]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
[gdb] Fix abstract_to_concrete type
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 VEC (dwarf2_section_info_def) *types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 /* The DW_AT_GNU_dwo_name attribute.
707 For virtual DWO files the name is constructed from the section offsets
708 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
709 from related CU+TUs. */
710 const char *dwo_name;
711
712 /* The DW_AT_comp_dir attribute. */
713 const char *comp_dir;
714
715 /* The bfd, when the file is open. Otherwise this is NULL.
716 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
717 bfd *dbfd;
718
719 /* The sections that make up this DWO file.
720 Remember that for virtual DWO files in DWP V2, these are virtual
721 sections (for lack of a better name). */
722 struct dwo_sections sections;
723
724 /* The CUs in the file.
725 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
726 an extension to handle LLVM's Link Time Optimization output (where
727 multiple source files may be compiled into a single object/dwo pair). */
728 htab_t cus;
729
730 /* Table of TUs in the file.
731 Each element is a struct dwo_unit. */
732 htab_t tus;
733 };
734
735 /* These sections are what may appear in a DWP file. */
736
737 struct dwp_sections
738 {
739 /* These are used by both DWP version 1 and 2. */
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743
744 /* These are only used by DWP version 2 files.
745 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
746 sections are referenced by section number, and are not recorded here.
747 In DWP version 2 there is at most one copy of all these sections, each
748 section being (effectively) comprised of the concatenation of all of the
749 individual sections that exist in the version 1 format.
750 To keep the code simple we treat each of these concatenated pieces as a
751 section itself (a virtual section?). */
752 struct dwarf2_section_info abbrev;
753 struct dwarf2_section_info info;
754 struct dwarf2_section_info line;
755 struct dwarf2_section_info loc;
756 struct dwarf2_section_info macinfo;
757 struct dwarf2_section_info macro;
758 struct dwarf2_section_info str_offsets;
759 struct dwarf2_section_info types;
760 };
761
762 /* These sections are what may appear in a virtual DWO file in DWP version 1.
763 A virtual DWO file is a DWO file as it appears in a DWP file. */
764
765 struct virtual_v1_dwo_sections
766 {
767 struct dwarf2_section_info abbrev;
768 struct dwarf2_section_info line;
769 struct dwarf2_section_info loc;
770 struct dwarf2_section_info macinfo;
771 struct dwarf2_section_info macro;
772 struct dwarf2_section_info str_offsets;
773 /* Each DWP hash table entry records one CU or one TU.
774 That is recorded here, and copied to dwo_unit.section. */
775 struct dwarf2_section_info info_or_types;
776 };
777
778 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
779 In version 2, the sections of the DWO files are concatenated together
780 and stored in one section of that name. Thus each ELF section contains
781 several "virtual" sections. */
782
783 struct virtual_v2_dwo_sections
784 {
785 bfd_size_type abbrev_offset;
786 bfd_size_type abbrev_size;
787
788 bfd_size_type line_offset;
789 bfd_size_type line_size;
790
791 bfd_size_type loc_offset;
792 bfd_size_type loc_size;
793
794 bfd_size_type macinfo_offset;
795 bfd_size_type macinfo_size;
796
797 bfd_size_type macro_offset;
798 bfd_size_type macro_size;
799
800 bfd_size_type str_offsets_offset;
801 bfd_size_type str_offsets_size;
802
803 /* Each DWP hash table entry records one CU or one TU.
804 That is recorded here, and copied to dwo_unit.section. */
805 bfd_size_type info_or_types_offset;
806 bfd_size_type info_or_types_size;
807 };
808
809 /* Contents of DWP hash tables. */
810
811 struct dwp_hash_table
812 {
813 uint32_t version, nr_columns;
814 uint32_t nr_units, nr_slots;
815 const gdb_byte *hash_table, *unit_table;
816 union
817 {
818 struct
819 {
820 const gdb_byte *indices;
821 } v1;
822 struct
823 {
824 /* This is indexed by column number and gives the id of the section
825 in that column. */
826 #define MAX_NR_V2_DWO_SECTIONS \
827 (1 /* .debug_info or .debug_types */ \
828 + 1 /* .debug_abbrev */ \
829 + 1 /* .debug_line */ \
830 + 1 /* .debug_loc */ \
831 + 1 /* .debug_str_offsets */ \
832 + 1 /* .debug_macro or .debug_macinfo */)
833 int section_ids[MAX_NR_V2_DWO_SECTIONS];
834 const gdb_byte *offsets;
835 const gdb_byte *sizes;
836 } v2;
837 } section_pool;
838 };
839
840 /* Data for one DWP file. */
841
842 struct dwp_file
843 {
844 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
845 : name (name_),
846 dbfd (std::move (abfd))
847 {
848 }
849
850 /* Name of the file. */
851 const char *name;
852
853 /* File format version. */
854 int version = 0;
855
856 /* The bfd. */
857 gdb_bfd_ref_ptr dbfd;
858
859 /* Section info for this file. */
860 struct dwp_sections sections {};
861
862 /* Table of CUs in the file. */
863 const struct dwp_hash_table *cus = nullptr;
864
865 /* Table of TUs in the file. */
866 const struct dwp_hash_table *tus = nullptr;
867
868 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
869 htab_t loaded_cus {};
870 htab_t loaded_tus {};
871
872 /* Table to map ELF section numbers to their sections.
873 This is only needed for the DWP V1 file format. */
874 unsigned int num_sections = 0;
875 asection **elf_sections = nullptr;
876 };
877
878 /* Struct used to pass misc. parameters to read_die_and_children, et
879 al. which are used for both .debug_info and .debug_types dies.
880 All parameters here are unchanging for the life of the call. This
881 struct exists to abstract away the constant parameters of die reading. */
882
883 struct die_reader_specs
884 {
885 /* The bfd of die_section. */
886 bfd* abfd;
887
888 /* The CU of the DIE we are parsing. */
889 struct dwarf2_cu *cu;
890
891 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
892 struct dwo_file *dwo_file;
893
894 /* The section the die comes from.
895 This is either .debug_info or .debug_types, or the .dwo variants. */
896 struct dwarf2_section_info *die_section;
897
898 /* die_section->buffer. */
899 const gdb_byte *buffer;
900
901 /* The end of the buffer. */
902 const gdb_byte *buffer_end;
903
904 /* The value of the DW_AT_comp_dir attribute. */
905 const char *comp_dir;
906
907 /* The abbreviation table to use when reading the DIEs. */
908 struct abbrev_table *abbrev_table;
909 };
910
911 /* Type of function passed to init_cutu_and_read_dies, et.al. */
912 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
913 const gdb_byte *info_ptr,
914 struct die_info *comp_unit_die,
915 int has_children,
916 void *data);
917
918 /* A 1-based directory index. This is a strong typedef to prevent
919 accidentally using a directory index as a 0-based index into an
920 array/vector. */
921 enum class dir_index : unsigned int {};
922
923 /* Likewise, a 1-based file name index. */
924 enum class file_name_index : unsigned int {};
925
926 struct file_entry
927 {
928 file_entry () = default;
929
930 file_entry (const char *name_, dir_index d_index_,
931 unsigned int mod_time_, unsigned int length_)
932 : name (name_),
933 d_index (d_index_),
934 mod_time (mod_time_),
935 length (length_)
936 {}
937
938 /* Return the include directory at D_INDEX stored in LH. Returns
939 NULL if D_INDEX is out of bounds. */
940 const char *include_dir (const line_header *lh) const;
941
942 /* The file name. Note this is an observing pointer. The memory is
943 owned by debug_line_buffer. */
944 const char *name {};
945
946 /* The directory index (1-based). */
947 dir_index d_index {};
948
949 unsigned int mod_time {};
950
951 unsigned int length {};
952
953 /* True if referenced by the Line Number Program. */
954 bool included_p {};
955
956 /* The associated symbol table, if any. */
957 struct symtab *symtab {};
958 };
959
960 /* The line number information for a compilation unit (found in the
961 .debug_line section) begins with a "statement program header",
962 which contains the following information. */
963 struct line_header
964 {
965 line_header ()
966 : offset_in_dwz {}
967 {}
968
969 /* Add an entry to the include directory table. */
970 void add_include_dir (const char *include_dir);
971
972 /* Add an entry to the file name table. */
973 void add_file_name (const char *name, dir_index d_index,
974 unsigned int mod_time, unsigned int length);
975
976 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
977 is out of bounds. */
978 const char *include_dir_at (dir_index index) const
979 {
980 /* Convert directory index number (1-based) to vector index
981 (0-based). */
982 size_t vec_index = to_underlying (index) - 1;
983
984 if (vec_index >= include_dirs.size ())
985 return NULL;
986 return include_dirs[vec_index];
987 }
988
989 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
990 is out of bounds. */
991 file_entry *file_name_at (file_name_index index)
992 {
993 /* Convert file name index number (1-based) to vector index
994 (0-based). */
995 size_t vec_index = to_underlying (index) - 1;
996
997 if (vec_index >= file_names.size ())
998 return NULL;
999 return &file_names[vec_index];
1000 }
1001
1002 /* Offset of line number information in .debug_line section. */
1003 sect_offset sect_off {};
1004
1005 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1006 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1007
1008 unsigned int total_length {};
1009 unsigned short version {};
1010 unsigned int header_length {};
1011 unsigned char minimum_instruction_length {};
1012 unsigned char maximum_ops_per_instruction {};
1013 unsigned char default_is_stmt {};
1014 int line_base {};
1015 unsigned char line_range {};
1016 unsigned char opcode_base {};
1017
1018 /* standard_opcode_lengths[i] is the number of operands for the
1019 standard opcode whose value is i. This means that
1020 standard_opcode_lengths[0] is unused, and the last meaningful
1021 element is standard_opcode_lengths[opcode_base - 1]. */
1022 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1023
1024 /* The include_directories table. Note these are observing
1025 pointers. The memory is owned by debug_line_buffer. */
1026 std::vector<const char *> include_dirs;
1027
1028 /* The file_names table. */
1029 std::vector<file_entry> file_names;
1030
1031 /* The start and end of the statement program following this
1032 header. These point into dwarf2_per_objfile->line_buffer. */
1033 const gdb_byte *statement_program_start {}, *statement_program_end {};
1034 };
1035
1036 typedef std::unique_ptr<line_header> line_header_up;
1037
1038 const char *
1039 file_entry::include_dir (const line_header *lh) const
1040 {
1041 return lh->include_dir_at (d_index);
1042 }
1043
1044 /* When we construct a partial symbol table entry we only
1045 need this much information. */
1046 struct partial_die_info : public allocate_on_obstack
1047 {
1048 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1049
1050 /* Disable assign but still keep copy ctor, which is needed
1051 load_partial_dies. */
1052 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1053
1054 /* Adjust the partial die before generating a symbol for it. This
1055 function may set the is_external flag or change the DIE's
1056 name. */
1057 void fixup (struct dwarf2_cu *cu);
1058
1059 /* Read a minimal amount of information into the minimal die
1060 structure. */
1061 const gdb_byte *read (const struct die_reader_specs *reader,
1062 const struct abbrev_info &abbrev,
1063 const gdb_byte *info_ptr);
1064
1065 /* Offset of this DIE. */
1066 const sect_offset sect_off;
1067
1068 /* DWARF-2 tag for this DIE. */
1069 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1070
1071 /* Assorted flags describing the data found in this DIE. */
1072 const unsigned int has_children : 1;
1073
1074 unsigned int is_external : 1;
1075 unsigned int is_declaration : 1;
1076 unsigned int has_type : 1;
1077 unsigned int has_specification : 1;
1078 unsigned int has_pc_info : 1;
1079 unsigned int may_be_inlined : 1;
1080
1081 /* This DIE has been marked DW_AT_main_subprogram. */
1082 unsigned int main_subprogram : 1;
1083
1084 /* Flag set if the SCOPE field of this structure has been
1085 computed. */
1086 unsigned int scope_set : 1;
1087
1088 /* Flag set if the DIE has a byte_size attribute. */
1089 unsigned int has_byte_size : 1;
1090
1091 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1092 unsigned int has_const_value : 1;
1093
1094 /* Flag set if any of the DIE's children are template arguments. */
1095 unsigned int has_template_arguments : 1;
1096
1097 /* Flag set if fixup has been called on this die. */
1098 unsigned int fixup_called : 1;
1099
1100 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1101 unsigned int is_dwz : 1;
1102
1103 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1104 unsigned int spec_is_dwz : 1;
1105
1106 /* The name of this DIE. Normally the value of DW_AT_name, but
1107 sometimes a default name for unnamed DIEs. */
1108 const char *name = nullptr;
1109
1110 /* The linkage name, if present. */
1111 const char *linkage_name = nullptr;
1112
1113 /* The scope to prepend to our children. This is generally
1114 allocated on the comp_unit_obstack, so will disappear
1115 when this compilation unit leaves the cache. */
1116 const char *scope = nullptr;
1117
1118 /* Some data associated with the partial DIE. The tag determines
1119 which field is live. */
1120 union
1121 {
1122 /* The location description associated with this DIE, if any. */
1123 struct dwarf_block *locdesc;
1124 /* The offset of an import, for DW_TAG_imported_unit. */
1125 sect_offset sect_off;
1126 } d {};
1127
1128 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1129 CORE_ADDR lowpc = 0;
1130 CORE_ADDR highpc = 0;
1131
1132 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1133 DW_AT_sibling, if any. */
1134 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1135 could return DW_AT_sibling values to its caller load_partial_dies. */
1136 const gdb_byte *sibling = nullptr;
1137
1138 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1139 DW_AT_specification (or DW_AT_abstract_origin or
1140 DW_AT_extension). */
1141 sect_offset spec_offset {};
1142
1143 /* Pointers to this DIE's parent, first child, and next sibling,
1144 if any. */
1145 struct partial_die_info *die_parent = nullptr;
1146 struct partial_die_info *die_child = nullptr;
1147 struct partial_die_info *die_sibling = nullptr;
1148
1149 friend struct partial_die_info *
1150 dwarf2_cu::find_partial_die (sect_offset sect_off);
1151
1152 private:
1153 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1154 partial_die_info (sect_offset sect_off)
1155 : partial_die_info (sect_off, DW_TAG_padding, 0)
1156 {
1157 }
1158
1159 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1160 int has_children_)
1161 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1162 {
1163 is_external = 0;
1164 is_declaration = 0;
1165 has_type = 0;
1166 has_specification = 0;
1167 has_pc_info = 0;
1168 may_be_inlined = 0;
1169 main_subprogram = 0;
1170 scope_set = 0;
1171 has_byte_size = 0;
1172 has_const_value = 0;
1173 has_template_arguments = 0;
1174 fixup_called = 0;
1175 is_dwz = 0;
1176 spec_is_dwz = 0;
1177 }
1178 };
1179
1180 /* This data structure holds the information of an abbrev. */
1181 struct abbrev_info
1182 {
1183 unsigned int number; /* number identifying abbrev */
1184 enum dwarf_tag tag; /* dwarf tag */
1185 unsigned short has_children; /* boolean */
1186 unsigned short num_attrs; /* number of attributes */
1187 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1188 struct abbrev_info *next; /* next in chain */
1189 };
1190
1191 struct attr_abbrev
1192 {
1193 ENUM_BITFIELD(dwarf_attribute) name : 16;
1194 ENUM_BITFIELD(dwarf_form) form : 16;
1195
1196 /* It is valid only if FORM is DW_FORM_implicit_const. */
1197 LONGEST implicit_const;
1198 };
1199
1200 /* Size of abbrev_table.abbrev_hash_table. */
1201 #define ABBREV_HASH_SIZE 121
1202
1203 /* Top level data structure to contain an abbreviation table. */
1204
1205 struct abbrev_table
1206 {
1207 explicit abbrev_table (sect_offset off)
1208 : sect_off (off)
1209 {
1210 m_abbrevs =
1211 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1212 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1213 }
1214
1215 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1216
1217 /* Allocate space for a struct abbrev_info object in
1218 ABBREV_TABLE. */
1219 struct abbrev_info *alloc_abbrev ();
1220
1221 /* Add an abbreviation to the table. */
1222 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1223
1224 /* Look up an abbrev in the table.
1225 Returns NULL if the abbrev is not found. */
1226
1227 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1228
1229
1230 /* Where the abbrev table came from.
1231 This is used as a sanity check when the table is used. */
1232 const sect_offset sect_off;
1233
1234 /* Storage for the abbrev table. */
1235 auto_obstack abbrev_obstack;
1236
1237 private:
1238
1239 /* Hash table of abbrevs.
1240 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1241 It could be statically allocated, but the previous code didn't so we
1242 don't either. */
1243 struct abbrev_info **m_abbrevs;
1244 };
1245
1246 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1247
1248 /* Attributes have a name and a value. */
1249 struct attribute
1250 {
1251 ENUM_BITFIELD(dwarf_attribute) name : 16;
1252 ENUM_BITFIELD(dwarf_form) form : 15;
1253
1254 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1255 field should be in u.str (existing only for DW_STRING) but it is kept
1256 here for better struct attribute alignment. */
1257 unsigned int string_is_canonical : 1;
1258
1259 union
1260 {
1261 const char *str;
1262 struct dwarf_block *blk;
1263 ULONGEST unsnd;
1264 LONGEST snd;
1265 CORE_ADDR addr;
1266 ULONGEST signature;
1267 }
1268 u;
1269 };
1270
1271 /* This data structure holds a complete die structure. */
1272 struct die_info
1273 {
1274 /* DWARF-2 tag for this DIE. */
1275 ENUM_BITFIELD(dwarf_tag) tag : 16;
1276
1277 /* Number of attributes */
1278 unsigned char num_attrs;
1279
1280 /* True if we're presently building the full type name for the
1281 type derived from this DIE. */
1282 unsigned char building_fullname : 1;
1283
1284 /* True if this die is in process. PR 16581. */
1285 unsigned char in_process : 1;
1286
1287 /* Abbrev number */
1288 unsigned int abbrev;
1289
1290 /* Offset in .debug_info or .debug_types section. */
1291 sect_offset sect_off;
1292
1293 /* The dies in a compilation unit form an n-ary tree. PARENT
1294 points to this die's parent; CHILD points to the first child of
1295 this node; and all the children of a given node are chained
1296 together via their SIBLING fields. */
1297 struct die_info *child; /* Its first child, if any. */
1298 struct die_info *sibling; /* Its next sibling, if any. */
1299 struct die_info *parent; /* Its parent, if any. */
1300
1301 /* An array of attributes, with NUM_ATTRS elements. There may be
1302 zero, but it's not common and zero-sized arrays are not
1303 sufficiently portable C. */
1304 struct attribute attrs[1];
1305 };
1306
1307 /* Get at parts of an attribute structure. */
1308
1309 #define DW_STRING(attr) ((attr)->u.str)
1310 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1311 #define DW_UNSND(attr) ((attr)->u.unsnd)
1312 #define DW_BLOCK(attr) ((attr)->u.blk)
1313 #define DW_SND(attr) ((attr)->u.snd)
1314 #define DW_ADDR(attr) ((attr)->u.addr)
1315 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1316
1317 /* Blocks are a bunch of untyped bytes. */
1318 struct dwarf_block
1319 {
1320 size_t size;
1321
1322 /* Valid only if SIZE is not zero. */
1323 const gdb_byte *data;
1324 };
1325
1326 #ifndef ATTR_ALLOC_CHUNK
1327 #define ATTR_ALLOC_CHUNK 4
1328 #endif
1329
1330 /* Allocate fields for structs, unions and enums in this size. */
1331 #ifndef DW_FIELD_ALLOC_CHUNK
1332 #define DW_FIELD_ALLOC_CHUNK 4
1333 #endif
1334
1335 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1336 but this would require a corresponding change in unpack_field_as_long
1337 and friends. */
1338 static int bits_per_byte = 8;
1339
1340 /* When reading a variant or variant part, we track a bit more
1341 information about the field, and store it in an object of this
1342 type. */
1343
1344 struct variant_field
1345 {
1346 /* If we see a DW_TAG_variant, then this will be the discriminant
1347 value. */
1348 ULONGEST discriminant_value;
1349 /* If we see a DW_TAG_variant, then this will be set if this is the
1350 default branch. */
1351 bool default_branch;
1352 /* While reading a DW_TAG_variant_part, this will be set if this
1353 field is the discriminant. */
1354 bool is_discriminant;
1355 };
1356
1357 struct nextfield
1358 {
1359 int accessibility = 0;
1360 int virtuality = 0;
1361 /* Extra information to describe a variant or variant part. */
1362 struct variant_field variant {};
1363 struct field field {};
1364 };
1365
1366 struct fnfieldlist
1367 {
1368 const char *name = nullptr;
1369 std::vector<struct fn_field> fnfields;
1370 };
1371
1372 /* The routines that read and process dies for a C struct or C++ class
1373 pass lists of data member fields and lists of member function fields
1374 in an instance of a field_info structure, as defined below. */
1375 struct field_info
1376 {
1377 /* List of data member and baseclasses fields. */
1378 std::vector<struct nextfield> fields;
1379 std::vector<struct nextfield> baseclasses;
1380
1381 /* Number of fields (including baseclasses). */
1382 int nfields = 0;
1383
1384 /* Set if the accesibility of one of the fields is not public. */
1385 int non_public_fields = 0;
1386
1387 /* Member function fieldlist array, contains name of possibly overloaded
1388 member function, number of overloaded member functions and a pointer
1389 to the head of the member function field chain. */
1390 std::vector<struct fnfieldlist> fnfieldlists;
1391
1392 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1393 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1394 std::vector<struct decl_field> typedef_field_list;
1395
1396 /* Nested types defined by this class and the number of elements in this
1397 list. */
1398 std::vector<struct decl_field> nested_types_list;
1399 };
1400
1401 /* One item on the queue of compilation units to read in full symbols
1402 for. */
1403 struct dwarf2_queue_item
1404 {
1405 struct dwarf2_per_cu_data *per_cu;
1406 enum language pretend_language;
1407 struct dwarf2_queue_item *next;
1408 };
1409
1410 /* The current queue. */
1411 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1412
1413 /* Loaded secondary compilation units are kept in memory until they
1414 have not been referenced for the processing of this many
1415 compilation units. Set this to zero to disable caching. Cache
1416 sizes of up to at least twenty will improve startup time for
1417 typical inter-CU-reference binaries, at an obvious memory cost. */
1418 static int dwarf_max_cache_age = 5;
1419 static void
1420 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1421 struct cmd_list_element *c, const char *value)
1422 {
1423 fprintf_filtered (file, _("The upper bound on the age of cached "
1424 "DWARF compilation units is %s.\n"),
1425 value);
1426 }
1427 \f
1428 /* local function prototypes */
1429
1430 static const char *get_section_name (const struct dwarf2_section_info *);
1431
1432 static const char *get_section_file_name (const struct dwarf2_section_info *);
1433
1434 static void dwarf2_find_base_address (struct die_info *die,
1435 struct dwarf2_cu *cu);
1436
1437 static struct partial_symtab *create_partial_symtab
1438 (struct dwarf2_per_cu_data *per_cu, const char *name);
1439
1440 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1441 const gdb_byte *info_ptr,
1442 struct die_info *type_unit_die,
1443 int has_children, void *data);
1444
1445 static void dwarf2_build_psymtabs_hard
1446 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1447
1448 static void scan_partial_symbols (struct partial_die_info *,
1449 CORE_ADDR *, CORE_ADDR *,
1450 int, struct dwarf2_cu *);
1451
1452 static void add_partial_symbol (struct partial_die_info *,
1453 struct dwarf2_cu *);
1454
1455 static void add_partial_namespace (struct partial_die_info *pdi,
1456 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1457 int set_addrmap, struct dwarf2_cu *cu);
1458
1459 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1460 CORE_ADDR *highpc, int set_addrmap,
1461 struct dwarf2_cu *cu);
1462
1463 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_subprogram (struct partial_die_info *pdi,
1467 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1468 int need_pc, struct dwarf2_cu *cu);
1469
1470 static void dwarf2_read_symtab (struct partial_symtab *,
1471 struct objfile *);
1472
1473 static void psymtab_to_symtab_1 (struct partial_symtab *);
1474
1475 static abbrev_table_up abbrev_table_read_table
1476 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1477 sect_offset);
1478
1479 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1480
1481 static struct partial_die_info *load_partial_dies
1482 (const struct die_reader_specs *, const gdb_byte *, int);
1483
1484 /* A pair of partial_die_info and compilation unit. */
1485 struct cu_partial_die_info
1486 {
1487 /* The compilation unit of the partial_die_info. */
1488 struct dwarf2_cu *cu;
1489 /* A partial_die_info. */
1490 struct partial_die_info *pdi;
1491
1492 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1493 : cu (cu),
1494 pdi (pdi)
1495 { /* Nothhing. */ }
1496
1497 private:
1498 cu_partial_die_info () = delete;
1499 };
1500
1501 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1502 struct dwarf2_cu *);
1503
1504 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1505 struct attribute *, struct attr_abbrev *,
1506 const gdb_byte *);
1507
1508 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1509
1510 static int read_1_signed_byte (bfd *, const gdb_byte *);
1511
1512 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1513
1514 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1515 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1516
1517 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1518
1519 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1520
1521 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1522 unsigned int *);
1523
1524 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1525
1526 static LONGEST read_checked_initial_length_and_offset
1527 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1528 unsigned int *, unsigned int *);
1529
1530 static LONGEST read_offset (bfd *, const gdb_byte *,
1531 const struct comp_unit_head *,
1532 unsigned int *);
1533
1534 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1535
1536 static sect_offset read_abbrev_offset
1537 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1538 struct dwarf2_section_info *, sect_offset);
1539
1540 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1541
1542 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1543
1544 static const char *read_indirect_string
1545 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1546 const struct comp_unit_head *, unsigned int *);
1547
1548 static const char *read_indirect_line_string
1549 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1550 const struct comp_unit_head *, unsigned int *);
1551
1552 static const char *read_indirect_string_at_offset
1553 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1554 LONGEST str_offset);
1555
1556 static const char *read_indirect_string_from_dwz
1557 (struct objfile *objfile, struct dwz_file *, LONGEST);
1558
1559 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1560
1561 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1562 const gdb_byte *,
1563 unsigned int *);
1564
1565 static const char *read_str_index (const struct die_reader_specs *reader,
1566 ULONGEST str_index);
1567
1568 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1569
1570 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1571 struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1574 unsigned int);
1575
1576 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1577 struct dwarf2_cu *cu);
1578
1579 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1580 struct dwarf2_cu *cu);
1581
1582 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1583
1584 static struct die_info *die_specification (struct die_info *die,
1585 struct dwarf2_cu **);
1586
1587 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1588 struct dwarf2_cu *cu);
1589
1590 static void dwarf_decode_lines (struct line_header *, const char *,
1591 struct dwarf2_cu *, struct partial_symtab *,
1592 CORE_ADDR, int decode_mapping);
1593
1594 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1595 const char *);
1596
1597 static struct symbol *new_symbol (struct die_info *, struct type *,
1598 struct dwarf2_cu *, struct symbol * = NULL);
1599
1600 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1601 struct dwarf2_cu *);
1602
1603 static void dwarf2_const_value_attr (const struct attribute *attr,
1604 struct type *type,
1605 const char *name,
1606 struct obstack *obstack,
1607 struct dwarf2_cu *cu, LONGEST *value,
1608 const gdb_byte **bytes,
1609 struct dwarf2_locexpr_baton **baton);
1610
1611 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1612
1613 static int need_gnat_info (struct dwarf2_cu *);
1614
1615 static struct type *die_descriptive_type (struct die_info *,
1616 struct dwarf2_cu *);
1617
1618 static void set_descriptive_type (struct type *, struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static struct type *die_containing_type (struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1628
1629 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1630
1631 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1632
1633 static char *typename_concat (struct obstack *obs, const char *prefix,
1634 const char *suffix, int physname,
1635 struct dwarf2_cu *cu);
1636
1637 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1638
1639 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1640
1641 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1642
1643 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1644
1645 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1646
1647 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1648
1649 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1650 struct dwarf2_cu *, struct partial_symtab *);
1651
1652 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1653 values. Keep the items ordered with increasing constraints compliance. */
1654 enum pc_bounds_kind
1655 {
1656 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1657 PC_BOUNDS_NOT_PRESENT,
1658
1659 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1660 were present but they do not form a valid range of PC addresses. */
1661 PC_BOUNDS_INVALID,
1662
1663 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1664 PC_BOUNDS_RANGES,
1665
1666 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1667 PC_BOUNDS_HIGH_LOW,
1668 };
1669
1670 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1671 CORE_ADDR *, CORE_ADDR *,
1672 struct dwarf2_cu *,
1673 struct partial_symtab *);
1674
1675 static void get_scope_pc_bounds (struct die_info *,
1676 CORE_ADDR *, CORE_ADDR *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1680 CORE_ADDR, struct dwarf2_cu *);
1681
1682 static void dwarf2_add_field (struct field_info *, struct die_info *,
1683 struct dwarf2_cu *);
1684
1685 static void dwarf2_attach_fields_to_type (struct field_info *,
1686 struct type *, struct dwarf2_cu *);
1687
1688 static void dwarf2_add_member_fn (struct field_info *,
1689 struct die_info *, struct type *,
1690 struct dwarf2_cu *);
1691
1692 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1693 struct type *,
1694 struct dwarf2_cu *);
1695
1696 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1697
1698 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1699
1700 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1701
1702 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1703
1704 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1705
1706 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1707
1708 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1709
1710 static struct type *read_module_type (struct die_info *die,
1711 struct dwarf2_cu *cu);
1712
1713 static const char *namespace_name (struct die_info *die,
1714 int *is_anonymous, struct dwarf2_cu *);
1715
1716 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1717
1718 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1719
1720 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1721 struct dwarf2_cu *);
1722
1723 static struct die_info *read_die_and_siblings_1
1724 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1725 struct die_info *);
1726
1727 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1728 const gdb_byte *info_ptr,
1729 const gdb_byte **new_info_ptr,
1730 struct die_info *parent);
1731
1732 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1733 struct die_info **, const gdb_byte *,
1734 int *, int);
1735
1736 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1737 struct die_info **, const gdb_byte *,
1738 int *);
1739
1740 static void process_die (struct die_info *, struct dwarf2_cu *);
1741
1742 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1743 struct obstack *);
1744
1745 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1746
1747 static const char *dwarf2_full_name (const char *name,
1748 struct die_info *die,
1749 struct dwarf2_cu *cu);
1750
1751 static const char *dwarf2_physname (const char *name, struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static struct die_info *dwarf2_extension (struct die_info *die,
1755 struct dwarf2_cu **);
1756
1757 static const char *dwarf_tag_name (unsigned int);
1758
1759 static const char *dwarf_attr_name (unsigned int);
1760
1761 static const char *dwarf_form_name (unsigned int);
1762
1763 static const char *dwarf_bool_name (unsigned int);
1764
1765 static const char *dwarf_type_encoding_name (unsigned int);
1766
1767 static struct die_info *sibling_die (struct die_info *);
1768
1769 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1770
1771 static void dump_die_for_error (struct die_info *);
1772
1773 static void dump_die_1 (struct ui_file *, int level, int max_level,
1774 struct die_info *);
1775
1776 /*static*/ void dump_die (struct die_info *, int max_level);
1777
1778 static void store_in_ref_table (struct die_info *,
1779 struct dwarf2_cu *);
1780
1781 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1782
1783 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1784
1785 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1786 const struct attribute *,
1787 struct dwarf2_cu **);
1788
1789 static struct die_info *follow_die_ref (struct die_info *,
1790 const struct attribute *,
1791 struct dwarf2_cu **);
1792
1793 static struct die_info *follow_die_sig (struct die_info *,
1794 const struct attribute *,
1795 struct dwarf2_cu **);
1796
1797 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1798 struct dwarf2_cu *);
1799
1800 static struct type *get_DW_AT_signature_type (struct die_info *,
1801 const struct attribute *,
1802 struct dwarf2_cu *);
1803
1804 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1805
1806 static void read_signatured_type (struct signatured_type *);
1807
1808 static int attr_to_dynamic_prop (const struct attribute *attr,
1809 struct die_info *die, struct dwarf2_cu *cu,
1810 struct dynamic_prop *prop);
1811
1812 /* memory allocation interface */
1813
1814 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1815
1816 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1817
1818 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1819
1820 static int attr_form_is_block (const struct attribute *);
1821
1822 static int attr_form_is_section_offset (const struct attribute *);
1823
1824 static int attr_form_is_constant (const struct attribute *);
1825
1826 static int attr_form_is_ref (const struct attribute *);
1827
1828 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1829 struct dwarf2_loclist_baton *baton,
1830 const struct attribute *attr);
1831
1832 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1833 struct symbol *sym,
1834 struct dwarf2_cu *cu,
1835 int is_block);
1836
1837 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1838 const gdb_byte *info_ptr,
1839 struct abbrev_info *abbrev);
1840
1841 static hashval_t partial_die_hash (const void *item);
1842
1843 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1844
1845 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1846 (sect_offset sect_off, unsigned int offset_in_dwz,
1847 struct dwarf2_per_objfile *dwarf2_per_objfile);
1848
1849 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1850 struct die_info *comp_unit_die,
1851 enum language pretend_language);
1852
1853 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1854
1855 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1856
1857 static struct type *set_die_type (struct die_info *, struct type *,
1858 struct dwarf2_cu *);
1859
1860 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1861
1862 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1863
1864 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1865 enum language);
1866
1867 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1868 enum language);
1869
1870 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void dwarf2_add_dependence (struct dwarf2_cu *,
1874 struct dwarf2_per_cu_data *);
1875
1876 static void dwarf2_mark (struct dwarf2_cu *);
1877
1878 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1879
1880 static struct type *get_die_type_at_offset (sect_offset,
1881 struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1884
1885 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1886 enum language pretend_language);
1887
1888 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1889
1890 /* Class, the destructor of which frees all allocated queue entries. This
1891 will only have work to do if an error was thrown while processing the
1892 dwarf. If no error was thrown then the queue entries should have all
1893 been processed, and freed, as we went along. */
1894
1895 class dwarf2_queue_guard
1896 {
1897 public:
1898 dwarf2_queue_guard () = default;
1899
1900 /* Free any entries remaining on the queue. There should only be
1901 entries left if we hit an error while processing the dwarf. */
1902 ~dwarf2_queue_guard ()
1903 {
1904 struct dwarf2_queue_item *item, *last;
1905
1906 item = dwarf2_queue;
1907 while (item)
1908 {
1909 /* Anything still marked queued is likely to be in an
1910 inconsistent state, so discard it. */
1911 if (item->per_cu->queued)
1912 {
1913 if (item->per_cu->cu != NULL)
1914 free_one_cached_comp_unit (item->per_cu);
1915 item->per_cu->queued = 0;
1916 }
1917
1918 last = item;
1919 item = item->next;
1920 xfree (last);
1921 }
1922
1923 dwarf2_queue = dwarf2_queue_tail = NULL;
1924 }
1925 };
1926
1927 /* The return type of find_file_and_directory. Note, the enclosed
1928 string pointers are only valid while this object is valid. */
1929
1930 struct file_and_directory
1931 {
1932 /* The filename. This is never NULL. */
1933 const char *name;
1934
1935 /* The compilation directory. NULL if not known. If we needed to
1936 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1937 points directly to the DW_AT_comp_dir string attribute owned by
1938 the obstack that owns the DIE. */
1939 const char *comp_dir;
1940
1941 /* If we needed to build a new string for comp_dir, this is what
1942 owns the storage. */
1943 std::string comp_dir_storage;
1944 };
1945
1946 static file_and_directory find_file_and_directory (struct die_info *die,
1947 struct dwarf2_cu *cu);
1948
1949 static char *file_full_name (int file, struct line_header *lh,
1950 const char *comp_dir);
1951
1952 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1953 enum class rcuh_kind { COMPILE, TYPE };
1954
1955 static const gdb_byte *read_and_check_comp_unit_head
1956 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1957 struct comp_unit_head *header,
1958 struct dwarf2_section_info *section,
1959 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1960 rcuh_kind section_kind);
1961
1962 static void init_cutu_and_read_dies
1963 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1964 int use_existing_cu, int keep, bool skip_partial,
1965 die_reader_func_ftype *die_reader_func, void *data);
1966
1967 static void init_cutu_and_read_dies_simple
1968 (struct dwarf2_per_cu_data *this_cu,
1969 die_reader_func_ftype *die_reader_func, void *data);
1970
1971 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1972
1973 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1974
1975 static struct dwo_unit *lookup_dwo_unit_in_dwp
1976 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1977 struct dwp_file *dwp_file, const char *comp_dir,
1978 ULONGEST signature, int is_debug_types);
1979
1980 static struct dwp_file *get_dwp_file
1981 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1982
1983 static struct dwo_unit *lookup_dwo_comp_unit
1984 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1985
1986 static struct dwo_unit *lookup_dwo_type_unit
1987 (struct signatured_type *, const char *, const char *);
1988
1989 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1990
1991 static void free_dwo_file (struct dwo_file *);
1992
1993 /* A unique_ptr helper to free a dwo_file. */
1994
1995 struct dwo_file_deleter
1996 {
1997 void operator() (struct dwo_file *df) const
1998 {
1999 free_dwo_file (df);
2000 }
2001 };
2002
2003 /* A unique pointer to a dwo_file. */
2004
2005 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2006
2007 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2008
2009 static void check_producer (struct dwarf2_cu *cu);
2010
2011 static void free_line_header_voidp (void *arg);
2012 \f
2013 /* Various complaints about symbol reading that don't abort the process. */
2014
2015 static void
2016 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2017 {
2018 complaint (_("statement list doesn't fit in .debug_line section"));
2019 }
2020
2021 static void
2022 dwarf2_debug_line_missing_file_complaint (void)
2023 {
2024 complaint (_(".debug_line section has line data without a file"));
2025 }
2026
2027 static void
2028 dwarf2_debug_line_missing_end_sequence_complaint (void)
2029 {
2030 complaint (_(".debug_line section has line "
2031 "program sequence without an end"));
2032 }
2033
2034 static void
2035 dwarf2_complex_location_expr_complaint (void)
2036 {
2037 complaint (_("location expression too complex"));
2038 }
2039
2040 static void
2041 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2042 int arg3)
2043 {
2044 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2045 arg1, arg2, arg3);
2046 }
2047
2048 static void
2049 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2050 {
2051 complaint (_("debug info runs off end of %s section"
2052 " [in module %s]"),
2053 get_section_name (section),
2054 get_section_file_name (section));
2055 }
2056
2057 static void
2058 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2059 {
2060 complaint (_("macro debug info contains a "
2061 "malformed macro definition:\n`%s'"),
2062 arg1);
2063 }
2064
2065 static void
2066 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2067 {
2068 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2069 arg1, arg2);
2070 }
2071
2072 /* Hash function for line_header_hash. */
2073
2074 static hashval_t
2075 line_header_hash (const struct line_header *ofs)
2076 {
2077 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2078 }
2079
2080 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2081
2082 static hashval_t
2083 line_header_hash_voidp (const void *item)
2084 {
2085 const struct line_header *ofs = (const struct line_header *) item;
2086
2087 return line_header_hash (ofs);
2088 }
2089
2090 /* Equality function for line_header_hash. */
2091
2092 static int
2093 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2094 {
2095 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2096 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2097
2098 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2099 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2100 }
2101
2102 \f
2103
2104 /* Read the given attribute value as an address, taking the attribute's
2105 form into account. */
2106
2107 static CORE_ADDR
2108 attr_value_as_address (struct attribute *attr)
2109 {
2110 CORE_ADDR addr;
2111
2112 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2113 && attr->form != DW_FORM_GNU_addr_index)
2114 {
2115 /* Aside from a few clearly defined exceptions, attributes that
2116 contain an address must always be in DW_FORM_addr form.
2117 Unfortunately, some compilers happen to be violating this
2118 requirement by encoding addresses using other forms, such
2119 as DW_FORM_data4 for example. For those broken compilers,
2120 we try to do our best, without any guarantee of success,
2121 to interpret the address correctly. It would also be nice
2122 to generate a complaint, but that would require us to maintain
2123 a list of legitimate cases where a non-address form is allowed,
2124 as well as update callers to pass in at least the CU's DWARF
2125 version. This is more overhead than what we're willing to
2126 expand for a pretty rare case. */
2127 addr = DW_UNSND (attr);
2128 }
2129 else
2130 addr = DW_ADDR (attr);
2131
2132 return addr;
2133 }
2134
2135 /* See declaration. */
2136
2137 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2138 const dwarf2_debug_sections *names)
2139 : objfile (objfile_)
2140 {
2141 if (names == NULL)
2142 names = &dwarf2_elf_names;
2143
2144 bfd *obfd = objfile->obfd;
2145
2146 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2147 locate_sections (obfd, sec, *names);
2148 }
2149
2150 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2151
2152 dwarf2_per_objfile::~dwarf2_per_objfile ()
2153 {
2154 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2155 free_cached_comp_units ();
2156
2157 if (quick_file_names_table)
2158 htab_delete (quick_file_names_table);
2159
2160 if (line_header_hash)
2161 htab_delete (line_header_hash);
2162
2163 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2164 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2165
2166 for (signatured_type *sig_type : all_type_units)
2167 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2168
2169 VEC_free (dwarf2_section_info_def, types);
2170
2171 if (dwo_files != NULL)
2172 free_dwo_files (dwo_files, objfile);
2173
2174 /* Everything else should be on the objfile obstack. */
2175 }
2176
2177 /* See declaration. */
2178
2179 void
2180 dwarf2_per_objfile::free_cached_comp_units ()
2181 {
2182 dwarf2_per_cu_data *per_cu = read_in_chain;
2183 dwarf2_per_cu_data **last_chain = &read_in_chain;
2184 while (per_cu != NULL)
2185 {
2186 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2187
2188 delete per_cu->cu;
2189 *last_chain = next_cu;
2190 per_cu = next_cu;
2191 }
2192 }
2193
2194 /* A helper class that calls free_cached_comp_units on
2195 destruction. */
2196
2197 class free_cached_comp_units
2198 {
2199 public:
2200
2201 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2202 : m_per_objfile (per_objfile)
2203 {
2204 }
2205
2206 ~free_cached_comp_units ()
2207 {
2208 m_per_objfile->free_cached_comp_units ();
2209 }
2210
2211 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2212
2213 private:
2214
2215 dwarf2_per_objfile *m_per_objfile;
2216 };
2217
2218 /* Try to locate the sections we need for DWARF 2 debugging
2219 information and return true if we have enough to do something.
2220 NAMES points to the dwarf2 section names, or is NULL if the standard
2221 ELF names are used. */
2222
2223 int
2224 dwarf2_has_info (struct objfile *objfile,
2225 const struct dwarf2_debug_sections *names)
2226 {
2227 if (objfile->flags & OBJF_READNEVER)
2228 return 0;
2229
2230 struct dwarf2_per_objfile *dwarf2_per_objfile
2231 = get_dwarf2_per_objfile (objfile);
2232
2233 if (dwarf2_per_objfile == NULL)
2234 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2235 names);
2236
2237 return (!dwarf2_per_objfile->info.is_virtual
2238 && dwarf2_per_objfile->info.s.section != NULL
2239 && !dwarf2_per_objfile->abbrev.is_virtual
2240 && dwarf2_per_objfile->abbrev.s.section != NULL);
2241 }
2242
2243 /* Return the containing section of virtual section SECTION. */
2244
2245 static struct dwarf2_section_info *
2246 get_containing_section (const struct dwarf2_section_info *section)
2247 {
2248 gdb_assert (section->is_virtual);
2249 return section->s.containing_section;
2250 }
2251
2252 /* Return the bfd owner of SECTION. */
2253
2254 static struct bfd *
2255 get_section_bfd_owner (const struct dwarf2_section_info *section)
2256 {
2257 if (section->is_virtual)
2258 {
2259 section = get_containing_section (section);
2260 gdb_assert (!section->is_virtual);
2261 }
2262 return section->s.section->owner;
2263 }
2264
2265 /* Return the bfd section of SECTION.
2266 Returns NULL if the section is not present. */
2267
2268 static asection *
2269 get_section_bfd_section (const struct dwarf2_section_info *section)
2270 {
2271 if (section->is_virtual)
2272 {
2273 section = get_containing_section (section);
2274 gdb_assert (!section->is_virtual);
2275 }
2276 return section->s.section;
2277 }
2278
2279 /* Return the name of SECTION. */
2280
2281 static const char *
2282 get_section_name (const struct dwarf2_section_info *section)
2283 {
2284 asection *sectp = get_section_bfd_section (section);
2285
2286 gdb_assert (sectp != NULL);
2287 return bfd_section_name (get_section_bfd_owner (section), sectp);
2288 }
2289
2290 /* Return the name of the file SECTION is in. */
2291
2292 static const char *
2293 get_section_file_name (const struct dwarf2_section_info *section)
2294 {
2295 bfd *abfd = get_section_bfd_owner (section);
2296
2297 return bfd_get_filename (abfd);
2298 }
2299
2300 /* Return the id of SECTION.
2301 Returns 0 if SECTION doesn't exist. */
2302
2303 static int
2304 get_section_id (const struct dwarf2_section_info *section)
2305 {
2306 asection *sectp = get_section_bfd_section (section);
2307
2308 if (sectp == NULL)
2309 return 0;
2310 return sectp->id;
2311 }
2312
2313 /* Return the flags of SECTION.
2314 SECTION (or containing section if this is a virtual section) must exist. */
2315
2316 static int
2317 get_section_flags (const struct dwarf2_section_info *section)
2318 {
2319 asection *sectp = get_section_bfd_section (section);
2320
2321 gdb_assert (sectp != NULL);
2322 return bfd_get_section_flags (sectp->owner, sectp);
2323 }
2324
2325 /* When loading sections, we look either for uncompressed section or for
2326 compressed section names. */
2327
2328 static int
2329 section_is_p (const char *section_name,
2330 const struct dwarf2_section_names *names)
2331 {
2332 if (names->normal != NULL
2333 && strcmp (section_name, names->normal) == 0)
2334 return 1;
2335 if (names->compressed != NULL
2336 && strcmp (section_name, names->compressed) == 0)
2337 return 1;
2338 return 0;
2339 }
2340
2341 /* See declaration. */
2342
2343 void
2344 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2345 const dwarf2_debug_sections &names)
2346 {
2347 flagword aflag = bfd_get_section_flags (abfd, sectp);
2348
2349 if ((aflag & SEC_HAS_CONTENTS) == 0)
2350 {
2351 }
2352 else if (section_is_p (sectp->name, &names.info))
2353 {
2354 this->info.s.section = sectp;
2355 this->info.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.abbrev))
2358 {
2359 this->abbrev.s.section = sectp;
2360 this->abbrev.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.line))
2363 {
2364 this->line.s.section = sectp;
2365 this->line.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.loc))
2368 {
2369 this->loc.s.section = sectp;
2370 this->loc.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.loclists))
2373 {
2374 this->loclists.s.section = sectp;
2375 this->loclists.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.macinfo))
2378 {
2379 this->macinfo.s.section = sectp;
2380 this->macinfo.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.macro))
2383 {
2384 this->macro.s.section = sectp;
2385 this->macro.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.str))
2388 {
2389 this->str.s.section = sectp;
2390 this->str.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.line_str))
2393 {
2394 this->line_str.s.section = sectp;
2395 this->line_str.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.addr))
2398 {
2399 this->addr.s.section = sectp;
2400 this->addr.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.frame))
2403 {
2404 this->frame.s.section = sectp;
2405 this->frame.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.eh_frame))
2408 {
2409 this->eh_frame.s.section = sectp;
2410 this->eh_frame.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.ranges))
2413 {
2414 this->ranges.s.section = sectp;
2415 this->ranges.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.rnglists))
2418 {
2419 this->rnglists.s.section = sectp;
2420 this->rnglists.size = bfd_get_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &names.types))
2423 {
2424 struct dwarf2_section_info type_section;
2425
2426 memset (&type_section, 0, sizeof (type_section));
2427 type_section.s.section = sectp;
2428 type_section.size = bfd_get_section_size (sectp);
2429
2430 VEC_safe_push (dwarf2_section_info_def, this->types,
2431 &type_section);
2432 }
2433 else if (section_is_p (sectp->name, &names.gdb_index))
2434 {
2435 this->gdb_index.s.section = sectp;
2436 this->gdb_index.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.debug_names))
2439 {
2440 this->debug_names.s.section = sectp;
2441 this->debug_names.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.debug_aranges))
2444 {
2445 this->debug_aranges.s.section = sectp;
2446 this->debug_aranges.size = bfd_get_section_size (sectp);
2447 }
2448
2449 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2450 && bfd_section_vma (abfd, sectp) == 0)
2451 this->has_section_at_zero = true;
2452 }
2453
2454 /* A helper function that decides whether a section is empty,
2455 or not present. */
2456
2457 static int
2458 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2459 {
2460 if (section->is_virtual)
2461 return section->size == 0;
2462 return section->s.section == NULL || section->size == 0;
2463 }
2464
2465 /* See dwarf2read.h. */
2466
2467 void
2468 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2469 {
2470 asection *sectp;
2471 bfd *abfd;
2472 gdb_byte *buf, *retbuf;
2473
2474 if (info->readin)
2475 return;
2476 info->buffer = NULL;
2477 info->readin = 1;
2478
2479 if (dwarf2_section_empty_p (info))
2480 return;
2481
2482 sectp = get_section_bfd_section (info);
2483
2484 /* If this is a virtual section we need to read in the real one first. */
2485 if (info->is_virtual)
2486 {
2487 struct dwarf2_section_info *containing_section =
2488 get_containing_section (info);
2489
2490 gdb_assert (sectp != NULL);
2491 if ((sectp->flags & SEC_RELOC) != 0)
2492 {
2493 error (_("Dwarf Error: DWP format V2 with relocations is not"
2494 " supported in section %s [in module %s]"),
2495 get_section_name (info), get_section_file_name (info));
2496 }
2497 dwarf2_read_section (objfile, containing_section);
2498 /* Other code should have already caught virtual sections that don't
2499 fit. */
2500 gdb_assert (info->virtual_offset + info->size
2501 <= containing_section->size);
2502 /* If the real section is empty or there was a problem reading the
2503 section we shouldn't get here. */
2504 gdb_assert (containing_section->buffer != NULL);
2505 info->buffer = containing_section->buffer + info->virtual_offset;
2506 return;
2507 }
2508
2509 /* If the section has relocations, we must read it ourselves.
2510 Otherwise we attach it to the BFD. */
2511 if ((sectp->flags & SEC_RELOC) == 0)
2512 {
2513 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2514 return;
2515 }
2516
2517 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2518 info->buffer = buf;
2519
2520 /* When debugging .o files, we may need to apply relocations; see
2521 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2522 We never compress sections in .o files, so we only need to
2523 try this when the section is not compressed. */
2524 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2525 if (retbuf != NULL)
2526 {
2527 info->buffer = retbuf;
2528 return;
2529 }
2530
2531 abfd = get_section_bfd_owner (info);
2532 gdb_assert (abfd != NULL);
2533
2534 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2535 || bfd_bread (buf, info->size, abfd) != info->size)
2536 {
2537 error (_("Dwarf Error: Can't read DWARF data"
2538 " in section %s [in module %s]"),
2539 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2540 }
2541 }
2542
2543 /* A helper function that returns the size of a section in a safe way.
2544 If you are positive that the section has been read before using the
2545 size, then it is safe to refer to the dwarf2_section_info object's
2546 "size" field directly. In other cases, you must call this
2547 function, because for compressed sections the size field is not set
2548 correctly until the section has been read. */
2549
2550 static bfd_size_type
2551 dwarf2_section_size (struct objfile *objfile,
2552 struct dwarf2_section_info *info)
2553 {
2554 if (!info->readin)
2555 dwarf2_read_section (objfile, info);
2556 return info->size;
2557 }
2558
2559 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2560 SECTION_NAME. */
2561
2562 void
2563 dwarf2_get_section_info (struct objfile *objfile,
2564 enum dwarf2_section_enum sect,
2565 asection **sectp, const gdb_byte **bufp,
2566 bfd_size_type *sizep)
2567 {
2568 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2569 struct dwarf2_section_info *info;
2570
2571 /* We may see an objfile without any DWARF, in which case we just
2572 return nothing. */
2573 if (data == NULL)
2574 {
2575 *sectp = NULL;
2576 *bufp = NULL;
2577 *sizep = 0;
2578 return;
2579 }
2580 switch (sect)
2581 {
2582 case DWARF2_DEBUG_FRAME:
2583 info = &data->frame;
2584 break;
2585 case DWARF2_EH_FRAME:
2586 info = &data->eh_frame;
2587 break;
2588 default:
2589 gdb_assert_not_reached ("unexpected section");
2590 }
2591
2592 dwarf2_read_section (objfile, info);
2593
2594 *sectp = get_section_bfd_section (info);
2595 *bufp = info->buffer;
2596 *sizep = info->size;
2597 }
2598
2599 /* A helper function to find the sections for a .dwz file. */
2600
2601 static void
2602 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2603 {
2604 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2605
2606 /* Note that we only support the standard ELF names, because .dwz
2607 is ELF-only (at the time of writing). */
2608 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2609 {
2610 dwz_file->abbrev.s.section = sectp;
2611 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2612 }
2613 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2614 {
2615 dwz_file->info.s.section = sectp;
2616 dwz_file->info.size = bfd_get_section_size (sectp);
2617 }
2618 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2619 {
2620 dwz_file->str.s.section = sectp;
2621 dwz_file->str.size = bfd_get_section_size (sectp);
2622 }
2623 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2624 {
2625 dwz_file->line.s.section = sectp;
2626 dwz_file->line.size = bfd_get_section_size (sectp);
2627 }
2628 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2629 {
2630 dwz_file->macro.s.section = sectp;
2631 dwz_file->macro.size = bfd_get_section_size (sectp);
2632 }
2633 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2634 {
2635 dwz_file->gdb_index.s.section = sectp;
2636 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2637 }
2638 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2639 {
2640 dwz_file->debug_names.s.section = sectp;
2641 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2642 }
2643 }
2644
2645 /* See dwarf2read.h. */
2646
2647 struct dwz_file *
2648 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2649 {
2650 const char *filename;
2651 bfd_size_type buildid_len_arg;
2652 size_t buildid_len;
2653 bfd_byte *buildid;
2654
2655 if (dwarf2_per_objfile->dwz_file != NULL)
2656 return dwarf2_per_objfile->dwz_file.get ();
2657
2658 bfd_set_error (bfd_error_no_error);
2659 gdb::unique_xmalloc_ptr<char> data
2660 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2661 &buildid_len_arg, &buildid));
2662 if (data == NULL)
2663 {
2664 if (bfd_get_error () == bfd_error_no_error)
2665 return NULL;
2666 error (_("could not read '.gnu_debugaltlink' section: %s"),
2667 bfd_errmsg (bfd_get_error ()));
2668 }
2669
2670 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2671
2672 buildid_len = (size_t) buildid_len_arg;
2673
2674 filename = data.get ();
2675
2676 std::string abs_storage;
2677 if (!IS_ABSOLUTE_PATH (filename))
2678 {
2679 gdb::unique_xmalloc_ptr<char> abs
2680 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2681
2682 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2683 filename = abs_storage.c_str ();
2684 }
2685
2686 /* First try the file name given in the section. If that doesn't
2687 work, try to use the build-id instead. */
2688 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2689 if (dwz_bfd != NULL)
2690 {
2691 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2692 dwz_bfd.reset (nullptr);
2693 }
2694
2695 if (dwz_bfd == NULL)
2696 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2697
2698 if (dwz_bfd == NULL)
2699 error (_("could not find '.gnu_debugaltlink' file for %s"),
2700 objfile_name (dwarf2_per_objfile->objfile));
2701
2702 std::unique_ptr<struct dwz_file> result
2703 (new struct dwz_file (std::move (dwz_bfd)));
2704
2705 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2706 result.get ());
2707
2708 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2709 result->dwz_bfd.get ());
2710 dwarf2_per_objfile->dwz_file = std::move (result);
2711 return dwarf2_per_objfile->dwz_file.get ();
2712 }
2713 \f
2714 /* DWARF quick_symbols_functions support. */
2715
2716 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2717 unique line tables, so we maintain a separate table of all .debug_line
2718 derived entries to support the sharing.
2719 All the quick functions need is the list of file names. We discard the
2720 line_header when we're done and don't need to record it here. */
2721 struct quick_file_names
2722 {
2723 /* The data used to construct the hash key. */
2724 struct stmt_list_hash hash;
2725
2726 /* The number of entries in file_names, real_names. */
2727 unsigned int num_file_names;
2728
2729 /* The file names from the line table, after being run through
2730 file_full_name. */
2731 const char **file_names;
2732
2733 /* The file names from the line table after being run through
2734 gdb_realpath. These are computed lazily. */
2735 const char **real_names;
2736 };
2737
2738 /* When using the index (and thus not using psymtabs), each CU has an
2739 object of this type. This is used to hold information needed by
2740 the various "quick" methods. */
2741 struct dwarf2_per_cu_quick_data
2742 {
2743 /* The file table. This can be NULL if there was no file table
2744 or it's currently not read in.
2745 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2746 struct quick_file_names *file_names;
2747
2748 /* The corresponding symbol table. This is NULL if symbols for this
2749 CU have not yet been read. */
2750 struct compunit_symtab *compunit_symtab;
2751
2752 /* A temporary mark bit used when iterating over all CUs in
2753 expand_symtabs_matching. */
2754 unsigned int mark : 1;
2755
2756 /* True if we've tried to read the file table and found there isn't one.
2757 There will be no point in trying to read it again next time. */
2758 unsigned int no_file_data : 1;
2759 };
2760
2761 /* Utility hash function for a stmt_list_hash. */
2762
2763 static hashval_t
2764 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2765 {
2766 hashval_t v = 0;
2767
2768 if (stmt_list_hash->dwo_unit != NULL)
2769 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2770 v += to_underlying (stmt_list_hash->line_sect_off);
2771 return v;
2772 }
2773
2774 /* Utility equality function for a stmt_list_hash. */
2775
2776 static int
2777 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2778 const struct stmt_list_hash *rhs)
2779 {
2780 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2781 return 0;
2782 if (lhs->dwo_unit != NULL
2783 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2784 return 0;
2785
2786 return lhs->line_sect_off == rhs->line_sect_off;
2787 }
2788
2789 /* Hash function for a quick_file_names. */
2790
2791 static hashval_t
2792 hash_file_name_entry (const void *e)
2793 {
2794 const struct quick_file_names *file_data
2795 = (const struct quick_file_names *) e;
2796
2797 return hash_stmt_list_entry (&file_data->hash);
2798 }
2799
2800 /* Equality function for a quick_file_names. */
2801
2802 static int
2803 eq_file_name_entry (const void *a, const void *b)
2804 {
2805 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2806 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2807
2808 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2809 }
2810
2811 /* Delete function for a quick_file_names. */
2812
2813 static void
2814 delete_file_name_entry (void *e)
2815 {
2816 struct quick_file_names *file_data = (struct quick_file_names *) e;
2817 int i;
2818
2819 for (i = 0; i < file_data->num_file_names; ++i)
2820 {
2821 xfree ((void*) file_data->file_names[i]);
2822 if (file_data->real_names)
2823 xfree ((void*) file_data->real_names[i]);
2824 }
2825
2826 /* The space for the struct itself lives on objfile_obstack,
2827 so we don't free it here. */
2828 }
2829
2830 /* Create a quick_file_names hash table. */
2831
2832 static htab_t
2833 create_quick_file_names_table (unsigned int nr_initial_entries)
2834 {
2835 return htab_create_alloc (nr_initial_entries,
2836 hash_file_name_entry, eq_file_name_entry,
2837 delete_file_name_entry, xcalloc, xfree);
2838 }
2839
2840 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2841 have to be created afterwards. You should call age_cached_comp_units after
2842 processing PER_CU->CU. dw2_setup must have been already called. */
2843
2844 static void
2845 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2846 {
2847 if (per_cu->is_debug_types)
2848 load_full_type_unit (per_cu);
2849 else
2850 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2851
2852 if (per_cu->cu == NULL)
2853 return; /* Dummy CU. */
2854
2855 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2856 }
2857
2858 /* Read in the symbols for PER_CU. */
2859
2860 static void
2861 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2862 {
2863 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2864
2865 /* Skip type_unit_groups, reading the type units they contain
2866 is handled elsewhere. */
2867 if (IS_TYPE_UNIT_GROUP (per_cu))
2868 return;
2869
2870 /* The destructor of dwarf2_queue_guard frees any entries left on
2871 the queue. After this point we're guaranteed to leave this function
2872 with the dwarf queue empty. */
2873 dwarf2_queue_guard q_guard;
2874
2875 if (dwarf2_per_objfile->using_index
2876 ? per_cu->v.quick->compunit_symtab == NULL
2877 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2878 {
2879 queue_comp_unit (per_cu, language_minimal);
2880 load_cu (per_cu, skip_partial);
2881
2882 /* If we just loaded a CU from a DWO, and we're working with an index
2883 that may badly handle TUs, load all the TUs in that DWO as well.
2884 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2885 if (!per_cu->is_debug_types
2886 && per_cu->cu != NULL
2887 && per_cu->cu->dwo_unit != NULL
2888 && dwarf2_per_objfile->index_table != NULL
2889 && dwarf2_per_objfile->index_table->version <= 7
2890 /* DWP files aren't supported yet. */
2891 && get_dwp_file (dwarf2_per_objfile) == NULL)
2892 queue_and_load_all_dwo_tus (per_cu);
2893 }
2894
2895 process_queue (dwarf2_per_objfile);
2896
2897 /* Age the cache, releasing compilation units that have not
2898 been used recently. */
2899 age_cached_comp_units (dwarf2_per_objfile);
2900 }
2901
2902 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2903 the objfile from which this CU came. Returns the resulting symbol
2904 table. */
2905
2906 static struct compunit_symtab *
2907 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2908 {
2909 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2910
2911 gdb_assert (dwarf2_per_objfile->using_index);
2912 if (!per_cu->v.quick->compunit_symtab)
2913 {
2914 free_cached_comp_units freer (dwarf2_per_objfile);
2915 scoped_restore decrementer = increment_reading_symtab ();
2916 dw2_do_instantiate_symtab (per_cu, skip_partial);
2917 process_cu_includes (dwarf2_per_objfile);
2918 }
2919
2920 return per_cu->v.quick->compunit_symtab;
2921 }
2922
2923 /* See declaration. */
2924
2925 dwarf2_per_cu_data *
2926 dwarf2_per_objfile::get_cutu (int index)
2927 {
2928 if (index >= this->all_comp_units.size ())
2929 {
2930 index -= this->all_comp_units.size ();
2931 gdb_assert (index < this->all_type_units.size ());
2932 return &this->all_type_units[index]->per_cu;
2933 }
2934
2935 return this->all_comp_units[index];
2936 }
2937
2938 /* See declaration. */
2939
2940 dwarf2_per_cu_data *
2941 dwarf2_per_objfile::get_cu (int index)
2942 {
2943 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2944
2945 return this->all_comp_units[index];
2946 }
2947
2948 /* See declaration. */
2949
2950 signatured_type *
2951 dwarf2_per_objfile::get_tu (int index)
2952 {
2953 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2954
2955 return this->all_type_units[index];
2956 }
2957
2958 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2959 objfile_obstack, and constructed with the specified field
2960 values. */
2961
2962 static dwarf2_per_cu_data *
2963 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2964 struct dwarf2_section_info *section,
2965 int is_dwz,
2966 sect_offset sect_off, ULONGEST length)
2967 {
2968 struct objfile *objfile = dwarf2_per_objfile->objfile;
2969 dwarf2_per_cu_data *the_cu
2970 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2971 struct dwarf2_per_cu_data);
2972 the_cu->sect_off = sect_off;
2973 the_cu->length = length;
2974 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2975 the_cu->section = section;
2976 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2977 struct dwarf2_per_cu_quick_data);
2978 the_cu->is_dwz = is_dwz;
2979 return the_cu;
2980 }
2981
2982 /* A helper for create_cus_from_index that handles a given list of
2983 CUs. */
2984
2985 static void
2986 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2987 const gdb_byte *cu_list, offset_type n_elements,
2988 struct dwarf2_section_info *section,
2989 int is_dwz)
2990 {
2991 for (offset_type i = 0; i < n_elements; i += 2)
2992 {
2993 gdb_static_assert (sizeof (ULONGEST) >= 8);
2994
2995 sect_offset sect_off
2996 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2997 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2998 cu_list += 2 * 8;
2999
3000 dwarf2_per_cu_data *per_cu
3001 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3002 sect_off, length);
3003 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3004 }
3005 }
3006
3007 /* Read the CU list from the mapped index, and use it to create all
3008 the CU objects for this objfile. */
3009
3010 static void
3011 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3012 const gdb_byte *cu_list, offset_type cu_list_elements,
3013 const gdb_byte *dwz_list, offset_type dwz_elements)
3014 {
3015 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3016 dwarf2_per_objfile->all_comp_units.reserve
3017 ((cu_list_elements + dwz_elements) / 2);
3018
3019 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3020 &dwarf2_per_objfile->info, 0);
3021
3022 if (dwz_elements == 0)
3023 return;
3024
3025 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3026 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3027 &dwz->info, 1);
3028 }
3029
3030 /* Create the signatured type hash table from the index. */
3031
3032 static void
3033 create_signatured_type_table_from_index
3034 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3035 struct dwarf2_section_info *section,
3036 const gdb_byte *bytes,
3037 offset_type elements)
3038 {
3039 struct objfile *objfile = dwarf2_per_objfile->objfile;
3040
3041 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3042 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3043
3044 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3045
3046 for (offset_type i = 0; i < elements; i += 3)
3047 {
3048 struct signatured_type *sig_type;
3049 ULONGEST signature;
3050 void **slot;
3051 cu_offset type_offset_in_tu;
3052
3053 gdb_static_assert (sizeof (ULONGEST) >= 8);
3054 sect_offset sect_off
3055 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3056 type_offset_in_tu
3057 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3058 BFD_ENDIAN_LITTLE);
3059 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3060 bytes += 3 * 8;
3061
3062 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3063 struct signatured_type);
3064 sig_type->signature = signature;
3065 sig_type->type_offset_in_tu = type_offset_in_tu;
3066 sig_type->per_cu.is_debug_types = 1;
3067 sig_type->per_cu.section = section;
3068 sig_type->per_cu.sect_off = sect_off;
3069 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3070 sig_type->per_cu.v.quick
3071 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3072 struct dwarf2_per_cu_quick_data);
3073
3074 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3075 *slot = sig_type;
3076
3077 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3078 }
3079
3080 dwarf2_per_objfile->signatured_types = sig_types_hash;
3081 }
3082
3083 /* Create the signatured type hash table from .debug_names. */
3084
3085 static void
3086 create_signatured_type_table_from_debug_names
3087 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3088 const mapped_debug_names &map,
3089 struct dwarf2_section_info *section,
3090 struct dwarf2_section_info *abbrev_section)
3091 {
3092 struct objfile *objfile = dwarf2_per_objfile->objfile;
3093
3094 dwarf2_read_section (objfile, section);
3095 dwarf2_read_section (objfile, abbrev_section);
3096
3097 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3098 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3099
3100 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3101
3102 for (uint32_t i = 0; i < map.tu_count; ++i)
3103 {
3104 struct signatured_type *sig_type;
3105 void **slot;
3106
3107 sect_offset sect_off
3108 = (sect_offset) (extract_unsigned_integer
3109 (map.tu_table_reordered + i * map.offset_size,
3110 map.offset_size,
3111 map.dwarf5_byte_order));
3112
3113 comp_unit_head cu_header;
3114 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3115 abbrev_section,
3116 section->buffer + to_underlying (sect_off),
3117 rcuh_kind::TYPE);
3118
3119 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3120 struct signatured_type);
3121 sig_type->signature = cu_header.signature;
3122 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3123 sig_type->per_cu.is_debug_types = 1;
3124 sig_type->per_cu.section = section;
3125 sig_type->per_cu.sect_off = sect_off;
3126 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3127 sig_type->per_cu.v.quick
3128 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3129 struct dwarf2_per_cu_quick_data);
3130
3131 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3132 *slot = sig_type;
3133
3134 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3135 }
3136
3137 dwarf2_per_objfile->signatured_types = sig_types_hash;
3138 }
3139
3140 /* Read the address map data from the mapped index, and use it to
3141 populate the objfile's psymtabs_addrmap. */
3142
3143 static void
3144 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3145 struct mapped_index *index)
3146 {
3147 struct objfile *objfile = dwarf2_per_objfile->objfile;
3148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3149 const gdb_byte *iter, *end;
3150 struct addrmap *mutable_map;
3151 CORE_ADDR baseaddr;
3152
3153 auto_obstack temp_obstack;
3154
3155 mutable_map = addrmap_create_mutable (&temp_obstack);
3156
3157 iter = index->address_table.data ();
3158 end = iter + index->address_table.size ();
3159
3160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3161
3162 while (iter < end)
3163 {
3164 ULONGEST hi, lo, cu_index;
3165 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3166 iter += 8;
3167 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3168 iter += 8;
3169 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3170 iter += 4;
3171
3172 if (lo > hi)
3173 {
3174 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3175 hex_string (lo), hex_string (hi));
3176 continue;
3177 }
3178
3179 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3180 {
3181 complaint (_(".gdb_index address table has invalid CU number %u"),
3182 (unsigned) cu_index);
3183 continue;
3184 }
3185
3186 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3187 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3188 addrmap_set_empty (mutable_map, lo, hi - 1,
3189 dwarf2_per_objfile->get_cu (cu_index));
3190 }
3191
3192 objfile->partial_symtabs->psymtabs_addrmap
3193 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3194 }
3195
3196 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3197 populate the objfile's psymtabs_addrmap. */
3198
3199 static void
3200 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3201 struct dwarf2_section_info *section)
3202 {
3203 struct objfile *objfile = dwarf2_per_objfile->objfile;
3204 bfd *abfd = objfile->obfd;
3205 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3206 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3207 SECT_OFF_TEXT (objfile));
3208
3209 auto_obstack temp_obstack;
3210 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3211
3212 std::unordered_map<sect_offset,
3213 dwarf2_per_cu_data *,
3214 gdb::hash_enum<sect_offset>>
3215 debug_info_offset_to_per_cu;
3216 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3217 {
3218 const auto insertpair
3219 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3220 if (!insertpair.second)
3221 {
3222 warning (_("Section .debug_aranges in %s has duplicate "
3223 "debug_info_offset %s, ignoring .debug_aranges."),
3224 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3225 return;
3226 }
3227 }
3228
3229 dwarf2_read_section (objfile, section);
3230
3231 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3232
3233 const gdb_byte *addr = section->buffer;
3234
3235 while (addr < section->buffer + section->size)
3236 {
3237 const gdb_byte *const entry_addr = addr;
3238 unsigned int bytes_read;
3239
3240 const LONGEST entry_length = read_initial_length (abfd, addr,
3241 &bytes_read);
3242 addr += bytes_read;
3243
3244 const gdb_byte *const entry_end = addr + entry_length;
3245 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3246 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3247 if (addr + entry_length > section->buffer + section->size)
3248 {
3249 warning (_("Section .debug_aranges in %s entry at offset %zu "
3250 "length %s exceeds section length %s, "
3251 "ignoring .debug_aranges."),
3252 objfile_name (objfile), entry_addr - section->buffer,
3253 plongest (bytes_read + entry_length),
3254 pulongest (section->size));
3255 return;
3256 }
3257
3258 /* The version number. */
3259 const uint16_t version = read_2_bytes (abfd, addr);
3260 addr += 2;
3261 if (version != 2)
3262 {
3263 warning (_("Section .debug_aranges in %s entry at offset %zu "
3264 "has unsupported version %d, ignoring .debug_aranges."),
3265 objfile_name (objfile), entry_addr - section->buffer,
3266 version);
3267 return;
3268 }
3269
3270 const uint64_t debug_info_offset
3271 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3272 addr += offset_size;
3273 const auto per_cu_it
3274 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3275 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "debug_info_offset %s does not exists, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 pulongest (debug_info_offset));
3282 return;
3283 }
3284 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3285
3286 const uint8_t address_size = *addr++;
3287 if (address_size < 1 || address_size > 8)
3288 {
3289 warning (_("Section .debug_aranges in %s entry at offset %zu "
3290 "address_size %u is invalid, ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 address_size);
3293 return;
3294 }
3295
3296 const uint8_t segment_selector_size = *addr++;
3297 if (segment_selector_size != 0)
3298 {
3299 warning (_("Section .debug_aranges in %s entry at offset %zu "
3300 "segment_selector_size %u is not supported, "
3301 "ignoring .debug_aranges."),
3302 objfile_name (objfile), entry_addr - section->buffer,
3303 segment_selector_size);
3304 return;
3305 }
3306
3307 /* Must pad to an alignment boundary that is twice the address
3308 size. It is undocumented by the DWARF standard but GCC does
3309 use it. */
3310 for (size_t padding = ((-(addr - section->buffer))
3311 & (2 * address_size - 1));
3312 padding > 0; padding--)
3313 if (*addr++ != 0)
3314 {
3315 warning (_("Section .debug_aranges in %s entry at offset %zu "
3316 "padding is not zero, ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320
3321 for (;;)
3322 {
3323 if (addr + 2 * address_size > entry_end)
3324 {
3325 warning (_("Section .debug_aranges in %s entry at offset %zu "
3326 "address list is not properly terminated, "
3327 "ignoring .debug_aranges."),
3328 objfile_name (objfile), entry_addr - section->buffer);
3329 return;
3330 }
3331 ULONGEST start = extract_unsigned_integer (addr, address_size,
3332 dwarf5_byte_order);
3333 addr += address_size;
3334 ULONGEST length = extract_unsigned_integer (addr, address_size,
3335 dwarf5_byte_order);
3336 addr += address_size;
3337 if (start == 0 && length == 0)
3338 break;
3339 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3340 {
3341 /* Symbol was eliminated due to a COMDAT group. */
3342 continue;
3343 }
3344 ULONGEST end = start + length;
3345 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3346 - baseaddr);
3347 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3348 - baseaddr);
3349 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3350 }
3351 }
3352
3353 objfile->partial_symtabs->psymtabs_addrmap
3354 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3355 }
3356
3357 /* Find a slot in the mapped index INDEX for the object named NAME.
3358 If NAME is found, set *VEC_OUT to point to the CU vector in the
3359 constant pool and return true. If NAME cannot be found, return
3360 false. */
3361
3362 static bool
3363 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3364 offset_type **vec_out)
3365 {
3366 offset_type hash;
3367 offset_type slot, step;
3368 int (*cmp) (const char *, const char *);
3369
3370 gdb::unique_xmalloc_ptr<char> without_params;
3371 if (current_language->la_language == language_cplus
3372 || current_language->la_language == language_fortran
3373 || current_language->la_language == language_d)
3374 {
3375 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3376 not contain any. */
3377
3378 if (strchr (name, '(') != NULL)
3379 {
3380 without_params = cp_remove_params (name);
3381
3382 if (without_params != NULL)
3383 name = without_params.get ();
3384 }
3385 }
3386
3387 /* Index version 4 did not support case insensitive searches. But the
3388 indices for case insensitive languages are built in lowercase, therefore
3389 simulate our NAME being searched is also lowercased. */
3390 hash = mapped_index_string_hash ((index->version == 4
3391 && case_sensitivity == case_sensitive_off
3392 ? 5 : index->version),
3393 name);
3394
3395 slot = hash & (index->symbol_table.size () - 1);
3396 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3397 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3398
3399 for (;;)
3400 {
3401 const char *str;
3402
3403 const auto &bucket = index->symbol_table[slot];
3404 if (bucket.name == 0 && bucket.vec == 0)
3405 return false;
3406
3407 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3408 if (!cmp (name, str))
3409 {
3410 *vec_out = (offset_type *) (index->constant_pool
3411 + MAYBE_SWAP (bucket.vec));
3412 return true;
3413 }
3414
3415 slot = (slot + step) & (index->symbol_table.size () - 1);
3416 }
3417 }
3418
3419 /* A helper function that reads the .gdb_index from BUFFER and fills
3420 in MAP. FILENAME is the name of the file containing the data;
3421 it is used for error reporting. DEPRECATED_OK is true if it is
3422 ok to use deprecated sections.
3423
3424 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3425 out parameters that are filled in with information about the CU and
3426 TU lists in the section.
3427
3428 Returns true if all went well, false otherwise. */
3429
3430 static bool
3431 read_gdb_index_from_buffer (struct objfile *objfile,
3432 const char *filename,
3433 bool deprecated_ok,
3434 gdb::array_view<const gdb_byte> buffer,
3435 struct mapped_index *map,
3436 const gdb_byte **cu_list,
3437 offset_type *cu_list_elements,
3438 const gdb_byte **types_list,
3439 offset_type *types_list_elements)
3440 {
3441 const gdb_byte *addr = &buffer[0];
3442
3443 /* Version check. */
3444 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3445 /* Versions earlier than 3 emitted every copy of a psymbol. This
3446 causes the index to behave very poorly for certain requests. Version 3
3447 contained incomplete addrmap. So, it seems better to just ignore such
3448 indices. */
3449 if (version < 4)
3450 {
3451 static int warning_printed = 0;
3452 if (!warning_printed)
3453 {
3454 warning (_("Skipping obsolete .gdb_index section in %s."),
3455 filename);
3456 warning_printed = 1;
3457 }
3458 return 0;
3459 }
3460 /* Index version 4 uses a different hash function than index version
3461 5 and later.
