]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2loc.c
PR24435, buffer overflow reading dynamic entries
[thirdparty/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "block.h"
34 #include "gdbcmd.h"
35 #include "complaints.h"
36 #include "dwarf2.h"
37 #include "dwarf2expr.h"
38 #include "dwarf2loc.h"
39 #include "dwarf2-frame.h"
40 #include "compile/compile.h"
41 #include "common/selftest.h"
42 #include <algorithm>
43 #include <vector>
44 #include <unordered_set>
45 #include "common/underlying.h"
46 #include "common/byte-vector.h"
47
48 extern int dwarf_always_disassemble;
49
50 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
51 struct frame_info *frame,
52 const gdb_byte *data,
53 size_t size,
54 struct dwarf2_per_cu_data *per_cu,
55 struct type *subobj_type,
56 LONGEST subobj_byte_offset);
57
58 static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
59 (struct frame_info *frame,
60 enum call_site_parameter_kind kind,
61 union call_site_parameter_u kind_u,
62 struct dwarf2_per_cu_data **per_cu_return);
63
64 static struct value *indirect_synthetic_pointer
65 (sect_offset die, LONGEST byte_offset,
66 struct dwarf2_per_cu_data *per_cu,
67 struct frame_info *frame,
68 struct type *type, bool resolve_abstract_p = false);
69
70 /* Until these have formal names, we define these here.
71 ref: http://gcc.gnu.org/wiki/DebugFission
72 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
73 and is then followed by data specific to that entry. */
74
75 enum debug_loc_kind
76 {
77 /* Indicates the end of the list of entries. */
78 DEBUG_LOC_END_OF_LIST = 0,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the base address for all following entries. */
82 DEBUG_LOC_BASE_ADDRESS = 1,
83
84 /* This is followed by two unsigned LEB128 numbers that are indices into
85 .debug_addr and specify the beginning and ending addresses, and then
86 a normal location expression as in .debug_loc. */
87 DEBUG_LOC_START_END = 2,
88
89 /* This is followed by an unsigned LEB128 number that is an index into
90 .debug_addr and specifies the beginning address, and a 4 byte unsigned
91 number that specifies the length, and then a normal location expression
92 as in .debug_loc. */
93 DEBUG_LOC_START_LENGTH = 3,
94
95 /* An internal value indicating there is insufficient data. */
96 DEBUG_LOC_BUFFER_OVERFLOW = -1,
97
98 /* An internal value indicating an invalid kind of entry was found. */
99 DEBUG_LOC_INVALID_ENTRY = -2
100 };
101
102 /* Helper function which throws an error if a synthetic pointer is
103 invalid. */
104
105 static void
106 invalid_synthetic_pointer (void)
107 {
108 error (_("access outside bounds of object "
109 "referenced via synthetic pointer"));
110 }
111
112 /* Decode the addresses in a non-dwo .debug_loc entry.
113 A pointer to the next byte to examine is returned in *NEW_PTR.
114 The encoded low,high addresses are return in *LOW,*HIGH.
115 The result indicates the kind of entry found. */
116
117 static enum debug_loc_kind
118 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
119 const gdb_byte **new_ptr,
120 CORE_ADDR *low, CORE_ADDR *high,
121 enum bfd_endian byte_order,
122 unsigned int addr_size,
123 int signed_addr_p)
124 {
125 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
126
127 if (buf_end - loc_ptr < 2 * addr_size)
128 return DEBUG_LOC_BUFFER_OVERFLOW;
129
130 if (signed_addr_p)
131 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
132 else
133 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
134 loc_ptr += addr_size;
135
136 if (signed_addr_p)
137 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
138 else
139 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
140 loc_ptr += addr_size;
141
142 *new_ptr = loc_ptr;
143
144 /* A base-address-selection entry. */
145 if ((*low & base_mask) == base_mask)
146 return DEBUG_LOC_BASE_ADDRESS;
147
148 /* An end-of-list entry. */
149 if (*low == 0 && *high == 0)
150 return DEBUG_LOC_END_OF_LIST;
151
152 return DEBUG_LOC_START_END;
153 }
154
155 /* Decode the addresses in .debug_loclists entry.
156 A pointer to the next byte to examine is returned in *NEW_PTR.
157 The encoded low,high addresses are return in *LOW,*HIGH.
158 The result indicates the kind of entry found. */
159
160 static enum debug_loc_kind
161 decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
162 const gdb_byte *loc_ptr,
163 const gdb_byte *buf_end,
164 const gdb_byte **new_ptr,
165 CORE_ADDR *low, CORE_ADDR *high,
166 enum bfd_endian byte_order,
167 unsigned int addr_size,
168 int signed_addr_p)
169 {
170 uint64_t u64;
171
172 if (loc_ptr == buf_end)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174
175 switch (*loc_ptr++)
176 {
177 case DW_LLE_end_of_list:
178 *new_ptr = loc_ptr;
179 return DEBUG_LOC_END_OF_LIST;
180 case DW_LLE_base_address:
181 if (loc_ptr + addr_size > buf_end)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 if (signed_addr_p)
184 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
185 else
186 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
187 loc_ptr += addr_size;
188 *new_ptr = loc_ptr;
189 return DEBUG_LOC_BASE_ADDRESS;
190 case DW_LLE_offset_pair:
191 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
192 if (loc_ptr == NULL)
193 return DEBUG_LOC_BUFFER_OVERFLOW;
194 *low = u64;
195 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
196 if (loc_ptr == NULL)
197 return DEBUG_LOC_BUFFER_OVERFLOW;
198 *high = u64;
199 *new_ptr = loc_ptr;
200 return DEBUG_LOC_START_END;
201 default:
202 return DEBUG_LOC_INVALID_ENTRY;
203 }
204 }
205
206 /* Decode the addresses in .debug_loc.dwo entry.
207 A pointer to the next byte to examine is returned in *NEW_PTR.
208 The encoded low,high addresses are return in *LOW,*HIGH.
209 The result indicates the kind of entry found. */
210
211 static enum debug_loc_kind
212 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
213 const gdb_byte *loc_ptr,
214 const gdb_byte *buf_end,
215 const gdb_byte **new_ptr,
216 CORE_ADDR *low, CORE_ADDR *high,
217 enum bfd_endian byte_order)
218 {
219 uint64_t low_index, high_index;
220
221 if (loc_ptr == buf_end)
222 return DEBUG_LOC_BUFFER_OVERFLOW;
223
224 switch (*loc_ptr++)
225 {
226 case DW_LLE_GNU_end_of_list_entry:
227 *new_ptr = loc_ptr;
228 return DEBUG_LOC_END_OF_LIST;
229 case DW_LLE_GNU_base_address_selection_entry:
230 *low = 0;
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *high = dwarf2_read_addr_index (per_cu, high_index);
235 *new_ptr = loc_ptr;
236 return DEBUG_LOC_BASE_ADDRESS;
237 case DW_LLE_GNU_start_end_entry:
238 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
239 if (loc_ptr == NULL)
240 return DEBUG_LOC_BUFFER_OVERFLOW;
241 *low = dwarf2_read_addr_index (per_cu, low_index);
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *high = dwarf2_read_addr_index (per_cu, high_index);
246 *new_ptr = loc_ptr;
247 return DEBUG_LOC_START_END;
248 case DW_LLE_GNU_start_length_entry:
249 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
250 if (loc_ptr == NULL)
251 return DEBUG_LOC_BUFFER_OVERFLOW;
252 *low = dwarf2_read_addr_index (per_cu, low_index);
253 if (loc_ptr + 4 > buf_end)
254 return DEBUG_LOC_BUFFER_OVERFLOW;
255 *high = *low;
256 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
257 *new_ptr = loc_ptr + 4;
258 return DEBUG_LOC_START_LENGTH;
259 default:
260 return DEBUG_LOC_INVALID_ENTRY;
261 }
262 }
263
264 /* A function for dealing with location lists. Given a
265 symbol baton (BATON) and a pc value (PC), find the appropriate
266 location expression, set *LOCEXPR_LENGTH, and return a pointer
267 to the beginning of the expression. Returns NULL on failure.
268
269 For now, only return the first matching location expression; there
270 can be more than one in the list. */
271
272 const gdb_byte *
273 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
274 size_t *locexpr_length, CORE_ADDR pc)
275 {
276 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
280 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
281 /* Adjust base_address for relocatable objects. */
282 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
283 CORE_ADDR base_address = baton->base_address + base_offset;
284 const gdb_byte *loc_ptr, *buf_end;
285
286 loc_ptr = baton->data;
287 buf_end = baton->data + baton->size;
288
289 while (1)
290 {
291 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
292 int length;
293 enum debug_loc_kind kind;
294 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
295
296 if (baton->from_dwo)
297 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
298 loc_ptr, buf_end, &new_ptr,
299 &low, &high, byte_order);
300 else if (dwarf2_version (baton->per_cu) < 5)
301 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
302 &low, &high,
303 byte_order, addr_size,
304 signed_addr_p);
305 else
306 kind = decode_debug_loclists_addresses (baton->per_cu,
307 loc_ptr, buf_end, &new_ptr,
308 &low, &high, byte_order,
309 addr_size, signed_addr_p);
310
311 loc_ptr = new_ptr;
312 switch (kind)
313 {
314 case DEBUG_LOC_END_OF_LIST:
315 *locexpr_length = 0;
316 return NULL;
317 case DEBUG_LOC_BASE_ADDRESS:
318 base_address = high + base_offset;
319 continue;
320 case DEBUG_LOC_START_END:
321 case DEBUG_LOC_START_LENGTH:
322 break;
323 case DEBUG_LOC_BUFFER_OVERFLOW:
324 case DEBUG_LOC_INVALID_ENTRY:
325 error (_("dwarf2_find_location_expression: "
326 "Corrupted DWARF expression."));
327 default:
328 gdb_assert_not_reached ("bad debug_loc_kind");
329 }
330
331 /* Otherwise, a location expression entry.
332 If the entry is from a DWO, don't add base address: the entry is from
333 .debug_addr which already has the DWARF "base address". We still add
334 base_offset in case we're debugging a PIE executable. */
335 if (baton->from_dwo)
336 {
337 low += base_offset;
338 high += base_offset;
339 }
340 else
341 {
342 low += base_address;
343 high += base_address;
344 }
345
346 if (dwarf2_version (baton->per_cu) < 5)
347 {
348 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
349 loc_ptr += 2;
350 }
351 else
352 {
353 unsigned int bytes_read;
354
355 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
356 loc_ptr += bytes_read;
357 }
358
359 if (low == high && pc == low)
360 {
361 /* This is entry PC record present only at entry point
362 of a function. Verify it is really the function entry point. */
363
364 const struct block *pc_block = block_for_pc (pc);
365 struct symbol *pc_func = NULL;
366
367 if (pc_block)
368 pc_func = block_linkage_function (pc_block);
369
370 if (pc_func && pc == BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (pc_func)))
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375 }
376
377 if (pc >= low && pc < high)
378 {
379 *locexpr_length = length;
380 return loc_ptr;
381 }
382
383 loc_ptr += length;
384 }
385 }
386
387 /* This is the baton used when performing dwarf2 expression
388 evaluation. */
389 struct dwarf_expr_baton
390 {
391 struct frame_info *frame;
392 struct dwarf2_per_cu_data *per_cu;
393 CORE_ADDR obj_address;
394 };
395
396 /* Implement find_frame_base_location method for LOC_BLOCK functions using
397 DWARF expression for its DW_AT_frame_base. */
398
399 static void
400 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
401 const gdb_byte **start, size_t *length)
402 {
403 struct dwarf2_locexpr_baton *symbaton
404 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
405
406 *length = symbaton->size;
407 *start = symbaton->data;
408 }
409
410 /* Implement the struct symbol_block_ops::get_frame_base method for
411 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
412
413 static CORE_ADDR
414 locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
415 {
416 struct gdbarch *gdbarch;
417 struct type *type;
418 struct dwarf2_locexpr_baton *dlbaton;
419 const gdb_byte *start;
420 size_t length;
421 struct value *result;
422
423 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
424 Thus, it's supposed to provide the find_frame_base_location method as
425 well. */
426 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
427
428 gdbarch = get_frame_arch (frame);
429 type = builtin_type (gdbarch)->builtin_data_ptr;
430 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
431
432 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
433 (framefunc, get_frame_pc (frame), &start, &length);
434 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
435 dlbaton->per_cu);
436
437 /* The DW_AT_frame_base attribute contains a location description which
438 computes the base address itself. However, the call to
439 dwarf2_evaluate_loc_desc returns a value representing a variable at
440 that address. The frame base address is thus this variable's
441 address. */
442 return value_address (result);
443 }
444
445 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
446 function uses DWARF expression for its DW_AT_frame_base. */
447
448 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
449 {
450 locexpr_find_frame_base_location,
451 locexpr_get_frame_base
452 };
453
454 /* Implement find_frame_base_location method for LOC_BLOCK functions using
455 DWARF location list for its DW_AT_frame_base. */
456
457 static void
458 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
459 const gdb_byte **start, size_t *length)
460 {
461 struct dwarf2_loclist_baton *symbaton
462 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
463
464 *start = dwarf2_find_location_expression (symbaton, length, pc);
465 }
466
467 /* Implement the struct symbol_block_ops::get_frame_base method for
468 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
469
470 static CORE_ADDR
471 loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
472 {
473 struct gdbarch *gdbarch;
474 struct type *type;
475 struct dwarf2_loclist_baton *dlbaton;
476 const gdb_byte *start;
477 size_t length;
478 struct value *result;
479
480 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
481 Thus, it's supposed to provide the find_frame_base_location method as
482 well. */
483 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
484
485 gdbarch = get_frame_arch (frame);
486 type = builtin_type (gdbarch)->builtin_data_ptr;
487 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
488
489 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
490 (framefunc, get_frame_pc (frame), &start, &length);
491 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
492 dlbaton->per_cu);
493
494 /* The DW_AT_frame_base attribute contains a location description which
495 computes the base address itself. However, the call to
496 dwarf2_evaluate_loc_desc returns a value representing a variable at
497 that address. The frame base address is thus this variable's
498 address. */
499 return value_address (result);
500 }
501
502 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
503 function uses DWARF location list for its DW_AT_frame_base. */
504
505 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
506 {
507 loclist_find_frame_base_location,
508 loclist_get_frame_base
509 };
510
511 /* See dwarf2loc.h. */
512
513 void
514 func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
515 const gdb_byte **start, size_t *length)
516 {
517 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
518 {
519 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
520
521 ops_block->find_frame_base_location (framefunc, pc, start, length);
522 }
523 else
524 *length = 0;
525
526 if (*length == 0)
527 error (_("Could not find the frame base for \"%s\"."),
528 SYMBOL_NATURAL_NAME (framefunc));
529 }
530
531 static CORE_ADDR
532 get_frame_pc_for_per_cu_dwarf_call (void *baton)
533 {
534 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
535
536 return ctx->get_frame_pc ();
537 }
538
539 static void
540 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
541 struct dwarf2_per_cu_data *per_cu)
542 {
543 struct dwarf2_locexpr_baton block;
544
545 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
546 get_frame_pc_for_per_cu_dwarf_call,
547 ctx);
548
549 /* DW_OP_call_ref is currently not supported. */
550 gdb_assert (block.per_cu == per_cu);
551
552 ctx->eval (block.data, block.size);
553 }
554
555 /* Given context CTX, section offset SECT_OFF, and compilation unit
556 data PER_CU, execute the "variable value" operation on the DIE
557 found at SECT_OFF. */
558
559 static struct value *
560 sect_variable_value (struct dwarf_expr_context *ctx, sect_offset sect_off,
561 struct dwarf2_per_cu_data *per_cu)
562 {
563 struct type *die_type = dwarf2_fetch_die_type_sect_off (sect_off, per_cu);
564
565 if (die_type == NULL)
566 error (_("Bad DW_OP_GNU_variable_value DIE."));
567
568 /* Note: Things still work when the following test is removed. This
569 test and error is here to conform to the proposed specification. */
570 if (TYPE_CODE (die_type) != TYPE_CODE_INT
571 && TYPE_CODE (die_type) != TYPE_CODE_PTR)
572 error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
573
574 struct type *type = lookup_pointer_type (die_type);
575 struct frame_info *frame = get_selected_frame (_("No frame selected."));
576 return indirect_synthetic_pointer (sect_off, 0, per_cu, frame, type, true);
577 }
578
579 class dwarf_evaluate_loc_desc : public dwarf_expr_context
580 {
581 public:
582
583 struct frame_info *frame;
584 struct dwarf2_per_cu_data *per_cu;
585 CORE_ADDR obj_address;
586
587 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
588 the frame in BATON. */
589
590 CORE_ADDR get_frame_cfa () override
591 {
592 return dwarf2_frame_cfa (frame);
593 }
594
595 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
596 the frame in BATON. */
597
598 CORE_ADDR get_frame_pc () override
599 {
600 return get_frame_address_in_block (frame);
601 }
602
603 /* Using the objfile specified in BATON, find the address for the
604 current thread's thread-local storage with offset OFFSET. */
605 CORE_ADDR get_tls_address (CORE_ADDR offset) override
606 {
607 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
608
609 return target_translate_tls_address (objfile, offset);
610 }
611
612 /* Helper interface of per_cu_dwarf_call for
613 dwarf2_evaluate_loc_desc. */
614
615 void dwarf_call (cu_offset die_offset) override
616 {
617 per_cu_dwarf_call (this, die_offset, per_cu);
618 }
619
620 /* Helper interface of sect_variable_value for
621 dwarf2_evaluate_loc_desc. */
622
623 struct value *dwarf_variable_value (sect_offset sect_off) override
624 {
625 return sect_variable_value (this, sect_off, per_cu);
626 }
627
628 struct type *get_base_type (cu_offset die_offset, int size) override
629 {
630 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
631 if (result == NULL)
632 error (_("Could not find type for DW_OP_const_type"));
633 if (size != 0 && TYPE_LENGTH (result) != size)
634 error (_("DW_OP_const_type has different sizes for type and data"));
635 return result;
636 }
637
638 /* Callback function for dwarf2_evaluate_loc_desc.
