ptr += 1;
19100 }
19101 else if (form == DW_FORM_strx2)
19102 {
19103 str_index = read_2_bytes (abfd, info_ptr);
19104 info_ptr += 2;
19105 }
19106 else if (form == DW_FORM_strx3)
19107 {
19108 str_index = read_3_bytes (abfd, info_ptr);
19109 info_ptr += 3;
19110 }
19111 else if (form == DW_FORM_strx4)
19112 {
19113 str_index = read_4_bytes (abfd, info_ptr);
19114 info_ptr += 4;
19115 }
19116 else
19117 {
19118 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19119 info_ptr += bytes_read;
19120 }
19121 *need_reprocess = true;
19122 DW_UNSND (attr) = str_index;
19123 }
19124 break;
19125 default:
19126 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19127 dwarf_form_name (form),
19128 bfd_get_filename (abfd));
19129 }
19130
19131 /* Super hack. */
19132 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19133 attr->form = DW_FORM_GNU_ref_alt;
19134
19135 /* We have seen instances where the compiler tried to emit a byte
19136 size attribute of -1 which ended up being encoded as an unsigned
19137 0xffffffff. Although 0xffffffff is technically a valid size value,
19138 an object of this size seems pretty unlikely so we can relatively
19139 safely treat these cases as if the size attribute was invalid and
19140 treat them as zero by default. */
19141 if (attr->name == DW_AT_byte_size
19142 && form == DW_FORM_data4
19143 && DW_UNSND (attr) >= 0xffffffff)
19144 {
19145 complaint
19146 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19147 hex_string (DW_UNSND (attr)));
19148 DW_UNSND (attr) = 0;
19149 }
19150
19151 return info_ptr;
19152 }
19153
19154 /* Read an attribute described by an abbreviated attribute. */
19155
19156 static const gdb_byte *
19157 read_attribute (const struct die_reader_specs *reader,
19158 struct attribute *attr, struct attr_abbrev *abbrev,
19159 const gdb_byte *info_ptr, bool *need_reprocess)
19160 {
19161 attr->name = abbrev->name;
19162 return read_attribute_value (reader, attr, abbrev->form,
19163 abbrev->implicit_const, info_ptr,
19164 need_reprocess);
19165 }
19166
19167 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19168
19169 static const char *
19170 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19171 LONGEST str_offset)
19172 {
19173 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
19174 str_offset, "DW_FORM_strp");
19175 }
19176
19177 /* Return pointer to string at .debug_str offset as read from BUF.
19178 BUF is assumed to be in a compilation unit described by CU_HEADER.
19179 Return *BYTES_READ_PTR count of bytes read from BUF. */
19180
19181 static const char *
19182 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19183 const gdb_byte *buf,
19184 const struct comp_unit_head *cu_header,
19185 unsigned int *bytes_read_ptr)
19186 {
19187 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19188
19189 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
19190 }
19191
19192 /* See read.h. */
19193
19194 const char *
19195 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19196 const struct comp_unit_head *cu_header,
19197 unsigned int *bytes_read_ptr)
19198 {
19199 bfd *abfd = objfile->obfd;
19200 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19201
19202 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19203 }
19204
19205 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19206 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19207 ADDR_SIZE is the size of addresses from the CU header. */
19208
19209 static CORE_ADDR
19210 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19211 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19212 int addr_size)
19213 {
19214 struct objfile *objfile = dwarf2_per_objfile->objfile;
19215 bfd *abfd = objfile->obfd;
19216 const gdb_byte *info_ptr;
19217 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19218
19219 dwarf2_per_objfile->addr.read (objfile);
19220 if (dwarf2_per_objfile->addr.buffer == NULL)
19221 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19222 objfile_name (objfile));
19223 if (addr_base_or_zero + addr_index * addr_size
19224 >= dwarf2_per_objfile->addr.size)
19225 error (_("DW_FORM_addr_index pointing outside of "
19226 ".debug_addr section [in module %s]"),
19227 objfile_name (objfile));
19228 info_ptr = (dwarf2_per_objfile->addr.buffer
19229 + addr_base_or_zero + addr_index * addr_size);
19230 if (addr_size == 4)
19231 return bfd_get_32 (abfd, info_ptr);
19232 else
19233 return bfd_get_64 (abfd, info_ptr);
19234 }
19235
19236 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19237
19238 static CORE_ADDR
19239 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19240 {
19241 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19242 cu->addr_base, cu->header.addr_size);
19243 }
19244
19245 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19246
19247 static CORE_ADDR
19248 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19249 unsigned int *bytes_read)
19250 {
19251 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19252 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19253
19254 return read_addr_index (cu, addr_index);
19255 }
19256
19257 /* See read.h. */
19258
19259 CORE_ADDR
19260 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
19261 {
19262 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19263 struct dwarf2_cu *cu = per_cu->cu;
19264 gdb::optional<ULONGEST> addr_base;
19265 int addr_size;
19266
19267 /* We need addr_base and addr_size.
19268 If we don't have PER_CU->cu, we have to get it.
19269 Nasty, but the alternative is storing the needed info in PER_CU,
19270 which at this point doesn't seem justified: it's not clear how frequently
19271 it would get used and it would increase the size of every PER_CU.
19272 Entry points like dwarf2_per_cu_addr_size do a similar thing
19273 so we're not in uncharted territory here.
19274 Alas we need to be a bit more complicated as addr_base is contained
19275 in the DIE.
19276
19277 We don't need to read the entire CU(/TU).
19278 We just need the header and top level die.
19279
19280 IWBN to use the aging mechanism to let us lazily later discard the CU.
19281 For now we skip this optimization. */
19282
19283 if (cu != NULL)
19284 {
19285 addr_base = cu->addr_base;
19286 addr_size = cu->header.addr_size;
19287 }
19288 else
19289 {
19290 cutu_reader reader (per_cu, NULL, 0, false);
19291 addr_base = reader.cu->addr_base;
19292 addr_size = reader.cu->header.addr_size;
19293 }
19294
19295 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19296 addr_size);
19297 }
19298
19299 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19300 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19301 DWO file. */
19302
19303 static const char *
19304 read_str_index (struct dwarf2_cu *cu,
19305 struct dwarf2_section_info *str_section,
19306 struct dwarf2_section_info *str_offsets_section,
19307 ULONGEST str_offsets_base, ULONGEST str_index)
19308 {
19309 struct dwarf2_per_objfile *dwarf2_per_objfile
19310 = cu->per_cu->dwarf2_per_objfile;
19311 struct objfile *objfile = dwarf2_per_objfile->objfile;
19312 const char *objf_name = objfile_name (objfile);
19313 bfd *abfd = objfile->obfd;
19314 const gdb_byte *info_ptr;
19315 ULONGEST str_offset;
19316 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19317
19318 str_section->read (objfile);
19319 str_offsets_section->read (objfile);
19320 if (str_section->buffer == NULL)
19321 error (_("%s used without %s section"
19322 " in CU at offset %s [in module %s]"),
19323 form_name, str_section->get_name (),
19324 sect_offset_str (cu->header.sect_off), objf_name);
19325 if (str_offsets_section->buffer == NULL)
19326 error (_("%s used without %s section"
19327 " in CU at offset %s [in module %s]"),
19328 form_name, str_section->get_name (),
19329 sect_offset_str (cu->header.sect_off), objf_name);
19330 info_ptr = (str_offsets_section->buffer
19331 + str_offsets_base
19332 + str_index * cu->header.offset_size);
19333 if (cu->header.offset_size == 4)
19334 str_offset = bfd_get_32 (abfd, info_ptr);
19335 else
19336 str_offset = bfd_get_64 (abfd, info_ptr);
19337 if (str_offset >= str_section->size)
19338 error (_("Offset from %s pointing outside of"
19339 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19340 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19341 return (const char *) (str_section->buffer + str_offset);
19342 }
19343
19344 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19345
19346 static const char *
19347 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19348 {
19349 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19350 ? reader->cu->header.addr_size : 0;
19351 return read_str_index (reader->cu,
19352 &reader->dwo_file->sections.str,
19353 &reader->dwo_file->sections.str_offsets,
19354 str_offsets_base, str_index);
19355 }
19356
19357 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19358
19359 static const char *
19360 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19361 {
19362 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19363 const char *objf_name = objfile_name (objfile);
19364 static const char form_name[] = "DW_FORM_GNU_str_index";
19365 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19366
19367 if (!cu->str_offsets_base.has_value ())
19368 error (_("%s used in Fission stub without %s"
19369 " in CU at offset 0x%lx [in module %s]"),
19370 form_name, str_offsets_attr_name,
19371 (long) cu->header.offset_size, objf_name);
19372
19373 return read_str_index (cu,
19374 &cu->per_cu->dwarf2_per_objfile->str,
19375 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19376 *cu->str_offsets_base, str_index);
19377 }
19378
19379 /* Return the length of an LEB128 number in BUF. */
19380
19381 static int
19382 leb128_size (const gdb_byte *buf)
19383 {
19384 const gdb_byte *begin = buf;
19385 gdb_byte byte;
19386
19387 while (1)
19388 {
19389 byte = *buf++;
19390 if ((byte & 128) == 0)
19391 return buf - begin;
19392 }
19393 }
19394
19395 static void
19396 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19397 {
19398 switch (lang)
19399 {
19400 case DW_LANG_C89:
19401 case DW_LANG_C99:
19402 case DW_LANG_C11:
19403 case DW_LANG_C:
19404 case DW_LANG_UPC:
19405 cu->language = language_c;
19406 break;
19407 case DW_LANG_Java:
19408 case DW_LANG_C_plus_plus:
19409 case DW_LANG_C_plus_plus_11:
19410 case DW_LANG_C_plus_plus_14:
19411 cu->language = language_cplus;
19412 break;
19413 case DW_LANG_D:
19414 cu->language = language_d;
19415 break;
19416 case DW_LANG_Fortran77:
19417 case DW_LANG_Fortran90:
19418 case DW_LANG_Fortran95:
19419 case DW_LANG_Fortran03:
19420 case DW_LANG_Fortran08:
19421 cu->language = language_fortran;
19422 break;
19423 case DW_LANG_Go:
19424 cu->language = language_go;
19425 break;
19426 case DW_LANG_Mips_Assembler:
19427 cu->language = language_asm;
19428 break;
19429 case DW_LANG_Ada83:
19430 case DW_LANG_Ada95:
19431 cu->language = language_ada;
19432 break;
19433 case DW_LANG_Modula2:
19434 cu->language = language_m2;
19435 break;
19436 case DW_LANG_Pascal83:
19437 cu->language = language_pascal;
19438 break;
19439 case DW_LANG_ObjC:
19440 cu->language = language_objc;
19441 break;
19442 case DW_LANG_Rust:
19443 case DW_LANG_Rust_old:
19444 cu->language = language_rust;
19445 break;
19446 case DW_LANG_Cobol74:
19447 case DW_LANG_Cobol85:
19448 default:
19449 cu->language = language_minimal;
19450 break;
19451 }
19452 cu->language_defn = language_def (cu->language);
19453 }
19454
19455 /* Return the named attribute or NULL if not there. */
19456
19457 static struct attribute *
19458 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19459 {
19460 for (;;)
19461 {
19462 unsigned int i;
19463 struct attribute *spec = NULL;
19464
19465 for (i = 0; i < die->num_attrs; ++i)
19466 {
19467 if (die->attrs[i].name == name)
19468 return &die->attrs[i];
19469 if (die->attrs[i].name == DW_AT_specification
19470 || die->attrs[i].name == DW_AT_abstract_origin)
19471 spec = &die->attrs[i];
19472 }
19473
19474 if (!spec)
19475 break;
19476
19477 die = follow_die_ref (die, spec, &cu);
19478 }
19479
19480 return NULL;
19481 }
19482
19483 /* Return the string associated with a string-typed attribute, or NULL if it
19484 is either not found or is of an incorrect type. */
19485
19486 static const char *
19487 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19488 {
19489 struct attribute *attr;
19490 const char *str = NULL;
19491
19492 attr = dwarf2_attr (die, name, cu);
19493
19494 if (attr != NULL)
19495 {
19496 str = attr->value_as_string ();
19497 if (str == nullptr)
19498 complaint (_("string type expected for attribute %s for "
19499 "DIE at %s in module %s"),
19500 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19501 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19502 }
19503
19504 return str;
19505 }
19506
19507 /* Return the dwo name or NULL if not present. If present, it is in either
19508 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19509 static const char *
19510 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19511 {
19512 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19513 if (dwo_name == nullptr)
19514 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19515 return dwo_name;
19516 }
19517
19518 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19519 and holds a non-zero value. This function should only be used for
19520 DW_FORM_flag or DW_FORM_flag_present attributes. */
19521
19522 static int
19523 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19524 {
19525 struct attribute *attr = dwarf2_attr (die, name, cu);
19526
19527 return (attr && DW_UNSND (attr));
19528 }
19529
19530 static int
19531 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19532 {
19533 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19534 which value is non-zero. However, we have to be careful with
19535 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19536 (via dwarf2_flag_true_p) follows this attribute. So we may
19537 end up accidently finding a declaration attribute that belongs
19538 to a different DIE referenced by the specification attribute,
19539 even though the given DIE does not have a declaration attribute. */
19540 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19541 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19542 }
19543
19544 /* Return the die giving the specification for DIE, if there is
19545 one. *SPEC_CU is the CU containing DIE on input, and the CU
19546 containing the return value on output. If there is no
19547 specification, but there is an abstract origin, that is
19548 returned. */
19549
19550 static struct die_info *
19551 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19552 {
19553 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19554 *spec_cu);
19555
19556 if (spec_attr == NULL)
19557 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19558
19559 if (spec_attr == NULL)
19560 return NULL;
19561 else
19562 return follow_die_ref (die, spec_attr, spec_cu);
19563 }
19564
19565 /* Stub for free_line_header to match void * callback types. */
19566
19567 static void
19568 free_line_header_voidp (void *arg)
19569 {
19570 struct line_header *lh = (struct line_header *) arg;
19571
19572 delete lh;
19573 }
19574
19575 /* A convenience function to find the proper .debug_line section for a CU. */
19576
19577 static struct dwarf2_section_info *
19578 get_debug_line_section (struct dwarf2_cu *cu)
19579 {
19580 struct dwarf2_section_info *section;
19581 struct dwarf2_per_objfile *dwarf2_per_objfile
19582 = cu->per_cu->dwarf2_per_objfile;
19583
19584 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19585 DWO file. */
19586 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19587 section = &cu->dwo_unit->dwo_file->sections.line;
19588 else if (cu->per_cu->is_dwz)
19589 {
19590 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19591
19592 section = &dwz->line;
19593 }
19594 else
19595 section = &dwarf2_per_objfile->line;
19596
19597 return section;
19598 }
19599
19600 /* Read the statement program header starting at OFFSET in
19601 .debug_line, or .debug_line.dwo. Return a pointer
19602 to a struct line_header, allocated using xmalloc.
19603 Returns NULL if there is a problem reading the header, e.g., if it
19604 has a version we don't understand.
19605
19606 NOTE: the strings in the include directory and file name tables of
19607 the returned object point into the dwarf line section buffer,
19608 and must not be freed. */
19609
19610 static line_header_up
19611 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19612 {
19613 struct dwarf2_section_info *section;
19614 struct dwarf2_per_objfile *dwarf2_per_objfile
19615 = cu->per_cu->dwarf2_per_objfile;
19616
19617 section = get_debug_line_section (cu);
19618 section->read (dwarf2_per_objfile->objfile);
19619 if (section->buffer == NULL)
19620 {
19621 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19622 complaint (_("missing .debug_line.dwo section"));
19623 else
19624 complaint (_("missing .debug_line section"));
19625 return 0;
19626 }
19627
19628 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19629 dwarf2_per_objfile, section,
19630 &cu->header);
19631 }
19632
19633 /* Subroutine of dwarf_decode_lines to simplify it.
19634 Return the file name of the psymtab for the given file_entry.
19635 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19636 If space for the result is malloc'd, *NAME_HOLDER will be set.
19637 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19638
19639 static const char *
19640 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19641 const dwarf2_psymtab *pst,
19642 const char *comp_dir,
19643 gdb::unique_xmalloc_ptr<char> *name_holder)
19644 {
19645 const char *include_name = fe.name;
19646 const char *include_name_to_compare = include_name;
19647 const char *pst_filename;
19648 int file_is_pst;
19649
19650 const char *dir_name = fe.include_dir (lh);
19651
19652 gdb::unique_xmalloc_ptr<char> hold_compare;
19653 if (!IS_ABSOLUTE_PATH (include_name)
19654 && (dir_name != NULL || comp_dir != NULL))
19655 {
19656 /* Avoid creating a duplicate psymtab for PST.
19657 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19658 Before we do the comparison, however, we need to account
19659 for DIR_NAME and COMP_DIR.
19660 First prepend dir_name (if non-NULL). If we still don't
19661 have an absolute path prepend comp_dir (if non-NULL).
19662 However, the directory we record in the include-file's
19663 psymtab does not contain COMP_DIR (to match the
19664 corresponding symtab(s)).
19665
19666 Example:
19667
19668 bash$ cd /tmp
19669 bash$ gcc -g ./hello.c
19670 include_name = "hello.c"
19671 dir_name = "."