3462
3463 Versions earlier than 6 did not emit psymbols for inlined
3464 functions. Using these files will cause GDB not to be able to
3465 set breakpoints on inlined functions by name, so we ignore these
3466 indices unless the user has done
3467 "set use-deprecated-index-sections on". */
3468 if (version < 6 && !deprecated_ok)
3469 {
3470 static int warning_printed = 0;
3471 if (!warning_printed)
3472 {
3473 warning (_("\
3474 Skipping deprecated .gdb_index section in %s.\n\
3475 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3476 to use the section anyway."),
3477 filename);
3478 warning_printed = 1;
3479 }
3480 return 0;
3481 }
3482 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3483 of the TU (for symbols coming from TUs),
3484 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3485 Plus gold-generated indices can have duplicate entries for global symbols,
3486 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3487 These are just performance bugs, and we can't distinguish gdb-generated
3488 indices from gold-generated ones, so issue no warning here. */
3489
3490 /* Indexes with higher version than the one supported by GDB may be no
3491 longer backward compatible. */
3492 if (version > 8)
3493 return 0;
3494
3495 map->version = version;
3496
3497 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3498
3499 int i = 0;
3500 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3501 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3502 / 8);
3503 ++i;
3504
3505 *types_list = addr + MAYBE_SWAP (metadata[i]);
3506 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3507 - MAYBE_SWAP (metadata[i]))
3508 / 8);
3509 ++i;
3510
3511 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3512 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3513 map->address_table
3514 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3515 ++i;
3516
3517 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->symbol_table
3520 = gdb::array_view<mapped_index::symbol_table_slot>
3521 ((mapped_index::symbol_table_slot *) symbol_table,
3522 (mapped_index::symbol_table_slot *) symbol_table_end);
3523
3524 ++i;
3525 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3526
3527 return 1;
3528 }
3529
3530 /* Callback types for dwarf2_read_gdb_index. */
3531
3532 typedef gdb::function_view
3533 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3534 get_gdb_index_contents_ftype;
3535 typedef gdb::function_view
3536 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3537 get_gdb_index_contents_dwz_ftype;
3538
3539 /* Read .gdb_index. If everything went ok, initialize the "quick"
3540 elements of all the CUs and return 1. Otherwise, return 0. */
3541
3542 static int
3543 dwarf2_read_gdb_index
3544 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3545 get_gdb_index_contents_ftype get_gdb_index_contents,
3546 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3547 {
3548 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3549 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3550 struct dwz_file *dwz;
3551 struct objfile *objfile = dwarf2_per_objfile->objfile;
3552
3553 gdb::array_view<const gdb_byte> main_index_contents
3554 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3555
3556 if (main_index_contents.empty ())
3557 return 0;
3558
3559 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3560 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3561 use_deprecated_index_sections,
3562 main_index_contents, map.get (), &cu_list,
3563 &cu_list_elements, &types_list,
3564 &types_list_elements))
3565 return 0;
3566
3567 /* Don't use the index if it's empty. */
3568 if (map->symbol_table.empty ())
3569 return 0;
3570
3571 /* If there is a .dwz file, read it so we can get its CU list as
3572 well. */
3573 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3574 if (dwz != NULL)
3575 {
3576 struct mapped_index dwz_map;
3577 const gdb_byte *dwz_types_ignore;
3578 offset_type dwz_types_elements_ignore;
3579
3580 gdb::array_view<const gdb_byte> dwz_index_content
3581 = get_gdb_index_contents_dwz (objfile, dwz);
3582
3583 if (dwz_index_content.empty ())
3584 return 0;
3585
3586 if (!read_gdb_index_from_buffer (objfile,
3587 bfd_get_filename (dwz->dwz_bfd), 1,
3588 dwz_index_content, &dwz_map,
3589 &dwz_list, &dwz_list_elements,
3590 &dwz_types_ignore,
3591 &dwz_types_elements_ignore))
3592 {
3593 warning (_("could not read '.gdb_index' section from %s; skipping"),
3594 bfd_get_filename (dwz->dwz_bfd));
3595 return 0;
3596 }
3597 }
3598
3599 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3600 dwz_list, dwz_list_elements);
3601
3602 if (types_list_elements)
3603 {
3604 struct dwarf2_section_info *section;
3605
3606 /* We can only handle a single .debug_types when we have an
3607 index. */
3608 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3609 return 0;
3610
3611 section = VEC_index (dwarf2_section_info_def,
3612 dwarf2_per_objfile->types, 0);
3613
3614 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3615 types_list, types_list_elements);
3616 }
3617
3618 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3619
3620 dwarf2_per_objfile->index_table = std::move (map);
3621 dwarf2_per_objfile->using_index = 1;
3622 dwarf2_per_objfile->quick_file_names_table =
3623 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3624
3625 return 1;
3626 }
3627
3628 /* die_reader_func for dw2_get_file_names. */
3629
3630 static void
3631 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3632 const gdb_byte *info_ptr,
3633 struct die_info *comp_unit_die,
3634 int has_children,
3635 void *data)
3636 {
3637 struct dwarf2_cu *cu = reader->cu;
3638 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3639 struct dwarf2_per_objfile *dwarf2_per_objfile
3640 = cu->per_cu->dwarf2_per_objfile;
3641 struct objfile *objfile = dwarf2_per_objfile->objfile;
3642 struct dwarf2_per_cu_data *lh_cu;
3643 struct attribute *attr;
3644 int i;
3645 void **slot;
3646 struct quick_file_names *qfn;
3647
3648 gdb_assert (! this_cu->is_debug_types);
3649
3650 /* Our callers never want to match partial units -- instead they
3651 will match the enclosing full CU. */
3652 if (comp_unit_die->tag == DW_TAG_partial_unit)
3653 {
3654 this_cu->v.quick->no_file_data = 1;
3655 return;
3656 }
3657
3658 lh_cu = this_cu;
3659 slot = NULL;
3660
3661 line_header_up lh;
3662 sect_offset line_offset {};
3663
3664 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3665 if (attr)
3666 {
3667 struct quick_file_names find_entry;
3668
3669 line_offset = (sect_offset) DW_UNSND (attr);
3670
3671 /* We may have already read in this line header (TU line header sharing).
3672 If we have we're done. */
3673 find_entry.hash.dwo_unit = cu->dwo_unit;
3674 find_entry.hash.line_sect_off = line_offset;
3675 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3676 &find_entry, INSERT);
3677 if (*slot != NULL)
3678 {
3679 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3680 return;
3681 }
3682
3683 lh = dwarf_decode_line_header (line_offset, cu);
3684 }
3685 if (lh == NULL)
3686 {
3687 lh_cu->v.quick->no_file_data = 1;
3688 return;
3689 }
3690
3691 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3692 qfn->hash.dwo_unit = cu->dwo_unit;
3693 qfn->hash.line_sect_off = line_offset;
3694 gdb_assert (slot != NULL);
3695 *slot = qfn;
3696
3697 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3698
3699 qfn->num_file_names = lh->file_names.size ();
3700 qfn->file_names =
3701 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3702 for (i = 0; i < lh->file_names.size (); ++i)
3703 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3704 qfn->real_names = NULL;
3705
3706 lh_cu->v.quick->file_names = qfn;
3707 }
3708
3709 /* A helper for the "quick" functions which attempts to read the line
3710 table for THIS_CU. */
3711
3712 static struct quick_file_names *
3713 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3714 {
3715 /* This should never be called for TUs. */
3716 gdb_assert (! this_cu->is_debug_types);
3717 /* Nor type unit groups. */
3718 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3719
3720 if (this_cu->v.quick->file_names != NULL)
3721 return this_cu->v.quick->file_names;
3722 /* If we know there is no line data, no point in looking again. */
3723 if (this_cu->v.quick->no_file_data)
3724 return NULL;
3725
3726 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3727
3728 if (this_cu->v.quick->no_file_data)
3729 return NULL;
3730 return this_cu->v.quick->file_names;
3731 }
3732
3733 /* A helper for the "quick" functions which computes and caches the
3734 real path for a given file name from the line table. */
3735
3736 static const char *
3737 dw2_get_real_path (struct objfile *objfile,
3738 struct quick_file_names *qfn, int index)
3739 {
3740 if (qfn->real_names == NULL)
3741 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3742 qfn->num_file_names, const char *);
3743
3744 if (qfn->real_names[index] == NULL)
3745 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3746
3747 return qfn->real_names[index];
3748 }
3749
3750 static struct symtab *
3751 dw2_find_last_source_symtab (struct objfile *objfile)
3752 {
3753 struct dwarf2_per_objfile *dwarf2_per_objfile
3754 = get_dwarf2_per_objfile (objfile);
3755 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3756 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3757
3758 if (cust == NULL)
3759 return NULL;
3760
3761 return compunit_primary_filetab (cust);
3762 }
3763
3764 /* Traversal function for dw2_forget_cached_source_info. */
3765
3766 static int
3767 dw2_free_cached_file_names (void **slot, void *info)
3768 {
3769 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3770
3771 if (file_data->real_names)
3772 {
3773 int i;
3774
3775 for (i = 0; i < file_data->num_file_names; ++i)
3776 {
3777 xfree ((void*) file_data->real_names[i]);
3778 file_data->real_names[i] = NULL;
3779 }
3780 }
3781
3782 return 1;
3783 }
3784
3785 static void
3786 dw2_forget_cached_source_info (struct objfile *objfile)
3787 {
3788 struct dwarf2_per_objfile *dwarf2_per_objfile
3789 = get_dwarf2_per_objfile (objfile);
3790
3791 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3792 dw2_free_cached_file_names, NULL);
3793 }
3794
3795 /* Helper function for dw2_map_symtabs_matching_filename that expands
3796 the symtabs and calls the iterator. */
3797
3798 static int
3799 dw2_map_expand_apply (struct objfile *objfile,
3800 struct dwarf2_per_cu_data *per_cu,
3801 const char *name, const char *real_path,
3802 gdb::function_view<bool (symtab *)> callback)
3803 {
3804 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3805
3806 /* Don't visit already-expanded CUs. */
3807 if (per_cu->v.quick->compunit_symtab)
3808 return 0;
3809
3810 /* This may expand more than one symtab, and we want to iterate over
3811 all of them. */
3812 dw2_instantiate_symtab (per_cu, false);
3813
3814 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3815 last_made, callback);
3816 }
3817
3818 /* Implementation of the map_symtabs_matching_filename method. */
3819
3820 static bool
3821 dw2_map_symtabs_matching_filename
3822 (struct objfile *objfile, const char *name, const char *real_path,
3823 gdb::function_view<bool (symtab *)> callback)
3824 {
3825 const char *name_basename = lbasename (name);
3826 struct dwarf2_per_objfile *dwarf2_per_objfile
3827 = get_dwarf2_per_objfile (objfile);
3828
3829 /* The rule is CUs specify all the files, including those used by
3830 any TU, so there's no need to scan TUs here. */
3831
3832 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3833 {
3834 /* We only need to look at symtabs not already expanded. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 continue;
3837
3838 quick_file_names *file_data = dw2_get_file_names (per_cu);
3839 if (file_data == NULL)
3840 continue;
3841
3842 for (int j = 0; j < file_data->num_file_names; ++j)
3843 {
3844 const char *this_name = file_data->file_names[j];
3845 const char *this_real_name;
3846
3847 if (compare_filenames_for_search (this_name, name))
3848 {
3849 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3850 callback))
3851 return true;
3852 continue;
3853 }
3854
3855 /* Before we invoke realpath, which can get expensive when many
3856 files are involved, do a quick comparison of the basenames. */
3857 if (! basenames_may_differ
3858 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3859 continue;
3860
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (compare_filenames_for_search (this_real_name, name))
3863 {
3864 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3865 callback))
3866 return true;
3867 continue;
3868 }
3869
3870 if (real_path != NULL)
3871 {
3872 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3873 gdb_assert (IS_ABSOLUTE_PATH (name));
3874 if (this_real_name != NULL
3875 && FILENAME_CMP (real_path, this_real_name) == 0)
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882 }
3883 }
3884 }
3885
3886 return false;
3887 }
3888
3889 /* Struct used to manage iterating over all CUs looking for a symbol. */
3890
3891 struct dw2_symtab_iterator
3892 {
3893 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3894 struct dwarf2_per_objfile *dwarf2_per_objfile;
3895 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3896 int want_specific_block;
3897 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3898 Unused if !WANT_SPECIFIC_BLOCK. */
3899 int block_index;
3900 /* The kind of symbol we're looking for. */
3901 domain_enum domain;
3902 /* The list of CUs from the index entry of the symbol,
3903 or NULL if not found. */
3904 offset_type *vec;
3905 /* The next element in VEC to look at. */
3906 int next;
3907 /* The number of elements in VEC, or zero if there is no match. */
3908 int length;
3909 /* Have we seen a global version of the symbol?
3910 If so we can ignore all further global instances.
3911 This is to work around gold/15646, inefficient gold-generated
3912 indices. */
3913 int global_seen;
3914 };
3915
3916 /* Initialize the index symtab iterator ITER.
3917 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3918 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3919
3920 static void
3921 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3922 struct dwarf2_per_objfile *dwarf2_per_objfile,
3923 int want_specific_block,
3924 int block_index,
3925 domain_enum domain,
3926 const char *name)
3927 {
3928 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3929 iter->want_specific_block = want_specific_block;
3930 iter->block_index = block_index;
3931 iter->domain = domain;
3932 iter->next = 0;
3933 iter->global_seen = 0;
3934
3935 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3936
3937 /* index is NULL if OBJF_READNOW. */
3938 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3939 iter->length = MAYBE_SWAP (*iter->vec);
3940 else
3941 {
3942 iter->vec = NULL;
3943 iter->length = 0;
3944 }
3945 }
3946
3947 /* Return the next matching CU or NULL if there are no more. */
3948
3949 static struct dwarf2_per_cu_data *
3950 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3951 {
3952 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3953
3954 for ( ; iter->next < iter->length; ++iter->next)
3955 {
3956 offset_type cu_index_and_attrs =
3957 MAYBE_SWAP (iter->vec[iter->next + 1]);
3958 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3959 int want_static = iter->block_index != GLOBAL_BLOCK;
3960 /* This value is only valid for index versions >= 7. */
3961 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3962 gdb_index_symbol_kind symbol_kind =
3963 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3964 /* Only check the symbol attributes if they're present.
3965 Indices prior to version 7 don't record them,
3966 and indices >= 7 may elide them for certain symbols
3967 (gold does this). */
3968 int attrs_valid =
3969 (dwarf2_per_objfile->index_table->version >= 7
3970 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3971
3972 /* Don't crash on bad data. */
3973 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3974 + dwarf2_per_objfile->all_type_units.size ()))
3975 {
3976 complaint (_(".gdb_index entry has bad CU index"
3977 " [in module %s]"),
3978 objfile_name (dwarf2_per_objfile->objfile));
3979 continue;
3980 }
3981
3982 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3983
3984 /* Skip if already read in. */
3985 if (per_cu->v.quick->compunit_symtab)
3986 continue;
3987
3988 /* Check static vs global. */
3989 if (attrs_valid)
3990 {
3991 if (iter->want_specific_block
3992 && want_static != is_static)
3993 continue;
3994 /* Work around gold/15646. */
3995 if (!is_static && iter->global_seen)
3996 continue;
3997 if (!is_static)
3998 iter->global_seen = 1;
3999 }
4000
4001 /* Only check the symbol's kind if it has one. */
4002 if (attrs_valid)
4003 {
4004 switch (iter->domain)
4005 {
4006 case VAR_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4008 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4009 /* Some types are also in VAR_DOMAIN. */
4010 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4011 continue;
4012 break;
4013 case STRUCT_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 case LABEL_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 ++iter->next;
4027 return per_cu;
4028 }
4029
4030 return NULL;
4031 }
4032
4033 static struct compunit_symtab *
4034 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4035 const char *name, domain_enum domain)
4036 {
4037 struct compunit_symtab *stab_best = NULL;
4038 struct dwarf2_per_objfile *dwarf2_per_objfile
4039 = get_dwarf2_per_objfile (objfile);
4040
4041 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4042
4043 struct dw2_symtab_iterator iter;
4044 struct dwarf2_per_cu_data *per_cu;
4045
4046 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4047
4048 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4049 {
4050 struct symbol *sym, *with_opaque = NULL;
4051 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4052 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4053 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4054
4055 sym = block_find_symbol (block, name, domain,
4056 block_find_non_opaque_type_preferred,
4057 &with_opaque);
4058
4059 /* Some caution must be observed with overloaded functions
4060 and methods, since the index will not contain any overload
4061 information (but NAME might contain it). */
4062
4063 if (sym != NULL
4064 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4065 return stab;
4066 if (with_opaque != NULL
4067 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4068 stab_best = stab;
4069
4070 /* Keep looking through other CUs. */
4071 }
4072
4073 return stab_best;
4074 }
4075
4076 static void
4077 dw2_print_stats (struct objfile *objfile)
4078 {
4079 struct dwarf2_per_objfile *dwarf2_per_objfile
4080 = get_dwarf2_per_objfile (objfile);
4081 int total = (dwarf2_per_objfile->all_comp_units.size ()
4082 + dwarf2_per_objfile->all_type_units.size ());
4083 int count = 0;
4084
4085 for (int i = 0; i < total; ++i)
4086 {
4087 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4088
4089 if (!per_cu->v.quick->compunit_symtab)
4090 ++count;
4091 }
4092 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4093 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4094 }
4095
4096 /* This dumps minimal information about the index.
4097 It is called via "mt print objfiles".
4098 One use is to verify .gdb_index has been loaded by the
4099 gdb.dwarf2/gdb-index.exp testcase. */
4100
4101 static void
4102 dw2_dump (struct objfile *objfile)
4103 {
4104 struct dwarf2_per_objfile *dwarf2_per_objfile
4105 = get_dwarf2_per_objfile (objfile);
4106
4107 gdb_assert (dwarf2_per_objfile->using_index);
4108 printf_filtered (".gdb_index:");
4109 if (dwarf2_per_objfile->index_table != NULL)
4110 {
4111 printf_filtered (" version %d\n",
4112 dwarf2_per_objfile->index_table->version);
4113 }
4114 else
4115 printf_filtered (" faked for \"readnow\"\n");
4116 printf_filtered ("\n");
4117 }
4118
4119 static void
4120 dw2_expand_symtabs_for_function (struct objfile *objfile,
4121 const char *func_name)
4122 {
4123 struct dwarf2_per_objfile *dwarf2_per_objfile
4124 = get_dwarf2_per_objfile (objfile);
4125
4126 struct dw2_symtab_iterator iter;
4127 struct dwarf2_per_cu_data *per_cu;
4128
4129 /* Note: It doesn't matter what we pass for block_index here. */
4130 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4131 func_name);
4132
4133 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4134 dw2_instantiate_symtab (per_cu, false);
4135
4136 }
4137
4138 static void
4139 dw2_expand_all_symtabs (struct objfile *objfile)
4140 {
4141 struct dwarf2_per_objfile *dwarf2_per_objfile
4142 = get_dwarf2_per_objfile (objfile);
4143 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4144 + dwarf2_per_objfile->all_type_units.size ());
4145
4146 for (int i = 0; i < total_units; ++i)
4147 {
4148 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4149
4150 /* We don't want to directly expand a partial CU, because if we
4151 read it with the wrong language, then assertion failures can
4152 be triggered later on. See PR symtab/23010. So, tell
4153 dw2_instantiate_symtab to skip partial CUs -- any important
4154 partial CU will be read via DW_TAG_imported_unit anyway. */
4155 dw2_instantiate_symtab (per_cu, true);
4156 }
4157 }
4158
4159 static void
4160 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4161 const char *fullname)
4162 {
4163 struct dwarf2_per_objfile *dwarf2_per_objfile
4164 = get_dwarf2_per_objfile (objfile);
4165
4166 /* We don't need to consider type units here.
4167 This is only called for examining code, e.g. expand_line_sal.
4168 There can be an order of magnitude (or more) more type units
4169 than comp units, and we avoid them if we can. */
4170
4171 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4172 {
4173 /* We only need to look at symtabs not already expanded. */
4174 if (per_cu->v.quick->compunit_symtab)
4175 continue;
4176
4177 quick_file_names *file_data = dw2_get_file_names (per_cu);
4178 if (file_data == NULL)
4179 continue;
4180
4181 for (int j = 0; j < file_data->num_file_names; ++j)
4182 {
4183 const char *this_fullname = file_data->file_names[j];
4184
4185 if (filename_cmp (this_fullname, fullname) == 0)
4186 {
4187 dw2_instantiate_symtab (per_cu, false);
4188 break;
4189 }
4190 }
4191 }
4192 }
4193
4194 static void
4195 dw2_map_matching_symbols (struct objfile *objfile,
4196 const char * name, domain_enum domain,
4197 int global,
4198 int (*callback) (const struct block *,
4199 struct symbol *, void *),
4200 void *data, symbol_name_match_type match,
4201 symbol_compare_ftype *ordered_compare)
4202 {
4203 /* Currently unimplemented; used for Ada. The function can be called if the
4204 current language is Ada for a non-Ada objfile using GNU index. As Ada
4205 does not look for non-Ada symbols this function should just return. */
4206 }
4207
4208 /* Symbol name matcher for .gdb_index names.
4209
4210 Symbol names in .gdb_index have a few particularities:
4211
4212 - There's no indication of which is the language of each symbol.
4213
4214 Since each language has its own symbol name matching algorithm,
4215 and we don't know which language is the right one, we must match
4216 each symbol against all languages. This would be a potential
4217 performance problem if it were not mitigated by the
4218 mapped_index::name_components lookup table, which significantly
4219 reduces the number of times we need to call into this matcher,
4220 making it a non-issue.
4221
4222 - Symbol names in the index have no overload (parameter)
4223 information. I.e., in C++, "foo(int)" and "foo(long)" both
4224 appear as "foo" in the index, for example.
4225
4226 This means that the lookup names passed to the symbol name
4227 matcher functions must have no parameter information either
4228 because (e.g.) symbol search name "foo" does not match
4229 lookup-name "foo(int)" [while swapping search name for lookup
4230 name would match].
4231 */
4232 class gdb_index_symbol_name_matcher
4233 {
4234 public:
4235 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4236 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4237
4238 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4239 Returns true if any matcher matches. */
4240 bool matches (const char *symbol_name);
4241
4242 private:
4243 /* A reference to the lookup name we're matching against. */
4244 const lookup_name_info &m_lookup_name;
4245
4246 /* A vector holding all the different symbol name matchers, for all
4247 languages. */
4248 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4249 };
4250
4251 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4252 (const lookup_name_info &lookup_name)
4253 : m_lookup_name (lookup_name)
4254 {
4255 /* Prepare the vector of comparison functions upfront, to avoid
4256 doing the same work for each symbol. Care is taken to avoid
4257 matching with the same matcher more than once if/when multiple
4258 languages use the same matcher function. */
4259 auto &matchers = m_symbol_name_matcher_funcs;
4260 matchers.reserve (nr_languages);
4261
4262 matchers.push_back (default_symbol_name_matcher);
4263
4264 for (int i = 0; i < nr_languages; i++)
4265 {
4266 const language_defn *lang = language_def ((enum language) i);
4267 symbol_name_matcher_ftype *name_matcher
4268 = get_symbol_name_matcher (lang, m_lookup_name);
4269
4270 /* Don't insert the same comparison routine more than once.
4271 Note that we do this linear walk instead of a seemingly
4272 cheaper sorted insert, or use a std::set or something like
4273 that, because relative order of function addresses is not
4274 stable. This is not a problem in practice because the number
4275 of supported languages is low, and the cost here is tiny
4276 compared to the number of searches we'll do afterwards using
4277 this object. */
4278 if (name_matcher != default_symbol_name_matcher
4279 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4280 == matchers.end ()))
4281 matchers.push_back (name_matcher);
4282 }
4283 }
4284
4285 bool
4286 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4287 {
4288 for (auto matches_name : m_symbol_name_matcher_funcs)
4289 if (matches_name (symbol_name, m_lookup_name, NULL))
4290 return true;
4291
4292 return false;
4293 }
4294
4295 /* Starting from a search name, return the string that finds the upper
4296 bound of all strings that start with SEARCH_NAME in a sorted name
4297 list. Returns the empty string to indicate that the upper bound is
4298 the end of the list. */
4299
4300 static std::string
4301 make_sort_after_prefix_name (const char *search_name)
4302 {
4303 /* When looking to complete "func", we find the upper bound of all
4304 symbols that start with "func" by looking for where we'd insert
4305 the closest string that would follow "func" in lexicographical
4306 order. Usually, that's "func"-with-last-character-incremented,
4307 i.e. "fund". Mind non-ASCII characters, though. Usually those
4308 will be UTF-8 multi-byte sequences, but we can't be certain.
4309 Especially mind the 0xff character, which is a valid character in
4310 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4311 rule out compilers allowing it in identifiers. Note that
4312 conveniently, strcmp/strcasecmp are specified to compare
4313 characters interpreted as unsigned char. So what we do is treat
4314 the whole string as a base 256 number composed of a sequence of
4315 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4316 to 0, and carries 1 to the following more-significant position.
4317 If the very first character in SEARCH_NAME ends up incremented
4318 and carries/overflows, then the upper bound is the end of the
4319 list. The string after the empty string is also the empty
4320 string.
4321
4322 Some examples of this operation:
4323
4324 SEARCH_NAME => "+1" RESULT
4325
4326 "abc" => "abd"
4327 "ab\xff" => "ac"
4328 "\xff" "a" "\xff" => "\xff" "b"
4329 "\xff" => ""
4330 "\xff\xff" => ""
4331 "" => ""
4332
4333 Then, with these symbols for example:
4334
4335 func
4336 func1
4337 fund
4338
4339 completing "func" looks for symbols between "func" and
4340 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4341 which finds "func" and "func1", but not "fund".
4342
4343 And with:
4344
4345 funcÿ (Latin1 'ÿ' [0xff])
4346 funcÿ1
4347 fund
4348
4349 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4350 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4351
4352 And with:
4353
4354 ÿÿ (Latin1 'ÿ' [0xff])
4355 ÿÿ1
4356
4357 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4358 the end of the list.
4359 */
4360 std::string after = search_name;
4361 while (!after.empty () && (unsigned char) after.back () == 0xff)
4362 after.pop_back ();
4363 if (!after.empty ())
4364 after.back () = (unsigned char) after.back () + 1;
4365 return after;
4366 }
4367
4368 /* See declaration. */
4369
4370 std::pair<std::vector<name_component>::const_iterator,
4371 std::vector<name_component>::const_iterator>
4372 mapped_index_base::find_name_components_bounds
4373 (const lookup_name_info &lookup_name_without_params) const
4374 {
4375 auto *name_cmp
4376 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4377
4378 const char *cplus
4379 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4380
4381 /* Comparison function object for lower_bound that matches against a
4382 given symbol name. */
4383 auto lookup_compare_lower = [&] (const name_component &elem,
4384 const char *name)
4385 {
4386 const char *elem_qualified = this->symbol_name_at (elem.idx);
4387 const char *elem_name = elem_qualified + elem.name_offset;
4388 return name_cmp (elem_name, name) < 0;
4389 };
4390
4391 /* Comparison function object for upper_bound that matches against a
4392 given symbol name. */
4393 auto lookup_compare_upper = [&] (const char *name,
4394 const name_component &elem)
4395 {
4396 const char *elem_qualified = this->symbol_name_at (elem.idx);
4397 const char *elem_name = elem_qualified + elem.name_offset;
4398 return name_cmp (name, elem_name) < 0;
4399 };
4400
4401 auto begin = this->name_components.begin ();
4402 auto end = this->name_components.end ();
4403
4404 /* Find the lower bound. */
4405 auto lower = [&] ()
4406 {
4407 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4408 return begin;
4409 else
4410 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4411 } ();
4412
4413 /* Find the upper bound. */
4414 auto upper = [&] ()
4415 {
4416 if (lookup_name_without_params.completion_mode ())
4417 {
4418 /* In completion mode, we want UPPER to point past all
4419 symbols names that have the same prefix. I.e., with
4420 these symbols, and completing "func":
4421
4422 function << lower bound
4423 function1
4424 other_function << upper bound
4425
4426 We find the upper bound by looking for the insertion
4427 point of "func"-with-last-character-incremented,
4428 i.e. "fund". */
4429 std::string after = make_sort_after_prefix_name (cplus);
4430 if (after.empty ())
4431 return end;
4432 return std::lower_bound (lower, end, after.c_str (),
4433 lookup_compare_lower);
4434 }
4435 else
4436 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4437 } ();
4438
4439 return {lower, upper};
4440 }
4441
4442 /* See declaration. */
4443
4444 void
4445 mapped_index_base::build_name_components ()
4446 {
4447 if (!this->name_components.empty ())
4448 return;
4449
4450 this->name_components_casing = case_sensitivity;
4451 auto *name_cmp
4452 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4453
4454 /* The code below only knows how to break apart components of C++
4455 symbol names (and other languages that use '::' as
4456 namespace/module separator). If we add support for wild matching
4457 to some language that uses some other operator (E.g., Ada, Go and
4458 D use '.'), then we'll need to try splitting the symbol name
4459 according to that language too. Note that Ada does support wild
4460 matching, but doesn't currently support .gdb_index. */
4461 auto count = this->symbol_name_count ();
4462 for (offset_type idx = 0; idx < count; idx++)
4463 {
4464 if (this->symbol_name_slot_invalid (idx))
4465 continue;
4466
4467 const char *name = this->symbol_name_at (idx);
4468
4469 /* Add each name component to the name component table. */
4470 unsigned int previous_len = 0;
4471 for (unsigned int current_len = cp_find_first_component (name);
4472 name[current_len] != '\0';
4473 current_len += cp_find_first_component (name + current_len))
4474 {
4475 gdb_assert (name[current_len] == ':');
4476 this->name_components.push_back ({previous_len, idx});
4477 /* Skip the '::'. */
4478 current_len += 2;
4479 previous_len = current_len;
4480 }
4481 this->name_components.push_back ({previous_len, idx});
4482 }
4483
4484 /* Sort name_components elements by name. */
4485 auto name_comp_compare = [&] (const name_component &left,
4486 const name_component &right)
4487 {
4488 const char *left_qualified = this->symbol_name_at (left.idx);
4489 const char *right_qualified = this->symbol_name_at (right.idx);
4490
4491 const char *left_name = left_qualified + left.name_offset;
4492 const char *right_name = right_qualified + right.name_offset;
4493
4494 return name_cmp (left_name, right_name) < 0;
4495 };
4496
4497 std::sort (this->name_components.begin (),
4498 this->name_components.end (),
4499 name_comp_compare);
4500 }
4501
4502 /* Helper for dw2_expand_symtabs_matching that works with a
4503 mapped_index_base instead of the containing objfile. This is split
4504 to a separate function in order to be able to unit test the
4505 name_components matching using a mock mapped_index_base. For each
4506 symbol name that matches, calls MATCH_CALLBACK, passing it the
4507 symbol's index in the mapped_index_base symbol table. */
4508
4509 static void
4510 dw2_expand_symtabs_matching_symbol
4511 (mapped_index_base &index,
4512 const lookup_name_info &lookup_name_in,
4513 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4514 enum search_domain kind,
4515 gdb::function_view<void (offset_type)> match_callback)
4516 {
4517 lookup_name_info lookup_name_without_params
4518 = lookup_name_in.make_ignore_params ();
4519 gdb_index_symbol_name_matcher lookup_name_matcher
4520 (lookup_name_without_params);
4521
4522 /* Build the symbol name component sorted vector, if we haven't
4523 yet. */
4524 index.build_name_components ();
4525
4526 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4527
4528 /* Now for each symbol name in range, check to see if we have a name
4529 match, and if so, call the MATCH_CALLBACK callback. */
4530
4531 /* The same symbol may appear more than once in the range though.
4532 E.g., if we're looking for symbols that complete "w", and we have
4533 a symbol named "w1::w2", we'll find the two name components for
4534 that same symbol in the range. To be sure we only call the
4535 callback once per symbol, we first collect the symbol name
4536 indexes that matched in a temporary vector and ignore
4537 duplicates. */
4538 std::vector<offset_type> matches;
4539 matches.reserve (std::distance (bounds.first, bounds.second));
4540
4541 for (; bounds.first != bounds.second; ++bounds.first)
4542 {
4543 const char *qualified = index.symbol_name_at (bounds.first->idx);
4544
4545 if (!lookup_name_matcher.matches (qualified)
4546 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4547 continue;
4548
4549 matches.push_back (bounds.first->idx);
4550 }
4551
4552 std::sort (matches.begin (), matches.end ());
4553
4554 /* Finally call the callback, once per match. */
4555 ULONGEST prev = -1;
4556 for (offset_type idx : matches)
4557 {
4558 if (prev != idx)
4559 {
4560 match_callback (idx);
4561 prev = idx;
4562 }
4563 }
4564
4565 /* Above we use a type wider than idx's for 'prev', since 0 and
4566 (offset_type)-1 are both possible values. */
4567 static_assert (sizeof (prev) > sizeof (offset_type), "");
4568 }
4569
4570 #if GDB_SELF_TEST
4571
4572 namespace selftests { namespace dw2_expand_symtabs_matching {
4573
4574 /* A mock .gdb_index/.debug_names-like name index table, enough to
4575 exercise dw2_expand_symtabs_matching_symbol, which works with the
4576 mapped_index_base interface. Builds an index from the symbol list
4577 passed as parameter to the constructor. */
4578 class mock_mapped_index : public mapped_index_base
4579 {
4580 public:
4581 mock_mapped_index (gdb::array_view<const char *> symbols)
4582 : m_symbol_table (symbols)
4583 {}
4584
4585 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4586
4587 /* Return the number of names in the symbol table. */
4588 size_t symbol_name_count () const override
4589 {
4590 return m_symbol_table.size ();
4591 }
4592
4593 /* Get the name of the symbol at IDX in the symbol table. */
4594 const char *symbol_name_at (offset_type idx) const override
4595 {
4596 return m_symbol_table[idx];
4597 }
4598
4599 private:
4600 gdb::array_view<const char *> m_symbol_table;
4601 };
4602
4603 /* Convenience function that converts a NULL pointer to a "<null>"
4604 string, to pass to print routines. */
4605
4606 static const char *
4607 string_or_null (const char *str)
4608 {
4609 return str != NULL ? str : "<null>";
4610 }
4611
4612 /* Check if a lookup_name_info built from
4613 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4614 index. EXPECTED_LIST is the list of expected matches, in expected
4615 matching order. If no match expected, then an empty list is
4616 specified. Returns true on success. On failure prints a warning
4617 indicating the file:line that failed, and returns false. */
4618
4619 static bool
4620 check_match (const char *file, int line,
4621 mock_mapped_index &mock_index,
4622 const char *name, symbol_name_match_type match_type,
4623 bool completion_mode,
4624 std::initializer_list<const char *> expected_list)
4625 {
4626 lookup_name_info lookup_name (name, match_type, completion_mode);
4627
4628 bool matched = true;
4629
4630 auto mismatch = [&] (const char *expected_str,
4631 const char *got)
4632 {
4633 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4634 "expected=\"%s\", got=\"%s\"\n"),
4635 file, line,
4636 (match_type == symbol_name_match_type::FULL
4637 ? "FULL" : "WILD"),
4638 name, string_or_null (expected_str), string_or_null (got));
4639 matched = false;
4640 };
4641
4642 auto expected_it = expected_list.begin ();
4643 auto expected_end = expected_list.end ();
4644
4645 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4646 NULL, ALL_DOMAIN,
4647 [&] (offset_type idx)
4648 {
4649 const char *matched_name = mock_index.symbol_name_at (idx);
4650 const char *expected_str
4651 = expected_it == expected_end ? NULL : *expected_it++;
4652
4653 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4654 mismatch (expected_str, matched_name);
4655 });
4656
4657 const char *expected_str
4658 = expected_it == expected_end ? NULL : *expected_it++;
4659 if (expected_str != NULL)
4660 mismatch (expected_str, NULL);
4661
4662 return matched;
4663 }
4664
4665 /* The symbols added to the mock mapped_index for testing (in
4666 canonical form). */
4667 static const char *test_symbols[] = {
4668 "function",
4669 "std::bar",
4670 "std::zfunction",
4671 "std::zfunction2",
4672 "w1::w2",
4673 "ns::foo<char*>",
4674 "ns::foo<int>",
4675 "ns::foo<long>",
4676 "ns2::tmpl<int>::foo2",
4677 "(anonymous namespace)::A::B::C",
4678
4679 /* These are used to check that the increment-last-char in the
4680 matching algorithm for completion doesn't match "t1_fund" when
4681 completing "t1_func". */
4682 "t1_func",
4683 "t1_func1",
4684 "t1_fund",
4685 "t1_fund1",
4686
4687 /* A UTF-8 name with multi-byte sequences to make sure that
4688 cp-name-parser understands this as a single identifier ("função"
4689 is "function" in PT). */
4690 u8"u8função",
4691
4692 /* \377 (0xff) is Latin1 'ÿ'. */
4693 "yfunc\377",
4694
4695 /* \377 (0xff) is Latin1 'ÿ'. */
4696 "\377",
4697 "\377\377123",
4698
4699 /* A name with all sorts of complications. Starts with "z" to make
4700 it easier for the completion tests below. */
4701 #define Z_SYM_NAME \
4702 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4703 "::tuple<(anonymous namespace)::ui*, " \
4704 "std::default_delete<(anonymous namespace)::ui>, void>"
4705
4706 Z_SYM_NAME
4707 };
4708
4709 /* Returns true if the mapped_index_base::find_name_component_bounds
4710 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4711 in completion mode. */
4712
4713 static bool
4714 check_find_bounds_finds (mapped_index_base &index,
4715 const char *search_name,
4716 gdb::array_view<const char *> expected_syms)
4717 {
4718 lookup_name_info lookup_name (search_name,
4719 symbol_name_match_type::FULL, true);
4720
4721 auto bounds = index.find_name_components_bounds (lookup_name);
4722
4723 size_t distance = std::distance (bounds.first, bounds.second);
4724 if (distance != expected_syms.size ())
4725 return false;
4726
4727 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4728 {
4729 auto nc_elem = bounds.first + exp_elem;
4730 const char *qualified = index.symbol_name_at (nc_elem->idx);
4731 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4732 return false;
4733 }
4734
4735 return true;
4736 }
4737
4738 /* Test the lower-level mapped_index::find_name_component_bounds
4739 method. */
4740
4741 static void
4742 test_mapped_index_find_name_component_bounds ()
4743 {
4744 mock_mapped_index mock_index (test_symbols);
4745
4746 mock_index.build_name_components ();
4747
4748 /* Test the lower-level mapped_index::find_name_component_bounds
4749 method in completion mode. */
4750 {
4751 static const char *expected_syms[] = {
4752 "t1_func",
4753 "t1_func1",
4754 };
4755
4756 SELF_CHECK (check_find_bounds_finds (mock_index,
4757 "t1_func", expected_syms));
4758 }
4759
4760 /* Check that the increment-last-char in the name matching algorithm
4761 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4762 {
4763 static const char *expected_syms1[] = {
4764 "\377",
4765 "\377\377123",
4766 };
4767 SELF_CHECK (check_find_bounds_finds (mock_index,
4768 "\377", expected_syms1));
4769
4770 static const char *expected_syms2[] = {
4771 "\377\377123",
4772 };
4773 SELF_CHECK (check_find_bounds_finds (mock_index,
4774 "\377\377", expected_syms2));
4775 }
4776 }
4777
4778 /* Test dw2_expand_symtabs_matching_symbol. */
4779
4780 static void
4781 test_dw2_expand_symtabs_matching_symbol ()
4782 {
4783 mock_mapped_index mock_index (test_symbols);
4784
4785 /* We let all tests run until the end even if some fails, for debug
4786 convenience. */
4787 bool any_mismatch = false;
4788
4789 /* Create the expected symbols list (an initializer_list). Needed
4790 because lists have commas, and we need to pass them to CHECK,
4791 which is a macro. */
4792 #define EXPECT(...) { __VA_ARGS__ }
4793
4794 /* Wrapper for check_match that passes down the current
4795 __FILE__/__LINE__. */
4796 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4797 any_mismatch |= !check_match (__FILE__, __LINE__, \
4798 mock_index, \
4799 NAME, MATCH_TYPE, COMPLETION_MODE, \
4800 EXPECTED_LIST)
4801
4802 /* Identity checks. */
4803 for (const char *sym : test_symbols)
4804 {
4805 /* Should be able to match all existing symbols. */
4806 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4807 EXPECT (sym));
4808
4809 /* Should be able to match all existing symbols with
4810 parameters. */
4811 std::string with_params = std::string (sym) + "(int)";
4812 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 EXPECT (sym));
4814
4815 /* Should be able to match all existing symbols with
4816 parameters and qualifiers. */
4817 with_params = std::string (sym) + " ( int ) const";
4818 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4819 EXPECT (sym));
4820
4821 /* This should really find sym, but cp-name-parser.y doesn't
4822 know about lvalue/rvalue qualifiers yet. */
4823 with_params = std::string (sym) + " ( int ) &&";
4824 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4825 {});
4826 }
4827
4828 /* Check that the name matching algorithm for completion doesn't get
4829 confused with Latin1 'ÿ' / 0xff. */
4830 {
4831 static const char str[] = "\377";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("\377", "\377\377123"));
4834 }
4835
4836 /* Check that the increment-last-char in the matching algorithm for
4837 completion doesn't match "t1_fund" when completing "t1_func". */
4838 {
4839 static const char str[] = "t1_func";
4840 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4841 EXPECT ("t1_func", "t1_func1"));
4842 }
4843
4844 /* Check that completion mode works at each prefix of the expected
4845 symbol name. */
4846 {
4847 static const char str[] = "function(int)";
4848 size_t len = strlen (str);
4849 std::string lookup;
4850
4851 for (size_t i = 1; i < len; i++)
4852 {
4853 lookup.assign (str, i);
4854 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4855 EXPECT ("function"));
4856 }
4857 }
4858
4859 /* While "w" is a prefix of both components, the match function
4860 should still only be called once. */
4861 {
4862 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4863 EXPECT ("w1::w2"));
4864 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4865 EXPECT ("w1::w2"));
4866 }
4867
4868 /* Same, with a "complicated" symbol. */
4869 {
4870 static const char str[] = Z_SYM_NAME;
4871 size_t len = strlen (str);
4872 std::string lookup;
4873
4874 for (size_t i = 1; i < len; i++)
4875 {
4876 lookup.assign (str, i);
4877 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4878 EXPECT (Z_SYM_NAME));
4879 }
4880 }
4881
4882 /* In FULL mode, an incomplete symbol doesn't match. */
4883 {
4884 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4885 {});
4886 }
4887
4888 /* A complete symbol with parameters matches any overload, since the
4889 index has no overload info. */
4890 {
4891 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4892 EXPECT ("std::zfunction", "std::zfunction2"));
4893 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4894 EXPECT ("std::zfunction", "std::zfunction2"));
4895 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4896 EXPECT ("std::zfunction", "std::zfunction2"));
4897 }
4898
4899 /* Check that whitespace is ignored appropriately. A symbol with a
4900 template argument list. */
4901 {
4902 static const char expected[] = "ns::foo<int>";
4903 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4904 EXPECT (expected));
4905 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4906 EXPECT (expected));
4907 }
4908
4909 /* Check that whitespace is ignored appropriately. A symbol with a
4910 template argument list that includes a pointer. */
4911 {
4912 static const char expected[] = "ns::foo<char*>";
4913 /* Try both completion and non-completion modes. */
4914 static const bool completion_mode[2] = {false, true};
4915 for (size_t i = 0; i < 2; i++)
4916 {
4917 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4918 completion_mode[i], EXPECT (expected));
4919 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4920 completion_mode[i], EXPECT (expected));
4921
4922 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4923 completion_mode[i], EXPECT (expected));
4924 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4925 completion_mode[i], EXPECT (expected));
4926 }
4927 }
4928
4929 {
4930 /* Check method qualifiers are ignored. */
4931 static const char expected[] = "ns::foo<char*>";
4932 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4933 symbol_name_match_type::FULL, true, EXPECT (expected));
4934 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4935 symbol_name_match_type::FULL, true, EXPECT (expected));
4936 CHECK_MATCH ("foo < char * > ( int ) const",
4937 symbol_name_match_type::WILD, true, EXPECT (expected));
4938 CHECK_MATCH ("foo < char * > ( int ) &&",
4939 symbol_name_match_type::WILD, true, EXPECT (expected));
4940 }
4941
4942 /* Test lookup names that don't match anything. */
4943 {
4944 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4945 {});
4946
4947 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4948 {});
4949 }
4950
4951 /* Some wild matching tests, exercising "(anonymous namespace)",
4952 which should not be confused with a parameter list. */
4953 {
4954 static const char *syms[] = {
4955 "A::B::C",
4956 "B::C",
4957 "C",
4958 "A :: B :: C ( int )",
4959 "B :: C ( int )",
4960 "C ( int )",
4961 };
4962
4963 for (const char *s : syms)
4964 {
4965 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4966 EXPECT ("(anonymous namespace)::A::B::C"));
4967 }
4968 }
4969
4970 {
4971 static const char expected[] = "ns2::tmpl<int>::foo2";
4972 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4973 EXPECT (expected));
4974 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4975 EXPECT (expected));
4976 }
4977
4978 SELF_CHECK (!any_mismatch);
4979
4980 #undef EXPECT
4981 #undef CHECK_MATCH
4982 }
4983
4984 static void
4985 run_test ()
4986 {
4987 test_mapped_index_find_name_component_bounds ();
4988 test_dw2_expand_symtabs_matching_symbol ();
4989 }
4990
4991 }} // namespace selftests::dw2_expand_symtabs_matching
4992
4993 #endif /* GDB_SELF_TEST */
4994
4995 /* If FILE_MATCHER is NULL or if PER_CU has
4996 dwarf2_per_cu_quick_data::MARK set (see
4997 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4998 EXPANSION_NOTIFY on it. */
4999
5000 static void
5001 dw2_expand_symtabs_matching_one
5002 (struct dwarf2_per_cu_data *per_cu,
5003 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5004 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5005 {
5006 if (file_matcher == NULL || per_cu->v.quick->mark)
5007 {
5008 bool symtab_was_null
5009 = (per_cu->v.quick->compunit_symtab == NULL);
5010
5011 dw2_instantiate_symtab (per_cu, false);
5012
5013 if (expansion_notify != NULL
5014 && symtab_was_null
5015 && per_cu->v.quick->compunit_symtab != NULL)
5016 expansion_notify (per_cu->v.quick->compunit_symtab);
5017 }
5018 }
5019
5020 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5021 matched, to expand corresponding CUs that were marked. IDX is the
5022 index of the symbol name that matched. */
5023
5024 static void
5025 dw2_expand_marked_cus
5026 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5027 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5028 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5029 search_domain kind)
5030 {
5031 offset_type *vec, vec_len, vec_idx;
5032 bool global_seen = false;
5033 mapped_index &index = *dwarf2_per_objfile->index_table;
5034
5035 vec = (offset_type *) (index.constant_pool
5036 + MAYBE_SWAP (index.symbol_table[idx].vec));
5037 vec_len = MAYBE_SWAP (vec[0]);
5038 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5039 {
5040 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5041 /* This value is only valid for index versions >= 7. */
5042 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5043 gdb_index_symbol_kind symbol_kind =
5044 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5045 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5046 /* Only check the symbol attributes if they're present.
5047 Indices prior to version 7 don't record them,
5048 and indices >= 7 may elide them for certain symbols
5049 (gold does this). */
5050 int attrs_valid =
5051 (index.version >= 7
5052 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5053
5054 /* Work around gold/15646. */
5055 if (attrs_valid)
5056 {
5057 if (!is_static && global_seen)
5058 continue;
5059 if (!is_static)
5060 global_seen = true;
5061 }
5062
5063 /* Only check the symbol's kind if it has one. */
5064 if (attrs_valid)
5065 {
5066 switch (kind)
5067 {
5068 case VARIABLES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5070 continue;
5071 break;
5072 case FUNCTIONS_DOMAIN:
5073 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5074 continue;
5075 break;
5076 case TYPES_DOMAIN:
5077 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5078 continue;
5079 break;
5080 default:
5081 break;
5082 }
5083 }
5084
5085 /* Don't crash on bad data. */
5086 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5087 + dwarf2_per_objfile->all_type_units.size ()))
5088 {
5089 complaint (_(".gdb_index entry has bad CU index"
5090 " [in module %s]"),
5091 objfile_name (dwarf2_per_objfile->objfile));
5092 continue;
5093 }
5094
5095 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5096 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5097 expansion_notify);
5098 }
5099 }
5100
5101 /* If FILE_MATCHER is non-NULL, set all the
5102 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5103 that match FILE_MATCHER. */
5104
5105 static void
5106 dw_expand_symtabs_matching_file_matcher
5107 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5108 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5109 {
5110 if (file_matcher == NULL)
5111 return;
5112
5113 objfile *const objfile = dwarf2_per_objfile->objfile;
5114
5115 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5116 htab_eq_pointer,
5117 NULL, xcalloc, xfree));
5118 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5119 htab_eq_pointer,
5120 NULL, xcalloc, xfree));
5121
5122 /* The rule is CUs specify all the files, including those used by
5123 any TU, so there's no need to scan TUs here. */
5124
5125 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5126 {
5127 QUIT;
5128
5129 per_cu->v.quick->mark = 0;
5130
5131 /* We only need to look at symtabs not already expanded. */
5132 if (per_cu->v.quick->compunit_symtab)
5133 continue;
5134
5135 quick_file_names *file_data = dw2_get_file_names (per_cu);
5136 if (file_data == NULL)
5137 continue;
5138
5139 if (htab_find (visited_not_found.get (), file_data) != NULL)
5140 continue;
5141 else if (htab_find (visited_found.get (), file_data) != NULL)
5142 {
5143 per_cu->v.quick->mark = 1;
5144 continue;
5145 }
5146
5147 for (int j = 0; j < file_data->num_file_names; ++j)
5148 {
5149 const char *this_real_name;
5150
5151 if (file_matcher (file_data->file_names[j], false))
5152 {
5153 per_cu->v.quick->mark = 1;
5154 break;
5155 }
5156
5157 /* Before we invoke realpath, which can get expensive when many
5158 files are involved, do a quick comparison of the basenames. */
5159 if (!basenames_may_differ
5160 && !file_matcher (lbasename (file_data->file_names[j]),
5161 true))
5162 continue;
5163
5164 this_real_name = dw2_get_real_path (objfile, file_data, j);
5165 if (file_matcher (this_real_name, false))
5166 {
5167 per_cu->v.quick->mark = 1;
5168 break;
5169 }
5170 }
5171
5172 void **slot = htab_find_slot (per_cu->v.quick->mark
5173 ? visited_found.get ()
5174 : visited_not_found.get (),
5175 file_data, INSERT);
5176 *slot = file_data;
5177 }
5178 }
5179
5180 static void
5181 dw2_expand_symtabs_matching
5182 (struct objfile *objfile,
5183 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5184 const lookup_name_info &lookup_name,
5185 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5186 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5187 enum search_domain kind)
5188 {
5189 struct dwarf2_per_objfile *dwarf2_per_objfile
5190 = get_dwarf2_per_objfile (objfile);
5191
5192 /* index_table is NULL if OBJF_READNOW. */
5193 if (!dwarf2_per_objfile->index_table)
5194 return;
5195
5196 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5197
5198 mapped_index &index = *dwarf2_per_objfile->index_table;
5199
5200 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5201 symbol_matcher,
5202 kind, [&] (offset_type idx)
5203 {
5204 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5205 expansion_notify, kind);
5206 });
5207 }
5208
5209 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5210 symtab. */
5211
5212 static struct compunit_symtab *
5213 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5214 CORE_ADDR pc)
5215 {
5216 int i;
5217
5218 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5219 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5220 return cust;
5221
5222 if (cust->includes == NULL)
5223 return NULL;
5224
5225 for (i = 0; cust->includes[i]; ++i)
5226 {
5227 struct compunit_symtab *s = cust->includes[i];
5228
5229 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5230 if (s != NULL)
5231 return s;
5232 }
5233
5234 return NULL;
5235 }
5236
5237 static struct compunit_symtab *
5238 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5239 struct bound_minimal_symbol msymbol,
5240 CORE_ADDR pc,
5241 struct obj_section *section,
5242 int warn_if_readin)
5243 {
5244 struct dwarf2_per_cu_data *data;
5245 struct compunit_symtab *result;
5246
5247 if (!objfile->partial_symtabs->psymtabs_addrmap)
5248 return NULL;
5249
5250 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5251 SECT_OFF_TEXT (objfile));
5252 data = (struct dwarf2_per_cu_data *) addrmap_find
5253 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5254 if (!data)
5255 return NULL;
5256
5257 if (warn_if_readin && data->v.quick->compunit_symtab)
5258 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5259 paddress (get_objfile_arch (objfile), pc));
5260
5261 result
5262 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5263 false),
5264 pc);
5265 gdb_assert (result != NULL);
5266 return result;
5267 }
5268
5269 static void
5270 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5271 void *data, int need_fullname)
5272 {
5273 struct dwarf2_per_objfile *dwarf2_per_objfile
5274 = get_dwarf2_per_objfile (objfile);
5275
5276 if (!dwarf2_per_objfile->filenames_cache)
5277 {
5278 dwarf2_per_objfile->filenames_cache.emplace ();
5279
5280 htab_up visited (htab_create_alloc (10,
5281 htab_hash_pointer, htab_eq_pointer,
5282 NULL, xcalloc, xfree));
5283
5284 /* The rule is CUs specify all the files, including those used
5285 by any TU, so there's no need to scan TUs here. We can
5286 ignore file names coming from already-expanded CUs. */
5287
5288 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5289 {
5290 if (per_cu->v.quick->compunit_symtab)
5291 {
5292 void **slot = htab_find_slot (visited.get (),
5293 per_cu->v.quick->file_names,
5294 INSERT);
5295
5296 *slot = per_cu->v.quick->file_names;
5297 }
5298 }
5299
5300 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5301 {
5302 /* We only need to look at symtabs not already expanded. */
5303 if (per_cu->v.quick->compunit_symtab)
5304 continue;
5305
5306 quick_file_names *file_data = dw2_get_file_names (per_cu);
5307 if (file_data == NULL)
5308 continue;
5309
5310 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5311 if (*slot)
5312 {
5313 /* Already visited. */
5314 continue;
5315 }
5316 *slot = file_data;
5317
5318 for (int j = 0; j < file_data->num_file_names; ++j)
5319 {
5320 const char *filename = file_data->file_names[j];
5321 dwarf2_per_objfile->filenames_cache->seen (filename);
5322 }
5323 }
5324 }
5325
5326 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5327 {
5328 gdb::unique_xmalloc_ptr<char> this_real_name;
5329
5330 if (need_fullname)
5331 this_real_name = gdb_realpath (filename);
5332 (*fun) (filename, this_real_name.get (), data);
5333 });
5334 }
5335
5336 static int
5337 dw2_has_symbols (struct objfile *objfile)
5338 {
5339 return 1;
5340 }
5341
5342 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5343 {
5344 dw2_has_symbols,
5345 dw2_find_last_source_symtab,
5346 dw2_forget_cached_source_info,
5347 dw2_map_symtabs_matching_filename,
5348 dw2_lookup_symbol,
5349 dw2_print_stats,
5350 dw2_dump,
5351 dw2_expand_symtabs_for_function,
5352 dw2_expand_all_symtabs,
5353 dw2_expand_symtabs_with_fullname,
5354 dw2_map_matching_symbols,
5355 dw2_expand_symtabs_matching,
5356 dw2_find_pc_sect_compunit_symtab,
5357 NULL,
5358 dw2_map_symbol_filenames
5359 };
5360
5361 /* DWARF-5 debug_names reader. */
5362
5363 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5364 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5365
5366 /* A helper function that reads the .debug_names section in SECTION
5367 and fills in MAP. FILENAME is the name of the file containing the
5368 section; it is used for error reporting.
5369
5370 Returns true if all went well, false otherwise. */
5371
5372 static bool
5373 read_debug_names_from_section (struct objfile *objfile,
5374 const char *filename,
5375 struct dwarf2_section_info *section,
5376 mapped_debug_names &map)
5377 {
5378 if (dwarf2_section_empty_p (section))
5379 return false;
5380
5381 /* Older elfutils strip versions could keep the section in the main
5382 executable while splitting it for the separate debug info file. */
5383 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5384 return false;
5385
5386 dwarf2_read_section (objfile, section);
5387
5388 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5389
5390 const gdb_byte *addr = section->buffer;
5391
5392 bfd *const abfd = get_section_bfd_owner (section);
5393
5394 unsigned int bytes_read;
5395 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5396 addr += bytes_read;
5397
5398 map.dwarf5_is_dwarf64 = bytes_read != 4;
5399 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5400 if (bytes_read + length != section->size)
5401 {
5402 /* There may be multiple per-CU indices. */
5403 warning (_("Section .debug_names in %s length %s does not match "
5404 "section length %s, ignoring .debug_names."),
5405 filename, plongest (bytes_read + length),
5406 pulongest (section->size));
5407 return false;
5408 }
5409
5410 /* The version number. */
5411 uint16_t version = read_2_bytes (abfd, addr);
5412 addr += 2;
5413 if (version != 5)
5414 {
5415 warning (_("Section .debug_names in %s has unsupported version %d, "
5416 "ignoring .debug_names."),
5417 filename, version);
5418 return false;
5419 }
5420
5421 /* Padding. */
5422 uint16_t padding = read_2_bytes (abfd, addr);
5423 addr += 2;
5424 if (padding != 0)
5425 {
5426 warning (_("Section .debug_names in %s has unsupported padding %d, "
5427 "ignoring .debug_names."),
5428 filename, padding);
5429 return false;
5430 }
5431
5432 /* comp_unit_count - The number of CUs in the CU list. */
5433 map.cu_count = read_4_bytes (abfd, addr);
5434 addr += 4;
5435
5436 /* local_type_unit_count - The number of TUs in the local TU
5437 list. */
5438 map.tu_count = read_4_bytes (abfd, addr);
5439 addr += 4;
5440
5441 /* foreign_type_unit_count - The number of TUs in the foreign TU
5442 list. */
5443 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445 if (foreign_tu_count != 0)
5446 {
5447 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5448 "ignoring .debug_names."),
5449 filename, static_cast<unsigned long> (foreign_tu_count));
5450 return false;
5451 }
5452
5453 /* bucket_count - The number of hash buckets in the hash lookup
5454 table. */
5455 map.bucket_count = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* name_count - The number of unique names in the index. */
5459 map.name_count = read_4_bytes (abfd, addr);
5460 addr += 4;
5461
5462 /* abbrev_table_size - The size in bytes of the abbreviations
5463 table. */
5464 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5465 addr += 4;
5466
5467 /* augmentation_string_size - The size in bytes of the augmentation
5468 string. This value is rounded up to a multiple of 4. */
5469 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5470 addr += 4;
5471 map.augmentation_is_gdb = ((augmentation_string_size
5472 == sizeof (dwarf5_augmentation))
5473 && memcmp (addr, dwarf5_augmentation,
5474 sizeof (dwarf5_augmentation)) == 0);
5475 augmentation_string_size += (-augmentation_string_size) & 3;
5476 addr += augmentation_string_size;
5477
5478 /* List of CUs */
5479 map.cu_table_reordered = addr;
5480 addr += map.cu_count * map.offset_size;
5481
5482 /* List of Local TUs */
5483 map.tu_table_reordered = addr;
5484 addr += map.tu_count * map.offset_size;
5485
5486 /* Hash Lookup Table */
5487 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5488 addr += map.bucket_count * 4;
5489 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5490 addr += map.name_count * 4;
5491
5492 /* Name Table */
5493 map.name_table_string_offs_reordered = addr;
5494 addr += map.name_count * map.offset_size;
5495 map.name_table_entry_offs_reordered = addr;
5496 addr += map.name_count * map.offset_size;
5497
5498 const gdb_byte *abbrev_table_start = addr;
5499 for (;;)
5500 {
5501 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503 if (index_num == 0)
5504 break;
5505
5506 const auto insertpair
5507 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5508 if (!insertpair.second)
5509 {
5510 warning (_("Section .debug_names in %s has duplicate index %s, "
5511 "ignoring .debug_names."),
5512 filename, pulongest (index_num));
5513 return false;
5514 }
5515 mapped_debug_names::index_val &indexval = insertpair.first->second;
5516 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518
5519 for (;;)
5520 {
5521 mapped_debug_names::index_val::attr attr;
5522 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5523 addr += bytes_read;
5524 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5525 addr += bytes_read;
5526 if (attr.form == DW_FORM_implicit_const)
5527 {
5528 attr.implicit_const = read_signed_leb128 (abfd, addr,
5529 &bytes_read);
5530 addr += bytes_read;
5531 }
5532 if (attr.dw_idx == 0 && attr.form == 0)
5533 break;
5534 indexval.attr_vec.push_back (std::move (attr));
5535 }
5536 }
5537 if (addr != abbrev_table_start + abbrev_table_size)
5538 {
5539 warning (_("Section .debug_names in %s has abbreviation_table "
5540 "of size %zu vs. written as %u, ignoring .debug_names."),
5541 filename, addr - abbrev_table_start, abbrev_table_size);
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547 }
5548
5549 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552 static void
5553 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
5556 bool is_dwz)
5557 {
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
5575 dwarf2_per_cu_data *per_cu
5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5577 sect_off_prev, length);
5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582 }
5583
5584 /* Read the CU list from the mapped index, and use it to create all
5585 the CU objects for this dwarf2_per_objfile. */
5586
5587 static void
5588 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591 {
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5594
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
5597 false /* is_dwz */);
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5604 true /* is_dwz */);
5605 }
5606
5607 /* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610 static bool
5611 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5612 {
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
5620 *map))
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
5624 if (map->name_count == 0)
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd),
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd));
5638 return false;
5639 }
5640 }
5641
5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5643
5644 if (map->tu_count != 0)
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
5648 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5649 return false;
5650
5651 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5652 dwarf2_per_objfile->types, 0);
5653
5654 create_signatured_type_table_from_debug_names
5655 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5656 }
5657
5658 create_addrmap_from_aranges (dwarf2_per_objfile,
5659 &dwarf2_per_objfile->debug_aranges);
5660
5661 dwarf2_per_objfile->debug_names_table = std::move (map);
5662 dwarf2_per_objfile->using_index = 1;
5663 dwarf2_per_objfile->quick_file_names_table =
5664 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5665
5666 return true;
5667 }
5668
5669 /* Type used to manage iterating over all CUs looking for a symbol for
5670 .debug_names. */
5671
5672 class dw2_debug_names_iterator
5673 {
5674 public:
5675 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5676 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5677 dw2_debug_names_iterator (const mapped_debug_names &map,
5678 bool want_specific_block,
5679 block_enum block_index, domain_enum domain,
5680 const char *name)
5681 : m_map (map), m_want_specific_block (want_specific_block),
5682 m_block_index (block_index), m_domain (domain),
5683 m_addr (find_vec_in_debug_names (map, name))
5684 {}
5685
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 search_domain search, uint32_t namei)
5688 : m_map (map),
5689 m_search (search),
5690 m_addr (find_vec_in_debug_names (map, namei))
5691 {}
5692
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5695
5696 private:
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5698 const char *name);
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5700 uint32_t namei);
5701
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5704
5705 /* If true, only look for symbols that match BLOCK_INDEX. */
5706 const bool m_want_specific_block = false;
5707
5708 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5709 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5710 value. */
5711 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5712
5713 /* The kind of symbol we're looking for. */
5714 const domain_enum m_domain = UNDEF_DOMAIN;
5715 const search_domain m_search = ALL_DOMAIN;
5716
5717 /* The list of CUs from the index entry of the symbol, or NULL if
5718 not found. */
5719 const gdb_byte *m_addr;
5720 };
5721
5722 const char *
5723 mapped_debug_names::namei_to_name (uint32_t namei) const
5724 {
5725 const ULONGEST namei_string_offs
5726 = extract_unsigned_integer ((name_table_string_offs_reordered
5727 + namei * offset_size),
5728 offset_size,
5729 dwarf5_byte_order);
5730 return read_indirect_string_at_offset
5731 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5732 }
5733
5734 /* Find a slot in .debug_names for the object named NAME. If NAME is
5735 found, return pointer to its pool data. If NAME cannot be found,
5736 return NULL. */
5737
5738 const gdb_byte *
5739 dw2_debug_names_iterator::find_vec_in_debug_names
5740 (const mapped_debug_names &map, const char *name)
5741 {
5742 int (*cmp) (const char *, const char *);
5743
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
5753 gdb::unique_xmalloc_ptr<char> without_params
5754 = cp_remove_params (name);
5755
5756 if (without_params != NULL)
5757 {
5758 name = without_params.get();
5759 }
5760 }
5761 }
5762
5763 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5764
5765 const uint32_t full_hash = dwarf5_djb_hash (name);
5766 uint32_t namei
5767 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5768 (map.bucket_table_reordered
5769 + (full_hash % map.bucket_count)), 4,
5770 map.dwarf5_byte_order);
5771 if (namei == 0)
5772 return NULL;
5773 --namei;
5774 if (namei >= map.name_count)
5775 {
5776 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5777 "[in module %s]"),
5778 namei, map.name_count,
5779 objfile_name (map.dwarf2_per_objfile->objfile));
5780 return NULL;
5781 }
5782
5783 for (;;)
5784 {
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5790 return NULL;
5791
5792 if (full_hash == namei_full_hash)
5793 {
5794 const char *const namei_string = map.namei_to_name (namei);
5795
5796 #if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5798 {
5799 complaint (_("Wrong .debug_names hash for string at index %u "
5800 "[in module %s]"),
5801 namei, objfile_name (dwarf2_per_objfile->objfile));
5802 return NULL;
5803 }
5804 #endif
5805
5806 if (cmp (namei_string, name) == 0)
5807 {
5808 const ULONGEST namei_entry_offs
5809 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5810 + namei * map.offset_size),
5811 map.offset_size, map.dwarf5_byte_order);
5812 return map.entry_pool + namei_entry_offs;
5813 }
5814 }
5815
5816 ++namei;
5817 if (namei >= map.name_count)
5818 return NULL;
5819 }
5820 }
5821
5822 const gdb_byte *
5823 dw2_debug_names_iterator::find_vec_in_debug_names
5824 (const mapped_debug_names &map, uint32_t namei)
5825 {
5826 if (namei >= map.name_count)
5827 {
5828 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5829 "[in module %s]"),
5830 namei, map.name_count,
5831 objfile_name (map.dwarf2_per_objfile->objfile));
5832 return NULL;
5833 }
5834
5835 const ULONGEST namei_entry_offs
5836 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5837 + namei * map.offset_size),
5838 map.offset_size, map.dwarf5_byte_order);
5839 return map.entry_pool + namei_entry_offs;
5840 }
5841
5842 /* See dw2_debug_names_iterator. */
5843
5844 dwarf2_per_cu_data *
5845 dw2_debug_names_iterator::next ()
5846 {
5847 if (m_addr == NULL)
5848 return NULL;
5849
5850 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 bfd *const abfd = objfile->obfd;
5853
5854 again:
5855
5856 unsigned int bytes_read;
5857 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5859 if (abbrev == 0)
5860 return NULL;
5861
5862 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5863 if (indexval_it == m_map.abbrev_map.cend ())
5864 {
5865 complaint (_("Wrong .debug_names undefined abbrev code %s "
5866 "[in module %s]"),
5867 pulongest (abbrev), objfile_name (objfile));
5868 return NULL;
5869 }
5870 const mapped_debug_names::index_val &indexval = indexval_it->second;
5871 bool have_is_static = false;
5872 bool is_static;
5873 dwarf2_per_cu_data *per_cu = NULL;
5874 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5875 {
5876 ULONGEST ull;
5877 switch (attr.form)
5878 {
5879 case DW_FORM_implicit_const:
5880 ull = attr.implicit_const;
5881 break;
5882 case DW_FORM_flag_present:
5883 ull = 1;
5884 break;
5885 case DW_FORM_udata:
5886 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5887 m_addr += bytes_read;
5888 break;
5889 default:
5890 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5891 dwarf_form_name (attr.form),
5892 objfile_name (objfile));
5893 return NULL;
5894 }
5895 switch (attr.dw_idx)
5896 {
5897 case DW_IDX_compile_unit:
5898 /* Don't crash on bad data. */
5899 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5900 {
5901 complaint (_(".debug_names entry has bad CU index %s"
5902 " [in module %s]"),
5903 pulongest (ull),
5904 objfile_name (dwarf2_per_objfile->objfile));
5905 continue;
5906 }
5907 per_cu = dwarf2_per_objfile->get_cutu (ull);
5908 break;
5909 case DW_IDX_type_unit:
5910 /* Don't crash on bad data. */
5911 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5912 {
5913 complaint (_(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu, false);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_debug_names_expand_symtabs_for_function,
6163 dw2_expand_all_symtabs,
6164 dw2_expand_symtabs_with_fullname,
6165 dw2_map_matching_symbols,
6166 dw2_debug_names_expand_symtabs_matching,
6167 dw2_find_pc_sect_compunit_symtab,
6168 NULL,
6169 dw2_map_symbol_filenames
6170 };
6171
6172 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6173 to either a dwarf2_per_objfile or dwz_file object. */
6174
6175 template <typename T>
6176 static gdb::array_view<const gdb_byte>
6177 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6178 {
6179 dwarf2_section_info *section = &section_owner->gdb_index;
6180
6181 if (dwarf2_section_empty_p (section))
6182 return {};
6183
6184 /* Older elfutils strip versions could keep the section in the main
6185 executable while splitting it for the separate debug info file. */
6186 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6187 return {};
6188
6189 dwarf2_read_section (obj, section);
6190
6191 /* dwarf2_section_info::size is a bfd_size_type, while
6192 gdb::array_view works with size_t. On 32-bit hosts, with
6193 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6194 is 32-bit. So we need an explicit narrowing conversion here.
6195 This is fine, because it's impossible to allocate or mmap an
6196 array/buffer larger than what size_t can represent. */
6197 return gdb::make_array_view (section->buffer, section->size);
6198 }
6199
6200 /* Lookup the index cache for the contents of the index associated to
6201 DWARF2_OBJ. */
6202
6203 static gdb::array_view<const gdb_byte>
6204 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6205 {
6206 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6207 if (build_id == nullptr)
6208 return {};
6209
6210 return global_index_cache.lookup_gdb_index (build_id,
6211 &dwarf2_obj->index_cache_res);
6212 }
6213
6214 /* Same as the above, but for DWZ. */
6215
6216 static gdb::array_view<const gdb_byte>
6217 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6218 {
6219 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6220 if (build_id == nullptr)
6221 return {};
6222
6223 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6224 }
6225
6226 /* See symfile.h. */
6227
6228 bool
6229 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6230 {
6231 struct dwarf2_per_objfile *dwarf2_per_objfile
6232 = get_dwarf2_per_objfile (objfile);
6233
6234 /* If we're about to read full symbols, don't bother with the
6235 indices. In this case we also don't care if some other debug
6236 format is making psymtabs, because they are all about to be
6237 expanded anyway. */
6238 if ((objfile->flags & OBJF_READNOW))
6239 {
6240 dwarf2_per_objfile->using_index = 1;
6241 create_all_comp_units (dwarf2_per_objfile);
6242 create_all_type_units (dwarf2_per_objfile);
6243 dwarf2_per_objfile->quick_file_names_table
6244 = create_quick_file_names_table
6245 (dwarf2_per_objfile->all_comp_units.size ());
6246
6247 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6248 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6249 {
6250 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6251
6252 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6253 struct dwarf2_per_cu_quick_data);
6254 }
6255
6256 /* Return 1 so that gdb sees the "quick" functions. However,
6257 these functions will be no-ops because we will have expanded
6258 all symtabs. */
6259 *index_kind = dw_index_kind::GDB_INDEX;
6260 return true;
6261 }
6262
6263 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6264 {
6265 *index_kind = dw_index_kind::DEBUG_NAMES;
6266 return true;
6267 }
6268
6269 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6270 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6271 get_gdb_index_contents_from_section<dwz_file>))
6272 {
6273 *index_kind = dw_index_kind::GDB_INDEX;
6274 return true;
6275 }
6276
6277 /* ... otherwise, try to find the index in the index cache. */
6278 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6279 get_gdb_index_contents_from_cache,
6280 get_gdb_index_contents_from_cache_dwz))
6281 {
6282 global_index_cache.hit ();
6283 *index_kind = dw_index_kind::GDB_INDEX;
6284 return true;
6285 }
6286
6287 global_index_cache.miss ();
6288 return false;
6289 }
6290
6291 \f
6292
6293 /* Build a partial symbol table. */
6294
6295 void
6296 dwarf2_build_psymtabs (struct objfile *objfile)
6297 {
6298 struct dwarf2_per_objfile *dwarf2_per_objfile
6299 = get_dwarf2_per_objfile (objfile);
6300
6301 init_psymbol_list (objfile, 1024);
6302
6303 try
6304 {
6305 /* This isn't really ideal: all the data we allocate on the
6306 objfile's obstack is still uselessly kept around. However,
6307 freeing it seems unsafe. */
6308 psymtab_discarder psymtabs (objfile);
6309 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6310 psymtabs.keep ();
6311
6312 /* (maybe) store an index in the cache. */
6313 global_index_cache.store (dwarf2_per_objfile);
6314 }
6315 catch (const gdb_exception_error &except)
6316 {
6317 exception_print (gdb_stderr, except);
6318 }
6319 }
6320
6321 /* Return the total length of the CU described by HEADER. */
6322
6323 static unsigned int
6324 get_cu_length (const struct comp_unit_head *header)
6325 {
6326 return header->initial_length_size + header->length;
6327 }
6328
6329 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6330
6331 static inline bool
6332 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6333 {
6334 sect_offset bottom = cu_header->sect_off;
6335 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6336
6337 return sect_off >= bottom && sect_off < top;
6338 }
6339
6340 /* Find the base address of the compilation unit for range lists and
6341 location lists. It will normally be specified by DW_AT_low_pc.
6342 In DWARF-3 draft 4, the base address could be overridden by
6343 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6344 compilation units with discontinuous ranges. */
6345
6346 static void
6347 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6348 {
6349 struct attribute *attr;
6350
6351 cu->base_known = 0;
6352 cu->base_address = 0;
6353
6354 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6355 if (attr)
6356 {
6357 cu->base_address = attr_value_as_address (attr);
6358 cu->base_known = 1;
6359 }
6360 else
6361 {
6362 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6363 if (attr)
6364 {
6365 cu->base_address = attr_value_as_address (attr);
6366 cu->base_known = 1;
6367 }
6368 }
6369 }
6370
6371 /* Read in the comp unit header information from the debug_info at info_ptr.
6372 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6373 NOTE: This leaves members offset, first_die_offset to be filled in
6374 by the caller. */
6375
6376 static const gdb_byte *
6377 read_comp_unit_head (struct comp_unit_head *cu_header,
6378 const gdb_byte *info_ptr,
6379 struct dwarf2_section_info *section,
6380 rcuh_kind section_kind)
6381 {
6382 int signed_addr;
6383 unsigned int bytes_read;
6384 const char *filename = get_section_file_name (section);
6385 bfd *abfd = get_section_bfd_owner (section);
6386
6387 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6388 cu_header->initial_length_size = bytes_read;
6389 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6390 info_ptr += bytes_read;
6391 cu_header->version = read_2_bytes (abfd, info_ptr);
6392 if (cu_header->version < 2 || cu_header->version > 5)
6393 error (_("Dwarf Error: wrong version in compilation unit header "
6394 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6395 cu_header->version, filename);
6396 info_ptr += 2;
6397 if (cu_header->version < 5)
6398 switch (section_kind)
6399 {
6400 case rcuh_kind::COMPILE:
6401 cu_header->unit_type = DW_UT_compile;
6402 break;
6403 case rcuh_kind::TYPE:
6404 cu_header->unit_type = DW_UT_type;
6405 break;
6406 default:
6407 internal_error (__FILE__, __LINE__,
6408 _("read_comp_unit_head: invalid section_kind"));
6409 }
6410 else
6411 {
6412 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6413 (read_1_byte (abfd, info_ptr));
6414 info_ptr += 1;
6415 switch (cu_header->unit_type)
6416 {
6417 case DW_UT_compile:
6418 if (section_kind != rcuh_kind::COMPILE)
6419 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6420 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6421 filename);
6422 break;
6423 case DW_UT_type:
6424 section_kind = rcuh_kind::TYPE;
6425 break;
6426 default:
6427 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6428 "(is %d, should be %d or %d) [in module %s]"),
6429 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6430 }
6431
6432 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6433 info_ptr += 1;
6434 }
6435 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6436 cu_header,
6437 &bytes_read);
6438 info_ptr += bytes_read;
6439 if (cu_header->version < 5)
6440 {
6441 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6442 info_ptr += 1;
6443 }
6444 signed_addr = bfd_get_sign_extend_vma (abfd);
6445 if (signed_addr < 0)
6446 internal_error (__FILE__, __LINE__,
6447 _("read_comp_unit_head: dwarf from non elf file"));
6448 cu_header->signed_addr_p = signed_addr;
6449
6450 if (section_kind == rcuh_kind::TYPE)
6451 {
6452 LONGEST type_offset;
6453
6454 cu_header->signature = read_8_bytes (abfd, info_ptr);
6455 info_ptr += 8;
6456
6457 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6458 info_ptr += bytes_read;
6459 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6460 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6461 error (_("Dwarf Error: Too big type_offset in compilation unit "
6462 "header (is %s) [in module %s]"), plongest (type_offset),
6463 filename);
6464 }
6465
6466 return info_ptr;
6467 }
6468
6469 /* Helper function that returns the proper abbrev section for
6470 THIS_CU. */
6471
6472 static struct dwarf2_section_info *
6473 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6474 {
6475 struct dwarf2_section_info *abbrev;
6476 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6477
6478 if (this_cu->is_dwz)
6479 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6480 else
6481 abbrev = &dwarf2_per_objfile->abbrev;
6482
6483 return abbrev;
6484 }
6485
6486 /* Subroutine of read_and_check_comp_unit_head and
6487 read_and_check_type_unit_head to simplify them.
6488 Perform various error checking on the header. */
6489
6490 static void
6491 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6492 struct comp_unit_head *header,
6493 struct dwarf2_section_info *section,
6494 struct dwarf2_section_info *abbrev_section)
6495 {
6496 const char *filename = get_section_file_name (section);
6497
6498 if (to_underlying (header->abbrev_sect_off)
6499 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6500 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6501 "(offset %s + 6) [in module %s]"),
6502 sect_offset_str (header->abbrev_sect_off),
6503 sect_offset_str (header->sect_off),
6504 filename);
6505
6506 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6507 avoid potential 32-bit overflow. */
6508 if (((ULONGEST) header->sect_off + get_cu_length (header))
6509 > section->size)
6510 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6511 "(offset %s + 0) [in module %s]"),
6512 header->length, sect_offset_str (header->sect_off),
6513 filename);
6514 }
6515
6516 /* Read in a CU/TU header and perform some basic error checking.