639 Fetch the address indexed by DW_OP_GNU_addr_index. */
640
641 CORE_ADDR get_addr_index (unsigned int index) override
642 {
643 return dwarf2_read_addr_index (per_cu, index);
644 }
645
646 /* Callback function for get_object_address. Return the address of the VLA
647 object. */
648
649 CORE_ADDR get_object_address () override
650 {
651 if (obj_address == 0)
652 error (_("Location address is not set."));
653 return obj_address;
654 }
655
656 /* Execute DWARF block of call_site_parameter which matches KIND and
657 KIND_U. Choose DEREF_SIZE value of that parameter. Search
658 caller of this objects's frame.
659
660 The caller can be from a different CU - per_cu_dwarf_call
661 implementation can be more simple as it does not support cross-CU
662 DWARF executions. */
663
664 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
665 union call_site_parameter_u kind_u,
666 int deref_size) override
667 {
668 struct frame_info *caller_frame;
669 struct dwarf2_per_cu_data *caller_per_cu;
670 struct call_site_parameter *parameter;
671 const gdb_byte *data_src;
672 size_t size;
673
674 caller_frame = get_prev_frame (frame);
675
676 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
677 &caller_per_cu);
678 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
679 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
680
681 /* DEREF_SIZE size is not verified here. */
682 if (data_src == NULL)
683 throw_error (NO_ENTRY_VALUE_ERROR,
684 _("Cannot resolve DW_AT_call_data_value"));
685
686 scoped_restore save_frame = make_scoped_restore (&this->frame,
687 caller_frame);
688 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
689 caller_per_cu);
690 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
691 (CORE_ADDR) 0);
692
693 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
694 this->gdbarch
695 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
696 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
697 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
698 scoped_restore save_offset = make_scoped_restore (&this->offset);
699 this->offset = dwarf2_per_cu_text_offset (per_cu);
700
701 this->eval (data_src, size);
702 }
703
704 /* Using the frame specified in BATON, find the location expression
705 describing the frame base. Return a pointer to it in START and
706 its length in LENGTH. */
707 void get_frame_base (const gdb_byte **start, size_t * length) override
708 {
709 /* FIXME: cagney/2003-03-26: This code should be using
710 get_frame_base_address(), and then implement a dwarf2 specific
711 this_base method. */
712 struct symbol *framefunc;
713 const struct block *bl = get_frame_block (frame, NULL);
714
715 if (bl == NULL)
716 error (_("frame address is not available."));
717
718 /* Use block_linkage_function, which returns a real (not inlined)
719 function, instead of get_frame_function, which may return an
720 inlined function. */
721 framefunc = block_linkage_function (bl);
722
723 /* If we found a frame-relative symbol then it was certainly within
724 some function associated with a frame. If we can't find the frame,
725 something has gone wrong. */
726 gdb_assert (framefunc != NULL);
727
728 func_get_frame_base_dwarf_block (framefunc,
729 get_frame_address_in_block (frame),
730 start, length);
731 }
732
733 /* Read memory at ADDR (length LEN) into BUF. */
734
735 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
736 {
737 read_memory (addr, buf, len);
738 }
739
740 /* Using the frame specified in BATON, return the value of register
741 REGNUM, treated as a pointer. */
742 CORE_ADDR read_addr_from_reg (int dwarf_regnum) override
743 {
744 struct gdbarch *gdbarch = get_frame_arch (frame);
745 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
746
747 return address_from_register (regnum, frame);
748 }
749
750 /* Implement "get_reg_value" callback. */
751
752 struct value *get_reg_value (struct type *type, int dwarf_regnum) override
753 {
754 struct gdbarch *gdbarch = get_frame_arch (frame);
755 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
756
757 return value_from_register (type, regnum, frame);
758 }
759 };
760
761 /* See dwarf2loc.h. */
762
763 unsigned int entry_values_debug = 0;
764
765 /* Helper to set entry_values_debug. */
766
767 static void
768 show_entry_values_debug (struct ui_file *file, int from_tty,
769 struct cmd_list_element *c, const char *value)
770 {
771 fprintf_filtered (file,
772 _("Entry values and tail call frames debugging is %s.\n"),
773 value);
774 }
775
776 /* Find DW_TAG_call_site's DW_AT_call_target address.
777 CALLER_FRAME (for registers) can be NULL if it is not known. This function
778 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
779
780 static CORE_ADDR
781 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
782 struct call_site *call_site,
783 struct frame_info *caller_frame)
784 {
785 switch (FIELD_LOC_KIND (call_site->target))
786 {
787 case FIELD_LOC_KIND_DWARF_BLOCK:
788 {
789 struct dwarf2_locexpr_baton *dwarf_block;
790 struct value *val;
791 struct type *caller_core_addr_type;
792 struct gdbarch *caller_arch;
793
794 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
795 if (dwarf_block == NULL)
796 {
797 struct bound_minimal_symbol msym;
798
799 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
800 throw_error (NO_ENTRY_VALUE_ERROR,
801 _("DW_AT_call_target is not specified at %s in %s"),
802 paddress (call_site_gdbarch, call_site->pc),
803 (msym.minsym == NULL ? "???"
804 : MSYMBOL_PRINT_NAME (msym.minsym)));
805
806 }
807 if (caller_frame == NULL)
808 {
809 struct bound_minimal_symbol msym;
810
811 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
812 throw_error (NO_ENTRY_VALUE_ERROR,
813 _("DW_AT_call_target DWARF block resolving "
814 "requires known frame which is currently not "
815 "available at %s in %s"),
816 paddress (call_site_gdbarch, call_site->pc),
817 (msym.minsym == NULL ? "???"
818 : MSYMBOL_PRINT_NAME (msym.minsym)));
819
820 }
821 caller_arch = get_frame_arch (caller_frame);
822 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
823 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
824 dwarf_block->data, dwarf_block->size,
825 dwarf_block->per_cu);
826 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
827 if (VALUE_LVAL (val) == lval_memory)
828 return value_address (val);
829 else
830 return value_as_address (val);
831 }
832
833 case FIELD_LOC_KIND_PHYSNAME:
834 {
835 const char *physname;
836 struct bound_minimal_symbol msym;
837
838 physname = FIELD_STATIC_PHYSNAME (call_site->target);
839
840 /* Handle both the mangled and demangled PHYSNAME. */
841 msym = lookup_minimal_symbol (physname, NULL, NULL);
842 if (msym.minsym == NULL)
843 {
844 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
845 throw_error (NO_ENTRY_VALUE_ERROR,
846 _("Cannot find function \"%s\" for a call site target "
847 "at %s in %s"),
848 physname, paddress (call_site_gdbarch, call_site->pc),
849 (msym.minsym == NULL ? "???"
850 : MSYMBOL_PRINT_NAME (msym.minsym)));
851
852 }
853 return BMSYMBOL_VALUE_ADDRESS (msym);
854 }
855
856 case FIELD_LOC_KIND_PHYSADDR:
857 return FIELD_STATIC_PHYSADDR (call_site->target);
858
859 default:
860 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
861 }
862 }
863
864 /* Convert function entry point exact address ADDR to the function which is
865 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
866 NO_ENTRY_VALUE_ERROR otherwise. */
867
868 static struct symbol *
869 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
870 {
871 struct symbol *sym = find_pc_function (addr);
872 struct type *type;
873
874 if (sym == NULL || BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) != addr)
875 throw_error (NO_ENTRY_VALUE_ERROR,
876 _("DW_TAG_call_site resolving failed to find function "
877 "name for address %s"),
878 paddress (gdbarch, addr));
879
880 type = SYMBOL_TYPE (sym);
881 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
882 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
883
884 return sym;
885 }
886
887 /* Verify function with entry point exact address ADDR can never call itself
888 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
889 can call itself via tail calls.
890
891 If a funtion can tail call itself its entry value based parameters are
892 unreliable. There is no verification whether the value of some/all
893 parameters is unchanged through the self tail call, we expect if there is
894 a self tail call all the parameters can be modified. */
895
896 static void
897 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
898 {
899 CORE_ADDR addr;
900
901 /* The verification is completely unordered. Track here function addresses
902 which still need to be iterated. */
903 std::vector<CORE_ADDR> todo;
904
905 /* Track here CORE_ADDRs which were already visited. */
906 std::unordered_set<CORE_ADDR> addr_hash;
907
908 todo.push_back (verify_addr);
909 while (!todo.empty ())
910 {
911 struct symbol *func_sym;
912 struct call_site *call_site;
913
914 addr = todo.back ();
915 todo.pop_back ();
916
917 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
918
919 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
920 call_site; call_site = call_site->tail_call_next)
921 {
922 CORE_ADDR target_addr;
923
924 /* CALLER_FRAME with registers is not available for tail-call jumped
925 frames. */
926 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
927
928 if (target_addr == verify_addr)
929 {
930 struct bound_minimal_symbol msym;
931
932 msym = lookup_minimal_symbol_by_pc (verify_addr);
933 throw_error (NO_ENTRY_VALUE_ERROR,
934 _("DW_OP_entry_value resolving has found "
935 "function \"%s\" at %s can call itself via tail "
936 "calls"),
937 (msym.minsym == NULL ? "???"
938 : MSYMBOL_PRINT_NAME (msym.minsym)),
939 paddress (gdbarch, verify_addr));
940 }
941
942 if (addr_hash.insert (target_addr).second)
943 todo.push_back (target_addr);
944 }
945 }
946 }
947
948 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
949 ENTRY_VALUES_DEBUG. */
950
951 static void
952 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
953 {
954 CORE_ADDR addr = call_site->pc;
955 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
956
957 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
958 (msym.minsym == NULL ? "???"
959 : MSYMBOL_PRINT_NAME (msym.minsym)));
960
961 }
962
963 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
964 only top callers and bottom callees which are present in both. GDBARCH is
965 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
966 no remaining possibilities to provide unambiguous non-trivial result.
967 RESULTP should point to NULL on the first (initialization) call. Caller is
968 responsible for xfree of any RESULTP data. */
969
970 static void
971 chain_candidate (struct gdbarch *gdbarch,
972 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
973 std::vector<struct call_site *> *chain)
974 {
975 long length = chain->size ();
976 int callers, callees, idx;
977
978 if (*resultp == NULL)
979 {
980 /* Create the initial chain containing all the passed PCs. */
981
982 struct call_site_chain *result
983 = ((struct call_site_chain *)
984 xmalloc (sizeof (*result)
985 + sizeof (*result->call_site) * (length - 1)));
986 result->length = length;
987 result->callers = result->callees = length;
988 if (!chain->empty ())
989 memcpy (result->call_site, chain->data (),
990 sizeof (*result->call_site) * length);
991 resultp->reset (result);
992
993 if (entry_values_debug)
994 {
995 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
996 for (idx = 0; idx < length; idx++)
997 tailcall_dump (gdbarch, result->call_site[idx]);
998 fputc_unfiltered ('\n', gdb_stdlog);
999 }
1000
1001 return;
1002 }
1003
1004 if (entry_values_debug)
1005 {
1006 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
1007 for (idx = 0; idx < length; idx++)
1008 tailcall_dump (gdbarch, chain->at (idx));
1009 fputc_unfiltered ('\n', gdb_stdlog);
1010 }
1011
1012 /* Intersect callers. */
1013
1014 callers = std::min ((long) (*resultp)->callers, length);
1015 for (idx = 0; idx < callers; idx++)
1016 if ((*resultp)->call_site[idx] != chain->at (idx))
1017 {
1018 (*resultp)->callers = idx;
1019 break;
1020 }
1021
1022 /* Intersect callees. */
1023
1024 callees = std::min ((long) (*resultp)->callees, length);
1025 for (idx = 0; idx < callees; idx++)
1026 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
1027 != chain->at (length - 1 - idx))
1028 {
1029 (*resultp)->callees = idx;
1030 break;
1031 }
1032
1033 if (entry_values_debug)
1034 {
1035 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
1036 for (idx = 0; idx < (*resultp)->callers; idx++)
1037 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
1038 fputs_unfiltered (" |", gdb_stdlog);
1039 for (idx = 0; idx < (*resultp)->callees; idx++)
1040 tailcall_dump (gdbarch,
1041 (*resultp)->call_site[(*resultp)->length
1042 - (*resultp)->callees + idx]);
1043 fputc_unfiltered ('\n', gdb_stdlog);
1044 }
1045
1046 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
1047 {
1048 /* There are no common callers or callees. It could be also a direct
1049 call (which has length 0) with ambiguous possibility of an indirect
1050 call - CALLERS == CALLEES == 0 is valid during the first allocation
1051 but any subsequence processing of such entry means ambiguity. */
1052 resultp->reset (NULL);
1053 return;
1054 }
1055
1056 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1057 PC again. In such case there must be two different code paths to reach
1058 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
1059 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
1060 }
1061
1062 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1063 assumed frames between them use GDBARCH. Use depth first search so we can
1064 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1065 would have needless GDB stack overhead. Caller is responsible for xfree of
1066 the returned result. Any unreliability results in thrown
1067 NO_ENTRY_VALUE_ERROR. */
1068
1069 static struct call_site_chain *
1070 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1071 CORE_ADDR callee_pc)
1072 {
1073 CORE_ADDR save_callee_pc = callee_pc;
1074 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
1075 struct call_site *call_site;
1076
1077 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1078 call_site nor any possible call_site at CALLEE_PC's function is there.
1079 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1080 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
1081 std::vector<struct call_site *> chain;
1082
1083 /* We are not interested in the specific PC inside the callee function. */
1084 callee_pc = get_pc_function_start (callee_pc);
1085 if (callee_pc == 0)
1086 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
1087 paddress (gdbarch, save_callee_pc));
1088
1089 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1090 std::unordered_set<CORE_ADDR> addr_hash;
1091
1092 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1093 at the target's function. All the possible tail call sites in the
1094 target's function will get iterated as already pushed into CHAIN via their
1095 TAIL_CALL_NEXT. */
1096 call_site = call_site_for_pc (gdbarch, caller_pc);
1097
1098 while (call_site)
1099 {
1100 CORE_ADDR target_func_addr;
1101 struct call_site *target_call_site;
1102
1103 /* CALLER_FRAME with registers is not available for tail-call jumped
1104 frames. */
1105 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1106
1107 if (target_func_addr == callee_pc)
1108 {
1109 chain_candidate (gdbarch, &retval, &chain);
1110 if (retval == NULL)
1111 break;
1112
1113 /* There is no way to reach CALLEE_PC again as we would prevent
1114 entering it twice as being already marked in ADDR_HASH. */
1115 target_call_site = NULL;
1116 }
1117 else
1118 {
1119 struct symbol *target_func;
1120
1121 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1122 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1123 }
1124
1125 do
1126 {
1127 /* Attempt to visit TARGET_CALL_SITE. */
1128
1129 if (target_call_site)
1130 {
1131 if (addr_hash.insert (target_call_site->pc).second)
1132 {
1133 /* Successfully entered TARGET_CALL_SITE. */
1134
1135 chain.push_back (target_call_site);
1136 break;
1137 }
1138 }
1139
1140 /* Backtrack (without revisiting the originating call_site). Try the
1141 callers's sibling; if there isn't any try the callers's callers's
1142 sibling etc. */
1143
1144 target_call_site = NULL;
1145 while (!chain.empty ())
1146 {
1147 call_site = chain.back ();
1148 chain.pop_back ();
1149
1150 size_t removed = addr_hash.erase (call_site->pc);
1151 gdb_assert (removed == 1);
1152
1153 target_call_site = call_site->tail_call_next;
1154 if (target_call_site)
1155 break;
1156 }
1157 }
1158 while (target_call_site);
1159
1160 if (chain.empty ())
1161 call_site = NULL;
1162 else
1163 call_site = chain.back ();
1164 }
1165
1166 if (retval == NULL)
1167 {
1168 struct bound_minimal_symbol msym_caller, msym_callee;
1169
1170 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1171 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1172 throw_error (NO_ENTRY_VALUE_ERROR,
1173 _("There are no unambiguously determinable intermediate "
1174 "callers or callees between caller function \"%s\" at %s "
1175 "and callee function \"%s\" at %s"),
1176 (msym_caller.minsym == NULL
1177 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
1178 paddress (gdbarch, caller_pc),
1179 (msym_callee.minsym == NULL
1180 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
1181 paddress (gdbarch, callee_pc));
1182 }
1183
1184 return retval.release ();
1185 }
1186
1187 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1188 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1189 constructed return NULL. Caller is responsible for xfree of the returned
1190 result. */
1191
1192 struct call_site_chain *
1193 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1194 CORE_ADDR callee_pc)
1195 {
1196 struct call_site_chain *retval = NULL;
1197
1198 try
1199 {
1200 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1201 }
1202 catch (const gdb_exception_error &e)
1203 {
1204 if (e.error == NO_ENTRY_VALUE_ERROR)
1205 {
1206 if (entry_values_debug)
1207 exception_print (gdb_stdout, e);
1208
1209 return NULL;
1210 }
1211 else
1212 throw;
1213 }
1214
1215 return retval;
1216 }
1217
1218 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1219
1220 static int
1221 call_site_parameter_matches (struct call_site_parameter *parameter,
1222 enum call_site_parameter_kind kind,
1223 union call_site_parameter_u kind_u)
1224 {
1225 if (kind == parameter->kind)
1226 switch (kind)
1227 {
1228 case CALL_SITE_PARAMETER_DWARF_REG:
1229 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1230 case CALL_SITE_PARAMETER_FB_OFFSET:
1231 return kind_u.fb_offset == parameter->u.fb_offset;
1232 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1233 return kind_u.param_cu_off == parameter->u.param_cu_off;
1234 }
1235 return 0;
1236 }
1237
1238 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1239 FRAME is for callee.