19672 DW_AT_comp_dir = comp_dir = "/tmp"
19673 DW_AT_name = "./hello.c"
19674
19675 */
19676
19677 if (dir_name != NULL)
19678 {
19679 name_holder->reset (concat (dir_name, SLASH_STRING,
19680 include_name, (char *) NULL));
19681 include_name = name_holder->get ();
19682 include_name_to_compare = include_name;
19683 }
19684 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19685 {
19686 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19687 include_name, (char *) NULL));
19688 include_name_to_compare = hold_compare.get ();
19689 }
19690 }
19691
19692 pst_filename = pst->filename;
19693 gdb::unique_xmalloc_ptr<char> copied_name;
19694 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19695 {
19696 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19697 pst_filename, (char *) NULL));
19698 pst_filename = copied_name.get ();
19699 }
19700
19701 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19702
19703 if (file_is_pst)
19704 return NULL;
19705 return include_name;
19706 }
19707
19708 /* State machine to track the state of the line number program. */
19709
19710 class lnp_state_machine
19711 {
19712 public:
19713 /* Initialize a machine state for the start of a line number
19714 program. */
19715 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19716 bool record_lines_p);
19717
19718 file_entry *current_file ()
19719 {
19720 /* lh->file_names is 0-based, but the file name numbers in the
19721 statement program are 1-based. */
19722 return m_line_header->file_name_at (m_file);
19723 }
19724
19725 /* Record the line in the state machine. END_SEQUENCE is true if
19726 we're processing the end of a sequence. */
19727 void record_line (bool end_sequence);
19728
19729 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19730 nop-out rest of the lines in this sequence. */
19731 void check_line_address (struct dwarf2_cu *cu,
19732 const gdb_byte *line_ptr,
19733 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19734
19735 void handle_set_discriminator (unsigned int discriminator)
19736 {
19737 m_discriminator = discriminator;
19738 m_line_has_non_zero_discriminator |= discriminator != 0;
19739 }
19740
19741 /* Handle DW_LNE_set_address. */
19742 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19743 {
19744 m_op_index = 0;
19745 address += baseaddr;
19746 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19747 }
19748
19749 /* Handle DW_LNS_advance_pc. */
19750 void handle_advance_pc (CORE_ADDR adjust);
19751
19752 /* Handle a special opcode. */
19753 void handle_special_opcode (unsigned char op_code);
19754
19755 /* Handle DW_LNS_advance_line. */
19756 void handle_advance_line (int line_delta)
19757 {
19758 advance_line (line_delta);
19759 }
19760
19761 /* Handle DW_LNS_set_file. */
19762 void handle_set_file (file_name_index file);
19763
19764 /* Handle DW_LNS_negate_stmt. */
19765 void handle_negate_stmt ()
19766 {
19767 m_is_stmt = !m_is_stmt;
19768 }
19769
19770 /* Handle DW_LNS_const_add_pc. */
19771 void handle_const_add_pc ();
19772
19773 /* Handle DW_LNS_fixed_advance_pc. */
19774 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19775 {
19776 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19777 m_op_index = 0;
19778 }
19779
19780 /* Handle DW_LNS_copy. */
19781 void handle_copy ()
19782 {
19783 record_line (false);
19784 m_discriminator = 0;
19785 }
19786
19787 /* Handle DW_LNE_end_sequence. */
19788 void handle_end_sequence ()
19789 {
19790 m_currently_recording_lines = true;
19791 }
19792
19793 private:
19794 /* Advance the line by LINE_DELTA. */
19795 void advance_line (int line_delta)
19796 {
19797 m_line += line_delta;
19798
19799 if (line_delta != 0)
19800 m_line_has_non_zero_discriminator = m_discriminator != 0;
19801 }
19802
19803 struct dwarf2_cu *m_cu;
19804
19805 gdbarch *m_gdbarch;
19806
19807 /* True if we're recording lines.
19808 Otherwise we're building partial symtabs and are just interested in
19809 finding include files mentioned by the line number program. */
19810 bool m_record_lines_p;
19811
19812 /* The line number header. */
19813 line_header *m_line_header;
19814
19815 /* These are part of the standard DWARF line number state machine,
19816 and initialized according to the DWARF spec. */
19817
19818 unsigned char m_op_index = 0;
19819 /* The line table index of the current file. */
19820 file_name_index m_file = 1;
19821 unsigned int m_line = 1;
19822
19823 /* These are initialized in the constructor. */
19824
19825 CORE_ADDR m_address;
19826 bool m_is_stmt;
19827 unsigned int m_discriminator;
19828
19829 /* Additional bits of state we need to track. */
19830
19831 /* The last file that we called dwarf2_start_subfile for.
19832 This is only used for TLLs. */
19833 unsigned int m_last_file = 0;
19834 /* The last file a line number was recorded for. */
19835 struct subfile *m_last_subfile = NULL;
19836
19837 /* When true, record the lines we decode. */
19838 bool m_currently_recording_lines = false;
19839
19840 /* The last line number that was recorded, used to coalesce
19841 consecutive entries for the same line. This can happen, for
19842 example, when discriminators are present. PR 17276. */
19843 unsigned int m_last_line = 0;
19844 bool m_line_has_non_zero_discriminator = false;
19845 };
19846
19847 void
19848 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19849 {
19850 CORE_ADDR addr_adj = (((m_op_index + adjust)
19851 / m_line_header->maximum_ops_per_instruction)
19852 * m_line_header->minimum_instruction_length);
19853 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19854 m_op_index = ((m_op_index + adjust)
19855 % m_line_header->maximum_ops_per_instruction);
19856 }
19857
19858 void
19859 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19860 {
19861 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19862 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19863 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19864 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19865 / m_line_header->maximum_ops_per_instruction)
19866 * m_line_header->minimum_instruction_length);
19867 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19868 m_op_index = ((m_op_index + adj_opcode_d)
19869 % m_line_header->maximum_ops_per_instruction);
19870
19871 int line_delta = m_line_header->line_base + adj_opcode_r;
19872 advance_line (line_delta);
19873 record_line (false);
19874 m_discriminator = 0;
19875 }
19876
19877 void
19878 lnp_state_machine::handle_set_file (file_name_index file)
19879 {
19880 m_file = file;
19881
19882 const file_entry *fe = current_file ();
19883 if (fe == NULL)
19884 dwarf2_debug_line_missing_file_complaint ();
19885 else if (m_record_lines_p)
19886 {
19887 const char *dir = fe->include_dir (m_line_header);
19888
19889 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19890 m_line_has_non_zero_discriminator = m_discriminator != 0;
19891 dwarf2_start_subfile (m_cu, fe->name, dir);
19892 }
19893 }
19894
19895 void
19896 lnp_state_machine::handle_const_add_pc ()
19897 {
19898 CORE_ADDR adjust
19899 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19900
19901 CORE_ADDR addr_adj
19902 = (((m_op_index + adjust)
19903 / m_line_header->maximum_ops_per_instruction)
19904 * m_line_header->minimum_instruction_length);
19905
19906 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19907 m_op_index = ((m_op_index + adjust)
19908 % m_line_header->maximum_ops_per_instruction);
19909 }
19910
19911 /* Return non-zero if we should add LINE to the line number table.
19912 LINE is the line to add, LAST_LINE is the last line that was added,
19913 LAST_SUBFILE is the subfile for LAST_LINE.
19914 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19915 had a non-zero discriminator.
19916
19917 We have to be careful in the presence of discriminators.
19918 E.g., for this line:
19919
19920 for (i = 0; i < 100000; i++);
19921
19922 clang can emit four line number entries for that one line,
19923 each with a different discriminator.
19924 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19925
19926 However, we want gdb to coalesce all four entries into one.
19927 Otherwise the user could stepi into the middle of the line and
19928 gdb would get confused about whether the pc really was in the
19929 middle of the line.
19930
19931 Things are further complicated by the fact that two consecutive
19932 line number entries for the same line is a heuristic used by gcc
19933 to denote the end of the prologue. So we can't just discard duplicate
19934 entries, we have to be selective about it. The heuristic we use is
19935 that we only collapse consecutive entries for the same line if at least
19936 one of those entries has a non-zero discriminator. PR 17276.
19937
19938 Note: Addresses in the line number state machine can never go backwards
19939 within one sequence, thus this coalescing is ok. */
19940
19941 static int
19942 dwarf_record_line_p (struct dwarf2_cu *cu,
19943 unsigned int line, unsigned int last_line,
19944 int line_has_non_zero_discriminator,
19945 struct subfile *last_subfile)
19946 {
19947 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19948 return 1;
19949 if (line != last_line)
19950 return 1;
19951 /* Same line for the same file that we've seen already.
19952 As a last check, for pr 17276, only record the line if the line
19953 has never had a non-zero discriminator. */
19954 if (!line_has_non_zero_discriminator)
19955 return 1;
19956 return 0;
19957 }
19958
19959 /* Use the CU's builder to record line number LINE beginning at
19960 address ADDRESS in the line table of subfile SUBFILE. */
19961
19962 static void
19963 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19964 unsigned int line, CORE_ADDR address, bool is_stmt,
19965 struct dwarf2_cu *cu)
19966 {
19967 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19968
19969 if (dwarf_line_debug)
19970 {
19971 fprintf_unfiltered (gdb_stdlog,
19972 "Recording line %u, file %s, address %s\n",
19973 line, lbasename (subfile->name),
19974 paddress (gdbarch, address));
19975 }
19976
19977 if (cu != nullptr)
19978 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
19979 }
19980
19981 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19982 Mark the end of a set of line number records.
19983 The arguments are the same as for dwarf_record_line_1.
19984 If SUBFILE is NULL the request is ignored. */
19985
19986 static void
19987 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19988 CORE_ADDR address, struct dwarf2_cu *cu)
19989 {
19990 if (subfile == NULL)
19991 return;
19992
19993 if (dwarf_line_debug)
19994 {
19995 fprintf_unfiltered (gdb_stdlog,
19996 "Finishing current line, file %s, address %s\n",
19997 lbasename (subfile->name),
19998 paddress (gdbarch, address));
19999 }
20000
20001 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20002 }
20003
20004 void
20005 lnp_state_machine::record_line (bool end_sequence)
20006 {
20007 if (dwarf_line_debug)
20008 {
20009 fprintf_unfiltered (gdb_stdlog,
20010 "Processing actual line %u: file %u,"
20011 " address %s, is_stmt %u, discrim %u%s\n",
20012 m_line, m_file,
20013 paddress (m_gdbarch, m_address),
20014 m_is_stmt, m_discriminator,
20015 (end_sequence ? "\t(end sequence)" : ""));
20016 }
20017
20018 file_entry *fe = current_file ();
20019
20020 if (fe == NULL)
20021 dwarf2_debug_line_missing_file_complaint ();
20022 /* For now we ignore lines not starting on an instruction boundary.
20023 But not when processing end_sequence for compatibility with the
20024 previous version of the code. */
20025 else if (m_op_index == 0 || end_sequence)
20026 {
20027 fe->included_p = 1;
20028 if (m_record_lines_p)
20029 {
20030 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20031 || end_sequence)
20032 {
20033 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20034 m_currently_recording_lines ? m_cu : nullptr);
20035 }
20036
20037 if (!end_sequence)
20038 {
20039 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20040
20041 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20042 m_line_has_non_zero_discriminator,
20043 m_last_subfile))
20044 {
20045 buildsym_compunit *builder = m_cu->get_builder ();
20046 dwarf_record_line_1 (m_gdbarch,
20047 builder->get_current_subfile (),
20048 m_line, m_address, is_stmt,
20049 m_currently_recording_lines ? m_cu : nullptr);
20050 }
20051 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20052 m_last_line = m_line;
20053 }
20054 }
20055 }
20056 }
20057
20058 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20059 line_header *lh, bool record_lines_p)
20060 {
20061 m_cu = cu;
20062 m_gdbarch = arch;
20063 m_record_lines_p = record_lines_p;
20064 m_line_header = lh;
20065
20066 m_currently_recording_lines = true;
20067
20068 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20069 was a line entry for it so that the backend has a chance to adjust it
20070 and also record it in case it needs it. This is currently used by MIPS
20071 code, cf. `mips_adjust_dwarf2_line'. */
20072 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20073 m_is_stmt = lh->default_is_stmt;
20074 m_discriminator = 0;
20075 }
20076
20077 void
20078 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20079 const gdb_byte *line_ptr,
20080 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20081 {
20082 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20083 the pc range of the CU. However, we restrict the test to only ADDRESS
20084 values of zero to preserve GDB's previous behaviour which is to handle
20085 the specific case of a function being GC'd by the linker. */
20086
20087 if (address == 0 && address < unrelocated_lowpc)
20088 {
20089 /* This line table is for a function which has been
20090 GCd by the linker. Ignore it. PR gdb/12528 */
20091
20092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20093 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20094
20095 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20096 line_offset, objfile_name (objfile));
20097 m_currently_recording_lines = false;
20098 /* Note: m_currently_recording_lines is left as false until we see
20099 DW_LNE_end_sequence. */
20100 }
20101 }
20102
20103 /* Subroutine of dwarf_decode_lines to simplify it.
20104 Process the line number information in LH.
20105 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20106 program in order to set included_p for every referenced header. */
20107
20108 static void
20109 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20110 const int decode_for_pst_p, CORE_ADDR lowpc)
20111 {
20112 const gdb_byte *line_ptr, *extended_end;
20113 const gdb_byte *line_end;
20114 unsigned int bytes_read, extended_len;
20115 unsigned char op_code, extended_op;
20116 CORE_ADDR baseaddr;
20117 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20118 bfd *abfd = objfile->obfd;
20119 struct gdbarch *gdbarch = objfile->arch ();
20120 /* True if we're recording line info (as opposed to building partial
20121 symtabs and just interested in finding include files mentioned by
20122 the line number program). */
20123 bool record_lines_p = !decode_for_pst_p;
20124
20125 baseaddr = objfile->text_section_offset ();
20126
20127 line_ptr = lh->statement_program_start;
20128 line_end = lh->statement_program_end;
20129
20130 /* Read the statement sequences until there's nothing left. */
20131 while (line_ptr < line_end)
20132 {
20133 /* The DWARF line number program state machine. Reset the state
20134 machine at the start of each sequence. */
20135 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20136 bool end_sequence = false;
20137
20138 if (record_lines_p)
20139 {
20140 /* Start a subfile for the current file of the state
20141 machine. */
20142 const file_entry *fe = state_machine.current_file ();
20143
20144 if (fe != NULL)
20145 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20146 }
20147
20148 /* Decode the table. */
20149 while (line_ptr < line_end && !end_sequence)
20150 {
20151 op_code = read_1_byte (abfd, line_ptr);
20152 line_ptr += 1;
20153
20154 if (op_code >= lh->opcode_base)
20155 {
20156 /* Special opcode. */
20157 state_machine.handle_special_opcode (op_code);
20158 }
20159 else switch (op_code)
20160 {
20161 case DW_LNS_extended_op:
20162 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20163 &bytes_read);
20164 line_ptr += bytes_read;
20165 extended_end = line_ptr + extended_len;
20166 extended_op = read_1_byte (abfd, line_ptr);
20167 line_ptr += 1;
20168 switch (extended_op)
20169 {
20170 case DW_LNE_end_sequence:
20171 state_machine.handle_end_sequence ();
20172 end_sequence = true;
20173 break;
20174 case DW_LNE_set_address:
20175 {
20176 CORE_ADDR address
20177 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20178 line_ptr += bytes_read;
20179
20180 state_machine.check_line_address (cu, line_ptr,
20181 lowpc - baseaddr, address);
20182 state_machine.handle_set_address (baseaddr, address);
20183 }
20184 break;
20185 case DW_LNE_define_file:
20186 {
20187 const char *cur_file;
20188 unsigned int mod_time, length;
20189 dir_index dindex;
20190
20191 cur_file = read_direct_string (abfd, line_ptr,
20192 &bytes_read);
20193 line_ptr += bytes_read;
20194 dindex = (dir_index)
20195 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20196 line_ptr += bytes_read;
20197 mod_time =
20198 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20199 line_ptr += bytes_read;
20200 length =
20201 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20202 line_ptr += bytes_read;
20203 lh->add_file_name (cur_file, dindex, mod_time, length);
20204 }
20205 break;
20206 case DW_LNE_set_discriminator:
20207 {
20208 /* The discriminator is not interesting to the
20209 debugger; just ignore it. We still need to
20210 check its value though:
20211 if there are consecutive entries for the same
20212 (non-prologue) line we want to coalesce them.
20213 PR 17276. */
20214 unsigned int discr
20215 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20216 line_ptr += bytes_read;
20217
20218 state_machine.handle_set_discriminator (discr);
20219 }
20220 break;
20221 default:
20222 complaint (_("mangled .debug_line section"));
20223 return;
20224 }
20225 /* Make sure that we parsed the extended op correctly. If e.g.
20226 we expected a different address size than the producer used,
20227 we may have read the wrong number of bytes. */
20228 if (line_ptr != extended_end)
20229 {
20230 complaint (_("mangled .debug_line section"));
20231 return;
20232 }
20233 break;
20234 case DW_LNS_copy:
20235 state_machine.handle_copy ();
20236 break;
20237 case DW_LNS_advance_pc:
20238 {
20239 CORE_ADDR adjust
20240 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20241 line_ptr += bytes_read;
20242
20243 state_machine.handle_advance_pc (adjust);
20244 }
20245 break;
20246 case DW_LNS_advance_line:
20247 {
20248 int line_delta
20249 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20250 line_ptr += bytes_read;
20251
20252 state_machine.handle_advance_line (line_delta);
20253 }
20254 break;
20255 case DW_LNS_set_file:
20256 {
20257 file_name_index file
20258 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20259 &bytes_read);
20260 line_ptr += bytes_read;
20261
20262 state_machine.handle_set_file (file);
20263 }
20264 break;
20265 case DW_LNS_set_column:
20266 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20267 line_ptr += bytes_read;
20268 break;
20269 case DW_LNS_negate_stmt:
20270 state_machine.handle_negate_stmt ();
20271 break;
20272 case DW_LNS_set_basic_block:
20273 break;
20274 /* Add to the address register of the state machine the
20275 address increment value corresponding to special opcode
20276 255. I.e., this value is scaled by the minimum
20277 instruction length since special opcode 255 would have
20278 scaled the increment. */
20279 case DW_LNS_const_add_pc:
20280 state_machine.handle_const_add_pc ();
20281 break;
20282 case DW_LNS_fixed_advance_pc:
20283 {
20284 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20285 line_ptr += 2;
20286
20287 state_machine.handle_fixed_advance_pc (addr_adj);
20288 }
20289 break;
20290 default:
20291 {
20292 /* Unknown standard opcode, ignore it. */
20293 int i;
20294
20295 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20296 {
20297 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20298 line_ptr += bytes_read;
20299 }
20300 }
20301 }
20302 }
20303
20304 if (!end_sequence)
20305 dwarf2_debug_line_missing_end_sequence_complaint ();
20306
20307 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20308 in which case we still finish recording the last line). */
20309 state_machine.record_line (true);
20310 }
20311 }
20312
20313 /* Decode the Line Number Program (LNP) for the given line_header
20314 structure and CU. The actual information extracted and the type
20315 of structures created from the LNP depends on the value of PST.
20316
20317 1. If PST is NULL, then this procedure uses the data from the program
20318 to create all necessary symbol tables, and their linetables.