6517 The contents of the header are stored in HEADER.
6518 The result is a pointer to the start of the first DIE. */
6519
6520 static const gdb_byte *
6521 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6522 struct comp_unit_head *header,
6523 struct dwarf2_section_info *section,
6524 struct dwarf2_section_info *abbrev_section,
6525 const gdb_byte *info_ptr,
6526 rcuh_kind section_kind)
6527 {
6528 const gdb_byte *beg_of_comp_unit = info_ptr;
6529
6530 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6531
6532 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6533
6534 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6535
6536 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6537 abbrev_section);
6538
6539 return info_ptr;
6540 }
6541
6542 /* Fetch the abbreviation table offset from a comp or type unit header. */
6543
6544 static sect_offset
6545 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6546 struct dwarf2_section_info *section,
6547 sect_offset sect_off)
6548 {
6549 bfd *abfd = get_section_bfd_owner (section);
6550 const gdb_byte *info_ptr;
6551 unsigned int initial_length_size, offset_size;
6552 uint16_t version;
6553
6554 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6555 info_ptr = section->buffer + to_underlying (sect_off);
6556 read_initial_length (abfd, info_ptr, &initial_length_size);
6557 offset_size = initial_length_size == 4 ? 4 : 8;
6558 info_ptr += initial_length_size;
6559
6560 version = read_2_bytes (abfd, info_ptr);
6561 info_ptr += 2;
6562 if (version >= 5)
6563 {
6564 /* Skip unit type and address size. */
6565 info_ptr += 2;
6566 }
6567
6568 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6569 }
6570
6571 /* Allocate a new partial symtab for file named NAME and mark this new
6572 partial symtab as being an include of PST. */
6573
6574 static void
6575 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6576 struct objfile *objfile)
6577 {
6578 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6579
6580 if (!IS_ABSOLUTE_PATH (subpst->filename))
6581 {
6582 /* It shares objfile->objfile_obstack. */
6583 subpst->dirname = pst->dirname;
6584 }
6585
6586 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6587 subpst->dependencies[0] = pst;
6588 subpst->number_of_dependencies = 1;
6589
6590 subpst->read_symtab = pst->read_symtab;
6591
6592 /* No private part is necessary for include psymtabs. This property
6593 can be used to differentiate between such include psymtabs and
6594 the regular ones. */
6595 subpst->read_symtab_private = NULL;
6596 }
6597
6598 /* Read the Line Number Program data and extract the list of files
6599 included by the source file represented by PST. Build an include
6600 partial symtab for each of these included files. */
6601
6602 static void
6603 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6604 struct die_info *die,
6605 struct partial_symtab *pst)
6606 {
6607 line_header_up lh;
6608 struct attribute *attr;
6609
6610 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6611 if (attr)
6612 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6613 if (lh == NULL)
6614 return; /* No linetable, so no includes. */
6615
6616 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6617 that we pass in the raw text_low here; that is ok because we're
6618 only decoding the line table to make include partial symtabs, and
6619 so the addresses aren't really used. */
6620 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6621 pst->raw_text_low (), 1);
6622 }
6623
6624 static hashval_t
6625 hash_signatured_type (const void *item)
6626 {
6627 const struct signatured_type *sig_type
6628 = (const struct signatured_type *) item;
6629
6630 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6631 return sig_type->signature;
6632 }
6633
6634 static int
6635 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6636 {
6637 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6638 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6639
6640 return lhs->signature == rhs->signature;
6641 }
6642
6643 /* Allocate a hash table for signatured types. */
6644
6645 static htab_t
6646 allocate_signatured_type_table (struct objfile *objfile)
6647 {
6648 return htab_create_alloc_ex (41,
6649 hash_signatured_type,
6650 eq_signatured_type,
6651 NULL,
6652 &objfile->objfile_obstack,
6653 hashtab_obstack_allocate,
6654 dummy_obstack_deallocate);
6655 }
6656
6657 /* A helper function to add a signatured type CU to a table. */
6658
6659 static int
6660 add_signatured_type_cu_to_table (void **slot, void *datum)
6661 {
6662 struct signatured_type *sigt = (struct signatured_type *) *slot;
6663 std::vector<signatured_type *> *all_type_units
6664 = (std::vector<signatured_type *> *) datum;
6665
6666 all_type_units->push_back (sigt);
6667
6668 return 1;
6669 }
6670
6671 /* A helper for create_debug_types_hash_table. Read types from SECTION
6672 and fill them into TYPES_HTAB. It will process only type units,
6673 therefore DW_UT_type. */
6674
6675 static void
6676 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6677 struct dwo_file *dwo_file,
6678 dwarf2_section_info *section, htab_t &types_htab,
6679 rcuh_kind section_kind)
6680 {
6681 struct objfile *objfile = dwarf2_per_objfile->objfile;
6682 struct dwarf2_section_info *abbrev_section;
6683 bfd *abfd;
6684 const gdb_byte *info_ptr, *end_ptr;
6685
6686 abbrev_section = (dwo_file != NULL
6687 ? &dwo_file->sections.abbrev
6688 : &dwarf2_per_objfile->abbrev);
6689
6690 if (dwarf_read_debug)
6691 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6692 get_section_name (section),
6693 get_section_file_name (abbrev_section));
6694
6695 dwarf2_read_section (objfile, section);
6696 info_ptr = section->buffer;
6697
6698 if (info_ptr == NULL)
6699 return;
6700
6701 /* We can't set abfd until now because the section may be empty or
6702 not present, in which case the bfd is unknown. */
6703 abfd = get_section_bfd_owner (section);
6704
6705 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6706 because we don't need to read any dies: the signature is in the
6707 header. */
6708
6709 end_ptr = info_ptr + section->size;
6710 while (info_ptr < end_ptr)
6711 {
6712 struct signatured_type *sig_type;
6713 struct dwo_unit *dwo_tu;
6714 void **slot;
6715 const gdb_byte *ptr = info_ptr;
6716 struct comp_unit_head header;
6717 unsigned int length;
6718
6719 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6720
6721 /* Initialize it due to a false compiler warning. */
6722 header.signature = -1;
6723 header.type_cu_offset_in_tu = (cu_offset) -1;
6724
6725 /* We need to read the type's signature in order to build the hash
6726 table, but we don't need anything else just yet. */
6727
6728 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6729 abbrev_section, ptr, section_kind);
6730
6731 length = get_cu_length (&header);
6732
6733 /* Skip dummy type units. */
6734 if (ptr >= info_ptr + length
6735 || peek_abbrev_code (abfd, ptr) == 0
6736 || header.unit_type != DW_UT_type)
6737 {
6738 info_ptr += length;
6739 continue;
6740 }
6741
6742 if (types_htab == NULL)
6743 {
6744 if (dwo_file)
6745 types_htab = allocate_dwo_unit_table (objfile);
6746 else
6747 types_htab = allocate_signatured_type_table (objfile);
6748 }
6749
6750 if (dwo_file)
6751 {
6752 sig_type = NULL;
6753 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6754 struct dwo_unit);
6755 dwo_tu->dwo_file = dwo_file;
6756 dwo_tu->signature = header.signature;
6757 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6758 dwo_tu->section = section;
6759 dwo_tu->sect_off = sect_off;
6760 dwo_tu->length = length;
6761 }
6762 else
6763 {
6764 /* N.B.: type_offset is not usable if this type uses a DWO file.
6765 The real type_offset is in the DWO file. */
6766 dwo_tu = NULL;
6767 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6768 struct signatured_type);
6769 sig_type->signature = header.signature;
6770 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6771 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6772 sig_type->per_cu.is_debug_types = 1;
6773 sig_type->per_cu.section = section;
6774 sig_type->per_cu.sect_off = sect_off;
6775 sig_type->per_cu.length = length;
6776 }
6777
6778 slot = htab_find_slot (types_htab,
6779 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6780 INSERT);
6781 gdb_assert (slot != NULL);
6782 if (*slot != NULL)
6783 {
6784 sect_offset dup_sect_off;
6785
6786 if (dwo_file)
6787 {
6788 const struct dwo_unit *dup_tu
6789 = (const struct dwo_unit *) *slot;
6790
6791 dup_sect_off = dup_tu->sect_off;
6792 }
6793 else
6794 {
6795 const struct signatured_type *dup_tu
6796 = (const struct signatured_type *) *slot;
6797
6798 dup_sect_off = dup_tu->per_cu.sect_off;
6799 }
6800
6801 complaint (_("debug type entry at offset %s is duplicate to"
6802 " the entry at offset %s, signature %s"),
6803 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6804 hex_string (header.signature));
6805 }
6806 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6807
6808 if (dwarf_read_debug > 1)
6809 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6810 sect_offset_str (sect_off),
6811 hex_string (header.signature));
6812
6813 info_ptr += length;
6814 }
6815 }
6816
6817 /* Create the hash table of all entries in the .debug_types
6818 (or .debug_types.dwo) section(s).
6819 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6820 otherwise it is NULL.
6821
6822 The result is a pointer to the hash table or NULL if there are no types.
6823
6824 Note: This function processes DWO files only, not DWP files. */
6825
6826 static void
6827 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6828 struct dwo_file *dwo_file,
6829 VEC (dwarf2_section_info_def) *types,
6830 htab_t &types_htab)
6831 {
6832 int ix;
6833 struct dwarf2_section_info *section;
6834
6835 if (VEC_empty (dwarf2_section_info_def, types))
6836 return;
6837
6838 for (ix = 0;
6839 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6840 ++ix)
6841 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6842 types_htab, rcuh_kind::TYPE);
6843 }
6844
6845 /* Create the hash table of all entries in the .debug_types section,
6846 and initialize all_type_units.
6847 The result is zero if there is an error (e.g. missing .debug_types section),
6848 otherwise non-zero. */
6849
6850 static int
6851 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6852 {
6853 htab_t types_htab = NULL;
6854
6855 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6856 &dwarf2_per_objfile->info, types_htab,
6857 rcuh_kind::COMPILE);
6858 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6859 dwarf2_per_objfile->types, types_htab);
6860 if (types_htab == NULL)
6861 {
6862 dwarf2_per_objfile->signatured_types = NULL;
6863 return 0;
6864 }
6865
6866 dwarf2_per_objfile->signatured_types = types_htab;
6867
6868 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6869 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6870
6871 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6872 &dwarf2_per_objfile->all_type_units);
6873
6874 return 1;
6875 }
6876
6877 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6878 If SLOT is non-NULL, it is the entry to use in the hash table.
6879 Otherwise we find one. */
6880
6881 static struct signatured_type *
6882 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6883 void **slot)
6884 {
6885 struct objfile *objfile = dwarf2_per_objfile->objfile;
6886
6887 if (dwarf2_per_objfile->all_type_units.size ()
6888 == dwarf2_per_objfile->all_type_units.capacity ())
6889 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6890
6891 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6892 struct signatured_type);
6893
6894 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6895 sig_type->signature = sig;
6896 sig_type->per_cu.is_debug_types = 1;
6897 if (dwarf2_per_objfile->using_index)
6898 {
6899 sig_type->per_cu.v.quick =
6900 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6901 struct dwarf2_per_cu_quick_data);
6902 }
6903
6904 if (slot == NULL)
6905 {
6906 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6907 sig_type, INSERT);
6908 }
6909 gdb_assert (*slot == NULL);
6910 *slot = sig_type;
6911 /* The rest of sig_type must be filled in by the caller. */
6912 return sig_type;
6913 }
6914
6915 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6916 Fill in SIG_ENTRY with DWO_ENTRY. */
6917
6918 static void
6919 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6920 struct signatured_type *sig_entry,
6921 struct dwo_unit *dwo_entry)
6922 {
6923 /* Make sure we're not clobbering something we don't expect to. */
6924 gdb_assert (! sig_entry->per_cu.queued);
6925 gdb_assert (sig_entry->per_cu.cu == NULL);
6926 if (dwarf2_per_objfile->using_index)
6927 {
6928 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6929 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6930 }
6931 else
6932 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6933 gdb_assert (sig_entry->signature == dwo_entry->signature);
6934 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6935 gdb_assert (sig_entry->type_unit_group == NULL);
6936 gdb_assert (sig_entry->dwo_unit == NULL);
6937
6938 sig_entry->per_cu.section = dwo_entry->section;
6939 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6940 sig_entry->per_cu.length = dwo_entry->length;
6941 sig_entry->per_cu.reading_dwo_directly = 1;
6942 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6943 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6944 sig_entry->dwo_unit = dwo_entry;
6945 }
6946
6947 /* Subroutine of lookup_signatured_type.
6948 If we haven't read the TU yet, create the signatured_type data structure
6949 for a TU to be read in directly from a DWO file, bypassing the stub.
6950 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6951 using .gdb_index, then when reading a CU we want to stay in the DWO file
6952 containing that CU. Otherwise we could end up reading several other DWO
6953 files (due to comdat folding) to process the transitive closure of all the
6954 mentioned TUs, and that can be slow. The current DWO file will have every
6955 type signature that it needs.
6956 We only do this for .gdb_index because in the psymtab case we already have
6957 to read all the DWOs to build the type unit groups. */
6958
6959 static struct signatured_type *
6960 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6961 {
6962 struct dwarf2_per_objfile *dwarf2_per_objfile
6963 = cu->per_cu->dwarf2_per_objfile;
6964 struct objfile *objfile = dwarf2_per_objfile->objfile;
6965 struct dwo_file *dwo_file;
6966 struct dwo_unit find_dwo_entry, *dwo_entry;
6967 struct signatured_type find_sig_entry, *sig_entry;
6968 void **slot;
6969
6970 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6971
6972 /* If TU skeletons have been removed then we may not have read in any
6973 TUs yet. */
6974 if (dwarf2_per_objfile->signatured_types == NULL)
6975 {
6976 dwarf2_per_objfile->signatured_types
6977 = allocate_signatured_type_table (objfile);
6978 }
6979
6980 /* We only ever need to read in one copy of a signatured type.
6981 Use the global signatured_types array to do our own comdat-folding
6982 of types. If this is the first time we're reading this TU, and
6983 the TU has an entry in .gdb_index, replace the recorded data from
6984 .gdb_index with this TU. */
6985
6986 find_sig_entry.signature = sig;
6987 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6988 &find_sig_entry, INSERT);
6989 sig_entry = (struct signatured_type *) *slot;
6990
6991 /* We can get here with the TU already read, *or* in the process of being
6992 read. Don't reassign the global entry to point to this DWO if that's
6993 the case. Also note that if the TU is already being read, it may not
6994 have come from a DWO, the program may be a mix of Fission-compiled
6995 code and non-Fission-compiled code. */
6996
6997 /* Have we already tried to read this TU?
6998 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6999 needn't exist in the global table yet). */
7000 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7001 return sig_entry;
7002
7003 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7004 dwo_unit of the TU itself. */
7005 dwo_file = cu->dwo_unit->dwo_file;
7006
7007 /* Ok, this is the first time we're reading this TU. */
7008 if (dwo_file->tus == NULL)
7009 return NULL;
7010 find_dwo_entry.signature = sig;
7011 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7012 if (dwo_entry == NULL)
7013 return NULL;
7014
7015 /* If the global table doesn't have an entry for this TU, add one. */
7016 if (sig_entry == NULL)
7017 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7018
7019 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7020 sig_entry->per_cu.tu_read = 1;
7021 return sig_entry;
7022 }
7023
7024 /* Subroutine of lookup_signatured_type.
7025 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7026 then try the DWP file. If the TU stub (skeleton) has been removed then
7027 it won't be in .gdb_index. */
7028
7029 static struct signatured_type *
7030 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7031 {
7032 struct dwarf2_per_objfile *dwarf2_per_objfile
7033 = cu->per_cu->dwarf2_per_objfile;
7034 struct objfile *objfile = dwarf2_per_objfile->objfile;
7035 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7036 struct dwo_unit *dwo_entry;
7037 struct signatured_type find_sig_entry, *sig_entry;
7038 void **slot;
7039
7040 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7041 gdb_assert (dwp_file != NULL);
7042
7043 /* If TU skeletons have been removed then we may not have read in any
7044 TUs yet. */
7045 if (dwarf2_per_objfile->signatured_types == NULL)
7046 {
7047 dwarf2_per_objfile->signatured_types
7048 = allocate_signatured_type_table (objfile);
7049 }
7050
7051 find_sig_entry.signature = sig;
7052 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7053 &find_sig_entry, INSERT);
7054 sig_entry = (struct signatured_type *) *slot;
7055
7056 /* Have we already tried to read this TU?
7057 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7058 needn't exist in the global table yet). */
7059 if (sig_entry != NULL)
7060 return sig_entry;
7061
7062 if (dwp_file->tus == NULL)
7063 return NULL;
7064 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7065 sig, 1 /* is_debug_types */);
7066 if (dwo_entry == NULL)
7067 return NULL;
7068
7069 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7070 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7071
7072 return sig_entry;
7073 }
7074
7075 /* Lookup a signature based type for DW_FORM_ref_sig8.
7076 Returns NULL if signature SIG is not present in the table.
7077 It is up to the caller to complain about this. */
7078
7079 static struct signatured_type *
7080 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7081 {
7082 struct dwarf2_per_objfile *dwarf2_per_objfile
7083 = cu->per_cu->dwarf2_per_objfile;
7084
7085 if (cu->dwo_unit
7086 && dwarf2_per_objfile->using_index)
7087 {
7088 /* We're in a DWO/DWP file, and we're using .gdb_index.
7089 These cases require special processing. */
7090 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7091 return lookup_dwo_signatured_type (cu, sig);
7092 else
7093 return lookup_dwp_signatured_type (cu, sig);
7094 }
7095 else
7096 {
7097 struct signatured_type find_entry, *entry;
7098
7099 if (dwarf2_per_objfile->signatured_types == NULL)
7100 return NULL;
7101 find_entry.signature = sig;
7102 entry = ((struct signatured_type *)
7103 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7104 return entry;
7105 }
7106 }
7107 \f
7108 /* Low level DIE reading support. */
7109
7110 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7111
7112 static void
7113 init_cu_die_reader (struct die_reader_specs *reader,
7114 struct dwarf2_cu *cu,
7115 struct dwarf2_section_info *section,
7116 struct dwo_file *dwo_file,
7117 struct abbrev_table *abbrev_table)
7118 {
7119 gdb_assert (section->readin && section->buffer != NULL);
7120 reader->abfd = get_section_bfd_owner (section);
7121 reader->cu = cu;
7122 reader->dwo_file = dwo_file;
7123 reader->die_section = section;
7124 reader->buffer = section->buffer;
7125 reader->buffer_end = section->buffer + section->size;
7126 reader->comp_dir = NULL;
7127 reader->abbrev_table = abbrev_table;
7128 }
7129
7130 /* Subroutine of init_cutu_and_read_dies to simplify it.
7131 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7132 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7133 already.
7134
7135 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7136 from it to the DIE in the DWO. If NULL we are skipping the stub.
7137 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7138 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7139 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7140 STUB_COMP_DIR may be non-NULL.
7141 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7142 are filled in with the info of the DIE from the DWO file.
7143 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7144 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7145 kept around for at least as long as *RESULT_READER.
7146
7147 The result is non-zero if a valid (non-dummy) DIE was found. */
7148
7149 static int
7150 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7151 struct dwo_unit *dwo_unit,
7152 struct die_info *stub_comp_unit_die,
7153 const char *stub_comp_dir,
7154 struct die_reader_specs *result_reader,
7155 const gdb_byte **result_info_ptr,
7156 struct die_info **result_comp_unit_die,
7157 int *result_has_children,
7158 abbrev_table_up *result_dwo_abbrev_table)
7159 {
7160 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7161 struct objfile *objfile = dwarf2_per_objfile->objfile;
7162 struct dwarf2_cu *cu = this_cu->cu;
7163 bfd *abfd;
7164 const gdb_byte *begin_info_ptr, *info_ptr;
7165 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7166 int i,num_extra_attrs;
7167 struct dwarf2_section_info *dwo_abbrev_section;
7168 struct attribute *attr;
7169 struct die_info *comp_unit_die;
7170
7171 /* At most one of these may be provided. */
7172 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7173
7174 /* These attributes aren't processed until later:
7175 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7176 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7177 referenced later. However, these attributes are found in the stub
7178 which we won't have later. In order to not impose this complication
7179 on the rest of the code, we read them here and copy them to the
7180 DWO CU/TU die. */
7181
7182 stmt_list = NULL;
7183 low_pc = NULL;
7184 high_pc = NULL;
7185 ranges = NULL;
7186 comp_dir = NULL;
7187
7188 if (stub_comp_unit_die != NULL)
7189 {
7190 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7191 DWO file. */
7192 if (! this_cu->is_debug_types)
7193 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7194 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7195 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7196 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7197 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7198
7199 /* There should be a DW_AT_addr_base attribute here (if needed).
7200 We need the value before we can process DW_FORM_GNU_addr_index
7201 or DW_FORM_addrx. */
7202 cu->addr_base = 0;
7203 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7204 if (attr)
7205 cu->addr_base = DW_UNSND (attr);
7206
7207 /* There should be a DW_AT_ranges_base attribute here (if needed).
7208 We need the value before we can process DW_AT_ranges. */
7209 cu->ranges_base = 0;
7210 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7211 if (attr)
7212 cu->ranges_base = DW_UNSND (attr);
7213 }
7214 else if (stub_comp_dir != NULL)
7215 {
7216 /* Reconstruct the comp_dir attribute to simplify the code below. */
7217 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7218 comp_dir->name = DW_AT_comp_dir;
7219 comp_dir->form = DW_FORM_string;
7220 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7221 DW_STRING (comp_dir) = stub_comp_dir;
7222 }
7223
7224 /* Set up for reading the DWO CU/TU. */
7225 cu->dwo_unit = dwo_unit;
7226 dwarf2_section_info *section = dwo_unit->section;
7227 dwarf2_read_section (objfile, section);
7228 abfd = get_section_bfd_owner (section);
7229 begin_info_ptr = info_ptr = (section->buffer
7230 + to_underlying (dwo_unit->sect_off));
7231 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7232
7233 if (this_cu->is_debug_types)
7234 {
7235 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7236
7237 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7238 &cu->header, section,
7239 dwo_abbrev_section,
7240 info_ptr, rcuh_kind::TYPE);
7241 /* This is not an assert because it can be caused by bad debug info. */
7242 if (sig_type->signature != cu->header.signature)
7243 {
7244 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7245 " TU at offset %s [in module %s]"),
7246 hex_string (sig_type->signature),
7247 hex_string (cu->header.signature),
7248 sect_offset_str (dwo_unit->sect_off),
7249 bfd_get_filename (abfd));
7250 }
7251 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7252 /* For DWOs coming from DWP files, we don't know the CU length
7253 nor the type's offset in the TU until now. */
7254 dwo_unit->length = get_cu_length (&cu->header);
7255 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7256
7257 /* Establish the type offset that can be used to lookup the type.
7258 For DWO files, we don't know it until now. */
7259 sig_type->type_offset_in_section
7260 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7261 }
7262 else
7263 {
7264 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7265 &cu->header, section,
7266 dwo_abbrev_section,
7267 info_ptr, rcuh_kind::COMPILE);
7268 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7269 /* For DWOs coming from DWP files, we don't know the CU length
7270 until now. */
7271 dwo_unit->length = get_cu_length (&cu->header);
7272 }
7273
7274 *result_dwo_abbrev_table
7275 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7276 cu->header.abbrev_sect_off);
7277 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7278 result_dwo_abbrev_table->get ());
7279
7280 /* Read in the die, but leave space to copy over the attributes
7281 from the stub. This has the benefit of simplifying the rest of
7282 the code - all the work to maintain the illusion of a single
7283 DW_TAG_{compile,type}_unit DIE is done here. */
7284 num_extra_attrs = ((stmt_list != NULL)
7285 + (low_pc != NULL)
7286 + (high_pc != NULL)
7287 + (ranges != NULL)
7288 + (comp_dir != NULL));
7289 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7290 result_has_children, num_extra_attrs);
7291
7292 /* Copy over the attributes from the stub to the DIE we just read in. */
7293 comp_unit_die = *result_comp_unit_die;
7294 i = comp_unit_die->num_attrs;
7295 if (stmt_list != NULL)
7296 comp_unit_die->attrs[i++] = *stmt_list;
7297 if (low_pc != NULL)
7298 comp_unit_die->attrs[i++] = *low_pc;
7299 if (high_pc != NULL)
7300 comp_unit_die->attrs[i++] = *high_pc;
7301 if (ranges != NULL)
7302 comp_unit_die->attrs[i++] = *ranges;
7303 if (comp_dir != NULL)
7304 comp_unit_die->attrs[i++] = *comp_dir;
7305 comp_unit_die->num_attrs += num_extra_attrs;
7306
7307 if (dwarf_die_debug)
7308 {
7309 fprintf_unfiltered (gdb_stdlog,
7310 "Read die from %s@0x%x of %s:\n",
7311 get_section_name (section),
7312 (unsigned) (begin_info_ptr - section->buffer),
7313 bfd_get_filename (abfd));
7314 dump_die (comp_unit_die, dwarf_die_debug);
7315 }
7316
7317 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7318 TUs by skipping the stub and going directly to the entry in the DWO file.
7319 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7320 to get it via circuitous means. Blech. */
7321 if (comp_dir != NULL)
7322 result_reader->comp_dir = DW_STRING (comp_dir);
7323
7324 /* Skip dummy compilation units. */
7325 if (info_ptr >= begin_info_ptr + dwo_unit->length
7326 || peek_abbrev_code (abfd, info_ptr) == 0)
7327 return 0;
7328
7329 *result_info_ptr = info_ptr;
7330 return 1;
7331 }
7332
7333 /* Subroutine of init_cutu_and_read_dies to simplify it.
7334 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7335 Returns NULL if the specified DWO unit cannot be found. */
7336
7337 static struct dwo_unit *
7338 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7339 struct die_info *comp_unit_die)
7340 {
7341 struct dwarf2_cu *cu = this_cu->cu;
7342 ULONGEST signature;
7343 struct dwo_unit *dwo_unit;
7344 const char *comp_dir, *dwo_name;
7345
7346 gdb_assert (cu != NULL);
7347
7348 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7349 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7350 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7351
7352 if (this_cu->is_debug_types)
7353 {
7354 struct signatured_type *sig_type;
7355
7356 /* Since this_cu is the first member of struct signatured_type,
7357 we can go from a pointer to one to a pointer to the other. */
7358 sig_type = (struct signatured_type *) this_cu;
7359 signature = sig_type->signature;
7360 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7361 }
7362 else
7363 {
7364 struct attribute *attr;
7365
7366 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7367 if (! attr)
7368 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7369 " [in module %s]"),
7370 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7371 signature = DW_UNSND (attr);
7372 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7373 signature);
7374 }
7375
7376 return dwo_unit;
7377 }
7378
7379 /* Subroutine of init_cutu_and_read_dies to simplify it.
7380 See it for a description of the parameters.
7381 Read a TU directly from a DWO file, bypassing the stub. */
7382
7383 static void
7384 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7385 int use_existing_cu, int keep,
7386 die_reader_func_ftype *die_reader_func,
7387 void *data)
7388 {
7389 std::unique_ptr<dwarf2_cu> new_cu;
7390 struct signatured_type *sig_type;
7391 struct die_reader_specs reader;
7392 const gdb_byte *info_ptr;
7393 struct die_info *comp_unit_die;
7394 int has_children;
7395 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7396
7397 /* Verify we can do the following downcast, and that we have the
7398 data we need. */
7399 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7400 sig_type = (struct signatured_type *) this_cu;
7401 gdb_assert (sig_type->dwo_unit != NULL);
7402
7403 if (use_existing_cu && this_cu->cu != NULL)
7404 {
7405 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7406 /* There's no need to do the rereading_dwo_cu handling that
7407 init_cutu_and_read_dies does since we don't read the stub. */
7408 }
7409 else
7410 {
7411 /* If !use_existing_cu, this_cu->cu must be NULL. */
7412 gdb_assert (this_cu->cu == NULL);
7413 new_cu.reset (new dwarf2_cu (this_cu));
7414 }
7415
7416 /* A future optimization, if needed, would be to use an existing
7417 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7418 could share abbrev tables. */
7419
7420 /* The abbreviation table used by READER, this must live at least as long as
7421 READER. */
7422 abbrev_table_up dwo_abbrev_table;
7423
7424 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7425 NULL /* stub_comp_unit_die */,
7426 sig_type->dwo_unit->dwo_file->comp_dir,
7427 &reader, &info_ptr,
7428 &comp_unit_die, &has_children,
7429 &dwo_abbrev_table) == 0)
7430 {
7431 /* Dummy die. */
7432 return;
7433 }
7434
7435 /* All the "real" work is done here. */
7436 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7437
7438 /* This duplicates the code in init_cutu_and_read_dies,
7439 but the alternative is making the latter more complex.
7440 This function is only for the special case of using DWO files directly:
7441 no point in overly complicating the general case just to handle this. */
7442 if (new_cu != NULL && keep)
7443 {
7444 /* Link this CU into read_in_chain. */
7445 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7446 dwarf2_per_objfile->read_in_chain = this_cu;
7447 /* The chain owns it now. */
7448 new_cu.release ();
7449 }
7450 }
7451
7452 /* Initialize a CU (or TU) and read its DIEs.
7453 If the CU defers to a DWO file, read the DWO file as well.
7454
7455 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7456 Otherwise the table specified in the comp unit header is read in and used.
7457 This is an optimization for when we already have the abbrev table.
7458
7459 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7460 Otherwise, a new CU is allocated with xmalloc.
7461
7462 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7463 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7464
7465 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7466 linker) then DIE_READER_FUNC will not get called. */
7467
7468 static void
7469 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7470 struct abbrev_table *abbrev_table,
7471 int use_existing_cu, int keep,
7472 bool skip_partial,
7473 die_reader_func_ftype *die_reader_func,
7474 void *data)
7475 {
7476 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7477 struct objfile *objfile = dwarf2_per_objfile->objfile;
7478 struct dwarf2_section_info *section = this_cu->section;
7479 bfd *abfd = get_section_bfd_owner (section);
7480 struct dwarf2_cu *cu;
7481 const gdb_byte *begin_info_ptr, *info_ptr;
7482 struct die_reader_specs reader;
7483 struct die_info *comp_unit_die;
7484 int has_children;
7485 struct attribute *attr;
7486 struct signatured_type *sig_type = NULL;
7487 struct dwarf2_section_info *abbrev_section;
7488 /* Non-zero if CU currently points to a DWO file and we need to
7489 reread it. When this happens we need to reread the skeleton die
7490 before we can reread the DWO file (this only applies to CUs, not TUs). */
7491 int rereading_dwo_cu = 0;
7492
7493 if (dwarf_die_debug)
7494 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7495 this_cu->is_debug_types ? "type" : "comp",
7496 sect_offset_str (this_cu->sect_off));
7497
7498 if (use_existing_cu)
7499 gdb_assert (keep);
7500
7501 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7502 file (instead of going through the stub), short-circuit all of this. */
7503 if (this_cu->reading_dwo_directly)
7504 {
7505 /* Narrow down the scope of possibilities to have to understand. */
7506 gdb_assert (this_cu->is_debug_types);
7507 gdb_assert (abbrev_table == NULL);
7508 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7509 die_reader_func, data);
7510 return;
7511 }
7512
7513 /* This is cheap if the section is already read in. */
7514 dwarf2_read_section (objfile, section);
7515
7516 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7517
7518 abbrev_section = get_abbrev_section_for_cu (this_cu);
7519
7520 std::unique_ptr<dwarf2_cu> new_cu;
7521 if (use_existing_cu && this_cu->cu != NULL)
7522 {
7523 cu = this_cu->cu;
7524 /* If this CU is from a DWO file we need to start over, we need to
7525 refetch the attributes from the skeleton CU.
7526 This could be optimized by retrieving those attributes from when we
7527 were here the first time: the previous comp_unit_die was stored in
7528 comp_unit_obstack. But there's no data yet that we need this
7529 optimization. */
7530 if (cu->dwo_unit != NULL)
7531 rereading_dwo_cu = 1;
7532 }
7533 else
7534 {
7535 /* If !use_existing_cu, this_cu->cu must be NULL. */
7536 gdb_assert (this_cu->cu == NULL);
7537 new_cu.reset (new dwarf2_cu (this_cu));
7538 cu = new_cu.get ();
7539 }
7540
7541 /* Get the header. */
7542 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7543 {
7544 /* We already have the header, there's no need to read it in again. */
7545 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7546 }
7547 else
7548 {
7549 if (this_cu->is_debug_types)
7550 {
7551 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7552 &cu->header, section,
7553 abbrev_section, info_ptr,
7554 rcuh_kind::TYPE);
7555
7556 /* Since per_cu is the first member of struct signatured_type,
7557 we can go from a pointer to one to a pointer to the other. */
7558 sig_type = (struct signatured_type *) this_cu;
7559 gdb_assert (sig_type->signature == cu->header.signature);
7560 gdb_assert (sig_type->type_offset_in_tu
7561 == cu->header.type_cu_offset_in_tu);
7562 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7563
7564 /* LENGTH has not been set yet for type units if we're
7565 using .gdb_index. */
7566 this_cu->length = get_cu_length (&cu->header);
7567
7568 /* Establish the type offset that can be used to lookup the type. */
7569 sig_type->type_offset_in_section =
7570 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7571
7572 this_cu->dwarf_version = cu->header.version;
7573 }
7574 else
7575 {
7576 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7577 &cu->header, section,
7578 abbrev_section,
7579 info_ptr,
7580 rcuh_kind::COMPILE);
7581
7582 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7583 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7584 this_cu->dwarf_version = cu->header.version;
7585 }
7586 }
7587
7588 /* Skip dummy compilation units. */
7589 if (info_ptr >= begin_info_ptr + this_cu->length
7590 || peek_abbrev_code (abfd, info_ptr) == 0)
7591 return;
7592
7593 /* If we don't have them yet, read the abbrevs for this compilation unit.
7594 And if we need to read them now, make sure they're freed when we're
7595 done (own the table through ABBREV_TABLE_HOLDER). */
7596 abbrev_table_up abbrev_table_holder;
7597 if (abbrev_table != NULL)
7598 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7599 else
7600 {
7601 abbrev_table_holder
7602 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7603 cu->header.abbrev_sect_off);
7604 abbrev_table = abbrev_table_holder.get ();
7605 }
7606
7607 /* Read the top level CU/TU die. */
7608 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7609 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7610
7611 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7612 return;
7613
7614 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7615 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7616 table from the DWO file and pass the ownership over to us. It will be
7617 referenced from READER, so we must make sure to free it after we're done
7618 with READER.
7619
7620 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7621 DWO CU, that this test will fail (the attribute will not be present). */
7622 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7623 abbrev_table_up dwo_abbrev_table;
7624 if (attr)
7625 {
7626 struct dwo_unit *dwo_unit;
7627 struct die_info *dwo_comp_unit_die;
7628
7629 if (has_children)
7630 {
7631 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7632 " has children (offset %s) [in module %s]"),
7633 sect_offset_str (this_cu->sect_off),
7634 bfd_get_filename (abfd));
7635 }
7636 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7637 if (dwo_unit != NULL)
7638 {
7639 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7640 comp_unit_die, NULL,
7641 &reader, &info_ptr,
7642 &dwo_comp_unit_die, &has_children,
7643 &dwo_abbrev_table) == 0)
7644 {
7645 /* Dummy die. */
7646 return;
7647 }
7648 comp_unit_die = dwo_comp_unit_die;
7649 }
7650 else
7651 {
7652 /* Yikes, we couldn't find the rest of the DIE, we only have
7653 the stub. A complaint has already been logged. There's
7654 not much more we can do except pass on the stub DIE to
7655 die_reader_func. We don't want to throw an error on bad
7656 debug info. */
7657 }
7658 }
7659
7660 /* All of the above is setup for this call. Yikes. */
7661 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7662
7663 /* Done, clean up. */
7664 if (new_cu != NULL && keep)
7665 {
7666 /* Link this CU into read_in_chain. */
7667 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7668 dwarf2_per_objfile->read_in_chain = this_cu;
7669 /* The chain owns it now. */
7670 new_cu.release ();
7671 }
7672 }
7673
7674 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7675 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7676 to have already done the lookup to find the DWO file).
7677
7678 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7679 THIS_CU->is_debug_types, but nothing else.
7680
7681 We fill in THIS_CU->length.
7682
7683 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7684 linker) then DIE_READER_FUNC will not get called.
7685
7686 THIS_CU->cu is always freed when done.
7687 This is done in order to not leave THIS_CU->cu in a state where we have
7688 to care whether it refers to the "main" CU or the DWO CU. */
7689
7690 static void
7691 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7692 struct dwo_file *dwo_file,
7693 die_reader_func_ftype *die_reader_func,
7694 void *data)
7695 {
7696 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7697 struct objfile *objfile = dwarf2_per_objfile->objfile;
7698 struct dwarf2_section_info *section = this_cu->section;
7699 bfd *abfd = get_section_bfd_owner (section);
7700 struct dwarf2_section_info *abbrev_section;
7701 const gdb_byte *begin_info_ptr, *info_ptr;
7702 struct die_reader_specs reader;
7703 struct die_info *comp_unit_die;
7704 int has_children;
7705
7706 if (dwarf_die_debug)
7707 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7708 this_cu->is_debug_types ? "type" : "comp",
7709 sect_offset_str (this_cu->sect_off));
7710
7711 gdb_assert (this_cu->cu == NULL);
7712
7713 abbrev_section = (dwo_file != NULL
7714 ? &dwo_file->sections.abbrev
7715 : get_abbrev_section_for_cu (this_cu));
7716
7717 /* This is cheap if the section is already read in. */
7718 dwarf2_read_section (objfile, section);
7719
7720 struct dwarf2_cu cu (this_cu);
7721
7722 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7723 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7724 &cu.header, section,
7725 abbrev_section, info_ptr,
7726 (this_cu->is_debug_types
7727 ? rcuh_kind::TYPE
7728 : rcuh_kind::COMPILE));
7729
7730 this_cu->length = get_cu_length (&cu.header);
7731
7732 /* Skip dummy compilation units. */
7733 if (info_ptr >= begin_info_ptr + this_cu->length
7734 || peek_abbrev_code (abfd, info_ptr) == 0)
7735 return;
7736
7737 abbrev_table_up abbrev_table
7738 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7739 cu.header.abbrev_sect_off);
7740
7741 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7742 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7743
7744 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7745 }
7746
7747 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7748 does not lookup the specified DWO file.
7749 This cannot be used to read DWO files.
7750
7751 THIS_CU->cu is always freed when done.
7752 This is done in order to not leave THIS_CU->cu in a state where we have
7753 to care whether it refers to the "main" CU or the DWO CU.
7754 We can revisit this if the data shows there's a performance issue. */
7755
7756 static void
7757 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7758 die_reader_func_ftype *die_reader_func,
7759 void *data)
7760 {
7761 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7762 }
7763 \f
7764 /* Type Unit Groups.
7765
7766 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7767 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7768 so that all types coming from the same compilation (.o file) are grouped
7769 together. A future step could be to put the types in the same symtab as
7770 the CU the types ultimately came from. */
7771
7772 static hashval_t
7773 hash_type_unit_group (const void *item)
7774 {
7775 const struct type_unit_group *tu_group
7776 = (const struct type_unit_group *) item;
7777
7778 return hash_stmt_list_entry (&tu_group->hash);
7779 }
7780
7781 static int
7782 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7783 {
7784 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7785 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7786
7787 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7788 }
7789
7790 /* Allocate a hash table for type unit groups. */
7791
7792 static htab_t
7793 allocate_type_unit_groups_table (struct objfile *objfile)
7794 {
7795 return htab_create_alloc_ex (3,
7796 hash_type_unit_group,
7797 eq_type_unit_group,
7798 NULL,
7799 &objfile->objfile_obstack,
7800 hashtab_obstack_allocate,
7801 dummy_obstack_deallocate);
7802 }
7803
7804 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7805 partial symtabs. We combine several TUs per psymtab to not let the size
7806 of any one psymtab grow too big. */
7807 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7808 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7809
7810 /* Helper routine for get_type_unit_group.
7811 Create the type_unit_group object used to hold one or more TUs. */
7812
7813 static struct type_unit_group *
7814 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7815 {
7816 struct dwarf2_per_objfile *dwarf2_per_objfile
7817 = cu->per_cu->dwarf2_per_objfile;
7818 struct objfile *objfile = dwarf2_per_objfile->objfile;
7819 struct dwarf2_per_cu_data *per_cu;
7820 struct type_unit_group *tu_group;
7821
7822 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7823 struct type_unit_group);
7824 per_cu = &tu_group->per_cu;
7825 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7826
7827 if (dwarf2_per_objfile->using_index)
7828 {
7829 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7830 struct dwarf2_per_cu_quick_data);
7831 }
7832 else
7833 {
7834 unsigned int line_offset = to_underlying (line_offset_struct);
7835 struct partial_symtab *pst;
7836 std::string name;
7837
7838 /* Give the symtab a useful name for debug purposes. */
7839 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7840 name = string_printf ("<type_units_%d>",
7841 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7842 else
7843 name = string_printf ("<type_units_at_0x%x>", line_offset);
7844
7845 pst = create_partial_symtab (per_cu, name.c_str ());
7846 pst->anonymous = 1;
7847 }
7848
7849 tu_group->hash.dwo_unit = cu->dwo_unit;
7850 tu_group->hash.line_sect_off = line_offset_struct;
7851
7852 return tu_group;
7853 }
7854
7855 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7856 STMT_LIST is a DW_AT_stmt_list attribute. */
7857
7858 static struct type_unit_group *
7859 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7860 {
7861 struct dwarf2_per_objfile *dwarf2_per_objfile
7862 = cu->per_cu->dwarf2_per_objfile;
7863 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7864 struct type_unit_group *tu_group;
7865 void **slot;
7866 unsigned int line_offset;
7867 struct type_unit_group type_unit_group_for_lookup;
7868
7869 if (dwarf2_per_objfile->type_unit_groups == NULL)
7870 {
7871 dwarf2_per_objfile->type_unit_groups =
7872 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7873 }
7874
7875 /* Do we need to create a new group, or can we use an existing one? */
7876
7877 if (stmt_list)
7878 {
7879 line_offset = DW_UNSND (stmt_list);
7880 ++tu_stats->nr_symtab_sharers;
7881 }
7882 else
7883 {
7884 /* Ugh, no stmt_list. Rare, but we have to handle it.
7885 We can do various things here like create one group per TU or
7886 spread them over multiple groups to split up the expansion work.
7887 To avoid worst case scenarios (too many groups or too large groups)
7888 we, umm, group them in bunches. */
7889 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7890 | (tu_stats->nr_stmt_less_type_units
7891 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7892 ++tu_stats->nr_stmt_less_type_units;
7893 }
7894
7895 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7896 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7897 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7898 &type_unit_group_for_lookup, INSERT);
7899 if (*slot != NULL)
7900 {
7901 tu_group = (struct type_unit_group *) *slot;
7902 gdb_assert (tu_group != NULL);
7903 }
7904 else
7905 {
7906 sect_offset line_offset_struct = (sect_offset) line_offset;
7907 tu_group = create_type_unit_group (cu, line_offset_struct);
7908 *slot = tu_group;
7909 ++tu_stats->nr_symtabs;
7910 }
7911
7912 return tu_group;
7913 }
7914 \f
7915 /* Partial symbol tables. */
7916
7917 /* Create a psymtab named NAME and assign it to PER_CU.
7918
7919 The caller must fill in the following details:
7920 dirname, textlow, texthigh. */
7921
7922 static struct partial_symtab *
7923 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7924 {
7925 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7926 struct partial_symtab *pst;
7927
7928 pst = start_psymtab_common (objfile, name, 0);
7929
7930 pst->psymtabs_addrmap_supported = 1;
7931
7932 /* This is the glue that links PST into GDB's symbol API. */
7933 pst->read_symtab_private = per_cu;
7934 pst->read_symtab = dwarf2_read_symtab;
7935 per_cu->v.psymtab = pst;
7936
7937 return pst;
7938 }
7939
7940 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7941 type. */
7942
7943 struct process_psymtab_comp_unit_data
7944 {
7945 /* True if we are reading a DW_TAG_partial_unit. */
7946
7947 int want_partial_unit;
7948
7949 /* The "pretend" language that is used if the CU doesn't declare a
7950 language. */
7951
7952 enum language pretend_language;
7953 };
7954
7955 /* die_reader_func for process_psymtab_comp_unit. */
7956
7957 static void
7958 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7959 const gdb_byte *info_ptr,
7960 struct die_info *comp_unit_die,
7961 int has_children,
7962 void *data)
7963 {
7964 struct dwarf2_cu *cu = reader->cu;
7965 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7967 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7968 CORE_ADDR baseaddr;
7969 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7970 struct partial_symtab *pst;
7971 enum pc_bounds_kind cu_bounds_kind;
7972 const char *filename;
7973 struct process_psymtab_comp_unit_data *info
7974 = (struct process_psymtab_comp_unit_data *) data;
7975
7976 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7977 return;
7978
7979 gdb_assert (! per_cu->is_debug_types);
7980
7981 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7982
7983 /* Allocate a new partial symbol table structure. */
7984 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7985 if (filename == NULL)
7986 filename = "";
7987
7988 pst = create_partial_symtab (per_cu, filename);
7989
7990 /* This must be done before calling dwarf2_build_include_psymtabs. */
7991 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7992
7993 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7994
7995 dwarf2_find_base_address (comp_unit_die, cu);
7996
7997 /* Possibly set the default values of LOWPC and HIGHPC from
7998 `DW_AT_ranges'. */
7999 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8000 &best_highpc, cu, pst);
8001 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8002 {
8003 CORE_ADDR low
8004 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8005 - baseaddr);
8006 CORE_ADDR high
8007 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8008 - baseaddr - 1);
8009 /* Store the contiguous range if it is not empty; it can be
8010 empty for CUs with no code. */
8011 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8012 low, high, pst);
8013 }
8014
8015 /* Check if comp unit has_children.
8016 If so, read the rest of the partial symbols from this comp unit.
8017 If not, there's no more debug_info for this comp unit. */
8018 if (has_children)
8019 {
8020 struct partial_die_info *first_die;
8021 CORE_ADDR lowpc, highpc;
8022
8023 lowpc = ((CORE_ADDR) -1);
8024 highpc = ((CORE_ADDR) 0);
8025
8026 first_die = load_partial_dies (reader, info_ptr, 1);
8027
8028 scan_partial_symbols (first_die, &lowpc, &highpc,
8029 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8030
8031 /* If we didn't find a lowpc, set it to highpc to avoid
8032 complaints from `maint check'. */
8033 if (lowpc == ((CORE_ADDR) -1))
8034 lowpc = highpc;
8035
8036 /* If the compilation unit didn't have an explicit address range,
8037 then use the information extracted from its child dies. */
8038 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8039 {
8040 best_lowpc = lowpc;
8041 best_highpc = highpc;
8042 }
8043 }
8044 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8045 best_lowpc + baseaddr)
8046 - baseaddr);
8047 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8048 best_highpc + baseaddr)
8049 - baseaddr);
8050
8051 end_psymtab_common (objfile, pst);
8052
8053 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8054 {
8055 int i;
8056 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8057 struct dwarf2_per_cu_data *iter;
8058
8059 /* Fill in 'dependencies' here; we fill in 'users' in a
8060 post-pass. */
8061 pst->number_of_dependencies = len;
8062 pst->dependencies
8063 = objfile->partial_symtabs->allocate_dependencies (len);
8064 for (i = 0;
8065 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8066 i, iter);
8067 ++i)
8068 pst->dependencies[i] = iter->v.psymtab;
8069
8070 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8071 }
8072
8073 /* Get the list of files included in the current compilation unit,
8074 and build a psymtab for each of them. */
8075 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8076
8077 if (dwarf_read_debug)
8078 fprintf_unfiltered (gdb_stdlog,
8079 "Psymtab for %s unit @%s: %s - %s"
8080 ", %d global, %d static syms\n",
8081 per_cu->is_debug_types ? "type" : "comp",
8082 sect_offset_str (per_cu->sect_off),
8083 paddress (gdbarch, pst->text_low (objfile)),
8084 paddress (gdbarch, pst->text_high (objfile)),
8085 pst->n_global_syms, pst->n_static_syms);
8086 }
8087
8088 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8089 Process compilation unit THIS_CU for a psymtab. */
8090
8091 static void
8092 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8093 int want_partial_unit,
8094 enum language pretend_language)
8095 {
8096 /* If this compilation unit was already read in, free the
8097 cached copy in order to read it in again. This is
8098 necessary because we skipped some symbols when we first
8099 read in the compilation unit (see load_partial_dies).
8100 This problem could be avoided, but the benefit is unclear. */
8101 if (this_cu->cu != NULL)
8102 free_one_cached_comp_unit (this_cu);
8103
8104 if (this_cu->is_debug_types)
8105 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8106 build_type_psymtabs_reader, NULL);
8107 else
8108 {
8109 process_psymtab_comp_unit_data info;
8110 info.want_partial_unit = want_partial_unit;
8111 info.pretend_language = pretend_language;
8112 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8113 process_psymtab_comp_unit_reader, &info);
8114 }
8115
8116 /* Age out any secondary CUs. */
8117 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8118 }
8119
8120 /* Reader function for build_type_psymtabs. */
8121
8122 static void
8123 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8124 const gdb_byte *info_ptr,
8125 struct die_info *type_unit_die,
8126 int has_children,
8127 void *data)
8128 {
8129 struct dwarf2_per_objfile *dwarf2_per_objfile
8130 = reader->cu->per_cu->dwarf2_per_objfile;
8131 struct objfile *objfile = dwarf2_per_objfile->objfile;
8132 struct dwarf2_cu *cu = reader->cu;
8133 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8134 struct signatured_type *sig_type;
8135 struct type_unit_group *tu_group;
8136 struct attribute *attr;
8137 struct partial_die_info *first_die;
8138 CORE_ADDR lowpc, highpc;
8139 struct partial_symtab *pst;
8140
8141 gdb_assert (data == NULL);
8142 gdb_assert (per_cu->is_debug_types);
8143 sig_type = (struct signatured_type *) per_cu;
8144
8145 if (! has_children)
8146 return;
8147
8148 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8149 tu_group = get_type_unit_group (cu, attr);
8150
8151 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8152
8153 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8154 pst = create_partial_symtab (per_cu, "");
8155 pst->anonymous = 1;
8156
8157 first_die = load_partial_dies (reader, info_ptr, 1);
8158
8159 lowpc = (CORE_ADDR) -1;
8160 highpc = (CORE_ADDR) 0;
8161 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8162
8163 end_psymtab_common (objfile, pst);
8164 }
8165
8166 /* Struct used to sort TUs by their abbreviation table offset. */
8167
8168 struct tu_abbrev_offset
8169 {
8170 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8171 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8172 {}
8173
8174 signatured_type *sig_type;
8175 sect_offset abbrev_offset;
8176 };
8177
8178 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8179
8180 static bool
8181 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8182 const struct tu_abbrev_offset &b)
8183 {
8184 return a.abbrev_offset < b.abbrev_offset;
8185 }
8186
8187 /* Efficiently read all the type units.
8188 This does the bulk of the work for build_type_psymtabs.
8189
8190 The efficiency is because we sort TUs by the abbrev table they use and
8191 only read each abbrev table once. In one program there are 200K TUs
8192 sharing 8K abbrev tables.
8193
8194 The main purpose of this function is to support building the
8195 dwarf2_per_objfile->type_unit_groups table.
8196 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8197 can collapse the search space by grouping them by stmt_list.
8198 The savings can be significant, in the same program from above the 200K TUs
8199 share 8K stmt_list tables.
8200
8201 FUNC is expected to call get_type_unit_group, which will create the
8202 struct type_unit_group if necessary and add it to
8203 dwarf2_per_objfile->type_unit_groups. */
8204
8205 static void
8206 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8207 {
8208 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8209 abbrev_table_up abbrev_table;
8210 sect_offset abbrev_offset;
8211
8212 /* It's up to the caller to not call us multiple times. */
8213 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8214
8215 if (dwarf2_per_objfile->all_type_units.empty ())
8216 return;
8217
8218 /* TUs typically share abbrev tables, and there can be way more TUs than
8219 abbrev tables. Sort by abbrev table to reduce the number of times we
8220 read each abbrev table in.
8221 Alternatives are to punt or to maintain a cache of abbrev tables.
8222 This is simpler and efficient enough for now.
8223
8224 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8225 symtab to use). Typically TUs with the same abbrev offset have the same
8226 stmt_list value too so in practice this should work well.
8227
8228 The basic algorithm here is:
8229
8230 sort TUs by abbrev table
8231 for each TU with same abbrev table:
8232 read abbrev table if first user
8233 read TU top level DIE
8234 [IWBN if DWO skeletons had DW_AT_stmt_list]
8235 call FUNC */
8236
8237 if (dwarf_read_debug)
8238 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8239
8240 /* Sort in a separate table to maintain the order of all_type_units
8241 for .gdb_index: TU indices directly index all_type_units. */
8242 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8243 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8244
8245 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8246 sorted_by_abbrev.emplace_back
8247 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8248 sig_type->per_cu.section,
8249 sig_type->per_cu.sect_off));
8250
8251 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8252 sort_tu_by_abbrev_offset);
8253
8254 abbrev_offset = (sect_offset) ~(unsigned) 0;
8255
8256 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8257 {
8258 /* Switch to the next abbrev table if necessary. */
8259 if (abbrev_table == NULL
8260 || tu.abbrev_offset != abbrev_offset)
8261 {
8262 abbrev_offset = tu.abbrev_offset;
8263 abbrev_table =
8264 abbrev_table_read_table (dwarf2_per_objfile,
8265 &dwarf2_per_objfile->abbrev,
8266 abbrev_offset);
8267 ++tu_stats->nr_uniq_abbrev_tables;
8268 }
8269
8270 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8271 0, 0, false, build_type_psymtabs_reader, NULL);
8272 }
8273 }
8274
8275 /* Print collected type unit statistics. */
8276
8277 static void
8278 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8279 {
8280 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8281
8282 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8283 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8284 dwarf2_per_objfile->all_type_units.size ());
8285 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8286 tu_stats->nr_uniq_abbrev_tables);
8287 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8288 tu_stats->nr_symtabs);
8289 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8290 tu_stats->nr_symtab_sharers);
8291 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8292 tu_stats->nr_stmt_less_type_units);
8293 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8294 tu_stats->nr_all_type_units_reallocs);
8295 }
8296
8297 /* Traversal function for build_type_psymtabs. */
8298
8299 static int
8300 build_type_psymtab_dependencies (void **slot, void *info)
8301 {
8302 struct dwarf2_per_objfile *dwarf2_per_objfile
8303 = (struct dwarf2_per_objfile *) info;
8304 struct objfile *objfile = dwarf2_per_objfile->objfile;
8305 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8306 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8307 struct partial_symtab *pst = per_cu->v.psymtab;
8308 int len = VEC_length (sig_type_ptr, tu_group->tus);
8309 struct signatured_type *iter;
8310 int i;
8311
8312 gdb_assert (len > 0);
8313 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8314
8315 pst->number_of_dependencies = len;
8316 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8317 for (i = 0;
8318 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8319 ++i)
8320 {
8321 gdb_assert (iter->per_cu.is_debug_types);
8322 pst->dependencies[i] = iter->per_cu.v.psymtab;
8323 iter->type_unit_group = tu_group;
8324 }
8325
8326 VEC_free (sig_type_ptr, tu_group->tus);
8327
8328 return 1;
8329 }
8330
8331 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8332 Build partial symbol tables for the .debug_types comp-units. */
8333
8334 static void
8335 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8336 {
8337 if (! create_all_type_units (dwarf2_per_objfile))
8338 return;
8339
8340 build_type_psymtabs_1 (dwarf2_per_objfile);
8341 }
8342
8343 /* Traversal function for process_skeletonless_type_unit.
8344 Read a TU in a DWO file and build partial symbols for it. */
8345
8346 static int
8347 process_skeletonless_type_unit (void **slot, void *info)
8348 {
8349 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8350 struct dwarf2_per_objfile *dwarf2_per_objfile
8351 = (struct dwarf2_per_objfile *) info;
8352 struct signatured_type find_entry, *entry;
8353
8354 /* If this TU doesn't exist in the global table, add it and read it in. */
8355
8356 if (dwarf2_per_objfile->signatured_types == NULL)
8357 {
8358 dwarf2_per_objfile->signatured_types
8359 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8360 }
8361
8362 find_entry.signature = dwo_unit->signature;
8363 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8364 INSERT);
8365 /* If we've already seen this type there's nothing to do. What's happening
8366 is we're doing our own version of comdat-folding here. */
8367 if (*slot != NULL)
8368 return 1;
8369
8370 /* This does the job that create_all_type_units would have done for
8371 this TU. */
8372 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8373 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8374 *slot = entry;
8375
8376 /* This does the job that build_type_psymtabs_1 would have done. */
8377 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8378 build_type_psymtabs_reader, NULL);
8379
8380 return 1;
8381 }
8382
8383 /* Traversal function for process_skeletonless_type_units. */
8384
8385 static int
8386 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8387 {
8388 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8389
8390 if (dwo_file->tus != NULL)
8391 {
8392 htab_traverse_noresize (dwo_file->tus,
8393 process_skeletonless_type_unit, info);
8394 }
8395
8396 return 1;
8397 }
8398
8399 /* Scan all TUs of DWO files, verifying we've processed them.
8400 This is needed in case a TU was emitted without its skeleton.
8401 Note: This can't be done until we know what all the DWO files are. */
8402
8403 static void
8404 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8405 {
8406 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8407 if (get_dwp_file (dwarf2_per_objfile) == NULL
8408 && dwarf2_per_objfile->dwo_files != NULL)
8409 {
8410 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8411 process_dwo_file_for_skeletonless_type_units,
8412 dwarf2_per_objfile);
8413 }
8414 }
8415
8416 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8417
8418 static void
8419 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8420 {
8421 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8422 {
8423 struct partial_symtab *pst = per_cu->v.psymtab;
8424
8425 if (pst == NULL)
8426 continue;
8427
8428 for (int j = 0; j < pst->number_of_dependencies; ++j)
8429 {
8430 /* Set the 'user' field only if it is not already set. */
8431 if (pst->dependencies[j]->user == NULL)
8432 pst->dependencies[j]->user = pst;
8433 }
8434 }
8435 }
8436
8437 /* Build the partial symbol table by doing a quick pass through the
8438 .debug_info and .debug_abbrev sections. */
8439
8440 static void
8441 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8442 {
8443 struct objfile *objfile = dwarf2_per_objfile->objfile;
8444
8445 if (dwarf_read_debug)
8446 {
8447 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8448 objfile_name (objfile));
8449 }
8450
8451 dwarf2_per_objfile->reading_partial_symbols = 1;
8452
8453 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8454
8455 /* Any cached compilation units will be linked by the per-objfile
8456 read_in_chain. Make sure to free them when we're done. */
8457 free_cached_comp_units freer (dwarf2_per_objfile);
8458
8459 build_type_psymtabs (dwarf2_per_objfile);
8460
8461 create_all_comp_units (dwarf2_per_objfile);
8462
8463 /* Create a temporary address map on a temporary obstack. We later
8464 copy this to the final obstack. */
8465 auto_obstack temp_obstack;
8466
8467 scoped_restore save_psymtabs_addrmap
8468 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8469 addrmap_create_mutable (&temp_obstack));
8470
8471 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8472 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8473
8474 /* This has to wait until we read the CUs, we need the list of DWOs. */
8475 process_skeletonless_type_units (dwarf2_per_objfile);
8476
8477 /* Now that all TUs have been processed we can fill in the dependencies. */
8478 if (dwarf2_per_objfile->type_unit_groups != NULL)
8479 {
8480 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8481 build_type_psymtab_dependencies, dwarf2_per_objfile);
8482 }
8483
8484 if (dwarf_read_debug)
8485 print_tu_stats (dwarf2_per_objfile);
8486
8487 set_partial_user (dwarf2_per_objfile);
8488
8489 objfile->partial_symtabs->psymtabs_addrmap
8490 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8491 objfile->partial_symtabs->obstack ());
8492 /* At this point we want to keep the address map. */
8493 save_psymtabs_addrmap.release ();
8494
8495 if (dwarf_read_debug)
8496 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8497 objfile_name (objfile));
8498 }
8499
8500 /* die_reader_func for load_partial_comp_unit. */
8501
8502 static void
8503 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8504 const gdb_byte *info_ptr,
8505 struct die_info *comp_unit_die,
8506 int has_children,
8507 void *data)
8508 {
8509 struct dwarf2_cu *cu = reader->cu;
8510
8511 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8512
8513 /* Check if comp unit has_children.
8514 If so, read the rest of the partial symbols from this comp unit.
8515 If not, there's no more debug_info for this comp unit. */
8516 if (has_children)
8517 load_partial_dies (reader, info_ptr, 0);
8518 }
8519
8520 /* Load the partial DIEs for a secondary CU into memory.
8521 This is also used when rereading a primary CU with load_all_dies. */
8522
8523 static void
8524 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8525 {
8526 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8527 load_partial_comp_unit_reader, NULL);
8528 }
8529
8530 static void
8531 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8532 struct dwarf2_section_info *section,
8533 struct dwarf2_section_info *abbrev_section,
8534 unsigned int is_dwz)
8535 {
8536 const gdb_byte *info_ptr;
8537 struct objfile *objfile = dwarf2_per_objfile->objfile;
8538
8539 if (dwarf_read_debug)
8540 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8541 get_section_name (section),
8542 get_section_file_name (section));
8543
8544 dwarf2_read_section (objfile, section);
8545
8546 info_ptr = section->buffer;
8547
8548 while (info_ptr < section->buffer + section->size)
8549 {
8550 struct dwarf2_per_cu_data *this_cu;
8551
8552 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8553
8554 comp_unit_head cu_header;
8555 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8556 abbrev_section, info_ptr,
8557 rcuh_kind::COMPILE);
8558
8559 /* Save the compilation unit for later lookup. */
8560 if (cu_header.unit_type != DW_UT_type)
8561 {
8562 this_cu = XOBNEW (&objfile->objfile_obstack,
8563 struct dwarf2_per_cu_data);
8564 memset (this_cu, 0, sizeof (*this_cu));
8565 }
8566 else
8567 {
8568 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8569 struct signatured_type);
8570 memset (sig_type, 0, sizeof (*sig_type));
8571 sig_type->signature = cu_header.signature;
8572 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8573 this_cu = &sig_type->per_cu;
8574 }
8575 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8576 this_cu->sect_off = sect_off;
8577 this_cu->length = cu_header.length + cu_header.initial_length_size;
8578 this_cu->is_dwz = is_dwz;
8579 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8580 this_cu->section = section;
8581
8582 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8583
8584 info_ptr = info_ptr + this_cu->length;
8585 }
8586 }
8587
8588 /* Create a list of all compilation units in OBJFILE.
8589 This is only done for -readnow and building partial symtabs. */
8590
8591 static void
8592 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8593 {
8594 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8595 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8596 &dwarf2_per_objfile->abbrev, 0);
8597
8598 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8599 if (dwz != NULL)
8600 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8601 1);
8602 }
8603
8604 /* Process all loaded DIEs for compilation unit CU, starting at
8605 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8607 DW_AT_ranges). See the comments of add_partial_subprogram on how
8608 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8609
8610 static void
8611 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8612 CORE_ADDR *highpc, int set_addrmap,
8613 struct dwarf2_cu *cu)
8614 {
8615 struct partial_die_info *pdi;
8616
8617 /* Now, march along the PDI's, descending into ones which have
8618 interesting children but skipping the children of the other ones,
8619 until we reach the end of the compilation unit. */
8620
8621 pdi = first_die;
8622
8623 while (pdi != NULL)
8624 {
8625 pdi->fixup (cu);
8626
8627 /* Anonymous namespaces or modules have no name but have interesting
8628 children, so we need to look at them. Ditto for anonymous
8629 enums. */
8630
8631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8633 || pdi->tag == DW_TAG_imported_unit
8634 || pdi->tag == DW_TAG_inlined_subroutine)
8635 {
8636 switch (pdi->tag)
8637 {
8638 case DW_TAG_subprogram:
8639 case DW_TAG_inlined_subroutine:
8640 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8641 break;
8642 case DW_TAG_constant:
8643 case DW_TAG_variable:
8644 case DW_TAG_typedef:
8645 case DW_TAG_union_type:
8646 if (!pdi->is_declaration)
8647 {
8648 add_partial_symbol (pdi, cu);
8649 }
8650 break;
8651 case DW_TAG_class_type:
8652 case DW_TAG_interface_type:
8653 case DW_TAG_structure_type:
8654 if (!pdi->is_declaration)
8655 {
8656 add_partial_symbol (pdi, cu);
8657 }
8658 if ((cu->language == language_rust
8659 || cu->language == language_cplus) && pdi->has_children)
8660 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8661 set_addrmap, cu);
8662 break;
8663 case DW_TAG_enumeration_type:
8664 if (!pdi->is_declaration)
8665 add_partial_enumeration (pdi, cu);
8666 break;
8667 case DW_TAG_base_type:
8668 case DW_TAG_subrange_type:
8669 /* File scope base type definitions are added to the partial
8670 symbol table. */
8671 add_partial_symbol (pdi, cu);
8672 break;
8673 case DW_TAG_namespace:
8674 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8675 break;
8676 case DW_TAG_module:
8677 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8678 break;
8679 case DW_TAG_imported_unit:
8680 {
8681 struct dwarf2_per_cu_data *per_cu;
8682
8683 /* For now we don't handle imported units in type units. */
8684 if (cu->per_cu->is_debug_types)
8685 {
8686 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8687 " supported in type units [in module %s]"),
8688 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8689 }
8690
8691 per_cu = dwarf2_find_containing_comp_unit
8692 (pdi->d.sect_off, pdi->is_dwz,
8693 cu->per_cu->dwarf2_per_objfile);
8694
8695 /* Go read the partial unit, if needed. */
8696 if (per_cu->v.psymtab == NULL)
8697 process_psymtab_comp_unit (per_cu, 1, cu->language);
8698
8699 VEC_safe_push (dwarf2_per_cu_ptr,
8700 cu->per_cu->imported_symtabs, per_cu);
8701 }
8702 break;
8703 case DW_TAG_imported_declaration:
8704 add_partial_symbol (pdi, cu);
8705 break;
8706 default:
8707 break;
8708 }
8709 }
8710
8711 /* If the die has a sibling, skip to the sibling. */
8712
8713 pdi = pdi->die_sibling;
8714 }
8715 }
8716
8717 /* Functions used to compute the fully scoped name of a partial DIE.
8718
8719 Normally, this is simple. For C++, the parent DIE's fully scoped
8720 name is concatenated with "::" and the partial DIE's name.
8721 Enumerators are an exception; they use the scope of their parent
8722 enumeration type, i.e. the name of the enumeration type is not
8723 prepended to the enumerator.
8724
8725 There are two complexities. One is DW_AT_specification; in this
8726 case "parent" means the parent of the target of the specification,
8727 instead of the direct parent of the DIE. The other is compilers
8728 which do not emit DW_TAG_namespace; in this case we try to guess
8729 the fully qualified name of structure types from their members'
8730 linkage names. This must be done using the DIE's children rather
8731 than the children of any DW_AT_specification target. We only need
8732 to do this for structures at the top level, i.e. if the target of
8733 any DW_AT_specification (if any; otherwise the DIE itself) does not
8734 have a parent. */
8735
8736 /* Compute the scope prefix associated with PDI's parent, in
8737 compilation unit CU. The result will be allocated on CU's
8738 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8739 field. NULL is returned if no prefix is necessary. */
8740 static const char *
8741 partial_die_parent_scope (struct partial_die_info *pdi,
8742 struct dwarf2_cu *cu)
8743 {
8744 const char *grandparent_scope;
8745 struct partial_die_info *parent, *real_pdi;
8746
8747 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8748 then this means the parent of the specification DIE. */
8749
8750 real_pdi = pdi;
8751 while (real_pdi->has_specification)
8752 {
8753 auto res = find_partial_die (real_pdi->spec_offset,
8754 real_pdi->spec_is_dwz, cu);
8755 real_pdi = res.pdi;
8756 cu = res.cu;
8757 }
8758
8759 parent = real_pdi->die_parent;
8760 if (parent == NULL)
8761 return NULL;
8762
8763 if (parent->scope_set)
8764 return parent->scope;
8765
8766 parent->fixup (cu);
8767
8768 grandparent_scope = partial_die_parent_scope (parent, cu);
8769
8770 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8771 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8772 Work around this problem here. */
8773 if (cu->language == language_cplus
8774 && parent->tag == DW_TAG_namespace
8775 && strcmp (parent->name, "::") == 0
8776 && grandparent_scope == NULL)
8777 {
8778 parent->scope = NULL;
8779 parent->scope_set = 1;
8780 return NULL;
8781 }
8782
8783 if (pdi->tag == DW_TAG_enumerator)
8784 /* Enumerators should not get the name of the enumeration as a prefix. */
8785 parent->scope = grandparent_scope;
8786 else if (parent->tag == DW_TAG_namespace
8787 || parent->tag == DW_TAG_module
8788 || parent->tag == DW_TAG_structure_type
8789 || parent->tag == DW_TAG_class_type
8790 || parent->tag == DW_TAG_interface_type
8791 || parent->tag == DW_TAG_union_type
8792 || parent->tag == DW_TAG_enumeration_type)
8793 {
8794 if (grandparent_scope == NULL)
8795 parent->scope = parent->name;
8796 else
8797 parent->scope = typename_concat (&cu->comp_unit_obstack,
8798 grandparent_scope,
8799 parent->name, 0, cu);
8800 }
8801 else
8802 {
8803 /* FIXME drow/2004-04-01: What should we be doing with
8804 function-local names? For partial symbols, we should probably be
8805 ignoring them. */
8806 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8807 dwarf_tag_name (parent->tag),
8808 sect_offset_str (pdi->sect_off));
8809 parent->scope = grandparent_scope;
8810 }
8811
8812 parent->scope_set = 1;
8813 return parent->scope;
8814 }
8815
8816 /* Return the fully scoped name associated with PDI, from compilation unit
8817 CU. The result will be allocated with malloc. */
8818
8819 static char *
8820 partial_die_full_name (struct partial_die_info *pdi,
8821 struct dwarf2_cu *cu)
8822 {
8823 const char *parent_scope;
8824
8825 /* If this is a template instantiation, we can not work out the
8826 template arguments from partial DIEs. So, unfortunately, we have
8827 to go through the full DIEs. At least any work we do building
8828 types here will be reused if full symbols are loaded later. */
8829 if (pdi->has_template_arguments)
8830 {
8831 pdi->fixup (cu);
8832
8833 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8834 {
8835 struct die_info *die;
8836 struct attribute attr;
8837 struct dwarf2_cu *ref_cu = cu;
8838
8839 /* DW_FORM_ref_addr is using section offset. */
8840 attr.name = (enum dwarf_attribute) 0;
8841 attr.form = DW_FORM_ref_addr;
8842 attr.u.unsnd = to_underlying (pdi->sect_off);
8843 die = follow_die_ref (NULL, &attr, &ref_cu);
8844
8845 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8846 }
8847 }
8848
8849 parent_scope = partial_die_parent_scope (pdi, cu);
8850 if (parent_scope == NULL)
8851 return NULL;
8852 else
8853 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8854 }
8855
8856 static void
8857 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8858 {
8859 struct dwarf2_per_objfile *dwarf2_per_objfile
8860 = cu->per_cu->dwarf2_per_objfile;
8861 struct objfile *objfile = dwarf2_per_objfile->objfile;
8862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8863 CORE_ADDR addr = 0;
8864 const char *actual_name = NULL;
8865 CORE_ADDR baseaddr;
8866 char *built_actual_name;
8867
8868 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8869
8870 built_actual_name = partial_die_full_name (pdi, cu);
8871 if (built_actual_name != NULL)
8872 actual_name = built_actual_name;
8873
8874 if (actual_name == NULL)
8875 actual_name = pdi->name;
8876
8877 switch (pdi->tag)
8878 {
8879 case DW_TAG_inlined_subroutine:
8880 case DW_TAG_subprogram:
8881 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8882 - baseaddr);
8883 if (pdi->is_external || cu->language == language_ada)
8884 {
8885 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8886 of the global scope. But in Ada, we want to be able to access
8887 nested procedures globally. So all Ada subprograms are stored
8888 in the global scope. */
8889 add_psymbol_to_list (actual_name, strlen (actual_name),
8890 built_actual_name != NULL,
8891 VAR_DOMAIN, LOC_BLOCK,
8892 SECT_OFF_TEXT (objfile),
8893 psymbol_placement::GLOBAL,
8894 addr,
8895 cu->language, objfile);
8896 }
8897 else
8898 {
8899 add_psymbol_to_list (actual_name, strlen (actual_name),
8900 built_actual_name != NULL,
8901 VAR_DOMAIN, LOC_BLOCK,
8902 SECT_OFF_TEXT (objfile),
8903 psymbol_placement::STATIC,
8904 addr, cu->language, objfile);
8905 }
8906
8907 if (pdi->main_subprogram && actual_name != NULL)
8908 set_objfile_main_name (objfile, actual_name, cu->language);
8909 break;
8910 case DW_TAG_constant:
8911 add_psymbol_to_list (actual_name, strlen (actual_name),
8912 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8913 -1, (pdi->is_external
8914 ? psymbol_placement::GLOBAL
8915 : psymbol_placement::STATIC),
8916 0, cu->language, objfile);
8917 break;
8918 case DW_TAG_variable:
8919 if (pdi->d.locdesc)
8920 addr = decode_locdesc (pdi->d.locdesc, cu);
8921
8922 if (pdi->d.locdesc
8923 && addr == 0
8924 && !dwarf2_per_objfile->has_section_at_zero)
8925 {
8926 /* A global or static variable may also have been stripped
8927 out by the linker if unused, in which case its address
8928 will be nullified; do not add such variables into partial
8929 symbol table then. */
8930 }
8931 else if (pdi->is_external)
8932 {
8933 /* Global Variable.
8934 Don't enter into the minimal symbol tables as there is
8935 a minimal symbol table entry from the ELF symbols already.
8936 Enter into partial symbol table if it has a location
8937 descriptor or a type.
8938 If the location descriptor is missing, new_symbol will create
8939 a LOC_UNRESOLVED symbol, the address of the variable will then
8940 be determined from the minimal symbol table whenever the variable
8941 is referenced.
8942 The address for the partial symbol table entry is not
8943 used by GDB, but it comes in handy for debugging partial symbol
8944 table building. */
8945
8946 if (pdi->d.locdesc || pdi->has_type)
8947 add_psymbol_to_list (actual_name, strlen (actual_name),
8948 built_actual_name != NULL,
8949 VAR_DOMAIN, LOC_STATIC,
8950 SECT_OFF_TEXT (objfile),
8951 psymbol_placement::GLOBAL,
8952 addr, cu->language, objfile);
8953 }
8954 else
8955 {
8956 int has_loc = pdi->d.locdesc != NULL;
8957
8958 /* Static Variable. Skip symbols whose value we cannot know (those
8959 without location descriptors or constant values). */
8960 if (!has_loc && !pdi->has_const_value)
8961 {
8962 xfree (built_actual_name);
8963 return;
8964 }
8965
8966 add_psymbol_to_list (actual_name, strlen (actual_name),
8967 built_actual_name != NULL,
8968 VAR_DOMAIN, LOC_STATIC,
8969 SECT_OFF_TEXT (objfile),
8970 psymbol_placement::STATIC,
8971 has_loc ? addr : 0,
8972 cu->language, objfile);
8973 }
8974 break;
8975 case DW_TAG_typedef:
8976 case DW_TAG_base_type:
8977 case DW_TAG_subrange_type:
8978 add_psymbol_to_list (actual_name, strlen (actual_name),
8979 built_actual_name != NULL,
8980 VAR_DOMAIN, LOC_TYPEDEF, -1,
8981 psymbol_placement::STATIC,
8982 0, cu->language, objfile);
8983 break;
8984 case DW_TAG_imported_declaration:
8985 case DW_TAG_namespace:
8986 add_psymbol_to_list (actual_name, strlen (actual_name),
8987 built_actual_name != NULL,
8988 VAR_DOMAIN, LOC_TYPEDEF, -1,
8989 psymbol_placement::GLOBAL,
8990 0, cu->language, objfile);
8991 break;
8992 case DW_TAG_module:
8993 /* With Fortran 77 there might be a "BLOCK DATA" module
8994 available without any name. If so, we skip the module as it
8995 doesn't bring any value. */
8996 if (actual_name != nullptr)
8997 add_psymbol_to_list (actual_name, strlen (actual_name),
8998 built_actual_name != NULL,
8999 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9000 psymbol_placement::GLOBAL,
9001 0, cu->language, objfile);
9002 break;
9003 case DW_TAG_class_type:
9004 case DW_TAG_interface_type:
9005 case DW_TAG_structure_type:
9006 case DW_TAG_union_type:
9007 case DW_TAG_enumeration_type:
9008 /* Skip external references. The DWARF standard says in the section
9009 about "Structure, Union, and Class Type Entries": "An incomplete
9010 structure, union or class type is represented by a structure,
9011 union or class entry that does not have a byte size attribute
9012 and that has a DW_AT_declaration attribute." */
9013 if (!pdi->has_byte_size && pdi->is_declaration)
9014 {
9015 xfree (built_actual_name);
9016 return;
9017 }
9018
9019 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9020 static vs. global. */
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9024 cu->language == language_cplus
9025 ? psymbol_placement::GLOBAL
9026 : psymbol_placement::STATIC,
9027 0, cu->language, objfile);
9028
9029 break;
9030 case DW_TAG_enumerator:
9031 add_psymbol_to_list (actual_name, strlen (actual_name),
9032 built_actual_name != NULL,
9033 VAR_DOMAIN, LOC_CONST, -1,
9034 cu->language == language_cplus
9035 ? psymbol_placement::GLOBAL
9036 : psymbol_placement::STATIC,
9037 0, cu->language, objfile);
9038 break;
9039 default:
9040 break;
9041 }
9042
9043 xfree (built_actual_name);
9044 }
9045
9046 /* Read a partial die corresponding to a namespace; also, add a symbol
9047 corresponding to that namespace to the symbol table. NAMESPACE is
9048 the name of the enclosing namespace. */
9049
9050 static void
9051 add_partial_namespace (struct partial_die_info *pdi,
9052 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9053 int set_addrmap, struct dwarf2_cu *cu)
9054 {
9055 /* Add a symbol for the namespace. */
9056
9057 add_partial_symbol (pdi, cu);
9058
9059 /* Now scan partial symbols in that namespace. */
9060
9061 if (pdi->has_children)
9062 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9063 }
9064
9065 /* Read a partial die corresponding to a Fortran module. */
9066
9067 static void
9068 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9069 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9070 {
9071 /* Add a symbol for the namespace. */
9072
9073 add_partial_symbol (pdi, cu);
9074
9075 /* Now scan partial symbols in that module. */
9076
9077 if (pdi->has_children)
9078 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9079 }
9080
9081 /* Read a partial die corresponding to a subprogram or an inlined
9082 subprogram and create a partial symbol for that subprogram.
9083 When the CU language allows it, this routine also defines a partial
9084 symbol for each nested subprogram that this subprogram contains.
9085 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9086 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9087
9088 PDI may also be a lexical block, in which case we simply search
9089 recursively for subprograms defined inside that lexical block.