1240
1241 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1242 otherwise. */
1243
1244 static struct call_site_parameter *
1245 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1246 enum call_site_parameter_kind kind,
1247 union call_site_parameter_u kind_u,
1248 struct dwarf2_per_cu_data **per_cu_return)
1249 {
1250 CORE_ADDR func_addr, caller_pc;
1251 struct gdbarch *gdbarch;
1252 struct frame_info *caller_frame;
1253 struct call_site *call_site;
1254 int iparams;
1255 /* Initialize it just to avoid a GCC false warning. */
1256 struct call_site_parameter *parameter = NULL;
1257 CORE_ADDR target_addr;
1258
1259 while (get_frame_type (frame) == INLINE_FRAME)
1260 {
1261 frame = get_prev_frame (frame);
1262 gdb_assert (frame != NULL);
1263 }
1264
1265 func_addr = get_frame_func (frame);
1266 gdbarch = get_frame_arch (frame);
1267 caller_frame = get_prev_frame (frame);
1268 if (gdbarch != frame_unwind_arch (frame))
1269 {
1270 struct bound_minimal_symbol msym
1271 = lookup_minimal_symbol_by_pc (func_addr);
1272 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1273
1274 throw_error (NO_ENTRY_VALUE_ERROR,
1275 _("DW_OP_entry_value resolving callee gdbarch %s "
1276 "(of %s (%s)) does not match caller gdbarch %s"),
1277 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1278 paddress (gdbarch, func_addr),
1279 (msym.minsym == NULL ? "???"
1280 : MSYMBOL_PRINT_NAME (msym.minsym)),
1281 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1282 }
1283
1284 if (caller_frame == NULL)
1285 {
1286 struct bound_minimal_symbol msym
1287 = lookup_minimal_symbol_by_pc (func_addr);
1288
1289 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
1290 "requires caller of %s (%s)"),
1291 paddress (gdbarch, func_addr),
1292 (msym.minsym == NULL ? "???"
1293 : MSYMBOL_PRINT_NAME (msym.minsym)));
1294 }
1295 caller_pc = get_frame_pc (caller_frame);
1296 call_site = call_site_for_pc (gdbarch, caller_pc);
1297
1298 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1299 if (target_addr != func_addr)
1300 {
1301 struct minimal_symbol *target_msym, *func_msym;
1302
1303 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1304 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1305 throw_error (NO_ENTRY_VALUE_ERROR,
1306 _("DW_OP_entry_value resolving expects callee %s at %s "
1307 "but the called frame is for %s at %s"),
1308 (target_msym == NULL ? "???"
1309 : MSYMBOL_PRINT_NAME (target_msym)),
1310 paddress (gdbarch, target_addr),
1311 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1312 paddress (gdbarch, func_addr));
1313 }
1314
1315 /* No entry value based parameters would be reliable if this function can
1316 call itself via tail calls. */
1317 func_verify_no_selftailcall (gdbarch, func_addr);
1318
1319 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1320 {
1321 parameter = &call_site->parameter[iparams];
1322 if (call_site_parameter_matches (parameter, kind, kind_u))
1323 break;
1324 }
1325 if (iparams == call_site->parameter_count)
1326 {
1327 struct minimal_symbol *msym
1328 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1329
1330 /* DW_TAG_call_site_parameter will be missing just if GCC could not
1331 determine its value. */
1332 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1333 "at DW_TAG_call_site %s at %s"),
1334 paddress (gdbarch, caller_pc),
1335 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1336 }
1337
1338 *per_cu_return = call_site->per_cu;
1339 return parameter;
1340 }
1341
1342 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1343 the normal DW_AT_call_value block. Otherwise return the
1344 DW_AT_call_data_value (dereferenced) block.
1345
1346 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1347 struct value.
1348
1349 Function always returns non-NULL, non-optimized out value. It throws
1350 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1351
1352 static struct value *
1353 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1354 CORE_ADDR deref_size, struct type *type,
1355 struct frame_info *caller_frame,
1356 struct dwarf2_per_cu_data *per_cu)
1357 {
1358 const gdb_byte *data_src;
1359 gdb_byte *data;
1360 size_t size;
1361
1362 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1363 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1364
1365 /* DEREF_SIZE size is not verified here. */
1366 if (data_src == NULL)
1367 throw_error (NO_ENTRY_VALUE_ERROR,
1368 _("Cannot resolve DW_AT_call_data_value"));
1369
1370 /* DW_AT_call_value is a DWARF expression, not a DWARF
1371 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1372 DWARF block. */
1373 data = (gdb_byte *) alloca (size + 1);
1374 memcpy (data, data_src, size);
1375 data[size] = DW_OP_stack_value;
1376
1377 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1378 }
1379
1380 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1381 the indirect method on it, that is use its stored target value, the sole
1382 purpose of entry_data_value_funcs.. */
1383
1384 static struct value *
1385 entry_data_value_coerce_ref (const struct value *value)
1386 {
1387 struct type *checked_type = check_typedef (value_type (value));
1388 struct value *target_val;
1389
1390 if (!TYPE_IS_REFERENCE (checked_type))
1391 return NULL;
1392
1393 target_val = (struct value *) value_computed_closure (value);
1394 value_incref (target_val);
1395 return target_val;
1396 }
1397
1398 /* Implement copy_closure. */
1399
1400 static void *
1401 entry_data_value_copy_closure (const struct value *v)
1402 {
1403 struct value *target_val = (struct value *) value_computed_closure (v);
1404
1405 value_incref (target_val);
1406 return target_val;
1407 }
1408
1409 /* Implement free_closure. */
1410
1411 static void
1412 entry_data_value_free_closure (struct value *v)
1413 {
1414 struct value *target_val = (struct value *) value_computed_closure (v);
1415
1416 value_decref (target_val);
1417 }
1418
1419 /* Vector for methods for an entry value reference where the referenced value
1420 is stored in the caller. On the first dereference use
1421 DW_AT_call_data_value in the caller. */
1422
1423 static const struct lval_funcs entry_data_value_funcs =
1424 {
1425 NULL, /* read */
1426 NULL, /* write */
1427 NULL, /* indirect */
1428 entry_data_value_coerce_ref,
1429 NULL, /* check_synthetic_pointer */
1430 entry_data_value_copy_closure,
1431 entry_data_value_free_closure
1432 };
1433
1434 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1435 are used to match DW_AT_location at the caller's
1436 DW_TAG_call_site_parameter.
1437
1438 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1439 cannot resolve the parameter for any reason. */
1440
1441 static struct value *
1442 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1443 enum call_site_parameter_kind kind,
1444 union call_site_parameter_u kind_u)
1445 {
1446 struct type *checked_type = check_typedef (type);
1447 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1448 struct frame_info *caller_frame = get_prev_frame (frame);
1449 struct value *outer_val, *target_val, *val;
1450 struct call_site_parameter *parameter;
1451 struct dwarf2_per_cu_data *caller_per_cu;
1452
1453 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1454 &caller_per_cu);
1455
1456 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1457 type, caller_frame,
1458 caller_per_cu);
1459
1460 /* Check if DW_AT_call_data_value cannot be used. If it should be
1461 used and it is not available do not fall back to OUTER_VAL - dereferencing
1462 TYPE_CODE_REF with non-entry data value would give current value - not the
1463 entry value. */
1464
1465 if (!TYPE_IS_REFERENCE (checked_type)
1466 || TYPE_TARGET_TYPE (checked_type) == NULL)
1467 return outer_val;
1468
1469 target_val = dwarf_entry_parameter_to_value (parameter,
1470 TYPE_LENGTH (target_type),
1471 target_type, caller_frame,
1472 caller_per_cu);
1473
1474 val = allocate_computed_value (type, &entry_data_value_funcs,
1475 release_value (target_val).release ());
1476
1477 /* Copy the referencing pointer to the new computed value. */
1478 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1479 TYPE_LENGTH (checked_type));
1480 set_value_lazy (val, 0);
1481
1482 return val;
1483 }
1484
1485 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1486 SIZE are DWARF block used to match DW_AT_location at the caller's
1487 DW_TAG_call_site_parameter.
1488
1489 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1490 cannot resolve the parameter for any reason. */
1491
1492 static struct value *
1493 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1494 const gdb_byte *block, size_t block_len)
1495 {
1496 union call_site_parameter_u kind_u;
1497
1498 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1499 if (kind_u.dwarf_reg != -1)
1500 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1501 kind_u);
1502
1503 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1504 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1505 kind_u);
1506
1507 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1508 suppressed during normal operation. The expression can be arbitrary if
1509 there is no caller-callee entry value binding expected. */
1510 throw_error (NO_ENTRY_VALUE_ERROR,
1511 _("DWARF-2 expression error: DW_OP_entry_value is supported "
1512 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1513 }
1514
1515 struct piece_closure
1516 {
1517 /* Reference count. */
1518 int refc = 0;
1519
1520 /* The CU from which this closure's expression came. */
1521 struct dwarf2_per_cu_data *per_cu = NULL;
1522
1523 /* The pieces describing this variable. */
1524 std::vector<dwarf_expr_piece> pieces;
1525
1526 /* Frame ID of frame to which a register value is relative, used
1527 only by DWARF_VALUE_REGISTER. */
1528 struct frame_id frame_id;
1529 };
1530
1531 /* Allocate a closure for a value formed from separately-described
1532 PIECES. */
1533
1534 static struct piece_closure *
1535 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1536 std::vector<dwarf_expr_piece> &&pieces,
1537 struct frame_info *frame)
1538 {
1539 struct piece_closure *c = new piece_closure;
1540
1541 c->refc = 1;
1542 c->per_cu = per_cu;
1543 c->pieces = std::move (pieces);
1544 if (frame == NULL)
1545 c->frame_id = null_frame_id;
1546 else
1547 c->frame_id = get_frame_id (frame);
1548
1549 for (dwarf_expr_piece &piece : c->pieces)
1550 if (piece.location == DWARF_VALUE_STACK)
1551 value_incref (piece.v.value);
1552
1553 return c;
1554 }
1555
1556 /* Return the number of bytes overlapping a contiguous chunk of N_BITS
1557 bits whose first bit is located at bit offset START. */
1558
1559 static size_t
1560 bits_to_bytes (ULONGEST start, ULONGEST n_bits)
1561 {
1562 return (start % 8 + n_bits + 7) / 8;
1563 }
1564
1565 /* Read or write a pieced value V. If FROM != NULL, operate in "write
1566 mode": copy FROM into the pieces comprising V. If FROM == NULL,
1567 operate in "read mode": fetch the contents of the (lazy) value V by
1568 composing it from its pieces. */
1569
1570 static void
1571 rw_pieced_value (struct value *v, struct value *from)
1572 {
1573 int i;
1574 LONGEST offset = 0, max_offset;
1575 ULONGEST bits_to_skip;
1576 gdb_byte *v_contents;
1577 const gdb_byte *from_contents;
1578 struct piece_closure *c
1579 = (struct piece_closure *) value_computed_closure (v);
1580 gdb::byte_vector buffer;
1581 int bits_big_endian
1582 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1583
1584 if (from != NULL)
1585 {
1586 from_contents = value_contents (from);
1587 v_contents = NULL;
1588 }
1589 else
1590 {
1591 if (value_type (v) != value_enclosing_type (v))
1592 internal_error (__FILE__, __LINE__,
1593 _("Should not be able to create a lazy value with "
1594 "an enclosing type"));
1595 v_contents = value_contents_raw (v);
1596 from_contents = NULL;
1597 }
1598
1599 bits_to_skip = 8 * value_offset (v);
1600 if (value_bitsize (v))
1601 {
1602 bits_to_skip += (8 * value_offset (value_parent (v))
1603 + value_bitpos (v));
1604 if (from != NULL
1605 && (gdbarch_byte_order (get_type_arch (value_type (from)))
1606 == BFD_ENDIAN_BIG))
1607 {
1608 /* Use the least significant bits of FROM. */
1609 max_offset = 8 * TYPE_LENGTH (value_type (from));
1610 offset = max_offset - value_bitsize (v);
1611 }
1612 else
1613 max_offset = value_bitsize (v);
1614 }
1615 else
1616 max_offset = 8 * TYPE_LENGTH (value_type (v));
1617
1618 /* Advance to the first non-skipped piece. */
1619 for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
1620 bits_to_skip -= c->pieces[i].size;
1621
1622 for (; i < c->pieces.size () && offset < max_offset; i++)
1623 {
1624 struct dwarf_expr_piece *p = &c->pieces[i];
1625 size_t this_size_bits, this_size;
1626
1627 this_size_bits = p->size - bits_to_skip;
1628 if (this_size_bits > max_offset - offset)
1629 this_size_bits = max_offset - offset;
1630
1631 switch (p->location)
1632 {
1633 case DWARF_VALUE_REGISTER:
1634 {
1635 struct frame_info *frame = frame_find_by_id (c->frame_id);
1636 struct gdbarch *arch = get_frame_arch (frame);
1637 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1638 ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
1639 int optim, unavail;
1640
1641 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1642 && p->offset + p->size < reg_bits)
1643 {
1644 /* Big-endian, and we want less than full size. */
1645 bits_to_skip += reg_bits - (p->offset + p->size);
1646 }
1647 else
1648 bits_to_skip += p->offset;
1649
1650 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1651 buffer.resize (this_size);
1652
1653 if (from == NULL)
1654 {
1655 /* Read mode. */
1656 if (!get_frame_register_bytes (frame, gdb_regnum,
1657 bits_to_skip / 8,
1658 this_size, buffer.data (),
1659 &optim, &unavail))
1660 {
1661 if (optim)
1662 mark_value_bits_optimized_out (v, offset,
1663 this_size_bits);
1664 if (unavail)
1665 mark_value_bits_unavailable (v, offset,
1666 this_size_bits);
1667 break;
1668 }
1669
1670 copy_bitwise (v_contents, offset,
1671 buffer.data (), bits_to_skip % 8,
1672 this_size_bits, bits_big_endian);
1673 }
1674 else
1675 {
1676 /* Write mode. */
1677 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1678 {
1679 /* Data is copied non-byte-aligned into the register.