20319
20320 2. If PST is not NULL, this procedure reads the program to determine
20321 the list of files included by the unit represented by PST, and
20322 builds all the associated partial symbol tables.
20323
20324 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20325 It is used for relative paths in the line table.
20326 NOTE: When processing partial symtabs (pst != NULL),
20327 comp_dir == pst->dirname.
20328
20329 NOTE: It is important that psymtabs have the same file name (via strcmp)
20330 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20331 symtab we don't use it in the name of the psymtabs we create.
20332 E.g. expand_line_sal requires this when finding psymtabs to expand.
20333 A good testcase for this is mb-inline.exp.
20334
20335 LOWPC is the lowest address in CU (or 0 if not known).
20336
20337 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20338 for its PC<->lines mapping information. Otherwise only the filename
20339 table is read in. */
20340
20341 static void
20342 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20343 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20344 CORE_ADDR lowpc, int decode_mapping)
20345 {
20346 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20347 const int decode_for_pst_p = (pst != NULL);
20348
20349 if (decode_mapping)
20350 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20351
20352 if (decode_for_pst_p)
20353 {
20354 /* Now that we're done scanning the Line Header Program, we can
20355 create the psymtab of each included file. */
20356 for (auto &file_entry : lh->file_names ())
20357 if (file_entry.included_p == 1)
20358 {
20359 gdb::unique_xmalloc_ptr<char> name_holder;
20360 const char *include_name =
20361 psymtab_include_file_name (lh, file_entry, pst,
20362 comp_dir, &name_holder);
20363 if (include_name != NULL)
20364 dwarf2_create_include_psymtab (include_name, pst, objfile);
20365 }
20366 }
20367 else
20368 {
20369 /* Make sure a symtab is created for every file, even files
20370 which contain only variables (i.e. no code with associated
20371 line numbers). */
20372 buildsym_compunit *builder = cu->get_builder ();
20373 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20374
20375 for (auto &fe : lh->file_names ())
20376 {
20377 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20378 if (builder->get_current_subfile ()->symtab == NULL)
20379 {
20380 builder->get_current_subfile ()->symtab
20381 = allocate_symtab (cust,
20382 builder->get_current_subfile ()->name);
20383 }
20384 fe.symtab = builder->get_current_subfile ()->symtab;
20385 }
20386 }
20387 }
20388
20389 /* Start a subfile for DWARF. FILENAME is the name of the file and
20390 DIRNAME the name of the source directory which contains FILENAME
20391 or NULL if not known.
20392 This routine tries to keep line numbers from identical absolute and
20393 relative file names in a common subfile.
20394
20395 Using the `list' example from the GDB testsuite, which resides in
20396 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20397 of /srcdir/list0.c yields the following debugging information for list0.c:
20398
20399 DW_AT_name: /srcdir/list0.c
20400 DW_AT_comp_dir: /compdir
20401 files.files[0].name: list0.h
20402 files.files[0].dir: /srcdir
20403 files.files[1].name: list0.c
20404 files.files[1].dir: /srcdir
20405
20406 The line number information for list0.c has to end up in a single
20407 subfile, so that `break /srcdir/list0.c:1' works as expected.
20408 start_subfile will ensure that this happens provided that we pass the
20409 concatenation of files.files[1].dir and files.files[1].name as the
20410 subfile's name. */
20411
20412 static void
20413 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20414 const char *dirname)
20415 {
20416 gdb::unique_xmalloc_ptr<char> copy;
20417
20418 /* In order not to lose the line information directory,
20419 we concatenate it to the filename when it makes sense.
20420 Note that the Dwarf3 standard says (speaking of filenames in line
20421 information): ``The directory index is ignored for file names
20422 that represent full path names''. Thus ignoring dirname in the
20423 `else' branch below isn't an issue. */
20424
20425 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20426 {
20427 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20428 filename = copy.get ();
20429 }
20430
20431 cu->get_builder ()->start_subfile (filename);
20432 }
20433
20434 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20435 buildsym_compunit constructor. */
20436
20437 struct compunit_symtab *
20438 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20439 CORE_ADDR low_pc)
20440 {
20441 gdb_assert (m_builder == nullptr);
20442
20443 m_builder.reset (new struct buildsym_compunit
20444 (per_cu->dwarf2_per_objfile->objfile,
20445 name, comp_dir, language, low_pc));
20446
20447 list_in_scope = get_builder ()->get_file_symbols ();
20448
20449 get_builder ()->record_debugformat ("DWARF 2");
20450 get_builder ()->record_producer (producer);
20451
20452 processing_has_namespace_info = false;
20453
20454 return get_builder ()->get_compunit_symtab ();
20455 }
20456
20457 static void
20458 var_decode_location (struct attribute *attr, struct symbol *sym,
20459 struct dwarf2_cu *cu)
20460 {
20461 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20462 struct comp_unit_head *cu_header = &cu->header;
20463
20464 /* NOTE drow/2003-01-30: There used to be a comment and some special
20465 code here to turn a symbol with DW_AT_external and a
20466 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20467 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20468 with some versions of binutils) where shared libraries could have
20469 relocations against symbols in their debug information - the
20470 minimal symbol would have the right address, but the debug info
20471 would not. It's no longer necessary, because we will explicitly
20472 apply relocations when we read in the debug information now. */
20473
20474 /* A DW_AT_location attribute with no contents indicates that a
20475 variable has been optimized away. */
20476 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20477 {
20478 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20479 return;
20480 }
20481
20482 /* Handle one degenerate form of location expression specially, to
20483 preserve GDB's previous behavior when section offsets are
20484 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20485 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20486
20487 if (attr->form_is_block ()
20488 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20489 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20490 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20491 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20492 && (DW_BLOCK (attr)->size
20493 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20494 {
20495 unsigned int dummy;
20496
20497 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20498 SET_SYMBOL_VALUE_ADDRESS
20499 (sym, cu->header.read_address (objfile->obfd,
20500 DW_BLOCK (attr)->data + 1,
20501 &dummy));
20502 else
20503 SET_SYMBOL_VALUE_ADDRESS
20504 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20505 &dummy));
20506 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20507 fixup_symbol_section (sym, objfile);
20508 SET_SYMBOL_VALUE_ADDRESS
20509 (sym,
20510 SYMBOL_VALUE_ADDRESS (sym)
20511 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20512 return;
20513 }
20514
20515 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20516 expression evaluator, and use LOC_COMPUTED only when necessary
20517 (i.e. when the value of a register or memory location is
20518 referenced, or a thread-local block, etc.). Then again, it might
20519 not be worthwhile. I'm assuming that it isn't unless performance
20520 or memory numbers show me otherwise. */
20521
20522 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20523
20524 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20525 cu->has_loclist = true;
20526 }
20527
20528 /* Given a pointer to a DWARF information entry, figure out if we need
20529 to make a symbol table entry for it, and if so, create a new entry
20530 and return a pointer to it.
20531 If TYPE is NULL, determine symbol type from the die, otherwise
20532 used the passed type.
20533 If SPACE is not NULL, use it to hold the new symbol. If it is
20534 NULL, allocate a new symbol on the objfile's obstack. */
20535
20536 static struct symbol *
20537 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20538 struct symbol *space)
20539 {
20540 struct dwarf2_per_objfile *dwarf2_per_objfile
20541 = cu->per_cu->dwarf2_per_objfile;
20542 struct objfile *objfile = dwarf2_per_objfile->objfile;
20543 struct gdbarch *gdbarch = objfile->arch ();
20544 struct symbol *sym = NULL;
20545 const char *name;
20546 struct attribute *attr = NULL;
20547 struct attribute *attr2 = NULL;
20548 CORE_ADDR baseaddr;
20549 struct pending **list_to_add = NULL;
20550
20551 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20552
20553 baseaddr = objfile->text_section_offset ();
20554
20555 name = dwarf2_name (die, cu);
20556 if (name)
20557 {
20558 int suppress_add = 0;
20559
20560 if (space)
20561 sym = space;
20562 else
20563 sym = allocate_symbol (objfile);
20564 OBJSTAT (objfile, n_syms++);
20565
20566 /* Cache this symbol's name and the name's demangled form (if any). */
20567 sym->set_language (cu->language, &objfile->objfile_obstack);
20568 /* Fortran does not have mangling standard and the mangling does differ
20569 between gfortran, iFort etc. */
20570 const char *physname
20571 = (cu->language == language_fortran
20572 ? dwarf2_full_name (name, die, cu)
20573 : dwarf2_physname (name, die, cu));
20574 const char *linkagename = dw2_linkage_name (die, cu);
20575
20576 if (linkagename == nullptr || cu->language == language_ada)
20577 sym->set_linkage_name (physname);
20578 else
20579 {
20580 sym->set_demangled_name (physname, &objfile->objfile_obstack);
20581 sym->set_linkage_name (linkagename);
20582 }
20583
20584 /* Default assumptions.
20585 Use the passed type or decode it from the die. */
20586 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20587 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20588 if (type != NULL)
20589 SYMBOL_TYPE (sym) = type;
20590 else
20591 SYMBOL_TYPE (sym) = die_type (die, cu);
20592 attr = dwarf2_attr (die,
20593 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20594 cu);
20595 if (attr != nullptr)
20596 {
20597 SYMBOL_LINE (sym) = DW_UNSND (attr);
20598 }
20599
20600 attr = dwarf2_attr (die,
20601 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20602 cu);
20603 if (attr != nullptr)
20604 {
20605 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20606 struct file_entry *fe;
20607
20608 if (cu->line_header != NULL)
20609 fe = cu->line_header->file_name_at (file_index);
20610 else
20611 fe = NULL;
20612
20613 if (fe == NULL)
20614 complaint (_("file index out of range"));
20615 else
20616 symbol_set_symtab (sym, fe->symtab);
20617 }
20618
20619 switch (die->tag)
20620 {
20621 case DW_TAG_label:
20622 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20623 if (attr != nullptr)
20624 {
20625 CORE_ADDR addr;
20626
20627 addr = attr->value_as_address ();
20628 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20629 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20630 }
20631 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20632 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20633 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20634 add_symbol_to_list (sym, cu->list_in_scope);
20635 break;
20636 case DW_TAG_subprogram:
20637 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20638 finish_block. */
20639 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20640 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20641 if ((attr2 && (DW_UNSND (attr2) != 0))
20642 || cu->language == language_ada
20643 || cu->language == language_fortran)
20644 {
20645 /* Subprograms marked external are stored as a global symbol.
20646 Ada and Fortran subprograms, whether marked external or
20647 not, are always stored as a global symbol, because we want
20648 to be able to access them globally. For instance, we want
20649 to be able to break on a nested subprogram without having
20650 to specify the context. */
20651 list_to_add = cu->get_builder ()->get_global_symbols ();
20652 }
20653 else
20654 {
20655 list_to_add = cu->list_in_scope;
20656 }
20657 break;
20658 case DW_TAG_inlined_subroutine:
20659 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20660 finish_block. */
20661 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20662 SYMBOL_INLINED (sym) = 1;
20663 list_to_add = cu->list_in_scope;
20664 break;
20665 case DW_TAG_template_value_param:
20666 suppress_add = 1;
20667 /* Fall through. */
20668 case DW_TAG_constant:
20669 case DW_TAG_variable:
20670 case DW_TAG_member:
20671 /* Compilation with minimal debug info may result in
20672 variables with missing type entries. Change the
20673 misleading `void' type to something sensible. */
20674 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20675 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20676
20677 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20678 /* In the case of DW_TAG_member, we should only be called for
20679 static const members. */
20680 if (die->tag == DW_TAG_member)
20681 {
20682 /* dwarf2_add_field uses die_is_declaration,
20683 so we do the same. */
20684 gdb_assert (die_is_declaration (die, cu));
20685 gdb_assert (attr);
20686 }
20687 if (attr != nullptr)
20688 {
20689 dwarf2_const_value (attr, sym, cu);
20690 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20691 if (!suppress_add)
20692 {
20693 if (attr2 && (DW_UNSND (attr2) != 0))
20694 list_to_add = cu->get_builder ()->get_global_symbols ();
20695 else
20696 list_to_add = cu->list_in_scope;
20697 }
20698 break;
20699 }
20700 attr = dwarf2_attr (die, DW_AT_location, cu);
20701 if (attr != nullptr)
20702 {
20703 var_decode_location (attr, sym, cu);
20704 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20705
20706 /* Fortran explicitly imports any global symbols to the local
20707 scope by DW_TAG_common_block. */
20708 if (cu->language == language_fortran && die->parent
20709 && die->parent->tag == DW_TAG_common_block)
20710 attr2 = NULL;
20711
20712 if (SYMBOL_CLASS (sym) == LOC_STATIC
20713 && SYMBOL_VALUE_ADDRESS (sym) == 0
20714 && !dwarf2_per_objfile->has_section_at_zero)
20715 {
20716 /* When a static variable is eliminated by the linker,
20717 the corresponding debug information is not stripped
20718 out, but the variable address is set to null;
20719 do not add such variables into symbol table. */
20720 }
20721 else if (attr2 && (DW_UNSND (attr2) != 0))
20722 {
20723 if (SYMBOL_CLASS (sym) == LOC_STATIC
20724 && (objfile->flags & OBJF_MAINLINE) == 0
20725 && dwarf2_per_objfile->can_copy)
20726 {
20727 /* A global static variable might be subject to
20728 copy relocation. We first check for a local
20729 minsym, though, because maybe the symbol was
20730 marked hidden, in which case this would not
20731 apply. */
20732 bound_minimal_symbol found
20733 = (lookup_minimal_symbol_linkage
20734 (sym->linkage_name (), objfile));
20735 if (found.minsym != nullptr)
20736 sym->maybe_copied = 1;
20737 }
20738
20739 /* A variable with DW_AT_external is never static,
20740 but it may be block-scoped. */
20741 list_to_add
20742 = ((cu->list_in_scope
20743 == cu->get_builder ()->get_file_symbols ())
20744 ? cu->get_builder ()->get_global_symbols ()
20745 : cu->list_in_scope);
20746 }
20747 else
20748 list_to_add = cu->list_in_scope;
20749 }
20750 else
20751 {
20752 /* We do not know the address of this symbol.
20753 If it is an external symbol and we have type information
20754 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20755 The address of the variable will then be determined from
20756 the minimal symbol table whenever the variable is
20757 referenced. */
20758 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20759
20760 /* Fortran explicitly imports any global symbols to the local
20761 scope by DW_TAG_common_block. */
20762 if (cu->language == language_fortran && die->parent
20763 && die->parent->tag == DW_TAG_common_block)
20764 {
20765 /* SYMBOL_CLASS doesn't matter here because
20766 read_common_block is going to reset it. */
20767 if (!suppress_add)
20768 list_to_add = cu->list_in_scope;
20769 }
20770 else if (attr2 && (DW_UNSND (attr2) != 0)
20771 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20772 {
20773 /* A variable with DW_AT_external is never static, but it
20774 may be block-scoped. */
20775 list_to_add
20776 = ((cu->list_in_scope
20777 == cu->get_builder ()->get_file_symbols ())
20778 ? cu->get_builder ()->get_global_symbols ()
20779 : cu->list_in_scope);
20780
20781 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20782 }
20783 else if (!die_is_declaration (die, cu))
20784 {
20785 /* Use the default LOC_OPTIMIZED_OUT class. */
20786 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20787 if (!suppress_add)
20788 list_to_add = cu->list_in_scope;
20789 }
20790 }
20791 break;
20792 case DW_TAG_formal_parameter:
20793 {
20794 /* If we are inside a function, mark this as an argument. If
20795 not, we might be looking at an argument to an inlined function
20796 when we do not have enough information to show inlined frames;
20797 pretend it's a local variable in that case so that the user can
20798 still see it. */
20799 struct context_stack *curr
20800 = cu->get_builder ()->get_current_context_stack ();
20801 if (curr != nullptr && curr->name != nullptr)
20802 SYMBOL_IS_ARGUMENT (sym) = 1;
20803 attr = dwarf2_attr (die, DW_AT_location, cu);
20804 if (attr != nullptr)
20805 {
20806 var_decode_location (attr, sym, cu);
20807 }
20808 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20809 if (attr != nullptr)
20810 {
20811 dwarf2_const_value (attr, sym, cu);
20812 }
20813
20814 list_to_add = cu->list_in_scope;
20815 }
20816 break;
20817 case DW_TAG_unspecified_parameters:
20818 /* From varargs functions; gdb doesn't seem to have any
20819 interest in this information, so just ignore it for now.