9090 Again, this is only performed when the CU language allows this
9091 type of definitions. */
9092
9093 static void
9094 add_partial_subprogram (struct partial_die_info *pdi,
9095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9096 int set_addrmap, struct dwarf2_cu *cu)
9097 {
9098 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9099 {
9100 if (pdi->has_pc_info)
9101 {
9102 if (pdi->lowpc < *lowpc)
9103 *lowpc = pdi->lowpc;
9104 if (pdi->highpc > *highpc)
9105 *highpc = pdi->highpc;
9106 if (set_addrmap)
9107 {
9108 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9110 CORE_ADDR baseaddr;
9111 CORE_ADDR this_highpc;
9112 CORE_ADDR this_lowpc;
9113
9114 baseaddr = ANOFFSET (objfile->section_offsets,
9115 SECT_OFF_TEXT (objfile));
9116 this_lowpc
9117 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9118 pdi->lowpc + baseaddr)
9119 - baseaddr);
9120 this_highpc
9121 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9122 pdi->highpc + baseaddr)
9123 - baseaddr);
9124 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9125 this_lowpc, this_highpc - 1,
9126 cu->per_cu->v.psymtab);
9127 }
9128 }
9129
9130 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9131 {
9132 if (!pdi->is_declaration)
9133 /* Ignore subprogram DIEs that do not have a name, they are
9134 illegal. Do not emit a complaint at this point, we will
9135 do so when we convert this psymtab into a symtab. */
9136 if (pdi->name)
9137 add_partial_symbol (pdi, cu);
9138 }
9139 }
9140
9141 if (! pdi->has_children)
9142 return;
9143
9144 if (cu->language == language_ada)
9145 {
9146 pdi = pdi->die_child;
9147 while (pdi != NULL)
9148 {
9149 pdi->fixup (cu);
9150 if (pdi->tag == DW_TAG_subprogram
9151 || pdi->tag == DW_TAG_inlined_subroutine
9152 || pdi->tag == DW_TAG_lexical_block)
9153 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9154 pdi = pdi->die_sibling;
9155 }
9156 }
9157 }
9158
9159 /* Read a partial die corresponding to an enumeration type. */
9160
9161 static void
9162 add_partial_enumeration (struct partial_die_info *enum_pdi,
9163 struct dwarf2_cu *cu)
9164 {
9165 struct partial_die_info *pdi;
9166
9167 if (enum_pdi->name != NULL)
9168 add_partial_symbol (enum_pdi, cu);
9169
9170 pdi = enum_pdi->die_child;
9171 while (pdi)
9172 {
9173 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9174 complaint (_("malformed enumerator DIE ignored"));
9175 else
9176 add_partial_symbol (pdi, cu);
9177 pdi = pdi->die_sibling;
9178 }
9179 }
9180
9181 /* Return the initial uleb128 in the die at INFO_PTR. */
9182
9183 static unsigned int
9184 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9185 {
9186 unsigned int bytes_read;
9187
9188 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9189 }
9190
9191 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9192 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9193
9194 Return the corresponding abbrev, or NULL if the number is zero (indicating
9195 an empty DIE). In either case *BYTES_READ will be set to the length of
9196 the initial number. */
9197
9198 static struct abbrev_info *
9199 peek_die_abbrev (const die_reader_specs &reader,
9200 const gdb_byte *info_ptr, unsigned int *bytes_read)
9201 {
9202 dwarf2_cu *cu = reader.cu;
9203 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9204 unsigned int abbrev_number
9205 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9206
9207 if (abbrev_number == 0)
9208 return NULL;
9209
9210 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9211 if (!abbrev)
9212 {
9213 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9214 " at offset %s [in module %s]"),
9215 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9216 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9217 }
9218
9219 return abbrev;
9220 }
9221
9222 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9223 Returns a pointer to the end of a series of DIEs, terminated by an empty
9224 DIE. Any children of the skipped DIEs will also be skipped. */
9225
9226 static const gdb_byte *
9227 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9228 {
9229 while (1)
9230 {
9231 unsigned int bytes_read;
9232 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9233
9234 if (abbrev == NULL)
9235 return info_ptr + bytes_read;
9236 else
9237 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9238 }
9239 }
9240
9241 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9242 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9243 abbrev corresponding to that skipped uleb128 should be passed in
9244 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9245 children. */
9246
9247 static const gdb_byte *
9248 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9249 struct abbrev_info *abbrev)
9250 {
9251 unsigned int bytes_read;
9252 struct attribute attr;
9253 bfd *abfd = reader->abfd;
9254 struct dwarf2_cu *cu = reader->cu;
9255 const gdb_byte *buffer = reader->buffer;
9256 const gdb_byte *buffer_end = reader->buffer_end;
9257 unsigned int form, i;
9258
9259 for (i = 0; i < abbrev->num_attrs; i++)
9260 {
9261 /* The only abbrev we care about is DW_AT_sibling. */
9262 if (abbrev->attrs[i].name == DW_AT_sibling)
9263 {
9264 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9265 if (attr.form == DW_FORM_ref_addr)
9266 complaint (_("ignoring absolute DW_AT_sibling"));
9267 else
9268 {
9269 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9270 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9271
9272 if (sibling_ptr < info_ptr)
9273 complaint (_("DW_AT_sibling points backwards"));
9274 else if (sibling_ptr > reader->buffer_end)
9275 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9276 else
9277 return sibling_ptr;
9278 }
9279 }
9280
9281 /* If it isn't DW_AT_sibling, skip this attribute. */
9282 form = abbrev->attrs[i].form;
9283 skip_attribute:
9284 switch (form)
9285 {
9286 case DW_FORM_ref_addr:
9287 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9288 and later it is offset sized. */
9289 if (cu->header.version == 2)
9290 info_ptr += cu->header.addr_size;
9291 else
9292 info_ptr += cu->header.offset_size;
9293 break;
9294 case DW_FORM_GNU_ref_alt:
9295 info_ptr += cu->header.offset_size;
9296 break;
9297 case DW_FORM_addr:
9298 info_ptr += cu->header.addr_size;
9299 break;
9300 case DW_FORM_data1:
9301 case DW_FORM_ref1:
9302 case DW_FORM_flag:
9303 info_ptr += 1;
9304 break;
9305 case DW_FORM_flag_present:
9306 case DW_FORM_implicit_const:
9307 break;
9308 case DW_FORM_data2:
9309 case DW_FORM_ref2:
9310 info_ptr += 2;
9311 break;
9312 case DW_FORM_data4:
9313 case DW_FORM_ref4:
9314 info_ptr += 4;
9315 break;
9316 case DW_FORM_data8:
9317 case DW_FORM_ref8:
9318 case DW_FORM_ref_sig8:
9319 info_ptr += 8;
9320 break;
9321 case DW_FORM_data16:
9322 info_ptr += 16;
9323 break;
9324 case DW_FORM_string:
9325 read_direct_string (abfd, info_ptr, &bytes_read);
9326 info_ptr += bytes_read;
9327 break;
9328 case DW_FORM_sec_offset:
9329 case DW_FORM_strp:
9330 case DW_FORM_GNU_strp_alt:
9331 info_ptr += cu->header.offset_size;
9332 break;
9333 case DW_FORM_exprloc:
9334 case DW_FORM_block:
9335 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9336 info_ptr += bytes_read;
9337 break;
9338 case DW_FORM_block1:
9339 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9340 break;
9341 case DW_FORM_block2:
9342 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9343 break;
9344 case DW_FORM_block4:
9345 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9346 break;
9347 case DW_FORM_addrx:
9348 case DW_FORM_strx:
9349 case DW_FORM_sdata:
9350 case DW_FORM_udata:
9351 case DW_FORM_ref_udata:
9352 case DW_FORM_GNU_addr_index:
9353 case DW_FORM_GNU_str_index:
9354 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9355 break;
9356 case DW_FORM_indirect:
9357 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9358 info_ptr += bytes_read;
9359 /* We need to continue parsing from here, so just go back to
9360 the top. */
9361 goto skip_attribute;
9362
9363 default:
9364 error (_("Dwarf Error: Cannot handle %s "
9365 "in DWARF reader [in module %s]"),
9366 dwarf_form_name (form),
9367 bfd_get_filename (abfd));
9368 }
9369 }
9370
9371 if (abbrev->has_children)
9372 return skip_children (reader, info_ptr);
9373 else
9374 return info_ptr;
9375 }
9376
9377 /* Locate ORIG_PDI's sibling.
9378 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9379
9380 static const gdb_byte *
9381 locate_pdi_sibling (const struct die_reader_specs *reader,
9382 struct partial_die_info *orig_pdi,
9383 const gdb_byte *info_ptr)
9384 {
9385 /* Do we know the sibling already? */
9386
9387 if (orig_pdi->sibling)
9388 return orig_pdi->sibling;
9389
9390 /* Are there any children to deal with? */
9391
9392 if (!orig_pdi->has_children)
9393 return info_ptr;
9394
9395 /* Skip the children the long way. */
9396
9397 return skip_children (reader, info_ptr);
9398 }
9399
9400 /* Expand this partial symbol table into a full symbol table. SELF is
9401 not NULL. */
9402
9403 static void
9404 dwarf2_read_symtab (struct partial_symtab *self,
9405 struct objfile *objfile)
9406 {
9407 struct dwarf2_per_objfile *dwarf2_per_objfile
9408 = get_dwarf2_per_objfile (objfile);
9409
9410 if (self->readin)
9411 {
9412 warning (_("bug: psymtab for %s is already read in."),
9413 self->filename);
9414 }
9415 else
9416 {
9417 if (info_verbose)
9418 {
9419 printf_filtered (_("Reading in symbols for %s..."),
9420 self->filename);
9421 gdb_flush (gdb_stdout);
9422 }
9423
9424 /* If this psymtab is constructed from a debug-only objfile, the
9425 has_section_at_zero flag will not necessarily be correct. We
9426 can get the correct value for this flag by looking at the data
9427 associated with the (presumably stripped) associated objfile. */
9428 if (objfile->separate_debug_objfile_backlink)
9429 {
9430 struct dwarf2_per_objfile *dpo_backlink
9431 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9432
9433 dwarf2_per_objfile->has_section_at_zero
9434 = dpo_backlink->has_section_at_zero;
9435 }
9436
9437 dwarf2_per_objfile->reading_partial_symbols = 0;
9438
9439 psymtab_to_symtab_1 (self);
9440
9441 /* Finish up the debug error message. */
9442 if (info_verbose)
9443 printf_filtered (_("done.\n"));
9444 }
9445
9446 process_cu_includes (dwarf2_per_objfile);
9447 }
9448 \f
9449 /* Reading in full CUs. */
9450
9451 /* Add PER_CU to the queue. */
9452
9453 static void
9454 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9455 enum language pretend_language)
9456 {
9457 struct dwarf2_queue_item *item;
9458
9459 per_cu->queued = 1;
9460 item = XNEW (struct dwarf2_queue_item);
9461 item->per_cu = per_cu;
9462 item->pretend_language = pretend_language;
9463 item->next = NULL;
9464
9465 if (dwarf2_queue == NULL)
9466 dwarf2_queue = item;
9467 else
9468 dwarf2_queue_tail->next = item;
9469
9470 dwarf2_queue_tail = item;
9471 }
9472
9473 /* If PER_CU is not yet queued, add it to the queue.
9474 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9475 dependency.
9476 The result is non-zero if PER_CU was queued, otherwise the result is zero
9477 meaning either PER_CU is already queued or it is already loaded.
9478
9479 N.B. There is an invariant here that if a CU is queued then it is loaded.
9480 The caller is required to load PER_CU if we return non-zero. */
9481
9482 static int
9483 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9484 struct dwarf2_per_cu_data *per_cu,
9485 enum language pretend_language)
9486 {
9487 /* We may arrive here during partial symbol reading, if we need full
9488 DIEs to process an unusual case (e.g. template arguments). Do
9489 not queue PER_CU, just tell our caller to load its DIEs. */
9490 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9491 {
9492 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9493 return 1;
9494 return 0;
9495 }
9496
9497 /* Mark the dependence relation so that we don't flush PER_CU
9498 too early. */
9499 if (dependent_cu != NULL)
9500 dwarf2_add_dependence (dependent_cu, per_cu);
9501
9502 /* If it's already on the queue, we have nothing to do. */
9503 if (per_cu->queued)
9504 return 0;
9505
9506 /* If the compilation unit is already loaded, just mark it as
9507 used. */
9508 if (per_cu->cu != NULL)
9509 {
9510 per_cu->cu->last_used = 0;
9511 return 0;
9512 }
9513
9514 /* Add it to the queue. */
9515 queue_comp_unit (per_cu, pretend_language);
9516
9517 return 1;
9518 }
9519
9520 /* Process the queue. */
9521
9522 static void
9523 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9524 {
9525 struct dwarf2_queue_item *item, *next_item;
9526
9527 if (dwarf_read_debug)
9528 {
9529 fprintf_unfiltered (gdb_stdlog,
9530 "Expanding one or more symtabs of objfile %s ...\n",
9531 objfile_name (dwarf2_per_objfile->objfile));
9532 }
9533
9534 /* The queue starts out with one item, but following a DIE reference
9535 may load a new CU, adding it to the end of the queue. */
9536 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9537 {
9538 if ((dwarf2_per_objfile->using_index
9539 ? !item->per_cu->v.quick->compunit_symtab
9540 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9541 /* Skip dummy CUs. */
9542 && item->per_cu->cu != NULL)
9543 {
9544 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9545 unsigned int debug_print_threshold;
9546 char buf[100];
9547
9548 if (per_cu->is_debug_types)
9549 {
9550 struct signatured_type *sig_type =
9551 (struct signatured_type *) per_cu;
9552
9553 sprintf (buf, "TU %s at offset %s",
9554 hex_string (sig_type->signature),
9555 sect_offset_str (per_cu->sect_off));
9556 /* There can be 100s of TUs.
9557 Only print them in verbose mode. */
9558 debug_print_threshold = 2;
9559 }
9560 else
9561 {
9562 sprintf (buf, "CU at offset %s",
9563 sect_offset_str (per_cu->sect_off));
9564 debug_print_threshold = 1;
9565 }
9566
9567 if (dwarf_read_debug >= debug_print_threshold)
9568 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9569
9570 if (per_cu->is_debug_types)
9571 process_full_type_unit (per_cu, item->pretend_language);
9572 else
9573 process_full_comp_unit (per_cu, item->pretend_language);
9574
9575 if (dwarf_read_debug >= debug_print_threshold)
9576 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9577 }
9578
9579 item->per_cu->queued = 0;
9580 next_item = item->next;
9581 xfree (item);
9582 }
9583
9584 dwarf2_queue_tail = NULL;
9585
9586 if (dwarf_read_debug)
9587 {
9588 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9589 objfile_name (dwarf2_per_objfile->objfile));
9590 }
9591 }
9592
9593 /* Read in full symbols for PST, and anything it depends on. */
9594
9595 static void
9596 psymtab_to_symtab_1 (struct partial_symtab *pst)
9597 {
9598 struct dwarf2_per_cu_data *per_cu;
9599 int i;
9600
9601 if (pst->readin)
9602 return;
9603
9604 for (i = 0; i < pst->number_of_dependencies; i++)
9605 if (!pst->dependencies[i]->readin
9606 && pst->dependencies[i]->user == NULL)
9607 {
9608 /* Inform about additional files that need to be read in. */
9609 if (info_verbose)
9610 {
9611 /* FIXME: i18n: Need to make this a single string. */
9612 fputs_filtered (" ", gdb_stdout);
9613 wrap_here ("");
9614 fputs_filtered ("and ", gdb_stdout);
9615 wrap_here ("");
9616 printf_filtered ("%s...", pst->dependencies[i]->filename);
9617 wrap_here (""); /* Flush output. */
9618 gdb_flush (gdb_stdout);
9619 }
9620 psymtab_to_symtab_1 (pst->dependencies[i]);
9621 }
9622
9623 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9624
9625 if (per_cu == NULL)
9626 {
9627 /* It's an include file, no symbols to read for it.
9628 Everything is in the parent symtab. */
9629 pst->readin = 1;
9630 return;
9631 }
9632
9633 dw2_do_instantiate_symtab (per_cu, false);
9634 }
9635
9636 /* Trivial hash function for die_info: the hash value of a DIE
9637 is its offset in .debug_info for this objfile. */
9638
9639 static hashval_t
9640 die_hash (const void *item)
9641 {
9642 const struct die_info *die = (const struct die_info *) item;
9643
9644 return to_underlying (die->sect_off);
9645 }
9646
9647 /* Trivial comparison function for die_info structures: two DIEs
9648 are equal if they have the same offset. */
9649
9650 static int
9651 die_eq (const void *item_lhs, const void *item_rhs)
9652 {
9653 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9654 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9655
9656 return die_lhs->sect_off == die_rhs->sect_off;
9657 }
9658
9659 /* die_reader_func for load_full_comp_unit.
9660 This is identical to read_signatured_type_reader,
9661 but is kept separate for now. */
9662
9663 static void
9664 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9665 const gdb_byte *info_ptr,
9666 struct die_info *comp_unit_die,
9667 int has_children,
9668 void *data)
9669 {
9670 struct dwarf2_cu *cu = reader->cu;
9671 enum language *language_ptr = (enum language *) data;
9672
9673 gdb_assert (cu->die_hash == NULL);
9674 cu->die_hash =
9675 htab_create_alloc_ex (cu->header.length / 12,
9676 die_hash,
9677 die_eq,
9678 NULL,
9679 &cu->comp_unit_obstack,
9680 hashtab_obstack_allocate,
9681 dummy_obstack_deallocate);
9682
9683 if (has_children)
9684 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9685 &info_ptr, comp_unit_die);
9686 cu->dies = comp_unit_die;
9687 /* comp_unit_die is not stored in die_hash, no need. */
9688
9689 /* We try not to read any attributes in this function, because not
9690 all CUs needed for references have been loaded yet, and symbol
9691 table processing isn't initialized. But we have to set the CU language,
9692 or we won't be able to build types correctly.
9693 Similarly, if we do not read the producer, we can not apply
9694 producer-specific interpretation. */
9695 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9696 }
9697
9698 /* Load the DIEs associated with PER_CU into memory. */
9699
9700 static void
9701 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9702 bool skip_partial,
9703 enum language pretend_language)
9704 {
9705 gdb_assert (! this_cu->is_debug_types);
9706
9707 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9708 load_full_comp_unit_reader, &pretend_language);
9709 }
9710
9711 /* Add a DIE to the delayed physname list. */
9712
9713 static void
9714 add_to_method_list (struct type *type, int fnfield_index, int index,
9715 const char *name, struct die_info *die,
9716 struct dwarf2_cu *cu)
9717 {
9718 struct delayed_method_info mi;
9719 mi.type = type;
9720 mi.fnfield_index = fnfield_index;
9721 mi.index = index;
9722 mi.name = name;
9723 mi.die = die;
9724 cu->method_list.push_back (mi);
9725 }
9726
9727 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9728 "const" / "volatile". If so, decrements LEN by the length of the
9729 modifier and return true. Otherwise return false. */
9730
9731 template<size_t N>
9732 static bool
9733 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9734 {
9735 size_t mod_len = sizeof (mod) - 1;
9736 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9737 {
9738 len -= mod_len;
9739 return true;
9740 }
9741 return false;
9742 }
9743
9744 /* Compute the physnames of any methods on the CU's method list.
9745
9746 The computation of method physnames is delayed in order to avoid the
9747 (bad) condition that one of the method's formal parameters is of an as yet
9748 incomplete type. */
9749
9750 static void
9751 compute_delayed_physnames (struct dwarf2_cu *cu)
9752 {
9753 /* Only C++ delays computing physnames. */
9754 if (cu->method_list.empty ())
9755 return;
9756 gdb_assert (cu->language == language_cplus);
9757
9758 for (const delayed_method_info &mi : cu->method_list)
9759 {
9760 const char *physname;
9761 struct fn_fieldlist *fn_flp
9762 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9763 physname = dwarf2_physname (mi.name, mi.die, cu);
9764 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9765 = physname ? physname : "";
9766
9767 /* Since there's no tag to indicate whether a method is a
9768 const/volatile overload, extract that information out of the
9769 demangled name. */
9770 if (physname != NULL)
9771 {
9772 size_t len = strlen (physname);
9773
9774 while (1)
9775 {
9776 if (physname[len] == ')') /* shortcut */
9777 break;
9778 else if (check_modifier (physname, len, " const"))
9779 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9780 else if (check_modifier (physname, len, " volatile"))
9781 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9782 else
9783 break;
9784 }
9785 }
9786 }
9787
9788 /* The list is no longer needed. */
9789 cu->method_list.clear ();
9790 }
9791
9792 /* Go objects should be embedded in a DW_TAG_module DIE,
9793 and it's not clear if/how imported objects will appear.
9794 To keep Go support simple until that's worked out,
9795 go back through what we've read and create something usable.
9796 We could do this while processing each DIE, and feels kinda cleaner,
9797 but that way is more invasive.
9798 This is to, for example, allow the user to type "p var" or "b main"
9799 without having to specify the package name, and allow lookups
9800 of module.object to work in contexts that use the expression
9801 parser. */
9802
9803 static void
9804 fixup_go_packaging (struct dwarf2_cu *cu)
9805 {
9806 char *package_name = NULL;
9807 struct pending *list;
9808 int i;
9809
9810 for (list = *cu->get_builder ()->get_global_symbols ();
9811 list != NULL;
9812 list = list->next)
9813 {
9814 for (i = 0; i < list->nsyms; ++i)
9815 {
9816 struct symbol *sym = list->symbol[i];
9817
9818 if (SYMBOL_LANGUAGE (sym) == language_go
9819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9820 {
9821 char *this_package_name = go_symbol_package_name (sym);
9822
9823 if (this_package_name == NULL)
9824 continue;
9825 if (package_name == NULL)
9826 package_name = this_package_name;
9827 else
9828 {
9829 struct objfile *objfile
9830 = cu->per_cu->dwarf2_per_objfile->objfile;
9831 if (strcmp (package_name, this_package_name) != 0)
9832 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9833 (symbol_symtab (sym) != NULL
9834 ? symtab_to_filename_for_display
9835 (symbol_symtab (sym))
9836 : objfile_name (objfile)),
9837 this_package_name, package_name);
9838 xfree (this_package_name);
9839 }
9840 }
9841 }
9842 }
9843
9844 if (package_name != NULL)
9845 {
9846 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9847 const char *saved_package_name
9848 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9849 package_name,
9850 strlen (package_name));
9851 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9852 saved_package_name);
9853 struct symbol *sym;
9854
9855 sym = allocate_symbol (objfile);
9856 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9857 SYMBOL_SET_NAMES (sym, saved_package_name,
9858 strlen (saved_package_name), 0, objfile);
9859 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9860 e.g., "main" finds the "main" module and not C's main(). */
9861 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9862 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9863 SYMBOL_TYPE (sym) = type;
9864
9865 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9866
9867 xfree (package_name);
9868 }
9869 }
9870
9871 /* Allocate a fully-qualified name consisting of the two parts on the
9872 obstack. */
9873
9874 static const char *
9875 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9876 {
9877 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9878 }
9879
9880 /* A helper that allocates a struct discriminant_info to attach to a
9881 union type. */
9882
9883 static struct discriminant_info *
9884 alloc_discriminant_info (struct type *type, int discriminant_index,
9885 int default_index)
9886 {
9887 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9888 gdb_assert (discriminant_index == -1
9889 || (discriminant_index >= 0
9890 && discriminant_index < TYPE_NFIELDS (type)));
9891 gdb_assert (default_index == -1
9892 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9893
9894 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9895
9896 struct discriminant_info *disc
9897 = ((struct discriminant_info *)
9898 TYPE_ZALLOC (type,
9899 offsetof (struct discriminant_info, discriminants)
9900 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9901 disc->default_index = default_index;
9902 disc->discriminant_index = discriminant_index;
9903
9904 struct dynamic_prop prop;
9905 prop.kind = PROP_UNDEFINED;
9906 prop.data.baton = disc;
9907
9908 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9909
9910 return disc;
9911 }
9912
9913 /* Some versions of rustc emitted enums in an unusual way.
9914
9915 Ordinary enums were emitted as unions. The first element of each
9916 structure in the union was named "RUST$ENUM$DISR". This element
9917 held the discriminant.
9918
9919 These versions of Rust also implemented the "non-zero"
9920 optimization. When the enum had two values, and one is empty and
9921 the other holds a pointer that cannot be zero, the pointer is used
9922 as the discriminant, with a zero value meaning the empty variant.
9923 Here, the union's first member is of the form
9924 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9925 where the fieldnos are the indices of the fields that should be
9926 traversed in order to find the field (which may be several fields deep)
9927 and the variantname is the name of the variant of the case when the
9928 field is zero.
9929
9930 This function recognizes whether TYPE is of one of these forms,
9931 and, if so, smashes it to be a variant type. */
9932
9933 static void
9934 quirk_rust_enum (struct type *type, struct objfile *objfile)
9935 {
9936 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9937
9938 /* We don't need to deal with empty enums. */
9939 if (TYPE_NFIELDS (type) == 0)
9940 return;
9941
9942 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9943 if (TYPE_NFIELDS (type) == 1
9944 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9945 {
9946 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9947
9948 /* Decode the field name to find the offset of the
9949 discriminant. */
9950 ULONGEST bit_offset = 0;
9951 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9952 while (name[0] >= '0' && name[0] <= '9')
9953 {
9954 char *tail;
9955 unsigned long index = strtoul (name, &tail, 10);
9956 name = tail;
9957 if (*name != '$'
9958 || index >= TYPE_NFIELDS (field_type)
9959 || (TYPE_FIELD_LOC_KIND (field_type, index)
9960 != FIELD_LOC_KIND_BITPOS))
9961 {
9962 complaint (_("Could not parse Rust enum encoding string \"%s\""
9963 "[in module %s]"),
9964 TYPE_FIELD_NAME (type, 0),
9965 objfile_name (objfile));
9966 return;
9967 }
9968 ++name;
9969
9970 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9971 field_type = TYPE_FIELD_TYPE (field_type, index);
9972 }
9973
9974 /* Make a union to hold the variants. */
9975 struct type *union_type = alloc_type (objfile);
9976 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9977 TYPE_NFIELDS (union_type) = 3;
9978 TYPE_FIELDS (union_type)
9979 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9980 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9981 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9982
9983 /* Put the discriminant must at index 0. */
9984 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9985 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9986 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9987 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9988
9989 /* The order of fields doesn't really matter, so put the real
9990 field at index 1 and the data-less field at index 2. */
9991 struct discriminant_info *disc
9992 = alloc_discriminant_info (union_type, 0, 1);
9993 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9994 TYPE_FIELD_NAME (union_type, 1)
9995 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9996 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9997 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9998 TYPE_FIELD_NAME (union_type, 1));
9999
10000 const char *dataless_name
10001 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10002 name);
10003 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10004 dataless_name);
10005 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10006 /* NAME points into the original discriminant name, which
10007 already has the correct lifetime. */
10008 TYPE_FIELD_NAME (union_type, 2) = name;
10009 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10010 disc->discriminants[2] = 0;
10011
10012 /* Smash this type to be a structure type. We have to do this
10013 because the type has already been recorded. */
10014 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10015 TYPE_NFIELDS (type) = 1;
10016 TYPE_FIELDS (type)
10017 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10018
10019 /* Install the variant part. */
10020 TYPE_FIELD_TYPE (type, 0) = union_type;
10021 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10022 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10023 }
10024 else if (TYPE_NFIELDS (type) == 1)
10025 {
10026 /* We assume that a union with a single field is a univariant
10027 enum. */
10028 /* Smash this type to be a structure type. We have to do this
10029 because the type has already been recorded. */
10030 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10031
10032 /* Make a union to hold the variants. */
10033 struct type *union_type = alloc_type (objfile);
10034 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10035 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10036 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10037 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10038 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10039
10040 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10041 const char *variant_name
10042 = rust_last_path_segment (TYPE_NAME (field_type));
10043 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10044 TYPE_NAME (field_type)
10045 = rust_fully_qualify (&objfile->objfile_obstack,
10046 TYPE_NAME (type), variant_name);
10047
10048 /* Install the union in the outer struct type. */
10049 TYPE_NFIELDS (type) = 1;
10050 TYPE_FIELDS (type)
10051 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10052 TYPE_FIELD_TYPE (type, 0) = union_type;
10053 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10054 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10055
10056 alloc_discriminant_info (union_type, -1, 0);
10057 }
10058 else
10059 {
10060 struct type *disr_type = nullptr;
10061 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10062 {
10063 disr_type = TYPE_FIELD_TYPE (type, i);
10064
10065 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10066 {
10067 /* All fields of a true enum will be structs. */
10068 return;
10069 }
10070 else if (TYPE_NFIELDS (disr_type) == 0)
10071 {
10072 /* Could be data-less variant, so keep going. */
10073 disr_type = nullptr;
10074 }
10075 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10076 "RUST$ENUM$DISR") != 0)
10077 {
10078 /* Not a Rust enum. */
10079 return;
10080 }
10081 else
10082 {
10083 /* Found one. */
10084 break;
10085 }
10086 }
10087
10088 /* If we got here without a discriminant, then it's probably
10089 just a union. */
10090 if (disr_type == nullptr)
10091 return;
10092
10093 /* Smash this type to be a structure type. We have to do this
10094 because the type has already been recorded. */
10095 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10096
10097 /* Make a union to hold the variants. */
10098 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10099 struct type *union_type = alloc_type (objfile);
10100 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10101 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10102 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10103 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10104 TYPE_FIELDS (union_type)
10105 = (struct field *) TYPE_ZALLOC (union_type,
10106 (TYPE_NFIELDS (union_type)
10107 * sizeof (struct field)));
10108
10109 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10110 TYPE_NFIELDS (type) * sizeof (struct field));
10111
10112 /* Install the discriminant at index 0 in the union. */
10113 TYPE_FIELD (union_type, 0) = *disr_field;
10114 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10115 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10116
10117 /* Install the union in the outer struct type. */
10118 TYPE_FIELD_TYPE (type, 0) = union_type;
10119 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10120 TYPE_NFIELDS (type) = 1;
10121
10122 /* Set the size and offset of the union type. */
10123 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10124
10125 /* We need a way to find the correct discriminant given a
10126 variant name. For convenience we build a map here. */
10127 struct type *enum_type = FIELD_TYPE (*disr_field);
10128 std::unordered_map<std::string, ULONGEST> discriminant_map;
10129 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10130 {
10131 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10132 {
10133 const char *name
10134 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10135 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10136 }
10137 }
10138
10139 int n_fields = TYPE_NFIELDS (union_type);
10140 struct discriminant_info *disc
10141 = alloc_discriminant_info (union_type, 0, -1);
10142 /* Skip the discriminant here. */
10143 for (int i = 1; i < n_fields; ++i)
10144 {
10145 /* Find the final word in the name of this variant's type.
10146 That name can be used to look up the correct
10147 discriminant. */
10148 const char *variant_name
10149 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10150 i)));
10151
10152 auto iter = discriminant_map.find (variant_name);
10153 if (iter != discriminant_map.end ())
10154 disc->discriminants[i] = iter->second;
10155
10156 /* Remove the discriminant field, if it exists. */
10157 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10158 if (TYPE_NFIELDS (sub_type) > 0)
10159 {
10160 --TYPE_NFIELDS (sub_type);
10161 ++TYPE_FIELDS (sub_type);
10162 }
10163 TYPE_FIELD_NAME (union_type, i) = variant_name;
10164 TYPE_NAME (sub_type)
10165 = rust_fully_qualify (&objfile->objfile_obstack,
10166 TYPE_NAME (type), variant_name);
10167 }
10168 }
10169 }
10170
10171 /* Rewrite some Rust unions to be structures with variants parts. */
10172
10173 static void
10174 rust_union_quirks (struct dwarf2_cu *cu)
10175 {
10176 gdb_assert (cu->language == language_rust);
10177 for (type *type_ : cu->rust_unions)
10178 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10179 /* We don't need this any more. */
10180 cu->rust_unions.clear ();
10181 }
10182
10183 /* Return the symtab for PER_CU. This works properly regardless of
10184 whether we're using the index or psymtabs. */
10185
10186 static struct compunit_symtab *
10187 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10188 {
10189 return (per_cu->dwarf2_per_objfile->using_index
10190 ? per_cu->v.quick->compunit_symtab
10191 : per_cu->v.psymtab->compunit_symtab);
10192 }
10193
10194 /* A helper function for computing the list of all symbol tables
10195 included by PER_CU. */
10196
10197 static void
10198 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10199 htab_t all_children, htab_t all_type_symtabs,
10200 struct dwarf2_per_cu_data *per_cu,
10201 struct compunit_symtab *immediate_parent)
10202 {
10203 void **slot;
10204 int ix;
10205 struct compunit_symtab *cust;
10206 struct dwarf2_per_cu_data *iter;
10207
10208 slot = htab_find_slot (all_children, per_cu, INSERT);
10209 if (*slot != NULL)
10210 {
10211 /* This inclusion and its children have been processed. */
10212 return;
10213 }
10214
10215 *slot = per_cu;
10216 /* Only add a CU if it has a symbol table. */
10217 cust = get_compunit_symtab (per_cu);
10218 if (cust != NULL)
10219 {
10220 /* If this is a type unit only add its symbol table if we haven't
10221 seen it yet (type unit per_cu's can share symtabs). */
10222 if (per_cu->is_debug_types)
10223 {
10224 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10225 if (*slot == NULL)
10226 {
10227 *slot = cust;
10228 result->push_back (cust);
10229 if (cust->user == NULL)
10230 cust->user = immediate_parent;
10231 }
10232 }
10233 else
10234 {
10235 result->push_back (cust);
10236 if (cust->user == NULL)
10237 cust->user = immediate_parent;
10238 }
10239 }
10240
10241 for (ix = 0;
10242 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10243 ++ix)
10244 {
10245 recursively_compute_inclusions (result, all_children,
10246 all_type_symtabs, iter, cust);
10247 }
10248 }
10249
10250 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10251 PER_CU. */
10252
10253 static void
10254 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10255 {
10256 gdb_assert (! per_cu->is_debug_types);
10257
10258 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10259 {
10260 int ix, len;
10261 struct dwarf2_per_cu_data *per_cu_iter;
10262 std::vector<compunit_symtab *> result_symtabs;
10263 htab_t all_children, all_type_symtabs;
10264 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10265
10266 /* If we don't have a symtab, we can just skip this case. */
10267 if (cust == NULL)
10268 return;
10269
10270 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10271 NULL, xcalloc, xfree);
10272 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10273 NULL, xcalloc, xfree);
10274
10275 for (ix = 0;
10276 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10277 ix, per_cu_iter);
10278 ++ix)
10279 {
10280 recursively_compute_inclusions (&result_symtabs, all_children,
10281 all_type_symtabs, per_cu_iter,
10282 cust);
10283 }
10284
10285 /* Now we have a transitive closure of all the included symtabs. */
10286 len = result_symtabs.size ();
10287 cust->includes
10288 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10289 struct compunit_symtab *, len + 1);
10290 memcpy (cust->includes, result_symtabs.data (),
10291 len * sizeof (compunit_symtab *));
10292 cust->includes[len] = NULL;
10293
10294 htab_delete (all_children);
10295 htab_delete (all_type_symtabs);
10296 }
10297 }
10298
10299 /* Compute the 'includes' field for the symtabs of all the CUs we just
10300 read. */
10301
10302 static void
10303 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10304 {
10305 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10306 {
10307 if (! iter->is_debug_types)
10308 compute_compunit_symtab_includes (iter);
10309 }
10310
10311 dwarf2_per_objfile->just_read_cus.clear ();
10312 }
10313
10314 /* Generate full symbol information for PER_CU, whose DIEs have
10315 already been loaded into memory. */
10316
10317 static void
10318 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10319 enum language pretend_language)
10320 {
10321 struct dwarf2_cu *cu = per_cu->cu;
10322 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10323 struct objfile *objfile = dwarf2_per_objfile->objfile;
10324 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10325 CORE_ADDR lowpc, highpc;
10326 struct compunit_symtab *cust;
10327 CORE_ADDR baseaddr;
10328 struct block *static_block;
10329 CORE_ADDR addr;
10330
10331 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10332
10333 /* Clear the list here in case something was left over. */
10334 cu->method_list.clear ();
10335
10336 cu->language = pretend_language;
10337 cu->language_defn = language_def (cu->language);
10338
10339 /* Do line number decoding in read_file_scope () */
10340 process_die (cu->dies, cu);
10341
10342 /* For now fudge the Go package. */
10343 if (cu->language == language_go)
10344 fixup_go_packaging (cu);
10345
10346 /* Now that we have processed all the DIEs in the CU, all the types
10347 should be complete, and it should now be safe to compute all of the
10348 physnames. */
10349 compute_delayed_physnames (cu);
10350
10351 if (cu->language == language_rust)
10352 rust_union_quirks (cu);
10353
10354 /* Some compilers don't define a DW_AT_high_pc attribute for the
10355 compilation unit. If the DW_AT_high_pc is missing, synthesize
10356 it, by scanning the DIE's below the compilation unit. */
10357 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10358
10359 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10360 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10361
10362 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10363 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10364 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10365 addrmap to help ensure it has an accurate map of pc values belonging to
10366 this comp unit. */
10367 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10368
10369 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10370 SECT_OFF_TEXT (objfile),
10371 0);
10372
10373 if (cust != NULL)
10374 {
10375 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10376
10377 /* Set symtab language to language from DW_AT_language. If the
10378 compilation is from a C file generated by language preprocessors, do
10379 not set the language if it was already deduced by start_subfile. */
10380 if (!(cu->language == language_c
10381 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10382 COMPUNIT_FILETABS (cust)->language = cu->language;
10383
10384 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10385 produce DW_AT_location with location lists but it can be possibly
10386 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10387 there were bugs in prologue debug info, fixed later in GCC-4.5
10388 by "unwind info for epilogues" patch (which is not directly related).
10389
10390 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10391 needed, it would be wrong due to missing DW_AT_producer there.
10392
10393 Still one can confuse GDB by using non-standard GCC compilation
10394 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10395 */
10396 if (cu->has_loclist && gcc_4_minor >= 5)
10397 cust->locations_valid = 1;
10398
10399 if (gcc_4_minor >= 5)
10400 cust->epilogue_unwind_valid = 1;
10401
10402 cust->call_site_htab = cu->call_site_htab;
10403 }
10404
10405 if (dwarf2_per_objfile->using_index)
10406 per_cu->v.quick->compunit_symtab = cust;
10407 else
10408 {
10409 struct partial_symtab *pst = per_cu->v.psymtab;
10410 pst->compunit_symtab = cust;
10411 pst->readin = 1;
10412 }
10413
10414 /* Push it for inclusion processing later. */
10415 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10416
10417 /* Not needed any more. */
10418 cu->reset_builder ();
10419 }
10420
10421 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10422 already been loaded into memory. */
10423
10424 static void
10425 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10426 enum language pretend_language)
10427 {
10428 struct dwarf2_cu *cu = per_cu->cu;
10429 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10430 struct objfile *objfile = dwarf2_per_objfile->objfile;
10431 struct compunit_symtab *cust;
10432 struct signatured_type *sig_type;
10433
10434 gdb_assert (per_cu->is_debug_types);
10435 sig_type = (struct signatured_type *) per_cu;
10436
10437 /* Clear the list here in case something was left over. */
10438 cu->method_list.clear ();
10439
10440 cu->language = pretend_language;
10441 cu->language_defn = language_def (cu->language);
10442
10443 /* The symbol tables are set up in read_type_unit_scope. */
10444 process_die (cu->dies, cu);
10445
10446 /* For now fudge the Go package. */
10447 if (cu->language == language_go)
10448 fixup_go_packaging (cu);
10449
10450 /* Now that we have processed all the DIEs in the CU, all the types
10451 should be complete, and it should now be safe to compute all of the
10452 physnames. */
10453 compute_delayed_physnames (cu);
10454
10455 if (cu->language == language_rust)
10456 rust_union_quirks (cu);
10457
10458 /* TUs share symbol tables.
10459 If this is the first TU to use this symtab, complete the construction
10460 of it with end_expandable_symtab. Otherwise, complete the addition of
10461 this TU's symbols to the existing symtab. */
10462 if (sig_type->type_unit_group->compunit_symtab == NULL)
10463 {
10464 buildsym_compunit *builder = cu->get_builder ();
10465 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10466 sig_type->type_unit_group->compunit_symtab = cust;
10467
10468 if (cust != NULL)
10469 {
10470 /* Set symtab language to language from DW_AT_language. If the
10471 compilation is from a C file generated by language preprocessors,
10472 do not set the language if it was already deduced by
10473 start_subfile. */
10474 if (!(cu->language == language_c
10475 && COMPUNIT_FILETABS (cust)->language != language_c))
10476 COMPUNIT_FILETABS (cust)->language = cu->language;
10477 }
10478 }
10479 else
10480 {
10481 cu->get_builder ()->augment_type_symtab ();
10482 cust = sig_type->type_unit_group->compunit_symtab;
10483 }
10484
10485 if (dwarf2_per_objfile->using_index)
10486 per_cu->v.quick->compunit_symtab = cust;
10487 else
10488 {
10489 struct partial_symtab *pst = per_cu->v.psymtab;
10490 pst->compunit_symtab = cust;
10491 pst->readin = 1;
10492 }
10493
10494 /* Not needed any more. */
10495 cu->reset_builder ();
10496 }
10497
10498 /* Process an imported unit DIE. */
10499
10500 static void
10501 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10502 {
10503 struct attribute *attr;
10504
10505 /* For now we don't handle imported units in type units. */
10506 if (cu->per_cu->is_debug_types)
10507 {
10508 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10509 " supported in type units [in module %s]"),
10510 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10511 }
10512
10513 attr = dwarf2_attr (die, DW_AT_import, cu);
10514 if (attr != NULL)
10515 {
10516 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10517 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10518 dwarf2_per_cu_data *per_cu
10519 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10520 cu->per_cu->dwarf2_per_objfile);
10521
10522 /* If necessary, add it to the queue and load its DIEs. */
10523 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10524 load_full_comp_unit (per_cu, false, cu->language);
10525
10526 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10527 per_cu);
10528 }
10529 }
10530
10531 /* RAII object that represents a process_die scope: i.e.,
10532 starts/finishes processing a DIE. */
10533 class process_die_scope
10534 {
10535 public:
10536 process_die_scope (die_info *die, dwarf2_cu *cu)
10537 : m_die (die), m_cu (cu)
10538 {
10539 /* We should only be processing DIEs not already in process. */
10540 gdb_assert (!m_die->in_process);
10541 m_die->in_process = true;
10542 }
10543
10544 ~process_die_scope ()
10545 {
10546 m_die->in_process = false;
10547
10548 /* If we're done processing the DIE for the CU that owns the line
10549 header, we don't need the line header anymore. */
10550 if (m_cu->line_header_die_owner == m_die)
10551 {
10552 delete m_cu->line_header;
10553 m_cu->line_header = NULL;
10554 m_cu->line_header_die_owner = NULL;
10555 }
10556 }
10557
10558 private:
10559 die_info *m_die;
10560 dwarf2_cu *m_cu;
10561 };
10562
10563 /* Process a die and its children. */
10564
10565 static void
10566 process_die (struct die_info *die, struct dwarf2_cu *cu)
10567 {
10568 process_die_scope scope (die, cu);
10569
10570 switch (die->tag)
10571 {
10572 case DW_TAG_padding:
10573 break;
10574 case DW_TAG_compile_unit:
10575 case DW_TAG_partial_unit:
10576 read_file_scope (die, cu);
10577 break;
10578 case DW_TAG_type_unit:
10579 read_type_unit_scope (die, cu);
10580 break;
10581 case DW_TAG_subprogram:
10582 case DW_TAG_inlined_subroutine:
10583 read_func_scope (die, cu);
10584 break;
10585 case DW_TAG_lexical_block:
10586 case DW_TAG_try_block:
10587 case DW_TAG_catch_block:
10588 read_lexical_block_scope (die, cu);
10589 break;
10590 case DW_TAG_call_site:
10591 case DW_TAG_GNU_call_site:
10592 read_call_site_scope (die, cu);
10593 break;
10594 case DW_TAG_class_type:
10595 case DW_TAG_interface_type:
10596 case DW_TAG_structure_type:
10597 case DW_TAG_union_type:
10598 process_structure_scope (die, cu);
10599 break;
10600 case DW_TAG_enumeration_type:
10601 process_enumeration_scope (die, cu);
10602 break;
10603
10604 /* These dies have a type, but processing them does not create
10605 a symbol or recurse to process the children. Therefore we can
10606 read them on-demand through read_type_die. */
10607 case DW_TAG_subroutine_type:
10608 case DW_TAG_set_type:
10609 case DW_TAG_array_type:
10610 case DW_TAG_pointer_type:
10611 case DW_TAG_ptr_to_member_type:
10612 case DW_TAG_reference_type:
10613 case DW_TAG_rvalue_reference_type:
10614 case DW_TAG_string_type:
10615 break;
10616
10617 case DW_TAG_base_type:
10618 case DW_TAG_subrange_type:
10619 case DW_TAG_typedef:
10620 /* Add a typedef symbol for the type definition, if it has a
10621 DW_AT_name. */
10622 new_symbol (die, read_type_die (die, cu), cu);
10623 break;
10624 case DW_TAG_common_block:
10625 read_common_block (die, cu);
10626 break;
10627 case DW_TAG_common_inclusion:
10628 break;
10629 case DW_TAG_namespace:
10630 cu->processing_has_namespace_info = true;
10631 read_namespace (die, cu);
10632 break;
10633 case DW_TAG_module:
10634 cu->processing_has_namespace_info = true;
10635 read_module (die, cu);
10636 break;
10637 case DW_TAG_imported_declaration:
10638 cu->processing_has_namespace_info = true;
10639 if (read_namespace_alias (die, cu))
10640 break;
10641 /* The declaration is not a global namespace alias. */
10642 /* Fall through. */
10643 case DW_TAG_imported_module:
10644 cu->processing_has_namespace_info = true;
10645 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10646 || cu->language != language_fortran))
10647 complaint (_("Tag '%s' has unexpected children"),
10648 dwarf_tag_name (die->tag));
10649 read_import_statement (die, cu);
10650 break;
10651
10652 case DW_TAG_imported_unit:
10653 process_imported_unit_die (die, cu);
10654 break;
10655
10656 case DW_TAG_variable:
10657 read_variable (die, cu);
10658 break;
10659
10660 default:
10661 new_symbol (die, NULL, cu);
10662 break;
10663 }
10664 }
10665 \f
10666 /* DWARF name computation. */
10667
10668 /* A helper function for dwarf2_compute_name which determines whether DIE
10669 needs to have the name of the scope prepended to the name listed in the
10670 die. */
10671
10672 static int
10673 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10674 {
10675 struct attribute *attr;
10676
10677 switch (die->tag)
10678 {
10679 case DW_TAG_namespace:
10680 case DW_TAG_typedef:
10681 case DW_TAG_class_type:
10682 case DW_TAG_interface_type:
10683 case DW_TAG_structure_type:
10684 case DW_TAG_union_type:
10685 case DW_TAG_enumeration_type:
10686 case DW_TAG_enumerator:
10687 case DW_TAG_subprogram:
10688 case DW_TAG_inlined_subroutine:
10689 case DW_TAG_member:
10690 case DW_TAG_imported_declaration:
10691 return 1;
10692
10693 case DW_TAG_variable:
10694 case DW_TAG_constant:
10695 /* We only need to prefix "globally" visible variables. These include
10696 any variable marked with DW_AT_external or any variable that
10697 lives in a namespace. [Variables in anonymous namespaces
10698 require prefixing, but they are not DW_AT_external.] */
10699
10700 if (dwarf2_attr (die, DW_AT_specification, cu))
10701 {
10702 struct dwarf2_cu *spec_cu = cu;
10703
10704 return die_needs_namespace (die_specification (die, &spec_cu),
10705 spec_cu);
10706 }
10707
10708 attr = dwarf2_attr (die, DW_AT_external, cu);
10709 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10710 && die->parent->tag != DW_TAG_module)
10711 return 0;
10712 /* A variable in a lexical block of some kind does not need a
10713 namespace, even though in C++ such variables may be external
10714 and have a mangled name. */
10715 if (die->parent->tag == DW_TAG_lexical_block
10716 || die->parent->tag == DW_TAG_try_block
10717 || die->parent->tag == DW_TAG_catch_block
10718 || die->parent->tag == DW_TAG_subprogram)
10719 return 0;
10720 return 1;
10721
10722 default:
10723 return 0;
10724 }
10725 }
10726
10727 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10728 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10729 defined for the given DIE. */
10730
10731 static struct attribute *
10732 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10733 {
10734 struct attribute *attr;
10735
10736 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10737 if (attr == NULL)
10738 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10739
10740 return attr;
10741 }
10742
10743 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10744 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10745 defined for the given DIE. */
10746
10747 static const char *
10748 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10749 {
10750 const char *linkage_name;
10751
10752 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10753 if (linkage_name == NULL)
10754 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10755
10756 return linkage_name;
10757 }
10758
10759 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10760 compute the physname for the object, which include a method's:
10761 - formal parameters (C++),
10762 - receiver type (Go),
10763
10764 The term "physname" is a bit confusing.
10765 For C++, for example, it is the demangled name.
10766 For Go, for example, it's the mangled name.
10767
10768 For Ada, return the DIE's linkage name rather than the fully qualified
10769 name. PHYSNAME is ignored..
10770
10771 The result is allocated on the objfile_obstack and canonicalized. */
10772
10773 static const char *
10774 dwarf2_compute_name (const char *name,
10775 struct die_info *die, struct dwarf2_cu *cu,
10776 int physname)
10777 {
10778 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10779
10780 if (name == NULL)
10781 name = dwarf2_name (die, cu);
10782
10783 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10784 but otherwise compute it by typename_concat inside GDB.
10785 FIXME: Actually this is not really true, or at least not always true.
10786 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10787 Fortran names because there is no mangling standard. So new_symbol
10788 will set the demangled name to the result of dwarf2_full_name, and it is
10789 the demangled name that GDB uses if it exists. */
10790 if (cu->language == language_ada
10791 || (cu->language == language_fortran && physname))
10792 {
10793 /* For Ada unit, we prefer the linkage name over the name, as
10794 the former contains the exported name, which the user expects
10795 to be able to reference. Ideally, we want the user to be able
10796 to reference this entity using either natural or linkage name,
10797 but we haven't started looking at this enhancement yet. */
10798 const char *linkage_name = dw2_linkage_name (die, cu);
10799
10800 if (linkage_name != NULL)
10801 return linkage_name;
10802 }
10803
10804 /* These are the only languages we know how to qualify names in. */
10805 if (name != NULL
10806 && (cu->language == language_cplus
10807 || cu->language == language_fortran || cu->language == language_d
10808 || cu->language == language_rust))
10809 {
10810 if (die_needs_namespace (die, cu))
10811 {
10812 const char *prefix;
10813 const char *canonical_name = NULL;
10814
10815 string_file buf;
10816
10817 prefix = determine_prefix (die, cu);
10818 if (*prefix != '\0')
10819 {
10820 char *prefixed_name = typename_concat (NULL, prefix, name,
10821 physname, cu);
10822
10823 buf.puts (prefixed_name);
10824 xfree (prefixed_name);
10825 }
10826 else
10827 buf.puts (name);
10828
10829 /* Template parameters may be specified in the DIE's DW_AT_name, or
10830 as children with DW_TAG_template_type_param or
10831 DW_TAG_value_type_param. If the latter, add them to the name
10832 here. If the name already has template parameters, then
10833 skip this step; some versions of GCC emit both, and
10834 it is more efficient to use the pre-computed name.
10835
10836 Something to keep in mind about this process: it is very
10837 unlikely, or in some cases downright impossible, to produce
10838 something that will match the mangled name of a function.
10839 If the definition of the function has the same debug info,
10840 we should be able to match up with it anyway. But fallbacks
10841 using the minimal symbol, for instance to find a method
10842 implemented in a stripped copy of libstdc++, will not work.
10843 If we do not have debug info for the definition, we will have to
10844 match them up some other way.
10845
10846 When we do name matching there is a related problem with function
10847 templates; two instantiated function templates are allowed to
10848 differ only by their return types, which we do not add here. */
10849
10850 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10851 {
10852 struct attribute *attr;
10853 struct die_info *child;
10854 int first = 1;
10855
10856 die->building_fullname = 1;
10857
10858 for (child = die->child; child != NULL; child = child->sibling)
10859 {
10860 struct type *type;
10861 LONGEST value;
10862 const gdb_byte *bytes;
10863 struct dwarf2_locexpr_baton *baton;
10864 struct value *v;
10865
10866 if (child->tag != DW_TAG_template_type_param
10867 && child->tag != DW_TAG_template_value_param)
10868 continue;
10869
10870 if (first)
10871 {
10872 buf.puts ("<");
10873 first = 0;
10874 }
10875 else
10876 buf.puts (", ");
10877
10878 attr = dwarf2_attr (child, DW_AT_type, cu);
10879 if (attr == NULL)
10880 {
10881 complaint (_("template parameter missing DW_AT_type"));
10882 buf.puts ("UNKNOWN_TYPE");
10883 continue;
10884 }
10885 type = die_type (child, cu);
10886
10887 if (child->tag == DW_TAG_template_type_param)
10888 {
10889 c_print_type (type, "", &buf, -1, 0, cu->language,
10890 &type_print_raw_options);
10891 continue;
10892 }
10893
10894 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10895 if (attr == NULL)
10896 {
10897 complaint (_("template parameter missing "
10898 "DW_AT_const_value"));
10899 buf.puts ("UNKNOWN_VALUE");
10900 continue;
10901 }
10902
10903 dwarf2_const_value_attr (attr, type, name,
10904 &cu->comp_unit_obstack, cu,
10905 &value, &bytes, &baton);
10906
10907 if (TYPE_NOSIGN (type))
10908 /* GDB prints characters as NUMBER 'CHAR'. If that's
10909 changed, this can use value_print instead. */
10910 c_printchar (value, type, &buf);
10911 else
10912 {
10913 struct value_print_options opts;
10914
10915 if (baton != NULL)
10916 v = dwarf2_evaluate_loc_desc (type, NULL,
10917 baton->data,
10918 baton->size,
10919 baton->per_cu);
10920 else if (bytes != NULL)
10921 {
10922 v = allocate_value (type);
10923 memcpy (value_contents_writeable (v), bytes,
10924 TYPE_LENGTH (type));
10925 }
10926 else
10927 v = value_from_longest (type, value);
10928
10929 /* Specify decimal so that we do not depend on
10930 the radix. */
10931 get_formatted_print_options (&opts, 'd');
10932 opts.raw = 1;
10933 value_print (v, &buf, &opts);
10934 release_value (v);
10935 }
10936 }
10937
10938 die->building_fullname = 0;
10939
10940 if (!first)
10941 {
10942 /* Close the argument list, with a space if necessary
10943 (nested templates). */
10944 if (!buf.empty () && buf.string ().back () == '>')
10945 buf.puts (" >");
10946 else
10947 buf.puts (">");
10948 }
10949 }
10950
10951 /* For C++ methods, append formal parameter type
10952 information, if PHYSNAME. */
10953
10954 if (physname && die->tag == DW_TAG_subprogram
10955 && cu->language == language_cplus)
10956 {
10957 struct type *type = read_type_die (die, cu);
10958
10959 c_type_print_args (type, &buf, 1, cu->language,
10960 &type_print_raw_options);
10961
10962 if (cu->language == language_cplus)
10963 {
10964 /* Assume that an artificial first parameter is
10965 "this", but do not crash if it is not. RealView
10966 marks unnamed (and thus unused) parameters as
10967 artificial; there is no way to differentiate
10968 the two cases. */
10969 if (TYPE_NFIELDS (type) > 0
10970 && TYPE_FIELD_ARTIFICIAL (type, 0)
10971 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10972 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10973 0))))
10974 buf.puts (" const");
10975 }
10976 }
10977
10978 const std::string &intermediate_name = buf.string ();
10979
10980 if (cu->language == language_cplus)
10981 canonical_name
10982 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10983 &objfile->per_bfd->storage_obstack);
10984
10985 /* If we only computed INTERMEDIATE_NAME, or if
10986 INTERMEDIATE_NAME is already canonical, then we need to
10987 copy it to the appropriate obstack. */
10988 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10989 name = ((const char *)
10990 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10991 intermediate_name.c_str (),
10992 intermediate_name.length ()));
10993 else
10994 name = canonical_name;
10995 }
10996 }
10997
10998 return name;
10999 }
11000
11001 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11002 If scope qualifiers are appropriate they will be added. The result
11003 will be allocated on the storage_obstack, or NULL if the DIE does
11004 not have a name. NAME may either be from a previous call to
11005 dwarf2_name or NULL.
11006
11007 The output string will be canonicalized (if C++). */
11008
11009 static const char *
11010 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11011 {
11012 return dwarf2_compute_name (name, die, cu, 0);
11013 }
11014
11015 /* Construct a physname for the given DIE in CU. NAME may either be
11016 from a previous call to dwarf2_name or NULL. The result will be
11017 allocated on the objfile_objstack or NULL if the DIE does not have a
11018 name.
11019
11020 The output string will be canonicalized (if C++). */
11021
11022 static const char *
11023 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11024 {
11025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11026 const char *retval, *mangled = NULL, *canon = NULL;
11027 int need_copy = 1;
11028
11029 /* In this case dwarf2_compute_name is just a shortcut not building anything
11030 on its own. */
11031 if (!die_needs_namespace (die, cu))
11032 return dwarf2_compute_name (name, die, cu, 1);
11033
11034 mangled = dw2_linkage_name (die, cu);
11035
11036 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11037 See https://github.com/rust-lang/rust/issues/32925. */
11038 if (cu->language == language_rust && mangled != NULL
11039 && strchr (mangled, '{') != NULL)
11040 mangled = NULL;
11041
11042 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11043 has computed. */
11044 gdb::unique_xmalloc_ptr<char> demangled;
11045 if (mangled != NULL)
11046 {
11047
11048 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11049 {
11050 /* Do nothing (do not demangle the symbol name). */
11051 }
11052 else if (cu->language == language_go)
11053 {
11054 /* This is a lie, but we already lie to the caller new_symbol.
11055 new_symbol assumes we return the mangled name.
11056 This just undoes that lie until things are cleaned up. */
11057 }
11058 else
11059 {
11060 /* Use DMGL_RET_DROP for C++ template functions to suppress
11061 their return type. It is easier for GDB users to search
11062 for such functions as `name(params)' than `long name(params)'.
11063 In such case the minimal symbol names do not match the full
11064 symbol names but for template functions there is never a need
11065 to look up their definition from their declaration so
11066 the only disadvantage remains the minimal symbol variant
11067 `long name(params)' does not have the proper inferior type. */
11068 demangled.reset (gdb_demangle (mangled,
11069 (DMGL_PARAMS | DMGL_ANSI
11070 | DMGL_RET_DROP)));
11071 }
11072 if (demangled)
11073 canon = demangled.get ();
11074 else
11075 {
11076 canon = mangled;
11077 need_copy = 0;
11078 }
11079 }
11080
11081 if (canon == NULL || check_physname)
11082 {
11083 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11084
11085 if (canon != NULL && strcmp (physname, canon) != 0)
11086 {
11087 /* It may not mean a bug in GDB. The compiler could also
11088 compute DW_AT_linkage_name incorrectly. But in such case
11089 GDB would need to be bug-to-bug compatible. */
11090
11091 complaint (_("Computed physname <%s> does not match demangled <%s> "
11092 "(from linkage <%s>) - DIE at %s [in module %s]"),
11093 physname, canon, mangled, sect_offset_str (die->sect_off),
11094 objfile_name (objfile));
11095
11096 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11097 is available here - over computed PHYSNAME. It is safer
11098 against both buggy GDB and buggy compilers. */
11099
11100 retval = canon;
11101 }
11102 else
11103 {
11104 retval = physname;
11105 need_copy = 0;
11106 }
11107 }
11108 else
11109 retval = canon;
11110
11111 if (need_copy)
11112 retval = ((const char *)
11113 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11114 retval, strlen (retval)));
11115
11116 return retval;
11117 }
11118
11119 /* Inspect DIE in CU for a namespace alias. If one exists, record
11120 a new symbol for it.
11121
11122 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11123
11124 static int
11125 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11126 {
11127 struct attribute *attr;
11128
11129 /* If the die does not have a name, this is not a namespace
11130 alias. */
11131 attr = dwarf2_attr (die, DW_AT_name, cu);
11132 if (attr != NULL)
11133 {
11134 int num;
11135 struct die_info *d = die;
11136 struct dwarf2_cu *imported_cu = cu;
11137
11138 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11139 keep inspecting DIEs until we hit the underlying import. */
11140 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11141 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11142 {
11143 attr = dwarf2_attr (d, DW_AT_import, cu);
11144 if (attr == NULL)
11145 break;
11146
11147 d = follow_die_ref (d, attr, &imported_cu);
11148 if (d->tag != DW_TAG_imported_declaration)
11149 break;
11150 }
11151
11152 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11153 {
11154 complaint (_("DIE at %s has too many recursively imported "
11155 "declarations"), sect_offset_str (d->sect_off));
11156 return 0;
11157 }
11158
11159 if (attr != NULL)
11160 {
11161 struct type *type;
11162 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11163
11164 type = get_die_type_at_offset (sect_off, cu->per_cu);
11165 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11166 {
11167 /* This declaration is a global namespace alias. Add
11168 a symbol for it whose type is the aliased namespace. */
11169 new_symbol (die, type, cu);
11170 return 1;
11171 }
11172 }
11173 }
11174
11175 return 0;
11176 }
11177
11178 /* Return the using directives repository (global or local?) to use in the
11179 current context for CU.
11180
11181 For Ada, imported declarations can materialize renamings, which *may* be
11182 global. However it is impossible (for now?) in DWARF to distinguish
11183 "external" imported declarations and "static" ones. As all imported
11184 declarations seem to be static in all other languages, make them all CU-wide
11185 global only in Ada. */
11186
11187 static struct using_direct **
11188 using_directives (struct dwarf2_cu *cu)
11189 {
11190 if (cu->language == language_ada
11191 && cu->get_builder ()->outermost_context_p ())
11192 return cu->get_builder ()->get_global_using_directives ();
11193 else
11194 return cu->get_builder ()->get_local_using_directives ();
11195 }
11196
11197 /* Read the import statement specified by the given die and record it. */
11198
11199 static void
11200 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11201 {
11202 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11203 struct attribute *import_attr;
11204 struct die_info *imported_die, *child_die;
11205 struct dwarf2_cu *imported_cu;
11206 const char *imported_name;
11207 const char *imported_name_prefix;
11208 const char *canonical_name;
11209 const char *import_alias;
11210 const char *imported_declaration = NULL;
11211 const char *import_prefix;
11212 std::vector<const char *> excludes;
11213
11214 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11215 if (import_attr == NULL)
11216 {
11217 complaint (_("Tag '%s' has no DW_AT_import"),
11218 dwarf_tag_name (die->tag));
11219 return;
11220 }
11221
11222 imported_cu = cu;
11223 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11224 imported_name = dwarf2_name (imported_die, imported_cu);
11225 if (imported_name == NULL)
11226 {
11227 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11228
11229 The import in the following code:
11230 namespace A
11231 {
11232 typedef int B;
11233 }
11234
11235 int main ()
11236 {
11237 using A::B;
11238 B b;
11239 return b;
11240 }
11241
11242 ...
11243 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11244 <52> DW_AT_decl_file : 1
11245 <53> DW_AT_decl_line : 6
11246 <54> DW_AT_import : <0x75>
11247 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11248 <59> DW_AT_name : B
11249 <5b> DW_AT_decl_file : 1
11250 <5c> DW_AT_decl_line : 2
11251 <5d> DW_AT_type : <0x6e>
11252 ...
11253 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11254 <76> DW_AT_byte_size : 4
11255 <77> DW_AT_encoding : 5 (signed)
11256
11257 imports the wrong die ( 0x75 instead of 0x58 ).
11258 This case will be ignored until the gcc bug is fixed. */
11259 return;
11260 }
11261
11262 /* Figure out the local name after import. */
11263 import_alias = dwarf2_name (die, cu);
11264
11265 /* Figure out where the statement is being imported to. */
11266 import_prefix = determine_prefix (die, cu);
11267
11268 /* Figure out what the scope of the imported die is and prepend it
11269 to the name of the imported die. */
11270 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11271
11272 if (imported_die->tag != DW_TAG_namespace
11273 && imported_die->tag != DW_TAG_module)
11274 {
11275 imported_declaration = imported_name;
11276 canonical_name = imported_name_prefix;
11277 }
11278 else if (strlen (imported_name_prefix) > 0)
11279 canonical_name = obconcat (&objfile->objfile_obstack,
11280 imported_name_prefix,
11281 (cu->language == language_d ? "." : "::"),
11282 imported_name, (char *) NULL);
11283 else
11284 canonical_name = imported_name;
11285
11286 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11287 for (child_die = die->child; child_die && child_die->tag;
11288 child_die = sibling_die (child_die))
11289 {
11290 /* DWARF-4: A Fortran use statement with a “rename list” may be
11291 represented by an imported module entry with an import attribute
11292 referring to the module and owned entries corresponding to those
11293 entities that are renamed as part of being imported. */
11294
11295 if (child_die->tag != DW_TAG_imported_declaration)
11296 {
11297 complaint (_("child DW_TAG_imported_declaration expected "
11298 "- DIE at %s [in module %s]"),
11299 sect_offset_str (child_die->sect_off),
11300 objfile_name (objfile));
11301 continue;
11302 }
11303
11304 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11305 if (import_attr == NULL)
11306 {
11307 complaint (_("Tag '%s' has no DW_AT_import"),
11308 dwarf_tag_name (child_die->tag));
11309 continue;
11310 }
11311
11312 imported_cu = cu;
11313 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11314 &imported_cu);
11315 imported_name = dwarf2_name (imported_die, imported_cu);
11316 if (imported_name == NULL)
11317 {
11318 complaint (_("child DW_TAG_imported_declaration has unknown "
11319 "imported name - DIE at %s [in module %s]"),
11320 sect_offset_str (child_die->sect_off),
11321 objfile_name (objfile));
11322 continue;
11323 }
11324
11325 excludes.push_back (imported_name);
11326
11327 process_die (child_die, cu);
11328 }
11329
11330 add_using_directive (using_directives (cu),
11331 import_prefix,
11332 canonical_name,
11333 import_alias,
11334 imported_declaration,
11335 excludes,
11336 0,
11337 &objfile->objfile_obstack);
11338 }
11339
11340 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11341 types, but gives them a size of zero. Starting with version 14,
11342 ICC is compatible with GCC. */
11343
11344 static bool
11345 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11346 {
11347 if (!cu->checked_producer)
11348 check_producer (cu);
11349
11350 return cu->producer_is_icc_lt_14;
11351 }
11352
11353 /* ICC generates a DW_AT_type for C void functions. This was observed on
11354 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11355 which says that void functions should not have a DW_AT_type. */
11356
11357 static bool
11358 producer_is_icc (struct dwarf2_cu *cu)
11359 {
11360 if (!cu->checked_producer)
11361 check_producer (cu);
11362
11363 return cu->producer_is_icc;
11364 }
11365
11366 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11367 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11368 this, it was first present in GCC release 4.3.0. */
11369
11370 static bool
11371 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11372 {
11373 if (!cu->checked_producer)
11374 check_producer (cu);
11375
11376 return cu->producer_is_gcc_lt_4_3;
11377 }
11378
11379 static file_and_directory
11380 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11381 {
11382 file_and_directory res;
11383
11384 /* Find the filename. Do not use dwarf2_name here, since the filename
11385 is not a source language identifier. */
11386 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11387 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11388
11389 if (res.comp_dir == NULL
11390 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11391 && IS_ABSOLUTE_PATH (res.name))
11392 {
11393 res.comp_dir_storage = ldirname (res.name);
11394 if (!res.comp_dir_storage.empty ())
11395 res.comp_dir = res.comp_dir_storage.c_str ();
11396 }
11397 if (res.comp_dir != NULL)
11398 {
11399 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11400 directory, get rid of it. */
11401 const char *cp = strchr (res.comp_dir, ':');
11402
11403 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11404 res.comp_dir = cp + 1;
11405 }
11406
11407 if (res.name == NULL)
11408 res.name = "<unknown>";
11409
11410 return res;
11411 }
11412
11413 /* Handle DW_AT_stmt_list for a compilation unit.
11414 DIE is the DW_TAG_compile_unit die for CU.
11415 COMP_DIR is the compilation directory. LOWPC is passed to
11416 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11417
11418 static void
11419 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11420 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11421 {
11422 struct dwarf2_per_objfile *dwarf2_per_objfile
11423 = cu->per_cu->dwarf2_per_objfile;
11424 struct objfile *objfile = dwarf2_per_objfile->objfile;
11425 struct attribute *attr;
11426 struct line_header line_header_local;
11427 hashval_t line_header_local_hash;
11428 void **slot;
11429 int decode_mapping;
11430
11431 gdb_assert (! cu->per_cu->is_debug_types);
11432
11433 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11434 if (attr == NULL)
11435 return;
11436
11437 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11438
11439 /* The line header hash table is only created if needed (it exists to
11440 prevent redundant reading of the line table for partial_units).
11441 If we're given a partial_unit, we'll need it. If we're given a
11442 compile_unit, then use the line header hash table if it's already
11443 created, but don't create one just yet. */
11444
11445 if (dwarf2_per_objfile->line_header_hash == NULL
11446 && die->tag == DW_TAG_partial_unit)
11447 {
11448 dwarf2_per_objfile->line_header_hash
11449 = htab_create_alloc_ex (127, line_header_hash_voidp,
11450 line_header_eq_voidp,
11451 free_line_header_voidp,
11452 &objfile->objfile_obstack,
11453 hashtab_obstack_allocate,
11454 dummy_obstack_deallocate);
11455 }
11456
11457 line_header_local.sect_off = line_offset;
11458 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11459 line_header_local_hash = line_header_hash (&line_header_local);
11460 if (dwarf2_per_objfile->line_header_hash != NULL)
11461 {
11462 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11463 &line_header_local,
11464 line_header_local_hash, NO_INSERT);
11465
11466 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11467 is not present in *SLOT (since if there is something in *SLOT then
11468 it will be for a partial_unit). */
11469 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11470 {
11471 gdb_assert (*slot != NULL);
11472 cu->line_header = (struct line_header *) *slot;
11473 return;
11474 }
11475 }
11476
11477 /* dwarf_decode_line_header does not yet provide sufficient information.
11478 We always have to call also dwarf_decode_lines for it. */
11479 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11480 if (lh == NULL)
11481 return;
11482
11483 cu->line_header = lh.release ();
11484 cu->line_header_die_owner = die;
11485
11486 if (dwarf2_per_objfile->line_header_hash == NULL)
11487 slot = NULL;
11488 else
11489 {
11490 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11491 &line_header_local,
11492 line_header_local_hash, INSERT);
11493 gdb_assert (slot != NULL);
11494 }
11495 if (slot != NULL && *slot == NULL)
11496 {
11497 /* This newly decoded line number information unit will be owned
11498 by line_header_hash hash table. */
11499 *slot = cu->line_header;
11500 cu->line_header_die_owner = NULL;
11501 }
11502 else
11503 {
11504 /* We cannot free any current entry in (*slot) as that struct line_header
11505 may be already used by multiple CUs. Create only temporary decoded
11506 line_header for this CU - it may happen at most once for each line
11507 number information unit. And if we're not using line_header_hash
11508 then this is what we want as well. */
11509 gdb_assert (die->tag != DW_TAG_partial_unit);
11510 }
11511 decode_mapping = (die->tag != DW_TAG_partial_unit);
11512 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11513 decode_mapping);
11514
11515 }
11516
11517 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11518
11519 static void
11520 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11521 {
11522 struct dwarf2_per_objfile *dwarf2_per_objfile
11523 = cu->per_cu->dwarf2_per_objfile;
11524 struct objfile *objfile = dwarf2_per_objfile->objfile;
11525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11526 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11527 CORE_ADDR highpc = ((CORE_ADDR) 0);
11528 struct attribute *attr;
11529 struct die_info *child_die;
11530 CORE_ADDR baseaddr;
11531
11532 prepare_one_comp_unit (cu, die, cu->language);
11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11534
11535 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11536
11537 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11538 from finish_block. */
11539 if (lowpc == ((CORE_ADDR) -1))
11540 lowpc = highpc;
11541 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11542
11543 file_and_directory fnd = find_file_and_directory (die, cu);
11544
11545 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11546 standardised yet. As a workaround for the language detection we fall
11547 back to the DW_AT_producer string. */
11548 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11549 cu->language = language_opencl;
11550
11551 /* Similar hack for Go. */
11552 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11553 set_cu_language (DW_LANG_Go, cu);
11554
11555 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11556
11557 /* Decode line number information if present. We do this before
11558 processing child DIEs, so that the line header table is available
11559 for DW_AT_decl_file. */
11560 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11561
11562 /* Process all dies in compilation unit. */
11563 if (die->child != NULL)
11564 {
11565 child_die = die->child;
11566 while (child_die && child_die->tag)
11567 {
11568 process_die (child_die, cu);
11569 child_die = sibling_die (child_die);
11570 }
11571 }
11572
11573 /* Decode macro information, if present. Dwarf 2 macro information
11574 refers to information in the line number info statement program
11575 header, so we can only read it if we've read the header
11576 successfully. */
11577 attr = dwarf2_attr (die, DW_AT_macros, cu);
11578 if (attr == NULL)
11579 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11580 if (attr && cu->line_header)
11581 {
11582 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11583 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11584
11585 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11586 }
11587 else
11588 {
11589 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11590 if (attr && cu->line_header)
11591 {
11592 unsigned int macro_offset = DW_UNSND (attr);
11593
11594 dwarf_decode_macros (cu, macro_offset, 0);
11595 }
11596 }
11597 }
11598
11599 void
11600 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11601 {
11602 struct type_unit_group *tu_group;
11603 int first_time;
11604 struct attribute *attr;
11605 unsigned int i;
11606 struct signatured_type *sig_type;
11607
11608 gdb_assert (per_cu->is_debug_types);
11609 sig_type = (struct signatured_type *) per_cu;
11610
11611 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11612
11613 /* If we're using .gdb_index (includes -readnow) then
11614 per_cu->type_unit_group may not have been set up yet. */
11615 if (sig_type->type_unit_group == NULL)
11616 sig_type->type_unit_group = get_type_unit_group (this, attr);
11617 tu_group = sig_type->type_unit_group;
11618
11619 /* If we've already processed this stmt_list there's no real need to
11620 do it again, we could fake it and just recreate the part we need
11621 (file name,index -> symtab mapping). If data shows this optimization
11622 is useful we can do it then. */
11623 first_time = tu_group->compunit_symtab == NULL;
11624
11625 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11626 debug info. */
11627 line_header_up lh;
11628 if (attr != NULL)
11629 {
11630 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11631 lh = dwarf_decode_line_header (line_offset, this);
11632 }
11633 if (lh == NULL)
11634 {
11635 if (first_time)
11636 start_symtab ("", NULL, 0);
11637 else
11638 {
11639 gdb_assert (tu_group->symtabs == NULL);
11640 gdb_assert (m_builder == nullptr);
11641 struct compunit_symtab *cust = tu_group->compunit_symtab;
11642 m_builder.reset (new struct buildsym_compunit
11643 (COMPUNIT_OBJFILE (cust), "",
11644 COMPUNIT_DIRNAME (cust),
11645 compunit_language (cust),
11646 0, cust));
11647 }
11648 return;
11649 }
11650
11651 line_header = lh.release ();
11652 line_header_die_owner = die;
11653
11654 if (first_time)
11655 {
11656 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11657
11658 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11659 still initializing it, and our caller (a few levels up)
11660 process_full_type_unit still needs to know if this is the first
11661 time. */
11662
11663 tu_group->num_symtabs = line_header->file_names.size ();
11664 tu_group->symtabs = XNEWVEC (struct symtab *,
11665 line_header->file_names.size ());
11666
11667 for (i = 0; i < line_header->file_names.size (); ++i)
11668 {
11669 file_entry &fe = line_header->file_names[i];
11670
11671 dwarf2_start_subfile (this, fe.name,
11672 fe.include_dir (line_header));
11673 buildsym_compunit *b = get_builder ();
11674 if (b->get_current_subfile ()->symtab == NULL)
11675 {
11676 /* NOTE: start_subfile will recognize when it's been
11677 passed a file it has already seen. So we can't
11678 assume there's a simple mapping from
11679 cu->line_header->file_names to subfiles, plus
11680 cu->line_header->file_names may contain dups. */
11681 b->get_current_subfile ()->symtab
11682 = allocate_symtab (cust, b->get_current_subfile ()->name);
11683 }
11684
11685 fe.symtab = b->get_current_subfile ()->symtab;
11686 tu_group->symtabs[i] = fe.symtab;
11687 }
11688 }
11689 else
11690 {
11691 gdb_assert (m_builder == nullptr);
11692 struct compunit_symtab *cust = tu_group->compunit_symtab;
11693 m_builder.reset (new struct buildsym_compunit
11694 (COMPUNIT_OBJFILE (cust), "",
11695 COMPUNIT_DIRNAME (cust),
11696 compunit_language (cust),
11697 0, cust));
11698
11699 for (i = 0; i < line_header->file_names.size (); ++i)
11700 {
11701 file_entry &fe = line_header->file_names[i];
11702
11703 fe.symtab = tu_group->symtabs[i];
11704 }
11705 }
11706
11707 /* The main symtab is allocated last. Type units don't have DW_AT_name
11708 so they don't have a "real" (so to speak) symtab anyway.
11709 There is later code that will assign the main symtab to all symbols
11710 that don't have one. We need to handle the case of a symbol with a
11711 missing symtab (DW_AT_decl_file) anyway. */
11712 }
11713
11714 /* Process DW_TAG_type_unit.
11715 For TUs we want to skip the first top level sibling if it's not the
11716 actual type being defined by this TU. In this case the first top
11717 level sibling is there to provide context only. */
11718
11719 static void
11720 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11721 {
11722 struct die_info *child_die;
11723
11724 prepare_one_comp_unit (cu, die, language_minimal);
11725
11726 /* Initialize (or reinitialize) the machinery for building symtabs.
11727 We do this before processing child DIEs, so that the line header table
11728 is available for DW_AT_decl_file. */
11729 cu->setup_type_unit_groups (die);
11730
11731 if (die->child != NULL)
11732 {
11733 child_die = die->child;
11734 while (child_die && child_die->tag)
11735 {
11736 process_die (child_die, cu);
11737 child_die = sibling_die (child_die);
11738 }
11739 }
11740 }
11741 \f
11742 /* DWO/DWP files.
11743
11744 http://gcc.gnu.org/wiki/DebugFission
11745 http://gcc.gnu.org/wiki/DebugFissionDWP
11746
11747 To simplify handling of both DWO files ("object" files with the DWARF info)
11748 and DWP files (a file with the DWOs packaged up into one file), we treat
11749 DWP files as having a collection of virtual DWO files. */
11750
11751 static hashval_t
11752 hash_dwo_file (const void *item)
11753 {
11754 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11755 hashval_t hash;
11756
11757 hash = htab_hash_string (dwo_file->dwo_name);
11758 if (dwo_file->comp_dir != NULL)
11759 hash += htab_hash_string (dwo_file->comp_dir);
11760 return hash;
11761 }
11762
11763 static int
11764 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11765 {
11766 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11767 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11768
11769 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11770 return 0;
11771 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11772 return lhs->comp_dir == rhs->comp_dir;
11773 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11774 }
11775
11776 /* Allocate a hash table for DWO files. */
11777
11778 static htab_t
11779 allocate_dwo_file_hash_table (struct objfile *objfile)
11780 {
11781 return htab_create_alloc_ex (41,
11782 hash_dwo_file,
11783 eq_dwo_file,
11784 NULL,
11785 &objfile->objfile_obstack,
11786 hashtab_obstack_allocate,
11787 dummy_obstack_deallocate);
11788 }
11789
11790 /* Lookup DWO file DWO_NAME. */
11791
11792 static void **
11793 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11794 const char *dwo_name,
11795 const char *comp_dir)
11796 {
11797 struct dwo_file find_entry;
11798 void **slot;
11799
11800 if (dwarf2_per_objfile->dwo_files == NULL)
11801 dwarf2_per_objfile->dwo_files
11802 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11803
11804 memset (&find_entry, 0, sizeof (find_entry));
11805 find_entry.dwo_name = dwo_name;
11806 find_entry.comp_dir = comp_dir;
11807 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11808
11809 return slot;
11810 }
11811
11812 static hashval_t
11813 hash_dwo_unit (const void *item)
11814 {
11815 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11816
11817 /* This drops the top 32 bits of the id, but is ok for a hash. */
11818 return dwo_unit->signature;
11819 }
11820
11821 static int
11822 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11823 {
11824 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11825 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11826
11827 /* The signature is assumed to be unique within the DWO file.
11828 So while object file CU dwo_id's always have the value zero,
11829 that's OK, assuming each object file DWO file has only one CU,
11830 and that's the rule for now. */
11831 return lhs->signature == rhs->signature;
11832 }
11833
11834 /* Allocate a hash table for DWO CUs,TUs.
11835 There is one of these tables for each of CUs,TUs for each DWO file. */
11836
11837 static htab_t
11838 allocate_dwo_unit_table (struct objfile *objfile)
11839 {
11840 /* Start out with a pretty small number.
11841 Generally DWO files contain only one CU and maybe some TUs. */
11842 return htab_create_alloc_ex (3,
11843 hash_dwo_unit,
11844 eq_dwo_unit,
11845 NULL,
11846 &objfile->objfile_obstack,
11847 hashtab_obstack_allocate,
11848 dummy_obstack_deallocate);
11849 }
11850
11851 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11852
11853 struct create_dwo_cu_data
11854 {
11855 struct dwo_file *dwo_file;
11856 struct dwo_unit dwo_unit;
11857 };
11858
11859 /* die_reader_func for create_dwo_cu. */
11860
11861 static void
11862 create_dwo_cu_reader (const struct die_reader_specs *reader,
11863 const gdb_byte *info_ptr,
11864 struct die_info *comp_unit_die,
11865 int has_children,
11866 void *datap)
11867 {
11868 struct dwarf2_cu *cu = reader->cu;
11869 sect_offset sect_off = cu->per_cu->sect_off;
11870 struct dwarf2_section_info *section = cu->per_cu->section;
11871 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11872 struct dwo_file *dwo_file = data->dwo_file;
11873 struct dwo_unit *dwo_unit = &data->dwo_unit;
11874 struct attribute *attr;
11875
11876 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11877 if (attr == NULL)
11878 {
11879 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11880 " its dwo_id [in module %s]"),
11881 sect_offset_str (sect_off), dwo_file->dwo_name);
11882 return;
11883 }
11884
11885 dwo_unit->dwo_file = dwo_file;
11886 dwo_unit->signature = DW_UNSND (attr);
11887 dwo_unit->section = section;
11888 dwo_unit->sect_off = sect_off;
11889 dwo_unit->length = cu->per_cu->length;
11890
11891 if (dwarf_read_debug)
11892 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11893 sect_offset_str (sect_off),
11894 hex_string (dwo_unit->signature));
11895 }
11896
11897 /* Create the dwo_units for the CUs in a DWO_FILE.