1680 Need some bits from original register value. */
1681 get_frame_register_bytes (frame, gdb_regnum,
1682 bits_to_skip / 8,
1683 this_size, buffer.data (),
1684 &optim, &unavail);
1685 if (optim)
1686 throw_error (OPTIMIZED_OUT_ERROR,
1687 _("Can't do read-modify-write to "
1688 "update bitfield; containing word "
1689 "has been optimized out"));
1690 if (unavail)
1691 throw_error (NOT_AVAILABLE_ERROR,
1692 _("Can't do read-modify-write to "
1693 "update bitfield; containing word "
1694 "is unavailable"));
1695 }
1696
1697 copy_bitwise (buffer.data (), bits_to_skip % 8,
1698 from_contents, offset,
1699 this_size_bits, bits_big_endian);
1700 put_frame_register_bytes (frame, gdb_regnum,
1701 bits_to_skip / 8,
1702 this_size, buffer.data ());
1703 }
1704 }
1705 break;
1706
1707 case DWARF_VALUE_MEMORY:
1708 {
1709 bits_to_skip += p->offset;
1710
1711 CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
1712
1713 if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
1714 && offset % 8 == 0)
1715 {
1716 /* Everything is byte-aligned; no buffer needed. */
1717 if (from != NULL)
1718 write_memory_with_notification (start_addr,
1719 (from_contents
1720 + offset / 8),
1721 this_size_bits / 8);
1722 else
1723 read_value_memory (v, offset,
1724 p->v.mem.in_stack_memory,
1725 p->v.mem.addr + bits_to_skip / 8,
1726 v_contents + offset / 8,
1727 this_size_bits / 8);
1728 break;
1729 }
1730
1731 this_size = bits_to_bytes (bits_to_skip, this_size_bits);
1732 buffer.resize (this_size);
1733
1734 if (from == NULL)
1735 {
1736 /* Read mode. */
1737 read_value_memory (v, offset,
1738 p->v.mem.in_stack_memory,
1739 p->v.mem.addr + bits_to_skip / 8,
1740 buffer.data (), this_size);
1741 copy_bitwise (v_contents, offset,
1742 buffer.data (), bits_to_skip % 8,
1743 this_size_bits, bits_big_endian);
1744 }
1745 else
1746 {
1747 /* Write mode. */
1748 if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
1749 {
1750 if (this_size <= 8)
1751 {
1752 /* Perform a single read for small sizes. */
1753 read_memory (start_addr, buffer.data (),
1754 this_size);
1755 }
1756 else
1757 {
1758 /* Only the first and last bytes can possibly have
1759 any bits reused. */
1760 read_memory (start_addr, buffer.data (), 1);
1761 read_memory (start_addr + this_size - 1,
1762 &buffer[this_size - 1], 1);
1763 }
1764 }
1765
1766 copy_bitwise (buffer.data (), bits_to_skip % 8,
1767 from_contents, offset,
1768 this_size_bits, bits_big_endian);
1769 write_memory_with_notification (start_addr,
1770 buffer.data (),
1771 this_size);
1772 }
1773 }
1774 break;
1775
1776 case DWARF_VALUE_STACK:
1777 {
1778 if (from != NULL)
1779 {
1780 mark_value_bits_optimized_out (v, offset, this_size_bits);
1781 break;
1782 }
1783
1784 struct objfile *objfile = dwarf2_per_cu_objfile (c->per_cu);
1785 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
1786 ULONGEST stack_value_size_bits
1787 = 8 * TYPE_LENGTH (value_type (p->v.value));
1788
1789 /* Use zeroes if piece reaches beyond stack value. */
1790 if (p->offset + p->size > stack_value_size_bits)
1791 break;
1792
1793 /* Piece is anchored at least significant bit end. */
1794 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
1795 bits_to_skip += stack_value_size_bits - p->offset - p->size;
1796 else
1797 bits_to_skip += p->offset;
1798
1799 copy_bitwise (v_contents, offset,
1800 value_contents_all (p->v.value),
1801 bits_to_skip,
1802 this_size_bits, bits_big_endian);
1803 }
1804 break;
1805
1806 case DWARF_VALUE_LITERAL:
1807 {
1808 if (from != NULL)
1809 {
1810 mark_value_bits_optimized_out (v, offset, this_size_bits);
1811 break;
1812 }
1813
1814 ULONGEST literal_size_bits = 8 * p->v.literal.length;
1815 size_t n = this_size_bits;
1816
1817 /* Cut off at the end of the implicit value. */
1818 bits_to_skip += p->offset;
1819 if (bits_to_skip >= literal_size_bits)
1820 break;
1821 if (n > literal_size_bits - bits_to_skip)
1822 n = literal_size_bits - bits_to_skip;
1823
1824 copy_bitwise (v_contents, offset,
1825 p->v.literal.data, bits_to_skip,
1826 n, bits_big_endian);
1827 }
1828 break;
1829
1830 case DWARF_VALUE_IMPLICIT_POINTER:
1831 if (from != NULL)
1832 {
1833 mark_value_bits_optimized_out (v, offset, this_size_bits);
1834 break;
1835 }
1836
1837 /* These bits show up as zeros -- but do not cause the value to
1838 be considered optimized-out. */
1839 break;
1840
1841 case DWARF_VALUE_OPTIMIZED_OUT:
1842 mark_value_bits_optimized_out (v, offset, this_size_bits);
1843 break;
1844
1845 default:
1846 internal_error (__FILE__, __LINE__, _("invalid location type"));
1847 }
1848
1849 offset += this_size_bits;
1850 bits_to_skip = 0;
1851 }
1852 }
1853
1854
1855 static void
1856 read_pieced_value (struct value *v)
1857 {
1858 rw_pieced_value (v, NULL);
1859 }
1860
1861 static void
1862 write_pieced_value (struct value *to, struct value *from)
1863 {
1864 rw_pieced_value (to, from);
1865 }
1866
1867 /* An implementation of an lval_funcs method to see whether a value is
1868 a synthetic pointer. */
1869
1870 static int
1871 check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
1872 int bit_length)
1873 {
1874 struct piece_closure *c
1875 = (struct piece_closure *) value_computed_closure (value);
1876 int i;
1877
1878 bit_offset += 8 * value_offset (value);
1879 if (value_bitsize (value))
1880 bit_offset += value_bitpos (value);
1881
1882 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
1883 {
1884 struct dwarf_expr_piece *p = &c->pieces[i];
1885 size_t this_size_bits = p->size;
1886
1887 if (bit_offset > 0)
1888 {
1889 if (bit_offset >= this_size_bits)
1890 {
1891 bit_offset -= this_size_bits;
1892 continue;
1893 }
1894
1895 bit_length -= this_size_bits - bit_offset;
1896 bit_offset = 0;
1897 }
1898 else
1899 bit_length -= this_size_bits;
1900
1901 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1902 return 0;
1903 }
1904
1905 return 1;
1906 }
1907
1908 /* A wrapper function for get_frame_address_in_block. */
1909
1910 static CORE_ADDR
1911 get_frame_address_in_block_wrapper (void *baton)
1912 {
1913 return get_frame_address_in_block ((struct frame_info *) baton);
1914 }
1915
1916 /* Fetch a DW_AT_const_value through a synthetic pointer. */
1917
1918 static struct value *
1919 fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1920 struct dwarf2_per_cu_data *per_cu,
1921 struct type *type)
1922 {
1923 struct value *result = NULL;
1924 const gdb_byte *bytes;
1925 LONGEST len;
1926
1927 auto_obstack temp_obstack;
1928 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
1929
1930 if (bytes != NULL)
1931 {
1932 if (byte_offset >= 0
1933 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
1934 {
1935 bytes += byte_offset;
1936 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
1937 }
1938 else
1939 invalid_synthetic_pointer ();
1940 }
1941 else
1942 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
1943
1944 return result;
1945 }
1946
1947 /* Fetch the value pointed to by a synthetic pointer. */
1948
1949 static struct value *
1950 indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
1951 struct dwarf2_per_cu_data *per_cu,
1952 struct frame_info *frame, struct type *type,
1953 bool resolve_abstract_p)
1954 {
1955 /* Fetch the location expression of the DIE we're pointing to. */
1956 struct dwarf2_locexpr_baton baton
1957 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
1958 get_frame_address_in_block_wrapper, frame,
1959 resolve_abstract_p);
1960
1961 /* Get type of pointed-to DIE. */
1962 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
1963 if (orig_type == NULL)
1964 invalid_synthetic_pointer ();
1965
1966 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
1967 resulting value. Otherwise, it may have a DW_AT_const_value instead,
1968 or it may've been optimized out. */
1969 if (baton.data != NULL)
1970 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
1971 baton.size, baton.per_cu,
1972 TYPE_TARGET_TYPE (type),
1973 byte_offset);
1974 else
1975 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
1976 type);
1977 }
1978
1979 /* An implementation of an lval_funcs method to indirect through a
1980 pointer. This handles the synthetic pointer case when needed. */
1981
1982 static struct value *
1983 indirect_pieced_value (struct value *value)
1984 {
1985 struct piece_closure *c
1986 = (struct piece_closure *) value_computed_closure (value);
1987 struct type *type;
1988 struct frame_info *frame;
1989 int i, bit_length;
1990 LONGEST bit_offset;
1991 struct dwarf_expr_piece *piece = NULL;
1992 LONGEST byte_offset;
1993 enum bfd_endian byte_order;
1994
1995 type = check_typedef (value_type (value));
1996 if (TYPE_CODE (type) != TYPE_CODE_PTR)
1997 return NULL;
1998
1999 bit_length = 8 * TYPE_LENGTH (type);
2000 bit_offset = 8 * value_offset (value);
2001 if (value_bitsize (value))
2002 bit_offset += value_bitpos (value);
2003
2004 for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
2005 {
2006 struct dwarf_expr_piece *p = &c->pieces[i];
2007 size_t this_size_bits = p->size;
2008
2009 if (bit_offset > 0)
2010 {
2011 if (bit_offset >= this_size_bits)
2012 {
2013 bit_offset -= this_size_bits;
2014 continue;
2015 }
2016
2017 bit_length -= this_size_bits - bit_offset;
2018 bit_offset = 0;
2019 }
2020 else
2021 bit_length -= this_size_bits;
2022
2023 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2024 return NULL;
2025
2026 if (bit_length != 0)
2027 error (_("Invalid use of DW_OP_implicit_pointer"));
2028
2029 piece = p;
2030 break;
2031 }
2032
2033 gdb_assert (piece != NULL);
2034 frame = get_selected_frame (_("No frame selected."));
2035
2036 /* This is an offset requested by GDB, such as value subscripts.
2037 However, due to how synthetic pointers are implemented, this is
2038 always presented to us as a pointer type. This means we have to
2039 sign-extend it manually as appropriate. Use raw
2040 extract_signed_integer directly rather than value_as_address and
2041 sign extend afterwards on architectures that would need it
2042 (mostly everywhere except MIPS, which has signed addresses) as
2043 the later would go through gdbarch_pointer_to_address and thus
2044 return a CORE_ADDR with high bits set on architectures that
2045 encode address spaces and other things in CORE_ADDR. */
2046 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2047 byte_offset = extract_signed_integer (value_contents (value),
2048 TYPE_LENGTH (type), byte_order);
2049 byte_offset += piece->v.ptr.offset;
2050
2051 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2052 byte_offset, c->per_cu,
2053 frame, type);
2054 }
2055
2056 /* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2057 references. */
2058
2059 static struct value *
2060 coerce_pieced_ref (const struct value *value)
2061 {
2062 struct type *type = check_typedef (value_type (value));
2063
2064 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2065 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2066 {
2067 const struct piece_closure *closure
2068 = (struct piece_closure *) value_computed_closure (value);
2069 struct frame_info *frame
2070 = get_selected_frame (_("No frame selected."));
2071
2072 /* gdb represents synthetic pointers as pieced values with a single
2073 piece. */
2074 gdb_assert (closure != NULL);
2075 gdb_assert (closure->pieces.size () == 1);
2076
2077 return indirect_synthetic_pointer
2078 (closure->pieces[0].v.ptr.die_sect_off,
2079 closure->pieces[0].v.ptr.offset,
2080 closure->per_cu, frame, type);
2081 }
2082 else
2083 {
2084 /* Else: not a synthetic reference; do nothing. */
2085 return NULL;
2086 }
2087 }
2088
2089 static void *
2090 copy_pieced_value_closure (const struct value *v)
2091 {
2092 struct piece_closure *c
2093 = (struct piece_closure *) value_computed_closure (v);
2094
2095 ++c->refc;
2096 return c;
2097 }
2098
2099 static void
2100 free_pieced_value_closure (struct value *v)
2101 {
2102 struct piece_closure *c
2103 = (struct piece_closure *) value_computed_closure (v);
2104
2105 --c->refc;
2106 if (c->refc == 0)
2107 {
2108 for (dwarf_expr_piece &p : c->pieces)
2109 if (p.location == DWARF_VALUE_STACK)
2110 value_decref (p.v.value);
2111
2112 delete c;
2113 }
2114 }
2115
2116 /* Functions for accessing a variable described by DW_OP_piece. */
2117 static const struct lval_funcs pieced_value_funcs = {
2118 read_pieced_value,
2119 write_pieced_value,
2120 indirect_pieced_value,
2121 coerce_pieced_ref,
2122 check_pieced_synthetic_pointer,
2123 copy_pieced_value_closure,
2124 free_pieced_value_closure
2125 };
2126
2127 /* Evaluate a location description, starting at DATA and with length
2128 SIZE, to find the current location of variable of TYPE in the
2129 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2130 location of the subobject of type SUBOBJ_TYPE at byte offset
2131 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
2132
2133 static struct value *
2134 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2135 const gdb_byte *data, size_t size,
2136 struct dwarf2_per_cu_data *per_cu,
2137 struct type *subobj_type,
2138 LONGEST subobj_byte_offset)
2139 {
2140 struct value *retval;
2141 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2142
2143 if (subobj_type == NULL)
2144 {
2145 subobj_type = type;
2146 subobj_byte_offset = 0;
2147 }
2148 else if (subobj_byte_offset < 0)
2149 invalid_synthetic_pointer ();
2150
2151 if (size == 0)
2152 return allocate_optimized_out_value (subobj_type);
2153
2154 dwarf_evaluate_loc_desc ctx;
2155 ctx.frame = frame;
2156 ctx.per_cu = per_cu;
2157 ctx.obj_address = 0;
2158
2159 scoped_value_mark free_values;
2160
2161 ctx.gdbarch = get_objfile_arch (objfile);
2162 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2163 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2164 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2165
2166 try
2167 {
2168 ctx.eval (data, size);
2169 }
2170 catch (const gdb_exception_error &ex)
2171 {
2172 if (ex.error == NOT_AVAILABLE_ERROR)
2173 {
2174 free_values.free_to_mark ();
2175 retval = allocate_value (subobj_type);
2176 mark_value_bytes_unavailable (retval, 0,
2177 TYPE_LENGTH (subobj_type));
2178 return retval;
2179 }
2180 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2181 {
2182 if (entry_values_debug)
2183 exception_print (gdb_stdout, ex);
2184 free_values.free_to_mark ();
2185 return allocate_optimized_out_value (subobj_type);
2186 }
2187 else
2188 throw;
2189 }
2190
2191 if (ctx.pieces.size () > 0)
2192 {
2193 struct piece_closure *c;
2194 ULONGEST bit_size = 0;
2195
2196 for (dwarf_expr_piece &piece : ctx.pieces)
2197 bit_size += piece.size;
2198 /* Complain if the expression is larger than the size of the
2199 outer type. */
2200 if (bit_size > 8 * TYPE_LENGTH (type))
2201 invalid_synthetic_pointer ();
2202
2203 c = allocate_piece_closure (per_cu, std::move (ctx.pieces), frame);
2204 /* We must clean up the value chain after creating the piece
2205 closure but before allocating the result. */
2206 free_values.free_to_mark ();
2207 retval = allocate_computed_value (subobj_type,
2208 &pieced_value_funcs, c);
2209 set_value_offset (retval, subobj_byte_offset);
2210 }
2211 else
2212 {
2213 switch (ctx.location)
2214 {
2215 case DWARF_VALUE_REGISTER:
2216 {
2217 struct gdbarch *arch = get_frame_arch (frame);
2218 int dwarf_regnum
2219 = longest_to_int (value_as_long (ctx.fetch (0)));
2220 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
2221
2222 if (subobj_byte_offset != 0)
2223 error (_("cannot use offset on synthetic pointer to register"));
2224 free_values.free_to_mark ();
2225 retval = value_from_register (subobj_type, gdb_regnum, frame);
2226 if (value_optimized_out (retval))
2227 {
2228 struct value *tmp;
2229
2230 /* This means the register has undefined value / was
2231 not saved. As we're computing the location of some
2232 variable etc. in the program, not a value for
2233 inspecting a register ($pc, $sp, etc.), return a
2234 generic optimized out value instead, so that we show
2235 <optimized out> instead of <not saved>. */
2236 tmp = allocate_value (subobj_type);
2237 value_contents_copy (tmp, 0, retval, 0,
2238 TYPE_LENGTH (subobj_type));
2239 retval = tmp;
2240 }
2241 }
2242 break;
2243
2244 case DWARF_VALUE_MEMORY:
2245 {
2246 struct type *ptr_type;
2247 CORE_ADDR address = ctx.fetch_address (0);
2248 bool in_stack_memory = ctx.fetch_in_stack_memory (0);
2249
2250 /* DW_OP_deref_size (and possibly other operations too) may
2251 create a pointer instead of an address. Ideally, the
2252 pointer to address conversion would be performed as part
2253 of those operations, but the type of the object to
2254 which the address refers is not known at the time of
2255 the operation. Therefore, we do the conversion here
2256 since the type is readily available. */
2257
2258 switch (TYPE_CODE (subobj_type))
2259 {
2260 case TYPE_CODE_FUNC:
2261 case TYPE_CODE_METHOD:
2262 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
2263 break;
2264 default:
2265 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
2266 break;
2267 }
2268 address = value_as_address (value_from_pointer (ptr_type, address));
2269
2270 free_values.free_to_mark ();
2271 retval = value_at_lazy (subobj_type,
2272 address + subobj_byte_offset);
2273 if (in_stack_memory)
2274 set_value_stack (retval, 1);
2275 }
2276 break;
2277
2278 case DWARF_VALUE_STACK:
2279 {
2280 struct value *value = ctx.fetch (0);
2281 size_t n = TYPE_LENGTH (value_type (value));
2282 size_t len = TYPE_LENGTH (subobj_type);
2283 size_t max = TYPE_LENGTH (type);
2284 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2285
2286 if (subobj_byte_offset + len > max)
2287 invalid_synthetic_pointer ();
2288
2289 /* Preserve VALUE because we are going to free values back
2290 to the mark, but we still need the value contents
2291 below. */
2292 value_ref_ptr value_holder = value_ref_ptr::new_reference (value);
2293 free_values.free_to_mark ();
2294
2295 retval = allocate_value (subobj_type);
2296
2297 /* The given offset is relative to the actual object. */
2298 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2299 subobj_byte_offset += n - max;
2300
2301 memcpy (value_contents_raw (retval),
2302 value_contents_all (value) + subobj_byte_offset, len);
2303 }
2304 break;
2305
2306 case DWARF_VALUE_LITERAL:
2307 {
2308 bfd_byte *contents;
2309 size_t n = TYPE_LENGTH (subobj_type);
2310
2311 if (subobj_byte_offset + n > ctx.len)
2312 invalid_synthetic_pointer ();
2313
2314 free_values.free_to_mark ();
2315 retval = allocate_value (subobj_type);
2316 contents = value_contents_raw (retval);
2317 memcpy (contents, ctx.data + subobj_byte_offset, n);
2318 }
2319 break;
2320
2321 case DWARF_VALUE_OPTIMIZED_OUT:
2322 free_values.free_to_mark ();
2323 retval = allocate_optimized_out_value (subobj_type);
2324 break;
2325
2326 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2327 operation by execute_stack_op. */
2328 case DWARF_VALUE_IMPLICIT_POINTER:
2329 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2330 it can only be encountered when making a piece. */
2331 default:
2332 internal_error (__FILE__, __LINE__, _("invalid location type"));
2333 }
2334 }
2335
2336 set_value_initialized (retval, ctx.initialized);
2337
2338 return retval;
2339 }
2340
2341 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2342 passes 0 as the byte_offset. */
2343
2344 struct value *
2345 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2346 const gdb_byte *data, size_t size,
2347 struct dwarf2_per_cu_data *per_cu)
2348 {
2349 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2350 NULL, 0);
2351 }
2352
2353 /* Evaluates a dwarf expression and stores the result in VAL, expecting
2354 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2355 frame in which the expression is evaluated. ADDR is a context (location of
2356 a variable) and might be needed to evaluate the location expression.