20820 (FIXME?) */
20821 break;
20822 case DW_TAG_template_type_param:
20823 suppress_add = 1;
20824 /* Fall through. */
20825 case DW_TAG_class_type:
20826 case DW_TAG_interface_type:
20827 case DW_TAG_structure_type:
20828 case DW_TAG_union_type:
20829 case DW_TAG_set_type:
20830 case DW_TAG_enumeration_type:
20831 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20832 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20833
20834 {
20835 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20836 really ever be static objects: otherwise, if you try
20837 to, say, break of a class's method and you're in a file
20838 which doesn't mention that class, it won't work unless
20839 the check for all static symbols in lookup_symbol_aux
20840 saves you. See the OtherFileClass tests in
20841 gdb.c++/namespace.exp. */
20842
20843 if (!suppress_add)
20844 {
20845 buildsym_compunit *builder = cu->get_builder ();
20846 list_to_add
20847 = (cu->list_in_scope == builder->get_file_symbols ()
20848 && cu->language == language_cplus
20849 ? builder->get_global_symbols ()
20850 : cu->list_in_scope);
20851
20852 /* The semantics of C++ state that "struct foo {
20853 ... }" also defines a typedef for "foo". */
20854 if (cu->language == language_cplus
20855 || cu->language == language_ada
20856 || cu->language == language_d
20857 || cu->language == language_rust)
20858 {
20859 /* The symbol's name is already allocated along
20860 with this objfile, so we don't need to
20861 duplicate it for the type. */
20862 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20863 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20864 }
20865 }
20866 }
20867 break;
20868 case DW_TAG_typedef:
20869 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20870 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20871 list_to_add = cu->list_in_scope;
20872 break;
20873 case DW_TAG_base_type:
20874 case DW_TAG_subrange_type:
20875 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20877 list_to_add = cu->list_in_scope;
20878 break;
20879 case DW_TAG_enumerator:
20880 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20881 if (attr != nullptr)
20882 {
20883 dwarf2_const_value (attr, sym, cu);
20884 }
20885 {
20886 /* NOTE: carlton/2003-11-10: See comment above in the
20887 DW_TAG_class_type, etc. block. */
20888
20889 list_to_add
20890 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20891 && cu->language == language_cplus
20892 ? cu->get_builder ()->get_global_symbols ()
20893 : cu->list_in_scope);
20894 }
20895 break;
20896 case DW_TAG_imported_declaration:
20897 case DW_TAG_namespace:
20898 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20899 list_to_add = cu->get_builder ()->get_global_symbols ();
20900 break;
20901 case DW_TAG_module:
20902 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20903 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20904 list_to_add = cu->get_builder ()->get_global_symbols ();
20905 break;
20906 case DW_TAG_common_block:
20907 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20908 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20909 add_symbol_to_list (sym, cu->list_in_scope);
20910 break;
20911 default:
20912 /* Not a tag we recognize. Hopefully we aren't processing
20913 trash data, but since we must specifically ignore things
20914 we don't recognize, there is nothing else we should do at
20915 this point. */
20916 complaint (_("unsupported tag: '%s'"),
20917 dwarf_tag_name (die->tag));
20918 break;
20919 }
20920
20921 if (suppress_add)
20922 {
20923 sym->hash_next = objfile->template_symbols;
20924 objfile->template_symbols = sym;
20925 list_to_add = NULL;
20926 }
20927
20928 if (list_to_add != NULL)
20929 add_symbol_to_list (sym, list_to_add);
20930
20931 /* For the benefit of old versions of GCC, check for anonymous
20932 namespaces based on the demangled name. */
20933 if (!cu->processing_has_namespace_info
20934 && cu->language == language_cplus)
20935 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20936 }
20937 return (sym);
20938 }
20939
20940 /* Given an attr with a DW_FORM_dataN value in host byte order,
20941 zero-extend it as appropriate for the symbol's type. The DWARF
20942 standard (v4) is not entirely clear about the meaning of using
20943 DW_FORM_dataN for a constant with a signed type, where the type is
20944 wider than the data. The conclusion of a discussion on the DWARF
20945 list was that this is unspecified. We choose to always zero-extend
20946 because that is the interpretation long in use by GCC. */
20947
20948 static gdb_byte *
20949 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20950 struct dwarf2_cu *cu, LONGEST *value, int bits)
20951 {
20952 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20953 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20954 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20955 LONGEST l = DW_UNSND (attr);
20956
20957 if (bits < sizeof (*value) * 8)
20958 {
20959 l &= ((LONGEST) 1 << bits) - 1;
20960 *value = l;
20961 }
20962 else if (bits == sizeof (*value) * 8)
20963 *value = l;
20964 else
20965 {
20966 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20967 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20968 return bytes;
20969 }
20970
20971 return NULL;
20972 }
20973
20974 /* Read a constant value from an attribute. Either set *VALUE, or if
20975 the value does not fit in *VALUE, set *BYTES - either already
20976 allocated on the objfile obstack, or newly allocated on OBSTACK,
20977 or, set *BATON, if we translated the constant to a location
20978 expression. */
20979
20980 static void
20981 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20982 const char *name, struct obstack *obstack,
20983 struct dwarf2_cu *cu,
20984 LONGEST *value, const gdb_byte **bytes,
20985 struct dwarf2_locexpr_baton **baton)
20986 {
20987 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20988 struct comp_unit_head *cu_header = &cu->header;
20989 struct dwarf_block *blk;
20990 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20991 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20992
20993 *value = 0;
20994 *bytes = NULL;
20995 *baton = NULL;
20996
20997 switch (attr->form)
20998 {
20999 case DW_FORM_addr:
21000 case DW_FORM_addrx:
21001 case DW_FORM_GNU_addr_index:
21002 {
21003 gdb_byte *data;
21004
21005 if (TYPE_LENGTH (type) != cu_header->addr_size)
21006 dwarf2_const_value_length_mismatch_complaint (name,
21007 cu_header->addr_size,
21008 TYPE_LENGTH (type));
21009 /* Symbols of this form are reasonably rare, so we just
21010 piggyback on the existing location code rather than writing
21011 a new implementation of symbol_computed_ops. */
21012 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21013 (*baton)->per_cu = cu->per_cu;
21014 gdb_assert ((*baton)->per_cu);
21015
21016 (*baton)->size = 2 + cu_header->addr_size;
21017 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21018 (*baton)->data = data;
21019
21020 data[0] = DW_OP_addr;
21021 store_unsigned_integer (&data[1], cu_header->addr_size,
21022 byte_order, DW_ADDR (attr));
21023 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21024 }
21025 break;
21026 case DW_FORM_string:
21027 case DW_FORM_strp:
21028 case DW_FORM_strx:
21029 case DW_FORM_GNU_str_index:
21030 case DW_FORM_GNU_strp_alt:
21031 /* DW_STRING is already allocated on the objfile obstack, point
21032 directly to it. */
21033 *bytes = (const gdb_byte *) DW_STRING (attr);
21034 break;
21035 case DW_FORM_block1:
21036 case DW_FORM_block2:
21037 case DW_FORM_block4:
21038 case DW_FORM_block:
21039 case DW_FORM_exprloc:
21040 case DW_FORM_data16:
21041 blk = DW_BLOCK (attr);
21042 if (TYPE_LENGTH (type) != blk->size)
21043 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21044 TYPE_LENGTH (type));
21045 *bytes = blk->data;
21046 break;
21047
21048 /* The DW_AT_const_value attributes are supposed to carry the
21049 symbol's value "represented as it would be on the target
21050 architecture." By the time we get here, it's already been
21051 converted to host endianness, so we just need to sign- or
21052 zero-extend it as appropriate. */
21053 case DW_FORM_data1:
21054 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21055 break;
21056 case DW_FORM_data2:
21057 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21058 break;
21059 case DW_FORM_data4:
21060 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21061 break;
21062 case DW_FORM_data8:
21063 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21064 break;
21065
21066 case DW_FORM_sdata:
21067 case DW_FORM_implicit_const:
21068 *value = DW_SND (attr);
21069 break;
21070
21071 case DW_FORM_udata:
21072 *value = DW_UNSND (attr);
21073 break;
21074
21075 default:
21076 complaint (_("unsupported const value attribute form: '%s'"),
21077 dwarf_form_name (attr->form));
21078 *value = 0;
21079 break;
21080 }
21081 }
21082
21083
21084 /* Copy constant value from an attribute to a symbol. */
21085
21086 static void
21087 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21088 struct dwarf2_cu *cu)
21089 {
21090 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21091 LONGEST value;
21092 const gdb_byte *bytes;
21093 struct dwarf2_locexpr_baton *baton;
21094
21095 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21096 sym->print_name (),
21097 &objfile->objfile_obstack, cu,
21098 &value, &bytes, &baton);
21099
21100 if (baton != NULL)
21101 {
21102 SYMBOL_LOCATION_BATON (sym) = baton;
21103 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21104 }
21105 else if (bytes != NULL)
21106 {
21107 SYMBOL_VALUE_BYTES (sym) = bytes;
21108 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21109 }
21110 else
21111 {
21112 SYMBOL_VALUE (sym) = value;
21113 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21114 }
21115 }
21116
21117 /* Return the type of the die in question using its DW_AT_type attribute. */
21118
21119 static struct type *
21120 die_type (struct die_info *die, struct dwarf2_cu *cu)
21121 {
21122 struct attribute *type_attr;
21123
21124 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21125 if (!type_attr)
21126 {
21127 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21128 /* A missing DW_AT_type represents a void type. */
21129 return objfile_type (objfile)->builtin_void;
21130 }
21131
21132 return lookup_die_type (die, type_attr, cu);
21133 }
21134
21135 /* True iff CU's producer generates GNAT Ada auxiliary information
21136 that allows to find parallel types through that information instead
21137 of having to do expensive parallel lookups by type name. */
21138
21139 static int
21140 need_gnat_info (struct dwarf2_cu *cu)
21141 {
21142 /* Assume that the Ada compiler was GNAT, which always produces
21143 the auxiliary information. */
21144 return (cu->language == language_ada);
21145 }
21146
21147 /* Return the auxiliary type of the die in question using its
21148 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21149 attribute is not present. */
21150
21151 static struct type *
21152 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21153 {
21154 struct attribute *type_attr;
21155
21156 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21157 if (!type_attr)
21158 return NULL;
21159
21160 return lookup_die_type (die, type_attr, cu);
21161 }
21162
21163 /* If DIE has a descriptive_type attribute, then set the TYPE's
21164 descriptive type accordingly. */
21165
21166 static void
21167 set_descriptive_type (struct type *type, struct die_info *die,
21168 struct dwarf2_cu *cu)
21169 {
21170 struct type *descriptive_type = die_descriptive_type (die, cu);
21171
21172 if (descriptive_type)
21173 {
21174 ALLOCATE_GNAT_AUX_TYPE (type);
21175 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21176 }
21177 }
21178
21179 /* Return the containing type of the die in question using its
21180 DW_AT_containing_type attribute. */
21181
21182 static struct type *
21183 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21184 {
21185 struct attribute *type_attr;
21186 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21187
21188 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21189 if (!type_attr)
21190 error (_("Dwarf Error: Problem turning containing type into gdb type "
21191 "[in module %s]"), objfile_name (objfile));
21192
21193 return lookup_die_type (die, type_attr, cu);
21194 }
21195
21196 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21197
21198 static struct type *
21199 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21200 {
21201 struct dwarf2_per_objfile *dwarf2_per_objfile
21202 = cu->per_cu->dwarf2_per_objfile;
21203 struct objfile *objfile = dwarf2_per_objfile->objfile;
21204 char *saved;
21205
21206 std::string message
21207 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21208 objfile_name (objfile),
21209 sect_offset_str (cu->header.sect_off),
21210 sect_offset_str (die->sect_off));
21211 saved = obstack_strdup (&objfile->objfile_obstack, message);
21212
21213 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21214 }
21215
21216 /* Look up the type of DIE in CU using its type attribute ATTR.
21217 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21218 DW_AT_containing_type.
21219 If there is no type substitute an error marker. */
21220
21221 static struct type *
21222 lookup_die_type (struct die_info *die, const struct attribute *attr,
21223 struct dwarf2_cu *cu)
21224 {
21225 struct dwarf2_per_objfile *dwarf2_per_objfile
21226 = cu->per_cu->dwarf2_per_objfile;
21227 struct objfile *objfile = dwarf2_per_objfile->objfile;
21228 struct type *this_type;
21229
21230 gdb_assert (attr->name == DW_AT_type
21231 || attr->name == DW_AT_GNAT_descriptive_type
21232 || attr->name == DW_AT_containing_type);
21233
21234 /* First see if we have it cached. */
21235
21236 if (attr->form == DW_FORM_GNU_ref_alt)
21237 {
21238 struct dwarf2_per_cu_data *per_cu;
21239 sect_offset sect_off = attr->get_ref_die_offset ();
21240
21241 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21242 dwarf2_per_objfile);
21243 this_type = get_die_type_at_offset (sect_off, per_cu);
21244 }
21245 else if (attr->form_is_ref ())
21246 {
21247 sect_offset sect_off = attr->get_ref_die_offset ();
21248
21249 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21250 }
21251 else if (attr->form == DW_FORM_ref_sig8)
21252 {
21253 ULONGEST signature = DW_SIGNATURE (attr);
21254
21255 return get_signatured_type (die, signature, cu);
21256 }
21257 else
21258 {
21259 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21260 " at %s [in module %s]"),
21261 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21262 objfile_name (objfile));
21263 return build_error_marker_type (cu, die);
21264 }
21265
21266 /* If not cached we need to read it in. */
21267
21268 if (this_type == NULL)
21269 {
21270 struct die_info *type_die = NULL;
21271 struct dwarf2_cu *type_cu = cu;
21272
21273 if (attr->form_is_ref ())
21274 type_die = follow_die_ref (die, attr, &type_cu);
21275 if (type_die == NULL)
21276 return build_error_marker_type (cu, die);
21277 /* If we find the type now, it's probably because the type came
21278 from an inter-CU reference and the type's CU got expanded before
21279 ours. */
21280 this_type = read_type_die (type_die, type_cu);
21281 }
21282
21283 /* If we still don't have a type use an error marker. */
21284
21285 if (this_type == NULL)
21286 return build_error_marker_type (cu, die);
21287
21288 return this_type;
21289 }
21290
21291 /* Return the type in DIE, CU.
21292 Returns NULL for invalid types.
21293
21294 This first does a lookup in die_type_hash,
21295 and only reads the die in if necessary.
21296
21297 NOTE: This can be called when reading in partial or full symbols. */
21298
21299 static struct type *
21300 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21301 {
21302 struct type *this_type;
21303
21304 this_type = get_die_type (die, cu);
21305 if (this_type)
21306 return this_type;
21307
21308 return read_type_die_1 (die, cu);
21309 }
21310
21311 /* Read the type in DIE, CU.
21312 Returns NULL for invalid types. */
21313
21314 static struct type *
21315 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21316 {
21317 struct type *this_type = NULL;
21318
21319 switch (die->tag)
21320 {
21321 case DW_TAG_class_type:
21322 case DW_TAG_interface_type:
21323 case DW_TAG_structure_type:
21324 case DW_TAG_union_type:
21325 this_type = read_structure_type (die, cu);
21326 break;
21327 case DW_TAG_enumeration_type:
21328 this_type = read_enumeration_type (die, cu);
21329 break;
21330 case DW_TAG_subprogram:
21331 case DW_TAG_subroutine_type:
21332 case DW_TAG_inlined_subroutine:
21333 this_type = read_subroutine_type (die, cu);
21334 break;
21335 case DW_TAG_array_type:
21336 this_type = read_array_type (die, cu);
21337 break;
21338 case DW_TAG_set_type:
21339 this_type = read_set_type (die, cu);
21340 break;
21341 case DW_TAG_pointer_type:
21342 this_type = read_tag_pointer_type (die, cu);
21343 break;
21344 case DW_TAG_ptr_to_member_type:
21345 this_type = read_tag_ptr_to_member_type (die, cu);
21346 break;
21347 case DW_TAG_reference_type:
21348 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21349 break;
21350 case DW_TAG_rvalue_reference_type:
21351 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21352 break;
21353 case DW_TAG_const_type:
21354 this_type = read_tag_const_type (die, cu);
21355 break;
21356 case DW_TAG_volatile_type:
21357 this_type = read_tag_volatile_type (die, cu);
21358 break;
21359 case DW_TAG_restrict_type:
21360 this_type = read_tag_restrict_type (die, cu);
21361 break;
21362 case DW_TAG_string_type:
21363 this_type = read_tag_string_type (die, cu);
21364 break;
21365 case DW_TAG_typedef:
21366 this_type = read_typedef (die, cu);
21367 break;
21368 case DW_TAG_subrange_type:
21369 this_type = read_subrange_type (die, cu);
21370 break;
21371 case DW_TAG_base_type:
21372 this_type = read_base_type (die, cu);
21373 break;
21374 case DW_TAG_unspecified_type:
21375 this_type = read_unspecified_type (die, cu);
21376 break;
21377 case DW_TAG_namespace:
21378 this_type = read_namespace_type (die, cu);
21379 break;
21380 case DW_TAG_module:
21381 this_type = read_module_type (die, cu);
21382 break;
21383 case DW_TAG_atomic_type:
21384 this_type = read_tag_atomic_type (die, cu);
21385 break;
21386 default:
21387 complaint (_("unexpected tag in read_type_die: '%s'"),
21388 dwarf_tag_name (die->tag));
21389 break;
21390 }
21391
21392 return this_type;
21393 }
21394
21395 /* See if we can figure out if the class lives in a namespace. We do
21396 this by looking for a member function; its demangled name will
21397 contain namespace info, if there is any.
21398 Return the computed name or NULL.
21399 Space for the result is allocated on the objfile's obstack.
21400 This is the full-die version of guess_partial_die_structure_name.
21401 In this case we know DIE has no useful parent. */
21402
21403 static const char *
21404 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21405 {
21406 struct die_info *spec_die;
21407 struct dwarf2_cu *spec_cu;
21408 struct die_info *child;
21409 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21410
21411 spec_cu = cu;
21412 spec_die = die_specification (die, &spec_cu);
21413 if (spec_die != NULL)
21414 {
21415 die = spec_die;
21416 cu = spec_cu;
21417 }
21418
21419 for (child = die->child;
21420 child != NULL;
21421 child = child->sibling)
21422 {
21423 if (child->tag == DW_TAG_subprogram)
21424 {
21425 const char *linkage_name = dw2_linkage_name (child, cu);
21426
21427 if (linkage_name != NULL)
21428 {
21429 gdb::unique_xmalloc_ptr<char> actual_name
21430 (language_class_name_from_physname (cu->language_defn,
21431 linkage_name));
21432 const char *name = NULL;
21433
21434 if (actual_name != NULL)
21435 {
21436 const char *die_name = dwarf2_name (die, cu);
21437
21438 if (die_name != NULL
21439 && strcmp (die_name, actual_name.get ()) != 0)
21440 {
21441 /* Strip off the class name from the full name.
21442 We want the prefix. */
21443 int die_name_len = strlen (die_name);
21444 int actual_name_len = strlen (actual_name.get ());
21445 const char *ptr = actual_name.get ();
21446
21447 /* Test for '::' as a sanity check. */
21448 if (actual_name_len > die_name_len + 2
21449 && ptr[actual_name_len - die_name_len - 1] == ':')
21450 name = obstack_strndup (
21451 &objfile->per_bfd->storage_obstack,
21452 ptr, actual_name_len - die_name_len - 2);
21453 }
21454 }
21455 return name;
21456 }
21457 }
21458 }
21459
21460 return NULL;
21461 }
21462
21463 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21464 prefix part in such case. See
21465 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21466
21467 static const char *
21468 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21469 {
21470 struct attribute *attr;
21471 const char *base;
21472
21473 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21474 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21475 return NULL;
21476
21477 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21478 return NULL;
21479
21480 attr = dw2_linkage_name_attr (die, cu);
21481 if (attr == NULL || DW_STRING (attr) == NULL)
21482 return NULL;
21483
21484 /* dwarf2_name had to be already called. */
21485 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21486
21487 /* Strip the base name, keep any leading namespaces/classes. */
21488 base = strrchr (DW_STRING (attr), ':');
21489 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21490 return "";
21491
21492 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21493 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21494 DW_STRING (attr),
21495 &base[-1] - DW_STRING (attr));
21496 }
21497
21498 /* Return the name of the namespace/class that DIE is defined within,
21499 or "" if we can't tell. The caller should not xfree the result.