11898 Note: This function processes DWO files only, not DWP files. */
11899
11900 static void
11901 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11902 struct dwo_file &dwo_file, dwarf2_section_info &section,
11903 htab_t &cus_htab)
11904 {
11905 struct objfile *objfile = dwarf2_per_objfile->objfile;
11906 const gdb_byte *info_ptr, *end_ptr;
11907
11908 dwarf2_read_section (objfile, &section);
11909 info_ptr = section.buffer;
11910
11911 if (info_ptr == NULL)
11912 return;
11913
11914 if (dwarf_read_debug)
11915 {
11916 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11917 get_section_name (&section),
11918 get_section_file_name (&section));
11919 }
11920
11921 end_ptr = info_ptr + section.size;
11922 while (info_ptr < end_ptr)
11923 {
11924 struct dwarf2_per_cu_data per_cu;
11925 struct create_dwo_cu_data create_dwo_cu_data;
11926 struct dwo_unit *dwo_unit;
11927 void **slot;
11928 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11929
11930 memset (&create_dwo_cu_data.dwo_unit, 0,
11931 sizeof (create_dwo_cu_data.dwo_unit));
11932 memset (&per_cu, 0, sizeof (per_cu));
11933 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11934 per_cu.is_debug_types = 0;
11935 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11936 per_cu.section = &section;
11937 create_dwo_cu_data.dwo_file = &dwo_file;
11938
11939 init_cutu_and_read_dies_no_follow (
11940 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11941 info_ptr += per_cu.length;
11942
11943 // If the unit could not be parsed, skip it.
11944 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11945 continue;
11946
11947 if (cus_htab == NULL)
11948 cus_htab = allocate_dwo_unit_table (objfile);
11949
11950 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11951 *dwo_unit = create_dwo_cu_data.dwo_unit;
11952 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11953 gdb_assert (slot != NULL);
11954 if (*slot != NULL)
11955 {
11956 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11957 sect_offset dup_sect_off = dup_cu->sect_off;
11958
11959 complaint (_("debug cu entry at offset %s is duplicate to"
11960 " the entry at offset %s, signature %s"),
11961 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11962 hex_string (dwo_unit->signature));
11963 }
11964 *slot = (void *)dwo_unit;
11965 }
11966 }
11967
11968 /* DWP file .debug_{cu,tu}_index section format:
11969 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11970
11971 DWP Version 1:
11972
11973 Both index sections have the same format, and serve to map a 64-bit
11974 signature to a set of section numbers. Each section begins with a header,
11975 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11976 indexes, and a pool of 32-bit section numbers. The index sections will be
11977 aligned at 8-byte boundaries in the file.
11978
11979 The index section header consists of:
11980
11981 V, 32 bit version number
11982 -, 32 bits unused
11983 N, 32 bit number of compilation units or type units in the index
11984 M, 32 bit number of slots in the hash table
11985
11986 Numbers are recorded using the byte order of the application binary.
11987
11988 The hash table begins at offset 16 in the section, and consists of an array
11989 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11990 order of the application binary). Unused slots in the hash table are 0.
11991 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11992
11993 The parallel table begins immediately after the hash table
11994 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11995 array of 32-bit indexes (using the byte order of the application binary),
11996 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11997 table contains a 32-bit index into the pool of section numbers. For unused
11998 hash table slots, the corresponding entry in the parallel table will be 0.
11999
12000 The pool of section numbers begins immediately following the hash table
12001 (at offset 16 + 12 * M from the beginning of the section). The pool of
12002 section numbers consists of an array of 32-bit words (using the byte order
12003 of the application binary). Each item in the array is indexed starting
12004 from 0. The hash table entry provides the index of the first section
12005 number in the set. Additional section numbers in the set follow, and the
12006 set is terminated by a 0 entry (section number 0 is not used in ELF).
12007
12008 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12009 section must be the first entry in the set, and the .debug_abbrev.dwo must
12010 be the second entry. Other members of the set may follow in any order.
12011
12012 ---
12013
12014 DWP Version 2:
12015
12016 DWP Version 2 combines all the .debug_info, etc. sections into one,
12017 and the entries in the index tables are now offsets into these sections.
12018 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12019 section.
12020
12021 Index Section Contents:
12022 Header
12023 Hash Table of Signatures dwp_hash_table.hash_table
12024 Parallel Table of Indices dwp_hash_table.unit_table
12025 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12026 Table of Section Sizes dwp_hash_table.v2.sizes
12027
12028 The index section header consists of:
12029
12030 V, 32 bit version number
12031 L, 32 bit number of columns in the table of section offsets
12032 N, 32 bit number of compilation units or type units in the index
12033 M, 32 bit number of slots in the hash table
12034
12035 Numbers are recorded using the byte order of the application binary.
12036
12037 The hash table has the same format as version 1.
12038 The parallel table of indices has the same format as version 1,
12039 except that the entries are origin-1 indices into the table of sections
12040 offsets and the table of section sizes.
12041
12042 The table of offsets begins immediately following the parallel table
12043 (at offset 16 + 12 * M from the beginning of the section). The table is
12044 a two-dimensional array of 32-bit words (using the byte order of the
12045 application binary), with L columns and N+1 rows, in row-major order.
12046 Each row in the array is indexed starting from 0. The first row provides
12047 a key to the remaining rows: each column in this row provides an identifier
12048 for a debug section, and the offsets in the same column of subsequent rows
12049 refer to that section. The section identifiers are:
12050
12051 DW_SECT_INFO 1 .debug_info.dwo
12052 DW_SECT_TYPES 2 .debug_types.dwo
12053 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12054 DW_SECT_LINE 4 .debug_line.dwo
12055 DW_SECT_LOC 5 .debug_loc.dwo
12056 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12057 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12058 DW_SECT_MACRO 8 .debug_macro.dwo
12059
12060 The offsets provided by the CU and TU index sections are the base offsets
12061 for the contributions made by each CU or TU to the corresponding section
12062 in the package file. Each CU and TU header contains an abbrev_offset
12063 field, used to find the abbreviations table for that CU or TU within the
12064 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12065 be interpreted as relative to the base offset given in the index section.
12066 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12067 should be interpreted as relative to the base offset for .debug_line.dwo,
12068 and offsets into other debug sections obtained from DWARF attributes should
12069 also be interpreted as relative to the corresponding base offset.
12070
12071 The table of sizes begins immediately following the table of offsets.
12072 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12073 with L columns and N rows, in row-major order. Each row in the array is
12074 indexed starting from 1 (row 0 is shared by the two tables).
12075
12076 ---
12077
12078 Hash table lookup is handled the same in version 1 and 2:
12079
12080 We assume that N and M will not exceed 2^32 - 1.
12081 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12082
12083 Given a 64-bit compilation unit signature or a type signature S, an entry
12084 in the hash table is located as follows:
12085
12086 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12087 the low-order k bits all set to 1.
12088
12089 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12090
12091 3) If the hash table entry at index H matches the signature, use that
12092 entry. If the hash table entry at index H is unused (all zeroes),
12093 terminate the search: the signature is not present in the table.
12094
12095 4) Let H = (H + H') modulo M. Repeat at Step 3.
12096
12097 Because M > N and H' and M are relatively prime, the search is guaranteed
12098 to stop at an unused slot or find the match. */
12099
12100 /* Create a hash table to map DWO IDs to their CU/TU entry in
12101 .debug_{info,types}.dwo in DWP_FILE.
12102 Returns NULL if there isn't one.
12103 Note: This function processes DWP files only, not DWO files. */
12104
12105 static struct dwp_hash_table *
12106 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12107 struct dwp_file *dwp_file, int is_debug_types)
12108 {
12109 struct objfile *objfile = dwarf2_per_objfile->objfile;
12110 bfd *dbfd = dwp_file->dbfd.get ();
12111 const gdb_byte *index_ptr, *index_end;
12112 struct dwarf2_section_info *index;
12113 uint32_t version, nr_columns, nr_units, nr_slots;
12114 struct dwp_hash_table *htab;
12115
12116 if (is_debug_types)
12117 index = &dwp_file->sections.tu_index;
12118 else
12119 index = &dwp_file->sections.cu_index;
12120
12121 if (dwarf2_section_empty_p (index))
12122 return NULL;
12123 dwarf2_read_section (objfile, index);
12124
12125 index_ptr = index->buffer;
12126 index_end = index_ptr + index->size;
12127
12128 version = read_4_bytes (dbfd, index_ptr);
12129 index_ptr += 4;
12130 if (version == 2)
12131 nr_columns = read_4_bytes (dbfd, index_ptr);
12132 else
12133 nr_columns = 0;
12134 index_ptr += 4;
12135 nr_units = read_4_bytes (dbfd, index_ptr);
12136 index_ptr += 4;
12137 nr_slots = read_4_bytes (dbfd, index_ptr);
12138 index_ptr += 4;
12139
12140 if (version != 1 && version != 2)
12141 {
12142 error (_("Dwarf Error: unsupported DWP file version (%s)"
12143 " [in module %s]"),
12144 pulongest (version), dwp_file->name);
12145 }
12146 if (nr_slots != (nr_slots & -nr_slots))
12147 {
12148 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12149 " is not power of 2 [in module %s]"),
12150 pulongest (nr_slots), dwp_file->name);
12151 }
12152
12153 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12154 htab->version = version;
12155 htab->nr_columns = nr_columns;
12156 htab->nr_units = nr_units;
12157 htab->nr_slots = nr_slots;
12158 htab->hash_table = index_ptr;
12159 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12160
12161 /* Exit early if the table is empty. */
12162 if (nr_slots == 0 || nr_units == 0
12163 || (version == 2 && nr_columns == 0))
12164 {
12165 /* All must be zero. */
12166 if (nr_slots != 0 || nr_units != 0
12167 || (version == 2 && nr_columns != 0))
12168 {
12169 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12170 " all zero [in modules %s]"),
12171 dwp_file->name);
12172 }
12173 return htab;
12174 }
12175
12176 if (version == 1)
12177 {
12178 htab->section_pool.v1.indices =
12179 htab->unit_table + sizeof (uint32_t) * nr_slots;
12180 /* It's harder to decide whether the section is too small in v1.
12181 V1 is deprecated anyway so we punt. */
12182 }
12183 else
12184 {
12185 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12186 int *ids = htab->section_pool.v2.section_ids;
12187 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12188 /* Reverse map for error checking. */
12189 int ids_seen[DW_SECT_MAX + 1];
12190 int i;
12191
12192 if (nr_columns < 2)
12193 {
12194 error (_("Dwarf Error: bad DWP hash table, too few columns"
12195 " in section table [in module %s]"),
12196 dwp_file->name);
12197 }
12198 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12199 {
12200 error (_("Dwarf Error: bad DWP hash table, too many columns"
12201 " in section table [in module %s]"),
12202 dwp_file->name);
12203 }
12204 memset (ids, 255, sizeof_ids);
12205 memset (ids_seen, 255, sizeof (ids_seen));
12206 for (i = 0; i < nr_columns; ++i)
12207 {
12208 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12209
12210 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12211 {
12212 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12213 " in section table [in module %s]"),
12214 id, dwp_file->name);
12215 }
12216 if (ids_seen[id] != -1)
12217 {
12218 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12219 " id %d in section table [in module %s]"),
12220 id, dwp_file->name);
12221 }
12222 ids_seen[id] = i;
12223 ids[i] = id;
12224 }
12225 /* Must have exactly one info or types section. */
12226 if (((ids_seen[DW_SECT_INFO] != -1)
12227 + (ids_seen[DW_SECT_TYPES] != -1))
12228 != 1)
12229 {
12230 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12231 " DWO info/types section [in module %s]"),
12232 dwp_file->name);
12233 }
12234 /* Must have an abbrev section. */
12235 if (ids_seen[DW_SECT_ABBREV] == -1)
12236 {
12237 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12238 " section [in module %s]"),
12239 dwp_file->name);
12240 }
12241 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12242 htab->section_pool.v2.sizes =
12243 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12244 * nr_units * nr_columns);
12245 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12246 * nr_units * nr_columns))
12247 > index_end)
12248 {
12249 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12250 " [in module %s]"),
12251 dwp_file->name);
12252 }
12253 }
12254
12255 return htab;
12256 }
12257
12258 /* Update SECTIONS with the data from SECTP.
12259
12260 This function is like the other "locate" section routines that are
12261 passed to bfd_map_over_sections, but in this context the sections to
12262 read comes from the DWP V1 hash table, not the full ELF section table.
12263
12264 The result is non-zero for success, or zero if an error was found. */
12265
12266 static int
12267 locate_v1_virtual_dwo_sections (asection *sectp,
12268 struct virtual_v1_dwo_sections *sections)
12269 {
12270 const struct dwop_section_names *names = &dwop_section_names;
12271
12272 if (section_is_p (sectp->name, &names->abbrev_dwo))
12273 {
12274 /* There can be only one. */
12275 if (sections->abbrev.s.section != NULL)
12276 return 0;
12277 sections->abbrev.s.section = sectp;
12278 sections->abbrev.size = bfd_get_section_size (sectp);
12279 }
12280 else if (section_is_p (sectp->name, &names->info_dwo)
12281 || section_is_p (sectp->name, &names->types_dwo))
12282 {
12283 /* There can be only one. */
12284 if (sections->info_or_types.s.section != NULL)
12285 return 0;
12286 sections->info_or_types.s.section = sectp;
12287 sections->info_or_types.size = bfd_get_section_size (sectp);
12288 }
12289 else if (section_is_p (sectp->name, &names->line_dwo))
12290 {
12291 /* There can be only one. */
12292 if (sections->line.s.section != NULL)
12293 return 0;
12294 sections->line.s.section = sectp;
12295 sections->line.size = bfd_get_section_size (sectp);
12296 }
12297 else if (section_is_p (sectp->name, &names->loc_dwo))
12298 {
12299 /* There can be only one. */
12300 if (sections->loc.s.section != NULL)
12301 return 0;
12302 sections->loc.s.section = sectp;
12303 sections->loc.size = bfd_get_section_size (sectp);
12304 }
12305 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12306 {
12307 /* There can be only one. */
12308 if (sections->macinfo.s.section != NULL)
12309 return 0;
12310 sections->macinfo.s.section = sectp;
12311 sections->macinfo.size = bfd_get_section_size (sectp);
12312 }
12313 else if (section_is_p (sectp->name, &names->macro_dwo))
12314 {
12315 /* There can be only one. */
12316 if (sections->macro.s.section != NULL)
12317 return 0;
12318 sections->macro.s.section = sectp;
12319 sections->macro.size = bfd_get_section_size (sectp);
12320 }
12321 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12322 {
12323 /* There can be only one. */
12324 if (sections->str_offsets.s.section != NULL)
12325 return 0;
12326 sections->str_offsets.s.section = sectp;
12327 sections->str_offsets.size = bfd_get_section_size (sectp);
12328 }
12329 else
12330 {
12331 /* No other kind of section is valid. */
12332 return 0;
12333 }
12334
12335 return 1;
12336 }
12337
12338 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12339 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12340 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12341 This is for DWP version 1 files. */
12342
12343 static struct dwo_unit *
12344 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12345 struct dwp_file *dwp_file,
12346 uint32_t unit_index,
12347 const char *comp_dir,
12348 ULONGEST signature, int is_debug_types)
12349 {
12350 struct objfile *objfile = dwarf2_per_objfile->objfile;
12351 const struct dwp_hash_table *dwp_htab =
12352 is_debug_types ? dwp_file->tus : dwp_file->cus;
12353 bfd *dbfd = dwp_file->dbfd.get ();
12354 const char *kind = is_debug_types ? "TU" : "CU";
12355 struct dwo_file *dwo_file;
12356 struct dwo_unit *dwo_unit;
12357 struct virtual_v1_dwo_sections sections;
12358 void **dwo_file_slot;
12359 int i;
12360
12361 gdb_assert (dwp_file->version == 1);
12362
12363 if (dwarf_read_debug)
12364 {
12365 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12366 kind,
12367 pulongest (unit_index), hex_string (signature),
12368 dwp_file->name);
12369 }
12370
12371 /* Fetch the sections of this DWO unit.
12372 Put a limit on the number of sections we look for so that bad data
12373 doesn't cause us to loop forever. */
12374
12375 #define MAX_NR_V1_DWO_SECTIONS \
12376 (1 /* .debug_info or .debug_types */ \
12377 + 1 /* .debug_abbrev */ \
12378 + 1 /* .debug_line */ \
12379 + 1 /* .debug_loc */ \
12380 + 1 /* .debug_str_offsets */ \
12381 + 1 /* .debug_macro or .debug_macinfo */ \
12382 + 1 /* trailing zero */)
12383
12384 memset (&sections, 0, sizeof (sections));
12385
12386 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12387 {
12388 asection *sectp;
12389 uint32_t section_nr =
12390 read_4_bytes (dbfd,
12391 dwp_htab->section_pool.v1.indices
12392 + (unit_index + i) * sizeof (uint32_t));
12393
12394 if (section_nr == 0)
12395 break;
12396 if (section_nr >= dwp_file->num_sections)
12397 {
12398 error (_("Dwarf Error: bad DWP hash table, section number too large"
12399 " [in module %s]"),
12400 dwp_file->name);
12401 }
12402
12403 sectp = dwp_file->elf_sections[section_nr];
12404 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12405 {
12406 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12407 " [in module %s]"),
12408 dwp_file->name);
12409 }
12410 }
12411
12412 if (i < 2
12413 || dwarf2_section_empty_p (&sections.info_or_types)
12414 || dwarf2_section_empty_p (&sections.abbrev))
12415 {
12416 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12417 " [in module %s]"),
12418 dwp_file->name);
12419 }
12420 if (i == MAX_NR_V1_DWO_SECTIONS)
12421 {
12422 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12423 " [in module %s]"),
12424 dwp_file->name);
12425 }
12426
12427 /* It's easier for the rest of the code if we fake a struct dwo_file and
12428 have dwo_unit "live" in that. At least for now.
12429
12430 The DWP file can be made up of a random collection of CUs and TUs.
12431 However, for each CU + set of TUs that came from the same original DWO
12432 file, we can combine them back into a virtual DWO file to save space
12433 (fewer struct dwo_file objects to allocate). Remember that for really
12434 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12435
12436 std::string virtual_dwo_name =
12437 string_printf ("virtual-dwo/%d-%d-%d-%d",
12438 get_section_id (&sections.abbrev),
12439 get_section_id (&sections.line),
12440 get_section_id (&sections.loc),
12441 get_section_id (&sections.str_offsets));
12442 /* Can we use an existing virtual DWO file? */
12443 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12444 virtual_dwo_name.c_str (),
12445 comp_dir);
12446 /* Create one if necessary. */
12447 if (*dwo_file_slot == NULL)
12448 {
12449 if (dwarf_read_debug)
12450 {
12451 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12452 virtual_dwo_name.c_str ());
12453 }
12454 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12455 dwo_file->dwo_name
12456 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12457 virtual_dwo_name.c_str (),
12458 virtual_dwo_name.size ());
12459 dwo_file->comp_dir = comp_dir;
12460 dwo_file->sections.abbrev = sections.abbrev;
12461 dwo_file->sections.line = sections.line;
12462 dwo_file->sections.loc = sections.loc;
12463 dwo_file->sections.macinfo = sections.macinfo;
12464 dwo_file->sections.macro = sections.macro;
12465 dwo_file->sections.str_offsets = sections.str_offsets;
12466 /* The "str" section is global to the entire DWP file. */
12467 dwo_file->sections.str = dwp_file->sections.str;
12468 /* The info or types section is assigned below to dwo_unit,
12469 there's no need to record it in dwo_file.
12470 Also, we can't simply record type sections in dwo_file because
12471 we record a pointer into the vector in dwo_unit. As we collect more
12472 types we'll grow the vector and eventually have to reallocate space
12473 for it, invalidating all copies of pointers into the previous
12474 contents. */
12475 *dwo_file_slot = dwo_file;
12476 }
12477 else
12478 {
12479 if (dwarf_read_debug)
12480 {
12481 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12482 virtual_dwo_name.c_str ());
12483 }
12484 dwo_file = (struct dwo_file *) *dwo_file_slot;
12485 }
12486
12487 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12488 dwo_unit->dwo_file = dwo_file;
12489 dwo_unit->signature = signature;
12490 dwo_unit->section =
12491 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12492 *dwo_unit->section = sections.info_or_types;
12493 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12494
12495 return dwo_unit;
12496 }
12497
12498 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12499 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12500 piece within that section used by a TU/CU, return a virtual section
12501 of just that piece. */
12502
12503 static struct dwarf2_section_info
12504 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12505 struct dwarf2_section_info *section,
12506 bfd_size_type offset, bfd_size_type size)
12507 {
12508 struct dwarf2_section_info result;
12509 asection *sectp;
12510
12511 gdb_assert (section != NULL);
12512 gdb_assert (!section->is_virtual);
12513
12514 memset (&result, 0, sizeof (result));
12515 result.s.containing_section = section;
12516 result.is_virtual = 1;
12517
12518 if (size == 0)
12519 return result;
12520
12521 sectp = get_section_bfd_section (section);
12522
12523 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12524 bounds of the real section. This is a pretty-rare event, so just
12525 flag an error (easier) instead of a warning and trying to cope. */
12526 if (sectp == NULL
12527 || offset + size > bfd_get_section_size (sectp))
12528 {
12529 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12530 " in section %s [in module %s]"),
12531 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12532 objfile_name (dwarf2_per_objfile->objfile));
12533 }
12534
12535 result.virtual_offset = offset;
12536 result.size = size;
12537 return result;
12538 }
12539
12540 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12541 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12542 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12543 This is for DWP version 2 files. */
12544
12545 static struct dwo_unit *
12546 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12547 struct dwp_file *dwp_file,
12548 uint32_t unit_index,
12549 const char *comp_dir,
12550 ULONGEST signature, int is_debug_types)
12551 {
12552 struct objfile *objfile = dwarf2_per_objfile->objfile;
12553 const struct dwp_hash_table *dwp_htab =
12554 is_debug_types ? dwp_file->tus : dwp_file->cus;
12555 bfd *dbfd = dwp_file->dbfd.get ();
12556 const char *kind = is_debug_types ? "TU" : "CU";
12557 struct dwo_file *dwo_file;
12558 struct dwo_unit *dwo_unit;
12559 struct virtual_v2_dwo_sections sections;
12560 void **dwo_file_slot;
12561 int i;
12562
12563 gdb_assert (dwp_file->version == 2);
12564
12565 if (dwarf_read_debug)
12566 {
12567 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12568 kind,
12569 pulongest (unit_index), hex_string (signature),
12570 dwp_file->name);
12571 }
12572
12573 /* Fetch the section offsets of this DWO unit. */
12574
12575 memset (&sections, 0, sizeof (sections));
12576
12577 for (i = 0; i < dwp_htab->nr_columns; ++i)
12578 {
12579 uint32_t offset = read_4_bytes (dbfd,
12580 dwp_htab->section_pool.v2.offsets
12581 + (((unit_index - 1) * dwp_htab->nr_columns
12582 + i)
12583 * sizeof (uint32_t)));
12584 uint32_t size = read_4_bytes (dbfd,
12585 dwp_htab->section_pool.v2.sizes
12586 + (((unit_index - 1) * dwp_htab->nr_columns
12587 + i)
12588 * sizeof (uint32_t)));
12589
12590 switch (dwp_htab->section_pool.v2.section_ids[i])
12591 {
12592 case DW_SECT_INFO:
12593 case DW_SECT_TYPES:
12594 sections.info_or_types_offset = offset;
12595 sections.info_or_types_size = size;
12596 break;
12597 case DW_SECT_ABBREV:
12598 sections.abbrev_offset = offset;
12599 sections.abbrev_size = size;
12600 break;
12601 case DW_SECT_LINE:
12602 sections.line_offset = offset;
12603 sections.line_size = size;
12604 break;
12605 case DW_SECT_LOC:
12606 sections.loc_offset = offset;
12607 sections.loc_size = size;
12608 break;
12609 case DW_SECT_STR_OFFSETS:
12610 sections.str_offsets_offset = offset;
12611 sections.str_offsets_size = size;
12612 break;
12613 case DW_SECT_MACINFO:
12614 sections.macinfo_offset = offset;
12615 sections.macinfo_size = size;
12616 break;
12617 case DW_SECT_MACRO:
12618 sections.macro_offset = offset;
12619 sections.macro_size = size;
12620 break;
12621 }
12622 }
12623
12624 /* It's easier for the rest of the code if we fake a struct dwo_file and
12625 have dwo_unit "live" in that. At least for now.
12626
12627 The DWP file can be made up of a random collection of CUs and TUs.
12628 However, for each CU + set of TUs that came from the same original DWO
12629 file, we can combine them back into a virtual DWO file to save space
12630 (fewer struct dwo_file objects to allocate). Remember that for really
12631 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12632
12633 std::string virtual_dwo_name =
12634 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12635 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12636 (long) (sections.line_size ? sections.line_offset : 0),
12637 (long) (sections.loc_size ? sections.loc_offset : 0),
12638 (long) (sections.str_offsets_size
12639 ? sections.str_offsets_offset : 0));
12640 /* Can we use an existing virtual DWO file? */
12641 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12642 virtual_dwo_name.c_str (),
12643 comp_dir);
12644 /* Create one if necessary. */
12645 if (*dwo_file_slot == NULL)
12646 {
12647 if (dwarf_read_debug)
12648 {
12649 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12650 virtual_dwo_name.c_str ());
12651 }
12652 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12653 dwo_file->dwo_name
12654 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12655 virtual_dwo_name.c_str (),
12656 virtual_dwo_name.size ());
12657 dwo_file->comp_dir = comp_dir;
12658 dwo_file->sections.abbrev =
12659 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12660 sections.abbrev_offset, sections.abbrev_size);
12661 dwo_file->sections.line =
12662 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12663 sections.line_offset, sections.line_size);
12664 dwo_file->sections.loc =
12665 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12666 sections.loc_offset, sections.loc_size);
12667 dwo_file->sections.macinfo =
12668 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12669 sections.macinfo_offset, sections.macinfo_size);
12670 dwo_file->sections.macro =
12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12672 sections.macro_offset, sections.macro_size);
12673 dwo_file->sections.str_offsets =
12674 create_dwp_v2_section (dwarf2_per_objfile,
12675 &dwp_file->sections.str_offsets,
12676 sections.str_offsets_offset,
12677 sections.str_offsets_size);
12678 /* The "str" section is global to the entire DWP file. */
12679 dwo_file->sections.str = dwp_file->sections.str;
12680 /* The info or types section is assigned below to dwo_unit,
12681 there's no need to record it in dwo_file.
12682 Also, we can't simply record type sections in dwo_file because
12683 we record a pointer into the vector in dwo_unit. As we collect more
12684 types we'll grow the vector and eventually have to reallocate space
12685 for it, invalidating all copies of pointers into the previous
12686 contents. */
12687 *dwo_file_slot = dwo_file;
12688 }
12689 else
12690 {
12691 if (dwarf_read_debug)
12692 {
12693 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12694 virtual_dwo_name.c_str ());
12695 }
12696 dwo_file = (struct dwo_file *) *dwo_file_slot;
12697 }
12698
12699 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12700 dwo_unit->dwo_file = dwo_file;
12701 dwo_unit->signature = signature;
12702 dwo_unit->section =
12703 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12704 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12705 is_debug_types
12706 ? &dwp_file->sections.types
12707 : &dwp_file->sections.info,
12708 sections.info_or_types_offset,
12709 sections.info_or_types_size);
12710 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12711
12712 return dwo_unit;
12713 }
12714
12715 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12716 Returns NULL if the signature isn't found. */
12717
12718 static struct dwo_unit *
12719 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12720 struct dwp_file *dwp_file, const char *comp_dir,
12721 ULONGEST signature, int is_debug_types)
12722 {
12723 const struct dwp_hash_table *dwp_htab =
12724 is_debug_types ? dwp_file->tus : dwp_file->cus;
12725 bfd *dbfd = dwp_file->dbfd.get ();
12726 uint32_t mask = dwp_htab->nr_slots - 1;
12727 uint32_t hash = signature & mask;
12728 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12729 unsigned int i;
12730 void **slot;
12731 struct dwo_unit find_dwo_cu;
12732
12733 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12734 find_dwo_cu.signature = signature;
12735 slot = htab_find_slot (is_debug_types
12736 ? dwp_file->loaded_tus
12737 : dwp_file->loaded_cus,
12738 &find_dwo_cu, INSERT);
12739
12740 if (*slot != NULL)
12741 return (struct dwo_unit *) *slot;
12742
12743 /* Use a for loop so that we don't loop forever on bad debug info. */
12744 for (i = 0; i < dwp_htab->nr_slots; ++i)
12745 {
12746 ULONGEST signature_in_table;
12747
12748 signature_in_table =
12749 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12750 if (signature_in_table == signature)
12751 {
12752 uint32_t unit_index =
12753 read_4_bytes (dbfd,
12754 dwp_htab->unit_table + hash * sizeof (uint32_t));
12755
12756 if (dwp_file->version == 1)
12757 {
12758 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12759 dwp_file, unit_index,
12760 comp_dir, signature,
12761 is_debug_types);
12762 }
12763 else
12764 {
12765 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12766 dwp_file, unit_index,
12767 comp_dir, signature,
12768 is_debug_types);
12769 }
12770 return (struct dwo_unit *) *slot;
12771 }
12772 if (signature_in_table == 0)
12773 return NULL;
12774 hash = (hash + hash2) & mask;
12775 }
12776
12777 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12778 " [in module %s]"),
12779 dwp_file->name);
12780 }
12781
12782 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12783 Open the file specified by FILE_NAME and hand it off to BFD for
12784 preliminary analysis. Return a newly initialized bfd *, which
12785 includes a canonicalized copy of FILE_NAME.
12786 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12787 SEARCH_CWD is true if the current directory is to be searched.
12788 It will be searched before debug-file-directory.
12789 If successful, the file is added to the bfd include table of the
12790 objfile's bfd (see gdb_bfd_record_inclusion).
12791 If unable to find/open the file, return NULL.
12792 NOTE: This function is derived from symfile_bfd_open. */
12793
12794 static gdb_bfd_ref_ptr
12795 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12796 const char *file_name, int is_dwp, int search_cwd)
12797 {
12798 int desc;
12799 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12800 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12801 to debug_file_directory. */
12802 const char *search_path;
12803 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12804
12805 gdb::unique_xmalloc_ptr<char> search_path_holder;
12806 if (search_cwd)
12807 {
12808 if (*debug_file_directory != '\0')
12809 {
12810 search_path_holder.reset (concat (".", dirname_separator_string,
12811 debug_file_directory,
12812 (char *) NULL));
12813 search_path = search_path_holder.get ();
12814 }
12815 else
12816 search_path = ".";
12817 }
12818 else
12819 search_path = debug_file_directory;
12820
12821 openp_flags flags = OPF_RETURN_REALPATH;
12822 if (is_dwp)
12823 flags |= OPF_SEARCH_IN_PATH;
12824
12825 gdb::unique_xmalloc_ptr<char> absolute_name;
12826 desc = openp (search_path, flags, file_name,
12827 O_RDONLY | O_BINARY, &absolute_name);
12828 if (desc < 0)
12829 return NULL;
12830
12831 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12832 gnutarget, desc));
12833 if (sym_bfd == NULL)
12834 return NULL;
12835 bfd_set_cacheable (sym_bfd.get (), 1);
12836
12837 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12838 return NULL;
12839
12840 /* Success. Record the bfd as having been included by the objfile's bfd.
12841 This is important because things like demangled_names_hash lives in the
12842 objfile's per_bfd space and may have references to things like symbol
12843 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12844 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12845
12846 return sym_bfd;
12847 }
12848
12849 /* Try to open DWO file FILE_NAME.
12850 COMP_DIR is the DW_AT_comp_dir attribute.
12851 The result is the bfd handle of the file.
12852 If there is a problem finding or opening the file, return NULL.
12853 Upon success, the canonicalized path of the file is stored in the bfd,
12854 same as symfile_bfd_open. */
12855
12856 static gdb_bfd_ref_ptr
12857 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12858 const char *file_name, const char *comp_dir)
12859 {
12860 if (IS_ABSOLUTE_PATH (file_name))
12861 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12862 0 /*is_dwp*/, 0 /*search_cwd*/);
12863
12864 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12865
12866 if (comp_dir != NULL)
12867 {
12868 char *path_to_try = concat (comp_dir, SLASH_STRING,
12869 file_name, (char *) NULL);
12870
12871 /* NOTE: If comp_dir is a relative path, this will also try the
12872 search path, which seems useful. */
12873 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12874 path_to_try,
12875 0 /*is_dwp*/,
12876 1 /*search_cwd*/));
12877 xfree (path_to_try);
12878 if (abfd != NULL)
12879 return abfd;
12880 }
12881
12882 /* That didn't work, try debug-file-directory, which, despite its name,
12883 is a list of paths. */
12884
12885 if (*debug_file_directory == '\0')
12886 return NULL;
12887
12888 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12889 0 /*is_dwp*/, 1 /*search_cwd*/);
12890 }
12891
12892 /* This function is mapped across the sections and remembers the offset and
12893 size of each of the DWO debugging sections we are interested in. */
12894
12895 static void
12896 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12897 {
12898 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12899 const struct dwop_section_names *names = &dwop_section_names;
12900
12901 if (section_is_p (sectp->name, &names->abbrev_dwo))
12902 {
12903 dwo_sections->abbrev.s.section = sectp;
12904 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12905 }
12906 else if (section_is_p (sectp->name, &names->info_dwo))
12907 {
12908 dwo_sections->info.s.section = sectp;
12909 dwo_sections->info.size = bfd_get_section_size (sectp);
12910 }
12911 else if (section_is_p (sectp->name, &names->line_dwo))
12912 {
12913 dwo_sections->line.s.section = sectp;
12914 dwo_sections->line.size = bfd_get_section_size (sectp);
12915 }
12916 else if (section_is_p (sectp->name, &names->loc_dwo))
12917 {
12918 dwo_sections->loc.s.section = sectp;
12919 dwo_sections->loc.size = bfd_get_section_size (sectp);
12920 }
12921 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12922 {
12923 dwo_sections->macinfo.s.section = sectp;
12924 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12925 }
12926 else if (section_is_p (sectp->name, &names->macro_dwo))
12927 {
12928 dwo_sections->macro.s.section = sectp;
12929 dwo_sections->macro.size = bfd_get_section_size (sectp);
12930 }
12931 else if (section_is_p (sectp->name, &names->str_dwo))
12932 {
12933 dwo_sections->str.s.section = sectp;
12934 dwo_sections->str.size = bfd_get_section_size (sectp);
12935 }
12936 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12937 {
12938 dwo_sections->str_offsets.s.section = sectp;
12939 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12940 }
12941 else if (section_is_p (sectp->name, &names->types_dwo))
12942 {
12943 struct dwarf2_section_info type_section;
12944
12945 memset (&type_section, 0, sizeof (type_section));
12946 type_section.s.section = sectp;
12947 type_section.size = bfd_get_section_size (sectp);
12948 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12949 &type_section);
12950 }
12951 }
12952
12953 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12954 by PER_CU. This is for the non-DWP case.
12955 The result is NULL if DWO_NAME can't be found. */
12956
12957 static struct dwo_file *
12958 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12959 const char *dwo_name, const char *comp_dir)
12960 {
12961 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12962 struct objfile *objfile = dwarf2_per_objfile->objfile;
12963
12964 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12965 if (dbfd == NULL)
12966 {
12967 if (dwarf_read_debug)
12968 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12969 return NULL;
12970 }
12971
12972 /* We use a unique pointer here, despite the obstack allocation,
12973 because a dwo_file needs some cleanup if it is abandoned. */
12974 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12975 struct dwo_file));
12976 dwo_file->dwo_name = dwo_name;
12977 dwo_file->comp_dir = comp_dir;
12978 dwo_file->dbfd = dbfd.release ();
12979
12980 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12981 &dwo_file->sections);
12982
12983 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12984 dwo_file->cus);
12985
12986 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12987 dwo_file->sections.types, dwo_file->tus);
12988
12989 if (dwarf_read_debug)
12990 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12991
12992 return dwo_file.release ();
12993 }
12994
12995 /* This function is mapped across the sections and remembers the offset and
12996 size of each of the DWP debugging sections common to version 1 and 2 that
12997 we are interested in. */
12998
12999 static void
13000 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13001 void *dwp_file_ptr)
13002 {
13003 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13004 const struct dwop_section_names *names = &dwop_section_names;
13005 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13006
13007 /* Record the ELF section number for later lookup: this is what the
13008 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13009 gdb_assert (elf_section_nr < dwp_file->num_sections);
13010 dwp_file->elf_sections[elf_section_nr] = sectp;
13011
13012 /* Look for specific sections that we need. */
13013 if (section_is_p (sectp->name, &names->str_dwo))
13014 {
13015 dwp_file->sections.str.s.section = sectp;
13016 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13017 }
13018 else if (section_is_p (sectp->name, &names->cu_index))
13019 {
13020 dwp_file->sections.cu_index.s.section = sectp;
13021 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13022 }
13023 else if (section_is_p (sectp->name, &names->tu_index))
13024 {
13025 dwp_file->sections.tu_index.s.section = sectp;
13026 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13027 }
13028 }
13029
13030 /* This function is mapped across the sections and remembers the offset and
13031 size of each of the DWP version 2 debugging sections that we are interested
13032 in. This is split into a separate function because we don't know if we
13033 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13034
13035 static void
13036 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13037 {
13038 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13039 const struct dwop_section_names *names = &dwop_section_names;
13040 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13041
13042 /* Record the ELF section number for later lookup: this is what the
13043 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13044 gdb_assert (elf_section_nr < dwp_file->num_sections);
13045 dwp_file->elf_sections[elf_section_nr] = sectp;
13046
13047 /* Look for specific sections that we need. */
13048 if (section_is_p (sectp->name, &names->abbrev_dwo))
13049 {
13050 dwp_file->sections.abbrev.s.section = sectp;
13051 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13052 }
13053 else if (section_is_p (sectp->name, &names->info_dwo))
13054 {
13055 dwp_file->sections.info.s.section = sectp;
13056 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13057 }
13058 else if (section_is_p (sectp->name, &names->line_dwo))
13059 {
13060 dwp_file->sections.line.s.section = sectp;
13061 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13062 }
13063 else if (section_is_p (sectp->name, &names->loc_dwo))
13064 {
13065 dwp_file->sections.loc.s.section = sectp;
13066 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13067 }
13068 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13069 {
13070 dwp_file->sections.macinfo.s.section = sectp;
13071 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13072 }
13073 else if (section_is_p (sectp->name, &names->macro_dwo))
13074 {
13075 dwp_file->sections.macro.s.section = sectp;
13076 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13077 }
13078 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13079 {
13080 dwp_file->sections.str_offsets.s.section = sectp;
13081 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13082 }
13083 else if (section_is_p (sectp->name, &names->types_dwo))
13084 {
13085 dwp_file->sections.types.s.section = sectp;
13086 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13087 }
13088 }
13089
13090 /* Hash function for dwp_file loaded CUs/TUs. */
13091
13092 static hashval_t
13093 hash_dwp_loaded_cutus (const void *item)
13094 {
13095 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13096
13097 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13098 return dwo_unit->signature;
13099 }
13100
13101 /* Equality function for dwp_file loaded CUs/TUs. */
13102
13103 static int
13104 eq_dwp_loaded_cutus (const void *a, const void *b)
13105 {
13106 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13107 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13108
13109 return dua->signature == dub->signature;
13110 }
13111
13112 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13113
13114 static htab_t
13115 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13116 {
13117 return htab_create_alloc_ex (3,
13118 hash_dwp_loaded_cutus,
13119 eq_dwp_loaded_cutus,
13120 NULL,
13121 &objfile->objfile_obstack,
13122 hashtab_obstack_allocate,
13123 dummy_obstack_deallocate);
13124 }
13125
13126 /* Try to open DWP file FILE_NAME.
13127 The result is the bfd handle of the file.
13128 If there is a problem finding or opening the file, return NULL.
13129 Upon success, the canonicalized path of the file is stored in the bfd,
13130 same as symfile_bfd_open. */
13131
13132 static gdb_bfd_ref_ptr
13133 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13134 const char *file_name)
13135 {
13136 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13137 1 /*is_dwp*/,
13138 1 /*search_cwd*/));
13139 if (abfd != NULL)
13140 return abfd;
13141
13142 /* Work around upstream bug 15652.
13143 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13144 [Whether that's a "bug" is debatable, but it is getting in our way.]
13145 We have no real idea where the dwp file is, because gdb's realpath-ing
13146 of the executable's path may have discarded the needed info.
13147 [IWBN if the dwp file name was recorded in the executable, akin to
13148 .gnu_debuglink, but that doesn't exist yet.]
13149 Strip the directory from FILE_NAME and search again. */
13150 if (*debug_file_directory != '\0')
13151 {
13152 /* Don't implicitly search the current directory here.
13153 If the user wants to search "." to handle this case,
13154 it must be added to debug-file-directory. */
13155 return try_open_dwop_file (dwarf2_per_objfile,
13156 lbasename (file_name), 1 /*is_dwp*/,
13157 0 /*search_cwd*/);
13158 }
13159
13160 return NULL;
13161 }
13162
13163 /* Initialize the use of the DWP file for the current objfile.
13164 By convention the name of the DWP file is ${objfile}.dwp.
13165 The result is NULL if it can't be found. */
13166
13167 static std::unique_ptr<struct dwp_file>
13168 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13169 {
13170 struct objfile *objfile = dwarf2_per_objfile->objfile;
13171
13172 /* Try to find first .dwp for the binary file before any symbolic links
13173 resolving. */
13174
13175 /* If the objfile is a debug file, find the name of the real binary
13176 file and get the name of dwp file from there. */
13177 std::string dwp_name;
13178 if (objfile->separate_debug_objfile_backlink != NULL)
13179 {
13180 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13181 const char *backlink_basename = lbasename (backlink->original_name);
13182
13183 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13184 }
13185 else
13186 dwp_name = objfile->original_name;
13187
13188 dwp_name += ".dwp";
13189
13190 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13191 if (dbfd == NULL
13192 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13193 {
13194 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13195 dwp_name = objfile_name (objfile);
13196 dwp_name += ".dwp";
13197 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13198 }
13199
13200 if (dbfd == NULL)
13201 {
13202 if (dwarf_read_debug)
13203 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13204 return std::unique_ptr<dwp_file> ();
13205 }
13206
13207 const char *name = bfd_get_filename (dbfd.get ());
13208 std::unique_ptr<struct dwp_file> dwp_file
13209 (new struct dwp_file (name, std::move (dbfd)));
13210
13211 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13212 dwp_file->elf_sections =
13213 OBSTACK_CALLOC (&objfile->objfile_obstack,
13214 dwp_file->num_sections, asection *);
13215
13216 bfd_map_over_sections (dwp_file->dbfd.get (),
13217 dwarf2_locate_common_dwp_sections,
13218 dwp_file.get ());
13219
13220 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13221 0);
13222
13223 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13224 1);
13225
13226 /* The DWP file version is stored in the hash table. Oh well. */
13227 if (dwp_file->cus && dwp_file->tus
13228 && dwp_file->cus->version != dwp_file->tus->version)
13229 {
13230 /* Technically speaking, we should try to limp along, but this is
13231 pretty bizarre. We use pulongest here because that's the established
13232 portability solution (e.g, we cannot use %u for uint32_t). */
13233 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13234 " TU version %s [in DWP file %s]"),
13235 pulongest (dwp_file->cus->version),
13236 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13237 }
13238
13239 if (dwp_file->cus)
13240 dwp_file->version = dwp_file->cus->version;
13241 else if (dwp_file->tus)
13242 dwp_file->version = dwp_file->tus->version;
13243 else
13244 dwp_file->version = 2;
13245
13246 if (dwp_file->version == 2)
13247 bfd_map_over_sections (dwp_file->dbfd.get (),
13248 dwarf2_locate_v2_dwp_sections,
13249 dwp_file.get ());
13250
13251 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13252 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13253
13254 if (dwarf_read_debug)
13255 {
13256 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13257 fprintf_unfiltered (gdb_stdlog,
13258 " %s CUs, %s TUs\n",
13259 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13260 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13261 }
13262
13263 return dwp_file;
13264 }
13265
13266 /* Wrapper around open_and_init_dwp_file, only open it once. */
13267
13268 static struct dwp_file *
13269 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13270 {
13271 if (! dwarf2_per_objfile->dwp_checked)
13272 {
13273 dwarf2_per_objfile->dwp_file
13274 = open_and_init_dwp_file (dwarf2_per_objfile);
13275 dwarf2_per_objfile->dwp_checked = 1;
13276 }
13277 return dwarf2_per_objfile->dwp_file.get ();
13278 }
13279
13280 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13281 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13282 or in the DWP file for the objfile, referenced by THIS_UNIT.
13283 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13284 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13285
13286 This is called, for example, when wanting to read a variable with a
13287 complex location. Therefore we don't want to do file i/o for every call.
13288 Therefore we don't want to look for a DWO file on every call.
13289 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13290 then we check if we've already seen DWO_NAME, and only THEN do we check
13291 for a DWO file.
13292
13293 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13294 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13295
13296 static struct dwo_unit *
13297 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13298 const char *dwo_name, const char *comp_dir,
13299 ULONGEST signature, int is_debug_types)
13300 {
13301 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13302 struct objfile *objfile = dwarf2_per_objfile->objfile;
13303 const char *kind = is_debug_types ? "TU" : "CU";
13304 void **dwo_file_slot;
13305 struct dwo_file *dwo_file;
13306 struct dwp_file *dwp_file;
13307
13308 /* First see if there's a DWP file.
13309 If we have a DWP file but didn't find the DWO inside it, don't
13310 look for the original DWO file. It makes gdb behave differently
13311 depending on whether one is debugging in the build tree. */
13312
13313 dwp_file = get_dwp_file (dwarf2_per_objfile);
13314 if (dwp_file != NULL)
13315 {
13316 const struct dwp_hash_table *dwp_htab =
13317 is_debug_types ? dwp_file->tus : dwp_file->cus;
13318
13319 if (dwp_htab != NULL)
13320 {
13321 struct dwo_unit *dwo_cutu =
13322 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13323 signature, is_debug_types);
13324
13325 if (dwo_cutu != NULL)
13326 {
13327 if (dwarf_read_debug)
13328 {
13329 fprintf_unfiltered (gdb_stdlog,
13330 "Virtual DWO %s %s found: @%s\n",
13331 kind, hex_string (signature),
13332 host_address_to_string (dwo_cutu));
13333 }
13334 return dwo_cutu;
13335 }
13336 }
13337 }
13338 else
13339 {
13340 /* No DWP file, look for the DWO file. */
13341
13342 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13343 dwo_name, comp_dir);
13344 if (*dwo_file_slot == NULL)
13345 {
13346 /* Read in the file and build a table of the CUs/TUs it contains. */
13347 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13348 }
13349 /* NOTE: This will be NULL if unable to open the file. */
13350 dwo_file = (struct dwo_file *) *dwo_file_slot;
13351
13352 if (dwo_file != NULL)
13353 {
13354 struct dwo_unit *dwo_cutu = NULL;
13355
13356 if (is_debug_types && dwo_file->tus)
13357 {
13358 struct dwo_unit find_dwo_cutu;
13359
13360 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13361 find_dwo_cutu.signature = signature;
13362 dwo_cutu
13363 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13364 }
13365 else if (!is_debug_types && dwo_file->cus)
13366 {
13367 struct dwo_unit find_dwo_cutu;
13368
13369 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13370 find_dwo_cutu.signature = signature;
13371 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13372 &find_dwo_cutu);
13373 }
13374
13375 if (dwo_cutu != NULL)
13376 {
13377 if (dwarf_read_debug)
13378 {
13379 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13380 kind, dwo_name, hex_string (signature),
13381 host_address_to_string (dwo_cutu));
13382 }
13383 return dwo_cutu;
13384 }
13385 }
13386 }
13387
13388 /* We didn't find it. This could mean a dwo_id mismatch, or
13389 someone deleted the DWO/DWP file, or the search path isn't set up
13390 correctly to find the file. */
13391
13392 if (dwarf_read_debug)
13393 {
13394 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13395 kind, dwo_name, hex_string (signature));
13396 }
13397
13398 /* This is a warning and not a complaint because it can be caused by
13399 pilot error (e.g., user accidentally deleting the DWO). */
13400 {
13401 /* Print the name of the DWP file if we looked there, helps the user
13402 better diagnose the problem. */
13403 std::string dwp_text;
13404
13405 if (dwp_file != NULL)
13406 dwp_text = string_printf (" [in DWP file %s]",
13407 lbasename (dwp_file->name));
13408
13409 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13410 " [in module %s]"),
13411 kind, dwo_name, hex_string (signature),
13412 dwp_text.c_str (),
13413 this_unit->is_debug_types ? "TU" : "CU",
13414 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13415 }
13416 return NULL;
13417 }
13418
13419 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13420 See lookup_dwo_cutu_unit for details. */
13421
13422 static struct dwo_unit *
13423 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13424 const char *dwo_name, const char *comp_dir,
13425 ULONGEST signature)
13426 {
13427 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13428 }
13429
13430 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13431 See lookup_dwo_cutu_unit for details. */
13432
13433 static struct dwo_unit *
13434 lookup_dwo_type_unit (struct signatured_type *this_tu,
13435 const char *dwo_name, const char *comp_dir)
13436 {
13437 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13438 }
13439
13440 /* Traversal function for queue_and_load_all_dwo_tus. */
13441
13442 static int
13443 queue_and_load_dwo_tu (void **slot, void *info)
13444 {
13445 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13446 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13447 ULONGEST signature = dwo_unit->signature;
13448 struct signatured_type *sig_type =
13449 lookup_dwo_signatured_type (per_cu->cu, signature);
13450
13451 if (sig_type != NULL)
13452 {
13453 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13454
13455 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13456 a real dependency of PER_CU on SIG_TYPE. That is detected later
13457 while processing PER_CU. */
13458 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13459 load_full_type_unit (sig_cu);
13460 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13461 }
13462
13463 return 1;
13464 }
13465
13466 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13467 The DWO may have the only definition of the type, though it may not be
13468 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13469 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13470
13471 static void
13472 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13473 {
13474 struct dwo_unit *dwo_unit;
13475 struct dwo_file *dwo_file;
13476
13477 gdb_assert (!per_cu->is_debug_types);
13478 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13479 gdb_assert (per_cu->cu != NULL);
13480
13481 dwo_unit = per_cu->cu->dwo_unit;
13482 gdb_assert (dwo_unit != NULL);
13483
13484 dwo_file = dwo_unit->dwo_file;
13485 if (dwo_file->tus != NULL)
13486 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13487 }
13488
13489 /* Free all resources associated with DWO_FILE.
13490 Close the DWO file and munmap the sections. */
13491
13492 static void
13493 free_dwo_file (struct dwo_file *dwo_file)
13494 {
13495 /* Note: dbfd is NULL for virtual DWO files. */
13496 gdb_bfd_unref (dwo_file->dbfd);
13497
13498 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13499 }
13500
13501 /* Traversal function for free_dwo_files. */
13502
13503 static int
13504 free_dwo_file_from_slot (void **slot, void *info)
13505 {
13506 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13507
13508 free_dwo_file (dwo_file);
13509
13510 return 1;
13511 }
13512
13513 /* Free all resources associated with DWO_FILES. */
13514
13515 static void
13516 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13517 {
13518 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13519 }
13520 \f
13521 /* Read in various DIEs. */
13522
13523 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13524 Inherit only the children of the DW_AT_abstract_origin DIE not being
13525 already referenced by DW_AT_abstract_origin from the children of the
13526 current DIE. */
13527
13528 static void
13529 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13530 {
13531 struct die_info *child_die;
13532 sect_offset *offsetp;
13533 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13534 struct die_info *origin_die;
13535 /* Iterator of the ORIGIN_DIE children. */
13536 struct die_info *origin_child_die;
13537 struct attribute *attr;
13538 struct dwarf2_cu *origin_cu;
13539 struct pending **origin_previous_list_in_scope;
13540
13541 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13542 if (!attr)
13543 return;
13544
13545 /* Note that following die references may follow to a die in a
13546 different cu. */
13547
13548 origin_cu = cu;
13549 origin_die = follow_die_ref (die, attr, &origin_cu);
13550
13551 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13552 symbols in. */
13553 origin_previous_list_in_scope = origin_cu->list_in_scope;
13554 origin_cu->list_in_scope = cu->list_in_scope;
13555
13556 if (die->tag != origin_die->tag
13557 && !(die->tag == DW_TAG_inlined_subroutine
13558 && origin_die->tag == DW_TAG_subprogram))
13559 complaint (_("DIE %s and its abstract origin %s have different tags"),
13560 sect_offset_str (die->sect_off),
13561 sect_offset_str (origin_die->sect_off));
13562
13563 std::vector<sect_offset> offsets;
13564
13565 for (child_die = die->child;
13566 child_die && child_die->tag;
13567 child_die = sibling_die (child_die))
13568 {
13569 struct die_info *child_origin_die;
13570 struct dwarf2_cu *child_origin_cu;
13571
13572 /* We are trying to process concrete instance entries:
13573 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13574 it's not relevant to our analysis here. i.e. detecting DIEs that are
13575 present in the abstract instance but not referenced in the concrete
13576 one. */
13577 if (child_die->tag == DW_TAG_call_site
13578 || child_die->tag == DW_TAG_GNU_call_site)
13579 continue;
13580
13581 /* For each CHILD_DIE, find the corresponding child of
13582 ORIGIN_DIE. If there is more than one layer of
13583 DW_AT_abstract_origin, follow them all; there shouldn't be,
13584 but GCC versions at least through 4.4 generate this (GCC PR
13585 40573). */
13586 child_origin_die = child_die;
13587 child_origin_cu = cu;
13588 while (1)
13589 {
13590 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13591 child_origin_cu);
13592 if (attr == NULL)
13593 break;
13594 child_origin_die = follow_die_ref (child_origin_die, attr,
13595 &child_origin_cu);
13596 }
13597
13598 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13599 counterpart may exist. */
13600 if (child_origin_die != child_die)
13601 {
13602 if (child_die->tag != child_origin_die->tag
13603 && !(child_die->tag == DW_TAG_inlined_subroutine
13604 && child_origin_die->tag == DW_TAG_subprogram))
13605 complaint (_("Child DIE %s and its abstract origin %s have "
13606 "different tags"),
13607 sect_offset_str (child_die->sect_off),
13608 sect_offset_str (child_origin_die->sect_off));
13609 if (child_origin_die->parent != origin_die)
13610 complaint (_("Child DIE %s and its abstract origin %s have "
13611 "different parents"),
13612 sect_offset_str (child_die->sect_off),
13613 sect_offset_str (child_origin_die->sect_off));
13614 else
13615 offsets.push_back (child_origin_die->sect_off);
13616 }
13617 }
13618 std::sort (offsets.begin (), offsets.end ());
13619 sect_offset *offsets_end = offsets.data () + offsets.size ();
13620 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13621 if (offsetp[-1] == *offsetp)
13622 complaint (_("Multiple children of DIE %s refer "
13623 "to DIE %s as their abstract origin"),
13624 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13625
13626 offsetp = offsets.data ();
13627 origin_child_die = origin_die->child;
13628 while (origin_child_die && origin_child_die->tag)
13629 {
13630 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13631 while (offsetp < offsets_end
13632 && *offsetp < origin_child_die->sect_off)
13633 offsetp++;
13634 if (offsetp >= offsets_end
13635 || *offsetp > origin_child_die->sect_off)
13636 {
13637 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13638 Check whether we're already processing ORIGIN_CHILD_DIE.
13639 This can happen with mutually referenced abstract_origins.
13640 PR 16581. */
13641 if (!origin_child_die->in_process)
13642 process_die (origin_child_die, origin_cu);
13643 }
13644 origin_child_die = sibling_die (origin_child_die);
13645 }
13646 origin_cu->list_in_scope = origin_previous_list_in_scope;
13647 }
13648
13649 static void
13650 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13651 {
13652 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13654 struct context_stack *newobj;
13655 CORE_ADDR lowpc;
13656 CORE_ADDR highpc;
13657 struct die_info *child_die;
13658 struct attribute *attr, *call_line, *call_file;
13659 const char *name;
13660 CORE_ADDR baseaddr;
13661 struct block *block;
13662 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13663 std::vector<struct symbol *> template_args;
13664 struct template_symbol *templ_func = NULL;
13665
13666 if (inlined_func)
13667 {
13668 /* If we do not have call site information, we can't show the
13669 caller of this inlined function. That's too confusing, so
13670 only use the scope for local variables. */
13671 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13672 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13673 if (call_line == NULL || call_file == NULL)
13674 {
13675 read_lexical_block_scope (die, cu);
13676 return;
13677 }
13678 }
13679
13680 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13681
13682 name = dwarf2_name (die, cu);
13683
13684 /* Ignore functions with missing or empty names. These are actually
13685 illegal according to the DWARF standard. */
13686 if (name == NULL)
13687 {
13688 complaint (_("missing name for subprogram DIE at %s"),
13689 sect_offset_str (die->sect_off));
13690 return;
13691 }
13692
13693 /* Ignore functions with missing or invalid low and high pc attributes. */
13694 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13695 <= PC_BOUNDS_INVALID)
13696 {
13697 attr = dwarf2_attr (die, DW_AT_external, cu);
13698 if (!attr || !DW_UNSND (attr))
13699 complaint (_("cannot get low and high bounds "
13700 "for subprogram DIE at %s"),
13701 sect_offset_str (die->sect_off));
13702 return;
13703 }
13704
13705 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13706 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13707
13708 /* If we have any template arguments, then we must allocate a
13709 different sort of symbol. */
13710 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13711 {
13712 if (child_die->tag == DW_TAG_template_type_param
13713 || child_die->tag == DW_TAG_template_value_param)
13714 {
13715 templ_func = allocate_template_symbol (objfile);
13716 templ_func->subclass = SYMBOL_TEMPLATE;
13717 break;
13718 }
13719 }
13720
13721 newobj = cu->get_builder ()->push_context (0, lowpc);
13722 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13723 (struct symbol *) templ_func);
13724
13725 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13726 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13727 cu->language);
13728
13729 /* If there is a location expression for DW_AT_frame_base, record
13730 it. */
13731 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13732 if (attr)
13733 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13734
13735 /* If there is a location for the static link, record it. */
13736 newobj->static_link = NULL;
13737 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13738 if (attr)
13739 {
13740 newobj->static_link
13741 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13742 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13743 }
13744
13745 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13746
13747 if (die->child != NULL)
13748 {
13749 child_die = die->child;
13750 while (child_die && child_die->tag)
13751 {
13752 if (child_die->tag == DW_TAG_template_type_param
13753 || child_die->tag == DW_TAG_template_value_param)
13754 {
13755 struct symbol *arg = new_symbol (child_die, NULL, cu);
13756
13757 if (arg != NULL)
13758 template_args.push_back (arg);
13759 }
13760 else
13761 process_die (child_die, cu);
13762 child_die = sibling_die (child_die);
13763 }
13764 }
13765
13766 inherit_abstract_dies (die, cu);
13767
13768 /* If we have a DW_AT_specification, we might need to import using
13769 directives from the context of the specification DIE. See the
13770 comment in determine_prefix. */
13771 if (cu->language == language_cplus
13772 && dwarf2_attr (die, DW_AT_specification, cu))
13773 {
13774 struct dwarf2_cu *spec_cu = cu;
13775 struct die_info *spec_die = die_specification (die, &spec_cu);
13776
13777 while (spec_die)
13778 {
13779 child_die = spec_die->child;
13780 while (child_die && child_die->tag)
13781 {
13782 if (child_die->tag == DW_TAG_imported_module)
13783 process_die (child_die, spec_cu);
13784 child_die = sibling_die (child_die);
13785 }
13786
13787 /* In some cases, GCC generates specification DIEs that
13788 themselves contain DW_AT_specification attributes. */
13789 spec_die = die_specification (spec_die, &spec_cu);
13790 }
13791 }
13792
13793 struct context_stack cstk = cu->get_builder ()->pop_context ();
13794 /* Make a block for the local symbols within. */
13795 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13796 cstk.static_link, lowpc, highpc);
13797
13798 /* For C++, set the block's scope. */
13799 if ((cu->language == language_cplus
13800 || cu->language == language_fortran
13801 || cu->language == language_d
13802 || cu->language == language_rust)
13803 && cu->processing_has_namespace_info)
13804 block_set_scope (block, determine_prefix (die, cu),
13805 &objfile->objfile_obstack);
13806
13807 /* If we have address ranges, record them. */
13808 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13809
13810 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13811
13812 /* Attach template arguments to function. */
13813 if (!template_args.empty ())
13814 {
13815 gdb_assert (templ_func != NULL);
13816
13817 templ_func->n_template_arguments = template_args.size ();
13818 templ_func->template_arguments
13819 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13820 templ_func->n_template_arguments);
13821 memcpy (templ_func->template_arguments,
13822 template_args.data (),
13823 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13824
13825 /* Make sure that the symtab is set on the new symbols. Even
13826 though they don't appear in this symtab directly, other parts
13827 of gdb assume that symbols do, and this is reasonably
13828 true. */
13829 for (symbol *sym : template_args)
13830 symbol_set_symtab (sym, symbol_symtab (templ_func));
13831 }
13832
13833 /* In C++, we can have functions nested inside functions (e.g., when
13834 a function declares a class that has methods). This means that
13835 when we finish processing a function scope, we may need to go
13836 back to building a containing block's symbol lists. */
13837 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13838 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13839
13840 /* If we've finished processing a top-level function, subsequent
13841 symbols go in the file symbol list. */
13842 if (cu->get_builder ()->outermost_context_p ())
13843 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13844 }
13845
13846 /* Process all the DIES contained within a lexical block scope. Start
13847 a new scope, process the dies, and then close the scope. */
13848
13849 static void
13850 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13851 {
13852 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13854 CORE_ADDR lowpc, highpc;
13855 struct die_info *child_die;
13856 CORE_ADDR baseaddr;
13857
13858 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13859
13860 /* Ignore blocks with missing or invalid low and high pc attributes. */
13861 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13862 as multiple lexical blocks? Handling children in a sane way would
13863 be nasty. Might be easier to properly extend generic blocks to
13864 describe ranges. */
13865 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13866 {
13867 case PC_BOUNDS_NOT_PRESENT:
13868 /* DW_TAG_lexical_block has no attributes, process its children as if
13869 there was no wrapping by that DW_TAG_lexical_block.
13870 GCC does no longer produces such DWARF since GCC r224161. */
13871 for (child_die = die->child;
13872 child_die != NULL && child_die->tag;
13873 child_die = sibling_die (child_die))
13874 process_die (child_die, cu);
13875 return;
13876 case PC_BOUNDS_INVALID:
13877 return;
13878 }
13879 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13880 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13881
13882 cu->get_builder ()->push_context (0, lowpc);
13883 if (die->child != NULL)
13884 {
13885 child_die = die->child;
13886 while (child_die && child_die->tag)
13887 {
13888 process_die (child_die, cu);
13889 child_die = sibling_die (child_die);
13890 }
13891 }
13892 inherit_abstract_dies (die, cu);
13893 struct context_stack cstk = cu->get_builder ()->pop_context ();
13894
13895 if (*cu->get_builder ()->get_local_symbols () != NULL
13896 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13897 {
13898 struct block *block
13899 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13900 cstk.start_addr, highpc);
13901
13902 /* Note that recording ranges after traversing children, as we
13903 do here, means that recording a parent's ranges entails
13904 walking across all its children's ranges as they appear in
13905 the address map, which is quadratic behavior.
13906
13907 It would be nicer to record the parent's ranges before
13908 traversing its children, simply overriding whatever you find
13909 there. But since we don't even decide whether to create a
13910 block until after we've traversed its children, that's hard
13911 to do. */
13912 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13913 }
13914 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13915 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13916 }
13917
13918 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13919
13920 static void
13921 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13922 {
13923 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13924 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13925 CORE_ADDR pc, baseaddr;
13926 struct attribute *attr;
13927 struct call_site *call_site, call_site_local;
13928 void **slot;
13929 int nparams;
13930 struct die_info *child_die;
13931
13932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13933
13934 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13935 if (attr == NULL)
13936 {
13937 /* This was a pre-DWARF-5 GNU extension alias
13938 for DW_AT_call_return_pc. */
13939 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13940 }
13941 if (!attr)
13942 {
13943 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13944 "DIE %s [in module %s]"),
13945 sect_offset_str (die->sect_off), objfile_name (objfile));
13946 return;
13947 }
13948 pc = attr_value_as_address (attr) + baseaddr;
13949 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13950
13951 if (cu->call_site_htab == NULL)
13952 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13953 NULL, &objfile->objfile_obstack,
13954 hashtab_obstack_allocate, NULL);
13955 call_site_local.pc = pc;
13956 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13957 if (*slot != NULL)
13958 {
13959 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13960 "DIE %s [in module %s]"),
13961 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13962 objfile_name (objfile));
13963 return;
13964 }
13965
13966 /* Count parameters at the caller. */
13967
13968 nparams = 0;
13969 for (child_die = die->child; child_die && child_die->tag;
13970 child_die = sibling_die (child_die))
13971 {
13972 if (child_die->tag != DW_TAG_call_site_parameter
13973 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13974 {
13975 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13976 "DW_TAG_call_site child DIE %s [in module %s]"),
13977 child_die->tag, sect_offset_str (child_die->sect_off),
13978 objfile_name (objfile));
13979 continue;
13980 }
13981
13982 nparams++;
13983 }
13984
13985 call_site
13986 = ((struct call_site *)
13987 obstack_alloc (&objfile->objfile_obstack,
13988 sizeof (*call_site)
13989 + (sizeof (*call_site->parameter) * (nparams - 1))));
13990 *slot = call_site;
13991 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13992 call_site->pc = pc;
13993
13994 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13995 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13996 {
13997 struct die_info *func_die;
13998
13999 /* Skip also over DW_TAG_inlined_subroutine. */
14000 for (func_die = die->parent;
14001 func_die && func_die->tag != DW_TAG_subprogram
14002 && func_die->tag != DW_TAG_subroutine_type;
14003 func_die = func_die->parent);
14004
14005 /* DW_AT_call_all_calls is a superset
14006 of DW_AT_call_all_tail_calls. */
14007 if (func_die
14008 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14009 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14010 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14011 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14012 {
14013 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14014 not complete. But keep CALL_SITE for look ups via call_site_htab,
14015 both the initial caller containing the real return address PC and
14016 the final callee containing the current PC of a chain of tail
14017 calls do not need to have the tail call list complete. But any
14018 function candidate for a virtual tail call frame searched via
14019 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14020 determined unambiguously. */
14021 }
14022 else
14023 {
14024 struct type *func_type = NULL;
14025
14026 if (func_die)
14027 func_type = get_die_type (func_die, cu);
14028 if (func_type != NULL)
14029 {
14030 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14031
14032 /* Enlist this call site to the function. */
14033 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14034 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14035 }
14036 else
14037 complaint (_("Cannot find function owning DW_TAG_call_site "
14038 "DIE %s [in module %s]"),
14039 sect_offset_str (die->sect_off), objfile_name (objfile));
14040 }
14041 }
14042
14043 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14044 if (attr == NULL)
14045 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14046 if (attr == NULL)
14047 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14048 if (attr == NULL)
14049 {
14050 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14051 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14052 }
14053 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14054 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14055 /* Keep NULL DWARF_BLOCK. */;
14056 else if (attr_form_is_block (attr))
14057 {
14058 struct dwarf2_locexpr_baton *dlbaton;
14059
14060 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14061 dlbaton->data = DW_BLOCK (attr)->data;
14062 dlbaton->size = DW_BLOCK (attr)->size;
14063 dlbaton->per_cu = cu->per_cu;
14064
14065 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14066 }
14067 else if (attr_form_is_ref (attr))
14068 {
14069 struct dwarf2_cu *target_cu = cu;
14070 struct die_info *target_die;
14071
14072 target_die = follow_die_ref (die, attr, &target_cu);
14073 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14074 if (die_is_declaration (target_die, target_cu))
14075 {
14076 const char *target_physname;
14077
14078 /* Prefer the mangled name; otherwise compute the demangled one. */
14079 target_physname = dw2_linkage_name (target_die, target_cu);
14080 if (target_physname == NULL)
14081 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14082 if (target_physname == NULL)
14083 complaint (_("DW_AT_call_target target DIE has invalid "
14084 "physname, for referencing DIE %s [in module %s]"),
14085 sect_offset_str (die->sect_off), objfile_name (objfile));
14086 else
14087 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14088 }
14089 else
14090 {
14091 CORE_ADDR lowpc;
14092
14093 /* DW_AT_entry_pc should be preferred. */
14094 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14095 <= PC_BOUNDS_INVALID)
14096 complaint (_("DW_AT_call_target target DIE has invalid "
14097 "low pc, for referencing DIE %s [in module %s]"),
14098 sect_offset_str (die->sect_off), objfile_name (objfile));
14099 else
14100 {
14101 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14102 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14103 }
14104 }
14105 }
14106 else
14107 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14108 "block nor reference, for DIE %s [in module %s]"),
14109 sect_offset_str (die->sect_off), objfile_name (objfile));
14110
14111 call_site->per_cu = cu->per_cu;
14112
14113 for (child_die = die->child;
14114 child_die && child_die->tag;
14115 child_die = sibling_die (child_die))
14116 {
14117 struct call_site_parameter *parameter;
14118 struct attribute *loc, *origin;
14119
14120 if (child_die->tag != DW_TAG_call_site_parameter
14121 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14122 {
14123 /* Already printed the complaint above. */
14124 continue;
14125 }
14126
14127 gdb_assert (call_site->parameter_count < nparams);
14128 parameter = &call_site->parameter[call_site->parameter_count];
14129
14130 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14131 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14132 register is contained in DW_AT_call_value. */
14133
14134 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14135 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14136 if (origin == NULL)
14137 {
14138 /* This was a pre-DWARF-5 GNU extension alias
14139 for DW_AT_call_parameter. */
14140 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14141 }
14142 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14143 {
14144 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14145
14146 sect_offset sect_off
14147 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14148 if (!offset_in_cu_p (&cu->header, sect_off))
14149 {
14150 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14151 binding can be done only inside one CU. Such referenced DIE
14152 therefore cannot be even moved to DW_TAG_partial_unit. */
14153 complaint (_("DW_AT_call_parameter offset is not in CU for "
14154 "DW_TAG_call_site child DIE %s [in module %s]"),
14155 sect_offset_str (child_die->sect_off),
14156 objfile_name (objfile));
14157 continue;
14158 }
14159 parameter->u.param_cu_off
14160 = (cu_offset) (sect_off - cu->header.sect_off);
14161 }
14162 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14163 {
14164 complaint (_("No DW_FORM_block* DW_AT_location for "
14165 "DW_TAG_call_site child DIE %s [in module %s]"),
14166 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14167 continue;
14168 }
14169 else
14170 {
14171 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14172 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14173 if (parameter->u.dwarf_reg != -1)
14174 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14175 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14176 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14177 &parameter->u.fb_offset))
14178 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14179 else
14180 {
14181 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14182 "for DW_FORM_block* DW_AT_location is supported for "
14183 "DW_TAG_call_site child DIE %s "
14184 "[in module %s]"),
14185 sect_offset_str (child_die->sect_off),
14186 objfile_name (objfile));
14187 continue;
14188 }
14189 }
14190
14191 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14192 if (attr == NULL)
14193 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14194 if (!attr_form_is_block (attr))
14195 {
14196 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14197 "DW_TAG_call_site child DIE %s [in module %s]"),
14198 sect_offset_str (child_die->sect_off),
14199 objfile_name (objfile));
14200 continue;
14201 }
14202 parameter->value = DW_BLOCK (attr)->data;
14203 parameter->value_size = DW_BLOCK (attr)->size;
14204
14205 /* Parameters are not pre-cleared by memset above. */
14206 parameter->data_value = NULL;
14207 parameter->data_value_size = 0;
14208 call_site->parameter_count++;
14209
14210 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14211 if (attr == NULL)
14212 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14213 if (attr)
14214 {
14215 if (!attr_form_is_block (attr))
14216 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14217 "DW_TAG_call_site child DIE %s [in module %s]"),
14218 sect_offset_str (child_die->sect_off),
14219 objfile_name (objfile));
14220 else
14221 {
14222 parameter->data_value = DW_BLOCK (attr)->data;
14223 parameter->data_value_size = DW_BLOCK (attr)->size;
14224 }
14225 }
14226 }
14227 }
14228
14229 /* Helper function for read_variable. If DIE represents a virtual
14230 table, then return the type of the concrete object that is
14231 associated with the virtual table. Otherwise, return NULL. */
14232
14233 static struct type *
14234 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14235 {
14236 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14237 if (attr == NULL)
14238 return NULL;
14239
14240 /* Find the type DIE. */
14241 struct die_info *type_die = NULL;
14242 struct dwarf2_cu *type_cu = cu;
14243
14244 if (attr_form_is_ref (attr))
14245 type_die = follow_die_ref (die, attr, &type_cu);
14246 if (type_die == NULL)
14247 return NULL;
14248
14249 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14250 return NULL;
14251 return die_containing_type (type_die, type_cu);
14252 }
14253
14254 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14255
14256 static void
14257 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14258 {
14259 struct rust_vtable_symbol *storage = NULL;
14260
14261 if (cu->language == language_rust)
14262 {
14263 struct type *containing_type = rust_containing_type (die, cu);
14264
14265 if (containing_type != NULL)
14266 {
14267 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14268
14269 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14270 struct rust_vtable_symbol);
14271 initialize_objfile_symbol (storage);
14272 storage->concrete_type = containing_type;
14273 storage->subclass = SYMBOL_RUST_VTABLE;
14274 }
14275 }
14276
14277 struct symbol *res = new_symbol (die, NULL, cu, storage);
14278 struct attribute *abstract_origin
14279 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14280 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14281 if (res == NULL && loc && abstract_origin)
14282 {
14283 /* We have a variable without a name, but with a location and an abstract
14284 origin. This may be a concrete instance of an abstract variable
14285 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14286 later. */
14287 struct dwarf2_cu *origin_cu = cu;
14288 struct die_info *origin_die
14289 = follow_die_ref (die, abstract_origin, &origin_cu);
14290 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14291 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14292 }
14293 }
14294
14295 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14296 reading .debug_rnglists.
14297 Callback's type should be:
14298 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14299 Return true if the attributes are present and valid, otherwise,
14300 return false. */
14301
14302 template <typename Callback>
14303 static bool
14304 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14305 Callback &&callback)
14306 {
14307 struct dwarf2_per_objfile *dwarf2_per_objfile
14308 = cu->per_cu->dwarf2_per_objfile;
14309 struct objfile *objfile = dwarf2_per_objfile->objfile;
14310 bfd *obfd = objfile->obfd;
14311 /* Base address selection entry. */
14312 CORE_ADDR base;
14313 int found_base;
14314 const gdb_byte *buffer;
14315 CORE_ADDR baseaddr;
14316 bool overflow = false;
14317
14318 found_base = cu->base_known;
14319 base = cu->base_address;
14320
14321 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14322 if (offset >= dwarf2_per_objfile->rnglists.size)
14323 {
14324 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14325 offset);
14326 return false;
14327 }
14328 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14329
14330 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14331
14332 while (1)
14333 {
14334 /* Initialize it due to a false compiler warning. */
14335 CORE_ADDR range_beginning = 0, range_end = 0;
14336 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14337 + dwarf2_per_objfile->rnglists.size);
14338 unsigned int bytes_read;
14339
14340 if (buffer == buf_end)
14341 {
14342 overflow = true;
14343 break;
14344 }
14345 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14346 switch (rlet)
14347 {
14348 case DW_RLE_end_of_list:
14349 break;
14350 case DW_RLE_base_address:
14351 if (buffer + cu->header.addr_size > buf_end)
14352 {
14353 overflow = true;
14354 break;
14355 }
14356 base = read_address (obfd, buffer, cu, &bytes_read);
14357 found_base = 1;
14358 buffer += bytes_read;
14359 break;
14360 case DW_RLE_start_length:
14361 if (buffer + cu->header.addr_size > buf_end)
14362 {
14363 overflow = true;
14364 break;
14365 }
14366 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14367 buffer += bytes_read;
14368 range_end = (range_beginning
14369 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14370 buffer += bytes_read;
14371 if (buffer > buf_end)
14372 {
14373 overflow = true;
14374 break;
14375 }
14376 break;
14377 case DW_RLE_offset_pair:
14378 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14379 buffer += bytes_read;
14380 if (buffer > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14386 buffer += bytes_read;
14387 if (buffer > buf_end)
14388 {
14389 overflow = true;
14390 break;
14391 }
14392 break;
14393 case DW_RLE_start_end:
14394 if (buffer + 2 * cu->header.addr_size > buf_end)
14395 {
14396 overflow = true;
14397 break;
14398 }
14399 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14400 buffer += bytes_read;
14401 range_end = read_address (obfd, buffer, cu, &bytes_read);
14402 buffer += bytes_read;
14403 break;
14404 default:
14405 complaint (_("Invalid .debug_rnglists data (no base address)"));
14406 return false;
14407 }
14408 if (rlet == DW_RLE_end_of_list || overflow)
14409 break;
14410 if (rlet == DW_RLE_base_address)
14411 continue;
14412
14413 if (!found_base)
14414 {
14415 /* We have no valid base address for the ranges
14416 data. */
14417 complaint (_("Invalid .debug_rnglists data (no base address)"));
14418 return false;
14419 }
14420
14421 if (range_beginning > range_end)
14422 {
14423 /* Inverted range entries are invalid. */
14424 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14425 return false;
14426 }
14427
14428 /* Empty range entries have no effect. */
14429 if (range_beginning == range_end)
14430 continue;
14431
14432 range_beginning += base;
14433 range_end += base;
14434
14435 /* A not-uncommon case of bad debug info.
14436 Don't pollute the addrmap with bad data. */
14437 if (range_beginning + baseaddr == 0
14438 && !dwarf2_per_objfile->has_section_at_zero)
14439 {
14440 complaint (_(".debug_rnglists entry has start address of zero"
14441 " [in module %s]"), objfile_name (objfile));
14442 continue;
14443 }
14444
14445 callback (range_beginning, range_end);
14446 }
14447
14448 if (overflow)
14449 {
14450 complaint (_("Offset %d is not terminated "
14451 "for DW_AT_ranges attribute"),
14452 offset);
14453 return false;
14454 }
14455
14456 return true;
14457 }
14458
14459 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14460 Callback's type should be:
14461 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14462 Return 1 if the attributes are present and valid, otherwise, return 0. */
14463
14464 template <typename Callback>
14465 static int
14466 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14467 Callback &&callback)
14468 {
14469 struct dwarf2_per_objfile *dwarf2_per_objfile
14470 = cu->per_cu->dwarf2_per_objfile;
14471 struct objfile *objfile = dwarf2_per_objfile->objfile;
14472 struct comp_unit_head *cu_header = &cu->header;
14473 bfd *obfd = objfile->obfd;
14474 unsigned int addr_size = cu_header->addr_size;
14475 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14476 /* Base address selection entry. */
14477 CORE_ADDR base;
14478 int found_base;
14479 unsigned int dummy;
14480 const gdb_byte *buffer;
14481 CORE_ADDR baseaddr;
14482
14483 if (cu_header->version >= 5)
14484 return dwarf2_rnglists_process (offset, cu, callback);
14485
14486 found_base = cu->base_known;
14487 base = cu->base_address;
14488
14489 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14490 if (offset >= dwarf2_per_objfile->ranges.size)
14491 {
14492 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14493 offset);
14494 return 0;
14495 }
14496 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14497
14498 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14499
14500 while (1)
14501 {
14502 CORE_ADDR range_beginning, range_end;
14503
14504 range_beginning = read_address (obfd, buffer, cu, &dummy);
14505 buffer += addr_size;
14506 range_end = read_address (obfd, buffer, cu, &dummy);
14507 buffer += addr_size;
14508 offset += 2 * addr_size;
14509
14510 /* An end of list marker is a pair of zero addresses. */
14511 if (range_beginning == 0 && range_end == 0)
14512 /* Found the end of list entry. */
14513 break;
14514
14515 /* Each base address selection entry is a pair of 2 values.