2357 Returns 1 on success, 0 otherwise. */
2358
2359 static int
2360 dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
2361 struct frame_info *frame,
2362 CORE_ADDR addr,
2363 CORE_ADDR *valp)
2364 {
2365 struct objfile *objfile;
2366
2367 if (dlbaton == NULL || dlbaton->size == 0)
2368 return 0;
2369
2370 dwarf_evaluate_loc_desc ctx;
2371
2372 ctx.frame = frame;
2373 ctx.per_cu = dlbaton->per_cu;
2374 ctx.obj_address = addr;
2375
2376 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2377
2378 ctx.gdbarch = get_objfile_arch (objfile);
2379 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2380 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2381 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2382
2383 try
2384 {
2385 ctx.eval (dlbaton->data, dlbaton->size);
2386 }
2387 catch (const gdb_exception_error &ex)
2388 {
2389 if (ex.error == NOT_AVAILABLE_ERROR)
2390 {
2391 return 0;
2392 }
2393 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2394 {
2395 if (entry_values_debug)
2396 exception_print (gdb_stdout, ex);
2397 return 0;
2398 }
2399 else
2400 throw;
2401 }
2402
2403 switch (ctx.location)
2404 {
2405 case DWARF_VALUE_REGISTER:
2406 case DWARF_VALUE_MEMORY:
2407 case DWARF_VALUE_STACK:
2408 *valp = ctx.fetch_address (0);
2409 if (ctx.location == DWARF_VALUE_REGISTER)
2410 *valp = ctx.read_addr_from_reg (*valp);
2411 return 1;
2412 case DWARF_VALUE_LITERAL:
2413 *valp = extract_signed_integer (ctx.data, ctx.len,
2414 gdbarch_byte_order (ctx.gdbarch));
2415 return 1;
2416 /* Unsupported dwarf values. */
2417 case DWARF_VALUE_OPTIMIZED_OUT:
2418 case DWARF_VALUE_IMPLICIT_POINTER:
2419 break;
2420 }
2421
2422 return 0;
2423 }
2424
2425 /* See dwarf2loc.h. */
2426
2427 int
2428 dwarf2_evaluate_property (const struct dynamic_prop *prop,
2429 struct frame_info *frame,
2430 struct property_addr_info *addr_stack,
2431 CORE_ADDR *value)
2432 {
2433 if (prop == NULL)
2434 return 0;
2435
2436 if (frame == NULL && has_stack_frames ())
2437 frame = get_selected_frame (NULL);
2438
2439 switch (prop->kind)
2440 {
2441 case PROP_LOCEXPR:
2442 {
2443 const struct dwarf2_property_baton *baton
2444 = (const struct dwarf2_property_baton *) prop->data.baton;
2445
2446 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2447 addr_stack ? addr_stack->addr : 0,
2448 value))
2449 {
2450 if (baton->referenced_type)
2451 {
2452 struct value *val = value_at (baton->referenced_type, *value);
2453
2454 *value = value_as_address (val);
2455 }
2456 return 1;
2457 }
2458 }
2459 break;
2460
2461 case PROP_LOCLIST:
2462 {
2463 struct dwarf2_property_baton *baton
2464 = (struct dwarf2_property_baton *) prop->data.baton;
2465 CORE_ADDR pc = get_frame_address_in_block (frame);
2466 const gdb_byte *data;
2467 struct value *val;
2468 size_t size;
2469
2470 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2471 if (data != NULL)
2472 {
2473 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2474 size, baton->loclist.per_cu);
2475 if (!value_optimized_out (val))
2476 {
2477 *value = value_as_address (val);
2478 return 1;
2479 }
2480 }
2481 }
2482 break;
2483
2484 case PROP_CONST:
2485 *value = prop->data.const_val;
2486 return 1;
2487
2488 case PROP_ADDR_OFFSET:
2489 {
2490 struct dwarf2_property_baton *baton
2491 = (struct dwarf2_property_baton *) prop->data.baton;
2492 struct property_addr_info *pinfo;
2493 struct value *val;
2494
2495 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2496 if (pinfo->type == baton->referenced_type)
2497 break;
2498 if (pinfo == NULL)
2499 error (_("cannot find reference address for offset property"));
2500 if (pinfo->valaddr != NULL)
2501 val = value_from_contents
2502 (baton->offset_info.type,
2503 pinfo->valaddr + baton->offset_info.offset);
2504 else
2505 val = value_at (baton->offset_info.type,
2506 pinfo->addr + baton->offset_info.offset);
2507 *value = value_as_address (val);
2508 return 1;
2509 }
2510 }
2511
2512 return 0;
2513 }
2514
2515 /* See dwarf2loc.h. */
2516
2517 void
2518 dwarf2_compile_property_to_c (string_file *stream,
2519 const char *result_name,
2520 struct gdbarch *gdbarch,
2521 unsigned char *registers_used,
2522 const struct dynamic_prop *prop,
2523 CORE_ADDR pc,
2524 struct symbol *sym)
2525 {
2526 struct dwarf2_property_baton *baton
2527 = (struct dwarf2_property_baton *) prop->data.baton;
2528 const gdb_byte *data;
2529 size_t size;
2530 struct dwarf2_per_cu_data *per_cu;
2531
2532 if (prop->kind == PROP_LOCEXPR)
2533 {
2534 data = baton->locexpr.data;
2535 size = baton->locexpr.size;
2536 per_cu = baton->locexpr.per_cu;
2537 }
2538 else
2539 {
2540 gdb_assert (prop->kind == PROP_LOCLIST);
2541
2542 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2543 per_cu = baton->loclist.per_cu;
2544 }
2545
2546 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2547 gdbarch, registers_used,
2548 dwarf2_per_cu_addr_size (per_cu),
2549 data, data + size, per_cu);
2550 }
2551
2552 \f
2553 /* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
2554
2555 class symbol_needs_eval_context : public dwarf_expr_context
2556 {
2557 public:
2558
2559 enum symbol_needs_kind needs;
2560 struct dwarf2_per_cu_data *per_cu;
2561
2562 /* Reads from registers do require a frame. */
2563 CORE_ADDR read_addr_from_reg (int regnum) override
2564 {
2565 needs = SYMBOL_NEEDS_FRAME;
2566 return 1;
2567 }
2568
2569 /* "get_reg_value" callback: Reads from registers do require a
2570 frame. */
2571
2572 struct value *get_reg_value (struct type *type, int regnum) override
2573 {
2574 needs = SYMBOL_NEEDS_FRAME;
2575 return value_zero (type, not_lval);
2576 }
2577
2578 /* Reads from memory do not require a frame. */
2579 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
2580 {
2581 memset (buf, 0, len);
2582 }
2583
2584 /* Frame-relative accesses do require a frame. */
2585 void get_frame_base (const gdb_byte **start, size_t *length) override
2586 {
2587 static gdb_byte lit0 = DW_OP_lit0;
2588
2589 *start = &lit0;
2590 *length = 1;
2591
2592 needs = SYMBOL_NEEDS_FRAME;
2593 }
2594
2595 /* CFA accesses require a frame. */
2596 CORE_ADDR get_frame_cfa () override
2597 {
2598 needs = SYMBOL_NEEDS_FRAME;
2599 return 1;
2600 }
2601
2602 CORE_ADDR get_frame_pc () override
2603 {
2604 needs = SYMBOL_NEEDS_FRAME;
2605 return 1;
2606 }
2607
2608 /* Thread-local accesses require registers, but not a frame. */
2609 CORE_ADDR get_tls_address (CORE_ADDR offset) override
2610 {
2611 if (needs <= SYMBOL_NEEDS_REGISTERS)
2612 needs = SYMBOL_NEEDS_REGISTERS;
2613 return 1;
2614 }
2615
2616 /* Helper interface of per_cu_dwarf_call for
2617 dwarf2_loc_desc_get_symbol_read_needs. */
2618
2619 void dwarf_call (cu_offset die_offset) override
2620 {
2621 per_cu_dwarf_call (this, die_offset, per_cu);
2622 }
2623
2624 /* Helper interface of sect_variable_value for
2625 dwarf2_loc_desc_get_symbol_read_needs. */
2626
2627 struct value *dwarf_variable_value (sect_offset sect_off) override
2628 {
2629 return sect_variable_value (this, sect_off, per_cu);
2630 }
2631
2632 /* DW_OP_entry_value accesses require a caller, therefore a
2633 frame. */
2634
2635 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2636 union call_site_parameter_u kind_u,
2637 int deref_size) override
2638 {
2639 needs = SYMBOL_NEEDS_FRAME;
2640
2641 /* The expression may require some stub values on DWARF stack. */
2642 push_address (0, 0);
2643 }
2644
2645 /* DW_OP_GNU_addr_index doesn't require a frame. */
2646
2647 CORE_ADDR get_addr_index (unsigned int index) override
2648 {
2649 /* Nothing to do. */
2650 return 1;
2651 }
2652
2653 /* DW_OP_push_object_address has a frame already passed through. */
2654
2655 CORE_ADDR get_object_address () override
2656 {
2657 /* Nothing to do. */
2658 return 1;
2659 }
2660 };
2661
2662 /* Compute the correct symbol_needs_kind value for the location
2663 expression at DATA (length SIZE). */
2664
2665 static enum symbol_needs_kind
2666 dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2667 struct dwarf2_per_cu_data *per_cu)
2668 {
2669 int in_reg;
2670 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2671
2672 scoped_value_mark free_values;
2673
2674 symbol_needs_eval_context ctx;
2675
2676 ctx.needs = SYMBOL_NEEDS_NONE;
2677 ctx.per_cu = per_cu;
2678 ctx.gdbarch = get_objfile_arch (objfile);
2679 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2680 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2681 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
2682
2683 ctx.eval (data, size);
2684
2685 in_reg = ctx.location == DWARF_VALUE_REGISTER;
2686
2687 /* If the location has several pieces, and any of them are in
2688 registers, then we will need a frame to fetch them from. */
2689 for (dwarf_expr_piece &p : ctx.pieces)
2690 if (p.location == DWARF_VALUE_REGISTER)
2691 in_reg = 1;
2692
2693 if (in_reg)
2694 ctx.needs = SYMBOL_NEEDS_FRAME;
2695 return ctx.needs;
2696 }
2697
2698 /* A helper function that throws an unimplemented error mentioning a
2699 given DWARF operator. */
2700
2701 static void ATTRIBUTE_NORETURN
2702 unimplemented (unsigned int op)
2703 {
2704 const char *name = get_DW_OP_name (op);
2705
2706 if (name)
2707 error (_("DWARF operator %s cannot be translated to an agent expression"),
2708 name);
2709 else
2710 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2711 "to an agent expression"),
2712 op);
2713 }
2714
2715 /* See dwarf2loc.h.
2716
2717 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2718 can issue a complaint, which is better than having every target's
2719 implementation of dwarf2_reg_to_regnum do it. */
2720
2721 int
2722 dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
2723 {
2724 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2725
2726 if (reg == -1)
2727 {
2728 complaint (_("bad DWARF register number %d"), dwarf_reg);
2729 }
2730 return reg;
2731 }
2732
2733 /* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2734 Throw an error because DWARF_REG is bad. */
2735
2736 static void
2737 throw_bad_regnum_error (ULONGEST dwarf_reg)
2738 {
2739 /* Still want to print -1 as "-1".
2740 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2741 but that's overkill for now. */
2742 if ((int) dwarf_reg == dwarf_reg)
2743 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2744 error (_("Unable to access DWARF register number %s"),
2745 pulongest (dwarf_reg));
2746 }
2747
2748 /* See dwarf2loc.h. */
2749
2750 int
2751 dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2752 {
2753 int reg;
2754
2755 if (dwarf_reg > INT_MAX)
2756 throw_bad_regnum_error (dwarf_reg);
2757 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2758 bad, but that's ok. */
2759 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2760 if (reg == -1)
2761 throw_bad_regnum_error (dwarf_reg);
2762 return reg;
2763 }
2764
2765 /* A helper function that emits an access to memory. ARCH is the
2766 target architecture. EXPR is the expression which we are building.
2767 NBITS is the number of bits we want to read. This emits the
2768 opcodes needed to read the memory and then extract the desired
2769 bits. */
2770
2771 static void
2772 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2773 {
2774 ULONGEST nbytes = (nbits + 7) / 8;
2775
2776 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2777
2778 if (expr->tracing)
2779 ax_trace_quick (expr, nbytes);
2780
2781 if (nbits <= 8)
2782 ax_simple (expr, aop_ref8);
2783 else if (nbits <= 16)
2784 ax_simple (expr, aop_ref16);
2785 else if (nbits <= 32)
2786 ax_simple (expr, aop_ref32);
2787 else
2788 ax_simple (expr, aop_ref64);
2789
2790 /* If we read exactly the number of bytes we wanted, we're done. */
2791 if (8 * nbytes == nbits)
2792 return;
2793
2794 if (gdbarch_bits_big_endian (arch))
2795 {
2796 /* On a bits-big-endian machine, we want the high-order
2797 NBITS. */
2798 ax_const_l (expr, 8 * nbytes - nbits);
2799 ax_simple (expr, aop_rsh_unsigned);
2800 }
2801 else
2802 {
2803 /* On a bits-little-endian box, we want the low-order NBITS. */
2804 ax_zero_ext (expr, nbits);
2805 }
2806 }
2807
2808 /* A helper function to return the frame's PC. */
2809
2810 static CORE_ADDR
2811 get_ax_pc (void *baton)
2812 {
2813 struct agent_expr *expr = (struct agent_expr *) baton;
2814
2815 return expr->scope;
2816 }
2817
2818 /* Compile a DWARF location expression to an agent expression.
2819
2820 EXPR is the agent expression we are building.
2821 LOC is the agent value we modify.
2822 ARCH is the architecture.
2823 ADDR_SIZE is the size of addresses, in bytes.
2824 OP_PTR is the start of the location expression.
2825 OP_END is one past the last byte of the location expression.
2826
2827 This will throw an exception for various kinds of errors -- for
2828 example, if the expression cannot be compiled, or if the expression
2829 is invalid. */
2830
2831 void
2832 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2833 unsigned int addr_size, const gdb_byte *op_ptr,
2834 const gdb_byte *op_end,
2835 struct dwarf2_per_cu_data *per_cu)
2836 {
2837 gdbarch *arch = expr->gdbarch;
2838 std::vector<int> dw_labels, patches;
2839 const gdb_byte * const base = op_ptr;
2840 const gdb_byte *previous_piece = op_ptr;
2841 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2842 ULONGEST bits_collected = 0;
2843 unsigned int addr_size_bits = 8 * addr_size;
2844 int bits_big_endian = gdbarch_bits_big_endian (arch);
2845
2846 std::vector<int> offsets (op_end - op_ptr, -1);
2847
2848 /* By default we are making an address. */
2849 loc->kind = axs_lvalue_memory;
2850
2851 while (op_ptr < op_end)
2852 {
2853 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
2854 uint64_t uoffset, reg;
2855 int64_t offset;
2856 int i;
2857
2858 offsets[op_ptr - base] = expr->len;
2859 ++op_ptr;
2860
2861 /* Our basic approach to code generation is to map DWARF
2862 operations directly to AX operations. However, there are
2863 some differences.