21500
21501 For example, if we're within the method foo() in the following
21502 code:
21503
21504 namespace N {
21505 class C {
21506 void foo () {
21507 }
21508 };
21509 }
21510
21511 then determine_prefix on foo's die will return "N::C". */
21512
21513 static const char *
21514 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21515 {
21516 struct dwarf2_per_objfile *dwarf2_per_objfile
21517 = cu->per_cu->dwarf2_per_objfile;
21518 struct die_info *parent, *spec_die;
21519 struct dwarf2_cu *spec_cu;
21520 struct type *parent_type;
21521 const char *retval;
21522
21523 if (cu->language != language_cplus
21524 && cu->language != language_fortran && cu->language != language_d
21525 && cu->language != language_rust)
21526 return "";
21527
21528 retval = anonymous_struct_prefix (die, cu);
21529 if (retval)
21530 return retval;
21531
21532 /* We have to be careful in the presence of DW_AT_specification.
21533 For example, with GCC 3.4, given the code
21534
21535 namespace N {
21536 void foo() {
21537 // Definition of N::foo.
21538 }
21539 }
21540
21541 then we'll have a tree of DIEs like this:
21542
21543 1: DW_TAG_compile_unit
21544 2: DW_TAG_namespace // N
21545 3: DW_TAG_subprogram // declaration of N::foo
21546 4: DW_TAG_subprogram // definition of N::foo
21547 DW_AT_specification // refers to die #3
21548
21549 Thus, when processing die #4, we have to pretend that we're in
21550 the context of its DW_AT_specification, namely the contex of die
21551 #3. */
21552 spec_cu = cu;
21553 spec_die = die_specification (die, &spec_cu);
21554 if (spec_die == NULL)
21555 parent = die->parent;
21556 else
21557 {
21558 parent = spec_die->parent;
21559 cu = spec_cu;
21560 }
21561
21562 if (parent == NULL)
21563 return "";
21564 else if (parent->building_fullname)
21565 {
21566 const char *name;
21567 const char *parent_name;
21568
21569 /* It has been seen on RealView 2.2 built binaries,
21570 DW_TAG_template_type_param types actually _defined_ as
21571 children of the parent class:
21572
21573 enum E {};
21574 template class <class Enum> Class{};
21575 Class<enum E> class_e;
21576
21577 1: DW_TAG_class_type (Class)
21578 2: DW_TAG_enumeration_type (E)
21579 3: DW_TAG_enumerator (enum1:0)
21580 3: DW_TAG_enumerator (enum2:1)
21581 ...
21582 2: DW_TAG_template_type_param
21583 DW_AT_type DW_FORM_ref_udata (E)
21584
21585 Besides being broken debug info, it can put GDB into an
21586 infinite loop. Consider:
21587
21588 When we're building the full name for Class<E>, we'll start
21589 at Class, and go look over its template type parameters,
21590 finding E. We'll then try to build the full name of E, and
21591 reach here. We're now trying to build the full name of E,
21592 and look over the parent DIE for containing scope. In the
21593 broken case, if we followed the parent DIE of E, we'd again
21594 find Class, and once again go look at its template type
21595 arguments, etc., etc. Simply don't consider such parent die
21596 as source-level parent of this die (it can't be, the language
21597 doesn't allow it), and break the loop here. */
21598 name = dwarf2_name (die, cu);
21599 parent_name = dwarf2_name (parent, cu);
21600 complaint (_("template param type '%s' defined within parent '%s'"),
21601 name ? name : "<unknown>",
21602 parent_name ? parent_name : "<unknown>");
21603 return "";
21604 }
21605 else
21606 switch (parent->tag)
21607 {
21608 case DW_TAG_namespace:
21609 parent_type = read_type_die (parent, cu);
21610 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21611 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21612 Work around this problem here. */
21613 if (cu->language == language_cplus
21614 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21615 return "";
21616 /* We give a name to even anonymous namespaces. */
21617 return TYPE_NAME (parent_type);
21618 case DW_TAG_class_type:
21619 case DW_TAG_interface_type:
21620 case DW_TAG_structure_type:
21621 case DW_TAG_union_type:
21622 case DW_TAG_module:
21623 parent_type = read_type_die (parent, cu);
21624 if (TYPE_NAME (parent_type) != NULL)
21625 return TYPE_NAME (parent_type);
21626 else
21627 /* An anonymous structure is only allowed non-static data
21628 members; no typedefs, no member functions, et cetera.
21629 So it does not need a prefix. */
21630 return "";
21631 case DW_TAG_compile_unit:
21632 case DW_TAG_partial_unit:
21633 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21634 if (cu->language == language_cplus
21635 && !dwarf2_per_objfile->types.empty ()
21636 && die->child != NULL
21637 && (die->tag == DW_TAG_class_type
21638 || die->tag == DW_TAG_structure_type
21639 || die->tag == DW_TAG_union_type))
21640 {
21641 const char *name = guess_full_die_structure_name (die, cu);
21642 if (name != NULL)
21643 return name;
21644 }
21645 return "";
21646 case DW_TAG_subprogram:
21647 /* Nested subroutines in Fortran get a prefix with the name
21648 of the parent's subroutine. */
21649 if (cu->language == language_fortran)
21650 {
21651 if ((die->tag == DW_TAG_subprogram)
21652 && (dwarf2_name (parent, cu) != NULL))
21653 return dwarf2_name (parent, cu);
21654 }
21655 return determine_prefix (parent, cu);
21656 case DW_TAG_enumeration_type:
21657 parent_type = read_type_die (parent, cu);
21658 if (TYPE_DECLARED_CLASS (parent_type))
21659 {
21660 if (TYPE_NAME (parent_type) != NULL)
21661 return TYPE_NAME (parent_type);
21662 return "";
21663 }
21664 /* Fall through. */
21665 default:
21666 return determine_prefix (parent, cu);
21667 }
21668 }
21669
21670 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21671 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21672 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21673 an obconcat, otherwise allocate storage for the result. The CU argument is
21674 used to determine the language and hence, the appropriate separator. */
21675
21676 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21677
21678 static char *
21679 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21680 int physname, struct dwarf2_cu *cu)
21681 {
21682 const char *lead = "";
21683 const char *sep;
21684
21685 if (suffix == NULL || suffix[0] == '\0'
21686 || prefix == NULL || prefix[0] == '\0')
21687 sep = "";
21688 else if (cu->language == language_d)
21689 {
21690 /* For D, the 'main' function could be defined in any module, but it
21691 should never be prefixed. */
21692 if (strcmp (suffix, "D main") == 0)
21693 {
21694 prefix = "";
21695 sep = "";
21696 }
21697 else
21698 sep = ".";
21699 }
21700 else if (cu->language == language_fortran && physname)
21701 {
21702 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21703 DW_AT_MIPS_linkage_name is preferred and used instead. */
21704
21705 lead = "__";
21706 sep = "_MOD_";
21707 }
21708 else
21709 sep = "::";
21710
21711 if (prefix == NULL)
21712 prefix = "";
21713 if (suffix == NULL)
21714 suffix = "";
21715
21716 if (obs == NULL)
21717 {
21718 char *retval
21719 = ((char *)
21720 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21721
21722 strcpy (retval, lead);
21723 strcat (retval, prefix);
21724 strcat (retval, sep);
21725 strcat (retval, suffix);
21726 return retval;
21727 }
21728 else
21729 {
21730 /* We have an obstack. */
21731 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21732 }
21733 }
21734
21735 /* Get name of a die, return NULL if not found. */
21736
21737 static const char *
21738 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21739 struct objfile *objfile)
21740 {
21741 if (name && cu->language == language_cplus)
21742 {
21743 std::string canon_name = cp_canonicalize_string (name);
21744
21745 if (!canon_name.empty ())
21746 {
21747 if (canon_name != name)
21748 name = objfile->intern (canon_name);
21749 }
21750 }
21751
21752 return name;
21753 }
21754
21755 /* Get name of a die, return NULL if not found.
21756 Anonymous namespaces are converted to their magic string. */
21757
21758 static const char *
21759 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21760 {
21761 struct attribute *attr;
21762 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21763
21764 attr = dwarf2_attr (die, DW_AT_name, cu);
21765 if ((!attr || !DW_STRING (attr))
21766 && die->tag != DW_TAG_namespace
21767 && die->tag != DW_TAG_class_type
21768 && die->tag != DW_TAG_interface_type
21769 && die->tag != DW_TAG_structure_type
21770 && die->tag != DW_TAG_union_type)
21771 return NULL;
21772
21773 switch (die->tag)
21774 {
21775 case DW_TAG_compile_unit:
21776 case DW_TAG_partial_unit:
21777 /* Compilation units have a DW_AT_name that is a filename, not
21778 a source language identifier. */
21779 case DW_TAG_enumeration_type:
21780 case DW_TAG_enumerator:
21781 /* These tags always have simple identifiers already; no need
21782 to canonicalize them. */
21783 return DW_STRING (attr);
21784
21785 case DW_TAG_namespace:
21786 if (attr != NULL && DW_STRING (attr) != NULL)
21787 return DW_STRING (attr);
21788 return CP_ANONYMOUS_NAMESPACE_STR;
21789
21790 case DW_TAG_class_type:
21791 case DW_TAG_interface_type:
21792 case DW_TAG_structure_type:
21793 case DW_TAG_union_type:
21794 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21795 structures or unions. These were of the form "._%d" in GCC 4.1,
21796 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21797 and GCC 4.4. We work around this problem by ignoring these. */
21798 if (attr && DW_STRING (attr)
21799 && (startswith (DW_STRING (attr), "._")
21800 || startswith (DW_STRING (attr), "<anonymous")))
21801 return NULL;
21802
21803 /* GCC might emit a nameless typedef that has a linkage name. See
21804 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21805 if (!attr || DW_STRING (attr) == NULL)
21806 {
21807 attr = dw2_linkage_name_attr (die, cu);
21808 if (attr == NULL || DW_STRING (attr) == NULL)
21809 return NULL;
21810
21811 /* Avoid demangling DW_STRING (attr) the second time on a second
21812 call for the same DIE. */
21813 if (!DW_STRING_IS_CANONICAL (attr))
21814 {
21815 gdb::unique_xmalloc_ptr<char> demangled
21816 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21817 if (demangled == nullptr)
21818 return nullptr;
21819
21820 DW_STRING (attr) = objfile->intern (demangled.get ());
21821 DW_STRING_IS_CANONICAL (attr) = 1;
21822 }
21823
21824 /* Strip any leading namespaces/classes, keep only the base name.
21825 DW_AT_name for named DIEs does not contain the prefixes. */
21826 const char *base = strrchr (DW_STRING (attr), ':');
21827 if (base && base > DW_STRING (attr) && base[-1] == ':')
21828 return &base[1];
21829 else
21830 return DW_STRING (attr);
21831 }
21832 break;
21833
21834 default:
21835 break;
21836 }
21837
21838 if (!DW_STRING_IS_CANONICAL (attr))
21839 {
21840 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21841 objfile);
21842 DW_STRING_IS_CANONICAL (attr) = 1;
21843 }
21844 return DW_STRING (attr);
21845 }
21846
21847 /* Return the die that this die in an extension of, or NULL if there
21848 is none. *EXT_CU is the CU containing DIE on input, and the CU
21849 containing the return value on output. */
21850
21851 static struct die_info *
21852 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21853 {
21854 struct attribute *attr;
21855
21856 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21857 if (attr == NULL)
21858 return NULL;
21859
21860 return follow_die_ref (die, attr, ext_cu);
21861 }
21862
21863 static void
21864 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21865 {
21866 unsigned int i;
21867
21868 print_spaces (indent, f);
21869 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21870 dwarf_tag_name (die->tag), die->abbrev,
21871 sect_offset_str (die->sect_off));
21872
21873 if (die->parent != NULL)
21874 {
21875 print_spaces (indent, f);
21876 fprintf_unfiltered (f, " parent at offset: %s\n",
21877 sect_offset_str (die->parent->sect_off));
21878 }
21879
21880 print_spaces (indent, f);
21881 fprintf_unfiltered (f, " has children: %s\n",
21882 dwarf_bool_name (die->child != NULL));
21883
21884 print_spaces (indent, f);
21885 fprintf_unfiltered (f, " attributes:\n");
21886
21887 for (i = 0; i < die->num_attrs; ++i)
21888 {
21889 print_spaces (indent, f);
21890 fprintf_unfiltered (f, " %s (%s) ",
21891 dwarf_attr_name (die->attrs[i].name),
21892 dwarf_form_name (die->attrs[i].form));
21893
21894 switch (die->attrs[i].form)
21895 {
21896 case DW_FORM_addr:
21897 case DW_FORM_addrx:
21898 case DW_FORM_GNU_addr_index:
21899 fprintf_unfiltered (f, "address: ");
21900 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21901 break;
21902 case DW_FORM_block2:
21903 case DW_FORM_block4:
21904 case DW_FORM_block:
21905 case DW_FORM_block1:
21906 fprintf_unfiltered (f, "block: size %s",
21907 pulongest (DW_BLOCK (&die->attrs[i])->size));
21908 break;
21909 case DW_FORM_exprloc:
21910 fprintf_unfiltered (f, "expression: size %s",
21911 pulongest (DW_BLOCK (&die->attrs[i])->size));
21912 break;
21913 case DW_FORM_data16:
21914 fprintf_unfiltered (f, "constant of 16 bytes");
21915 break;
21916 case DW_FORM_ref_addr:
21917 fprintf_unfiltered (f, "ref address: ");
21918 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21919 break;
21920 case DW_FORM_GNU_ref_alt:
21921 fprintf_unfiltered (f, "alt ref address: ");
21922 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21923 break;
21924 case DW_FORM_ref1:
21925 case DW_FORM_ref2:
21926 case DW_FORM_ref4:
21927 case DW_FORM_ref8:
21928 case DW_FORM_ref_udata:
21929 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21930 (long) (DW_UNSND (&die->attrs[i])));
21931 break;
21932 case DW_FORM_data1:
21933 case DW_FORM_data2:
21934 case DW_FORM_data4:
21935 case DW_FORM_data8:
21936 case DW_FORM_udata:
21937 case DW_FORM_sdata:
21938 fprintf_unfiltered (f, "constant: %s",
21939 pulongest (DW_UNSND (&die->attrs[i])));
21940 break;
21941 case DW_FORM_sec_offset:
21942 fprintf_unfiltered (f, "section offset: %s",
21943 pulongest (DW_UNSND (&die->attrs[i])));
21944 break;
21945 case DW_FORM_ref_sig8:
21946 fprintf_unfiltered (f, "signature: %s",
21947 hex_string (DW_SIGNATURE (&die->attrs[i])));
21948 break;
21949 case DW_FORM_string:
21950 case DW_FORM_strp:
21951 case DW_FORM_line_strp:
21952 case DW_FORM_strx:
21953 case DW_FORM_GNU_str_index:
21954 case DW_FORM_GNU_strp_alt:
21955 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21956 DW_STRING (&die->attrs[i])
21957 ? DW_STRING (&die->attrs[i]) : "",
21958 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21959 break;
21960 case DW_FORM_flag:
21961 if (DW_UNSND (&die->attrs[i]))
21962 fprintf_unfiltered (f, "flag: TRUE");
21963 else
21964 fprintf_unfiltered (f, "flag: FALSE");
21965 break;
21966 case DW_FORM_flag_present:
21967 fprintf_unfiltered (f, "flag: TRUE");
21968 break;
21969 case DW_FORM_indirect:
21970 /* The reader will have reduced the indirect form to
21971 the "base form" so this form should not occur. */
21972 fprintf_unfiltered (f,
21973 "unexpected attribute form: DW_FORM_indirect");
21974 break;
21975 case DW_FORM_implicit_const:
21976 fprintf_unfiltered (f, "constant: %s",
21977 plongest (DW_SND (&die->attrs[i])));
21978 break;
21979 default:
21980 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21981 die->attrs[i].form);
21982 break;
21983 }
21984 fprintf_unfiltered (f, "\n");
21985 }
21986 }
21987
21988 static void
21989 dump_die_for_error (struct die_info *die)
21990 {
21991 dump_die_shallow (gdb_stderr, 0, die);
21992 }
21993
21994 static void
21995 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21996 {
21997 int indent = level * 4;
21998
21999 gdb_assert (die != NULL);
22000
22001 if (level >= max_level)
22002 return;
22003
22004 dump_die_shallow (f, indent, die);
22005
22006 if (die->child != NULL)
22007 {
22008 print_spaces (indent, f);
22009 fprintf_unfiltered (f, " Children:");
22010 if (level + 1 < max_level)
22011 {
22012 fprintf_unfiltered (f, "\n");
22013 dump_die_1 (f, level + 1, max_level, die->child);
22014 }
22015 else
22016 {
22017 fprintf_unfiltered (f,
22018 " [not printed, max nesting level reached]\n");
22019 }
22020 }
22021
22022 if (die->sibling != NULL && level > 0)
22023 {
22024 dump_die_1 (f, level, max_level, die->sibling);
22025 }
22026 }
22027
22028 /* This is called from the pdie macro in gdbinit.in.
22029 It's not static so gcc will keep a copy callable from gdb. */
22030
22031 void
22032 dump_die (struct die_info *die, int max_level)
22033 {
22034 dump_die_1 (gdb_stdlog, 0, max_level, die);
22035 }
22036
22037 static void
22038 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22039 {
22040 void **slot;
22041
22042 slot = htab_find_slot_with_hash (cu->die_hash, die,
22043 to_underlying (die->sect_off),
22044 INSERT);
22045
22046 *slot = die;
22047 }
22048
22049 /* Follow reference or signature attribute ATTR of SRC_DIE.
22050 On entry *REF_CU is the CU of SRC_DIE.
22051 On exit *REF_CU is the CU of the result. */
22052
22053 static struct die_info *
22054 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22055 struct dwarf2_cu **ref_cu)
22056 {
22057 struct die_info *die;
22058
22059 if (attr->form_is_ref ())
22060 die = follow_die_ref (src_die, attr, ref_cu);
22061 else if (attr->form == DW_FORM_ref_sig8)
22062 die = follow_die_sig (src_die, attr, ref_cu);
22063 else
22064 {
22065 dump_die_for_error (src_die);
22066 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22067 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22068 }
22069
22070 return die;
22071 }
22072
22073 /* Follow reference OFFSET.