14516 The first is the largest possible address, the second is
14517 the base address. Check for a base address here. */
14518 if ((range_beginning & mask) == mask)
14519 {
14520 /* If we found the largest possible address, then we already
14521 have the base address in range_end. */
14522 base = range_end;
14523 found_base = 1;
14524 continue;
14525 }
14526
14527 if (!found_base)
14528 {
14529 /* We have no valid base address for the ranges
14530 data. */
14531 complaint (_("Invalid .debug_ranges data (no base address)"));
14532 return 0;
14533 }
14534
14535 if (range_beginning > range_end)
14536 {
14537 /* Inverted range entries are invalid. */
14538 complaint (_("Invalid .debug_ranges data (inverted range)"));
14539 return 0;
14540 }
14541
14542 /* Empty range entries have no effect. */
14543 if (range_beginning == range_end)
14544 continue;
14545
14546 range_beginning += base;
14547 range_end += base;
14548
14549 /* A not-uncommon case of bad debug info.
14550 Don't pollute the addrmap with bad data. */
14551 if (range_beginning + baseaddr == 0
14552 && !dwarf2_per_objfile->has_section_at_zero)
14553 {
14554 complaint (_(".debug_ranges entry has start address of zero"
14555 " [in module %s]"), objfile_name (objfile));
14556 continue;
14557 }
14558
14559 callback (range_beginning, range_end);
14560 }
14561
14562 return 1;
14563 }
14564
14565 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14566 Return 1 if the attributes are present and valid, otherwise, return 0.
14567 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14568
14569 static int
14570 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14571 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14572 struct partial_symtab *ranges_pst)
14573 {
14574 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14575 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14576 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14577 SECT_OFF_TEXT (objfile));
14578 int low_set = 0;
14579 CORE_ADDR low = 0;
14580 CORE_ADDR high = 0;
14581 int retval;
14582
14583 retval = dwarf2_ranges_process (offset, cu,
14584 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14585 {
14586 if (ranges_pst != NULL)
14587 {
14588 CORE_ADDR lowpc;
14589 CORE_ADDR highpc;
14590
14591 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14592 range_beginning + baseaddr)
14593 - baseaddr);
14594 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14595 range_end + baseaddr)
14596 - baseaddr);
14597 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14598 lowpc, highpc - 1, ranges_pst);
14599 }
14600
14601 /* FIXME: This is recording everything as a low-high
14602 segment of consecutive addresses. We should have a
14603 data structure for discontiguous block ranges
14604 instead. */
14605 if (! low_set)
14606 {
14607 low = range_beginning;
14608 high = range_end;
14609 low_set = 1;
14610 }
14611 else
14612 {
14613 if (range_beginning < low)
14614 low = range_beginning;
14615 if (range_end > high)
14616 high = range_end;
14617 }
14618 });
14619 if (!retval)
14620 return 0;
14621
14622 if (! low_set)
14623 /* If the first entry is an end-of-list marker, the range
14624 describes an empty scope, i.e. no instructions. */
14625 return 0;
14626
14627 if (low_return)
14628 *low_return = low;
14629 if (high_return)
14630 *high_return = high;
14631 return 1;
14632 }
14633
14634 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14635 definition for the return value. *LOWPC and *HIGHPC are set iff
14636 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14637
14638 static enum pc_bounds_kind
14639 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14640 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14641 struct partial_symtab *pst)
14642 {
14643 struct dwarf2_per_objfile *dwarf2_per_objfile
14644 = cu->per_cu->dwarf2_per_objfile;
14645 struct attribute *attr;
14646 struct attribute *attr_high;
14647 CORE_ADDR low = 0;
14648 CORE_ADDR high = 0;
14649 enum pc_bounds_kind ret;
14650
14651 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14652 if (attr_high)
14653 {
14654 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14655 if (attr)
14656 {
14657 low = attr_value_as_address (attr);
14658 high = attr_value_as_address (attr_high);
14659 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14660 high += low;
14661 }
14662 else
14663 /* Found high w/o low attribute. */
14664 return PC_BOUNDS_INVALID;
14665
14666 /* Found consecutive range of addresses. */
14667 ret = PC_BOUNDS_HIGH_LOW;
14668 }
14669 else
14670 {
14671 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14672 if (attr != NULL)
14673 {
14674 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14675 We take advantage of the fact that DW_AT_ranges does not appear
14676 in DW_TAG_compile_unit of DWO files. */
14677 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14678 unsigned int ranges_offset = (DW_UNSND (attr)
14679 + (need_ranges_base
14680 ? cu->ranges_base
14681 : 0));
14682
14683 /* Value of the DW_AT_ranges attribute is the offset in the
14684 .debug_ranges section. */
14685 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14686 return PC_BOUNDS_INVALID;
14687 /* Found discontinuous range of addresses. */
14688 ret = PC_BOUNDS_RANGES;
14689 }
14690 else
14691 return PC_BOUNDS_NOT_PRESENT;
14692 }
14693
14694 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14695 if (high <= low)
14696 return PC_BOUNDS_INVALID;
14697
14698 /* When using the GNU linker, .gnu.linkonce. sections are used to
14699 eliminate duplicate copies of functions and vtables and such.
14700 The linker will arbitrarily choose one and discard the others.
14701 The AT_*_pc values for such functions refer to local labels in
14702 these sections. If the section from that file was discarded, the
14703 labels are not in the output, so the relocs get a value of 0.
14704 If this is a discarded function, mark the pc bounds as invalid,
14705 so that GDB will ignore it. */
14706 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14707 return PC_BOUNDS_INVALID;
14708
14709 *lowpc = low;
14710 if (highpc)
14711 *highpc = high;
14712 return ret;
14713 }
14714
14715 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14716 its low and high PC addresses. Do nothing if these addresses could not
14717 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14718 and HIGHPC to the high address if greater than HIGHPC. */
14719
14720 static void
14721 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14722 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14723 struct dwarf2_cu *cu)
14724 {
14725 CORE_ADDR low, high;
14726 struct die_info *child = die->child;
14727
14728 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14729 {
14730 *lowpc = std::min (*lowpc, low);
14731 *highpc = std::max (*highpc, high);
14732 }
14733
14734 /* If the language does not allow nested subprograms (either inside
14735 subprograms or lexical blocks), we're done. */
14736 if (cu->language != language_ada)
14737 return;
14738
14739 /* Check all the children of the given DIE. If it contains nested
14740 subprograms, then check their pc bounds. Likewise, we need to
14741 check lexical blocks as well, as they may also contain subprogram
14742 definitions. */
14743 while (child && child->tag)
14744 {
14745 if (child->tag == DW_TAG_subprogram
14746 || child->tag == DW_TAG_lexical_block)
14747 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14748 child = sibling_die (child);
14749 }
14750 }
14751
14752 /* Get the low and high pc's represented by the scope DIE, and store
14753 them in *LOWPC and *HIGHPC. If the correct values can't be
14754 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14755
14756 static void
14757 get_scope_pc_bounds (struct die_info *die,
14758 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14759 struct dwarf2_cu *cu)
14760 {
14761 CORE_ADDR best_low = (CORE_ADDR) -1;
14762 CORE_ADDR best_high = (CORE_ADDR) 0;
14763 CORE_ADDR current_low, current_high;
14764
14765 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14766 >= PC_BOUNDS_RANGES)
14767 {
14768 best_low = current_low;
14769 best_high = current_high;
14770 }
14771 else
14772 {
14773 struct die_info *child = die->child;
14774
14775 while (child && child->tag)
14776 {
14777 switch (child->tag) {
14778 case DW_TAG_subprogram:
14779 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14780 break;
14781 case DW_TAG_namespace:
14782 case DW_TAG_module:
14783 /* FIXME: carlton/2004-01-16: Should we do this for
14784 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14785 that current GCC's always emit the DIEs corresponding
14786 to definitions of methods of classes as children of a
14787 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14788 the DIEs giving the declarations, which could be
14789 anywhere). But I don't see any reason why the
14790 standards says that they have to be there. */
14791 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14792
14793 if (current_low != ((CORE_ADDR) -1))
14794 {
14795 best_low = std::min (best_low, current_low);
14796 best_high = std::max (best_high, current_high);
14797 }
14798 break;
14799 default:
14800 /* Ignore. */
14801 break;
14802 }
14803
14804 child = sibling_die (child);
14805 }
14806 }
14807
14808 *lowpc = best_low;
14809 *highpc = best_high;
14810 }
14811
14812 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14813 in DIE. */
14814
14815 static void
14816 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14817 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14818 {
14819 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14820 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14821 struct attribute *attr;
14822 struct attribute *attr_high;
14823
14824 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14825 if (attr_high)
14826 {
14827 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14828 if (attr)
14829 {
14830 CORE_ADDR low = attr_value_as_address (attr);
14831 CORE_ADDR high = attr_value_as_address (attr_high);
14832
14833 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14834 high += low;
14835
14836 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14837 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14838 cu->get_builder ()->record_block_range (block, low, high - 1);
14839 }
14840 }
14841
14842 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14843 if (attr)
14844 {
14845 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14846 We take advantage of the fact that DW_AT_ranges does not appear
14847 in DW_TAG_compile_unit of DWO files. */
14848 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14849
14850 /* The value of the DW_AT_ranges attribute is the offset of the
14851 address range list in the .debug_ranges section. */
14852 unsigned long offset = (DW_UNSND (attr)
14853 + (need_ranges_base ? cu->ranges_base : 0));
14854
14855 std::vector<blockrange> blockvec;
14856 dwarf2_ranges_process (offset, cu,
14857 [&] (CORE_ADDR start, CORE_ADDR end)
14858 {
14859 start += baseaddr;
14860 end += baseaddr;
14861 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14862 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14863 cu->get_builder ()->record_block_range (block, start, end - 1);
14864 blockvec.emplace_back (start, end);
14865 });
14866
14867 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14868 }
14869 }
14870
14871 /* Check whether the producer field indicates either of GCC < 4.6, or the
14872 Intel C/C++ compiler, and cache the result in CU. */
14873
14874 static void
14875 check_producer (struct dwarf2_cu *cu)
14876 {
14877 int major, minor;
14878
14879 if (cu->producer == NULL)
14880 {
14881 /* For unknown compilers expect their behavior is DWARF version
14882 compliant.
14883
14884 GCC started to support .debug_types sections by -gdwarf-4 since
14885 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14886 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14887 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14888 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14889 }
14890 else if (producer_is_gcc (cu->producer, &major, &minor))
14891 {
14892 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14893 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14894 }
14895 else if (producer_is_icc (cu->producer, &major, &minor))
14896 {
14897 cu->producer_is_icc = true;
14898 cu->producer_is_icc_lt_14 = major < 14;
14899 }
14900 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14901 cu->producer_is_codewarrior = true;
14902 else
14903 {
14904 /* For other non-GCC compilers, expect their behavior is DWARF version
14905 compliant. */
14906 }
14907
14908 cu->checked_producer = true;
14909 }
14910
14911 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14912 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14913 during 4.6.0 experimental. */
14914
14915 static bool
14916 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14917 {
14918 if (!cu->checked_producer)
14919 check_producer (cu);
14920
14921 return cu->producer_is_gxx_lt_4_6;
14922 }
14923
14924
14925 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14926 with incorrect is_stmt attributes. */
14927
14928 static bool
14929 producer_is_codewarrior (struct dwarf2_cu *cu)
14930 {
14931 if (!cu->checked_producer)
14932 check_producer (cu);
14933
14934 return cu->producer_is_codewarrior;
14935 }
14936
14937 /* Return the default accessibility type if it is not overriden by
14938 DW_AT_accessibility. */
14939
14940 static enum dwarf_access_attribute
14941 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14942 {
14943 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14944 {
14945 /* The default DWARF 2 accessibility for members is public, the default
14946 accessibility for inheritance is private. */
14947
14948 if (die->tag != DW_TAG_inheritance)
14949 return DW_ACCESS_public;
14950 else
14951 return DW_ACCESS_private;
14952 }
14953 else
14954 {
14955 /* DWARF 3+ defines the default accessibility a different way. The same
14956 rules apply now for DW_TAG_inheritance as for the members and it only
14957 depends on the container kind. */
14958
14959 if (die->parent->tag == DW_TAG_class_type)
14960 return DW_ACCESS_private;
14961 else
14962 return DW_ACCESS_public;
14963 }
14964 }
14965
14966 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14967 offset. If the attribute was not found return 0, otherwise return
14968 1. If it was found but could not properly be handled, set *OFFSET
14969 to 0. */
14970
14971 static int
14972 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14973 LONGEST *offset)
14974 {
14975 struct attribute *attr;
14976
14977 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14978 if (attr != NULL)
14979 {
14980 *offset = 0;
14981
14982 /* Note that we do not check for a section offset first here.
14983 This is because DW_AT_data_member_location is new in DWARF 4,
14984 so if we see it, we can assume that a constant form is really
14985 a constant and not a section offset. */
14986 if (attr_form_is_constant (attr))
14987 *offset = dwarf2_get_attr_constant_value (attr, 0);
14988 else if (attr_form_is_section_offset (attr))
14989 dwarf2_complex_location_expr_complaint ();
14990 else if (attr_form_is_block (attr))
14991 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14992 else
14993 dwarf2_complex_location_expr_complaint ();
14994
14995 return 1;
14996 }
14997
14998 return 0;
14999 }
15000
15001 /* Add an aggregate field to the field list. */
15002
15003 static void
15004 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15005 struct dwarf2_cu *cu)
15006 {
15007 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15009 struct nextfield *new_field;
15010 struct attribute *attr;
15011 struct field *fp;
15012 const char *fieldname = "";
15013
15014 if (die->tag == DW_TAG_inheritance)
15015 {
15016 fip->baseclasses.emplace_back ();
15017 new_field = &fip->baseclasses.back ();
15018 }
15019 else
15020 {
15021 fip->fields.emplace_back ();
15022 new_field = &fip->fields.back ();
15023 }
15024
15025 fip->nfields++;
15026
15027 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15028 if (attr)
15029 new_field->accessibility = DW_UNSND (attr);
15030 else
15031 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15032 if (new_field->accessibility != DW_ACCESS_public)
15033 fip->non_public_fields = 1;
15034
15035 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15036 if (attr)
15037 new_field->virtuality = DW_UNSND (attr);
15038 else
15039 new_field->virtuality = DW_VIRTUALITY_none;
15040
15041 fp = &new_field->field;
15042
15043 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15044 {
15045 LONGEST offset;
15046
15047 /* Data member other than a C++ static data member. */
15048
15049 /* Get type of field. */
15050 fp->type = die_type (die, cu);
15051
15052 SET_FIELD_BITPOS (*fp, 0);
15053
15054 /* Get bit size of field (zero if none). */
15055 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15056 if (attr)
15057 {
15058 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15059 }
15060 else
15061 {
15062 FIELD_BITSIZE (*fp) = 0;
15063 }
15064
15065 /* Get bit offset of field. */
15066 if (handle_data_member_location (die, cu, &offset))
15067 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15068 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15069 if (attr)
15070 {
15071 if (gdbarch_bits_big_endian (gdbarch))
15072 {
15073 /* For big endian bits, the DW_AT_bit_offset gives the
15074 additional bit offset from the MSB of the containing
15075 anonymous object to the MSB of the field. We don't
15076 have to do anything special since we don't need to
15077 know the size of the anonymous object. */
15078 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15079 }
15080 else
15081 {
15082 /* For little endian bits, compute the bit offset to the
15083 MSB of the anonymous object, subtract off the number of
15084 bits from the MSB of the field to the MSB of the
15085 object, and then subtract off the number of bits of
15086 the field itself. The result is the bit offset of
15087 the LSB of the field. */
15088 int anonymous_size;
15089 int bit_offset = DW_UNSND (attr);
15090
15091 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15092 if (attr)
15093 {
15094 /* The size of the anonymous object containing
15095 the bit field is explicit, so use the
15096 indicated size (in bytes). */
15097 anonymous_size = DW_UNSND (attr);
15098 }
15099 else
15100 {
15101 /* The size of the anonymous object containing
15102 the bit field must be inferred from the type
15103 attribute of the data member containing the
15104 bit field. */
15105 anonymous_size = TYPE_LENGTH (fp->type);
15106 }
15107 SET_FIELD_BITPOS (*fp,
15108 (FIELD_BITPOS (*fp)
15109 + anonymous_size * bits_per_byte
15110 - bit_offset - FIELD_BITSIZE (*fp)));
15111 }
15112 }
15113 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15114 if (attr != NULL)
15115 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15116 + dwarf2_get_attr_constant_value (attr, 0)));
15117
15118 /* Get name of field. */
15119 fieldname = dwarf2_name (die, cu);
15120 if (fieldname == NULL)
15121 fieldname = "";
15122
15123 /* The name is already allocated along with this objfile, so we don't
15124 need to duplicate it for the type. */
15125 fp->name = fieldname;
15126
15127 /* Change accessibility for artificial fields (e.g. virtual table
15128 pointer or virtual base class pointer) to private. */
15129 if (dwarf2_attr (die, DW_AT_artificial, cu))
15130 {
15131 FIELD_ARTIFICIAL (*fp) = 1;
15132 new_field->accessibility = DW_ACCESS_private;
15133 fip->non_public_fields = 1;
15134 }
15135 }
15136 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15137 {
15138 /* C++ static member. */
15139
15140 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15141 is a declaration, but all versions of G++ as of this writing
15142 (so through at least 3.2.1) incorrectly generate
15143 DW_TAG_variable tags. */
15144
15145 const char *physname;
15146
15147 /* Get name of field. */
15148 fieldname = dwarf2_name (die, cu);
15149 if (fieldname == NULL)
15150 return;
15151
15152 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15153 if (attr
15154 /* Only create a symbol if this is an external value.
15155 new_symbol checks this and puts the value in the global symbol
15156 table, which we want. If it is not external, new_symbol
15157 will try to put the value in cu->list_in_scope which is wrong. */
15158 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15159 {
15160 /* A static const member, not much different than an enum as far as
15161 we're concerned, except that we can support more types. */
15162 new_symbol (die, NULL, cu);
15163 }
15164
15165 /* Get physical name. */
15166 physname = dwarf2_physname (fieldname, die, cu);
15167
15168 /* The name is already allocated along with this objfile, so we don't
15169 need to duplicate it for the type. */
15170 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15171 FIELD_TYPE (*fp) = die_type (die, cu);
15172 FIELD_NAME (*fp) = fieldname;
15173 }
15174 else if (die->tag == DW_TAG_inheritance)
15175 {
15176 LONGEST offset;
15177
15178 /* C++ base class field. */
15179 if (handle_data_member_location (die, cu, &offset))
15180 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15181 FIELD_BITSIZE (*fp) = 0;
15182 FIELD_TYPE (*fp) = die_type (die, cu);
15183 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15184 }
15185 else if (die->tag == DW_TAG_variant_part)
15186 {
15187 /* process_structure_scope will treat this DIE as a union. */
15188 process_structure_scope (die, cu);
15189
15190 /* The variant part is relative to the start of the enclosing
15191 structure. */
15192 SET_FIELD_BITPOS (*fp, 0);
15193 fp->type = get_die_type (die, cu);
15194 fp->artificial = 1;
15195 fp->name = "<<variant>>";
15196
15197 /* Normally a DW_TAG_variant_part won't have a size, but our
15198 representation requires one, so set it to the maximum of the
15199 child sizes. */
15200 if (TYPE_LENGTH (fp->type) == 0)
15201 {
15202 unsigned max = 0;
15203 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15204 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15205 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15206 TYPE_LENGTH (fp->type) = max;
15207 }
15208 }
15209 else
15210 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15211 }
15212
15213 /* Can the type given by DIE define another type? */
15214
15215 static bool
15216 type_can_define_types (const struct die_info *die)
15217 {
15218 switch (die->tag)
15219 {
15220 case DW_TAG_typedef:
15221 case DW_TAG_class_type:
15222 case DW_TAG_structure_type:
15223 case DW_TAG_union_type:
15224 case DW_TAG_enumeration_type:
15225 return true;
15226
15227 default:
15228 return false;
15229 }
15230 }
15231
15232 /* Add a type definition defined in the scope of the FIP's class. */
15233
15234 static void
15235 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15236 struct dwarf2_cu *cu)
15237 {
15238 struct decl_field fp;
15239 memset (&fp, 0, sizeof (fp));
15240
15241 gdb_assert (type_can_define_types (die));
15242
15243 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15244 fp.name = dwarf2_name (die, cu);
15245 fp.type = read_type_die (die, cu);
15246
15247 /* Save accessibility. */
15248 enum dwarf_access_attribute accessibility;
15249 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15250 if (attr != NULL)
15251 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15252 else
15253 accessibility = dwarf2_default_access_attribute (die, cu);
15254 switch (accessibility)
15255 {
15256 case DW_ACCESS_public:
15257 /* The assumed value if neither private nor protected. */
15258 break;
15259 case DW_ACCESS_private:
15260 fp.is_private = 1;
15261 break;
15262 case DW_ACCESS_protected:
15263 fp.is_protected = 1;
15264 break;
15265 default:
15266 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15267 }
15268
15269 if (die->tag == DW_TAG_typedef)
15270 fip->typedef_field_list.push_back (fp);
15271 else
15272 fip->nested_types_list.push_back (fp);
15273 }
15274
15275 /* Create the vector of fields, and attach it to the type. */
15276
15277 static void
15278 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15279 struct dwarf2_cu *cu)
15280 {
15281 int nfields = fip->nfields;
15282
15283 /* Record the field count, allocate space for the array of fields,
15284 and create blank accessibility bitfields if necessary. */
15285 TYPE_NFIELDS (type) = nfields;
15286 TYPE_FIELDS (type) = (struct field *)
15287 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15288
15289 if (fip->non_public_fields && cu->language != language_ada)
15290 {
15291 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15292
15293 TYPE_FIELD_PRIVATE_BITS (type) =
15294 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15295 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15296
15297 TYPE_FIELD_PROTECTED_BITS (type) =
15298 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15299 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15300
15301 TYPE_FIELD_IGNORE_BITS (type) =
15302 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15303 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15304 }
15305
15306 /* If the type has baseclasses, allocate and clear a bit vector for
15307 TYPE_FIELD_VIRTUAL_BITS. */
15308 if (!fip->baseclasses.empty () && cu->language != language_ada)
15309 {
15310 int num_bytes = B_BYTES (fip->baseclasses.size ());
15311 unsigned char *pointer;
15312
15313 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15314 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15315 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15316 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15317 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15318 }
15319
15320 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15321 {
15322 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15323
15324 for (int index = 0; index < nfields; ++index)
15325 {
15326 struct nextfield &field = fip->fields[index];
15327
15328 if (field.variant.is_discriminant)
15329 di->discriminant_index = index;
15330 else if (field.variant.default_branch)
15331 di->default_index = index;
15332 else
15333 di->discriminants[index] = field.variant.discriminant_value;
15334 }
15335 }
15336
15337 /* Copy the saved-up fields into the field vector. */
15338 for (int i = 0; i < nfields; ++i)
15339 {
15340 struct nextfield &field
15341 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15342 : fip->fields[i - fip->baseclasses.size ()]);
15343
15344 TYPE_FIELD (type, i) = field.field;
15345 switch (field.accessibility)
15346 {
15347 case DW_ACCESS_private:
15348 if (cu->language != language_ada)
15349 SET_TYPE_FIELD_PRIVATE (type, i);
15350 break;
15351
15352 case DW_ACCESS_protected:
15353 if (cu->language != language_ada)
15354 SET_TYPE_FIELD_PROTECTED (type, i);
15355 break;
15356
15357 case DW_ACCESS_public:
15358 break;
15359
15360 default:
15361 /* Unknown accessibility. Complain and treat it as public. */
15362 {
15363 complaint (_("unsupported accessibility %d"),
15364 field.accessibility);
15365 }
15366 break;
15367 }
15368 if (i < fip->baseclasses.size ())
15369 {
15370 switch (field.virtuality)
15371 {
15372 case DW_VIRTUALITY_virtual:
15373 case DW_VIRTUALITY_pure_virtual:
15374 if (cu->language == language_ada)
15375 error (_("unexpected virtuality in component of Ada type"));
15376 SET_TYPE_FIELD_VIRTUAL (type, i);
15377 break;
15378 }
15379 }
15380 }
15381 }
15382
15383 /* Return true if this member function is a constructor, false
15384 otherwise. */
15385
15386 static int
15387 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15388 {
15389 const char *fieldname;
15390 const char *type_name;
15391 int len;
15392
15393 if (die->parent == NULL)
15394 return 0;
15395
15396 if (die->parent->tag != DW_TAG_structure_type
15397 && die->parent->tag != DW_TAG_union_type
15398 && die->parent->tag != DW_TAG_class_type)
15399 return 0;
15400
15401 fieldname = dwarf2_name (die, cu);
15402 type_name = dwarf2_name (die->parent, cu);
15403 if (fieldname == NULL || type_name == NULL)
15404 return 0;
15405
15406 len = strlen (fieldname);
15407 return (strncmp (fieldname, type_name, len) == 0
15408 && (type_name[len] == '\0' || type_name[len] == '<'));
15409 }
15410
15411 /* Add a member function to the proper fieldlist. */
15412
15413 static void
15414 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15415 struct type *type, struct dwarf2_cu *cu)
15416 {
15417 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15418 struct attribute *attr;
15419 int i;
15420 struct fnfieldlist *flp = nullptr;
15421 struct fn_field *fnp;
15422 const char *fieldname;
15423 struct type *this_type;
15424 enum dwarf_access_attribute accessibility;
15425
15426 if (cu->language == language_ada)
15427 error (_("unexpected member function in Ada type"));
15428
15429 /* Get name of member function. */
15430 fieldname = dwarf2_name (die, cu);
15431 if (fieldname == NULL)
15432 return;
15433
15434 /* Look up member function name in fieldlist. */
15435 for (i = 0; i < fip->fnfieldlists.size (); i++)
15436 {
15437 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15438 {
15439 flp = &fip->fnfieldlists[i];
15440 break;
15441 }
15442 }
15443
15444 /* Create a new fnfieldlist if necessary. */
15445 if (flp == nullptr)
15446 {
15447 fip->fnfieldlists.emplace_back ();
15448 flp = &fip->fnfieldlists.back ();
15449 flp->name = fieldname;
15450 i = fip->fnfieldlists.size () - 1;
15451 }
15452
15453 /* Create a new member function field and add it to the vector of
15454 fnfieldlists. */
15455 flp->fnfields.emplace_back ();
15456 fnp = &flp->fnfields.back ();
15457
15458 /* Delay processing of the physname until later. */
15459 if (cu->language == language_cplus)
15460 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15461 die, cu);
15462 else
15463 {
15464 const char *physname = dwarf2_physname (fieldname, die, cu);
15465 fnp->physname = physname ? physname : "";
15466 }
15467
15468 fnp->type = alloc_type (objfile);
15469 this_type = read_type_die (die, cu);
15470 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15471 {
15472 int nparams = TYPE_NFIELDS (this_type);
15473
15474 /* TYPE is the domain of this method, and THIS_TYPE is the type
15475 of the method itself (TYPE_CODE_METHOD). */
15476 smash_to_method_type (fnp->type, type,
15477 TYPE_TARGET_TYPE (this_type),
15478 TYPE_FIELDS (this_type),
15479 TYPE_NFIELDS (this_type),
15480 TYPE_VARARGS (this_type));
15481
15482 /* Handle static member functions.
15483 Dwarf2 has no clean way to discern C++ static and non-static
15484 member functions. G++ helps GDB by marking the first
15485 parameter for non-static member functions (which is the this
15486 pointer) as artificial. We obtain this information from
15487 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15488 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15489 fnp->voffset = VOFFSET_STATIC;
15490 }
15491 else
15492 complaint (_("member function type missing for '%s'"),
15493 dwarf2_full_name (fieldname, die, cu));
15494
15495 /* Get fcontext from DW_AT_containing_type if present. */
15496 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15497 fnp->fcontext = die_containing_type (die, cu);
15498
15499 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15500 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15501
15502 /* Get accessibility. */
15503 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15504 if (attr)
15505 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15506 else
15507 accessibility = dwarf2_default_access_attribute (die, cu);
15508 switch (accessibility)
15509 {
15510 case DW_ACCESS_private:
15511 fnp->is_private = 1;
15512 break;
15513 case DW_ACCESS_protected:
15514 fnp->is_protected = 1;
15515 break;
15516 }
15517
15518 /* Check for artificial methods. */
15519 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15520 if (attr && DW_UNSND (attr) != 0)
15521 fnp->is_artificial = 1;
15522
15523 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15524
15525 /* Get index in virtual function table if it is a virtual member
15526 function. For older versions of GCC, this is an offset in the
15527 appropriate virtual table, as specified by DW_AT_containing_type.
15528 For everyone else, it is an expression to be evaluated relative
15529 to the object address. */
15530
15531 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15532 if (attr)
15533 {
15534 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15535 {
15536 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15537 {
15538 /* Old-style GCC. */
15539 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15540 }
15541 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15542 || (DW_BLOCK (attr)->size > 1
15543 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15544 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15545 {
15546 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15547 if ((fnp->voffset % cu->header.addr_size) != 0)
15548 dwarf2_complex_location_expr_complaint ();
15549 else
15550 fnp->voffset /= cu->header.addr_size;
15551 fnp->voffset += 2;
15552 }
15553 else
15554 dwarf2_complex_location_expr_complaint ();
15555
15556 if (!fnp->fcontext)
15557 {
15558 /* If there is no `this' field and no DW_AT_containing_type,
15559 we cannot actually find a base class context for the
15560 vtable! */
15561 if (TYPE_NFIELDS (this_type) == 0
15562 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15563 {
15564 complaint (_("cannot determine context for virtual member "
15565 "function \"%s\" (offset %s)"),
15566 fieldname, sect_offset_str (die->sect_off));
15567 }
15568 else
15569 {
15570 fnp->fcontext
15571 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15572 }
15573 }
15574 }
15575 else if (attr_form_is_section_offset (attr))
15576 {
15577 dwarf2_complex_location_expr_complaint ();
15578 }
15579 else
15580 {
15581 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15582 fieldname);
15583 }
15584 }
15585 else
15586 {
15587 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15588 if (attr && DW_UNSND (attr))
15589 {
15590 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15591 complaint (_("Member function \"%s\" (offset %s) is virtual "
15592 "but the vtable offset is not specified"),
15593 fieldname, sect_offset_str (die->sect_off));
15594 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15595 TYPE_CPLUS_DYNAMIC (type) = 1;
15596 }
15597 }
15598 }
15599
15600 /* Create the vector of member function fields, and attach it to the type. */
15601
15602 static void
15603 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15604 struct dwarf2_cu *cu)
15605 {
15606 if (cu->language == language_ada)
15607 error (_("unexpected member functions in Ada type"));
15608
15609 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15610 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15611 TYPE_ALLOC (type,
15612 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15613
15614 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15615 {
15616 struct fnfieldlist &nf = fip->fnfieldlists[i];
15617 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15618
15619 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15620 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15621 fn_flp->fn_fields = (struct fn_field *)
15622 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15623
15624 for (int k = 0; k < nf.fnfields.size (); ++k)
15625 fn_flp->fn_fields[k] = nf.fnfields[k];
15626 }
15627
15628 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15629 }
15630
15631 /* Returns non-zero if NAME is the name of a vtable member in CU's
15632 language, zero otherwise. */
15633 static int
15634 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15635 {
15636 static const char vptr[] = "_vptr";
15637
15638 /* Look for the C++ form of the vtable. */
15639 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15640 return 1;
15641
15642 return 0;
15643 }
15644
15645 /* GCC outputs unnamed structures that are really pointers to member
15646 functions, with the ABI-specified layout. If TYPE describes
15647 such a structure, smash it into a member function type.
15648
15649 GCC shouldn't do this; it should just output pointer to member DIEs.
15650 This is GCC PR debug/28767. */
15651
15652 static void
15653 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15654 {
15655 struct type *pfn_type, *self_type, *new_type;
15656
15657 /* Check for a structure with no name and two children. */
15658 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15659 return;
15660
15661 /* Check for __pfn and __delta members. */
15662 if (TYPE_FIELD_NAME (type, 0) == NULL
15663 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15664 || TYPE_FIELD_NAME (type, 1) == NULL
15665 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15666 return;
15667
15668 /* Find the type of the method. */
15669 pfn_type = TYPE_FIELD_TYPE (type, 0);
15670 if (pfn_type == NULL
15671 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15672 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15673 return;
15674
15675 /* Look for the "this" argument. */
15676 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15677 if (TYPE_NFIELDS (pfn_type) == 0
15678 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15679 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15680 return;
15681
15682 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15683 new_type = alloc_type (objfile);
15684 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15685 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15686 TYPE_VARARGS (pfn_type));
15687 smash_to_methodptr_type (type, new_type);
15688 }
15689
15690 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15691 appropriate error checking and issuing complaints if there is a
15692 problem. */
15693
15694 static ULONGEST
15695 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15696 {
15697 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15698
15699 if (attr == nullptr)
15700 return 0;
15701
15702 if (!attr_form_is_constant (attr))
15703 {
15704 complaint (_("DW_AT_alignment must have constant form"
15705 " - DIE at %s [in module %s]"),
15706 sect_offset_str (die->sect_off),
15707 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15708 return 0;
15709 }
15710
15711 ULONGEST align;
15712 if (attr->form == DW_FORM_sdata)
15713 {
15714 LONGEST val = DW_SND (attr);
15715 if (val < 0)
15716 {
15717 complaint (_("DW_AT_alignment value must not be negative"
15718 " - DIE at %s [in module %s]"),
15719 sect_offset_str (die->sect_off),
15720 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15721 return 0;
15722 }
15723 align = val;
15724 }
15725 else
15726 align = DW_UNSND (attr);
15727
15728 if (align == 0)
15729 {
15730 complaint (_("DW_AT_alignment value must not be zero"
15731 " - DIE at %s [in module %s]"),
15732 sect_offset_str (die->sect_off),
15733 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15734 return 0;
15735 }
15736 if ((align & (align - 1)) != 0)
15737 {
15738 complaint (_("DW_AT_alignment value must be a power of 2"
15739 " - DIE at %s [in module %s]"),
15740 sect_offset_str (die->sect_off),
15741 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15742 return 0;
15743 }
15744
15745 return align;
15746 }
15747
15748 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15749 the alignment for TYPE. */
15750
15751 static void
15752 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15753 struct type *type)
15754 {
15755 if (!set_type_align (type, get_alignment (cu, die)))
15756 complaint (_("DW_AT_alignment value too large"
15757 " - DIE at %s [in module %s]"),
15758 sect_offset_str (die->sect_off),
15759 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15760 }
15761
15762 /* Called when we find the DIE that starts a structure or union scope
15763 (definition) to create a type for the structure or union. Fill in
15764 the type's name and general properties; the members will not be
15765 processed until process_structure_scope. A symbol table entry for
15766 the type will also not be done until process_structure_scope (assuming
15767 the type has a name).
15768
15769 NOTE: we need to call these functions regardless of whether or not the
15770 DIE has a DW_AT_name attribute, since it might be an anonymous
15771 structure or union. This gets the type entered into our set of
15772 user defined types. */
15773
15774 static struct type *
15775 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15776 {
15777 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15778 struct type *type;
15779 struct attribute *attr;
15780 const char *name;
15781
15782 /* If the definition of this type lives in .debug_types, read that type.
15783 Don't follow DW_AT_specification though, that will take us back up
15784 the chain and we want to go down. */
15785 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15786 if (attr)
15787 {
15788 type = get_DW_AT_signature_type (die, attr, cu);
15789
15790 /* The type's CU may not be the same as CU.
15791 Ensure TYPE is recorded with CU in die_type_hash. */
15792 return set_die_type (die, type, cu);
15793 }
15794
15795 type = alloc_type (objfile);
15796 INIT_CPLUS_SPECIFIC (type);
15797
15798 name = dwarf2_name (die, cu);
15799 if (name != NULL)
15800 {
15801 if (cu->language == language_cplus
15802 || cu->language == language_d
15803 || cu->language == language_rust)
15804 {
15805 const char *full_name = dwarf2_full_name (name, die, cu);
15806
15807 /* dwarf2_full_name might have already finished building the DIE's
15808 type. If so, there is no need to continue. */
15809 if (get_die_type (die, cu) != NULL)
15810 return get_die_type (die, cu);
15811
15812 TYPE_NAME (type) = full_name;
15813 }
15814 else
15815 {
15816 /* The name is already allocated along with this objfile, so
15817 we don't need to duplicate it for the type. */
15818 TYPE_NAME (type) = name;
15819 }
15820 }
15821
15822 if (die->tag == DW_TAG_structure_type)
15823 {
15824 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15825 }
15826 else if (die->tag == DW_TAG_union_type)
15827 {
15828 TYPE_CODE (type) = TYPE_CODE_UNION;
15829 }
15830 else if (die->tag == DW_TAG_variant_part)
15831 {
15832 TYPE_CODE (type) = TYPE_CODE_UNION;
15833 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15834 }
15835 else
15836 {
15837 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15838 }
15839
15840 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15841 TYPE_DECLARED_CLASS (type) = 1;
15842
15843 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15844 if (attr)
15845 {
15846 if (attr_form_is_constant (attr))
15847 TYPE_LENGTH (type) = DW_UNSND (attr);
15848 else
15849 {
15850 /* For the moment, dynamic type sizes are not supported
15851 by GDB's struct type. The actual size is determined
15852 on-demand when resolving the type of a given object,
15853 so set the type's length to zero for now. Otherwise,
15854 we record an expression as the length, and that expression
15855 could lead to a very large value, which could eventually
15856 lead to us trying to allocate that much memory when creating
15857 a value of that type. */
15858 TYPE_LENGTH (type) = 0;
15859 }
15860 }
15861 else
15862 {
15863 TYPE_LENGTH (type) = 0;
15864 }
15865
15866 maybe_set_alignment (cu, die, type);
15867
15868 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15869 {
15870 /* ICC<14 does not output the required DW_AT_declaration on
15871 incomplete types, but gives them a size of zero. */
15872 TYPE_STUB (type) = 1;
15873 }
15874 else
15875 TYPE_STUB_SUPPORTED (type) = 1;
15876
15877 if (die_is_declaration (die, cu))
15878 TYPE_STUB (type) = 1;
15879 else if (attr == NULL && die->child == NULL
15880 && producer_is_realview (cu->producer))
15881 /* RealView does not output the required DW_AT_declaration
15882 on incomplete types. */
15883 TYPE_STUB (type) = 1;
15884
15885 /* We need to add the type field to the die immediately so we don't
15886 infinitely recurse when dealing with pointers to the structure
15887 type within the structure itself. */
15888 set_die_type (die, type, cu);
15889
15890 /* set_die_type should be already done. */
15891 set_descriptive_type (type, die, cu);
15892
15893 return type;
15894 }
15895
15896 /* A helper for process_structure_scope that handles a single member
15897 DIE. */
15898
15899 static void
15900 handle_struct_member_die (struct die_info *child_die, struct type *type,
15901 struct field_info *fi,
15902 std::vector<struct symbol *> *template_args,
15903 struct dwarf2_cu *cu)
15904 {
15905 if (child_die->tag == DW_TAG_member
15906 || child_die->tag == DW_TAG_variable
15907 || child_die->tag == DW_TAG_variant_part)
15908 {
15909 /* NOTE: carlton/2002-11-05: A C++ static data member
15910 should be a DW_TAG_member that is a declaration, but
15911 all versions of G++ as of this writing (so through at
15912 least 3.2.1) incorrectly generate DW_TAG_variable
15913 tags for them instead. */
15914 dwarf2_add_field (fi, child_die, cu);
15915 }
15916 else if (child_die->tag == DW_TAG_subprogram)
15917 {
15918 /* Rust doesn't have member functions in the C++ sense.
15919 However, it does emit ordinary functions as children
15920 of a struct DIE. */
15921 if (cu->language == language_rust)
15922 read_func_scope (child_die, cu);
15923 else
15924 {
15925 /* C++ member function. */
15926 dwarf2_add_member_fn (fi, child_die, type, cu);
15927 }
15928 }
15929 else if (child_die->tag == DW_TAG_inheritance)
15930 {
15931 /* C++ base class field. */
15932 dwarf2_add_field (fi, child_die, cu);
15933 }
15934 else if (type_can_define_types (child_die))
15935 dwarf2_add_type_defn (fi, child_die, cu);
15936 else if (child_die->tag == DW_TAG_template_type_param
15937 || child_die->tag == DW_TAG_template_value_param)
15938 {
15939 struct symbol *arg = new_symbol (child_die, NULL, cu);
15940
15941 if (arg != NULL)
15942 template_args->push_back (arg);
15943 }
15944 else if (child_die->tag == DW_TAG_variant)
15945 {
15946 /* In a variant we want to get the discriminant and also add a
15947 field for our sole member child. */
15948 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15949
15950 for (die_info *variant_child = child_die->child;
15951 variant_child != NULL;
15952 variant_child = sibling_die (variant_child))
15953 {
15954 if (variant_child->tag == DW_TAG_member)
15955 {
15956 handle_struct_member_die (variant_child, type, fi,
15957 template_args, cu);
15958 /* Only handle the one. */
15959 break;
15960 }
15961 }
15962
15963 /* We don't handle this but we might as well report it if we see
15964 it. */
15965 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15966 complaint (_("DW_AT_discr_list is not supported yet"
15967 " - DIE at %s [in module %s]"),
15968 sect_offset_str (child_die->sect_off),
15969 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15970
15971 /* The first field was just added, so we can stash the
15972 discriminant there. */
15973 gdb_assert (!fi->fields.empty ());
15974 if (discr == NULL)
15975 fi->fields.back ().variant.default_branch = true;
15976 else
15977 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15978 }
15979 }
15980
15981 /* Finish creating a structure or union type, including filling in
15982 its members and creating a symbol for it. */
15983
15984 static void
15985 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15986 {
15987 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15988 struct die_info *child_die;
15989 struct type *type;
15990
15991 type = get_die_type (die, cu);
15992 if (type == NULL)
15993 type = read_structure_type (die, cu);
15994
15995 /* When reading a DW_TAG_variant_part, we need to notice when we
15996 read the discriminant member, so we can record it later in the
15997 discriminant_info. */
15998 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15999 sect_offset discr_offset;
16000 bool has_template_parameters = false;
16001
16002 if (is_variant_part)
16003 {
16004 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16005 if (discr == NULL)
16006 {
16007 /* Maybe it's a univariant form, an extension we support.
16008 In this case arrange not to check the offset. */
16009 is_variant_part = false;
16010 }
16011 else if (attr_form_is_ref (discr))
16012 {
16013 struct dwarf2_cu *target_cu = cu;
16014 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16015
16016 discr_offset = target_die->sect_off;
16017 }
16018 else
16019 {
16020 complaint (_("DW_AT_discr does not have DIE reference form"
16021 " - DIE at %s [in module %s]"),
16022 sect_offset_str (die->sect_off),
16023 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16024 is_variant_part = false;
16025 }
16026 }
16027
16028 if (die->child != NULL && ! die_is_declaration (die, cu))
16029 {
16030 struct field_info fi;
16031 std::vector<struct symbol *> template_args;
16032
16033 child_die = die->child;
16034
16035 while (child_die && child_die->tag)
16036 {
16037 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16038
16039 if (is_variant_part && discr_offset == child_die->sect_off)
16040 fi.fields.back ().variant.is_discriminant = true;
16041
16042 child_die = sibling_die (child_die);
16043 }
16044
16045 /* Attach template arguments to type. */
16046 if (!template_args.empty ())
16047 {
16048 has_template_parameters = true;
16049 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16050 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16051 TYPE_TEMPLATE_ARGUMENTS (type)
16052 = XOBNEWVEC (&objfile->objfile_obstack,
16053 struct symbol *,
16054 TYPE_N_TEMPLATE_ARGUMENTS (type));
16055 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16056 template_args.data (),
16057 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16058 * sizeof (struct symbol *)));
16059 }
16060
16061 /* Attach fields and member functions to the type. */
16062 if (fi.nfields)
16063 dwarf2_attach_fields_to_type (&fi, type, cu);
16064 if (!fi.fnfieldlists.empty ())
16065 {
16066 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16067
16068 /* Get the type which refers to the base class (possibly this
16069 class itself) which contains the vtable pointer for the current
16070 class from the DW_AT_containing_type attribute. This use of
16071 DW_AT_containing_type is a GNU extension. */
16072
16073 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16074 {
16075 struct type *t = die_containing_type (die, cu);
16076
16077 set_type_vptr_basetype (type, t);
16078 if (type == t)
16079 {
16080 int i;
16081
16082 /* Our own class provides vtbl ptr. */
16083 for (i = TYPE_NFIELDS (t) - 1;
16084 i >= TYPE_N_BASECLASSES (t);
16085 --i)
16086 {
16087 const char *fieldname = TYPE_FIELD_NAME (t, i);
16088
16089 if (is_vtable_name (fieldname, cu))
16090 {
16091 set_type_vptr_fieldno (type, i);
16092 break;
16093 }
16094 }
16095
16096 /* Complain if virtual function table field not found. */
16097 if (i < TYPE_N_BASECLASSES (t))
16098 complaint (_("virtual function table pointer "
16099 "not found when defining class '%s'"),
16100 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16101 }
16102 else
16103 {
16104 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16105 }
16106 }
16107 else if (cu->producer
16108 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16109 {
16110 /* The IBM XLC compiler does not provide direct indication
16111 of the containing type, but the vtable pointer is
16112 always named __vfp. */
16113
16114 int i;
16115
16116 for (i = TYPE_NFIELDS (type) - 1;
16117 i >= TYPE_N_BASECLASSES (type);
16118 --i)
16119 {
16120 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16121 {
16122 set_type_vptr_fieldno (type, i);
16123 set_type_vptr_basetype (type, type);
16124 break;
16125 }
16126 }
16127 }
16128 }
16129
16130 /* Copy fi.typedef_field_list linked list elements content into the
16131 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16132 if (!fi.typedef_field_list.empty ())
16133 {
16134 int count = fi.typedef_field_list.size ();
16135
16136 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16137 TYPE_TYPEDEF_FIELD_ARRAY (type)
16138 = ((struct decl_field *)
16139 TYPE_ALLOC (type,
16140 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16141 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16142
16143 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16144 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16145 }
16146
16147 /* Copy fi.nested_types_list linked list elements content into the
16148 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16149 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16150 {
16151 int count = fi.nested_types_list.size ();
16152
16153 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16154 TYPE_NESTED_TYPES_ARRAY (type)
16155 = ((struct decl_field *)
16156 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16157 TYPE_NESTED_TYPES_COUNT (type) = count;
16158
16159 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16160 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16161 }
16162 }
16163
16164 quirk_gcc_member_function_pointer (type, objfile);
16165 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16166 cu->rust_unions.push_back (type);
16167
16168 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16169 snapshots) has been known to create a die giving a declaration
16170 for a class that has, as a child, a die giving a definition for a
16171 nested class. So we have to process our children even if the
16172 current die is a declaration. Normally, of course, a declaration
16173 won't have any children at all. */
16174
16175 child_die = die->child;
16176
16177 while (child_die != NULL && child_die->tag)
16178 {
16179 if (child_die->tag == DW_TAG_member
16180 || child_die->tag == DW_TAG_variable
16181 || child_die->tag == DW_TAG_inheritance
16182 || child_die->tag == DW_TAG_template_value_param
16183 || child_die->tag == DW_TAG_template_type_param)
16184 {
16185 /* Do nothing. */
16186 }
16187 else
16188 process_die (child_die, cu);
16189
16190 child_die = sibling_die (child_die);
16191 }
16192
16193 /* Do not consider external references. According to the DWARF standard,
16194 these DIEs are identified by the fact that they have no byte_size
16195 attribute, and a declaration attribute. */
16196 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16197 || !die_is_declaration (die, cu))
16198 {
16199 struct symbol *sym = new_symbol (die, type, cu);
16200
16201 if (has_template_parameters)
16202 {
16203 struct symtab *symtab;
16204 if (sym != nullptr)
16205 symtab = symbol_symtab (sym);
16206 else if (cu->line_header != nullptr)
16207 {
16208 /* Any related symtab will do. */
16209 symtab
16210 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16211 }
16212 else
16213 {
16214 symtab = nullptr;
16215 complaint (_("could not find suitable "
16216 "symtab for template parameter"
16217 " - DIE at %s [in module %s]"),
16218 sect_offset_str (die->sect_off),
16219 objfile_name (objfile));
16220 }
16221
16222 if (symtab != nullptr)
16223 {
16224 /* Make sure that the symtab is set on the new symbols.
16225 Even though they don't appear in this symtab directly,
16226 other parts of gdb assume that symbols do, and this is
16227 reasonably true. */
16228 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16229 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16230 }
16231 }
16232 }
16233 }
16234
16235 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16236 update TYPE using some information only available in DIE's children. */
16237
16238 static void
16239 update_enumeration_type_from_children (struct die_info *die,
16240 struct type *type,
16241 struct dwarf2_cu *cu)
16242 {
16243 struct die_info *child_die;
16244 int unsigned_enum = 1;
16245 int flag_enum = 1;
16246 ULONGEST mask = 0;
16247
16248 auto_obstack obstack;
16249
16250 for (child_die = die->child;
16251 child_die != NULL && child_die->tag;
16252 child_die = sibling_die (child_die))
16253 {
16254 struct attribute *attr;
16255 LONGEST value;
16256 const gdb_byte *bytes;
16257 struct dwarf2_locexpr_baton *baton;
16258 const char *name;
16259
16260 if (child_die->tag != DW_TAG_enumerator)
16261 continue;
16262
16263 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16264 if (attr == NULL)
16265 continue;
16266
16267 name = dwarf2_name (child_die, cu);
16268 if (name == NULL)
16269 name = "<anonymous enumerator>";
16270
16271 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16272 &value, &bytes, &baton);
16273 if (value < 0)
16274 {
16275 unsigned_enum = 0;
16276 flag_enum = 0;
16277 }
16278 else if ((mask & value) != 0)
16279 flag_enum = 0;
16280 else
16281 mask |= value;
16282
16283 /* If we already know that the enum type is neither unsigned, nor
16284 a flag type, no need to look at the rest of the enumerates. */
16285 if (!unsigned_enum && !flag_enum)
16286 break;
16287 }
16288
16289 if (unsigned_enum)
16290 TYPE_UNSIGNED (type) = 1;
16291 if (flag_enum)
16292 TYPE_FLAG_ENUM (type) = 1;
16293 }
16294
16295 /* Given a DW_AT_enumeration_type die, set its type. We do not
16296 complete the type's fields yet, or create any symbols. */
16297
16298 static struct type *
16299 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16300 {
16301 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16302 struct type *type;
16303 struct attribute *attr;
16304 const char *name;
16305
16306 /* If the definition of this type lives in .debug_types, read that type.
16307 Don't follow DW_AT_specification though, that will take us back up
16308 the chain and we want to go down. */
16309 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16310 if (attr)
16311 {
16312 type = get_DW_AT_signature_type (die, attr, cu);
16313
16314 /* The type's CU may not be the same as CU.
16315 Ensure TYPE is recorded with CU in die_type_hash. */
16316 return set_die_type (die, type, cu);
16317 }
16318
16319 type = alloc_type (objfile);
16320
16321 TYPE_CODE (type) = TYPE_CODE_ENUM;
16322 name = dwarf2_full_name (NULL, die, cu);
16323 if (name != NULL)
16324 TYPE_NAME (type) = name;
16325
16326 attr = dwarf2_attr (die, DW_AT_type, cu);
16327 if (attr != NULL)
16328 {
16329 struct type *underlying_type = die_type (die, cu);
16330
16331 TYPE_TARGET_TYPE (type) = underlying_type;
16332 }
16333
16334 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16335 if (attr)
16336 {
16337 TYPE_LENGTH (type) = DW_UNSND (attr);
16338 }
16339 else
16340 {
16341 TYPE_LENGTH (type) = 0;
16342 }
16343
16344 maybe_set_alignment (cu, die, type);
16345
16346 /* The enumeration DIE can be incomplete. In Ada, any type can be
16347 declared as private in the package spec, and then defined only
16348 inside the package body. Such types are known as Taft Amendment
16349 Types. When another package uses such a type, an incomplete DIE
16350 may be generated by the compiler. */
16351 if (die_is_declaration (die, cu))
16352 TYPE_STUB (type) = 1;
16353
16354 /* Finish the creation of this type by using the enum's children.
16355 We must call this even when the underlying type has been provided
16356 so that we can determine if we're looking at a "flag" enum. */
16357 update_enumeration_type_from_children (die, type, cu);
16358
16359 /* If this type has an underlying type that is not a stub, then we
16360 may use its attributes. We always use the "unsigned" attribute
16361 in this situation, because ordinarily we guess whether the type
16362 is unsigned -- but the guess can be wrong and the underlying type
16363 can tell us the reality. However, we defer to a local size
16364 attribute if one exists, because this lets the compiler override
16365 the underlying type if needed. */
16366 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16367 {
16368 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16369 if (TYPE_LENGTH (type) == 0)
16370 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16371 if (TYPE_RAW_ALIGN (type) == 0
16372 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16373 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16374 }
16375
16376 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16377
16378 return set_die_type (die, type, cu);
16379 }
16380
16381 /* Given a pointer to a die which begins an enumeration, process all
16382 the dies that define the members of the enumeration, and create the
16383 symbol for the enumeration type.
16384
16385 NOTE: We reverse the order of the element list. */
16386
16387 static void
16388 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16389 {
16390 struct type *this_type;
16391
16392 this_type = get_die_type (die, cu);
16393 if (this_type == NULL)
16394 this_type = read_enumeration_type (die, cu);
16395
16396 if (die->child != NULL)
16397 {
16398 struct die_info *child_die;
16399 struct symbol *sym;
16400 struct field *fields = NULL;
16401 int num_fields = 0;
16402 const char *name;
16403
16404 child_die = die->child;
16405 while (child_die && child_die->tag)
16406 {
16407 if (child_die->tag != DW_TAG_enumerator)
16408 {
16409 process_die (child_die, cu);
16410 }
16411 else
16412 {
16413 name = dwarf2_name (child_die, cu);
16414 if (name)
16415 {
16416 sym = new_symbol (child_die, this_type, cu);
16417
16418 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16419 {
16420 fields = (struct field *)
16421 xrealloc (fields,
16422 (num_fields + DW_FIELD_ALLOC_CHUNK)
16423 * sizeof (struct field));
16424 }
16425
16426 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16427 FIELD_TYPE (fields[num_fields]) = NULL;
16428 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16429 FIELD_BITSIZE (fields[num_fields]) = 0;
16430
16431 num_fields++;
16432 }
16433 }
16434
16435 child_die = sibling_die (child_die);
16436 }
16437
16438 if (num_fields)
16439 {
16440 TYPE_NFIELDS (this_type) = num_fields;
16441 TYPE_FIELDS (this_type) = (struct field *)
16442 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16443 memcpy (TYPE_FIELDS (this_type), fields,
16444 sizeof (struct field) * num_fields);
16445 xfree (fields);
16446 }
16447 }
16448
16449 /* If we are reading an enum from a .debug_types unit, and the enum
16450 is a declaration, and the enum is not the signatured type in the
16451 unit, then we do not want to add a symbol for it. Adding a
16452 symbol would in some cases obscure the true definition of the
16453 enum, giving users an incomplete type when the definition is
16454 actually available. Note that we do not want to do this for all
16455 enums which are just declarations, because C++0x allows forward
16456 enum declarations. */
16457 if (cu->per_cu->is_debug_types
16458 && die_is_declaration (die, cu))
16459 {
16460 struct signatured_type *sig_type;
16461
16462 sig_type = (struct signatured_type *) cu->per_cu;
16463 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16464 if (sig_type->type_offset_in_section != die->sect_off)
16465 return;
16466 }
16467
16468 new_symbol (die, this_type, cu);
16469 }
16470
16471 /* Extract all information from a DW_TAG_array_type DIE and put it in
16472 the DIE's type field. For now, this only handles one dimensional
16473 arrays. */
16474
16475 static struct type *
16476 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16477 {
16478 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16479 struct die_info *child_die;
16480 struct type *type;
16481 struct type *element_type, *range_type, *index_type;
16482 struct attribute *attr;
16483 const char *name;
16484 struct dynamic_prop *byte_stride_prop = NULL;
16485 unsigned int bit_stride = 0;
16486
16487 element_type = die_type (die, cu);
16488
16489 /* The die_type call above may have already set the type for this DIE. */
16490 type = get_die_type (die, cu);
16491 if (type)
16492 return type;
16493
16494 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16495 if (attr != NULL)
16496 {
16497 int stride_ok;
16498
16499 byte_stride_prop
16500 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16501 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16502 if (!stride_ok)
16503 {
16504 complaint (_("unable to read array DW_AT_byte_stride "
16505 " - DIE at %s [in module %s]"),
16506 sect_offset_str (die->sect_off),
16507 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16508 /* Ignore this attribute. We will likely not be able to print
16509 arrays of this type correctly, but there is little we can do
16510 to help if we cannot read the attribute's value. */
16511 byte_stride_prop = NULL;
16512 }
16513 }
16514
16515 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16516 if (attr != NULL)
16517 bit_stride = DW_UNSND (attr);
16518
16519 /* Irix 6.2 native cc creates array types without children for
16520 arrays with unspecified length. */
16521 if (die->child == NULL)
16522 {
16523 index_type = objfile_type (objfile)->builtin_int;
16524 range_type = create_static_range_type (NULL, index_type, 0, -1);
16525 type = create_array_type_with_stride (NULL, element_type, range_type,
16526 byte_stride_prop, bit_stride);
16527 return set_die_type (die, type, cu);
16528 }
16529
16530 std::vector<struct type *> range_types;
16531 child_die = die->child;
16532 while (child_die && child_die->tag)
16533 {
16534 if (child_die->tag == DW_TAG_subrange_type)
16535 {
16536 struct type *child_type = read_type_die (child_die, cu);
16537
16538 if (child_type != NULL)
16539 {
16540 /* The range type was succesfully read. Save it for the
16541 array type creation. */
16542 range_types.push_back (child_type);
16543 }
16544 }
16545 child_die = sibling_die (child_die);
16546 }
16547
16548 /* Dwarf2 dimensions are output from left to right, create the
16549 necessary array types in backwards order. */
16550
16551 type = element_type;
16552
16553 if (read_array_order (die, cu) == DW_ORD_col_major)
16554 {
16555 int i = 0;
16556
16557 while (i < range_types.size ())
16558 type = create_array_type_with_stride (NULL, type, range_types[i++],
16559 byte_stride_prop, bit_stride);
16560 }
16561 else
16562 {
16563 size_t ndim = range_types.size ();
16564 while (ndim-- > 0)
16565 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16566 byte_stride_prop, bit_stride);
16567 }
16568
16569 /* Understand Dwarf2 support for vector types (like they occur on
16570 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16571 array type. This is not part of the Dwarf2/3 standard yet, but a
16572 custom vendor extension. The main difference between a regular
16573 array and the vector variant is that vectors are passed by value
16574 to functions. */
16575 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16576 if (attr)
16577 make_vector_type (type);
16578
16579 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16580 implementation may choose to implement triple vectors using this
16581 attribute. */
16582 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16583 if (attr)
16584 {
16585 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16586 TYPE_LENGTH (type) = DW_UNSND (attr);
16587 else
16588 complaint (_("DW_AT_byte_size for array type smaller "
16589 "than the total size of elements"));
16590 }
16591
16592 name = dwarf2_name (die, cu);
16593 if (name)
16594 TYPE_NAME (type) = name;
16595
16596 maybe_set_alignment (cu, die, type);
16597
16598 /* Install the type in the die. */
16599 set_die_type (die, type, cu);
16600
16601 /* set_die_type should be already done. */
16602 set_descriptive_type (type, die, cu);
16603
16604 return type;
16605 }
16606
16607 static enum dwarf_array_dim_ordering
16608 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16609 {
16610 struct attribute *attr;
16611
16612 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16613
16614 if (attr)
16615 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16616
16617 /* GNU F77 is a special case, as at 08/2004 array type info is the
16618 opposite order to the dwarf2 specification, but data is still
16619 laid out as per normal fortran.
16620
16621 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16622 version checking. */
16623
16624 if (cu->language == language_fortran
16625 && cu->producer && strstr (cu->producer, "GNU F77"))
16626 {
16627 return DW_ORD_row_major;
16628 }
16629
16630 switch (cu->language_defn->la_array_ordering)
16631 {
16632 case array_column_major:
16633 return DW_ORD_col_major;
16634 case array_row_major:
16635 default:
16636 return DW_ORD_row_major;
16637 };
16638 }
16639
16640 /* Extract all information from a DW_TAG_set_type DIE and put it in
16641 the DIE's type field. */
16642
16643 static struct type *
16644 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16645 {
16646 struct type *domain_type, *set_type;
16647 struct attribute *attr;
16648
16649 domain_type = die_type (die, cu);
16650
16651 /* The die_type call above may have already set the type for this DIE. */
16652 set_type = get_die_type (die, cu);
16653 if (set_type)
16654 return set_type;
16655
16656 set_type = create_set_type (NULL, domain_type);
16657
16658 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16659 if (attr)
16660 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16661
16662 maybe_set_alignment (cu, die, set_type);
16663
16664 return set_die_type (die, set_type, cu);
16665 }
16666
16667 /* A helper for read_common_block that creates a locexpr baton.
16668 SYM is the symbol which we are marking as computed.
16669 COMMON_DIE is the DIE for the common block.
16670 COMMON_LOC is the location expression attribute for the common
16671 block itself.
16672 MEMBER_LOC is the location expression attribute for the particular
16673 member of the common block that we are processing.
16674 CU is the CU from which the above come. */
16675
16676 static void
16677 mark_common_block_symbol_computed (struct symbol *sym,
16678 struct die_info *common_die,
16679 struct attribute *common_loc,
16680 struct attribute *member_loc,
16681 struct dwarf2_cu *cu)
16682 {
16683 struct dwarf2_per_objfile *dwarf2_per_objfile
16684 = cu->per_cu->dwarf2_per_objfile;
16685 struct objfile *objfile = dwarf2_per_objfile->objfile;
16686 struct dwarf2_locexpr_baton *baton;
16687 gdb_byte *ptr;
16688 unsigned int cu_off;
16689 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16690 LONGEST offset = 0;
16691
16692 gdb_assert (common_loc && member_loc);
16693 gdb_assert (attr_form_is_block (common_loc));
16694 gdb_assert (attr_form_is_block (member_loc)
16695 || attr_form_is_constant (member_loc));
16696
16697 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16698 baton->per_cu = cu->per_cu;
16699 gdb_assert (baton->per_cu);
16700
16701 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16702
16703 if (attr_form_is_constant (member_loc))
16704 {
16705 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16706 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16707 }
16708 else
16709 baton->size += DW_BLOCK (member_loc)->size;
16710
16711 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16712 baton->data = ptr;
16713
16714 *ptr++ = DW_OP_call4;
16715 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16716 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16717 ptr += 4;
16718
16719 if (attr_form_is_constant (member_loc))
16720 {
16721 *ptr++ = DW_OP_addr;
16722 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16723 ptr += cu->header.addr_size;
16724 }
16725 else
16726 {
16727 /* We have to copy the data here, because DW_OP_call4 will only
16728 use a DW_AT_location attribute. */
16729 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16730 ptr += DW_BLOCK (member_loc)->size;
16731 }
16732
16733 *ptr++ = DW_OP_plus;
16734 gdb_assert (ptr - baton->data == baton->size);
16735
16736 SYMBOL_LOCATION_BATON (sym) = baton;
16737 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16738 }
16739
16740 /* Create appropriate locally-scoped variables for all the
16741 DW_TAG_common_block entries. Also create a struct common_block
16742 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16743 is used to sepate the common blocks name namespace from regular
16744 variable names. */
16745
16746 static void
16747 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16748 {
16749 struct attribute *attr;
16750
16751 attr = dwarf2_attr (die, DW_AT_location, cu);
16752 if (attr)
16753 {
16754 /* Support the .debug_loc offsets. */
16755 if (attr_form_is_block (attr))
16756 {
16757 /* Ok. */
16758 }
16759 else if (attr_form_is_section_offset (attr))
16760 {
16761 dwarf2_complex_location_expr_complaint ();
16762 attr = NULL;
16763 }
16764 else
16765 {
16766 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16767 "common block member");
16768 attr = NULL;
16769 }
16770 }
16771
16772 if (die->child != NULL)
16773 {
16774 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16775 struct die_info *child_die;
16776 size_t n_entries = 0, size;
16777 struct common_block *common_block;
16778 struct symbol *sym;
16779
16780 for (child_die = die->child;
16781 child_die && child_die->tag;
16782 child_die = sibling_die (child_die))
16783 ++n_entries;
16784
16785 size = (sizeof (struct common_block)
16786 + (n_entries - 1) * sizeof (struct symbol *));
16787 common_block
16788 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16789 size);
16790 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16791 common_block->n_entries = 0;
16792
16793 for (child_die = die->child;
16794 child_die && child_die->tag;
16795 child_die = sibling_die (child_die))
16796 {
16797 /* Create the symbol in the DW_TAG_common_block block in the current
16798 symbol scope. */
16799 sym = new_symbol (child_die, NULL, cu);
16800 if (sym != NULL)
16801 {
16802 struct attribute *member_loc;
16803
16804 common_block->contents[common_block->n_entries++] = sym;
16805
16806 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16807 cu);
16808 if (member_loc)
16809 {
16810 /* GDB has handled this for a long time, but it is
16811 not specified by DWARF. It seems to have been
16812 emitted by gfortran at least as recently as:
16813 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16814 complaint (_("Variable in common block has "
16815 "DW_AT_data_member_location "
16816 "- DIE at %s [in module %s]"),
16817 sect_offset_str (child_die->sect_off),
16818 objfile_name (objfile));
16819
16820 if (attr_form_is_section_offset (member_loc))
16821 dwarf2_complex_location_expr_complaint ();
16822 else if (attr_form_is_constant (member_loc)
16823 || attr_form_is_block (member_loc))
16824 {
16825 if (attr)
16826 mark_common_block_symbol_computed (sym, die, attr,
16827 member_loc, cu);
16828 }
16829 else
16830 dwarf2_complex_location_expr_complaint ();
16831 }
16832 }
16833 }
16834
16835 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16836 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16837 }
16838 }
16839
16840 /* Create a type for a C++ namespace. */
16841
16842 static struct type *
16843 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16844 {
16845 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16846 const char *previous_prefix, *name;
16847 int is_anonymous;
16848 struct type *type;
16849
16850 /* For extensions, reuse the type of the original namespace. */
16851 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16852 {
16853 struct die_info *ext_die;
16854 struct dwarf2_cu *ext_cu = cu;
16855
16856 ext_die = dwarf2_extension (die, &ext_cu);
16857 type = read_type_die (ext_die, ext_cu);
16858
16859 /* EXT_CU may not be the same as CU.
16860 Ensure TYPE is recorded with CU in die_type_hash. */
16861 return set_die_type (die, type, cu);
16862 }
16863
16864 name = namespace_name (die, &is_anonymous, cu);
16865
16866 /* Now build the name of the current namespace. */
16867
16868 previous_prefix = determine_prefix (die, cu);
16869 if (previous_prefix[0] != '\0')
16870 name = typename_concat (&objfile->objfile_obstack,
16871 previous_prefix, name, 0, cu);
16872
16873 /* Create the type. */
16874 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16875
16876 return set_die_type (die, type, cu);
16877 }
16878
16879 /* Read a namespace scope. */
16880
16881 static void
16882 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16883 {
16884 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16885 int is_anonymous;
16886
16887 /* Add a symbol associated to this if we haven't seen the namespace
16888 before. Also, add a using directive if it's an anonymous
16889 namespace. */
16890
16891 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16892 {
16893 struct type *type;
16894
16895 type = read_type_die (die, cu);
16896 new_symbol (die, type, cu);
16897
16898 namespace_name (die, &is_anonymous, cu);
16899 if (is_anonymous)
16900 {
16901 const char *previous_prefix = determine_prefix (die, cu);
16902
16903 std::vector<const char *> excludes;
16904 add_using_directive (using_directives (cu),
16905 previous_prefix, TYPE_NAME (type), NULL,
16906 NULL, excludes, 0, &objfile->objfile_obstack);
16907 }
16908 }
16909
16910 if (die->child != NULL)
16911 {
16912 struct die_info *child_die = die->child;
16913
16914 while (child_die && child_die->tag)
16915 {
16916 process_die (child_die, cu);
16917 child_die = sibling_die (child_die);
16918 }
16919 }
16920 }
16921
16922 /* Read a Fortran module as type. This DIE can be only a declaration used for
16923 imported module. Still we need that type as local Fortran "use ... only"
16924 declaration imports depend on the created type in determine_prefix. */
16925
16926 static struct type *
16927 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16928 {
16929 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16930 const char *module_name;
16931 struct type *type;
16932
16933 module_name = dwarf2_name (die, cu);
16934 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16935
16936 return set_die_type (die, type, cu);
16937 }
16938
16939 /* Read a Fortran module. */
16940
16941 static void
16942 read_module (struct die_info *die, struct dwarf2_cu *cu)
16943 {
16944 struct die_info *child_die = die->child;
16945 struct type *type;
16946
16947 type = read_type_die (die, cu);
16948 new_symbol (die, type, cu);
16949
16950 while (child_die && child_die->tag)
16951 {
16952 process_die (child_die, cu);
16953 child_die = sibling_die (child_die);
16954 }
16955 }
16956
16957 /* Return the name of the namespace represented by DIE. Set
16958 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16959 namespace. */
16960
16961 static const char *
16962 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16963 {
16964 struct die_info *current_die;
16965 const char *name = NULL;
16966
16967 /* Loop through the extensions until we find a name. */
16968
16969 for (current_die = die;
16970 current_die != NULL;
16971 current_die = dwarf2_extension (die, &cu))
16972 {
16973 /* We don't use dwarf2_name here so that we can detect the absence
16974 of a name -> anonymous namespace. */
16975 name = dwarf2_string_attr (die, DW_AT_name, cu);
16976
16977 if (name != NULL)
16978 break;
16979 }
16980
16981 /* Is it an anonymous namespace? */
16982
16983 *is_anonymous = (name == NULL);
16984 if (*is_anonymous)
16985 name = CP_ANONYMOUS_NAMESPACE_STR;
16986
16987 return name;
16988 }
16989
16990 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16991 the user defined type vector. */
16992
16993 static struct type *
16994 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16995 {
16996 struct gdbarch *gdbarch
16997 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16998 struct comp_unit_head *cu_header = &cu->header;
16999 struct type *type;
17000 struct attribute *attr_byte_size;
17001 struct attribute *attr_address_class;
17002 int byte_size, addr_class;
17003 struct type *target_type;
17004
17005 target_type = die_type (die, cu);
17006
17007 /* The die_type call above may have already set the type for this DIE. */
17008 type = get_die_type (die, cu);
17009 if (type)
17010 return type;
17011
17012 type = lookup_pointer_type (target_type);
17013
17014 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17015 if (attr_byte_size)
17016 byte_size = DW_UNSND (attr_byte_size);
17017 else
17018 byte_size = cu_header->addr_size;
17019
17020 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17021 if (attr_address_class)
17022 addr_class = DW_UNSND (attr_address_class);
17023 else
17024 addr_class = DW_ADDR_none;
17025
17026 ULONGEST alignment = get_alignment (cu, die);
17027
17028 /* If the pointer size, alignment, or address class is different
17029 than the default, create a type variant marked as such and set
17030 the length accordingly. */
17031 if (TYPE_LENGTH (type) != byte_size
17032 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17033 && alignment != TYPE_RAW_ALIGN (type))
17034 || addr_class != DW_ADDR_none)
17035 {
17036 if (gdbarch_address_class_type_flags_p (gdbarch))
17037 {
17038 int type_flags;
17039
17040 type_flags = gdbarch_address_class_type_flags
17041 (gdbarch, byte_size, addr_class);
17042 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17043 == 0);
17044 type = make_type_with_address_space (type, type_flags);
17045 }
17046 else if (TYPE_LENGTH (type) != byte_size)
17047 {
17048 complaint (_("invalid pointer size %d"), byte_size);
17049 }
17050 else if (TYPE_RAW_ALIGN (type) != alignment)
17051 {
17052 complaint (_("Invalid DW_AT_alignment"
17053 " - DIE at %s [in module %s]"),
17054 sect_offset_str (die->sect_off),
17055 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17056 }
17057 else
17058 {
17059 /* Should we also complain about unhandled address classes? */
17060 }
17061 }
17062
17063 TYPE_LENGTH (type) = byte_size;
17064 set_type_align (type, alignment);
17065 return set_die_type (die, type, cu);
17066 }
17067
17068 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17069 the user defined type vector. */
17070
17071 static struct type *
17072 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17073 {
17074 struct type *type;
17075 struct type *to_type;
17076 struct type *domain;
17077
17078 to_type = die_type (die, cu);
17079 domain = die_containing_type (die, cu);
17080
17081 /* The calls above may have already set the type for this DIE. */
17082 type = get_die_type (die, cu);
17083 if (type)
17084 return type;
17085
17086 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17087 type = lookup_methodptr_type (to_type);
17088 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17089 {
17090 struct type *new_type
17091 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17092
17093 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17094 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17095 TYPE_VARARGS (to_type));
17096 type = lookup_methodptr_type (new_type);
17097 }
17098 else
17099 type = lookup_memberptr_type (to_type, domain);
17100
17101 return set_die_type (die, type, cu);
17102 }
17103
17104 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17105 the user defined type vector. */
17106
17107 static struct type *
17108 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17109 enum type_code refcode)
17110 {
17111 struct comp_unit_head *cu_header = &cu->header;
17112 struct type *type, *target_type;
17113 struct attribute *attr;
17114
17115 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17116
17117 target_type = die_type (die, cu);
17118
17119 /* The die_type call above may have already set the type for this DIE. */
17120 type = get_die_type (die, cu);
17121 if (type)
17122 return type;
17123
17124 type = lookup_reference_type (target_type, refcode);
17125 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17126 if (attr)
17127 {
17128 TYPE_LENGTH (type) = DW_UNSND (attr);
17129 }
17130 else
17131 {
17132 TYPE_LENGTH (type) = cu_header->addr_size;
17133 }
17134 maybe_set_alignment (cu, die, type);
17135 return set_die_type (die, type, cu);
17136 }
17137
17138 /* Add the given cv-qualifiers to the element type of the array. GCC
17139 outputs DWARF type qualifiers that apply to an array, not the
17140 element type. But GDB relies on the array element type to carry
17141 the cv-qualifiers. This mimics section 6.7.3 of the C99
17142 specification. */
17143
17144 static struct type *
17145 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17146 struct type *base_type, int cnst, int voltl)
17147 {
17148 struct type *el_type, *inner_array;
17149
17150 base_type = copy_type (base_type);
17151 inner_array = base_type;
17152
17153 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17154 {
17155 TYPE_TARGET_TYPE (inner_array) =
17156 copy_type (TYPE_TARGET_TYPE (inner_array));
17157 inner_array = TYPE_TARGET_TYPE (inner_array);
17158 }
17159
17160 el_type = TYPE_TARGET_TYPE (inner_array);
17161 cnst |= TYPE_CONST (el_type);
17162 voltl |= TYPE_VOLATILE (el_type);
17163 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17164
17165 return set_die_type (die, base_type, cu);
17166 }
17167
17168 static struct type *
17169 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17170 {
17171 struct type *base_type, *cv_type;
17172
17173 base_type = die_type (die, cu);
17174
17175 /* The die_type call above may have already set the type for this DIE. */
17176 cv_type = get_die_type (die, cu);
17177 if (cv_type)
17178 return cv_type;
17179
17180 /* In case the const qualifier is applied to an array type, the element type
17181 is so qualified, not the array type (section 6.7.3 of C99). */
17182 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17183 return add_array_cv_type (die, cu, base_type, 1, 0);
17184
17185 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17186 return set_die_type (die, cv_type, cu);
17187 }
17188
17189 static struct type *
17190 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17191 {
17192 struct type *base_type, *cv_type;
17193
17194 base_type = die_type (die, cu);
17195
17196 /* The die_type call above may have already set the type for this DIE. */
17197 cv_type = get_die_type (die, cu);
17198 if (cv_type)
17199 return cv_type;
17200
17201 /* In case the volatile qualifier is applied to an array type, the
17202 element type is so qualified, not the array type (section 6.7.3
17203 of C99). */
17204 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17205 return add_array_cv_type (die, cu, base_type, 0, 1);
17206
17207 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17208 return set_die_type (die, cv_type, cu);
17209 }
17210
17211 /* Handle DW_TAG_restrict_type. */
17212
17213 static struct type *
17214 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17215 {
17216 struct type *base_type, *cv_type;
17217
17218 base_type = die_type (die, cu);
17219
17220 /* The die_type call above may have already set the type for this DIE. */
17221 cv_type = get_die_type (die, cu);
17222 if (cv_type)
17223 return cv_type;
17224
17225 cv_type = make_restrict_type (base_type);
17226 return set_die_type (die, cv_type, cu);
17227 }
17228
17229 /* Handle DW_TAG_atomic_type. */
17230
17231 static struct type *
17232 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17233 {
17234 struct type *base_type, *cv_type;
17235
17236 base_type = die_type (die, cu);
17237
17238 /* The die_type call above may have already set the type for this DIE. */
17239 cv_type = get_die_type (die, cu);
17240 if (cv_type)
17241 return cv_type;
17242
17243 cv_type = make_atomic_type (base_type);
17244 return set_die_type (die, cv_type, cu);
17245 }
17246
17247 /* Extract all information from a DW_TAG_string_type DIE and add to
17248 the user defined type vector. It isn't really a user defined type,
17249 but it behaves like one, with other DIE's using an AT_user_def_type
17250 attribute to reference it. */
17251
17252 static struct type *
17253 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17254 {
17255 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17256 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17257 struct type *type, *range_type, *index_type, *char_type;
17258 struct attribute *attr;
17259 unsigned int length;
17260
17261 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17262 if (attr)
17263 {
17264 length = DW_UNSND (attr);
17265 }
17266 else
17267 {
17268 /* Check for the DW_AT_byte_size attribute. */
17269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17270 if (attr)
17271 {
17272 length = DW_UNSND (attr);
17273 }
17274 else
17275 {
17276 length = 1;
17277 }
17278 }
17279
17280 index_type = objfile_type (objfile)->builtin_int;
17281 range_type = create_static_range_type (NULL, index_type, 1, length);
17282 char_type = language_string_char_type (cu->language_defn, gdbarch);
17283 type = create_string_type (NULL, char_type, range_type);
17284
17285 return set_die_type (die, type, cu);
17286 }
17287
17288 /* Assuming that DIE corresponds to a function, returns nonzero
17289 if the function is prototyped. */
17290
17291 static int
17292 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17293 {
17294 struct attribute *attr;
17295
17296 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17297 if (attr && (DW_UNSND (attr) != 0))
17298 return 1;
17299
17300 /* The DWARF standard implies that the DW_AT_prototyped attribute
17301 is only meaninful for C, but the concept also extends to other
17302 languages that allow unprototyped functions (Eg: Objective C).