2864
2865 First, DWARF works on address-sized units, but AX always uses
2866 LONGEST. For most operations we simply ignore this
2867 difference; instead we generate sign extensions as needed
2868 before division and comparison operations. It would be nice
2869 to omit the sign extensions, but there is no way to determine
2870 the size of the target's LONGEST. (This code uses the size
2871 of the host LONGEST in some cases -- that is a bug but it is
2872 difficult to fix.)
2873
2874 Second, some DWARF operations cannot be translated to AX.
2875 For these we simply fail. See
2876 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2877 switch (op)
2878 {
2879 case DW_OP_lit0:
2880 case DW_OP_lit1:
2881 case DW_OP_lit2:
2882 case DW_OP_lit3:
2883 case DW_OP_lit4:
2884 case DW_OP_lit5:
2885 case DW_OP_lit6:
2886 case DW_OP_lit7:
2887 case DW_OP_lit8:
2888 case DW_OP_lit9:
2889 case DW_OP_lit10:
2890 case DW_OP_lit11:
2891 case DW_OP_lit12:
2892 case DW_OP_lit13:
2893 case DW_OP_lit14:
2894 case DW_OP_lit15:
2895 case DW_OP_lit16:
2896 case DW_OP_lit17:
2897 case DW_OP_lit18:
2898 case DW_OP_lit19:
2899 case DW_OP_lit20:
2900 case DW_OP_lit21:
2901 case DW_OP_lit22:
2902 case DW_OP_lit23:
2903 case DW_OP_lit24:
2904 case DW_OP_lit25:
2905 case DW_OP_lit26:
2906 case DW_OP_lit27:
2907 case DW_OP_lit28:
2908 case DW_OP_lit29:
2909 case DW_OP_lit30:
2910 case DW_OP_lit31:
2911 ax_const_l (expr, op - DW_OP_lit0);
2912 break;
2913
2914 case DW_OP_addr:
2915 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2916 op_ptr += addr_size;
2917 /* Some versions of GCC emit DW_OP_addr before
2918 DW_OP_GNU_push_tls_address. In this case the value is an
2919 index, not an address. We don't support things like
2920 branching between the address and the TLS op. */
2921 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2922 uoffset += dwarf2_per_cu_text_offset (per_cu);
2923 ax_const_l (expr, uoffset);
2924 break;
2925
2926 case DW_OP_const1u:
2927 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2928 op_ptr += 1;
2929 break;
2930 case DW_OP_const1s:
2931 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2932 op_ptr += 1;
2933 break;
2934 case DW_OP_const2u:
2935 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2936 op_ptr += 2;
2937 break;
2938 case DW_OP_const2s:
2939 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2940 op_ptr += 2;
2941 break;
2942 case DW_OP_const4u:
2943 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2944 op_ptr += 4;
2945 break;
2946 case DW_OP_const4s:
2947 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2948 op_ptr += 4;
2949 break;
2950 case DW_OP_const8u:
2951 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2952 op_ptr += 8;
2953 break;
2954 case DW_OP_const8s:
2955 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2956 op_ptr += 8;
2957 break;
2958 case DW_OP_constu:
2959 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2960 ax_const_l (expr, uoffset);
2961 break;
2962 case DW_OP_consts:
2963 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2964 ax_const_l (expr, offset);
2965 break;
2966
2967 case DW_OP_reg0:
2968 case DW_OP_reg1:
2969 case DW_OP_reg2:
2970 case DW_OP_reg3:
2971 case DW_OP_reg4:
2972 case DW_OP_reg5:
2973 case DW_OP_reg6:
2974 case DW_OP_reg7:
2975 case DW_OP_reg8:
2976 case DW_OP_reg9:
2977 case DW_OP_reg10:
2978 case DW_OP_reg11:
2979 case DW_OP_reg12:
2980 case DW_OP_reg13:
2981 case DW_OP_reg14:
2982 case DW_OP_reg15:
2983 case DW_OP_reg16:
2984 case DW_OP_reg17:
2985 case DW_OP_reg18:
2986 case DW_OP_reg19:
2987 case DW_OP_reg20:
2988 case DW_OP_reg21:
2989 case DW_OP_reg22:
2990 case DW_OP_reg23:
2991 case DW_OP_reg24:
2992 case DW_OP_reg25:
2993 case DW_OP_reg26:
2994 case DW_OP_reg27:
2995 case DW_OP_reg28:
2996 case DW_OP_reg29:
2997 case DW_OP_reg30:
2998 case DW_OP_reg31:
2999 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3000 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3001 loc->kind = axs_lvalue_register;
3002 break;
3003
3004 case DW_OP_regx:
3005 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3006 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
3007 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3008 loc->kind = axs_lvalue_register;
3009 break;
3010
3011 case DW_OP_implicit_value:
3012 {
3013 uint64_t len;
3014
3015 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3016 if (op_ptr + len > op_end)
3017 error (_("DW_OP_implicit_value: too few bytes available."));
3018 if (len > sizeof (ULONGEST))
3019 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3020 (int) len);
3021
3022 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3023 byte_order));
3024 op_ptr += len;
3025 dwarf_expr_require_composition (op_ptr, op_end,
3026 "DW_OP_implicit_value");
3027
3028 loc->kind = axs_rvalue;
3029 }
3030 break;
3031
3032 case DW_OP_stack_value:
3033 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3034 loc->kind = axs_rvalue;
3035 break;
3036
3037 case DW_OP_breg0:
3038 case DW_OP_breg1:
3039 case DW_OP_breg2:
3040 case DW_OP_breg3:
3041 case DW_OP_breg4:
3042 case DW_OP_breg5:
3043 case DW_OP_breg6:
3044 case DW_OP_breg7:
3045 case DW_OP_breg8:
3046 case DW_OP_breg9:
3047 case DW_OP_breg10:
3048 case DW_OP_breg11:
3049 case DW_OP_breg12:
3050 case DW_OP_breg13:
3051 case DW_OP_breg14:
3052 case DW_OP_breg15:
3053 case DW_OP_breg16:
3054 case DW_OP_breg17:
3055 case DW_OP_breg18:
3056 case DW_OP_breg19:
3057 case DW_OP_breg20:
3058 case DW_OP_breg21:
3059 case DW_OP_breg22:
3060 case DW_OP_breg23:
3061 case DW_OP_breg24:
3062 case DW_OP_breg25:
3063 case DW_OP_breg26:
3064 case DW_OP_breg27:
3065 case DW_OP_breg28:
3066 case DW_OP_breg29:
3067 case DW_OP_breg30:
3068 case DW_OP_breg31:
3069 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3070 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3071 ax_reg (expr, i);
3072 if (offset != 0)
3073 {
3074 ax_const_l (expr, offset);
3075 ax_simple (expr, aop_add);
3076 }
3077 break;
3078 case DW_OP_bregx:
3079 {
3080 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3081 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3082 i = dwarf_reg_to_regnum_or_error (arch, reg);
3083 ax_reg (expr, i);
3084 if (offset != 0)
3085 {
3086 ax_const_l (expr, offset);
3087 ax_simple (expr, aop_add);
3088 }
3089 }
3090 break;
3091 case DW_OP_fbreg:
3092 {
3093 const gdb_byte *datastart;
3094 size_t datalen;
3095 const struct block *b;
3096 struct symbol *framefunc;
3097
3098 b = block_for_pc (expr->scope);
3099
3100 if (!b)
3101 error (_("No block found for address"));
3102
3103 framefunc = block_linkage_function (b);
3104
3105 if (!framefunc)
3106 error (_("No function found for block"));
3107
3108 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3109 &datastart, &datalen);
3110
3111 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3112 dwarf2_compile_expr_to_ax (expr, loc, addr_size, datastart,
3113 datastart + datalen, per_cu);
3114 if (loc->kind == axs_lvalue_register)
3115 require_rvalue (expr, loc);
3116
3117 if (offset != 0)
3118 {
3119 ax_const_l (expr, offset);
3120 ax_simple (expr, aop_add);
3121 }
3122
3123 loc->kind = axs_lvalue_memory;
3124 }
3125 break;
3126
3127 case DW_OP_dup:
3128 ax_simple (expr, aop_dup);
3129 break;
3130
3131 case DW_OP_drop:
3132 ax_simple (expr, aop_pop);
3133 break;
3134
3135 case DW_OP_pick:
3136 offset = *op_ptr++;
3137 ax_pick (expr, offset);
3138 break;
3139
3140 case DW_OP_swap:
3141 ax_simple (expr, aop_swap);
3142 break;
3143
3144 case DW_OP_over:
3145 ax_pick (expr, 1);
3146 break;
3147
3148 case DW_OP_rot:
3149 ax_simple (expr, aop_rot);
3150 break;
3151
3152 case DW_OP_deref:
3153 case DW_OP_deref_size:
3154 {
3155 int size;
3156
3157 if (op == DW_OP_deref_size)
3158 size = *op_ptr++;
3159 else
3160 size = addr_size;
3161
3162 if (size != 1 && size != 2 && size != 4 && size != 8)
3163 error (_("Unsupported size %d in %s"),
3164 size, get_DW_OP_name (op));
3165 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3166 }
3167 break;
3168
3169 case DW_OP_abs:
3170 /* Sign extend the operand. */
3171 ax_ext (expr, addr_size_bits);
3172 ax_simple (expr, aop_dup);
3173 ax_const_l (expr, 0);
3174 ax_simple (expr, aop_less_signed);
3175 ax_simple (expr, aop_log_not);
3176 i = ax_goto (expr, aop_if_goto);
3177 /* We have to emit 0 - X. */
3178 ax_const_l (expr, 0);
3179 ax_simple (expr, aop_swap);
3180 ax_simple (expr, aop_sub);
3181 ax_label (expr, i, expr->len);
3182 break;
3183
3184 case DW_OP_neg:
3185 /* No need to sign extend here. */
3186 ax_const_l (expr, 0);
3187 ax_simple (expr, aop_swap);
3188 ax_simple (expr, aop_sub);
3189 break;
3190
3191 case DW_OP_not:
3192 /* Sign extend the operand. */
3193 ax_ext (expr, addr_size_bits);
3194 ax_simple (expr, aop_bit_not);
3195 break;
3196
3197 case DW_OP_plus_uconst:
3198 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3199 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3200 but we micro-optimize anyhow. */
3201 if (reg != 0)
3202 {
3203 ax_const_l (expr, reg);
3204 ax_simple (expr, aop_add);
3205 }
3206 break;
3207
3208 case DW_OP_and:
3209 ax_simple (expr, aop_bit_and);
3210 break;
3211
3212 case DW_OP_div:
3213 /* Sign extend the operands. */
3214 ax_ext (expr, addr_size_bits);
3215 ax_simple (expr, aop_swap);
3216 ax_ext (expr, addr_size_bits);
3217 ax_simple (expr, aop_swap);
3218 ax_simple (expr, aop_div_signed);
3219 break;
3220
3221 case DW_OP_minus:
3222 ax_simple (expr, aop_sub);
3223 break;
3224
3225 case DW_OP_mod:
3226 ax_simple (expr, aop_rem_unsigned);
3227 break;
3228
3229 case DW_OP_mul:
3230 ax_simple (expr, aop_mul);
3231 break;
3232
3233 case DW_OP_or:
3234 ax_simple (expr, aop_bit_or);
3235 break;
3236
3237 case DW_OP_plus:
3238 ax_simple (expr, aop_add);
3239 break;
3240
3241 case DW_OP_shl:
3242 ax_simple (expr, aop_lsh);
3243 break;
3244
3245 case DW_OP_shr:
3246 ax_simple (expr, aop_rsh_unsigned);
3247 break;
3248
3249 case DW_OP_shra:
3250 ax_simple (expr, aop_rsh_signed);
3251 break;
3252
3253 case DW_OP_xor:
3254 ax_simple (expr, aop_bit_xor);
3255 break;
3256
3257 case DW_OP_le:
3258 /* Sign extend the operands. */
3259 ax_ext (expr, addr_size_bits);
3260 ax_simple (expr, aop_swap);
3261 ax_ext (expr, addr_size_bits);
3262 /* Note no swap here: A <= B is !(B < A). */
3263 ax_simple (expr, aop_less_signed);
3264 ax_simple (expr, aop_log_not);
3265 break;
3266
3267 case DW_OP_ge:
3268 /* Sign extend the operands. */
3269 ax_ext (expr, addr_size_bits);
3270 ax_simple (expr, aop_swap);
3271 ax_ext (expr, addr_size_bits);
3272 ax_simple (expr, aop_swap);
3273 /* A >= B is !(A < B). */
3274 ax_simple (expr, aop_less_signed);
3275 ax_simple (expr, aop_log_not);
3276 break;
3277
3278 case DW_OP_eq:
3279 /* Sign extend the operands. */
3280 ax_ext (expr, addr_size_bits);
3281 ax_simple (expr, aop_swap);
3282 ax_ext (expr, addr_size_bits);
3283 /* No need for a second swap here. */
3284 ax_simple (expr, aop_equal);
3285 break;
3286
3287 case DW_OP_lt:
3288 /* Sign extend the operands. */
3289 ax_ext (expr, addr_size_bits);
3290 ax_simple (expr, aop_swap);
3291 ax_ext (expr, addr_size_bits);
3292 ax_simple (expr, aop_swap);
3293 ax_simple (expr, aop_less_signed);
3294 break;
3295
3296 case DW_OP_gt:
3297 /* Sign extend the operands. */
3298 ax_ext (expr, addr_size_bits);
3299 ax_simple (expr, aop_swap);
3300 ax_ext (expr, addr_size_bits);
3301 /* Note no swap here: A > B is B < A. */
3302 ax_simple (expr, aop_less_signed);
3303 break;
3304
3305 case DW_OP_ne:
3306 /* Sign extend the operands. */
3307 ax_ext (expr, addr_size_bits);
3308 ax_simple (expr, aop_swap);
3309 ax_ext (expr, addr_size_bits);
3310 /* No need for a swap here. */
3311 ax_simple (expr, aop_equal);
3312 ax_simple (expr, aop_log_not);
3313 break;
3314
3315 case DW_OP_call_frame_cfa:
3316 {
3317 int regnum;
3318 CORE_ADDR text_offset;
3319 LONGEST off;
3320 const gdb_byte *cfa_start, *cfa_end;
3321
3322 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3323 &regnum, &off,
3324 &text_offset, &cfa_start, &cfa_end))
3325 {
3326 /* Register. */
3327 ax_reg (expr, regnum);
3328 if (off != 0)
3329 {
3330 ax_const_l (expr, off);
3331 ax_simple (expr, aop_add);
3332 }
3333 }
3334 else
3335 {
3336 /* Another expression. */
3337 ax_const_l (expr, text_offset);
3338 dwarf2_compile_expr_to_ax (expr, loc, addr_size, cfa_start,
3339 cfa_end, per_cu);
3340 }
3341
3342 loc->kind = axs_lvalue_memory;
3343 }
3344 break;
3345
3346 case DW_OP_GNU_push_tls_address:
3347 case DW_OP_form_tls_address:
3348 unimplemented (op);
3349 break;
3350
3351 case DW_OP_push_object_address:
3352 unimplemented (op);
3353 break;
3354
3355 case DW_OP_skip:
3356 offset = extract_signed_integer (op_ptr, 2, byte_order);
3357 op_ptr += 2;
3358 i = ax_goto (expr, aop_goto);
3359 dw_labels.push_back (op_ptr + offset - base);
3360 patches.push_back (i);
3361 break;
3362
3363 case DW_OP_bra:
3364 offset = extract_signed_integer (op_ptr, 2, byte_order);
3365 op_ptr += 2;
3366 /* Zero extend the operand. */
3367 ax_zero_ext (expr, addr_size_bits);
3368 i = ax_goto (expr, aop_if_goto);
3369 dw_labels.push_back (op_ptr + offset - base);
3370 patches.push_back (i);
3371 break;
3372
3373 case DW_OP_nop:
3374 break;
3375
3376 case DW_OP_piece:
3377 case DW_OP_bit_piece:
3378 {
3379 uint64_t size;
3380
3381 if (op_ptr - 1 == previous_piece)
3382 error (_("Cannot translate empty pieces to agent expressions"));
3383 previous_piece = op_ptr - 1;
3384
3385 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3386 if (op == DW_OP_piece)
3387 {
3388 size *= 8;
3389 uoffset = 0;
3390 }
3391 else
3392 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3393
3394 if (bits_collected + size > 8 * sizeof (LONGEST))
3395 error (_("Expression pieces exceed word size"));
3396
3397 /* Access the bits. */
3398 switch (loc->kind)
3399 {
3400 case axs_lvalue_register:
3401 ax_reg (expr, loc->u.reg);
3402 break;
3403
3404 case axs_lvalue_memory:
3405 /* Offset the pointer, if needed. */
3406 if (uoffset > 8)
3407 {
3408 ax_const_l (expr, uoffset / 8);
3409 ax_simple (expr, aop_add);
3410 uoffset %= 8;
3411 }
3412 access_memory (arch, expr, size);
3413 break;
3414 }
3415
3416 /* For a bits-big-endian target, shift up what we already
3417 have. For a bits-little-endian target, shift up the
3418 new data. Note that there is a potential bug here if
3419 the DWARF expression leaves multiple values on the
3420 stack. */
3421 if (bits_collected > 0)
3422 {
3423 if (bits_big_endian)
3424 {
3425 ax_simple (expr, aop_swap);
3426 ax_const_l (expr, size);
3427 ax_simple (expr, aop_lsh);
3428 /* We don't need a second swap here, because
3429 aop_bit_or is symmetric. */
3430 }
3431 else
3432 {
3433 ax_const_l (expr, size);
3434 ax_simple (expr, aop_lsh);
3435 }
3436 ax_simple (expr, aop_bit_or);
3437 }
3438
3439 bits_collected += size;
3440 loc->kind = axs_rvalue;
3441 }
3442 break;
3443
3444 case DW_OP_GNU_uninit:
3445 unimplemented (op);
3446
3447 case DW_OP_call2:
3448 case DW_OP_call4:
3449 {
3450 struct dwarf2_locexpr_baton block;
3451 int size = (op == DW_OP_call2 ? 2 : 4);
3452
3453 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3454 op_ptr += size;
3455
3456 cu_offset cuoffset = (cu_offset) uoffset;
3457 block = dwarf2_fetch_die_loc_cu_off (cuoffset, per_cu,
3458 get_ax_pc, expr);
3459
3460 /* DW_OP_call_ref is currently not supported. */
3461 gdb_assert (block.per_cu == per_cu);
3462
3463 dwarf2_compile_expr_to_ax (expr, loc, addr_size, block.data,
3464 block.data + block.size, per_cu);
3465 }
3466 break;
3467
3468 case DW_OP_call_ref:
3469 unimplemented (op);
3470
3471 case DW_OP_GNU_variable_value:
3472 unimplemented (op);
3473
3474 default:
3475 unimplemented (op);
3476 }
3477 }
3478
3479 /* Patch all the branches we emitted. */
3480 for (int i = 0; i < patches.size (); ++i)
3481 {
3482 int targ = offsets[dw_labels[i]];
3483 if (targ == -1)
3484 internal_error (__FILE__, __LINE__, _("invalid label"));
3485 ax_label (expr, patches[i], targ);
3486 }
3487 }
3488
3489 \f
3490 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3491 evaluator to calculate the location. */
3492 static struct value *
3493 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3494 {
3495 struct dwarf2_locexpr_baton *dlbaton
3496 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3497 struct value *val;
3498
3499 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3500 dlbaton->size, dlbaton->per_cu);
3501
3502 return val;
3503 }
3504
3505 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3506 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3507 will be thrown. */
3508
3509 static struct value *
3510 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3511 {
3512 struct dwarf2_locexpr_baton *dlbaton
3513 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3514
3515 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3516 dlbaton->size);
3517 }
3518
3519 /* Implementation of get_symbol_read_needs from
3520 symbol_computed_ops. */
3521
3522 static enum symbol_needs_kind
3523 locexpr_get_symbol_read_needs (struct symbol *symbol)
3524 {
3525 struct dwarf2_locexpr_baton *dlbaton
3526 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3527
3528 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3529 dlbaton->per_cu);
3530 }
3531
3532 /* Return true if DATA points to the end of a piece. END is one past
3533 the last byte in the expression. */
3534
3535 static int
3536 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3537 {
3538 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3539 }
3540
3541 /* Helper for locexpr_describe_location_piece that finds the name of a
3542 DWARF register. */
3543
3544 static const char *
3545 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3546 {
3547 int regnum;
3548
3549 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3550 We'd rather print *something* here than throw an error. */
3551 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3552 /* gdbarch_register_name may just return "", return something more
3553 descriptive for bad register numbers. */
3554 if (regnum == -1)
3555 {
3556 /* The text is output as "$bad_register_number".