22074 On entry *REF_CU is the CU of the source die referencing OFFSET.
22075 On exit *REF_CU is the CU of the result.
22076 Returns NULL if OFFSET is invalid. */
22077
22078 static struct die_info *
22079 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22080 struct dwarf2_cu **ref_cu)
22081 {
22082 struct die_info temp_die;
22083 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22084 struct dwarf2_per_objfile *dwarf2_per_objfile
22085 = cu->per_cu->dwarf2_per_objfile;
22086
22087 gdb_assert (cu->per_cu != NULL);
22088
22089 target_cu = cu;
22090
22091 if (cu->per_cu->is_debug_types)
22092 {
22093 /* .debug_types CUs cannot reference anything outside their CU.
22094 If they need to, they have to reference a signatured type via
22095 DW_FORM_ref_sig8. */
22096 if (!cu->header.offset_in_cu_p (sect_off))
22097 return NULL;
22098 }
22099 else if (offset_in_dwz != cu->per_cu->is_dwz
22100 || !cu->header.offset_in_cu_p (sect_off))
22101 {
22102 struct dwarf2_per_cu_data *per_cu;
22103
22104 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22105 dwarf2_per_objfile);
22106
22107 /* If necessary, add it to the queue and load its DIEs. */
22108 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22109 load_full_comp_unit (per_cu, false, cu->language);
22110
22111 target_cu = per_cu->cu;
22112 }
22113 else if (cu->dies == NULL)
22114 {
22115 /* We're loading full DIEs during partial symbol reading. */
22116 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22117 load_full_comp_unit (cu->per_cu, false, language_minimal);
22118 }
22119
22120 *ref_cu = target_cu;
22121 temp_die.sect_off = sect_off;
22122
22123 if (target_cu != cu)
22124 target_cu->ancestor = cu;
22125
22126 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22127 &temp_die,
22128 to_underlying (sect_off));
22129 }
22130
22131 /* Follow reference attribute ATTR of SRC_DIE.
22132 On entry *REF_CU is the CU of SRC_DIE.
22133 On exit *REF_CU is the CU of the result. */
22134
22135 static struct die_info *
22136 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22137 struct dwarf2_cu **ref_cu)
22138 {
22139 sect_offset sect_off = attr->get_ref_die_offset ();
22140 struct dwarf2_cu *cu = *ref_cu;
22141 struct die_info *die;
22142
22143 die = follow_die_offset (sect_off,
22144 (attr->form == DW_FORM_GNU_ref_alt
22145 || cu->per_cu->is_dwz),
22146 ref_cu);
22147 if (!die)
22148 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22149 "at %s [in module %s]"),
22150 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22151 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22152
22153 return die;
22154 }
22155
22156 /* See read.h. */
22157
22158 struct dwarf2_locexpr_baton
22159 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22160 dwarf2_per_cu_data *per_cu,
22161 CORE_ADDR (*get_frame_pc) (void *baton),
22162 void *baton, bool resolve_abstract_p)
22163 {
22164 struct dwarf2_cu *cu;
22165 struct die_info *die;
22166 struct attribute *attr;
22167 struct dwarf2_locexpr_baton retval;
22168 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22169 struct objfile *objfile = dwarf2_per_objfile->objfile;
22170
22171 if (per_cu->cu == NULL)
22172 load_cu (per_cu, false);
22173 cu = per_cu->cu;
22174 if (cu == NULL)
22175 {
22176 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22177 Instead just throw an error, not much else we can do. */
22178 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22179 sect_offset_str (sect_off), objfile_name (objfile));
22180 }
22181
22182 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22183 if (!die)
22184 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22185 sect_offset_str (sect_off), objfile_name (objfile));
22186
22187 attr = dwarf2_attr (die, DW_AT_location, cu);
22188 if (!attr && resolve_abstract_p
22189 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22190 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22191 {
22192 CORE_ADDR pc = (*get_frame_pc) (baton);
22193 CORE_ADDR baseaddr = objfile->text_section_offset ();
22194 struct gdbarch *gdbarch = objfile->arch ();
22195
22196 for (const auto &cand_off
22197 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22198 {
22199 struct dwarf2_cu *cand_cu = cu;
22200 struct die_info *cand
22201 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22202 if (!cand
22203 || !cand->parent
22204 || cand->parent->tag != DW_TAG_subprogram)
22205 continue;
22206
22207 CORE_ADDR pc_low, pc_high;
22208 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22209 if (pc_low == ((CORE_ADDR) -1))
22210 continue;
22211 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22212 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22213 if (!(pc_low <= pc && pc < pc_high))
22214 continue;
22215
22216 die = cand;
22217 attr = dwarf2_attr (die, DW_AT_location, cu);
22218 break;
22219 }
22220 }
22221
22222 if (!attr)
22223 {
22224 /* DWARF: "If there is no such attribute, then there is no effect.".
22225 DATA is ignored if SIZE is 0. */
22226
22227 retval.data = NULL;
22228 retval.size = 0;
22229 }
22230 else if (attr->form_is_section_offset ())
22231 {
22232 struct dwarf2_loclist_baton loclist_baton;
22233 CORE_ADDR pc = (*get_frame_pc) (baton);
22234 size_t size;
22235
22236 fill_in_loclist_baton (cu, &loclist_baton, attr);
22237
22238 retval.data = dwarf2_find_location_expression (&loclist_baton,
22239 &size, pc);
22240 retval.size = size;
22241 }
22242 else
22243 {
22244 if (!attr->form_is_block ())
22245 error (_("Dwarf Error: DIE at %s referenced in module %s "
22246 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22247 sect_offset_str (sect_off), objfile_name (objfile));
22248
22249 retval.data = DW_BLOCK (attr)->data;
22250 retval.size = DW_BLOCK (attr)->size;
22251 }
22252 retval.per_cu = cu->per_cu;
22253
22254 age_cached_comp_units (dwarf2_per_objfile);
22255
22256 return retval;
22257 }
22258
22259 /* See read.h. */
22260
22261 struct dwarf2_locexpr_baton
22262 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22263 dwarf2_per_cu_data *per_cu,
22264 CORE_ADDR (*get_frame_pc) (void *baton),
22265 void *baton)
22266 {
22267 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22268
22269 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22270 }
22271
22272 /* Write a constant of a given type as target-ordered bytes into
22273 OBSTACK. */
22274
22275 static const gdb_byte *
22276 write_constant_as_bytes (struct obstack *obstack,
22277 enum bfd_endian byte_order,
22278 struct type *type,
22279 ULONGEST value,
22280 LONGEST *len)
22281 {
22282 gdb_byte *result;
22283
22284 *len = TYPE_LENGTH (type);
22285 result = (gdb_byte *) obstack_alloc (obstack, *len);
22286 store_unsigned_integer (result, *len, byte_order, value);
22287
22288 return result;
22289 }
22290
22291 /* See read.h. */
22292
22293 const gdb_byte *
22294 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22295 dwarf2_per_cu_data *per_cu,
22296 obstack *obstack,
22297 LONGEST *len)
22298 {
22299 struct dwarf2_cu *cu;
22300 struct die_info *die;
22301 struct attribute *attr;
22302 const gdb_byte *result = NULL;
22303 struct type *type;
22304 LONGEST value;
22305 enum bfd_endian byte_order;
22306 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22307
22308 if (per_cu->cu == NULL)
22309 load_cu (per_cu, false);
22310 cu = per_cu->cu;
22311 if (cu == NULL)
22312 {
22313 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22314 Instead just throw an error, not much else we can do. */
22315 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22316 sect_offset_str (sect_off), objfile_name (objfile));
22317 }
22318
22319 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22320 if (!die)
22321 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22322 sect_offset_str (sect_off), objfile_name (objfile));
22323
22324 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22325 if (attr == NULL)
22326 return NULL;
22327
22328 byte_order = (bfd_big_endian (objfile->obfd)
22329 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22330
22331 switch (attr->form)
22332 {
22333 case DW_FORM_addr:
22334 case DW_FORM_addrx:
22335 case DW_FORM_GNU_addr_index:
22336 {
22337 gdb_byte *tem;
22338
22339 *len = cu->header.addr_size;
22340 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22341 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22342 result = tem;
22343 }
22344 break;
22345 case DW_FORM_string:
22346 case DW_FORM_strp:
22347 case DW_FORM_strx:
22348 case DW_FORM_GNU_str_index:
22349 case DW_FORM_GNU_strp_alt:
22350 /* DW_STRING is already allocated on the objfile obstack, point
22351 directly to it. */
22352 result = (const gdb_byte *) DW_STRING (attr);
22353 *len = strlen (DW_STRING (attr));
22354 break;
22355 case DW_FORM_block1:
22356 case DW_FORM_block2:
22357 case DW_FORM_block4:
22358 case DW_FORM_block:
22359 case DW_FORM_exprloc:
22360 case DW_FORM_data16:
22361 result = DW_BLOCK (attr)->data;
22362 *len = DW_BLOCK (attr)->size;
22363 break;
22364
22365 /* The DW_AT_const_value attributes are supposed to carry the
22366 symbol's value "represented as it would be on the target
22367 architecture." By the time we get here, it's already been
22368 converted to host endianness, so we just need to sign- or
22369 zero-extend it as appropriate. */
22370 case DW_FORM_data1:
22371 type = die_type (die, cu);
22372 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22373 if (result == NULL)
22374 result = write_constant_as_bytes (obstack, byte_order,
22375 type, value, len);
22376 break;
22377 case DW_FORM_data2:
22378 type = die_type (die, cu);
22379 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22380 if (result == NULL)
22381 result = write_constant_as_bytes (obstack, byte_order,
22382 type, value, len);
22383 break;
22384 case DW_FORM_data4:
22385 type = die_type (die, cu);
22386 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22387 if (result == NULL)
22388 result = write_constant_as_bytes (obstack, byte_order,
22389 type, value, len);
22390 break;
22391 case DW_FORM_data8:
22392 type = die_type (die, cu);
22393 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22394 if (result == NULL)
22395 result = write_constant_as_bytes (obstack, byte_order,
22396 type, value, len);
22397 break;
22398
22399 case DW_FORM_sdata:
22400 case DW_FORM_implicit_const:
22401 type = die_type (die, cu);
22402 result = write_constant_as_bytes (obstack, byte_order,
22403 type, DW_SND (attr), len);
22404 break;
22405
22406 case DW_FORM_udata:
22407 type = die_type (die, cu);
22408 result = write_constant_as_bytes (obstack, byte_order,
22409 type, DW_UNSND (attr), len);
22410 break;
22411
22412 default:
22413 complaint (_("unsupported const value attribute form: '%s'"),
22414 dwarf_form_name (attr->form));
22415 break;
22416 }
22417
22418 return result;
22419 }
22420
22421 /* See read.h. */
22422
22423 struct type *
22424 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22425 dwarf2_per_cu_data *per_cu)
22426 {
22427 struct dwarf2_cu *cu;
22428 struct die_info *die;
22429
22430 if (per_cu->cu == NULL)
22431 load_cu (per_cu, false);
22432 cu = per_cu->cu;
22433 if (!cu)
22434 return NULL;
22435
22436 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22437 if (!die)
22438 return NULL;
22439
22440 return die_type (die, cu);
22441 }
22442
22443 /* See read.h. */
22444
22445 struct type *
22446 dwarf2_get_die_type (cu_offset die_offset,
22447 struct dwarf2_per_cu_data *per_cu)
22448 {
22449 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22450 return get_die_type_at_offset (die_offset_sect, per_cu);
22451 }
22452
22453 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22454 On entry *REF_CU is the CU of SRC_DIE.
22455 On exit *REF_CU is the CU of the result.
22456 Returns NULL if the referenced DIE isn't found. */
22457
22458 static struct die_info *
22459 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22460 struct dwarf2_cu **ref_cu)
22461 {
22462 struct die_info temp_die;
22463 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22464 struct die_info *die;
22465
22466 /* While it might be nice to assert sig_type->type == NULL here,
22467 we can get here for DW_AT_imported_declaration where we need
22468 the DIE not the type. */
22469
22470 /* If necessary, add it to the queue and load its DIEs. */
22471
22472 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22473 read_signatured_type (sig_type);
22474
22475 sig_cu = sig_type->per_cu.cu;
22476 gdb_assert (sig_cu != NULL);
22477 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22478 temp_die.sect_off = sig_type->type_offset_in_section;
22479 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22480 to_underlying (temp_die.sect_off));
22481 if (die)
22482 {
22483 struct dwarf2_per_objfile *dwarf2_per_objfile
22484 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22485
22486 /* For .gdb_index version 7 keep track of included TUs.
22487 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22488 if (dwarf2_per_objfile->index_table != NULL
22489 && dwarf2_per_objfile->index_table->version <= 7)
22490 {
22491 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22492 }
22493
22494 *ref_cu = sig_cu;
22495 if (sig_cu != cu)
22496 sig_cu->ancestor = cu;
22497
22498 return die;
22499 }
22500
22501 return NULL;
22502 }
22503
22504 /* Follow signatured type referenced by ATTR in SRC_DIE.
22505 On entry *REF_CU is the CU of SRC_DIE.
22506 On exit *REF_CU is the CU of the result.
22507 The result is the DIE of the type.
22508 If the referenced type cannot be found an error is thrown. */
22509
22510 static struct die_info *
22511 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22512 struct dwarf2_cu **ref_cu)
22513 {
22514 ULONGEST signature = DW_SIGNATURE (attr);
22515 struct signatured_type *sig_type;
22516 struct die_info *die;
22517
22518 gdb_assert (attr->form == DW_FORM_ref_sig8);
22519
22520 sig_type = lookup_signatured_type (*ref_cu, signature);
22521 /* sig_type will be NULL if the signatured type is missing from
22522 the debug info. */
22523 if (sig_type == NULL)
22524 {
22525 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22526 " from DIE at %s [in module %s]"),
22527 hex_string (signature), sect_offset_str (src_die->sect_off),
22528 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22529 }
22530
22531 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22532 if (die == NULL)
22533 {
22534 dump_die_for_error (src_die);
22535 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22536 " from DIE at %s [in module %s]"),
22537 hex_string (signature), sect_offset_str (src_die->sect_off),
22538 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22539 }
22540
22541 return die;
22542 }
22543
22544 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22545 reading in and processing the type unit if necessary. */
22546
22547 static struct type *
22548 get_signatured_type (struct die_info *die, ULONGEST signature,
22549 struct dwarf2_cu *cu)
22550 {
22551 struct dwarf2_per_objfile *dwarf2_per_objfile
22552 = cu->per_cu->dwarf2_per_objfile;
22553 struct signatured_type *sig_type;
22554 struct dwarf2_cu *type_cu;
22555 struct die_info *type_die;
22556 struct type *type;
22557
22558 sig_type = lookup_signatured_type (cu, signature);
22559 /* sig_type will be NULL if the signatured type is missing from
22560 the debug info. */
22561 if (sig_type == NULL)
22562 {
22563 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22564 " from DIE at %s [in module %s]"),
22565 hex_string (signature), sect_offset_str (die->sect_off),
22566 objfile_name (dwarf2_per_objfile->objfile));
22567 return build_error_marker_type (cu, die);
22568 }
22569
22570 /* If we already know the type we're done. */
22571 if (sig_type->type != NULL)
22572 return sig_type->type;
22573
22574 type_cu = cu;
22575 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22576 if (type_die != NULL)
22577 {
22578 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22579 is created. This is important, for example, because for c++ classes
22580 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22581 type = read_type_die (type_die, type_cu);
22582 if (type == NULL)
22583 {
22584 complaint (_("Dwarf Error: Cannot build signatured type %s"
22585 " referenced from DIE at %s [in module %s]"),
22586 hex_string (signature), sect_offset_str (die->sect_off),
22587 objfile_name (dwarf2_per_objfile->objfile));
22588 type = build_error_marker_type (cu, die);
22589 }
22590 }
22591 else
22592 {
22593 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22594 " from DIE at %s [in module %s]"),
22595 hex_string (signature), sect_offset_str (die->sect_off),
22596 objfile_name (dwarf2_per_objfile->objfile));
22597 type = build_error_marker_type (cu, die);
22598 }
22599 sig_type->type = type;
22600
22601 return type;
22602 }
22603
22604 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22605 reading in and processing the type unit if necessary. */
22606
22607 static struct type *
22608 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22609 struct dwarf2_cu *cu) /* ARI: editCase function */
22610 {
22611 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22612 if (attr->form_is_ref ())
22613 {
22614 struct dwarf2_cu *type_cu = cu;
22615 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22616
22617 return read_type_die (type_die, type_cu);
22618 }
22619 else if (attr->form == DW_FORM_ref_sig8)
22620 {
22621 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22622 }
22623 else
22624 {
22625 struct dwarf2_per_objfile *dwarf2_per_objfile
22626 = cu->per_cu->dwarf2_per_objfile;
22627
22628 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22629 " at %s [in module %s]"),
22630 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22631 objfile_name (dwarf2_per_objfile->objfile));
22632 return build_error_marker_type (cu, die);
22633 }
22634 }
22635
22636 /* Load the DIEs associated with type unit PER_CU into memory. */
22637
22638 static void
22639 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22640 {
22641 struct signatured_type *sig_type;
22642
22643 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22644 gdb_assert (! per_cu->type_unit_group_p ());
22645
22646 /* We have the per_cu, but we need the signatured_type.
22647 Fortunately this is an easy translation. */
22648 gdb_assert (per_cu->is_debug_types);
22649 sig_type = (struct signatured_type *) per_cu;
22650
22651 gdb_assert (per_cu->cu == NULL);
22652
22653 read_signatured_type (sig_type);
22654
22655 gdb_assert (per_cu->cu != NULL);
22656 }
22657
22658 /* Read in a signatured type and build its CU and DIEs.