17303 For all other languages, assume that functions are always
17304 prototyped. */
17305 if (cu->language != language_c
17306 && cu->language != language_objc
17307 && cu->language != language_opencl)
17308 return 1;
17309
17310 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17311 prototyped and unprototyped functions; default to prototyped,
17312 since that is more common in modern code (and RealView warns
17313 about unprototyped functions). */
17314 if (producer_is_realview (cu->producer))
17315 return 1;
17316
17317 return 0;
17318 }
17319
17320 /* Handle DIES due to C code like:
17321
17322 struct foo
17323 {
17324 int (*funcp)(int a, long l);
17325 int b;
17326 };
17327
17328 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17329
17330 static struct type *
17331 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17332 {
17333 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17334 struct type *type; /* Type that this function returns. */
17335 struct type *ftype; /* Function that returns above type. */
17336 struct attribute *attr;
17337
17338 type = die_type (die, cu);
17339
17340 /* The die_type call above may have already set the type for this DIE. */
17341 ftype = get_die_type (die, cu);
17342 if (ftype)
17343 return ftype;
17344
17345 ftype = lookup_function_type (type);
17346
17347 if (prototyped_function_p (die, cu))
17348 TYPE_PROTOTYPED (ftype) = 1;
17349
17350 /* Store the calling convention in the type if it's available in
17351 the subroutine die. Otherwise set the calling convention to
17352 the default value DW_CC_normal. */
17353 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17354 if (attr)
17355 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17356 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17357 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17358 else
17359 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17360
17361 /* Record whether the function returns normally to its caller or not
17362 if the DWARF producer set that information. */
17363 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17364 if (attr && (DW_UNSND (attr) != 0))
17365 TYPE_NO_RETURN (ftype) = 1;
17366
17367 /* We need to add the subroutine type to the die immediately so
17368 we don't infinitely recurse when dealing with parameters
17369 declared as the same subroutine type. */
17370 set_die_type (die, ftype, cu);
17371
17372 if (die->child != NULL)
17373 {
17374 struct type *void_type = objfile_type (objfile)->builtin_void;
17375 struct die_info *child_die;
17376 int nparams, iparams;
17377
17378 /* Count the number of parameters.
17379 FIXME: GDB currently ignores vararg functions, but knows about
17380 vararg member functions. */
17381 nparams = 0;
17382 child_die = die->child;
17383 while (child_die && child_die->tag)
17384 {
17385 if (child_die->tag == DW_TAG_formal_parameter)
17386 nparams++;
17387 else if (child_die->tag == DW_TAG_unspecified_parameters)
17388 TYPE_VARARGS (ftype) = 1;
17389 child_die = sibling_die (child_die);
17390 }
17391
17392 /* Allocate storage for parameters and fill them in. */
17393 TYPE_NFIELDS (ftype) = nparams;
17394 TYPE_FIELDS (ftype) = (struct field *)
17395 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17396
17397 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17398 even if we error out during the parameters reading below. */
17399 for (iparams = 0; iparams < nparams; iparams++)
17400 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17401
17402 iparams = 0;
17403 child_die = die->child;
17404 while (child_die && child_die->tag)
17405 {
17406 if (child_die->tag == DW_TAG_formal_parameter)
17407 {
17408 struct type *arg_type;
17409
17410 /* DWARF version 2 has no clean way to discern C++
17411 static and non-static member functions. G++ helps
17412 GDB by marking the first parameter for non-static
17413 member functions (which is the this pointer) as
17414 artificial. We pass this information to
17415 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17416
17417 DWARF version 3 added DW_AT_object_pointer, which GCC
17418 4.5 does not yet generate. */
17419 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17420 if (attr)
17421 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17422 else
17423 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17424 arg_type = die_type (child_die, cu);
17425
17426 /* RealView does not mark THIS as const, which the testsuite
17427 expects. GCC marks THIS as const in method definitions,
17428 but not in the class specifications (GCC PR 43053). */
17429 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17430 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17431 {
17432 int is_this = 0;
17433 struct dwarf2_cu *arg_cu = cu;
17434 const char *name = dwarf2_name (child_die, cu);
17435
17436 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17437 if (attr)
17438 {
17439 /* If the compiler emits this, use it. */
17440 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17441 is_this = 1;
17442 }
17443 else if (name && strcmp (name, "this") == 0)
17444 /* Function definitions will have the argument names. */
17445 is_this = 1;
17446 else if (name == NULL && iparams == 0)
17447 /* Declarations may not have the names, so like
17448 elsewhere in GDB, assume an artificial first
17449 argument is "this". */
17450 is_this = 1;
17451
17452 if (is_this)
17453 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17454 arg_type, 0);
17455 }
17456
17457 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17458 iparams++;
17459 }
17460 child_die = sibling_die (child_die);
17461 }
17462 }
17463
17464 return ftype;
17465 }
17466
17467 static struct type *
17468 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17469 {
17470 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17471 const char *name = NULL;
17472 struct type *this_type, *target_type;
17473
17474 name = dwarf2_full_name (NULL, die, cu);
17475 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17476 TYPE_TARGET_STUB (this_type) = 1;
17477 set_die_type (die, this_type, cu);
17478 target_type = die_type (die, cu);
17479 if (target_type != this_type)
17480 TYPE_TARGET_TYPE (this_type) = target_type;
17481 else
17482 {
17483 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17484 spec and cause infinite loops in GDB. */
17485 complaint (_("Self-referential DW_TAG_typedef "
17486 "- DIE at %s [in module %s]"),
17487 sect_offset_str (die->sect_off), objfile_name (objfile));
17488 TYPE_TARGET_TYPE (this_type) = NULL;
17489 }
17490 return this_type;
17491 }
17492
17493 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17494 (which may be different from NAME) to the architecture back-end to allow
17495 it to guess the correct format if necessary. */
17496
17497 static struct type *
17498 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17499 const char *name_hint)
17500 {
17501 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17502 const struct floatformat **format;
17503 struct type *type;
17504
17505 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17506 if (format)
17507 type = init_float_type (objfile, bits, name, format);
17508 else
17509 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17510
17511 return type;
17512 }
17513
17514 /* Allocate an integer type of size BITS and name NAME. */
17515
17516 static struct type *
17517 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17518 int bits, int unsigned_p, const char *name)
17519 {
17520 struct type *type;
17521
17522 /* Versions of Intel's C Compiler generate an integer type called "void"
17523 instead of using DW_TAG_unspecified_type. This has been seen on
17524 at least versions 14, 17, and 18. */
17525 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17526 && strcmp (name, "void") == 0)
17527 type = objfile_type (objfile)->builtin_void;
17528 else
17529 type = init_integer_type (objfile, bits, unsigned_p, name);
17530
17531 return type;
17532 }
17533
17534 /* Initialise and return a floating point type of size BITS suitable for
17535 use as a component of a complex number. The NAME_HINT is passed through
17536 when initialising the floating point type and is the name of the complex
17537 type.
17538
17539 As DWARF doesn't currently provide an explicit name for the components
17540 of a complex number, but it can be helpful to have these components
17541 named, we try to select a suitable name based on the size of the
17542 component. */
17543 static struct type *
17544 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17545 struct objfile *objfile,
17546 int bits, const char *name_hint)
17547 {
17548 gdbarch *gdbarch = get_objfile_arch (objfile);
17549 struct type *tt = nullptr;
17550
17551 /* Try to find a suitable floating point builtin type of size BITS.
17552 We're going to use the name of this type as the name for the complex
17553 target type that we are about to create. */
17554 switch (cu->language)
17555 {
17556 case language_fortran:
17557 switch (bits)
17558 {
17559 case 32:
17560 tt = builtin_f_type (gdbarch)->builtin_real;
17561 break;
17562 case 64:
17563 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17564 break;
17565 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17566 case 128:
17567 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17568 break;
17569 }
17570 break;
17571 default:
17572 switch (bits)
17573 {
17574 case 32:
17575 tt = builtin_type (gdbarch)->builtin_float;
17576 break;
17577 case 64:
17578 tt = builtin_type (gdbarch)->builtin_double;
17579 break;
17580 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17581 case 128:
17582 tt = builtin_type (gdbarch)->builtin_long_double;
17583 break;
17584 }
17585 break;
17586 }
17587
17588 /* If the type we found doesn't match the size we were looking for, then
17589 pretend we didn't find a type at all, the complex target type we
17590 create will then be nameless. */
17591 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17592 tt = nullptr;
17593
17594 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17595 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17596 }
17597
17598 /* Find a representation of a given base type and install
17599 it in the TYPE field of the die. */
17600
17601 static struct type *
17602 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17603 {
17604 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17605 struct type *type;
17606 struct attribute *attr;
17607 int encoding = 0, bits = 0;
17608 const char *name;
17609
17610 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17611 if (attr)
17612 {
17613 encoding = DW_UNSND (attr);
17614 }
17615 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17616 if (attr)
17617 {
17618 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17619 }
17620 name = dwarf2_name (die, cu);
17621 if (!name)
17622 {
17623 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17624 }
17625
17626 switch (encoding)
17627 {
17628 case DW_ATE_address:
17629 /* Turn DW_ATE_address into a void * pointer. */
17630 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17631 type = init_pointer_type (objfile, bits, name, type);
17632 break;
17633 case DW_ATE_boolean:
17634 type = init_boolean_type (objfile, bits, 1, name);
17635 break;
17636 case DW_ATE_complex_float:
17637 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17638 type = init_complex_type (objfile, name, type);
17639 break;
17640 case DW_ATE_decimal_float:
17641 type = init_decfloat_type (objfile, bits, name);
17642 break;
17643 case DW_ATE_float:
17644 type = dwarf2_init_float_type (objfile, bits, name, name);
17645 break;
17646 case DW_ATE_signed:
17647 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17648 break;
17649 case DW_ATE_unsigned:
17650 if (cu->language == language_fortran
17651 && name
17652 && startswith (name, "character("))
17653 type = init_character_type (objfile, bits, 1, name);
17654 else
17655 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17656 break;
17657 case DW_ATE_signed_char:
17658 if (cu->language == language_ada || cu->language == language_m2
17659 || cu->language == language_pascal
17660 || cu->language == language_fortran)
17661 type = init_character_type (objfile, bits, 0, name);
17662 else
17663 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17664 break;
17665 case DW_ATE_unsigned_char:
17666 if (cu->language == language_ada || cu->language == language_m2
17667 || cu->language == language_pascal
17668 || cu->language == language_fortran
17669 || cu->language == language_rust)
17670 type = init_character_type (objfile, bits, 1, name);
17671 else
17672 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17673 break;
17674 case DW_ATE_UTF:
17675 {
17676 gdbarch *arch = get_objfile_arch (objfile);
17677
17678 if (bits == 16)
17679 type = builtin_type (arch)->builtin_char16;
17680 else if (bits == 32)
17681 type = builtin_type (arch)->builtin_char32;
17682 else
17683 {
17684 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17685 bits);
17686 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17687 }
17688 return set_die_type (die, type, cu);
17689 }
17690 break;
17691
17692 default:
17693 complaint (_("unsupported DW_AT_encoding: '%s'"),
17694 dwarf_type_encoding_name (encoding));
17695 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17696 break;
17697 }
17698
17699 if (name && strcmp (name, "char") == 0)
17700 TYPE_NOSIGN (type) = 1;
17701
17702 maybe_set_alignment (cu, die, type);
17703
17704 return set_die_type (die, type, cu);
17705 }
17706
17707 /* Parse dwarf attribute if it's a block, reference or constant and put the
17708 resulting value of the attribute into struct bound_prop.
17709 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17710
17711 static int
17712 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17713 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17714 {
17715 struct dwarf2_property_baton *baton;
17716 struct obstack *obstack
17717 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17718
17719 if (attr == NULL || prop == NULL)
17720 return 0;
17721
17722 if (attr_form_is_block (attr))
17723 {
17724 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17725 baton->referenced_type = NULL;
17726 baton->locexpr.per_cu = cu->per_cu;
17727 baton->locexpr.size = DW_BLOCK (attr)->size;
17728 baton->locexpr.data = DW_BLOCK (attr)->data;
17729 prop->data.baton = baton;
17730 prop->kind = PROP_LOCEXPR;
17731 gdb_assert (prop->data.baton != NULL);
17732 }
17733 else if (attr_form_is_ref (attr))
17734 {
17735 struct dwarf2_cu *target_cu = cu;
17736 struct die_info *target_die;
17737 struct attribute *target_attr;
17738
17739 target_die = follow_die_ref (die, attr, &target_cu);
17740 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17741 if (target_attr == NULL)
17742 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17743 target_cu);
17744 if (target_attr == NULL)
17745 return 0;
17746
17747 switch (target_attr->name)
17748 {
17749 case DW_AT_location:
17750 if (attr_form_is_section_offset (target_attr))
17751 {
17752 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17753 baton->referenced_type = die_type (target_die, target_cu);
17754 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17755 prop->data.baton = baton;
17756 prop->kind = PROP_LOCLIST;
17757 gdb_assert (prop->data.baton != NULL);
17758 }
17759 else if (attr_form_is_block (target_attr))
17760 {
17761 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17762 baton->referenced_type = die_type (target_die, target_cu);
17763 baton->locexpr.per_cu = cu->per_cu;
17764 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17765 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17766 prop->data.baton = baton;
17767 prop->kind = PROP_LOCEXPR;
17768 gdb_assert (prop->data.baton != NULL);
17769 }
17770 else
17771 {
17772 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17773 "dynamic property");
17774 return 0;
17775 }
17776 break;
17777 case DW_AT_data_member_location:
17778 {
17779 LONGEST offset;
17780
17781 if (!handle_data_member_location (target_die, target_cu,
17782 &offset))
17783 return 0;
17784
17785 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17786 baton->referenced_type = read_type_die (target_die->parent,
17787 target_cu);
17788 baton->offset_info.offset = offset;
17789 baton->offset_info.type = die_type (target_die, target_cu);
17790 prop->data.baton = baton;
17791 prop->kind = PROP_ADDR_OFFSET;
17792 break;
17793 }
17794 }
17795 }
17796 else if (attr_form_is_constant (attr))
17797 {
17798 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17799 prop->kind = PROP_CONST;
17800 }
17801 else
17802 {
17803 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17804 dwarf2_name (die, cu));
17805 return 0;
17806 }
17807
17808 return 1;
17809 }
17810
17811 /* Read the given DW_AT_subrange DIE. */
17812
17813 static struct type *
17814 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17815 {
17816 struct type *base_type, *orig_base_type;
17817 struct type *range_type;
17818 struct attribute *attr;
17819 struct dynamic_prop low, high;
17820 int low_default_is_valid;
17821 int high_bound_is_count = 0;
17822 const char *name;
17823 ULONGEST negative_mask;
17824
17825 orig_base_type = die_type (die, cu);
17826 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17827 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17828 creating the range type, but we use the result of check_typedef
17829 when examining properties of the type. */
17830 base_type = check_typedef (orig_base_type);
17831
17832 /* The die_type call above may have already set the type for this DIE. */
17833 range_type = get_die_type (die, cu);
17834 if (range_type)
17835 return range_type;
17836
17837 low.kind = PROP_CONST;
17838 high.kind = PROP_CONST;
17839 high.data.const_val = 0;
17840
17841 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17842 omitting DW_AT_lower_bound. */
17843 switch (cu->language)
17844 {
17845 case language_c:
17846 case language_cplus:
17847 low.data.const_val = 0;
17848 low_default_is_valid = 1;
17849 break;
17850 case language_fortran:
17851 low.data.const_val = 1;
17852 low_default_is_valid = 1;
17853 break;
17854 case language_d:
17855 case language_objc:
17856 case language_rust:
17857 low.data.const_val = 0;
17858 low_default_is_valid = (cu->header.version >= 4);
17859 break;
17860 case language_ada:
17861 case language_m2:
17862 case language_pascal:
17863 low.data.const_val = 1;
17864 low_default_is_valid = (cu->header.version >= 4);
17865 break;
17866 default:
17867 low.data.const_val = 0;
17868 low_default_is_valid = 0;
17869 break;
17870 }
17871
17872 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17873 if (attr)
17874 attr_to_dynamic_prop (attr, die, cu, &low);
17875 else if (!low_default_is_valid)
17876 complaint (_("Missing DW_AT_lower_bound "
17877 "- DIE at %s [in module %s]"),
17878 sect_offset_str (die->sect_off),
17879 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17880
17881 struct attribute *attr_ub, *attr_count;
17882 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17883 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17884 {
17885 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17886 if (attr_to_dynamic_prop (attr, die, cu, &high))
17887 {
17888 /* If bounds are constant do the final calculation here. */
17889 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17890 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17891 else
17892 high_bound_is_count = 1;
17893 }
17894 else
17895 {
17896 if (attr_ub != NULL)
17897 complaint (_("Unresolved DW_AT_upper_bound "
17898 "- DIE at %s [in module %s]"),
17899 sect_offset_str (die->sect_off),
17900 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17901 if (attr_count != NULL)
17902 complaint (_("Unresolved DW_AT_count "
17903 "- DIE at %s [in module %s]"),
17904 sect_offset_str (die->sect_off),
17905 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17906 }
17907
17908 }
17909
17910 /* Dwarf-2 specifications explicitly allows to create subrange types
17911 without specifying a base type.
17912 In that case, the base type must be set to the type of
17913 the lower bound, upper bound or count, in that order, if any of these
17914 three attributes references an object that has a type.
17915 If no base type is found, the Dwarf-2 specifications say that
17916 a signed integer type of size equal to the size of an address should
17917 be used.
17918 For the following C code: `extern char gdb_int [];'
17919 GCC produces an empty range DIE.
17920 FIXME: muller/2010-05-28: Possible references to object for low bound,
17921 high bound or count are not yet handled by this code. */
17922 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17923 {
17924 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17925 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17926 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17927 struct type *int_type = objfile_type (objfile)->builtin_int;
17928
17929 /* Test "int", "long int", and "long long int" objfile types,
17930 and select the first one having a size above or equal to the
17931 architecture address size. */
17932 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17933 base_type = int_type;
17934 else
17935 {
17936 int_type = objfile_type (objfile)->builtin_long;
17937 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17938 base_type = int_type;
17939 else
17940 {
17941 int_type = objfile_type (objfile)->builtin_long_long;
17942 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17943 base_type = int_type;
17944 }
17945 }
17946 }
17947
17948 /* Normally, the DWARF producers are expected to use a signed
17949 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17950 But this is unfortunately not always the case, as witnessed
17951 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17952 is used instead. To work around that ambiguity, we treat
17953 the bounds as signed, and thus sign-extend their values, when
17954 the base type is signed. */
17955 negative_mask =
17956 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17957 if (low.kind == PROP_CONST
17958 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17959 low.data.const_val |= negative_mask;
17960 if (high.kind == PROP_CONST
17961 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17962 high.data.const_val |= negative_mask;
17963
17964 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17965
17966 if (high_bound_is_count)
17967 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17968
17969 /* Ada expects an empty array on no boundary attributes. */
17970 if (attr == NULL && cu->language != language_ada)
17971 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17972
17973 name = dwarf2_name (die, cu);
17974 if (name)
17975 TYPE_NAME (range_type) = name;
17976
17977 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17978 if (attr)
17979 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17980
17981 maybe_set_alignment (cu, die, range_type);
17982
17983 set_die_type (die, range_type, cu);
17984
17985 /* set_die_type should be already done. */
17986 set_descriptive_type (range_type, die, cu);
17987
17988 return range_type;
17989 }
17990
17991 static struct type *
17992 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17993 {
17994 struct type *type;
17995
17996 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17997 NULL);
17998 TYPE_NAME (type) = dwarf2_name (die, cu);
17999
18000 /* In Ada, an unspecified type is typically used when the description
18001 of the type is defered to a different unit. When encountering
18002 such a type, we treat it as a stub, and try to resolve it later on,
18003 when needed. */
18004 if (cu->language == language_ada)
18005 TYPE_STUB (type) = 1;
18006
18007 return set_die_type (die, type, cu);
18008 }
18009
18010 /* Read a single die and all its descendents. Set the die's sibling
18011 field to NULL; set other fields in the die correctly, and set all
18012 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18013 location of the info_ptr after reading all of those dies. PARENT
18014 is the parent of the die in question. */
18015
18016 static struct die_info *
18017 read_die_and_children (const struct die_reader_specs *reader,
18018 const gdb_byte *info_ptr,
18019 const gdb_byte **new_info_ptr,
18020 struct die_info *parent)
18021 {
18022 struct die_info *die;
18023 const gdb_byte *cur_ptr;
18024 int has_children;
18025
18026 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18027 if (die == NULL)
18028 {
18029 *new_info_ptr = cur_ptr;
18030 return NULL;
18031 }
18032 store_in_ref_table (die, reader->cu);
18033
18034 if (has_children)
18035 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18036 else
18037 {
18038 die->child = NULL;
18039 *new_info_ptr = cur_ptr;
18040 }
18041
18042 die->sibling = NULL;
18043 die->parent = parent;
18044 return die;
18045 }
18046
18047 /* Read a die, all of its descendents, and all of its siblings; set
18048 all of the fields of all of the dies correctly. Arguments are as
18049 in read_die_and_children. */
18050
18051 static struct die_info *
18052 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18053 const gdb_byte *info_ptr,
18054 const gdb_byte **new_info_ptr,
18055 struct die_info *parent)
18056 {
18057 struct die_info *first_die, *last_sibling;
18058 const gdb_byte *cur_ptr;
18059
18060 cur_ptr = info_ptr;
18061 first_die = last_sibling = NULL;
18062
18063 while (1)
18064 {
18065 struct die_info *die
18066 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18067
18068 if (die == NULL)
18069 {
18070 *new_info_ptr = cur_ptr;
18071 return first_die;
18072 }
18073
18074 if (!first_die)
18075 first_die = die;
18076 else
18077 last_sibling->sibling = die;
18078
18079 last_sibling = die;
18080 }
18081 }
18082
18083 /* Read a die, all of its descendents, and all of its siblings; set
18084 all of the fields of all of the dies correctly. Arguments are as
18085 in read_die_and_children.
18086 This the main entry point for reading a DIE and all its children. */
18087
18088 static struct die_info *
18089 read_die_and_siblings (const struct die_reader_specs *reader,
18090 const gdb_byte *info_ptr,
18091 const gdb_byte **new_info_ptr,
18092 struct die_info *parent)
18093 {
18094 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18095 new_info_ptr, parent);
18096
18097 if (dwarf_die_debug)
18098 {
18099 fprintf_unfiltered (gdb_stdlog,
18100 "Read die from %s@0x%x of %s:\n",
18101 get_section_name (reader->die_section),
18102 (unsigned) (info_ptr - reader->die_section->buffer),
18103 bfd_get_filename (reader->abfd));
18104 dump_die (die, dwarf_die_debug);
18105 }
18106
18107 return die;
18108 }
18109
18110 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18111 attributes.
18112 The caller is responsible for filling in the extra attributes
18113 and updating (*DIEP)->num_attrs.
18114 Set DIEP to point to a newly allocated die with its information,
18115 except for its child, sibling, and parent fields.
18116 Set HAS_CHILDREN to tell whether the die has children or not. */
18117
18118 static const gdb_byte *
18119 read_full_die_1 (const struct die_reader_specs *reader,
18120 struct die_info **diep, const gdb_byte *info_ptr,
18121 int *has_children, int num_extra_attrs)
18122 {
18123 unsigned int abbrev_number, bytes_read, i;
18124 struct abbrev_info *abbrev;
18125 struct die_info *die;
18126 struct dwarf2_cu *cu = reader->cu;
18127 bfd *abfd = reader->abfd;
18128
18129 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18130 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18131 info_ptr += bytes_read;
18132 if (!abbrev_number)
18133 {
18134 *diep = NULL;
18135 *has_children = 0;
18136 return info_ptr;
18137 }
18138
18139 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18140 if (!abbrev)
18141 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18142 abbrev_number,
18143 bfd_get_filename (abfd));
18144
18145 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18146 die->sect_off = sect_off;
18147 die->tag = abbrev->tag;
18148 die->abbrev = abbrev_number;
18149
18150 /* Make the result usable.
18151 The caller needs to update num_attrs after adding the extra
18152 attributes. */
18153 die->num_attrs = abbrev->num_attrs;
18154
18155 for (i = 0; i < abbrev->num_attrs; ++i)
18156 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18157 info_ptr);
18158
18159 *diep = die;
18160 *has_children = abbrev->has_children;
18161 return info_ptr;
18162 }
18163
18164 /* Read a die and all its attributes.
18165 Set DIEP to point to a newly allocated die with its information,
18166 except for its child, sibling, and parent fields.
18167 Set HAS_CHILDREN to tell whether the die has children or not. */
18168
18169 static const gdb_byte *
18170 read_full_die (const struct die_reader_specs *reader,
18171 struct die_info **diep, const gdb_byte *info_ptr,
18172 int *has_children)
18173 {
18174 const gdb_byte *result;
18175
18176 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18177
18178 if (dwarf_die_debug)
18179 {
18180 fprintf_unfiltered (gdb_stdlog,
18181 "Read die from %s@0x%x of %s:\n",
18182 get_section_name (reader->die_section),
18183 (unsigned) (info_ptr - reader->die_section->buffer),
18184 bfd_get_filename (reader->abfd));
18185 dump_die (*diep, dwarf_die_debug);
18186 }
18187
18188 return result;
18189 }
18190 \f
18191 /* Abbreviation tables.
18192
18193 In DWARF version 2, the description of the debugging information is
18194 stored in a separate .debug_abbrev section. Before we read any
18195 dies from a section we read in all abbreviations and install them
18196 in a hash table. */
18197
18198 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18199
18200 struct abbrev_info *
18201 abbrev_table::alloc_abbrev ()
18202 {
18203 struct abbrev_info *abbrev;
18204
18205 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18206 memset (abbrev, 0, sizeof (struct abbrev_info));
18207
18208 return abbrev;
18209 }
18210
18211 /* Add an abbreviation to the table. */
18212
18213 void
18214 abbrev_table::add_abbrev (unsigned int abbrev_number,
18215 struct abbrev_info *abbrev)
18216 {
18217 unsigned int hash_number;
18218
18219 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18220 abbrev->next = m_abbrevs[hash_number];
18221 m_abbrevs[hash_number] = abbrev;
18222 }
18223
18224 /* Look up an abbrev in the table.
18225 Returns NULL if the abbrev is not found. */
18226
18227 struct abbrev_info *
18228 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18229 {
18230 unsigned int hash_number;
18231 struct abbrev_info *abbrev;
18232
18233 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18234 abbrev = m_abbrevs[hash_number];
18235
18236 while (abbrev)
18237 {
18238 if (abbrev->number == abbrev_number)
18239 return abbrev;
18240 abbrev = abbrev->next;
18241 }
18242 return NULL;
18243 }
18244
18245 /* Read in an abbrev table. */
18246
18247 static abbrev_table_up
18248 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18249 struct dwarf2_section_info *section,
18250 sect_offset sect_off)
18251 {
18252 struct objfile *objfile = dwarf2_per_objfile->objfile;
18253 bfd *abfd = get_section_bfd_owner (section);
18254 const gdb_byte *abbrev_ptr;
18255 struct abbrev_info *cur_abbrev;
18256 unsigned int abbrev_number, bytes_read, abbrev_name;
18257 unsigned int abbrev_form;
18258 struct attr_abbrev *cur_attrs;
18259 unsigned int allocated_attrs;
18260
18261 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18262
18263 dwarf2_read_section (objfile, section);
18264 abbrev_ptr = section->buffer + to_underlying (sect_off);
18265 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18266 abbrev_ptr += bytes_read;
18267
18268 allocated_attrs = ATTR_ALLOC_CHUNK;
18269 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18270
18271 /* Loop until we reach an abbrev number of 0. */
18272 while (abbrev_number)
18273 {
18274 cur_abbrev = abbrev_table->alloc_abbrev ();
18275
18276 /* read in abbrev header */
18277 cur_abbrev->number = abbrev_number;
18278 cur_abbrev->tag
18279 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18280 abbrev_ptr += bytes_read;
18281 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18282 abbrev_ptr += 1;
18283
18284 /* now read in declarations */
18285 for (;;)
18286 {
18287 LONGEST implicit_const;
18288
18289 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18290 abbrev_ptr += bytes_read;
18291 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18292 abbrev_ptr += bytes_read;
18293 if (abbrev_form == DW_FORM_implicit_const)
18294 {
18295 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18296 &bytes_read);
18297 abbrev_ptr += bytes_read;
18298 }
18299 else
18300 {
18301 /* Initialize it due to a false compiler warning. */
18302 implicit_const = -1;
18303 }
18304
18305 if (abbrev_name == 0)
18306 break;
18307
18308 if (cur_abbrev->num_attrs == allocated_attrs)
18309 {
18310 allocated_attrs += ATTR_ALLOC_CHUNK;
18311 cur_attrs
18312 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18313 }
18314
18315 cur_attrs[cur_abbrev->num_attrs].name
18316 = (enum dwarf_attribute) abbrev_name;
18317 cur_attrs[cur_abbrev->num_attrs].form
18318 = (enum dwarf_form) abbrev_form;
18319 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18320 ++cur_abbrev->num_attrs;
18321 }
18322
18323 cur_abbrev->attrs =
18324 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18325 cur_abbrev->num_attrs);
18326 memcpy (cur_abbrev->attrs, cur_attrs,
18327 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18328
18329 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18330
18331 /* Get next abbreviation.
18332 Under Irix6 the abbreviations for a compilation unit are not
18333 always properly terminated with an abbrev number of 0.
18334 Exit loop if we encounter an abbreviation which we have
18335 already read (which means we are about to read the abbreviations
18336 for the next compile unit) or if the end of the abbreviation
18337 table is reached. */
18338 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18339 break;
18340 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18341 abbrev_ptr += bytes_read;
18342 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18343 break;
18344 }
18345
18346 xfree (cur_attrs);
18347 return abbrev_table;
18348 }
18349
18350 /* Returns nonzero if TAG represents a type that we might generate a partial
18351 symbol for. */
18352
18353 static int
18354 is_type_tag_for_partial (int tag)
18355 {
18356 switch (tag)
18357 {
18358 #if 0
18359 /* Some types that would be reasonable to generate partial symbols for,
18360 that we don't at present. */
18361 case DW_TAG_array_type:
18362 case DW_TAG_file_type:
18363 case DW_TAG_ptr_to_member_type:
18364 case DW_TAG_set_type:
18365 case DW_TAG_string_type:
18366 case DW_TAG_subroutine_type:
18367 #endif
18368 case DW_TAG_base_type:
18369 case DW_TAG_class_type:
18370 case DW_TAG_interface_type:
18371 case DW_TAG_enumeration_type:
18372 case DW_TAG_structure_type:
18373 case DW_TAG_subrange_type:
18374 case DW_TAG_typedef:
18375 case DW_TAG_union_type:
18376 return 1;
18377 default:
18378 return 0;
18379 }
18380 }
18381
18382 /* Load all DIEs that are interesting for partial symbols into memory. */
18383
18384 static struct partial_die_info *
18385 load_partial_dies (const struct die_reader_specs *reader,
18386 const gdb_byte *info_ptr, int building_psymtab)
18387 {
18388 struct dwarf2_cu *cu = reader->cu;
18389 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18390 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18391 unsigned int bytes_read;
18392 unsigned int load_all = 0;
18393 int nesting_level = 1;
18394
18395 parent_die = NULL;
18396 last_die = NULL;
18397
18398 gdb_assert (cu->per_cu != NULL);
18399 if (cu->per_cu->load_all_dies)
18400 load_all = 1;
18401
18402 cu->partial_dies
18403 = htab_create_alloc_ex (cu->header.length / 12,
18404 partial_die_hash,
18405 partial_die_eq,
18406 NULL,
18407 &cu->comp_unit_obstack,
18408 hashtab_obstack_allocate,
18409 dummy_obstack_deallocate);
18410
18411 while (1)
18412 {
18413 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18414
18415 /* A NULL abbrev means the end of a series of children. */
18416 if (abbrev == NULL)
18417 {
18418 if (--nesting_level == 0)
18419 return first_die;
18420
18421 info_ptr += bytes_read;
18422 last_die = parent_die;
18423 parent_die = parent_die->die_parent;
18424 continue;
18425 }
18426
18427 /* Check for template arguments. We never save these; if
18428 they're seen, we just mark the parent, and go on our way. */
18429 if (parent_die != NULL
18430 && cu->language == language_cplus
18431 && (abbrev->tag == DW_TAG_template_type_param
18432 || abbrev->tag == DW_TAG_template_value_param))
18433 {
18434 parent_die->has_template_arguments = 1;
18435
18436 if (!load_all)
18437 {
18438 /* We don't need a partial DIE for the template argument. */
18439 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18440 continue;
18441 }
18442 }
18443
18444 /* We only recurse into c++ subprograms looking for template arguments.
18445 Skip their other children. */
18446 if (!load_all
18447 && cu->language == language_cplus
18448 && parent_die != NULL
18449 && parent_die->tag == DW_TAG_subprogram)
18450 {
18451 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18452 continue;
18453 }
18454
18455 /* Check whether this DIE is interesting enough to save. Normally
18456 we would not be interested in members here, but there may be
18457 later variables referencing them via DW_AT_specification (for
18458 static members). */
18459 if (!load_all
18460 && !is_type_tag_for_partial (abbrev->tag)
18461 && abbrev->tag != DW_TAG_constant
18462 && abbrev->tag != DW_TAG_enumerator
18463 && abbrev->tag != DW_TAG_subprogram
18464 && abbrev->tag != DW_TAG_inlined_subroutine
18465 && abbrev->tag != DW_TAG_lexical_block
18466 && abbrev->tag != DW_TAG_variable
18467 && abbrev->tag != DW_TAG_namespace
18468 && abbrev->tag != DW_TAG_module
18469 && abbrev->tag != DW_TAG_member
18470 && abbrev->tag != DW_TAG_imported_unit
18471 && abbrev->tag != DW_TAG_imported_declaration)
18472 {
18473 /* Otherwise we skip to the next sibling, if any. */
18474 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18475 continue;
18476 }
18477
18478 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18479 abbrev);
18480
18481 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18482
18483 /* This two-pass algorithm for processing partial symbols has a
18484 high cost in cache pressure. Thus, handle some simple cases
18485 here which cover the majority of C partial symbols. DIEs
18486 which neither have specification tags in them, nor could have
18487 specification tags elsewhere pointing at them, can simply be
18488 processed and discarded.
18489
18490 This segment is also optional; scan_partial_symbols and
18491 add_partial_symbol will handle these DIEs if we chain
18492 them in normally. When compilers which do not emit large
18493 quantities of duplicate debug information are more common,
18494 this code can probably be removed. */
18495
18496 /* Any complete simple types at the top level (pretty much all
18497 of them, for a language without namespaces), can be processed
18498 directly. */
18499 if (parent_die == NULL
18500 && pdi.has_specification == 0
18501 && pdi.is_declaration == 0
18502 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18503 || pdi.tag == DW_TAG_base_type
18504 || pdi.tag == DW_TAG_subrange_type))
18505 {
18506 if (building_psymtab && pdi.name != NULL)
18507 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18508 VAR_DOMAIN, LOC_TYPEDEF, -1,
18509 psymbol_placement::STATIC,
18510 0, cu->language, objfile);
18511 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18512 continue;
18513 }
18514
18515 /* The exception for DW_TAG_typedef with has_children above is
18516 a workaround of GCC PR debug/47510. In the case of this complaint
18517 type_name_or_error will error on such types later.
18518
18519 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18520 it could not find the child DIEs referenced later, this is checked
18521 above. In correct DWARF DW_TAG_typedef should have no children. */
18522
18523 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18524 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18525 "- DIE at %s [in module %s]"),
18526 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18527
18528 /* If we're at the second level, and we're an enumerator, and
18529 our parent has no specification (meaning possibly lives in a
18530 namespace elsewhere), then we can add the partial symbol now
18531 instead of queueing it. */
18532 if (pdi.tag == DW_TAG_enumerator
18533 && parent_die != NULL
18534 && parent_die->die_parent == NULL
18535 && parent_die->tag == DW_TAG_enumeration_type
18536 && parent_die->has_specification == 0)
18537 {
18538 if (pdi.name == NULL)
18539 complaint (_("malformed enumerator DIE ignored"));
18540 else if (building_psymtab)
18541 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18542 VAR_DOMAIN, LOC_CONST, -1,
18543 cu->language == language_cplus
18544 ? psymbol_placement::GLOBAL
18545 : psymbol_placement::STATIC,
18546 0, cu->language, objfile);
18547
18548 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18549 continue;
18550 }
18551
18552 struct partial_die_info *part_die
18553 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18554
18555 /* We'll save this DIE so link it in. */
18556 part_die->die_parent = parent_die;
18557 part_die->die_sibling = NULL;
18558 part_die->die_child = NULL;
18559
18560 if (last_die && last_die == parent_die)
18561 last_die->die_child = part_die;
18562 else if (last_die)
18563 last_die->die_sibling = part_die;
18564
18565 last_die = part_die;
18566
18567 if (first_die == NULL)
18568 first_die = part_die;
18569
18570 /* Maybe add the DIE to the hash table. Not all DIEs that we
18571 find interesting need to be in the hash table, because we
18572 also have the parent/sibling/child chains; only those that we
18573 might refer to by offset later during partial symbol reading.
18574
18575 For now this means things that might have be the target of a
18576 DW_AT_specification, DW_AT_abstract_origin, or
18577 DW_AT_extension. DW_AT_extension will refer only to
18578 namespaces; DW_AT_abstract_origin refers to functions (and
18579 many things under the function DIE, but we do not recurse
18580 into function DIEs during partial symbol reading) and
18581 possibly variables as well; DW_AT_specification refers to
18582 declarations. Declarations ought to have the DW_AT_declaration
18583 flag. It happens that GCC forgets to put it in sometimes, but
18584 only for functions, not for types.
18585
18586 Adding more things than necessary to the hash table is harmless
18587 except for the performance cost. Adding too few will result in
18588 wasted time in find_partial_die, when we reread the compilation
18589 unit with load_all_dies set. */
18590
18591 if (load_all
18592 || abbrev->tag == DW_TAG_constant
18593 || abbrev->tag == DW_TAG_subprogram
18594 || abbrev->tag == DW_TAG_variable
18595 || abbrev->tag == DW_TAG_namespace
18596 || part_die->is_declaration)
18597 {
18598 void **slot;
18599
18600 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18601 to_underlying (part_die->sect_off),
18602 INSERT);
18603 *slot = part_die;
18604 }
18605
18606 /* For some DIEs we want to follow their children (if any). For C
18607 we have no reason to follow the children of structures; for other
18608 languages we have to, so that we can get at method physnames
18609 to infer fully qualified class names, for DW_AT_specification,
18610 and for C++ template arguments. For C++, we also look one level
18611 inside functions to find template arguments (if the name of the
18612 function does not already contain the template arguments).
18613
18614 For Ada, we need to scan the children of subprograms and lexical
18615 blocks as well because Ada allows the definition of nested
18616 entities that could be interesting for the debugger, such as
18617 nested subprograms for instance. */
18618 if (last_die->has_children
18619 && (load_all
18620 || last_die->tag == DW_TAG_namespace
18621 || last_die->tag == DW_TAG_module
18622 || last_die->tag == DW_TAG_enumeration_type
18623 || (cu->language == language_cplus
18624 && last_die->tag == DW_TAG_subprogram
18625 && (last_die->name == NULL
18626 || strchr (last_die->name, '<') == NULL))
18627 || (cu->language != language_c
18628 && (last_die->tag == DW_TAG_class_type
18629 || last_die->tag == DW_TAG_interface_type
18630 || last_die->tag == DW_TAG_structure_type
18631 || last_die->tag == DW_TAG_union_type))
18632 || (cu->language == language_ada
18633 && (last_die->tag == DW_TAG_subprogram
18634 || last_die->tag == DW_TAG_lexical_block))))
18635 {
18636 nesting_level++;
18637 parent_die = last_die;
18638 continue;
18639 }
18640
18641 /* Otherwise we skip to the next sibling, if any. */
18642 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18643
18644 /* Back to the top, do it again. */
18645 }
18646 }
18647
18648 partial_die_info::partial_die_info (sect_offset sect_off_,
18649 struct abbrev_info *abbrev)
18650 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18651 {
18652 }
18653
18654 /* Read a minimal amount of information into the minimal die structure.
18655 INFO_PTR should point just after the initial uleb128 of a DIE. */
18656
18657 const gdb_byte *
18658 partial_die_info::read (const struct die_reader_specs *reader,
18659 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18660 {
18661 struct dwarf2_cu *cu = reader->cu;
18662 struct dwarf2_per_objfile *dwarf2_per_objfile
18663 = cu->per_cu->dwarf2_per_objfile;
18664 unsigned int i;
18665 int has_low_pc_attr = 0;
18666 int has_high_pc_attr = 0;
18667 int high_pc_relative = 0;
18668
18669 for (i = 0; i < abbrev.num_attrs; ++i)
18670 {
18671 struct attribute attr;
18672
18673 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18674
18675 /* Store the data if it is of an attribute we want to keep in a
18676 partial symbol table. */
18677 switch (attr.name)
18678 {
18679 case DW_AT_name:
18680 switch (tag)
18681 {
18682 case DW_TAG_compile_unit:
18683 case DW_TAG_partial_unit:
18684 case DW_TAG_type_unit:
18685 /* Compilation units have a DW_AT_name that is a filename, not
18686 a source language identifier. */
18687 case DW_TAG_enumeration_type:
18688 case DW_TAG_enumerator:
18689 /* These tags always have simple identifiers already; no need
18690 to canonicalize them. */
18691 name = DW_STRING (&attr);
18692 break;
18693 default:
18694 {
18695 struct objfile *objfile = dwarf2_per_objfile->objfile;
18696
18697 name
18698 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18699 &objfile->per_bfd->storage_obstack);
18700 }
18701 break;
18702 }
18703 break;
18704 case DW_AT_linkage_name:
18705 case DW_AT_MIPS_linkage_name:
18706 /* Note that both forms of linkage name might appear. We
18707 assume they will be the same, and we only store the last
18708 one we see. */
18709 if (cu->language == language_ada)
18710 name = DW_STRING (&attr);
18711 linkage_name = DW_STRING (&attr);
18712 break;
18713 case DW_AT_low_pc:
18714 has_low_pc_attr = 1;
18715 lowpc = attr_value_as_address (&attr);
18716 break;
18717 case DW_AT_high_pc:
18718 has_high_pc_attr = 1;
18719 highpc = attr_value_as_address (&attr);
18720 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18721 high_pc_relative = 1;
18722 break;
18723 case DW_AT_location:
18724 /* Support the .debug_loc offsets. */
18725 if (attr_form_is_block (&attr))
18726 {
18727 d.locdesc = DW_BLOCK (&attr);
18728 }
18729 else if (attr_form_is_section_offset (&attr))
18730 {
18731 dwarf2_complex_location_expr_complaint ();
18732 }
18733 else
18734 {
18735 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18736 "partial symbol information");
18737 }
18738 break;
18739 case DW_AT_external:
18740 is_external = DW_UNSND (&attr);
18741 break;
18742 case DW_AT_declaration:
18743 is_declaration = DW_UNSND (&attr);
18744 break;
18745 case DW_AT_type:
18746 has_type = 1;
18747 break;
18748 case DW_AT_abstract_origin:
18749 case DW_AT_specification:
18750 case DW_AT_extension:
18751 has_specification = 1;
18752 spec_offset = dwarf2_get_ref_die_offset (&attr);
18753 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18754 || cu->per_cu->is_dwz);
18755 break;
18756 case DW_AT_sibling:
18757 /* Ignore absolute siblings, they might point outside of
18758 the current compile unit. */
18759 if (attr.form == DW_FORM_ref_addr)
18760 complaint (_("ignoring absolute DW_AT_sibling"));
18761 else
18762 {
18763 const gdb_byte *buffer = reader->buffer;
18764 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18765 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18766
18767 if (sibling_ptr < info_ptr)
18768 complaint (_("DW_AT_sibling points backwards"));
18769 else if (sibling_ptr > reader->buffer_end)
18770 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18771 else
18772 sibling = sibling_ptr;
18773 }
18774 break;
18775 case DW_AT_byte_size:
18776 has_byte_size = 1;
18777 break;
18778 case DW_AT_const_value:
18779 has_const_value = 1;
18780 break;
18781 case DW_AT_calling_convention:
18782 /* DWARF doesn't provide a way to identify a program's source-level
18783 entry point. DW_AT_calling_convention attributes are only meant
18784 to describe functions' calling conventions.
18785
18786 However, because it's a necessary piece of information in
18787 Fortran, and before DWARF 4 DW_CC_program was the only
18788 piece of debugging information whose definition refers to
18789 a 'main program' at all, several compilers marked Fortran
18790 main programs with DW_CC_program --- even when those
18791 functions use the standard calling conventions.
18792
18793 Although DWARF now specifies a way to provide this
18794 information, we support this practice for backward
18795 compatibility. */
18796 if (DW_UNSND (&attr) == DW_CC_program
18797 && cu->language == language_fortran)
18798 main_subprogram = 1;
18799 break;
18800 case DW_AT_inline:
18801 if (DW_UNSND (&attr) == DW_INL_inlined
18802 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18803 may_be_inlined = 1;
18804 break;
18805
18806 case DW_AT_import:
18807 if (tag == DW_TAG_imported_unit)
18808 {
18809 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18810 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18811 || cu->per_cu->is_dwz);
18812 }
18813 break;
18814
18815 case DW_AT_main_subprogram:
18816 main_subprogram = DW_UNSND (&attr);
18817 break;
18818
18819 case DW_AT_ranges:
18820 {
18821 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18822 but that requires a full DIE, so instead we just
18823 reimplement it. */
18824 int need_ranges_base = tag != DW_TAG_compile_unit;
18825 unsigned int ranges_offset = (DW_UNSND (&attr)
18826 + (need_ranges_base
18827 ? cu->ranges_base
18828 : 0));
18829
18830 /* Value of the DW_AT_ranges attribute is the offset in the
18831 .debug_ranges section. */
18832 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18833 nullptr))
18834 has_pc_info = 1;
18835 }
18836 break;
18837
18838 default:
18839 break;
18840 }
18841 }
18842
18843 if (high_pc_relative)
18844 highpc += lowpc;
18845
18846 if (has_low_pc_attr && has_high_pc_attr)
18847 {
18848 /* When using the GNU linker, .gnu.linkonce. sections are used to
18849 eliminate duplicate copies of functions and vtables and such.
18850 The linker will arbitrarily choose one and discard the others.
18851 The AT_*_pc values for such functions refer to local labels in
18852 these sections. If the section from that file was discarded, the
18853 labels are not in the output, so the relocs get a value of 0.
18854 If this is a discarded function, mark the pc bounds as invalid,
18855 so that GDB will ignore it. */
18856 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18857 {
18858 struct objfile *objfile = dwarf2_per_objfile->objfile;
18859 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18860
18861 complaint (_("DW_AT_low_pc %s is zero "
18862 "for DIE at %s [in module %s]"),
18863 paddress (gdbarch, lowpc),
18864 sect_offset_str (sect_off),
18865 objfile_name (objfile));
18866 }
18867 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18868 else if (lowpc >= highpc)
18869 {
18870 struct objfile *objfile = dwarf2_per_objfile->objfile;
18871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18872
18873 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18874 "for DIE at %s [in module %s]"),
18875 paddress (gdbarch, lowpc),
18876 paddress (gdbarch, highpc),
18877 sect_offset_str (sect_off),
18878 objfile_name (objfile));
18879 }
18880 else
18881 has_pc_info = 1;
18882 }
18883
18884 return info_ptr;
18885 }
18886
18887 /* Find a cached partial DIE at OFFSET in CU. */
18888
18889 struct partial_die_info *
18890 dwarf2_cu::find_partial_die (sect_offset sect_off)
18891 {
18892 struct partial_die_info *lookup_die = NULL;
18893 struct partial_die_info part_die (sect_off);
18894
18895 lookup_die = ((struct partial_die_info *)
18896 htab_find_with_hash (partial_dies, &part_die,
18897 to_underlying (sect_off)));
18898
18899 return lookup_die;
18900 }
18901
18902 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18903 except in the case of .debug_types DIEs which do not reference
18904 outside their CU (they do however referencing other types via
18905 DW_FORM_ref_sig8). */
18906
18907 static const struct cu_partial_die_info
18908 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18909 {
18910 struct dwarf2_per_objfile *dwarf2_per_objfile
18911 = cu->per_cu->dwarf2_per_objfile;
18912 struct objfile *objfile = dwarf2_per_objfile->objfile;
18913 struct dwarf2_per_cu_data *per_cu = NULL;
18914 struct partial_die_info *pd = NULL;
18915
18916 if (offset_in_dwz == cu->per_cu->is_dwz
18917 && offset_in_cu_p (&cu->header, sect_off))
18918 {
18919 pd = cu->find_partial_die (sect_off);
18920 if (pd != NULL)
18921 return { cu, pd };
18922 /* We missed recording what we needed.
18923 Load all dies and try again. */
18924 per_cu = cu->per_cu;
18925 }
18926 else
18927 {
18928 /* TUs don't reference other CUs/TUs (except via type signatures). */
18929 if (cu->per_cu->is_debug_types)
18930 {
18931 error (_("Dwarf Error: Type Unit at offset %s contains"
18932 " external reference to offset %s [in module %s].\n"),
18933 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18934 bfd_get_filename (objfile->obfd));
18935 }
18936 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18937 dwarf2_per_objfile);
18938
18939 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18940 load_partial_comp_unit (per_cu);
18941
18942 per_cu->cu->last_used = 0;
18943 pd = per_cu->cu->find_partial_die (sect_off);
18944 }
18945
18946 /* If we didn't find it, and not all dies have been loaded,
18947 load them all and try again. */
18948
18949 if (pd == NULL && per_cu->load_all_dies == 0)
18950 {
18951 per_cu->load_all_dies = 1;
18952
18953 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18954 THIS_CU->cu may already be in use. So we can't just free it and
18955 replace its DIEs with the ones we read in. Instead, we leave those
18956 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18957 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18958 set. */
18959 load_partial_comp_unit (per_cu);
18960
18961 pd = per_cu->cu->find_partial_die (sect_off);
18962 }
18963
18964 if (pd == NULL)
18965 internal_error (__FILE__, __LINE__,
18966 _("could not find partial DIE %s "
18967 "in cache [from module %s]\n"),
18968 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18969 return { per_cu->cu, pd };
18970 }
18971
18972 /* See if we can figure out if the class lives in a namespace. We do
18973 this by looking for a member function; its demangled name will
18974 contain namespace info, if there is any. */
18975
18976 static void
18977 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18978 struct dwarf2_cu *cu)
18979 {
18980 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18981 what template types look like, because the demangler
18982 frequently doesn't give the same name as the debug info. We
18983 could fix this by only using the demangled name to get the
18984 prefix (but see comment in read_structure_type). */
18985
18986 struct partial_die_info *real_pdi;
18987 struct partial_die_info *child_pdi;
18988
18989 /* If this DIE (this DIE's specification, if any) has a parent, then
18990 we should not do this. We'll prepend the parent's fully qualified
18991 name when we create the partial symbol. */
18992
18993 real_pdi = struct_pdi;
18994 while (real_pdi->has_specification)
18995 {
18996 auto res = find_partial_die (real_pdi->spec_offset,
18997 real_pdi->spec_is_dwz, cu);
18998 real_pdi = res.pdi;
18999 cu = res.cu;
19000 }
19001
19002 if (real_pdi->die_parent != NULL)
19003 return;
19004
19005 for (child_pdi = struct_pdi->die_child;
19006 child_pdi != NULL;
19007 child_pdi = child_pdi->die_sibling)
19008 {
19009 if (child_pdi->tag == DW_TAG_subprogram
19010 && child_pdi->linkage_name != NULL)
19011 {
19012 char *actual_class_name
19013 = language_class_name_from_physname (cu->language_defn,
19014 child_pdi->linkage_name);
19015 if (actual_class_name != NULL)
19016 {
19017 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19018 struct_pdi->name
19019 = ((const char *)
19020 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19021 actual_class_name,
19022 strlen (actual_class_name)));
19023 xfree (actual_class_name);
19024 }
19025 break;
19026 }
19027 }
19028 }
19029
19030 void
19031 partial_die_info::fixup (struct dwarf2_cu *cu)
19032 {
19033 /* Once we've fixed up a die, there's no point in doing so again.
19034 This also avoids a memory leak if we were to call
19035 guess_partial_die_structure_name multiple times. */
19036 if (fixup_called)
19037 return;
19038
19039 /* If we found a reference attribute and the DIE has no name, try
19040 to find a name in the referred to DIE. */
19041
19042 if (name == NULL && has_specification)
19043 {
19044 struct partial_die_info *spec_die;
19045
19046 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19047 spec_die = res.pdi;
19048 cu = res.cu;
19049
19050 spec_die->fixup (cu);
19051
19052 if (spec_die->name)
19053 {
19054 name = spec_die->name;
19055
19056 /* Copy DW_AT_external attribute if it is set. */
19057 if (spec_die->is_external)
19058 is_external = spec_die->is_external;
19059 }
19060 }
19061
19062 /* Set default names for some unnamed DIEs. */
19063
19064 if (name == NULL && tag == DW_TAG_namespace)
19065 name = CP_ANONYMOUS_NAMESPACE_STR;
19066
19067 /* If there is no parent die to provide a namespace, and there are
19068 children, see if we can determine the namespace from their linkage
19069 name. */
19070 if (cu->language == language_cplus
19071 && !VEC_empty (dwarf2_section_info_def,
19072 cu->per_cu->dwarf2_per_objfile->types)
19073 && die_parent == NULL
19074 && has_children
19075 && (tag == DW_TAG_class_type
19076 || tag == DW_TAG_structure_type
19077 || tag == DW_TAG_union_type))
19078 guess_partial_die_structure_name (this, cu);
19079
19080 /* GCC might emit a nameless struct or union that has a linkage
19081 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19082 if (name == NULL
19083 && (tag == DW_TAG_class_type
19084 || tag == DW_TAG_interface_type
19085 || tag == DW_TAG_structure_type
19086 || tag == DW_TAG_union_type)
19087 && linkage_name != NULL)
19088 {
19089 char *demangled;
19090
19091 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19092 if (demangled)
19093 {
19094 const char *base;
19095
19096 /* Strip any leading namespaces/classes, keep only the base name.
19097 DW_AT_name for named DIEs does not contain the prefixes. */
19098 base = strrchr (demangled, ':');
19099 if (base && base > demangled && base[-1] == ':')
19100 base++;
19101 else
19102 base = demangled;
19103
19104 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19105 name
19106 = ((const char *)
19107 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19108 base, strlen (base)));
19109 xfree (demangled);
19110 }
19111 }
19112
19113 fixup_called = 1;
19114 }
19115
19116 /* Read an attribute value described by an attribute form. */
19117
19118 static const gdb_byte *
19119 read_attribute_value (const struct die_reader_specs *reader,
19120 struct attribute *attr, unsigned form,
19121 LONGEST implicit_const, const gdb_byte *info_ptr)
19122 {
19123 struct dwarf2_cu *cu = reader->cu;
19124 struct dwarf2_per_objfile *dwarf2_per_objfile
19125 = cu->per_cu->dwarf2_per_objfile;
19126 struct objfile *objfile = dwarf2_per_objfile->objfile;
19127 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19128 bfd *abfd = reader->abfd;
19129 struct comp_unit_head *cu_header = &cu->header;
19130 unsigned int bytes_read;
19131 struct dwarf_block *blk;
19132
19133 attr->form = (enum dwarf_form) form;
19134 switch (form)
19135 {
19136 case DW_FORM_ref_addr:
19137 if (cu->header.version == 2)
19138 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19139 else
19140 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19141 &cu->header, &bytes_read);
19142 info_ptr += bytes_read;
19143 break;
19144 case DW_FORM_GNU_ref_alt:
19145 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19146 info_ptr += bytes_read;
19147 break;
19148 case DW_FORM_addr:
19149 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19150 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19151 info_ptr += bytes_read;
19152 break;
19153 case DW_FORM_block2:
19154 blk = dwarf_alloc_block (cu);
19155 blk->size = read_2_bytes (abfd, info_ptr);
19156 info_ptr += 2;
19157 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19158 info_ptr += blk->size;
19159 DW_BLOCK (attr) = blk;
19160 break;
19161 case DW_FORM_block4:
19162 blk = dwarf_alloc_block (cu);
19163 blk->size = read_4_bytes (abfd, info_ptr);
19164 info_ptr += 4;
19165 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19166 info_ptr += blk->size;
19167 DW_BLOCK (attr) = blk;
19168 break;
19169 case DW_FORM_data2:
19170 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19171 info_ptr += 2;
19172 break;
19173 case DW_FORM_data4:
19174 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19175 info_ptr += 4;
19176 break;
19177 case DW_FORM_data8:
19178 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19179 info_ptr += 8;
19180 break;
19181 case DW_FORM_data16:
19182 blk = dwarf_alloc_block (cu);
19183 blk->size = 16;
19184 blk->data = read_n_bytes (abfd, info_ptr, 16);
19185 info_ptr += 16;
19186 DW_BLOCK (attr) = blk;
19187 break;
19188 case DW_FORM_sec_offset:
19189 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19190 info_ptr += bytes_read;
19191 break;
19192 case DW_FORM_string:
19193 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19194 DW_STRING_IS_CANONICAL (attr) = 0;
19195 info_ptr += bytes_read;
19196 break;
19197 case DW_FORM_strp:
19198 if (!cu->per_cu->is_dwz)
19199 {
19200 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19201 abfd, info_ptr, cu_header,
19202 &bytes_read);
19203 DW_STRING_IS_CANONICAL (attr) = 0;
19204 info_ptr += bytes_read;
19205 break;
19206 }
19207 /* FALLTHROUGH */
19208 case DW_FORM_line_strp:
19209 if (!cu->per_cu->is_dwz)
19210 {
19211 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19212 abfd, info_ptr,
19213 cu_header, &bytes_read);
19214 DW_STRING_IS_CANONICAL (attr) = 0;
19215 info_ptr += bytes_read;
19216 break;
19217 }
19218 /* FALLTHROUGH */
19219 case DW_FORM_GNU_strp_alt:
19220 {
19221 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19222 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19223 &bytes_read);
19224
19225 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19226 dwz, str_offset);
19227 DW_STRING_IS_CANONICAL (attr) = 0;
19228 info_ptr += bytes_read;
19229 }
19230 break;
19231 case DW_FORM_exprloc:
19232 case DW_FORM_block:
19233 blk = dwarf_alloc_block (cu);
19234 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19235 info_ptr += bytes_read;
19236 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19237 info_ptr += blk->size;
19238 DW_BLOCK (attr) = blk;
19239 break;
19240 case DW_FORM_block1:
19241 blk = dwarf_alloc_block (cu);
19242 blk->size = read_1_byte (abfd, info_ptr);
19243 info_ptr += 1;
19244 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19245 info_ptr += blk->size;
19246 DW_BLOCK (attr) = blk;
19247 break;
19248 case DW_FORM_data1:
19249 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19250 info_ptr += 1;
19251 break;
19252 case DW_FORM_flag:
19253 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19254 info_ptr += 1;
19255 break;
19256 case DW_FORM_flag_present:
19257 DW_UNSND (attr) = 1;
19258 break;
19259 case DW_FORM_sdata:
19260 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19261 info_ptr += bytes_read;
19262 break;
19263 case DW_FORM_udata:
19264 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19265 info_ptr += bytes_read;
19266 break;
19267 case DW_FORM_ref1:
19268 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19269 + read_1_byte (abfd, info_ptr));
19270 info_ptr += 1;
19271 break;
19272 case DW_FORM_ref2:
19273 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19274 + read_2_bytes (abfd, info_ptr));
19275 info_ptr += 2;
19276 break;
19277 case DW_FORM_ref4:
19278 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19279 + read_4_bytes (abfd, info_ptr));
19280 info_ptr += 4;
19281 break;
19282 case DW_FORM_ref8:
19283 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19284 + read_8_bytes (abfd, info_ptr));
19285 info_ptr += 8;
19286 break;
19287 case DW_FORM_ref_sig8:
19288 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19289 info_ptr += 8;
19290 break;
19291 case DW_FORM_ref_udata:
19292 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19293 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19294 info_ptr += bytes_read;
19295 break;
19296 case DW_FORM_indirect:
19297 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19298 info_ptr += bytes_read;
19299 if (form == DW_FORM_implicit_const)
19300 {
19301 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19302 info_ptr += bytes_read;
19303 }
19304 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19305 info_ptr);
19306 break;
19307 case DW_FORM_implicit_const:
19308 DW_SND (attr) = implicit_const;
19309 break;
19310 case DW_FORM_addrx:
19311 case DW_FORM_GNU_addr_index:
19312 if (reader->dwo_file == NULL)
19313 {
19314 /* For now flag a hard error.
19315 Later we can turn this into a complaint. */
19316 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19317 dwarf_form_name (form),
19318 bfd_get_filename (abfd));
19319 }
19320 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19321 info_ptr += bytes_read;
19322 break;
19323 case DW_FORM_strx:
19324 case DW_FORM_strx1:
19325 case DW_FORM_strx2:
19326 case DW_FORM_strx3:
19327 case DW_FORM_strx4:
19328 case DW_FORM_GNU_str_index:
19329 if (reader->dwo_file == NULL)
19330 {
19331 /* For now flag a hard error.
19332 Later we can turn this into a complaint if warranted. */
19333 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19334 dwarf_form_name (form),
19335 bfd_get_filename (abfd));
19336 }
19337 {
19338 ULONGEST str_index;
19339 if (form == DW_FORM_strx1)
19340 {
19341 str_index = read_1_byte (abfd, info_ptr);
19342 info_ptr += 1;
19343 }
19344 else if (form == DW_FORM_strx2)
19345 {
19346 str_index = read_2_bytes (abfd, info_ptr);
19347 info_ptr += 2;
19348 }
19349 else if (form == DW_FORM_strx3)
19350 {
19351 str_index = read_3_bytes (abfd, info_ptr);
19352 info_ptr += 3;
19353 }
19354 else if (form == DW_FORM_strx4)
19355 {
19356 str_index = read_4_bytes (abfd, info_ptr);
19357 info_ptr += 4;
19358 }
19359 else
19360 {
19361 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19362 info_ptr += bytes_read;
19363 }
19364 DW_STRING (attr) = read_str_index (reader, str_index);
19365 DW_STRING_IS_CANONICAL (attr) = 0;
19366 }
19367 break;
19368 default:
19369 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19370 dwarf_form_name (form),
19371 bfd_get_filename (abfd));
19372 }
19373
19374 /* Super hack. */
19375 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19376 attr->form = DW_FORM_GNU_ref_alt;
19377
19378 /* We have seen instances where the compiler tried to emit a byte
19379 size attribute of -1 which ended up being encoded as an unsigned
19380 0xffffffff. Although 0xffffffff is technically a valid size value,
19381 an object of this size seems pretty unlikely so we can relatively
19382 safely treat these cases as if the size attribute was invalid and
19383 treat them as zero by default. */
19384 if (attr->name == DW_AT_byte_size
19385 && form == DW_FORM_data4
19386 && DW_UNSND (attr) >= 0xffffffff)
19387 {
19388 complaint
19389 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19390 hex_string (DW_UNSND (attr)));
19391 DW_UNSND (attr) = 0;
19392 }
19393
19394 return info_ptr;
19395 }
19396
19397 /* Read an attribute described by an abbreviated attribute. */
19398
19399 static const gdb_byte *
19400 read_attribute (const struct die_reader_specs *reader,
19401 struct attribute *attr, struct attr_abbrev *abbrev,
19402 const gdb_byte *info_ptr)
19403 {
19404 attr->name = abbrev->name;
19405 return read_attribute_value (reader, attr, abbrev->form,
19406 abbrev->implicit_const, info_ptr);
19407 }
19408
19409 /* Read dwarf information from a buffer. */
19410
19411 static unsigned int
19412 read_1_byte (bfd *abfd, const gdb_byte *buf)
19413 {
19414 return bfd_get_8 (abfd, buf);
19415 }
19416
19417 static int
19418 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19419 {
19420 return bfd_get_signed_8 (abfd, buf);
19421 }
19422
19423 static unsigned int
19424 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19425 {
19426 return bfd_get_16 (abfd, buf);
19427 }
19428
19429 static int
19430 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19431 {
19432 return bfd_get_signed_16 (abfd, buf);
19433 }
19434
19435 static unsigned int
19436 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19437 {
19438 unsigned int result = 0;
19439 for (int i = 0; i < 3; ++i)
19440 {
19441 unsigned char byte = bfd_get_8 (abfd, buf);
19442 buf++;
19443 result |= ((unsigned int) byte << (i * 8));
19444 }
19445 return result;
19446 }
19447
19448 static unsigned int
19449 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19450 {
19451 return bfd_get_32 (abfd, buf);
19452 }
19453
19454 static int
19455 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19456 {
19457 return bfd_get_signed_32 (abfd, buf);
19458 }
19459
19460 static ULONGEST
19461 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19462 {
19463 return bfd_get_64 (abfd, buf);
19464 }
19465
19466 static CORE_ADDR
19467 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19468 unsigned int *bytes_read)
19469 {
19470 struct comp_unit_head *cu_header = &cu->header;
19471 CORE_ADDR retval = 0;
19472
19473 if (cu_header->signed_addr_p)
19474 {
19475 switch (cu_header->addr_size)
19476 {
19477 case 2:
19478 retval = bfd_get_signed_16 (abfd, buf);
19479 break;
19480 case 4:
19481 retval = bfd_get_signed_32 (abfd, buf);
19482 break;
19483 case 8:
19484 retval = bfd_get_signed_64 (abfd, buf);
19485 break;
19486 default:
19487 internal_error (__FILE__, __LINE__,
19488 _("read_address: bad switch, signed [in module %s]"),
19489 bfd_get_filename (abfd));
19490 }
19491 }
19492 else
19493 {
19494 switch (cu_header->addr_size)
19495 {
19496 case 2:
19497 retval = bfd_get_16 (abfd, buf);
19498 break;
19499 case 4:
19500 retval = bfd_get_32 (abfd, buf);
19501 break;
19502 case 8:
19503 retval = bfd_get_64 (abfd, buf);
19504 break;
19505 default:
19506 internal_error (__FILE__, __LINE__,
19507 _("read_address: bad switch, "
19508 "unsigned [in module %s]"),
19509 bfd_get_filename (abfd));
19510 }
19511 }
19512
19513 *bytes_read = cu_header->addr_size;
19514 return retval;
19515 }
19516
19517 /* Read the initial length from a section. The (draft) DWARF 3
19518 specification allows the initial length to take up either 4 bytes
19519 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19520 bytes describe the length and all offsets will be 8 bytes in length
19521 instead of 4.
19522
19523 An older, non-standard 64-bit format is also handled by this
19524 function. The older format in question stores the initial length
19525 as an 8-byte quantity without an escape value. Lengths greater
19526 than 2^32 aren't very common which means that the initial 4 bytes
19527 is almost always zero. Since a length value of zero doesn't make
19528 sense for the 32-bit format, this initial zero can be considered to
19529 be an escape value which indicates the presence of the older 64-bit
19530 format. As written, the code can't detect (old format) lengths
19531 greater than 4GB. If it becomes necessary to handle lengths
19532 somewhat larger than 4GB, we could allow other small values (such
19533 as the non-sensical values of 1, 2, and 3) to also be used as
19534 escape values indicating the presence of the old format.
19535
19536 The value returned via bytes_read should be used to increment the
19537 relevant pointer after calling read_initial_length().
19538
19539 [ Note: read_initial_length() and read_offset() are based on the
19540 document entitled "DWARF Debugging Information Format", revision
19541 3, draft 8, dated November 19, 2001. This document was obtained
19542 from:
19543
19544 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19545
19546 This document is only a draft and is subject to change. (So beware.)
19547
19548 Details regarding the older, non-standard 64-bit format were
19549 determined empirically by examining 64-bit ELF files produced by
19550 the SGI toolchain on an IRIX 6.5 machine.
19551
19552 - Kevin, July 16, 2002
19553 ] */
19554
19555 static LONGEST
19556 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19557 {
19558 LONGEST length = bfd_get_32 (abfd, buf);
19559
19560 if (length == 0xffffffff)
19561 {
19562 length = bfd_get_64 (abfd, buf + 4);
19563 *bytes_read = 12;
19564 }
19565 else if (length == 0)
19566 {
19567 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19568 length = bfd_get_64 (abfd, buf);
19569 *bytes_read = 8;
19570 }
19571 else
19572 {
19573 *bytes_read = 4;
19574 }
19575
19576 return length;
19577 }
19578
19579 /* Cover function for read_initial_length.
19580 Returns the length of the object at BUF, and stores the size of the
19581 initial length in *BYTES_READ and stores the size that offsets will be in
19582 *OFFSET_SIZE.
19583 If the initial length size is not equivalent to that specified in
19584 CU_HEADER then issue a complaint.
19585 This is useful when reading non-comp-unit headers. */
19586
19587 static LONGEST
19588 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19589 const struct comp_unit_head *cu_header,
19590 unsigned int *bytes_read,
19591 unsigned int *offset_size)
19592 {
19593 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19594
19595 gdb_assert (cu_header->initial_length_size == 4
19596 || cu_header->initial_length_size == 8
19597 || cu_header->initial_length_size == 12);
19598
19599 if (cu_header->initial_length_size != *bytes_read)
19600 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19601
19602 *offset_size = (*bytes_read == 4) ? 4 : 8;
19603 return length;
19604 }
19605
19606 /* Read an offset from the data stream. The size of the offset is
19607 given by cu_header->offset_size. */
19608
19609 static LONGEST
19610 read_offset (bfd *abfd, const gdb_byte *buf,
19611 const struct comp_unit_head *cu_header,
19612 unsigned int *bytes_read)
19613 {
19614 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19615
19616 *bytes_read = cu_header->offset_size;
19617 return offset;
19618 }
19619
19620 /* Read an offset from the data stream. */
19621
19622 static LONGEST
19623 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19624 {
19625 LONGEST retval = 0;
19626
19627 switch (offset_size)
19628 {
19629 case 4:
19630 retval = bfd_get_32 (abfd, buf);
19631 break;
19632 case 8:
19633 retval = bfd_get_64 (abfd, buf);
19634 break;
19635 default:
19636 internal_error (__FILE__, __LINE__,
19637 _("read_offset_1: bad switch [in module %s]"),
19638 bfd_get_filename (abfd));
19639 }
19640
19641 return retval;
19642 }
19643
19644 static const gdb_byte *
19645 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19646 {
19647 /* If the size of a host char is 8 bits, we can return a pointer
19648 to the buffer, otherwise we have to copy the data to a buffer
19649 allocated on the temporary obstack. */
19650 gdb_assert (HOST_CHAR_BIT == 8);
19651 return buf;
19652 }
19653
19654 static const char *
19655 read_direct_string (bfd *abfd, const gdb_byte *buf,
19656 unsigned int *bytes_read_ptr)
19657 {
19658 /* If the size of a host char is 8 bits, we can return a pointer
19659 to the string, otherwise we have to copy the string to a buffer
19660 allocated on the temporary obstack. */
19661 gdb_assert (HOST_CHAR_BIT == 8);
19662 if (*buf == '\0')
19663 {
19664 *bytes_read_ptr = 1;
19665 return NULL;
19666 }
19667 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19668 return (const char *) buf;
19669 }
19670
19671 /* Return pointer to string at section SECT offset STR_OFFSET with error
19672 reporting strings FORM_NAME and SECT_NAME. */
19673
19674 static const char *
19675 read_indirect_string_at_offset_from (struct objfile *objfile,
19676 bfd *abfd, LONGEST str_offset,
19677 struct dwarf2_section_info *sect,
19678 const char *form_name,
19679 const char *sect_name)
19680 {
19681 dwarf2_read_section (objfile, sect);
19682 if (sect->buffer == NULL)
19683 error (_("%s used without %s section [in module %s]"),
19684 form_name, sect_name, bfd_get_filename (abfd));
19685 if (str_offset >= sect->size)
19686 error (_("%s pointing outside of %s section [in module %s]"),
19687 form_name, sect_name, bfd_get_filename (abfd));
19688 gdb_assert (HOST_CHAR_BIT == 8);
19689 if (sect->buffer[str_offset] == '\0')
19690 return NULL;
19691 return (const char *) (sect->buffer + str_offset);
19692 }
19693
19694 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19695
19696 static const char *
19697 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19698 bfd *abfd, LONGEST str_offset)
19699 {
19700 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19701 abfd, str_offset,
19702 &dwarf2_per_objfile->str,
19703 "DW_FORM_strp", ".debug_str");
19704 }
19705
19706 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19707
19708 static const char *
19709 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19710 bfd *abfd, LONGEST str_offset)
19711 {
19712 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19713 abfd, str_offset,
19714 &dwarf2_per_objfile->line_str,
19715 "DW_FORM_line_strp",
19716 ".debug_line_str");
19717 }
19718
19719 /* Read a string at offset STR_OFFSET in the .debug_str section from
19720 the .dwz file DWZ. Throw an error if the offset is too large. If
19721 the string consists of a single NUL byte, return NULL; otherwise
19722 return a pointer to the string. */
19723
19724 static const char *
19725 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19726 LONGEST str_offset)
19727 {
19728 dwarf2_read_section (objfile, &dwz->str);
19729
19730 if (dwz->str.buffer == NULL)
19731 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19732 "section [in module %s]"),
19733 bfd_get_filename (dwz->dwz_bfd));
19734 if (str_offset >= dwz->str.size)
19735 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19736 ".debug_str section [in module %s]"),
19737 bfd_get_filename (dwz->dwz_bfd));
19738 gdb_assert (HOST_CHAR_BIT == 8);
19739 if (dwz->str.buffer[str_offset] == '\0')
19740 return NULL;
19741 return (const char *) (dwz->str.buffer + str_offset);
19742 }
19743
19744 /* Return pointer to string at .debug_str offset as read from BUF.
19745 BUF is assumed to be in a compilation unit described by CU_HEADER.
19746 Return *BYTES_READ_PTR count of bytes read from BUF. */
19747
19748 static const char *
19749 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19750 const gdb_byte *buf,
19751 const struct comp_unit_head *cu_header,
19752 unsigned int *bytes_read_ptr)
19753 {
19754 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19755
19756 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19757 }
19758
19759 /* Return pointer to string at .debug_line_str offset as read from BUF.
19760 BUF is assumed to be in a compilation unit described by CU_HEADER.
19761 Return *BYTES_READ_PTR count of bytes read from BUF. */
19762
19763 static const char *
19764 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19765 bfd *abfd, const gdb_byte *buf,
19766 const struct comp_unit_head *cu_header,
19767 unsigned int *bytes_read_ptr)
19768 {
19769 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19770
19771 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19772 str_offset);
19773 }
19774
19775 ULONGEST
19776 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19777 unsigned int *bytes_read_ptr)
19778 {
19779 ULONGEST result;
19780 unsigned int num_read;
19781 int shift;
19782 unsigned char byte;
19783
19784 result = 0;
19785 shift = 0;
19786 num_read = 0;
19787 while (1)
19788 {
19789 byte = bfd_get_8 (abfd, buf);
19790 buf++;
19791 num_read++;
19792 result |= ((ULONGEST) (byte & 127) << shift);
19793 if ((byte & 128) == 0)
19794 {
19795 break;
19796 }
19797 shift += 7;
19798 }
19799 *bytes_read_ptr = num_read;
19800 return result;
19801 }
19802
19803 static LONGEST
19804 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19805 unsigned int *bytes_read_ptr)
19806 {
19807 ULONGEST result;
19808 int shift, num_read;
19809 unsigned char byte;
19810
19811 result = 0;
19812 shift = 0;
19813 num_read = 0;
19814 while (1)
19815 {
19816 byte = bfd_get_8 (abfd, buf);
19817 buf++;
19818 num_read++;
19819 result |= ((ULONGEST) (byte & 127) << shift);
19820 shift += 7;
19821 if ((byte & 128) == 0)
19822 {
19823 break;
19824 }
19825 }
19826 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19827 result |= -(((ULONGEST) 1) << shift);
19828 *bytes_read_ptr = num_read;
19829 return result;
19830 }
19831
19832 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19833 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19834 ADDR_SIZE is the size of addresses from the CU header. */
19835
19836 static CORE_ADDR
19837 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19838 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19839 {
19840 struct objfile *objfile = dwarf2_per_objfile->objfile;
19841 bfd *abfd = objfile->obfd;
19842 const gdb_byte *info_ptr;
19843
19844 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19845 if (dwarf2_per_objfile->addr.buffer == NULL)
19846 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19847 objfile_name (objfile));
19848 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19849 error (_("DW_FORM_addr_index pointing outside of "
19850 ".debug_addr section [in module %s]"),
19851 objfile_name (objfile));
19852 info_ptr = (dwarf2_per_objfile->addr.buffer
19853 + addr_base + addr_index * addr_size);
19854 if (addr_size == 4)
19855 return bfd_get_32 (abfd, info_ptr);
19856 else
19857 return bfd_get_64 (abfd, info_ptr);
19858 }
19859
19860 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19861
19862 static CORE_ADDR
19863 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19864 {
19865 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19866 cu->addr_base, cu->header.addr_size);
19867 }
19868
19869 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19870
19871 static CORE_ADDR
19872 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19873 unsigned int *bytes_read)
19874 {
19875 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19876 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19877
19878 return read_addr_index (cu, addr_index);
19879 }
19880
19881 /* Data structure to pass results from dwarf2_read_addr_index_reader
19882 back to dwarf2_read_addr_index. */
19883
19884 struct dwarf2_read_addr_index_data
19885 {
19886 ULONGEST addr_base;
19887 int addr_size;
19888 };
19889
19890 /* die_reader_func for dwarf2_read_addr_index. */
19891
19892 static void
19893 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19894 const gdb_byte *info_ptr,
19895 struct die_info *comp_unit_die,
19896 int has_children,
19897 void *data)
19898 {
19899 struct dwarf2_cu *cu = reader->cu;
19900 struct dwarf2_read_addr_index_data *aidata =
19901 (struct dwarf2_read_addr_index_data *) data;
19902
19903 aidata->addr_base = cu->addr_base;
19904 aidata->addr_size = cu->header.addr_size;
19905 }
19906
19907 /* Given an index in .debug_addr, fetch the value.
19908 NOTE: This can be called during dwarf expression evaluation,
19909 long after the debug information has been read, and thus per_cu->cu
19910 may no longer exist. */
19911
19912 CORE_ADDR
19913 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19914 unsigned int addr_index)
19915 {
19916 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19917 struct dwarf2_cu *cu = per_cu->cu;
19918 ULONGEST addr_base;
19919 int addr_size;
19920
19921 /* We need addr_base and addr_size.
19922 If we don't have PER_CU->cu, we have to get it.
19923 Nasty, but the alternative is storing the needed info in PER_CU,
19924 which at this point doesn't seem justified: it's not clear how frequently
19925 it would get used and it would increase the size of every PER_CU.
19926 Entry points like dwarf2_per_cu_addr_size do a similar thing
19927 so we're not in uncharted territory here.
19928 Alas we need to be a bit more complicated as addr_base is contained
19929 in the DIE.