3557 That is why we use the underscores. */
3558 return _("bad_register_number");
3559 }
3560 return gdbarch_register_name (gdbarch, regnum);
3561 }
3562
3563 /* Nicely describe a single piece of a location, returning an updated
3564 position in the bytecode sequence. This function cannot recognize
3565 all locations; if a location is not recognized, it simply returns
3566 DATA. If there is an error during reading, e.g. we run off the end
3567 of the buffer, an error is thrown. */
3568
3569 static const gdb_byte *
3570 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3571 CORE_ADDR addr, struct objfile *objfile,
3572 struct dwarf2_per_cu_data *per_cu,
3573 const gdb_byte *data, const gdb_byte *end,
3574 unsigned int addr_size)
3575 {
3576 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3577 size_t leb128_size;
3578
3579 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3580 {
3581 fprintf_filtered (stream, _("a variable in $%s"),
3582 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3583 data += 1;
3584 }
3585 else if (data[0] == DW_OP_regx)
3586 {
3587 uint64_t reg;
3588
3589 data = safe_read_uleb128 (data + 1, end, &reg);
3590 fprintf_filtered (stream, _("a variable in $%s"),
3591 locexpr_regname (gdbarch, reg));
3592 }
3593 else if (data[0] == DW_OP_fbreg)
3594 {
3595 const struct block *b;
3596 struct symbol *framefunc;
3597 int frame_reg = 0;
3598 int64_t frame_offset;
3599 const gdb_byte *base_data, *new_data, *save_data = data;
3600 size_t base_size;
3601 int64_t base_offset = 0;
3602
3603 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3604 if (!piece_end_p (new_data, end))
3605 return data;
3606 data = new_data;
3607
3608 b = block_for_pc (addr);
3609
3610 if (!b)
3611 error (_("No block found for address for symbol \"%s\"."),
3612 SYMBOL_PRINT_NAME (symbol));
3613
3614 framefunc = block_linkage_function (b);
3615
3616 if (!framefunc)
3617 error (_("No function found for block for symbol \"%s\"."),
3618 SYMBOL_PRINT_NAME (symbol));
3619
3620 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
3621
3622 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3623 {
3624 const gdb_byte *buf_end;
3625
3626 frame_reg = base_data[0] - DW_OP_breg0;
3627 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3628 &base_offset);
3629 if (buf_end != base_data + base_size)
3630 error (_("Unexpected opcode after "
3631 "DW_OP_breg%u for symbol \"%s\"."),
3632 frame_reg, SYMBOL_PRINT_NAME (symbol));
3633 }
3634 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3635 {
3636 /* The frame base is just the register, with no offset. */
3637 frame_reg = base_data[0] - DW_OP_reg0;
3638 base_offset = 0;
3639 }
3640 else
3641 {
3642 /* We don't know what to do with the frame base expression,
3643 so we can't trace this variable; give up. */
3644 return save_data;
3645 }
3646
3647 fprintf_filtered (stream,
3648 _("a variable at frame base reg $%s offset %s+%s"),
3649 locexpr_regname (gdbarch, frame_reg),
3650 plongest (base_offset), plongest (frame_offset));
3651 }
3652 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3653 && piece_end_p (data, end))
3654 {
3655 int64_t offset;
3656
3657 data = safe_read_sleb128 (data + 1, end, &offset);
3658
3659 fprintf_filtered (stream,
3660 _("a variable at offset %s from base reg $%s"),
3661 plongest (offset),
3662 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3663 }
3664
3665 /* The location expression for a TLS variable looks like this (on a
3666 64-bit LE machine):
3667
3668 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3669 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3670
3671 0x3 is the encoding for DW_OP_addr, which has an operand as long
3672 as the size of an address on the target machine (here is 8
3673 bytes). Note that more recent version of GCC emit DW_OP_const4u
3674 or DW_OP_const8u, depending on address size, rather than
3675 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3676 The operand represents the offset at which the variable is within
3677 the thread local storage. */
3678
3679 else if (data + 1 + addr_size < end
3680 && (data[0] == DW_OP_addr
3681 || (addr_size == 4 && data[0] == DW_OP_const4u)
3682 || (addr_size == 8 && data[0] == DW_OP_const8u))
3683 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3684 || data[1 + addr_size] == DW_OP_form_tls_address)
3685 && piece_end_p (data + 2 + addr_size, end))
3686 {
3687 ULONGEST offset;
3688 offset = extract_unsigned_integer (data + 1, addr_size,
3689 gdbarch_byte_order (gdbarch));
3690
3691 fprintf_filtered (stream,
3692 _("a thread-local variable at offset 0x%s "
3693 "in the thread-local storage for `%s'"),
3694 phex_nz (offset, addr_size), objfile_name (objfile));
3695
3696 data += 1 + addr_size + 1;
3697 }
3698
3699 /* With -gsplit-dwarf a TLS variable can also look like this:
3700 DW_AT_location : 3 byte block: fc 4 e0
3701 (DW_OP_GNU_const_index: 4;
3702 DW_OP_GNU_push_tls_address) */
3703 else if (data + 3 <= end
3704 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3705 && data[0] == DW_OP_GNU_const_index
3706 && leb128_size > 0
3707 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3708 || data[1 + leb128_size] == DW_OP_form_tls_address)
3709 && piece_end_p (data + 2 + leb128_size, end))
3710 {
3711 uint64_t offset;
3712
3713 data = safe_read_uleb128 (data + 1, end, &offset);
3714 offset = dwarf2_read_addr_index (per_cu, offset);
3715 fprintf_filtered (stream,
3716 _("a thread-local variable at offset 0x%s "
3717 "in the thread-local storage for `%s'"),
3718 phex_nz (offset, addr_size), objfile_name (objfile));
3719 ++data;
3720 }
3721
3722 else if (data[0] >= DW_OP_lit0
3723 && data[0] <= DW_OP_lit31
3724 && data + 1 < end
3725 && data[1] == DW_OP_stack_value)
3726 {
3727 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3728 data += 2;
3729 }
3730
3731 return data;
3732 }
3733
3734 /* Disassemble an expression, stopping at the end of a piece or at the
3735 end of the expression. Returns a pointer to the next unread byte
3736 in the input expression. If ALL is nonzero, then this function
3737 will keep going until it reaches the end of the expression.
3738 If there is an error during reading, e.g. we run off the end
3739 of the buffer, an error is thrown. */
3740
3741 static const gdb_byte *
3742 disassemble_dwarf_expression (struct ui_file *stream,
3743 struct gdbarch *arch, unsigned int addr_size,
3744 int offset_size, const gdb_byte *start,
3745 const gdb_byte *data, const gdb_byte *end,
3746 int indent, int all,
3747 struct dwarf2_per_cu_data *per_cu)
3748 {
3749 while (data < end
3750 && (all
3751 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3752 {
3753 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
3754 uint64_t ul;
3755 int64_t l;
3756 const char *name;
3757
3758 name = get_DW_OP_name (op);
3759
3760 if (!name)
3761 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3762 op, (long) (data - 1 - start));
3763 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3764 (long) (data - 1 - start), name);
3765
3766 switch (op)
3767 {
3768 case DW_OP_addr:
3769 ul = extract_unsigned_integer (data, addr_size,
3770 gdbarch_byte_order (arch));
3771 data += addr_size;
3772 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3773 break;
3774
3775 case DW_OP_const1u:
3776 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3777 data += 1;
3778 fprintf_filtered (stream, " %s", pulongest (ul));
3779 break;
3780 case DW_OP_const1s:
3781 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3782 data += 1;
3783 fprintf_filtered (stream, " %s", plongest (l));
3784 break;
3785 case DW_OP_const2u:
3786 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3787 data += 2;
3788 fprintf_filtered (stream, " %s", pulongest (ul));
3789 break;
3790 case DW_OP_const2s:
3791 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3792 data += 2;
3793 fprintf_filtered (stream, " %s", plongest (l));
3794 break;
3795 case DW_OP_const4u:
3796 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3797 data += 4;
3798 fprintf_filtered (stream, " %s", pulongest (ul));
3799 break;
3800 case DW_OP_const4s:
3801 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3802 data += 4;
3803 fprintf_filtered (stream, " %s", plongest (l));
3804 break;
3805 case DW_OP_const8u:
3806 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3807 data += 8;
3808 fprintf_filtered (stream, " %s", pulongest (ul));
3809 break;
3810 case DW_OP_const8s:
3811 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3812 data += 8;
3813 fprintf_filtered (stream, " %s", plongest (l));
3814 break;
3815 case DW_OP_constu:
3816 data = safe_read_uleb128 (data, end, &ul);
3817 fprintf_filtered (stream, " %s", pulongest (ul));
3818 break;
3819 case DW_OP_consts:
3820 data = safe_read_sleb128 (data, end, &l);
3821 fprintf_filtered (stream, " %s", plongest (l));
3822 break;
3823
3824 case DW_OP_reg0:
3825 case DW_OP_reg1:
3826 case DW_OP_reg2:
3827 case DW_OP_reg3:
3828 case DW_OP_reg4:
3829 case DW_OP_reg5:
3830 case DW_OP_reg6:
3831 case DW_OP_reg7:
3832 case DW_OP_reg8:
3833 case DW_OP_reg9:
3834 case DW_OP_reg10:
3835 case DW_OP_reg11:
3836 case DW_OP_reg12:
3837 case DW_OP_reg13:
3838 case DW_OP_reg14:
3839 case DW_OP_reg15:
3840 case DW_OP_reg16:
3841 case DW_OP_reg17:
3842 case DW_OP_reg18:
3843 case DW_OP_reg19:
3844 case DW_OP_reg20:
3845 case DW_OP_reg21:
3846 case DW_OP_reg22:
3847 case DW_OP_reg23:
3848 case DW_OP_reg24:
3849 case DW_OP_reg25:
3850 case DW_OP_reg26:
3851 case DW_OP_reg27:
3852 case DW_OP_reg28:
3853 case DW_OP_reg29:
3854 case DW_OP_reg30:
3855 case DW_OP_reg31:
3856 fprintf_filtered (stream, " [$%s]",
3857 locexpr_regname (arch, op - DW_OP_reg0));
3858 break;
3859
3860 case DW_OP_regx:
3861 data = safe_read_uleb128 (data, end, &ul);
3862 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3863 locexpr_regname (arch, (int) ul));
3864 break;
3865
3866 case DW_OP_implicit_value:
3867 data = safe_read_uleb128 (data, end, &ul);
3868 data += ul;
3869 fprintf_filtered (stream, " %s", pulongest (ul));
3870 break;
3871
3872 case DW_OP_breg0:
3873 case DW_OP_breg1:
3874 case DW_OP_breg2:
3875 case DW_OP_breg3:
3876 case DW_OP_breg4:
3877 case DW_OP_breg5:
3878 case DW_OP_breg6:
3879 case DW_OP_breg7:
3880 case DW_OP_breg8:
3881 case DW_OP_breg9:
3882 case DW_OP_breg10:
3883 case DW_OP_breg11:
3884 case DW_OP_breg12:
3885 case DW_OP_breg13:
3886 case DW_OP_breg14:
3887 case DW_OP_breg15:
3888 case DW_OP_breg16:
3889 case DW_OP_breg17:
3890 case DW_OP_breg18:
3891 case DW_OP_breg19:
3892 case DW_OP_breg20:
3893 case DW_OP_breg21:
3894 case DW_OP_breg22:
3895 case DW_OP_breg23:
3896 case DW_OP_breg24:
3897 case DW_OP_breg25:
3898 case DW_OP_breg26:
3899 case DW_OP_breg27:
3900 case DW_OP_breg28:
3901 case DW_OP_breg29:
3902 case DW_OP_breg30:
3903 case DW_OP_breg31:
3904 data = safe_read_sleb128 (data, end, &l);
3905 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3906 locexpr_regname (arch, op - DW_OP_breg0));
3907 break;
3908
3909 case DW_OP_bregx:
3910 data = safe_read_uleb128 (data, end, &ul);
3911 data = safe_read_sleb128 (data, end, &l);
3912 fprintf_filtered (stream, " register %s [$%s] offset %s",
3913 pulongest (ul),
3914 locexpr_regname (arch, (int) ul),
3915 plongest (l));
3916 break;
3917
3918 case DW_OP_fbreg:
3919 data = safe_read_sleb128 (data, end, &l);
3920 fprintf_filtered (stream, " %s", plongest (l));
3921 break;
3922
3923 case DW_OP_xderef_size:
3924 case DW_OP_deref_size:
3925 case DW_OP_pick:
3926 fprintf_filtered (stream, " %d", *data);
3927 ++data;
3928 break;
3929
3930 case DW_OP_plus_uconst:
3931 data = safe_read_uleb128 (data, end, &ul);
3932 fprintf_filtered (stream, " %s", pulongest (ul));
3933 break;
3934
3935 case DW_OP_skip:
3936 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3937 data += 2;
3938 fprintf_filtered (stream, " to %ld",
3939 (long) (data + l - start));
3940 break;
3941
3942 case DW_OP_bra:
3943 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3944 data += 2;
3945 fprintf_filtered (stream, " %ld",
3946 (long) (data + l - start));
3947 break;
3948
3949 case DW_OP_call2:
3950 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3951 data += 2;
3952 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3953 break;
3954
3955 case DW_OP_call4:
3956 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3957 data += 4;
3958 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3959 break;
3960
3961 case DW_OP_call_ref:
3962 ul = extract_unsigned_integer (data, offset_size,
3963 gdbarch_byte_order (arch));
3964 data += offset_size;
3965 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3966 break;
3967
3968 case DW_OP_piece:
3969 data = safe_read_uleb128 (data, end, &ul);
3970 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3971 break;
3972
3973 case DW_OP_bit_piece:
3974 {
3975 uint64_t offset;
3976
3977 data = safe_read_uleb128 (data, end, &ul);
3978 data = safe_read_uleb128 (data, end, &offset);
3979 fprintf_filtered (stream, " size %s offset %s (bits)",
3980 pulongest (ul), pulongest (offset));
3981 }
3982 break;
3983
3984 case DW_OP_implicit_pointer:
3985 case DW_OP_GNU_implicit_pointer:
3986 {
3987 ul = extract_unsigned_integer (data, offset_size,
3988 gdbarch_byte_order (arch));
3989 data += offset_size;
3990
3991 data = safe_read_sleb128 (data, end, &l);
3992
3993 fprintf_filtered (stream, " DIE %s offset %s",
3994 phex_nz (ul, offset_size),
3995 plongest (l));
3996 }
3997 break;
3998
3999 case DW_OP_deref_type:
4000 case DW_OP_GNU_deref_type:
4001 {
4002 int deref_addr_size = *data++;
4003 struct type *type;
4004
4005 data = safe_read_uleb128 (data, end, &ul);
4006 cu_offset offset = (cu_offset) ul;
4007 type = dwarf2_get_die_type (offset, per_cu);
4008 fprintf_filtered (stream, "<");
4009 type_print (type, "", stream, -1);
4010 fprintf_filtered (stream, " [0x%s]> %d",
4011 phex_nz (to_underlying (offset), 0),
4012 deref_addr_size);
4013 }
4014 break;
4015
4016 case DW_OP_const_type:
4017 case DW_OP_GNU_const_type:
4018 {
4019 struct type *type;
4020
4021 data = safe_read_uleb128 (data, end, &ul);
4022 cu_offset type_die = (cu_offset) ul;
4023 type = dwarf2_get_die_type (type_die, per_cu);
4024 fprintf_filtered (stream, "<");
4025 type_print (type, "", stream, -1);
4026 fprintf_filtered (stream, " [0x%s]>",
4027 phex_nz (to_underlying (type_die), 0));
4028 }
4029 break;
4030
4031 case DW_OP_regval_type:
4032 case DW_OP_GNU_regval_type:
4033 {
4034 uint64_t reg;
4035 struct type *type;
4036
4037 data = safe_read_uleb128 (data, end, &reg);
4038 data = safe_read_uleb128 (data, end, &ul);