22659 If the type is a stub for the real type in a DWO file,
22660 read in the real type from the DWO file as well. */
22661
22662 static void
22663 read_signatured_type (struct signatured_type *sig_type)
22664 {
22665 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22666
22667 gdb_assert (per_cu->is_debug_types);
22668 gdb_assert (per_cu->cu == NULL);
22669
22670 cutu_reader reader (per_cu, NULL, 0, false);
22671
22672 if (!reader.dummy_p)
22673 {
22674 struct dwarf2_cu *cu = reader.cu;
22675 const gdb_byte *info_ptr = reader.info_ptr;
22676
22677 gdb_assert (cu->die_hash == NULL);
22678 cu->die_hash =
22679 htab_create_alloc_ex (cu->header.length / 12,
22680 die_hash,
22681 die_eq,
22682 NULL,
22683 &cu->comp_unit_obstack,
22684 hashtab_obstack_allocate,
22685 dummy_obstack_deallocate);
22686
22687 if (reader.comp_unit_die->has_children)
22688 reader.comp_unit_die->child
22689 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22690 reader.comp_unit_die);
22691 cu->dies = reader.comp_unit_die;
22692 /* comp_unit_die is not stored in die_hash, no need. */
22693
22694 /* We try not to read any attributes in this function, because
22695 not all CUs needed for references have been loaded yet, and
22696 symbol table processing isn't initialized. But we have to
22697 set the CU language, or we won't be able to build types
22698 correctly. Similarly, if we do not read the producer, we can
22699 not apply producer-specific interpretation. */
22700 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22701
22702 reader.keep ();
22703 }
22704
22705 sig_type->per_cu.tu_read = 1;
22706 }
22707
22708 /* Decode simple location descriptions.
22709 Given a pointer to a dwarf block that defines a location, compute
22710 the location and return the value. If COMPUTED is non-null, it is
22711 set to true to indicate that decoding was successful, and false
22712 otherwise. If COMPUTED is null, then this function may emit a
22713 complaint. */
22714
22715 static CORE_ADDR
22716 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22717 {
22718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22719 size_t i;
22720 size_t size = blk->size;
22721 const gdb_byte *data = blk->data;
22722 CORE_ADDR stack[64];
22723 int stacki;
22724 unsigned int bytes_read, unsnd;
22725 gdb_byte op;
22726
22727 if (computed != nullptr)
22728 *computed = false;
22729
22730 i = 0;
22731 stacki = 0;
22732 stack[stacki] = 0;
22733 stack[++stacki] = 0;
22734
22735 while (i < size)
22736 {
22737 op = data[i++];
22738 switch (op)
22739 {
22740 case DW_OP_lit0:
22741 case DW_OP_lit1:
22742 case DW_OP_lit2:
22743 case DW_OP_lit3:
22744 case DW_OP_lit4:
22745 case DW_OP_lit5:
22746 case DW_OP_lit6:
22747 case DW_OP_lit7:
22748 case DW_OP_lit8:
22749 case DW_OP_lit9:
22750 case DW_OP_lit10:
22751 case DW_OP_lit11:
22752 case DW_OP_lit12:
22753 case DW_OP_lit13:
22754 case DW_OP_lit14:
22755 case DW_OP_lit15:
22756 case DW_OP_lit16:
22757 case DW_OP_lit17:
22758 case DW_OP_lit18:
22759 case DW_OP_lit19:
22760 case DW_OP_lit20:
22761 case DW_OP_lit21:
22762 case DW_OP_lit22:
22763 case DW_OP_lit23:
22764 case DW_OP_lit24:
22765 case DW_OP_lit25:
22766 case DW_OP_lit26:
22767 case DW_OP_lit27:
22768 case DW_OP_lit28:
22769 case DW_OP_lit29:
22770 case DW_OP_lit30:
22771 case DW_OP_lit31:
22772 stack[++stacki] = op - DW_OP_lit0;
22773 break;
22774
22775 case DW_OP_reg0:
22776 case DW_OP_reg1:
22777 case DW_OP_reg2:
22778 case DW_OP_reg3:
22779 case DW_OP_reg4:
22780 case DW_OP_reg5:
22781 case DW_OP_reg6:
22782 case DW_OP_reg7:
22783 case DW_OP_reg8:
22784 case DW_OP_reg9:
22785 case DW_OP_reg10:
22786 case DW_OP_reg11:
22787 case DW_OP_reg12:
22788 case DW_OP_reg13:
22789 case DW_OP_reg14:
22790 case DW_OP_reg15:
22791 case DW_OP_reg16:
22792 case DW_OP_reg17:
22793 case DW_OP_reg18:
22794 case DW_OP_reg19:
22795 case DW_OP_reg20:
22796 case DW_OP_reg21:
22797 case DW_OP_reg22:
22798 case DW_OP_reg23:
22799 case DW_OP_reg24:
22800 case DW_OP_reg25:
22801 case DW_OP_reg26:
22802 case DW_OP_reg27:
22803 case DW_OP_reg28:
22804 case DW_OP_reg29:
22805 case DW_OP_reg30:
22806 case DW_OP_reg31:
22807 stack[++stacki] = op - DW_OP_reg0;
22808 if (i < size)
22809 {
22810 if (computed == nullptr)
22811 dwarf2_complex_location_expr_complaint ();
22812 else
22813 return 0;
22814 }
22815 break;
22816
22817 case DW_OP_regx:
22818 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22819 i += bytes_read;
22820 stack[++stacki] = unsnd;
22821 if (i < size)
22822 {
22823 if (computed == nullptr)
22824 dwarf2_complex_location_expr_complaint ();
22825 else
22826 return 0;
22827 }
22828 break;
22829
22830 case DW_OP_addr:
22831 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22832 &bytes_read);
22833 i += bytes_read;
22834 break;
22835
22836 case DW_OP_const1u:
22837 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22838 i += 1;
22839 break;
22840
22841 case DW_OP_const1s:
22842 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22843 i += 1;
22844 break;
22845
22846 case DW_OP_const2u:
22847 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22848 i += 2;
22849 break;
22850
22851 case DW_OP_const2s:
22852 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22853 i += 2;
22854 break;
22855
22856 case DW_OP_const4u:
22857 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22858 i += 4;
22859 break;
22860
22861 case DW_OP_const4s:
22862 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22863 i += 4;
22864 break;
22865
22866 case DW_OP_const8u:
22867 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22868 i += 8;
22869 break;
22870
22871 case DW_OP_constu:
22872 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22873 &bytes_read);
22874 i += bytes_read;
22875 break;
22876
22877 case DW_OP_consts:
22878 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22879 i += bytes_read;
22880 break;
22881
22882 case DW_OP_dup:
22883 stack[stacki + 1] = stack[stacki];
22884 stacki++;
22885 break;
22886
22887 case DW_OP_plus:
22888 stack[stacki - 1] += stack[stacki];
22889 stacki--;
22890 break;
22891
22892 case DW_OP_plus_uconst:
22893 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22894 &bytes_read);
22895 i += bytes_read;
22896 break;
22897
22898 case DW_OP_minus:
22899 stack[stacki - 1] -= stack[stacki];
22900 stacki--;
22901 break;
22902
22903 case DW_OP_deref:
22904 /* If we're not the last op, then we definitely can't encode
22905 this using GDB's address_class enum. This is valid for partial
22906 global symbols, although the variable's address will be bogus
22907 in the psymtab. */
22908 if (i < size)
22909 {
22910 if (computed == nullptr)
22911 dwarf2_complex_location_expr_complaint ();
22912 else
22913 return 0;
22914 }
22915 break;
22916
22917 case DW_OP_GNU_push_tls_address:
22918 case DW_OP_form_tls_address:
22919 /* The top of the stack has the offset from the beginning
22920 of the thread control block at which the variable is located. */
22921 /* Nothing should follow this operator, so the top of stack would
22922 be returned. */
22923 /* This is valid for partial global symbols, but the variable's
22924 address will be bogus in the psymtab. Make it always at least
22925 non-zero to not look as a variable garbage collected by linker
22926 which have DW_OP_addr 0. */
22927 if (i < size)
22928 {
22929 if (computed == nullptr)
22930 dwarf2_complex_location_expr_complaint ();
22931 else
22932 return 0;
22933 }
22934 stack[stacki]++;
22935 break;
22936
22937 case DW_OP_GNU_uninit:
22938 if (computed != nullptr)
22939 return 0;
22940 break;
22941
22942 case DW_OP_addrx:
22943 case DW_OP_GNU_addr_index:
22944 case DW_OP_GNU_const_index:
22945 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22946 &bytes_read);
22947 i += bytes_read;
22948 break;
22949
22950 default:
22951 if (computed == nullptr)
22952 {
22953 const char *name = get_DW_OP_name (op);
22954
22955 if (name)
22956 complaint (_("unsupported stack op: '%s'"),
22957 name);
22958 else
22959 complaint (_("unsupported stack op: '%02x'"),
22960 op);
22961 }
22962
22963 return (stack[stacki]);
22964 }
22965
22966 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22967 outside of the allocated space. Also enforce minimum>0. */
22968 if (stacki >= ARRAY_SIZE (stack) - 1)
22969 {
22970 if (computed == nullptr)
22971 complaint (_("location description stack overflow"));
22972 return 0;
22973 }
22974
22975 if (stacki <= 0)
22976 {
22977 if (computed == nullptr)
22978 complaint (_("location description stack underflow"));
22979 return 0;
22980 }
22981 }
22982
22983 if (computed != nullptr)
22984 *computed = true;
22985 return (stack[stacki]);
22986 }
22987
22988 /* memory allocation interface */
22989
22990 static struct dwarf_block *
22991 dwarf_alloc_block (struct dwarf2_cu *cu)
22992 {
22993 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22994 }
22995
22996 static struct die_info *
22997 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22998 {
22999 struct die_info *die;
23000 size_t size = sizeof (struct die_info);
23001
23002 if (num_attrs > 1)
23003 size += (num_attrs - 1) * sizeof (struct attribute);
23004
23005 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23006 memset (die, 0, sizeof (struct die_info));
23007 return (die);
23008 }
23009
23010 \f
23011
23012 /* Macro support. */
23013
23014 /* An overload of dwarf_decode_macros that finds the correct section
23015 and ensures it is read in before calling the other overload. */
23016
23017 static void
23018 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23019 int section_is_gnu)
23020 {
23021 struct dwarf2_per_objfile *dwarf2_per_objfile
23022 = cu->per_cu->dwarf2_per_objfile;
23023 struct objfile *objfile = dwarf2_per_objfile->objfile;
23024 const struct line_header *lh = cu->line_header;
23025 unsigned int offset_size = cu->header.offset_size;
23026 struct dwarf2_section_info *section;
23027 const char *section_name;
23028
23029 if (cu->dwo_unit != nullptr)
23030 {
23031 if (section_is_gnu)
23032 {
23033 section = &cu->dwo_unit->dwo_file->sections.macro;
23034 section_name = ".debug_macro.dwo";
23035 }
23036 else
23037 {
23038 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23039 section_name = ".debug_macinfo.dwo";
23040 }
23041 }
23042 else
23043 {
23044 if (section_is_gnu)
23045 {
23046 section = &dwarf2_per_objfile->macro;
23047 section_name = ".debug_macro";
23048 }
23049 else
23050 {
23051 section = &dwarf2_per_objfile->macinfo;
23052 section_name = ".debug_macinfo";
23053 }
23054 }
23055
23056 section->read (objfile);
23057 if (section->buffer == nullptr)
23058 {
23059 complaint (_("missing %s section"), section_name);
23060 return;
23061 }
23062
23063 buildsym_compunit *builder = cu->get_builder ();
23064
23065 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
23066 offset_size, offset, section_is_gnu);
23067 }
23068
23069 /* Return the .debug_loc section to use for CU.
23070 For DWO files use .debug_loc.dwo. */
23071
23072 static struct dwarf2_section_info *
23073 cu_debug_loc_section (struct dwarf2_cu *cu)
23074 {
23075 struct dwarf2_per_objfile *dwarf2_per_objfile
23076 = cu->per_cu->dwarf2_per_objfile;
23077
23078 if (cu->dwo_unit)
23079 {
23080 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23081
23082 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23083 }
23084 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23085 : &dwarf2_per_objfile->loc);
23086 }
23087
23088 /* A helper function that fills in a dwarf2_loclist_baton. */
23089
23090 static void
23091 fill_in_loclist_baton (struct dwarf2_cu *cu,
23092 struct dwarf2_loclist_baton *baton,
23093 const struct attribute *attr)
23094 {
23095 struct dwarf2_per_objfile *dwarf2_per_objfile
23096 = cu->per_cu->dwarf2_per_objfile;
23097 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23098
23099 section->read (dwarf2_per_objfile->objfile);
23100
23101 baton->per_cu = cu->per_cu;
23102 gdb_assert (baton->per_cu);
23103 /* We don't know how long the location list is, but make sure we
23104 don't run off the edge of the section. */
23105 baton->size = section->size - DW_UNSND (attr);
23106 baton->data = section->buffer + DW_UNSND (attr);
23107 if (cu->base_address.has_value ())
23108 baton->base_address = *cu->base_address;
23109 else
23110 baton->base_address = 0;
23111 baton->from_dwo = cu->dwo_unit != NULL;
23112 }
23113
23114 static void
23115 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23116 struct dwarf2_cu *cu, int is_block)
23117 {
23118 struct dwarf2_per_objfile *dwarf2_per_objfile
23119 = cu->per_cu->dwarf2_per_objfile;
23120 struct objfile *objfile = dwarf2_per_objfile->objfile;
23121 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23122
23123 if (attr->form_is_section_offset ()
23124 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23125 the section. If so, fall through to the complaint in the
23126 other branch. */
23127 && DW_UNSND (attr) < section->get_size (objfile))
23128 {
23129 struct dwarf2_loclist_baton *baton;
23130
23131 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23132
23133 fill_in_loclist_baton (cu, baton, attr);
23134
23135 if (!cu->base_address.has_value ())
23136 complaint (_("Location list used without "
23137 "specifying the CU base address."));
23138
23139 SYMBOL_ACLASS_INDEX (sym) = (is_block
23140 ? dwarf2_loclist_block_index
23141 : dwarf2_loclist_index);
23142 SYMBOL_LOCATION_BATON (sym) = baton;
23143 }
23144 else
23145 {
23146 struct dwarf2_locexpr_baton *baton;
23147
23148 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23149 baton->per_cu = cu->per_cu;
23150 gdb_assert (baton->per_cu);
23151
23152 if (attr->form_is_block ())
23153 {
23154 /* Note that we're just copying the block's data pointer
23155 here, not the actual data. We're still pointing into the
23156 info_buffer for SYM's objfile; right now we never release
23157 that buffer, but when we do clean up properly this may
23158 need to change. */
23159 baton->size = DW_BLOCK (attr)->size;
23160 baton->data = DW_BLOCK (attr)->data;
23161 }
23162 else
23163 {
23164 dwarf2_invalid_attrib_class_complaint ("location description",
23165 sym->natural_name ());
23166 baton->size = 0;
23167 }
23168
23169 SYMBOL_ACLASS_INDEX (sym) = (is_block
23170 ? dwarf2_locexpr_block_index
23171 : dwarf2_locexpr_index);
23172 SYMBOL_LOCATION_BATON (sym) = baton;
23173 }
23174 }
23175
23176 /* See read.h. */
23177
23178 struct objfile *
23179 dwarf2_per_cu_data::objfile () const
23180 {
23181 struct objfile *objfile = dwarf2_per_objfile->objfile;
23182
23183 /* Return the master objfile, so that we can report and look up the
23184 correct file containing this variable. */
23185 if (objfile->separate_debug_objfile_backlink)
23186 objfile = objfile->separate_debug_objfile_backlink;
23187
23188 return objfile;
23189 }
23190
23191 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23192 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23193 CU_HEADERP first. */
23194
23195 static const struct comp_unit_head *
23196 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23197 const struct dwarf2_per_cu_data *per_cu)
23198 {
23199 const gdb_byte *info_ptr;
23200
23201 if (per_cu->cu)
23202 return &per_cu->cu->header;
23203
23204 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23205
23206 memset (cu_headerp, 0, sizeof (*cu_headerp));
23207 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23208 rcuh_kind::COMPILE);
23209
23210 return cu_headerp;
23211 }
23212
23213 /* See read.h. */
23214
23215 int
23216 dwarf2_per_cu_data::addr_size () const
23217 {
23218 struct comp_unit_head cu_header_local;
23219 const struct comp_unit_head *cu_headerp;
23220
23221 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23222
23223 return cu_headerp->addr_size;
23224 }
23225
23226 /* See read.h. */
23227
23228 int
23229 dwarf2_per_cu_data::offset_size () const
23230 {
23231 struct comp_unit_head cu_header_local;
23232 const struct comp_unit_head *cu_headerp;
23233
23234 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23235
23236 return cu_headerp->offset_size;
23237 }
23238
23239 /* See read.h. */
23240
23241 int
23242 dwarf2_per_cu_data::ref_addr_size () const
23243 {
23244 struct comp_unit_head cu_header_local;
23245 const struct comp_unit_head *cu_headerp;
23246
23247 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23248
23249 if (cu_headerp->version == 2)
23250 return cu_headerp->addr_size;
23251 else
23252 return cu_headerp->offset_size;
23253 }
23254
23255 /* See read.h. */
23256
23257 CORE_ADDR
23258 dwarf2_per_cu_data::text_offset () const
23259 {
23260 struct objfile *objfile = dwarf2_per_objfile->objfile;
23261
23262 return objfile->text_section_offset ();
23263 }
23264
23265 /* See read.h. */
23266
23267 struct type *
23268 dwarf2_per_cu_data::addr_type () const
23269 {
23270 struct objfile *objfile = dwarf2_per_objfile->objfile;
23271 struct type *void_type = objfile_type (objfile)->builtin_void;
23272 struct type *addr_type = lookup_pointer_type (void_type);
23273 int addr_size = this->addr_size ();
23274
23275 if (TYPE_LENGTH (addr_type) == addr_size)
23276 return addr_type;
23277
23278 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23279 return addr_type;
23280 }
23281
23282 /* A helper function for dwarf2_find_containing_comp_unit that returns
23283 the index of the result, and that searches a vector. It will
23284 return a result even if the offset in question does not actually
23285 occur in any CU. This is separate so that it can be unit
23286 tested. */
23287
23288 static int
23289 dwarf2_find_containing_comp_unit
23290 (sect_offset sect_off,
23291 unsigned int offset_in_dwz,
23292 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23293 {
23294 int low, high;
23295
23296 low = 0;
23297 high = all_comp_units.size () - 1;
23298 while (high > low)
23299 {
23300 struct dwarf2_per_cu_data *mid_cu;
23301 int mid = low + (high - low) / 2;
23302
23303 mid_cu = all_comp_units[mid];
23304 if (mid_cu->is_dwz > offset_in_dwz
23305 || (mid_cu->is_dwz == offset_in_dwz
23306 && mid_cu->sect_off + mid_cu->length > sect_off))
23307 high = mid;
23308 else
23309 low = mid + 1;
23310 }
23311 gdb_assert (low == high);
23312 return low;
23313 }
23314
23315 /* Locate the .debug_info compilation unit from CU's objfile which contains
23316 the DIE at OFFSET. Raises an error on failure. */
23317
23318 static struct dwarf2_per_cu_data *
23319 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23320 unsigned int offset_in_dwz,
23321 struct dwarf2_per_objfile *dwarf2_per_objfile)
23322 {
23323 int low
23324 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23325 dwarf2_per_objfile->all_comp_units);
23326 struct dwarf2_per_cu_data *this_cu
23327 = dwarf2_per_objfile->all_comp_units[low];
23328
23329 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23330 {
23331 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23332 error (_("Dwarf Error: could not find partial DIE containing "
23333 "offset %s [in module %s]"),
23334 sect_offset_str (sect_off),
23335 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23336
23337 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23338 <= sect_off);
23339 return dwarf2_per_objfile->all_comp_units[low-1];
23340 }
23341 else
23342 {
23343 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23344 && sect_off >= this_cu->sect_off + this_cu->length)
23345 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23346 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23347 return this_cu;
23348 }
23349 }
23350
23351 #if GDB_SELF_TEST
23352
23353 namespace selftests {
23354 namespace find_containing_comp_unit {
23355
23356 static void
23357 run_test ()
23358 {
23359 struct dwarf2_per_cu_data one {};
23360 struct dwarf2_per_cu_data two {};
23361 struct dwarf2_per_cu_data three {};
23362 struct dwarf2_per_cu_data four {};
23363
23364 one.length = 5;
23365 two.sect_off = sect_offset (one.length);
23366 two.length = 7;
23367
23368 three.length = 5;
23369 three.is_dwz = 1;
23370 four.sect_off = sect_offset (three.length);
23371 four.length = 7;
23372 four.is_dwz = 1;
23373
23374 std::vector<dwarf2_per_cu_data *> units;
23375 units.push_back (&one);
23376 units.push_back (&two);
23377 units.push_back (&three);
23378 units.push_back (&four);
23379
23380 int result;
23381
23382 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23383 SELF_CHECK (units[result] == &one);
23384 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23385 SELF_CHECK (units[result] == &one);
23386 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23387 SELF_CHECK (units[result] == &two);
23388
23389 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23390 SELF_CHECK (units[result] == &three);
23391 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23392 SELF_CHECK (units[result] == &three);
23393 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23394 SELF_CHECK (units[result] == &four);
23395 }
23396
23397 }
23398 }
23399
23400 #endif /* GDB_SELF_TEST */
23401
23402 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23403
23404 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23405 : per_cu (per_cu_),
23406 mark (false),
23407 has_loclist (false),
23408 checked_producer (false),
23409 producer_is_gxx_lt_4_6 (false),
23410 producer_is_gcc_lt_4_3 (false),
23411 producer_is_icc (false),
23412 producer_is_icc_lt_14 (false),
23413 producer_is_codewarrior (false),
23414 processing_has_namespace_info (false)
23415 {
23416 per_cu->cu = this;
23417 }
23418
23419 /* Destroy a dwarf2_cu. */
23420
23421 dwarf2_cu::~dwarf2_cu ()
23422 {
23423 per_cu->cu = NULL;
23424 }
23425
23426 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23427
23428 static void
23429 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23430 enum language pretend_language)
23431 {
23432 struct attribute *attr;
23433
23434 /* Set the language we're debugging. */
23435 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23436 if (attr != nullptr)
23437 set_cu_language (DW_UNSND (attr), cu);
23438 else
23439 {
23440 cu->language = pretend_language;
23441 cu->language_defn = language_def (cu->language);
23442 }
23443
23444 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23445 }
23446
23447 /* Increase the age counter on each cached compilation unit, and free
23448 any that are too old. */
23449
23450 static void
23451 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23452 {
23453 struct dwarf2_per_cu_data *per_cu, **last_chain;
23454
23455 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23456 per_cu = dwarf2_per_objfile->read_in_chain;
23457 while (per_cu != NULL)
23458 {
23459 per_cu->cu->last_used ++;
23460 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23461 dwarf2_mark (per_cu->cu);
23462 per_cu = per_cu->cu->read_in_chain;
23463 }
23464
23465 per_cu = dwarf2_per_objfile->read_in_chain;
23466 last_chain = &dwarf2_per_objfile->read_in_chain;
23467 while (per_cu != NULL)
23468 {
23469 struct dwarf2_per_cu_data *next_cu;
23470
23471 next_cu = per_cu->cu->read_in_chain;
23472
23473 if (!per_cu->cu->mark)
23474 {
23475 delete per_cu->cu;
23476 *last_chain = next_cu;
23477 }
23478 else
23479 last_chain = &per_cu->cu->read_in_chain;
23480
23481 per_cu = next_cu;
23482 }
23483 }
23484
23485 /* Remove a single compilation unit from the cache. */
23486
23487 static void
23488 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23489 {
23490 struct dwarf2_per_cu_data *per_cu, **last_chain;
23491 struct dwarf2_per_objfile *dwarf2_per_objfile
23492 = target_per_cu->dwarf2_per_objfile;
23493
23494 per_cu = dwarf2_per_objfile->read_in_chain;
23495 last_chain = &dwarf2_per_objfile->read_in_chain;
23496 while (per_cu != NULL)
23497 {
23498 struct dwarf2_per_cu_data *next_cu;
23499
23500 next_cu = per_cu->cu->read_in_chain;
23501
23502 if (per_cu == target_per_cu)
23503 {
23504 delete per_cu->cu;
23505 per_cu->cu = NULL;
23506 *last_chain = next_cu;
23507 break;
23508 }
23509 else
23510 last_chain = &per_cu->cu->read_in_chain;
23511
23512 per_cu = next_cu;
23513 }
23514 }
23515
23516 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23517 We store these in a hash table separate from the DIEs, and preserve them
23518 when the DIEs are flushed out of cache.
23519
23520 The CU "per_cu" pointer is needed because offset alone is not enough to
23521 uniquely identify the type. A file may have multiple .debug_types sections,
23522 or the type may come from a DWO file. Furthermore, while it's more logical
23523 to use per_cu->section+offset, with Fission the section with the data is in
23524 the DWO file but we don't know that section at the point we need it.
23525 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23526 because we can enter the lookup routine, get_die_type_at_offset, from
23527 outside this file, and thus won't necessarily have PER_CU->cu.
23528 Fortunately, PER_CU is stable for the life of the objfile. */
23529
23530 struct dwarf2_per_cu_offset_and_type
23531 {
23532 const struct dwarf2_per_cu_data *per_cu;
23533 sect_offset sect_off;
23534 struct type *type;
23535 };
23536
23537 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23538
23539 static hashval_t
23540 per_cu_offset_and_type_hash (const void *item)
23541 {
23542 const struct dwarf2_per_cu_offset_and_type *ofs
23543 = (const struct dwarf2_per_cu_offset_and_type *) item;
23544
23545 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23546 }
23547
23548 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23549
23550 static int
23551 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23552 {
23553 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23554 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23555 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23556 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23557
23558 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23559 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23560 }
23561
23562 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23563 table if necessary. For convenience, return TYPE.
23564
23565 The DIEs reading must have careful ordering to:
23566 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23567 reading current DIE.
23568 * Not trying to dereference contents of still incompletely read in types
23569 while reading in other DIEs.
23570 * Enable referencing still incompletely read in types just by a pointer to
23571 the type without accessing its fields.
23572
23573 Therefore caller should follow these rules:
23574 * Try to fetch any prerequisite types we may need to build this DIE type
23575 before building the type and calling set_die_type.
23576 * After building type call set_die_type for current DIE as soon as
23577 possible before fetching more types to complete the current type.
23578 * Make the type as complete as possible before fetching more types. */
23579
23580 static struct type *
23581 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23582 {
23583 struct dwarf2_per_objfile *dwarf2_per_objfile
23584 = cu->per_cu->dwarf2_per_objfile;
23585 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23586 struct objfile *objfile = dwarf2_per_objfile->objfile;
23587 struct attribute *attr;
23588 struct dynamic_prop prop;
23589
23590 /* For Ada types, make sure that the gnat-specific data is always
23591 initialized (if not already set). There are a few types where
23592 we should not be doing so, because the type-specific area is
23593 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23594 where the type-specific area is used to store the floatformat).
23595 But this is not a problem, because the gnat-specific information
23596 is actually not needed for these types. */
23597 if (need_gnat_info (cu)
23598 && TYPE_CODE (type) != TYPE_CODE_FUNC
23599 && TYPE_CODE (type) != TYPE_CODE_FLT
23600 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23601 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23602 && TYPE_CODE (type) != TYPE_CODE_METHOD
23603 && !HAVE_GNAT_AUX_INFO (type))
23604 INIT_GNAT_SPECIFIC (type);
23605
23606 /* Read DW_AT_allocated and set in type. */
23607 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23608 if (attr != NULL && attr->form_is_block ())
23609 {
23610 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23611 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23612 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
23613 }
23614 else if (attr != NULL)
23615 {
23616 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23617 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23618 sect_offset_str (die->sect_off));
23619 }
23620
23621 /* Read DW_AT_associated and set in type. */
23622 attr = dwarf2_attr (die, DW_AT_associated, cu);
23623 if (attr != NULL && attr->form_is_block ())
23624 {
23625 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23626 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23627 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
23628 }
23629 else if (attr != NULL)
23630 {
23631 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23632 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23633 sect_offset_str (die->sect_off));
23634 }
23635
23636 /* Read DW_AT_data_location and set in type. */
23637 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23638 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23639 cu->per_cu->addr_type ()))
23640 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
23641
23642 if (dwarf2_per_objfile->die_type_hash == NULL)
23643 dwarf2_per_objfile->die_type_hash
23644 = htab_up (htab_create_alloc (127,
23645 per_cu_offset_and_type_hash,
23646 per_cu_offset_and_type_eq,
23647 NULL, xcalloc, xfree));
23648
23649 ofs.per_cu = cu->per_cu;
23650 ofs.sect_off = die->sect_off;
23651 ofs.type = type;
23652 slot = (struct dwarf2_per_cu_offset_and_type **)
23653 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23654 if (*slot)
23655 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23656 sect_offset_str (die->sect_off));
23657 *slot = XOBNEW (&objfile->objfile_obstack,
23658 struct dwarf2_per_cu_offset_and_type);
23659 **slot = ofs;
23660 return type;
23661 }
23662
23663 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23664 or return NULL if the die does not have a saved type. */
23665
23666 static struct type *
23667 get_die_type_at_offset (sect_offset sect_off,
23668 struct dwarf2_per_cu_data *per_cu)
23669 {
23670 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23671 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23672
23673 if (dwarf2_per_objfile->die_type_hash == NULL)
23674 return NULL;
23675
23676 ofs.per_cu = per_cu;
23677 ofs.sect_off = sect_off;
23678 slot = ((struct dwarf2_per_cu_offset_and_type *)
23679 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23680 if (slot)
23681 return slot->type;
23682 else
23683 return NULL;
23684 }
23685
23686 /* Look up the type for DIE in CU in die_type_hash,
23687 or return NULL if DIE does not have a saved type. */
23688
23689 static struct type *
23690 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23691 {
23692 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23693 }
23694
23695 /* Add a dependence relationship from CU to REF_PER_CU. */
23696
23697 static void
23698 dwarf2_add_dependence (struct dwarf2_cu *cu,
23699 struct dwarf2_per_cu_data *ref_per_cu)
23700 {
23701 void **slot;
23702
23703 if (cu->dependencies == NULL)
23704 cu->dependencies
23705 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23706 NULL, &cu->comp_unit_obstack,
23707 hashtab_obstack_allocate,
23708 dummy_obstack_deallocate);
23709
23710 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23711 if (*slot == NULL)
23712 *slot = ref_per_cu;
23713 }
23714
23715 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23716 Set the mark field in every compilation unit in the
23717 cache that we must keep because we are keeping CU. */
23718
23719 static int
23720 dwarf2_mark_helper (void **slot, void *data)
23721 {
23722 struct dwarf2_per_cu_data *per_cu;
23723
23724 per_cu = (struct dwarf2_per_cu_data *) *slot;
23725
23726 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23727 reading of the chain. As such dependencies remain valid it is not much
23728 useful to track and undo them during QUIT cleanups. */
23729 if (per_cu->cu == NULL)
23730 return 1;
23731
23732 if (per_cu->cu->mark)
23733 return 1;
23734 per_cu->cu->mark = true;
23735
23736 if (per_cu->cu->dependencies != NULL)
23737 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23738
23739 return 1;
23740 }
23741
23742 /* Set the mark field in CU and in every other compilation unit in the
23743 cache that we must keep because we are keeping CU. */
23744
23745 static void
23746 dwarf2_mark (struct dwarf2_cu *cu)
23747 {
23748 if (cu->mark)
23749 return;
23750 cu->mark = true;
23751 if (cu->dependencies != NULL)
23752 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23753 }
23754
23755 static void
23756 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23757 {
23758 while (per_cu)
23759 {
23760 per_cu->cu->mark = false;
23761 per_cu = per_cu->cu->read_in_chain;
23762 }
23763 }
23764
23765 /* Trivial hash function for partial_die_info: the hash value of a DIE
23766 is its offset in .debug_info for this objfile. */
23767
23768 static hashval_t
23769 partial_die_hash (const void *item)
23770 {
23771 const struct partial_die_info *part_die
23772 = (const struct partial_die_info *) item;
23773
23774 return to_underlying (part_die->sect_off);
23775 }
23776
23777 /* Trivial comparison function for partial_die_info structures: two DIEs
23778 are equal if they have the same offset. */
23779
23780 static int
23781 partial_die_eq (const void *item_lhs, const void *item_rhs)
23782 {
23783 const struct partial_die_info *part_die_lhs
23784 = (const struct partial_die_info *) item_lhs;
23785 const struct partial_die_info *part_die_rhs
23786 = (const struct partial_die_info *) item_rhs;
23787
23788 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23789 }
23790
23791 struct cmd_list_element *set_dwarf_cmdlist;
23792 struct cmd_list_element *show_dwarf_cmdlist;
23793
23794 static void
23795 show_check_physname (struct ui_file *file, int from_tty,
23796 struct cmd_list_element *c, const char *value)
23797 {
23798 fprintf_filtered (file,
23799 _("Whether to check \"physname\" is %s.\n"),
23800 value);
23801 }
23802
23803 void _initialize_dwarf2_read ();
23804 void
23805 _initialize_dwarf2_read ()
23806 {
23807 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23808 Set DWARF specific variables.\n\
23809 Configure DWARF variables such as the cache size."),
23810 &set_dwarf_cmdlist, "maintenance set dwarf ",
23811 0/*allow-unknown*/, &maintenance_set_cmdlist);
23812
23813 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23814 Show DWARF specific variables.\n\
23815 Show DWARF variables such as the cache size."),
23816 &show_dwarf_cmdlist, "maintenance show dwarf ",
23817 0/*allow-unknown*/, &maintenance_show_cmdlist);
23818
23819 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23820 &dwarf_max_cache_age, _("\
23821 Set the upper bound on the age of cached DWARF compilation units."), _("\
23822 Show the upper bound on the age of cached DWARF compilation units."), _("\
23823 A higher limit means that cached compilation units will be stored\n\
23824 in memory longer, and more total memory will be used. Zero disables\n\
23825 caching, which can slow down startup."),
23826 NULL,
23827 show_dwarf_max_cache_age,
23828 &set_dwarf_cmdlist,
23829 &show_dwarf_cmdlist);
23830
23831 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23832 Set debugging of the DWARF reader."), _("\
23833 Show debugging of the DWARF reader."), _("\
23834 When enabled (non-zero), debugging messages are printed during DWARF\n\
23835 reading and symtab expansion. A value of 1 (one) provides basic\n\
23836 information. A value greater than 1 provides more verbose information."),
23837 NULL,
23838 NULL,
23839 &setdebuglist, &showdebuglist);
23840
23841 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23842 Set debugging of the DWARF DIE reader."), _("\
23843 Show debugging of the DWARF DIE reader."), _("\
23844 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23845 The value is the maximum depth to print."),
23846 NULL,
23847 NULL,
23848 &setdebuglist, &showdebuglist);
23849
23850 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23851 Set debugging of the dwarf line reader."), _("\
23852 Show debugging of the dwarf line reader."), _("\
23853 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23854 A value of 1 (one) provides basic information.\n\
23855 A value greater than 1 provides more verbose information."),
23856 NULL,
23857 NULL,
23858 &setdebuglist, &showdebuglist);
23859
23860 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23861 Set cross-checking of \"physname\" code against demangler."), _("\
23862 Show cross-checking of \"physname\" code against demangler."), _("\
23863 When enabled, GDB's internal \"physname\" code is checked against\n\
23864 the demangler."),
23865 NULL, show_check_physname,
23866 &setdebuglist, &showdebuglist);
23867
23868 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23869 no_class, &use_deprecated_index_sections, _("\
23870 Set whether to use deprecated gdb_index sections."), _("\
23871 Show whether to use deprecated gdb_index sections."), _("\
23872 When enabled, deprecated .gdb_index sections are used anyway.\n\
23873 Normally they are ignored either because of a missing feature or\n\
23874 performance issue.\n\
23875 Warning: This option must be enabled before gdb reads the file."),
23876 NULL,
23877 NULL,
23878 &setlist, &showlist);
23879
23880 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23881 &dwarf2_locexpr_funcs);
23882 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23883 &dwarf2_loclist_funcs);
23884
23885 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23886 &dwarf2_block_frame_base_locexpr_funcs);
23887 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23888 &dwarf2_block_frame_base_loclist_funcs);
23889
23890 #if GDB_SELF_TEST
23891 selftests::register_test ("dw2_expand_symtabs_matching",
23892 selftests::dw2_expand_symtabs_matching::run_test);
23893 selftests::register_test ("dwarf2_find_containing_comp_unit",
23894 selftests::find_containing_comp_unit::run_test);
23895 #endif
23896 }