4039 cu_offset type_die = (cu_offset) ul;
4040
4041 type = dwarf2_get_die_type (type_die, per_cu);
4042 fprintf_filtered (stream, "<");
4043 type_print (type, "", stream, -1);
4044 fprintf_filtered (stream, " [0x%s]> [$%s]",
4045 phex_nz (to_underlying (type_die), 0),
4046 locexpr_regname (arch, reg));
4047 }
4048 break;
4049
4050 case DW_OP_convert:
4051 case DW_OP_GNU_convert:
4052 case DW_OP_reinterpret:
4053 case DW_OP_GNU_reinterpret:
4054 {
4055 data = safe_read_uleb128 (data, end, &ul);
4056 cu_offset type_die = (cu_offset) ul;
4057
4058 if (to_underlying (type_die) == 0)
4059 fprintf_filtered (stream, "<0>");
4060 else
4061 {
4062 struct type *type;
4063
4064 type = dwarf2_get_die_type (type_die, per_cu);
4065 fprintf_filtered (stream, "<");
4066 type_print (type, "", stream, -1);
4067 fprintf_filtered (stream, " [0x%s]>",
4068 phex_nz (to_underlying (type_die), 0));
4069 }
4070 }
4071 break;
4072
4073 case DW_OP_entry_value:
4074 case DW_OP_GNU_entry_value:
4075 data = safe_read_uleb128 (data, end, &ul);
4076 fputc_filtered ('\n', stream);
4077 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4078 start, data, data + ul, indent + 2,
4079 all, per_cu);
4080 data += ul;
4081 continue;
4082
4083 case DW_OP_GNU_parameter_ref:
4084 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4085 data += 4;
4086 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4087 break;
4088
4089 case DW_OP_GNU_addr_index:
4090 data = safe_read_uleb128 (data, end, &ul);
4091 ul = dwarf2_read_addr_index (per_cu, ul);
4092 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4093 break;
4094 case DW_OP_GNU_const_index:
4095 data = safe_read_uleb128 (data, end, &ul);
4096 ul = dwarf2_read_addr_index (per_cu, ul);
4097 fprintf_filtered (stream, " %s", pulongest (ul));
4098 break;
4099
4100 case DW_OP_GNU_variable_value:
4101 ul = extract_unsigned_integer (data, offset_size,
4102 gdbarch_byte_order (arch));
4103 data += offset_size;
4104 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4105 break;
4106 }
4107
4108 fprintf_filtered (stream, "\n");
4109 }
4110
4111 return data;
4112 }
4113
4114 /* Describe a single location, which may in turn consist of multiple
4115 pieces. */
4116
4117 static void
4118 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
4119 struct ui_file *stream,
4120 const gdb_byte *data, size_t size,
4121 struct objfile *objfile, unsigned int addr_size,
4122 int offset_size, struct dwarf2_per_cu_data *per_cu)
4123 {
4124 const gdb_byte *end = data + size;
4125 int first_piece = 1, bad = 0;
4126
4127 while (data < end)
4128 {
4129 const gdb_byte *here = data;
4130 int disassemble = 1;
4131
4132 if (first_piece)
4133 first_piece = 0;
4134 else
4135 fprintf_filtered (stream, _(", and "));
4136
4137 if (!dwarf_always_disassemble)
4138 {
4139 data = locexpr_describe_location_piece (symbol, stream,
4140 addr, objfile, per_cu,
4141 data, end, addr_size);
4142 /* If we printed anything, or if we have an empty piece,
4143 then don't disassemble. */
4144 if (data != here
4145 || data[0] == DW_OP_piece
4146 || data[0] == DW_OP_bit_piece)
4147 disassemble = 0;
4148 }
4149 if (disassemble)
4150 {
4151 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4152 data = disassemble_dwarf_expression (stream,
4153 get_objfile_arch (objfile),
4154 addr_size, offset_size, data,
4155 data, end, 0,
4156 dwarf_always_disassemble,
4157 per_cu);
4158 }
4159
4160 if (data < end)
4161 {
4162 int empty = data == here;
4163
4164 if (disassemble)
4165 fprintf_filtered (stream, " ");
4166 if (data[0] == DW_OP_piece)
4167 {
4168 uint64_t bytes;
4169
4170 data = safe_read_uleb128 (data + 1, end, &bytes);
4171
4172 if (empty)
4173 fprintf_filtered (stream, _("an empty %s-byte piece"),
4174 pulongest (bytes));
4175 else
4176 fprintf_filtered (stream, _(" [%s-byte piece]"),
4177 pulongest (bytes));
4178 }
4179 else if (data[0] == DW_OP_bit_piece)
4180 {
4181 uint64_t bits, offset;
4182
4183 data = safe_read_uleb128 (data + 1, end, &bits);
4184 data = safe_read_uleb128 (data, end, &offset);
4185
4186 if (empty)
4187 fprintf_filtered (stream,
4188 _("an empty %s-bit piece"),
4189 pulongest (bits));
4190 else
4191 fprintf_filtered (stream,
4192 _(" [%s-bit piece, offset %s bits]"),
4193 pulongest (bits), pulongest (offset));
4194 }
4195 else
4196 {
4197 bad = 1;
4198 break;
4199 }
4200 }
4201 }
4202
4203 if (bad || data > end)
4204 error (_("Corrupted DWARF2 expression for \"%s\"."),
4205 SYMBOL_PRINT_NAME (symbol));
4206 }
4207
4208 /* Print a natural-language description of SYMBOL to STREAM. This
4209 version is for a symbol with a single location. */
4210
4211 static void
4212 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4213 struct ui_file *stream)
4214 {
4215 struct dwarf2_locexpr_baton *dlbaton
4216 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4217 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4218 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4219 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4220
4221 locexpr_describe_location_1 (symbol, addr, stream,
4222 dlbaton->data, dlbaton->size,
4223 objfile, addr_size, offset_size,
4224 dlbaton->per_cu);
4225 }
4226
4227 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4228 any necessary bytecode in AX. */
4229
4230 static void
4231 locexpr_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4232 struct axs_value *value)
4233 {
4234 struct dwarf2_locexpr_baton *dlbaton
4235 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4236 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4237
4238 if (dlbaton->size == 0)
4239 value->optimized_out = 1;
4240 else
4241 dwarf2_compile_expr_to_ax (ax, value, addr_size, dlbaton->data,
4242 dlbaton->data + dlbaton->size, dlbaton->per_cu);
4243 }
4244
4245 /* symbol_computed_ops 'generate_c_location' method. */
4246
4247 static void
4248 locexpr_generate_c_location (struct symbol *sym, string_file *stream,
4249 struct gdbarch *gdbarch,
4250 unsigned char *registers_used,
4251 CORE_ADDR pc, const char *result_name)
4252 {
4253 struct dwarf2_locexpr_baton *dlbaton
4254 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
4255 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4256
4257 if (dlbaton->size == 0)
4258 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4259
4260 compile_dwarf_expr_to_c (stream, result_name,
4261 sym, pc, gdbarch, registers_used, addr_size,
4262 dlbaton->data, dlbaton->data + dlbaton->size,
4263 dlbaton->per_cu);
4264 }
4265
4266 /* The set of location functions used with the DWARF-2 expression
4267 evaluator. */
4268 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4269 locexpr_read_variable,
4270 locexpr_read_variable_at_entry,
4271 locexpr_get_symbol_read_needs,
4272 locexpr_describe_location,
4273 0, /* location_has_loclist */
4274 locexpr_tracepoint_var_ref,
4275 locexpr_generate_c_location
4276 };
4277
4278
4279 /* Wrapper functions for location lists. These generally find
4280 the appropriate location expression and call something above. */
4281
4282 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4283 evaluator to calculate the location. */
4284 static struct value *
4285 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4286 {
4287 struct dwarf2_loclist_baton *dlbaton
4288 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4289 struct value *val;
4290 const gdb_byte *data;
4291 size_t size;
4292 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4293
4294 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4295 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4296 dlbaton->per_cu);
4297
4298 return val;
4299 }
4300
4301 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4302 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4303 will be thrown.
4304
4305 Function always returns non-NULL value, it may be marked optimized out if
4306 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4307 if it cannot resolve the parameter for any reason. */
4308
4309 static struct value *
4310 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4311 {
4312 struct dwarf2_loclist_baton *dlbaton
4313 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4314 const gdb_byte *data;
4315 size_t size;
4316 CORE_ADDR pc;
4317
4318 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4319 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4320
4321 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4322 if (data == NULL)
4323 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4324
4325 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4326 }
4327
4328 /* Implementation of get_symbol_read_needs from
4329 symbol_computed_ops. */
4330
4331 static enum symbol_needs_kind
4332 loclist_symbol_needs (struct symbol *symbol)
4333 {
4334 /* If there's a location list, then assume we need to have a frame
4335 to choose the appropriate location expression. With tracking of
4336 global variables this is not necessarily true, but such tracking
4337 is disabled in GCC at the moment until we figure out how to
4338 represent it. */
4339
4340 return SYMBOL_NEEDS_FRAME;
4341 }
4342
4343 /* Print a natural-language description of SYMBOL to STREAM. This
4344 version applies when there is a list of different locations, each
4345 with a specified address range. */
4346
4347 static void
4348 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4349 struct ui_file *stream)
4350 {
4351 struct dwarf2_loclist_baton *dlbaton
4352 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4353 const gdb_byte *loc_ptr, *buf_end;
4354 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4355 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4356 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4357 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4358 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4359 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4360 /* Adjust base_address for relocatable objects. */
4361 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4362 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4363 int done = 0;
4364
4365 loc_ptr = dlbaton->data;
4366 buf_end = dlbaton->data + dlbaton->size;
4367
4368 fprintf_filtered (stream, _("multi-location:\n"));
4369
4370 /* Iterate through locations until we run out. */
4371 while (!done)
4372 {
4373 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4374 int length;
4375 enum debug_loc_kind kind;
4376 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4377
4378 if (dlbaton->from_dwo)
4379 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4380 loc_ptr, buf_end, &new_ptr,
4381 &low, &high, byte_order);
4382 else
4383 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4384 &low, &high,
4385 byte_order, addr_size,
4386 signed_addr_p);
4387 loc_ptr = new_ptr;
4388 switch (kind)
4389 {
4390 case DEBUG_LOC_END_OF_LIST:
4391 done = 1;
4392 continue;
4393 case DEBUG_LOC_BASE_ADDRESS:
4394 base_address = high + base_offset;
4395 fprintf_filtered (stream, _(" Base address %s"),
4396 paddress (gdbarch, base_address));
4397 continue;
4398 case DEBUG_LOC_START_END:
4399 case DEBUG_LOC_START_LENGTH:
4400 break;
4401 case DEBUG_LOC_BUFFER_OVERFLOW:
4402 case DEBUG_LOC_INVALID_ENTRY:
4403 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4404 SYMBOL_PRINT_NAME (symbol));
4405 default:
4406 gdb_assert_not_reached ("bad debug_loc_kind");
4407 }
4408
4409 /* Otherwise, a location expression entry. */
4410 low += base_address;
4411 high += base_address;
4412
4413 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4414 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4415
4416 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4417 loc_ptr += 2;
4418
4419 /* (It would improve readability to print only the minimum
4420 necessary digits of the second number of the range.) */
4421 fprintf_filtered (stream, _(" Range %s-%s: "),
4422 paddress (gdbarch, low), paddress (gdbarch, high));
4423
4424 /* Now describe this particular location. */
4425 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4426 objfile, addr_size, offset_size,
4427 dlbaton->per_cu);
4428
4429 fprintf_filtered (stream, "\n");
4430
4431 loc_ptr += length;
4432 }
4433 }
4434
4435 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4436 any necessary bytecode in AX. */
4437 static void
4438 loclist_tracepoint_var_ref (struct symbol *symbol, struct agent_expr *ax,
4439 struct axs_value *value)
4440 {
4441 struct dwarf2_loclist_baton *dlbaton
4442 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
4443 const gdb_byte *data;
4444 size_t size;
4445 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4446
4447 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4448 if (size == 0)
4449 value->optimized_out = 1;
4450 else
4451 dwarf2_compile_expr_to_ax (ax, value, addr_size, data, data + size,
4452 dlbaton->per_cu);
4453 }
4454
4455 /* symbol_computed_ops 'generate_c_location' method. */
4456
4457 static void
4458 loclist_generate_c_location (struct symbol *sym, string_file *stream,
4459 struct gdbarch *gdbarch,
4460 unsigned char *registers_used,
4461 CORE_ADDR pc, const char *result_name)
4462 {
4463 struct dwarf2_loclist_baton *dlbaton
4464 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
4465 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4466 const gdb_byte *data;
4467 size_t size;
4468
4469 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4470 if (size == 0)
4471 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4472
4473 compile_dwarf_expr_to_c (stream, result_name,
4474 sym, pc, gdbarch, registers_used, addr_size,
4475 data, data + size,
4476 dlbaton->per_cu);
4477 }
4478
4479 /* The set of location functions used with the DWARF-2 expression
4480 evaluator and location lists. */
4481 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4482 loclist_read_variable,
4483 loclist_read_variable_at_entry,
4484 loclist_symbol_needs,
4485 loclist_describe_location,
4486 1, /* location_has_loclist */
4487 loclist_tracepoint_var_ref,
4488 loclist_generate_c_location
4489 };
4490
4491 void
4492 _initialize_dwarf2loc (void)
4493 {
4494 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4495 &entry_values_debug,
4496 _("Set entry values and tail call frames "
4497 "debugging."),
4498 _("Show entry values and tail call frames "
4499 "debugging."),
4500 _("When non-zero, the process of determining "
4501 "parameter values from function entry point "
4502 "and tail call frames will be printed."),
4503 NULL,
4504 show_entry_values_debug,
4505 &setdebuglist, &showdebuglist);
4506 }