19930
19931 We don't need to read the entire CU(/TU).
19932 We just need the header and top level die.
19933
19934 IWBN to use the aging mechanism to let us lazily later discard the CU.
19935 For now we skip this optimization. */
19936
19937 if (cu != NULL)
19938 {
19939 addr_base = cu->addr_base;
19940 addr_size = cu->header.addr_size;
19941 }
19942 else
19943 {
19944 struct dwarf2_read_addr_index_data aidata;
19945
19946 /* Note: We can't use init_cutu_and_read_dies_simple here,
19947 we need addr_base. */
19948 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19949 dwarf2_read_addr_index_reader, &aidata);
19950 addr_base = aidata.addr_base;
19951 addr_size = aidata.addr_size;
19952 }
19953
19954 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19955 addr_size);
19956 }
19957
19958 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19959 This is only used by the Fission support. */
19960
19961 static const char *
19962 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19963 {
19964 struct dwarf2_cu *cu = reader->cu;
19965 struct dwarf2_per_objfile *dwarf2_per_objfile
19966 = cu->per_cu->dwarf2_per_objfile;
19967 struct objfile *objfile = dwarf2_per_objfile->objfile;
19968 const char *objf_name = objfile_name (objfile);
19969 bfd *abfd = objfile->obfd;
19970 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19971 struct dwarf2_section_info *str_offsets_section =
19972 &reader->dwo_file->sections.str_offsets;
19973 const gdb_byte *info_ptr;
19974 ULONGEST str_offset;
19975 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19976
19977 dwarf2_read_section (objfile, str_section);
19978 dwarf2_read_section (objfile, str_offsets_section);
19979 if (str_section->buffer == NULL)
19980 error (_("%s used without .debug_str.dwo section"
19981 " in CU at offset %s [in module %s]"),
19982 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19983 if (str_offsets_section->buffer == NULL)
19984 error (_("%s used without .debug_str_offsets.dwo section"
19985 " in CU at offset %s [in module %s]"),
19986 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19987 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19988 error (_("%s pointing outside of .debug_str_offsets.dwo"
19989 " section in CU at offset %s [in module %s]"),
19990 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19991 info_ptr = (str_offsets_section->buffer
19992 + str_index * cu->header.offset_size);
19993 if (cu->header.offset_size == 4)
19994 str_offset = bfd_get_32 (abfd, info_ptr);
19995 else
19996 str_offset = bfd_get_64 (abfd, info_ptr);
19997 if (str_offset >= str_section->size)
19998 error (_("Offset from %s pointing outside of"
19999 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20000 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20001 return (const char *) (str_section->buffer + str_offset);
20002 }
20003
20004 /* Return the length of an LEB128 number in BUF. */
20005
20006 static int
20007 leb128_size (const gdb_byte *buf)
20008 {
20009 const gdb_byte *begin = buf;
20010 gdb_byte byte;
20011
20012 while (1)
20013 {
20014 byte = *buf++;
20015 if ((byte & 128) == 0)
20016 return buf - begin;
20017 }
20018 }
20019
20020 static void
20021 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20022 {
20023 switch (lang)
20024 {
20025 case DW_LANG_C89:
20026 case DW_LANG_C99:
20027 case DW_LANG_C11:
20028 case DW_LANG_C:
20029 case DW_LANG_UPC:
20030 cu->language = language_c;
20031 break;
20032 case DW_LANG_Java:
20033 case DW_LANG_C_plus_plus:
20034 case DW_LANG_C_plus_plus_11:
20035 case DW_LANG_C_plus_plus_14:
20036 cu->language = language_cplus;
20037 break;
20038 case DW_LANG_D:
20039 cu->language = language_d;
20040 break;
20041 case DW_LANG_Fortran77:
20042 case DW_LANG_Fortran90:
20043 case DW_LANG_Fortran95:
20044 case DW_LANG_Fortran03:
20045 case DW_LANG_Fortran08:
20046 cu->language = language_fortran;
20047 break;
20048 case DW_LANG_Go:
20049 cu->language = language_go;
20050 break;
20051 case DW_LANG_Mips_Assembler:
20052 cu->language = language_asm;
20053 break;
20054 case DW_LANG_Ada83:
20055 case DW_LANG_Ada95:
20056 cu->language = language_ada;
20057 break;
20058 case DW_LANG_Modula2:
20059 cu->language = language_m2;
20060 break;
20061 case DW_LANG_Pascal83:
20062 cu->language = language_pascal;
20063 break;
20064 case DW_LANG_ObjC:
20065 cu->language = language_objc;
20066 break;
20067 case DW_LANG_Rust:
20068 case DW_LANG_Rust_old:
20069 cu->language = language_rust;
20070 break;
20071 case DW_LANG_Cobol74:
20072 case DW_LANG_Cobol85:
20073 default:
20074 cu->language = language_minimal;
20075 break;
20076 }
20077 cu->language_defn = language_def (cu->language);
20078 }
20079
20080 /* Return the named attribute or NULL if not there. */
20081
20082 static struct attribute *
20083 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20084 {
20085 for (;;)
20086 {
20087 unsigned int i;
20088 struct attribute *spec = NULL;
20089
20090 for (i = 0; i < die->num_attrs; ++i)
20091 {
20092 if (die->attrs[i].name == name)
20093 return &die->attrs[i];
20094 if (die->attrs[i].name == DW_AT_specification
20095 || die->attrs[i].name == DW_AT_abstract_origin)
20096 spec = &die->attrs[i];
20097 }
20098
20099 if (!spec)
20100 break;
20101
20102 die = follow_die_ref (die, spec, &cu);
20103 }
20104
20105 return NULL;
20106 }
20107
20108 /* Return the named attribute or NULL if not there,
20109 but do not follow DW_AT_specification, etc.
20110 This is for use in contexts where we're reading .debug_types dies.
20111 Following DW_AT_specification, DW_AT_abstract_origin will take us
20112 back up the chain, and we want to go down. */
20113
20114 static struct attribute *
20115 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20116 {
20117 unsigned int i;
20118
20119 for (i = 0; i < die->num_attrs; ++i)
20120 if (die->attrs[i].name == name)
20121 return &die->attrs[i];
20122
20123 return NULL;
20124 }
20125
20126 /* Return the string associated with a string-typed attribute, or NULL if it
20127 is either not found or is of an incorrect type. */
20128
20129 static const char *
20130 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20131 {
20132 struct attribute *attr;
20133 const char *str = NULL;
20134
20135 attr = dwarf2_attr (die, name, cu);
20136
20137 if (attr != NULL)
20138 {
20139 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20140 || attr->form == DW_FORM_string
20141 || attr->form == DW_FORM_strx
20142 || attr->form == DW_FORM_GNU_str_index
20143 || attr->form == DW_FORM_GNU_strp_alt)
20144 str = DW_STRING (attr);
20145 else
20146 complaint (_("string type expected for attribute %s for "
20147 "DIE at %s in module %s"),
20148 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20149 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20150 }
20151
20152 return str;
20153 }
20154
20155 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20156 and holds a non-zero value. This function should only be used for
20157 DW_FORM_flag or DW_FORM_flag_present attributes. */
20158
20159 static int
20160 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20161 {
20162 struct attribute *attr = dwarf2_attr (die, name, cu);
20163
20164 return (attr && DW_UNSND (attr));
20165 }
20166
20167 static int
20168 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20169 {
20170 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20171 which value is non-zero. However, we have to be careful with
20172 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20173 (via dwarf2_flag_true_p) follows this attribute. So we may
20174 end up accidently finding a declaration attribute that belongs
20175 to a different DIE referenced by the specification attribute,
20176 even though the given DIE does not have a declaration attribute. */
20177 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20178 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20179 }
20180
20181 /* Return the die giving the specification for DIE, if there is
20182 one. *SPEC_CU is the CU containing DIE on input, and the CU
20183 containing the return value on output. If there is no
20184 specification, but there is an abstract origin, that is
20185 returned. */
20186
20187 static struct die_info *
20188 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20189 {
20190 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20191 *spec_cu);
20192
20193 if (spec_attr == NULL)
20194 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20195
20196 if (spec_attr == NULL)
20197 return NULL;
20198 else
20199 return follow_die_ref (die, spec_attr, spec_cu);
20200 }
20201
20202 /* Stub for free_line_header to match void * callback types. */
20203
20204 static void
20205 free_line_header_voidp (void *arg)
20206 {
20207 struct line_header *lh = (struct line_header *) arg;
20208
20209 delete lh;
20210 }
20211
20212 void
20213 line_header::add_include_dir (const char *include_dir)
20214 {
20215 if (dwarf_line_debug >= 2)
20216 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20217 include_dirs.size () + 1, include_dir);
20218
20219 include_dirs.push_back (include_dir);
20220 }
20221
20222 void
20223 line_header::add_file_name (const char *name,
20224 dir_index d_index,
20225 unsigned int mod_time,
20226 unsigned int length)
20227 {
20228 if (dwarf_line_debug >= 2)
20229 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20230 (unsigned) file_names.size () + 1, name);
20231
20232 file_names.emplace_back (name, d_index, mod_time, length);
20233 }
20234
20235 /* A convenience function to find the proper .debug_line section for a CU. */
20236
20237 static struct dwarf2_section_info *
20238 get_debug_line_section (struct dwarf2_cu *cu)
20239 {
20240 struct dwarf2_section_info *section;
20241 struct dwarf2_per_objfile *dwarf2_per_objfile
20242 = cu->per_cu->dwarf2_per_objfile;
20243
20244 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20245 DWO file. */
20246 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20247 section = &cu->dwo_unit->dwo_file->sections.line;
20248 else if (cu->per_cu->is_dwz)
20249 {
20250 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20251
20252 section = &dwz->line;
20253 }
20254 else
20255 section = &dwarf2_per_objfile->line;
20256
20257 return section;
20258 }
20259
20260 /* Read directory or file name entry format, starting with byte of
20261 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20262 entries count and the entries themselves in the described entry
20263 format. */
20264
20265 static void
20266 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20267 bfd *abfd, const gdb_byte **bufp,
20268 struct line_header *lh,
20269 const struct comp_unit_head *cu_header,
20270 void (*callback) (struct line_header *lh,
20271 const char *name,
20272 dir_index d_index,
20273 unsigned int mod_time,
20274 unsigned int length))
20275 {
20276 gdb_byte format_count, formati;
20277 ULONGEST data_count, datai;
20278 const gdb_byte *buf = *bufp;
20279 const gdb_byte *format_header_data;
20280 unsigned int bytes_read;
20281
20282 format_count = read_1_byte (abfd, buf);
20283 buf += 1;
20284 format_header_data = buf;
20285 for (formati = 0; formati < format_count; formati++)
20286 {
20287 read_unsigned_leb128 (abfd, buf, &bytes_read);
20288 buf += bytes_read;
20289 read_unsigned_leb128 (abfd, buf, &bytes_read);
20290 buf += bytes_read;
20291 }
20292
20293 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20294 buf += bytes_read;
20295 for (datai = 0; datai < data_count; datai++)
20296 {
20297 const gdb_byte *format = format_header_data;
20298 struct file_entry fe;
20299
20300 for (formati = 0; formati < format_count; formati++)
20301 {
20302 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20303 format += bytes_read;
20304
20305 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20306 format += bytes_read;
20307
20308 gdb::optional<const char *> string;
20309 gdb::optional<unsigned int> uint;
20310
20311 switch (form)
20312 {
20313 case DW_FORM_string:
20314 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20315 buf += bytes_read;
20316 break;
20317
20318 case DW_FORM_line_strp:
20319 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20320 abfd, buf,
20321 cu_header,
20322 &bytes_read));
20323 buf += bytes_read;
20324 break;
20325
20326 case DW_FORM_data1:
20327 uint.emplace (read_1_byte (abfd, buf));
20328 buf += 1;
20329 break;
20330
20331 case DW_FORM_data2:
20332 uint.emplace (read_2_bytes (abfd, buf));
20333 buf += 2;
20334 break;
20335
20336 case DW_FORM_data4:
20337 uint.emplace (read_4_bytes (abfd, buf));
20338 buf += 4;
20339 break;
20340
20341 case DW_FORM_data8:
20342 uint.emplace (read_8_bytes (abfd, buf));
20343 buf += 8;
20344 break;
20345
20346 case DW_FORM_udata:
20347 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20348 buf += bytes_read;
20349 break;
20350
20351 case DW_FORM_block:
20352 /* It is valid only for DW_LNCT_timestamp which is ignored by
20353 current GDB. */
20354 break;
20355 }
20356
20357 switch (content_type)
20358 {
20359 case DW_LNCT_path:
20360 if (string.has_value ())
20361 fe.name = *string;
20362 break;
20363 case DW_LNCT_directory_index:
20364 if (uint.has_value ())
20365 fe.d_index = (dir_index) *uint;
20366 break;
20367 case DW_LNCT_timestamp:
20368 if (uint.has_value ())
20369 fe.mod_time = *uint;
20370 break;
20371 case DW_LNCT_size:
20372 if (uint.has_value ())
20373 fe.length = *uint;
20374 break;
20375 case DW_LNCT_MD5:
20376 break;
20377 default:
20378 complaint (_("Unknown format content type %s"),
20379 pulongest (content_type));
20380 }
20381 }
20382
20383 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20384 }
20385
20386 *bufp = buf;
20387 }
20388
20389 /* Read the statement program header starting at OFFSET in
20390 .debug_line, or .debug_line.dwo. Return a pointer
20391 to a struct line_header, allocated using xmalloc.
20392 Returns NULL if there is a problem reading the header, e.g., if it
20393 has a version we don't understand.
20394
20395 NOTE: the strings in the include directory and file name tables of
20396 the returned object point into the dwarf line section buffer,
20397 and must not be freed. */
20398
20399 static line_header_up
20400 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20401 {
20402 const gdb_byte *line_ptr;
20403 unsigned int bytes_read, offset_size;
20404 int i;
20405 const char *cur_dir, *cur_file;
20406 struct dwarf2_section_info *section;
20407 bfd *abfd;
20408 struct dwarf2_per_objfile *dwarf2_per_objfile
20409 = cu->per_cu->dwarf2_per_objfile;
20410
20411 section = get_debug_line_section (cu);
20412 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20413 if (section->buffer == NULL)
20414 {
20415 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20416 complaint (_("missing .debug_line.dwo section"));
20417 else
20418 complaint (_("missing .debug_line section"));
20419 return 0;
20420 }
20421
20422 /* We can't do this until we know the section is non-empty.
20423 Only then do we know we have such a section. */
20424 abfd = get_section_bfd_owner (section);
20425
20426 /* Make sure that at least there's room for the total_length field.
20427 That could be 12 bytes long, but we're just going to fudge that. */
20428 if (to_underlying (sect_off) + 4 >= section->size)
20429 {
20430 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20431 return 0;
20432 }
20433
20434 line_header_up lh (new line_header ());
20435
20436 lh->sect_off = sect_off;
20437 lh->offset_in_dwz = cu->per_cu->is_dwz;
20438
20439 line_ptr = section->buffer + to_underlying (sect_off);
20440
20441 /* Read in the header. */
20442 lh->total_length =
20443 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20444 &bytes_read, &offset_size);
20445 line_ptr += bytes_read;
20446 if (line_ptr + lh->total_length > (section->buffer + section->size))
20447 {
20448 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20449 return 0;
20450 }
20451 lh->statement_program_end = line_ptr + lh->total_length;
20452 lh->version = read_2_bytes (abfd, line_ptr);
20453 line_ptr += 2;
20454 if (lh->version > 5)
20455 {
20456 /* This is a version we don't understand. The format could have
20457 changed in ways we don't handle properly so just punt. */
20458 complaint (_("unsupported version in .debug_line section"));
20459 return NULL;
20460 }
20461 if (lh->version >= 5)
20462 {
20463 gdb_byte segment_selector_size;
20464
20465 /* Skip address size. */
20466 read_1_byte (abfd, line_ptr);
20467 line_ptr += 1;
20468
20469 segment_selector_size = read_1_byte (abfd, line_ptr);
20470 line_ptr += 1;
20471 if (segment_selector_size != 0)
20472 {
20473 complaint (_("unsupported segment selector size %u "
20474 "in .debug_line section"),
20475 segment_selector_size);
20476 return NULL;
20477 }
20478 }
20479 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20480 line_ptr += offset_size;
20481 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20482 line_ptr += 1;
20483 if (lh->version >= 4)
20484 {
20485 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20486 line_ptr += 1;
20487 }
20488 else
20489 lh->maximum_ops_per_instruction = 1;
20490
20491 if (lh->maximum_ops_per_instruction == 0)
20492 {
20493 lh->maximum_ops_per_instruction = 1;
20494 complaint (_("invalid maximum_ops_per_instruction "
20495 "in `.debug_line' section"));
20496 }
20497
20498 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20499 line_ptr += 1;
20500 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20501 line_ptr += 1;
20502 lh->line_range = read_1_byte (abfd, line_ptr);
20503 line_ptr += 1;
20504 lh->opcode_base = read_1_byte (abfd, line_ptr);
20505 line_ptr += 1;
20506 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20507
20508 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20509 for (i = 1; i < lh->opcode_base; ++i)
20510 {
20511 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20512 line_ptr += 1;
20513 }
20514
20515 if (lh->version >= 5)
20516 {
20517 /* Read directory table. */
20518 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20519 &cu->header,
20520 [] (struct line_header *header, const char *name,
20521 dir_index d_index, unsigned int mod_time,
20522 unsigned int length)
20523 {
20524 header->add_include_dir (name);
20525 });
20526
20527 /* Read file name table. */
20528 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20529 &cu->header,
20530 [] (struct line_header *header, const char *name,
20531 dir_index d_index, unsigned int mod_time,
20532 unsigned int length)
20533 {
20534 header->add_file_name (name, d_index, mod_time, length);
20535 });
20536 }
20537 else
20538 {
20539 /* Read directory table. */
20540 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20541 {
20542 line_ptr += bytes_read;
20543 lh->add_include_dir (cur_dir);
20544 }
20545 line_ptr += bytes_read;
20546
20547 /* Read file name table. */
20548 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20549 {
20550 unsigned int mod_time, length;
20551 dir_index d_index;
20552
20553 line_ptr += bytes_read;
20554 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20555 line_ptr += bytes_read;
20556 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20557 line_ptr += bytes_read;
20558 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20559 line_ptr += bytes_read;
20560
20561 lh->add_file_name (cur_file, d_index, mod_time, length);
20562 }
20563 line_ptr += bytes_read;
20564 }
20565 lh->statement_program_start = line_ptr;
20566
20567 if (line_ptr > (section->buffer + section->size))
20568 complaint (_("line number info header doesn't "
20569 "fit in `.debug_line' section"));
20570
20571 return lh;
20572 }
20573
20574 /* Subroutine of dwarf_decode_lines to simplify it.
20575 Return the file name of the psymtab for included file FILE_INDEX
20576 in line header LH of PST.
20577 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20578 If space for the result is malloc'd, *NAME_HOLDER will be set.
20579 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20580
20581 static const char *
20582 psymtab_include_file_name (const struct line_header *lh, int file_index,
20583 const struct partial_symtab *pst,
20584 const char *comp_dir,
20585 gdb::unique_xmalloc_ptr<char> *name_holder)
20586 {
20587 const file_entry &fe = lh->file_names[file_index];
20588 const char *include_name = fe.name;
20589 const char *include_name_to_compare = include_name;
20590 const char *pst_filename;
20591 int file_is_pst;
20592
20593 const char *dir_name = fe.include_dir (lh);
20594
20595 gdb::unique_xmalloc_ptr<char> hold_compare;
20596 if (!IS_ABSOLUTE_PATH (include_name)
20597 && (dir_name != NULL || comp_dir != NULL))
20598 {
20599 /* Avoid creating a duplicate psymtab for PST.
20600 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20601 Before we do the comparison, however, we need to account
20602 for DIR_NAME and COMP_DIR.
20603 First prepend dir_name (if non-NULL). If we still don't
20604 have an absolute path prepend comp_dir (if non-NULL).
20605 However, the directory we record in the include-file's
20606 psymtab does not contain COMP_DIR (to match the
20607 corresponding symtab(s)).
20608
20609 Example:
20610
20611 bash$ cd /tmp
20612 bash$ gcc -g ./hello.c
20613 include_name = "hello.c"
20614 dir_name = "."
20615 DW_AT_comp_dir = comp_dir = "/tmp"
20616 DW_AT_name = "./hello.c"
20617
20618 */
20619
20620 if (dir_name != NULL)
20621 {
20622 name_holder->reset (concat (dir_name, SLASH_STRING,
20623 include_name, (char *) NULL));
20624 include_name = name_holder->get ();
20625 include_name_to_compare = include_name;
20626 }
20627 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20628 {
20629 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20630 include_name, (char *) NULL));
20631 include_name_to_compare = hold_compare.get ();
20632 }
20633 }
20634
20635 pst_filename = pst->filename;
20636 gdb::unique_xmalloc_ptr<char> copied_name;
20637 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20638 {
20639 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20640 pst_filename, (char *) NULL));
20641 pst_filename = copied_name.get ();
20642 }
20643
20644 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20645
20646 if (file_is_pst)
20647 return NULL;
20648 return include_name;
20649 }
20650
20651 /* State machine to track the state of the line number program. */
20652
20653 class lnp_state_machine
20654 {
20655 public:
20656 /* Initialize a machine state for the start of a line number
20657 program. */
20658 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20659 bool record_lines_p);
20660
20661 file_entry *current_file ()
20662 {
20663 /* lh->file_names is 0-based, but the file name numbers in the
20664 statement program are 1-based. */
20665 return m_line_header->file_name_at (m_file);
20666 }
20667
20668 /* Record the line in the state machine. END_SEQUENCE is true if
20669 we're processing the end of a sequence. */
20670 void record_line (bool end_sequence);
20671
20672 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20673 nop-out rest of the lines in this sequence. */
20674 void check_line_address (struct dwarf2_cu *cu,
20675 const gdb_byte *line_ptr,
20676 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20677
20678 void handle_set_discriminator (unsigned int discriminator)
20679 {
20680 m_discriminator = discriminator;
20681 m_line_has_non_zero_discriminator |= discriminator != 0;
20682 }
20683
20684 /* Handle DW_LNE_set_address. */
20685 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20686 {
20687 m_op_index = 0;
20688 address += baseaddr;
20689 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20690 }
20691
20692 /* Handle DW_LNS_advance_pc. */
20693 void handle_advance_pc (CORE_ADDR adjust);
20694
20695 /* Handle a special opcode. */
20696 void handle_special_opcode (unsigned char op_code);
20697
20698 /* Handle DW_LNS_advance_line. */
20699 void handle_advance_line (int line_delta)
20700 {
20701 advance_line (line_delta);
20702 }
20703
20704 /* Handle DW_LNS_set_file. */
20705 void handle_set_file (file_name_index file);
20706
20707 /* Handle DW_LNS_negate_stmt. */
20708 void handle_negate_stmt ()
20709 {
20710 m_is_stmt = !m_is_stmt;
20711 }
20712
20713 /* Handle DW_LNS_const_add_pc. */
20714 void handle_const_add_pc ();
20715
20716 /* Handle DW_LNS_fixed_advance_pc. */
20717 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20718 {
20719 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20720 m_op_index = 0;
20721 }
20722
20723 /* Handle DW_LNS_copy. */
20724 void handle_copy ()
20725 {
20726 record_line (false);
20727 m_discriminator = 0;
20728 }
20729
20730 /* Handle DW_LNE_end_sequence. */
20731 void handle_end_sequence ()
20732 {
20733 m_currently_recording_lines = true;
20734 }
20735
20736 private:
20737 /* Advance the line by LINE_DELTA. */
20738 void advance_line (int line_delta)
20739 {
20740 m_line += line_delta;
20741
20742 if (line_delta != 0)
20743 m_line_has_non_zero_discriminator = m_discriminator != 0;
20744 }
20745
20746 struct dwarf2_cu *m_cu;
20747
20748 gdbarch *m_gdbarch;
20749
20750 /* True if we're recording lines.
20751 Otherwise we're building partial symtabs and are just interested in
20752 finding include files mentioned by the line number program. */
20753 bool m_record_lines_p;
20754
20755 /* The line number header. */
20756 line_header *m_line_header;
20757
20758 /* These are part of the standard DWARF line number state machine,
20759 and initialized according to the DWARF spec. */
20760
20761 unsigned char m_op_index = 0;
20762 /* The line table index (1-based) of the current file. */
20763 file_name_index m_file = (file_name_index) 1;
20764 unsigned int m_line = 1;
20765
20766 /* These are initialized in the constructor. */
20767
20768 CORE_ADDR m_address;
20769 bool m_is_stmt;
20770 unsigned int m_discriminator;
20771
20772 /* Additional bits of state we need to track. */
20773
20774 /* The last file that we called dwarf2_start_subfile for.
20775 This is only used for TLLs. */
20776 unsigned int m_last_file = 0;
20777 /* The last file a line number was recorded for. */
20778 struct subfile *m_last_subfile = NULL;
20779
20780 /* When true, record the lines we decode. */
20781 bool m_currently_recording_lines = false;
20782
20783 /* The last line number that was recorded, used to coalesce
20784 consecutive entries for the same line. This can happen, for
20785 example, when discriminators are present. PR 17276. */
20786 unsigned int m_last_line = 0;
20787 bool m_line_has_non_zero_discriminator = false;
20788 };
20789
20790 void
20791 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20792 {
20793 CORE_ADDR addr_adj = (((m_op_index + adjust)
20794 / m_line_header->maximum_ops_per_instruction)
20795 * m_line_header->minimum_instruction_length);
20796 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20797 m_op_index = ((m_op_index + adjust)
20798 % m_line_header->maximum_ops_per_instruction);
20799 }
20800
20801 void
20802 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20803 {
20804 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20805 CORE_ADDR addr_adj = (((m_op_index
20806 + (adj_opcode / m_line_header->line_range))
20807 / m_line_header->maximum_ops_per_instruction)
20808 * m_line_header->minimum_instruction_length);
20809 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20810 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20811 % m_line_header->maximum_ops_per_instruction);
20812
20813 int line_delta = (m_line_header->line_base
20814 + (adj_opcode % m_line_header->line_range));
20815 advance_line (line_delta);
20816 record_line (false);
20817 m_discriminator = 0;
20818 }
20819
20820 void
20821 lnp_state_machine::handle_set_file (file_name_index file)
20822 {
20823 m_file = file;
20824
20825 const file_entry *fe = current_file ();
20826 if (fe == NULL)
20827 dwarf2_debug_line_missing_file_complaint ();
20828 else if (m_record_lines_p)
20829 {
20830 const char *dir = fe->include_dir (m_line_header);
20831
20832 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20833 m_line_has_non_zero_discriminator = m_discriminator != 0;
20834 dwarf2_start_subfile (m_cu, fe->name, dir);
20835 }
20836 }
20837
20838 void
20839 lnp_state_machine::handle_const_add_pc ()
20840 {
20841 CORE_ADDR adjust
20842 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20843
20844 CORE_ADDR addr_adj
20845 = (((m_op_index + adjust)
20846 / m_line_header->maximum_ops_per_instruction)
20847 * m_line_header->minimum_instruction_length);
20848
20849 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20850 m_op_index = ((m_op_index + adjust)
20851 % m_line_header->maximum_ops_per_instruction);
20852 }
20853
20854 /* Return non-zero if we should add LINE to the line number table.
20855 LINE is the line to add, LAST_LINE is the last line that was added,
20856 LAST_SUBFILE is the subfile for LAST_LINE.
20857 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20858 had a non-zero discriminator.
20859
20860 We have to be careful in the presence of discriminators.
20861 E.g., for this line:
20862
20863 for (i = 0; i < 100000; i++);
20864
20865 clang can emit four line number entries for that one line,
20866 each with a different discriminator.
20867 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20868
20869 However, we want gdb to coalesce all four entries into one.
20870 Otherwise the user could stepi into the middle of the line and
20871 gdb would get confused about whether the pc really was in the
20872 middle of the line.
20873
20874 Things are further complicated by the fact that two consecutive
20875 line number entries for the same line is a heuristic used by gcc
20876 to denote the end of the prologue. So we can't just discard duplicate
20877 entries, we have to be selective about it. The heuristic we use is
20878 that we only collapse consecutive entries for the same line if at least
20879 one of those entries has a non-zero discriminator. PR 17276.
20880
20881 Note: Addresses in the line number state machine can never go backwards
20882 within one sequence, thus this coalescing is ok. */
20883
20884 static int
20885 dwarf_record_line_p (struct dwarf2_cu *cu,
20886 unsigned int line, unsigned int last_line,
20887 int line_has_non_zero_discriminator,
20888 struct subfile *last_subfile)
20889 {
20890 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20891 return 1;
20892 if (line != last_line)
20893 return 1;
20894 /* Same line for the same file that we've seen already.
20895 As a last check, for pr 17276, only record the line if the line
20896 has never had a non-zero discriminator. */
20897 if (!line_has_non_zero_discriminator)
20898 return 1;
20899 return 0;
20900 }
20901
20902 /* Use the CU's builder to record line number LINE beginning at
20903 address ADDRESS in the line table of subfile SUBFILE. */
20904
20905 static void
20906 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20907 unsigned int line, CORE_ADDR address,
20908 struct dwarf2_cu *cu)
20909 {
20910 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20911
20912 if (dwarf_line_debug)
20913 {
20914 fprintf_unfiltered (gdb_stdlog,
20915 "Recording line %u, file %s, address %s\n",
20916 line, lbasename (subfile->name),
20917 paddress (gdbarch, address));
20918 }
20919
20920 if (cu != nullptr)
20921 cu->get_builder ()->record_line (subfile, line, addr);
20922 }
20923
20924 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20925 Mark the end of a set of line number records.
20926 The arguments are the same as for dwarf_record_line_1.
20927 If SUBFILE is NULL the request is ignored. */
20928
20929 static void
20930 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20931 CORE_ADDR address, struct dwarf2_cu *cu)
20932 {
20933 if (subfile == NULL)
20934 return;
20935
20936 if (dwarf_line_debug)
20937 {
20938 fprintf_unfiltered (gdb_stdlog,
20939 "Finishing current line, file %s, address %s\n",
20940 lbasename (subfile->name),
20941 paddress (gdbarch, address));
20942 }
20943
20944 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20945 }
20946
20947 void
20948 lnp_state_machine::record_line (bool end_sequence)
20949 {
20950 if (dwarf_line_debug)
20951 {
20952 fprintf_unfiltered (gdb_stdlog,
20953 "Processing actual line %u: file %u,"
20954 " address %s, is_stmt %u, discrim %u\n",
20955 m_line, to_underlying (m_file),
20956 paddress (m_gdbarch, m_address),
20957 m_is_stmt, m_discriminator);
20958 }
20959
20960 file_entry *fe = current_file ();
20961
20962 if (fe == NULL)
20963 dwarf2_debug_line_missing_file_complaint ();
20964 /* For now we ignore lines not starting on an instruction boundary.
20965 But not when processing end_sequence for compatibility with the
20966 previous version of the code. */
20967 else if (m_op_index == 0 || end_sequence)
20968 {
20969 fe->included_p = 1;
20970 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20971 {
20972 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20973 || end_sequence)
20974 {
20975 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20976 m_currently_recording_lines ? m_cu : nullptr);
20977 }
20978
20979 if (!end_sequence)
20980 {
20981 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20982 m_line_has_non_zero_discriminator,
20983 m_last_subfile))
20984 {
20985 buildsym_compunit *builder = m_cu->get_builder ();
20986 dwarf_record_line_1 (m_gdbarch,
20987 builder->get_current_subfile (),
20988 m_line, m_address,
20989 m_currently_recording_lines ? m_cu : nullptr);
20990 }
20991 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20992 m_last_line = m_line;
20993 }
20994 }
20995 }
20996 }
20997
20998 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20999 line_header *lh, bool record_lines_p)
21000 {
21001 m_cu = cu;
21002 m_gdbarch = arch;
21003 m_record_lines_p = record_lines_p;
21004 m_line_header = lh;
21005
21006 m_currently_recording_lines = true;
21007
21008 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21009 was a line entry for it so that the backend has a chance to adjust it
21010 and also record it in case it needs it. This is currently used by MIPS
21011 code, cf. `mips_adjust_dwarf2_line'. */
21012 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21013 m_is_stmt = lh->default_is_stmt;
21014 m_discriminator = 0;
21015 }
21016
21017 void
21018 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21019 const gdb_byte *line_ptr,
21020 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21021 {
21022 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21023 the pc range of the CU. However, we restrict the test to only ADDRESS
21024 values of zero to preserve GDB's previous behaviour which is to handle
21025 the specific case of a function being GC'd by the linker. */
21026
21027 if (address == 0 && address < unrelocated_lowpc)
21028 {
21029 /* This line table is for a function which has been
21030 GCd by the linker. Ignore it. PR gdb/12528 */
21031
21032 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21033 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21034
21035 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21036 line_offset, objfile_name (objfile));
21037 m_currently_recording_lines = false;
21038 /* Note: m_currently_recording_lines is left as false until we see
21039 DW_LNE_end_sequence. */
21040 }
21041 }
21042
21043 /* Subroutine of dwarf_decode_lines to simplify it.
21044 Process the line number information in LH.
21045 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21046 program in order to set included_p for every referenced header. */
21047
21048 static void
21049 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21050 const int decode_for_pst_p, CORE_ADDR lowpc)
21051 {
21052 const gdb_byte *line_ptr, *extended_end;
21053 const gdb_byte *line_end;
21054 unsigned int bytes_read, extended_len;
21055 unsigned char op_code, extended_op;
21056 CORE_ADDR baseaddr;
21057 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21058 bfd *abfd = objfile->obfd;
21059 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21060 /* True if we're recording line info (as opposed to building partial
21061 symtabs and just interested in finding include files mentioned by
21062 the line number program). */
21063 bool record_lines_p = !decode_for_pst_p;
21064
21065 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21066
21067 line_ptr = lh->statement_program_start;
21068 line_end = lh->statement_program_end;
21069
21070 /* Read the statement sequences until there's nothing left. */
21071 while (line_ptr < line_end)
21072 {
21073 /* The DWARF line number program state machine. Reset the state
21074 machine at the start of each sequence. */
21075 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21076 bool end_sequence = false;
21077
21078 if (record_lines_p)
21079 {
21080 /* Start a subfile for the current file of the state
21081 machine. */
21082 const file_entry *fe = state_machine.current_file ();
21083
21084 if (fe != NULL)
21085 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21086 }
21087
21088 /* Decode the table. */
21089 while (line_ptr < line_end && !end_sequence)
21090 {
21091 op_code = read_1_byte (abfd, line_ptr);
21092 line_ptr += 1;
21093
21094 if (op_code >= lh->opcode_base)
21095 {
21096 /* Special opcode. */
21097 state_machine.handle_special_opcode (op_code);
21098 }
21099 else switch (op_code)
21100 {
21101 case DW_LNS_extended_op:
21102 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21103 &bytes_read);
21104 line_ptr += bytes_read;
21105 extended_end = line_ptr + extended_len;
21106 extended_op = read_1_byte (abfd, line_ptr);
21107 line_ptr += 1;
21108 switch (extended_op)
21109 {
21110 case DW_LNE_end_sequence:
21111 state_machine.handle_end_sequence ();
21112 end_sequence = true;
21113 break;
21114 case DW_LNE_set_address:
21115 {
21116 CORE_ADDR address
21117 = read_address (abfd, line_ptr, cu, &bytes_read);
21118 line_ptr += bytes_read;
21119
21120 state_machine.check_line_address (cu, line_ptr,
21121 lowpc - baseaddr, address);
21122 state_machine.handle_set_address (baseaddr, address);
21123 }
21124 break;
21125 case DW_LNE_define_file:
21126 {
21127 const char *cur_file;
21128 unsigned int mod_time, length;
21129 dir_index dindex;
21130
21131 cur_file = read_direct_string (abfd, line_ptr,
21132 &bytes_read);
21133 line_ptr += bytes_read;
21134 dindex = (dir_index)
21135 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21136 line_ptr += bytes_read;
21137 mod_time =
21138 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21139 line_ptr += bytes_read;
21140 length =
21141 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21142 line_ptr += bytes_read;
21143 lh->add_file_name (cur_file, dindex, mod_time, length);
21144 }
21145 break;
21146 case DW_LNE_set_discriminator:
21147 {
21148 /* The discriminator is not interesting to the
21149 debugger; just ignore it. We still need to
21150 check its value though:
21151 if there are consecutive entries for the same
21152 (non-prologue) line we want to coalesce them.
21153 PR 17276. */
21154 unsigned int discr
21155 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21156 line_ptr += bytes_read;
21157
21158 state_machine.handle_set_discriminator (discr);
21159 }
21160 break;
21161 default:
21162 complaint (_("mangled .debug_line section"));
21163 return;
21164 }
21165 /* Make sure that we parsed the extended op correctly. If e.g.
21166 we expected a different address size than the producer used,
21167 we may have read the wrong number of bytes. */
21168 if (line_ptr != extended_end)
21169 {
21170 complaint (_("mangled .debug_line section"));
21171 return;
21172 }
21173 break;
21174 case DW_LNS_copy:
21175 state_machine.handle_copy ();
21176 break;
21177 case DW_LNS_advance_pc:
21178 {
21179 CORE_ADDR adjust
21180 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21181 line_ptr += bytes_read;
21182
21183 state_machine.handle_advance_pc (adjust);
21184 }
21185 break;
21186 case DW_LNS_advance_line:
21187 {
21188 int line_delta
21189 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21190 line_ptr += bytes_read;
21191
21192 state_machine.handle_advance_line (line_delta);
21193 }
21194 break;
21195 case DW_LNS_set_file:
21196 {
21197 file_name_index file
21198 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21199 &bytes_read);
21200 line_ptr += bytes_read;
21201
21202 state_machine.handle_set_file (file);
21203 }
21204 break;
21205 case DW_LNS_set_column:
21206 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21207 line_ptr += bytes_read;
21208 break;
21209 case DW_LNS_negate_stmt:
21210 state_machine.handle_negate_stmt ();
21211 break;
21212 case DW_LNS_set_basic_block:
21213 break;
21214 /* Add to the address register of the state machine the
21215 address increment value corresponding to special opcode
21216 255. I.e., this value is scaled by the minimum
21217 instruction length since special opcode 255 would have
21218 scaled the increment. */
21219 case DW_LNS_const_add_pc:
21220 state_machine.handle_const_add_pc ();
21221 break;
21222 case DW_LNS_fixed_advance_pc:
21223 {
21224 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21225 line_ptr += 2;
21226
21227 state_machine.handle_fixed_advance_pc (addr_adj);
21228 }
21229 break;
21230 default:
21231 {
21232 /* Unknown standard opcode, ignore it. */
21233 int i;
21234
21235 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21236 {
21237 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21238 line_ptr += bytes_read;
21239 }
21240 }
21241 }
21242 }
21243
21244 if (!end_sequence)
21245 dwarf2_debug_line_missing_end_sequence_complaint ();
21246
21247 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21248 in which case we still finish recording the last line). */
21249 state_machine.record_line (true);
21250 }
21251 }
21252
21253 /* Decode the Line Number Program (LNP) for the given line_header
21254 structure and CU. The actual information extracted and the type
21255 of structures created from the LNP depends on the value of PST.
21256
21257 1. If PST is NULL, then this procedure uses the data from the program
21258 to create all necessary symbol tables, and their linetables.
21259
21260 2. If PST is not NULL, this procedure reads the program to determine
21261 the list of files included by the unit represented by PST, and
21262 builds all the associated partial symbol tables.
21263
21264 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21265 It is used for relative paths in the line table.
21266 NOTE: When processing partial symtabs (pst != NULL),
21267 comp_dir == pst->dirname.
21268
21269 NOTE: It is important that psymtabs have the same file name (via strcmp)
21270 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21271 symtab we don't use it in the name of the psymtabs we create.
21272 E.g. expand_line_sal requires this when finding psymtabs to expand.
21273 A good testcase for this is mb-inline.exp.
21274
21275 LOWPC is the lowest address in CU (or 0 if not known).
21276
21277 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21278 for its PC<->lines mapping information. Otherwise only the filename
21279 table is read in. */
21280
21281 static void
21282 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21283 struct dwarf2_cu *cu, struct partial_symtab *pst,
21284 CORE_ADDR lowpc, int decode_mapping)
21285 {
21286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21287 const int decode_for_pst_p = (pst != NULL);
21288
21289 if (decode_mapping)
21290 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21291
21292 if (decode_for_pst_p)
21293 {
21294 int file_index;
21295
21296 /* Now that we're done scanning the Line Header Program, we can
21297 create the psymtab of each included file. */
21298 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21299 if (lh->file_names[file_index].included_p == 1)
21300 {
21301 gdb::unique_xmalloc_ptr<char> name_holder;
21302 const char *include_name =
21303 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21304 &name_holder);
21305 if (include_name != NULL)
21306 dwarf2_create_include_psymtab (include_name, pst, objfile);
21307 }
21308 }
21309 else
21310 {
21311 /* Make sure a symtab is created for every file, even files
21312 which contain only variables (i.e. no code with associated
21313 line numbers). */
21314 buildsym_compunit *builder = cu->get_builder ();
21315 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21316 int i;
21317
21318 for (i = 0; i < lh->file_names.size (); i++)
21319 {
21320 file_entry &fe = lh->file_names[i];
21321
21322 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21323
21324 if (builder->get_current_subfile ()->symtab == NULL)
21325 {
21326 builder->get_current_subfile ()->symtab
21327 = allocate_symtab (cust,
21328 builder->get_current_subfile ()->name);
21329 }
21330 fe.symtab = builder->get_current_subfile ()->symtab;
21331 }
21332 }
21333 }
21334
21335 /* Start a subfile for DWARF. FILENAME is the name of the file and
21336 DIRNAME the name of the source directory which contains FILENAME
21337 or NULL if not known.
21338 This routine tries to keep line numbers from identical absolute and
21339 relative file names in a common subfile.
21340
21341 Using the `list' example from the GDB testsuite, which resides in
21342 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21343 of /srcdir/list0.c yields the following debugging information for list0.c:
21344
21345 DW_AT_name: /srcdir/list0.c
21346 DW_AT_comp_dir: /compdir
21347 files.files[0].name: list0.h
21348 files.files[0].dir: /srcdir
21349 files.files[1].name: list0.c
21350 files.files[1].dir: /srcdir
21351
21352 The line number information for list0.c has to end up in a single
21353 subfile, so that `break /srcdir/list0.c:1' works as expected.
21354 start_subfile will ensure that this happens provided that we pass the
21355 concatenation of files.files[1].dir and files.files[1].name as the
21356 subfile's name. */
21357
21358 static void
21359 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21360 const char *dirname)
21361 {
21362 char *copy = NULL;
21363
21364 /* In order not to lose the line information directory,
21365 we concatenate it to the filename when it makes sense.
21366 Note that the Dwarf3 standard says (speaking of filenames in line
21367 information): ``The directory index is ignored for file names
21368 that represent full path names''. Thus ignoring dirname in the
21369 `else' branch below isn't an issue. */
21370
21371 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21372 {
21373 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21374 filename = copy;
21375 }
21376
21377 cu->get_builder ()->start_subfile (filename);
21378
21379 if (copy != NULL)
21380 xfree (copy);
21381 }
21382
21383 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21384 buildsym_compunit constructor. */
21385
21386 struct compunit_symtab *
21387 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21388 CORE_ADDR low_pc)
21389 {
21390 gdb_assert (m_builder == nullptr);
21391
21392 m_builder.reset (new struct buildsym_compunit
21393 (per_cu->dwarf2_per_objfile->objfile,
21394 name, comp_dir, language, low_pc));
21395
21396 list_in_scope = get_builder ()->get_file_symbols ();
21397
21398 get_builder ()->record_debugformat ("DWARF 2");
21399 get_builder ()->record_producer (producer);
21400
21401 processing_has_namespace_info = false;
21402
21403 return get_builder ()->get_compunit_symtab ();
21404 }
21405
21406 static void
21407 var_decode_location (struct attribute *attr, struct symbol *sym,
21408 struct dwarf2_cu *cu)
21409 {
21410 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21411 struct comp_unit_head *cu_header = &cu->header;
21412
21413 /* NOTE drow/2003-01-30: There used to be a comment and some special
21414 code here to turn a symbol with DW_AT_external and a
21415 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21416 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21417 with some versions of binutils) where shared libraries could have
21418 relocations against symbols in their debug information - the
21419 minimal symbol would have the right address, but the debug info
21420 would not. It's no longer necessary, because we will explicitly
21421 apply relocations when we read in the debug information now. */
21422
21423 /* A DW_AT_location attribute with no contents indicates that a
21424 variable has been optimized away. */
21425 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21426 {
21427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21428 return;
21429 }
21430
21431 /* Handle one degenerate form of location expression specially, to
21432 preserve GDB's previous behavior when section offsets are
21433 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21434 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21435
21436 if (attr_form_is_block (attr)
21437 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21438 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21439 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21440 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21441 && (DW_BLOCK (attr)->size
21442 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21443 {
21444 unsigned int dummy;
21445
21446 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21447 SYMBOL_VALUE_ADDRESS (sym) =
21448 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21449 else
21450 SYMBOL_VALUE_ADDRESS (sym) =
21451 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21452 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21453 fixup_symbol_section (sym, objfile);
21454 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21455 SYMBOL_SECTION (sym));
21456 return;
21457 }
21458
21459 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21460 expression evaluator, and use LOC_COMPUTED only when necessary
21461 (i.e. when the value of a register or memory location is
21462 referenced, or a thread-local block, etc.). Then again, it might
21463 not be worthwhile. I'm assuming that it isn't unless performance
21464 or memory numbers show me otherwise. */
21465
21466 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21467
21468 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21469 cu->has_loclist = true;
21470 }
21471
21472 /* Given a pointer to a DWARF information entry, figure out if we need
21473 to make a symbol table entry for it, and if so, create a new entry
21474 and return a pointer to it.
21475 If TYPE is NULL, determine symbol type from the die, otherwise
21476 used the passed type.
21477 If SPACE is not NULL, use it to hold the new symbol. If it is
21478 NULL, allocate a new symbol on the objfile's obstack. */
21479
21480 static struct symbol *
21481 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21482 struct symbol *space)
21483 {
21484 struct dwarf2_per_objfile *dwarf2_per_objfile
21485 = cu->per_cu->dwarf2_per_objfile;
21486 struct objfile *objfile = dwarf2_per_objfile->objfile;
21487 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21488 struct symbol *sym = NULL;
21489 const char *name;
21490 struct attribute *attr = NULL;
21491 struct attribute *attr2 = NULL;
21492 CORE_ADDR baseaddr;
21493 struct pending **list_to_add = NULL;
21494
21495 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21496
21497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21498
21499 name = dwarf2_name (die, cu);
21500 if (name)
21501 {
21502 const char *linkagename;
21503 int suppress_add = 0;
21504
21505 if (space)
21506 sym = space;
21507 else
21508 sym = allocate_symbol (objfile);
21509 OBJSTAT (objfile, n_syms++);
21510
21511 /* Cache this symbol's name and the name's demangled form (if any). */
21512 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21513 linkagename = dwarf2_physname (name, die, cu);
21514 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21515
21516 /* Fortran does not have mangling standard and the mangling does differ
21517 between gfortran, iFort etc. */
21518 if (cu->language == language_fortran
21519 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21520 symbol_set_demangled_name (&(sym->ginfo),
21521 dwarf2_full_name (name, die, cu),
21522 NULL);
21523
21524 /* Default assumptions.
21525 Use the passed type or decode it from the die. */
21526 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21527 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21528 if (type != NULL)
21529 SYMBOL_TYPE (sym) = type;
21530 else
21531 SYMBOL_TYPE (sym) = die_type (die, cu);
21532 attr = dwarf2_attr (die,
21533 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21534 cu);
21535 if (attr)
21536 {
21537 SYMBOL_LINE (sym) = DW_UNSND (attr);
21538 }
21539
21540 attr = dwarf2_attr (die,
21541 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21542 cu);
21543 if (attr)
21544 {
21545 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21546 struct file_entry *fe;
21547
21548 if (cu->line_header != NULL)
21549 fe = cu->line_header->file_name_at (file_index);
21550 else
21551 fe = NULL;
21552
21553 if (fe == NULL)
21554 complaint (_("file index out of range"));
21555 else
21556 symbol_set_symtab (sym, fe->symtab);
21557 }
21558
21559 switch (die->tag)
21560 {
21561 case DW_TAG_label:
21562 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21563 if (attr)
21564 {
21565 CORE_ADDR addr;
21566
21567 addr = attr_value_as_address (attr);
21568 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21569 SYMBOL_VALUE_ADDRESS (sym) = addr;
21570 }
21571 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21572 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21573 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21574 add_symbol_to_list (sym, cu->list_in_scope);
21575 break;
21576 case DW_TAG_subprogram:
21577 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21578 finish_block. */
21579 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21580 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21581 if ((attr2 && (DW_UNSND (attr2) != 0))
21582 || cu->language == language_ada)
21583 {
21584 /* Subprograms marked external are stored as a global symbol.
21585 Ada subprograms, whether marked external or not, are always
21586 stored as a global symbol, because we want to be able to
21587 access them globally. For instance, we want to be able
21588 to break on a nested subprogram without having to
21589 specify the context. */
21590 list_to_add = cu->get_builder ()->get_global_symbols ();
21591 }
21592 else
21593 {
21594 list_to_add = cu->list_in_scope;
21595 }
21596 break;
21597 case DW_TAG_inlined_subroutine:
21598 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21599 finish_block. */
21600 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21601 SYMBOL_INLINED (sym) = 1;
21602 list_to_add = cu->list_in_scope;
21603 break;
21604 case DW_TAG_template_value_param:
21605 suppress_add = 1;
21606 /* Fall through. */
21607 case DW_TAG_constant:
21608 case DW_TAG_variable:
21609 case DW_TAG_member:
21610 /* Compilation with minimal debug info may result in
21611 variables with missing type entries. Change the
21612 misleading `void' type to something sensible. */
21613 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21614 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21615
21616 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21617 /* In the case of DW_TAG_member, we should only be called for
21618 static const members. */
21619 if (die->tag == DW_TAG_member)
21620 {
21621 /* dwarf2_add_field uses die_is_declaration,
21622 so we do the same. */
21623 gdb_assert (die_is_declaration (die, cu));
21624 gdb_assert (attr);
21625 }
21626 if (attr)
21627 {
21628 dwarf2_const_value (attr, sym, cu);
21629 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21630 if (!suppress_add)
21631 {
21632 if (attr2 && (DW_UNSND (attr2) != 0))
21633 list_to_add = cu->get_builder ()->get_global_symbols ();
21634 else
21635 list_to_add = cu->list_in_scope;
21636 }
21637 break;
21638 }
21639 attr = dwarf2_attr (die, DW_AT_location, cu);
21640 if (attr)
21641 {
21642 var_decode_location (attr, sym, cu);
21643 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21644
21645 /* Fortran explicitly imports any global symbols to the local
21646 scope by DW_TAG_common_block. */
21647 if (cu->language == language_fortran && die->parent
21648 && die->parent->tag == DW_TAG_common_block)
21649 attr2 = NULL;
21650
21651 if (SYMBOL_CLASS (sym) == LOC_STATIC
21652 && SYMBOL_VALUE_ADDRESS (sym) == 0
21653 && !dwarf2_per_objfile->has_section_at_zero)
21654 {
21655 /* When a static variable is eliminated by the linker,
21656 the corresponding debug information is not stripped
21657 out, but the variable address is set to null;
21658 do not add such variables into symbol table. */
21659 }
21660 else if (attr2 && (DW_UNSND (attr2) != 0))
21661 {
21662 /* Workaround gfortran PR debug/40040 - it uses
21663 DW_AT_location for variables in -fPIC libraries which may
21664 get overriden by other libraries/executable and get
21665 a different address. Resolve it by the minimal symbol
21666 which may come from inferior's executable using copy
21667 relocation. Make this workaround only for gfortran as for
21668 other compilers GDB cannot guess the minimal symbol
21669 Fortran mangling kind. */
21670 if (cu->language == language_fortran && die->parent
21671 && die->parent->tag == DW_TAG_module
21672 && cu->producer
21673 && startswith (cu->producer, "GNU Fortran"))
21674 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21675
21676 /* A variable with DW_AT_external is never static,
21677 but it may be block-scoped. */
21678 list_to_add
21679 = ((cu->list_in_scope
21680 == cu->get_builder ()->get_file_symbols ())
21681 ? cu->get_builder ()->get_global_symbols ()
21682 : cu->list_in_scope);
21683 }
21684 else
21685 list_to_add = cu->list_in_scope;
21686 }
21687 else
21688 {
21689 /* We do not know the address of this symbol.
21690 If it is an external symbol and we have type information
21691 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21692 The address of the variable will then be determined from
21693 the minimal symbol table whenever the variable is
21694 referenced. */
21695 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21696
21697 /* Fortran explicitly imports any global symbols to the local
21698 scope by DW_TAG_common_block. */
21699 if (cu->language == language_fortran && die->parent
21700 && die->parent->tag == DW_TAG_common_block)
21701 {
21702 /* SYMBOL_CLASS doesn't matter here because
21703 read_common_block is going to reset it. */
21704 if (!suppress_add)
21705 list_to_add = cu->list_in_scope;
21706 }
21707 else if (attr2 && (DW_UNSND (attr2) != 0)
21708 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21709 {
21710 /* A variable with DW_AT_external is never static, but it
21711 may be block-scoped. */
21712 list_to_add
21713 = ((cu->list_in_scope
21714 == cu->get_builder ()->get_file_symbols ())
21715 ? cu->get_builder ()->get_global_symbols ()
21716 : cu->list_in_scope);
21717
21718 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21719 }
21720 else if (!die_is_declaration (die, cu))
21721 {
21722 /* Use the default LOC_OPTIMIZED_OUT class. */
21723 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21724 if (!suppress_add)
21725 list_to_add = cu->list_in_scope;
21726 }
21727 }
21728 break;
21729 case DW_TAG_formal_parameter:
21730 {
21731 /* If we are inside a function, mark this as an argument. If
21732 not, we might be looking at an argument to an inlined function
21733 when we do not have enough information to show inlined frames;
21734 pretend it's a local variable in that case so that the user can
21735 still see it. */
21736 struct context_stack *curr
21737 = cu->get_builder ()->get_current_context_stack ();
21738 if (curr != nullptr && curr->name != nullptr)
21739 SYMBOL_IS_ARGUMENT (sym) = 1;
21740 attr = dwarf2_attr (die, DW_AT_location, cu);
21741 if (attr)
21742 {
21743 var_decode_location (attr, sym, cu);
21744 }
21745 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21746 if (attr)
21747 {
21748 dwarf2_const_value (attr, sym, cu);
21749 }
21750
21751 list_to_add = cu->list_in_scope;
21752 }
21753 break;
21754 case DW_TAG_unspecified_parameters:
21755 /* From varargs functions; gdb doesn't seem to have any
21756 interest in this information, so just ignore it for now.
21757 (FIXME?) */
21758 break;
21759 case DW_TAG_template_type_param:
21760 suppress_add = 1;
21761 /* Fall through. */
21762 case DW_TAG_class_type:
21763 case DW_TAG_interface_type:
21764 case DW_TAG_structure_type:
21765 case DW_TAG_union_type:
21766 case DW_TAG_set_type:
21767 case DW_TAG_enumeration_type:
21768 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21769 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21770
21771 {
21772 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21773 really ever be static objects: otherwise, if you try
21774 to, say, break of a class's method and you're in a file
21775 which doesn't mention that class, it won't work unless
21776 the check for all static symbols in lookup_symbol_aux
21777 saves you. See the OtherFileClass tests in
21778 gdb.c++/namespace.exp. */
21779
21780 if (!suppress_add)
21781 {
21782 buildsym_compunit *builder = cu->get_builder ();
21783 list_to_add
21784 = (cu->list_in_scope == builder->get_file_symbols ()
21785 && cu->language == language_cplus
21786 ? builder->get_global_symbols ()
21787 : cu->list_in_scope);
21788
21789 /* The semantics of C++ state that "struct foo {
21790 ... }" also defines a typedef for "foo". */
21791 if (cu->language == language_cplus
21792 || cu->language == language_ada
21793 || cu->language == language_d
21794 || cu->language == language_rust)
21795 {
21796 /* The symbol's name is already allocated along
21797 with this objfile, so we don't need to
21798 duplicate it for the type. */
21799 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21800 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21801 }
21802 }
21803 }
21804 break;
21805 case DW_TAG_typedef:
21806 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21807 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21808 list_to_add = cu->list_in_scope;
21809 break;
21810 case DW_TAG_base_type:
21811 case DW_TAG_subrange_type:
21812 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21813 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21814 list_to_add = cu->list_in_scope;
21815 break;
21816 case DW_TAG_enumerator:
21817 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21818 if (attr)
21819 {
21820 dwarf2_const_value (attr, sym, cu);
21821 }
21822 {
21823 /* NOTE: carlton/2003-11-10: See comment above in the
21824 DW_TAG_class_type, etc. block. */
21825
21826 list_to_add
21827 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21828 && cu->language == language_cplus
21829 ? cu->get_builder ()->get_global_symbols ()
21830 : cu->list_in_scope);
21831 }
21832 break;
21833 case DW_TAG_imported_declaration:
21834 case DW_TAG_namespace:
21835 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21836 list_to_add = cu->get_builder ()->get_global_symbols ();
21837 break;
21838 case DW_TAG_module:
21839 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21840 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21841 list_to_add = cu->get_builder ()->get_global_symbols ();
21842 break;
21843 case DW_TAG_common_block:
21844 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21845 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21846 add_symbol_to_list (sym, cu->list_in_scope);
21847 break;
21848 default:
21849 /* Not a tag we recognize. Hopefully we aren't processing
21850 trash data, but since we must specifically ignore things
21851 we don't recognize, there is nothing else we should do at
21852 this point. */
21853 complaint (_("unsupported tag: '%s'"),
21854 dwarf_tag_name (die->tag));
21855 break;
21856 }
21857
21858 if (suppress_add)
21859 {
21860 sym->hash_next = objfile->template_symbols;
21861 objfile->template_symbols = sym;
21862 list_to_add = NULL;
21863 }
21864
21865 if (list_to_add != NULL)
21866 add_symbol_to_list (sym, list_to_add);
21867
21868 /* For the benefit of old versions of GCC, check for anonymous
21869 namespaces based on the demangled name. */
21870 if (!cu->processing_has_namespace_info
21871 && cu->language == language_cplus)
21872 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21873 }
21874 return (sym);
21875 }
21876
21877 /* Given an attr with a DW_FORM_dataN value in host byte order,
21878 zero-extend it as appropriate for the symbol's type. The DWARF
21879 standard (v4) is not entirely clear about the meaning of using
21880 DW_FORM_dataN for a constant with a signed type, where the type is
21881 wider than the data. The conclusion of a discussion on the DWARF
21882 list was that this is unspecified. We choose to always zero-extend
21883 because that is the interpretation long in use by GCC. */
21884
21885 static gdb_byte *
21886 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21887 struct dwarf2_cu *cu, LONGEST *value, int bits)
21888 {
21889 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21890 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21891 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21892 LONGEST l = DW_UNSND (attr);
21893
21894 if (bits < sizeof (*value) * 8)
21895 {
21896 l &= ((LONGEST) 1 << bits) - 1;
21897 *value = l;
21898 }
21899 else if (bits == sizeof (*value) * 8)
21900 *value = l;
21901 else
21902 {
21903 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21904 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21905 return bytes;
21906 }
21907
21908 return NULL;
21909 }
21910
21911 /* Read a constant value from an attribute. Either set *VALUE, or if
21912 the value does not fit in *VALUE, set *BYTES - either already
21913 allocated on the objfile obstack, or newly allocated on OBSTACK,
21914 or, set *BATON, if we translated the constant to a location
21915 expression. */
21916
21917 static void
21918 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21919 const char *name, struct obstack *obstack,
21920 struct dwarf2_cu *cu,
21921 LONGEST *value, const gdb_byte **bytes,
21922 struct dwarf2_locexpr_baton **baton)
21923 {
21924 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21925 struct comp_unit_head *cu_header = &cu->header;
21926 struct dwarf_block *blk;
21927 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21928 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21929
21930 *value = 0;
21931 *bytes = NULL;
21932 *baton = NULL;
21933
21934 switch (attr->form)
21935 {
21936 case DW_FORM_addr:
21937 case DW_FORM_addrx:
21938 case DW_FORM_GNU_addr_index:
21939 {
21940 gdb_byte *data;
21941
21942 if (TYPE_LENGTH (type) != cu_header->addr_size)
21943 dwarf2_const_value_length_mismatch_complaint (name,
21944 cu_header->addr_size,
21945 TYPE_LENGTH (type));
21946 /* Symbols of this form are reasonably rare, so we just
21947 piggyback on the existing location code rather than writing
21948 a new implementation of symbol_computed_ops. */
21949 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21950 (*baton)->per_cu = cu->per_cu;
21951 gdb_assert ((*baton)->per_cu);
21952
21953 (*baton)->size = 2 + cu_header->addr_size;
21954 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21955 (*baton)->data = data;
21956
21957 data[0] = DW_OP_addr;
21958 store_unsigned_integer (&data[1], cu_header->addr_size,
21959 byte_order, DW_ADDR (attr));
21960 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21961 }
21962 break;
21963 case DW_FORM_string:
21964 case DW_FORM_strp:
21965 case DW_FORM_strx:
21966 case DW_FORM_GNU_str_index:
21967 case DW_FORM_GNU_strp_alt:
21968 /* DW_STRING is already allocated on the objfile obstack, point
21969 directly to it. */
21970 *bytes = (const gdb_byte *) DW_STRING (attr);
21971 break;
21972 case DW_FORM_block1:
21973 case DW_FORM_block2:
21974 case DW_FORM_block4:
21975 case DW_FORM_block:
21976 case DW_FORM_exprloc:
21977 case DW_FORM_data16:
21978 blk = DW_BLOCK (attr);
21979 if (TYPE_LENGTH (type) != blk->size)
21980 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21981 TYPE_LENGTH (type));
21982 *bytes = blk->data;
21983 break;
21984
21985 /* The DW_AT_const_value attributes are supposed to carry the
21986 symbol's value "represented as it would be on the target
21987 architecture." By the time we get here, it's already been
21988 converted to host endianness, so we just need to sign- or
21989 zero-extend it as appropriate. */
21990 case DW_FORM_data1:
21991 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21992 break;
21993 case DW_FORM_data2:
21994 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21995 break;
21996 case DW_FORM_data4:
21997 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21998 break;
21999 case DW_FORM_data8:
22000 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22001 break;
22002
22003 case DW_FORM_sdata:
22004 case DW_FORM_implicit_const:
22005 *value = DW_SND (attr);
22006 break;
22007
22008 case DW_FORM_udata:
22009 *value = DW_UNSND (attr);
22010 break;
22011
22012 default:
22013 complaint (_("unsupported const value attribute form: '%s'"),
22014 dwarf_form_name (attr->form));
22015 *value = 0;
22016 break;
22017 }
22018 }
22019
22020
22021 /* Copy constant value from an attribute to a symbol. */
22022
22023 static void
22024 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22025 struct dwarf2_cu *cu)
22026 {
22027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22028 LONGEST value;
22029 const gdb_byte *bytes;
22030 struct dwarf2_locexpr_baton *baton;
22031
22032 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22033 SYMBOL_PRINT_NAME (sym),
22034 &objfile->objfile_obstack, cu,
22035 &value, &bytes, &baton);
22036
22037 if (baton != NULL)
22038 {
22039 SYMBOL_LOCATION_BATON (sym) = baton;
22040 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22041 }
22042 else if (bytes != NULL)
22043 {
22044 SYMBOL_VALUE_BYTES (sym) = bytes;
22045 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22046 }
22047 else
22048 {
22049 SYMBOL_VALUE (sym) = value;
22050 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22051 }
22052 }
22053
22054 /* Return the type of the die in question using its DW_AT_type attribute. */
22055
22056 static struct type *
22057 die_type (struct die_info *die, struct dwarf2_cu *cu)
22058 {
22059 struct attribute *type_attr;
22060
22061 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22062 if (!type_attr)
22063 {
22064 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22065 /* A missing DW_AT_type represents a void type. */
22066 return objfile_type (objfile)->builtin_void;
22067 }
22068
22069 return lookup_die_type (die, type_attr, cu);
22070 }
22071
22072 /* True iff CU's producer generates GNAT Ada auxiliary information
22073 that allows to find parallel types through that information instead
22074 of having to do expensive parallel lookups by type name. */
22075
22076 static int
22077 need_gnat_info (struct dwarf2_cu *cu)
22078 {
22079 /* Assume that the Ada compiler was GNAT, which always produces
22080 the auxiliary information. */
22081 return (cu->language == language_ada);
22082 }
22083
22084 /* Return the auxiliary type of the die in question using its
22085 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22086 attribute is not present. */
22087
22088 static struct type *
22089 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22090 {
22091 struct attribute *type_attr;
22092
22093 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22094 if (!type_attr)
22095 return NULL;
22096
22097 return lookup_die_type (die, type_attr, cu);
22098 }
22099
22100 /* If DIE has a descriptive_type attribute, then set the TYPE's
22101 descriptive type accordingly. */
22102
22103 static void
22104 set_descriptive_type (struct type *type, struct die_info *die,
22105 struct dwarf2_cu *cu)
22106 {
22107 struct type *descriptive_type = die_descriptive_type (die, cu);
22108
22109 if (descriptive_type)
22110 {
22111 ALLOCATE_GNAT_AUX_TYPE (type);
22112 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22113 }
22114 }
22115
22116 /* Return the containing type of the die in question using its
22117 DW_AT_containing_type attribute. */
22118
22119 static struct type *
22120 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22121 {
22122 struct attribute *type_attr;
22123 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22124
22125 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22126 if (!type_attr)
22127 error (_("Dwarf Error: Problem turning containing type into gdb type "
22128 "[in module %s]"), objfile_name (objfile));
22129
22130 return lookup_die_type (die, type_attr, cu);
22131 }
22132
22133 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22134
22135 static struct type *
22136 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22137 {
22138 struct dwarf2_per_objfile *dwarf2_per_objfile
22139 = cu->per_cu->dwarf2_per_objfile;
22140 struct objfile *objfile = dwarf2_per_objfile->objfile;
22141 char *saved;
22142
22143 std::string message
22144 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22145 objfile_name (objfile),
22146 sect_offset_str (cu->header.sect_off),
22147 sect_offset_str (die->sect_off));
22148 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22149 message.c_str (), message.length ());
22150
22151 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22152 }
22153
22154 /* Look up the type of DIE in CU using its type attribute ATTR.
22155 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22156 DW_AT_containing_type.
22157 If there is no type substitute an error marker. */
22158
22159 static struct type *
22160 lookup_die_type (struct die_info *die, const struct attribute *attr,
22161 struct dwarf2_cu *cu)
22162 {
22163 struct dwarf2_per_objfile *dwarf2_per_objfile
22164 = cu->per_cu->dwarf2_per_objfile;
22165 struct objfile *objfile = dwarf2_per_objfile->objfile;
22166 struct type *this_type;
22167
22168 gdb_assert (attr->name == DW_AT_type
22169 || attr->name == DW_AT_GNAT_descriptive_type
22170 || attr->name == DW_AT_containing_type);
22171
22172 /* First see if we have it cached. */
22173
22174 if (attr->form == DW_FORM_GNU_ref_alt)
22175 {
22176 struct dwarf2_per_cu_data *per_cu;
22177 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22178
22179 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22180 dwarf2_per_objfile);
22181 this_type = get_die_type_at_offset (sect_off, per_cu);
22182 }
22183 else if (attr_form_is_ref (attr))
22184 {
22185 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22186
22187 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22188 }
22189 else if (attr->form == DW_FORM_ref_sig8)
22190 {
22191 ULONGEST signature = DW_SIGNATURE (attr);
22192
22193 return get_signatured_type (die, signature, cu);
22194 }
22195 else
22196 {
22197 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22198 " at %s [in module %s]"),
22199 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22200 objfile_name (objfile));
22201 return build_error_marker_type (cu, die);
22202 }
22203
22204 /* If not cached we need to read it in. */
22205
22206 if (this_type == NULL)
22207 {
22208 struct die_info *type_die = NULL;
22209 struct dwarf2_cu *type_cu = cu;
22210
22211 if (attr_form_is_ref (attr))
22212 type_die = follow_die_ref (die, attr, &type_cu);
22213 if (type_die == NULL)
22214 return build_error_marker_type (cu, die);
22215 /* If we find the type now, it's probably because the type came
22216 from an inter-CU reference and the type's CU got expanded before
22217 ours. */
22218 this_type = read_type_die (type_die, type_cu);
22219 }
22220
22221 /* If we still don't have a type use an error marker. */
22222
22223 if (this_type == NULL)
22224 return build_error_marker_type (cu, die);
22225
22226 return this_type;
22227 }
22228
22229 /* Return the type in DIE, CU.
22230 Returns NULL for invalid types.
22231
22232 This first does a lookup in die_type_hash,
22233 and only reads the die in if necessary.
22234
22235 NOTE: This can be called when reading in partial or full symbols. */
22236
22237 static struct type *
22238 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22239 {
22240 struct type *this_type;
22241
22242 this_type = get_die_type (die, cu);
22243 if (this_type)
22244 return this_type;
22245
22246 return read_type_die_1 (die, cu);
22247 }
22248
22249 /* Read the type in DIE, CU.
22250 Returns NULL for invalid types. */
22251
22252 static struct type *
22253 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22254 {
22255 struct type *this_type = NULL;
22256
22257 switch (die->tag)
22258 {
22259 case DW_TAG_class_type:
22260 case DW_TAG_interface_type:
22261 case DW_TAG_structure_type:
22262 case DW_TAG_union_type:
22263 this_type = read_structure_type (die, cu);
22264 break;
22265 case DW_TAG_enumeration_type:
22266 this_type = read_enumeration_type (die, cu);
22267 break;
22268 case DW_TAG_subprogram:
22269 case DW_TAG_subroutine_type:
22270 case DW_TAG_inlined_subroutine:
22271 this_type = read_subroutine_type (die, cu);
22272 break;
22273 case DW_TAG_array_type:
22274 this_type = read_array_type (die, cu);
22275 break;
22276 case DW_TAG_set_type:
22277 this_type = read_set_type (die, cu);
22278 break;
22279 case DW_TAG_pointer_type:
22280 this_type = read_tag_pointer_type (die, cu);
22281 break;
22282 case DW_TAG_ptr_to_member_type:
22283 this_type = read_tag_ptr_to_member_type (die, cu);
22284 break;
22285 case DW_TAG_reference_type:
22286 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22287 break;
22288 case DW_TAG_rvalue_reference_type:
22289 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22290 break;
22291 case DW_TAG_const_type:
22292 this_type = read_tag_const_type (die, cu);
22293 break;
22294 case DW_TAG_volatile_type:
22295 this_type = read_tag_volatile_type (die, cu);
22296 break;
22297 case DW_TAG_restrict_type:
22298 this_type = read_tag_restrict_type (die, cu);
22299 break;
22300 case DW_TAG_string_type:
22301 this_type = read_tag_string_type (die, cu);
22302 break;
22303 case DW_TAG_typedef:
22304 this_type = read_typedef (die, cu);
22305 break;
22306 case DW_TAG_subrange_type:
22307 this_type = read_subrange_type (die, cu);
22308 break;
22309 case DW_TAG_base_type:
22310 this_type = read_base_type (die, cu);
22311 break;
22312 case DW_TAG_unspecified_type:
22313 this_type = read_unspecified_type (die, cu);
22314 break;
22315 case DW_TAG_namespace:
22316 this_type = read_namespace_type (die, cu);
22317 break;
22318 case DW_TAG_module:
22319 this_type = read_module_type (die, cu);
22320 break;
22321 case DW_TAG_atomic_type:
22322 this_type = read_tag_atomic_type (die, cu);
22323 break;
22324 default:
22325 complaint (_("unexpected tag in read_type_die: '%s'"),
22326 dwarf_tag_name (die->tag));
22327 break;
22328 }
22329
22330 return this_type;
22331 }
22332
22333 /* See if we can figure out if the class lives in a namespace. We do
22334 this by looking for a member function; its demangled name will
22335 contain namespace info, if there is any.
22336 Return the computed name or NULL.
22337 Space for the result is allocated on the objfile's obstack.
22338 This is the full-die version of guess_partial_die_structure_name.
22339 In this case we know DIE has no useful parent. */
22340
22341 static char *
22342 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22343 {
22344 struct die_info *spec_die;
22345 struct dwarf2_cu *spec_cu;
22346 struct die_info *child;
22347 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22348
22349 spec_cu = cu;
22350 spec_die = die_specification (die, &spec_cu);
22351 if (spec_die != NULL)
22352 {
22353 die = spec_die;
22354 cu = spec_cu;
22355 }
22356
22357 for (child = die->child;
22358 child != NULL;
22359 child = child->sibling)
22360 {
22361 if (child->tag == DW_TAG_subprogram)
22362 {
22363 const char *linkage_name = dw2_linkage_name (child, cu);
22364
22365 if (linkage_name != NULL)
22366 {
22367 char *actual_name
22368 = language_class_name_from_physname (cu->language_defn,
22369 linkage_name);
22370 char *name = NULL;
22371
22372 if (actual_name != NULL)
22373 {
22374 const char *die_name = dwarf2_name (die, cu);
22375
22376 if (die_name != NULL
22377 && strcmp (die_name, actual_name) != 0)
22378 {
22379 /* Strip off the class name from the full name.
22380 We want the prefix. */
22381 int die_name_len = strlen (die_name);
22382 int actual_name_len = strlen (actual_name);
22383
22384 /* Test for '::' as a sanity check. */
22385 if (actual_name_len > die_name_len + 2
22386 && actual_name[actual_name_len
22387 - die_name_len - 1] == ':')
22388 name = (char *) obstack_copy0 (
22389 &objfile->per_bfd->storage_obstack,
22390 actual_name, actual_name_len - die_name_len - 2);
22391 }
22392 }
22393 xfree (actual_name);
22394 return name;
22395 }
22396 }
22397 }
22398
22399 return NULL;
22400 }
22401
22402 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22403 prefix part in such case. See
22404 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22405
22406 static const char *
22407 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22408 {
22409 struct attribute *attr;
22410 const char *base;
22411
22412 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22413 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22414 return NULL;
22415
22416 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22417 return NULL;
22418
22419 attr = dw2_linkage_name_attr (die, cu);
22420 if (attr == NULL || DW_STRING (attr) == NULL)
22421 return NULL;
22422
22423 /* dwarf2_name had to be already called. */
22424 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22425
22426 /* Strip the base name, keep any leading namespaces/classes. */
22427 base = strrchr (DW_STRING (attr), ':');
22428 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22429 return "";
22430
22431 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22432 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22433 DW_STRING (attr),
22434 &base[-1] - DW_STRING (attr));
22435 }
22436
22437 /* Return the name of the namespace/class that DIE is defined within,
22438 or "" if we can't tell. The caller should not xfree the result.
22439
22440 For example, if we're within the method foo() in the following
22441 code:
22442
22443 namespace N {
22444 class C {
22445 void foo () {
22446 }
22447 };
22448 }
22449
22450 then determine_prefix on foo's die will return "N::C". */
22451
22452 static const char *
22453 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22454 {
22455 struct dwarf2_per_objfile *dwarf2_per_objfile
22456 = cu->per_cu->dwarf2_per_objfile;
22457 struct die_info *parent, *spec_die;
22458 struct dwarf2_cu *spec_cu;
22459 struct type *parent_type;
22460 const char *retval;
22461
22462 if (cu->language != language_cplus
22463 && cu->language != language_fortran && cu->language != language_d
22464 && cu->language != language_rust)
22465 return "";
22466
22467 retval = anonymous_struct_prefix (die, cu);
22468 if (retval)
22469 return retval;
22470
22471 /* We have to be careful in the presence of DW_AT_specification.
22472 For example, with GCC 3.4, given the code
22473
22474 namespace N {
22475 void foo() {
22476 // Definition of N::foo.
22477 }
22478 }
22479
22480 then we'll have a tree of DIEs like this:
22481
22482 1: DW_TAG_compile_unit
22483 2: DW_TAG_namespace // N
22484 3: DW_TAG_subprogram // declaration of N::foo
22485 4: DW_TAG_subprogram // definition of N::foo
22486 DW_AT_specification // refers to die #3
22487
22488 Thus, when processing die #4, we have to pretend that we're in
22489 the context of its DW_AT_specification, namely the contex of die
22490 #3. */
22491 spec_cu = cu;
22492 spec_die = die_specification (die, &spec_cu);
22493 if (spec_die == NULL)
22494 parent = die->parent;
22495 else
22496 {
22497 parent = spec_die->parent;
22498 cu = spec_cu;
22499 }
22500
22501 if (parent == NULL)
22502 return "";
22503 else if (parent->building_fullname)
22504 {
22505 const char *name;
22506 const char *parent_name;
22507
22508 /* It has been seen on RealView 2.2 built binaries,
22509 DW_TAG_template_type_param types actually _defined_ as
22510 children of the parent class:
22511
22512 enum E {};
22513 template class <class Enum> Class{};
22514 Class<enum E> class_e;
22515
22516 1: DW_TAG_class_type (Class)
22517 2: DW_TAG_enumeration_type (E)
22518 3: DW_TAG_enumerator (enum1:0)
22519 3: DW_TAG_enumerator (enum2:1)
22520 ...
22521 2: DW_TAG_template_type_param
22522 DW_AT_type DW_FORM_ref_udata (E)
22523
22524 Besides being broken debug info, it can put GDB into an
22525 infinite loop. Consider:
22526
22527 When we're building the full name for Class<E>, we'll start
22528 at Class, and go look over its template type parameters,
22529 finding E. We'll then try to build the full name of E, and
22530 reach here. We're now trying to build the full name of E,
22531 and look over the parent DIE for containing scope. In the
22532 broken case, if we followed the parent DIE of E, we'd again
22533 find Class, and once again go look at its template type
22534 arguments, etc., etc. Simply don't consider such parent die
22535 as source-level parent of this die (it can't be, the language
22536 doesn't allow it), and break the loop here. */
22537 name = dwarf2_name (die, cu);
22538 parent_name = dwarf2_name (parent, cu);
22539 complaint (_("template param type '%s' defined within parent '%s'"),
22540 name ? name : "<unknown>",
22541 parent_name ? parent_name : "<unknown>");
22542 return "";
22543 }
22544 else
22545 switch (parent->tag)
22546 {
22547 case DW_TAG_namespace:
22548 parent_type = read_type_die (parent, cu);
22549 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22550 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22551 Work around this problem here. */
22552 if (cu->language == language_cplus
22553 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22554 return "";
22555 /* We give a name to even anonymous namespaces. */
22556 return TYPE_NAME (parent_type);
22557 case DW_TAG_class_type:
22558 case DW_TAG_interface_type:
22559 case DW_TAG_structure_type:
22560 case DW_TAG_union_type:
22561 case DW_TAG_module:
22562 parent_type = read_type_die (parent, cu);
22563 if (TYPE_NAME (parent_type) != NULL)
22564 return TYPE_NAME (parent_type);
22565 else
22566 /* An anonymous structure is only allowed non-static data
22567 members; no typedefs, no member functions, et cetera.
22568 So it does not need a prefix. */
22569 return "";
22570 case DW_TAG_compile_unit:
22571 case DW_TAG_partial_unit:
22572 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22573 if (cu->language == language_cplus
22574 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22575 && die->child != NULL
22576 && (die->tag == DW_TAG_class_type
22577 || die->tag == DW_TAG_structure_type
22578 || die->tag == DW_TAG_union_type))
22579 {
22580 char *name = guess_full_die_structure_name (die, cu);
22581 if (name != NULL)
22582 return name;
22583 }
22584 return "";
22585 case DW_TAG_enumeration_type:
22586 parent_type = read_type_die (parent, cu);
22587 if (TYPE_DECLARED_CLASS (parent_type))
22588 {
22589 if (TYPE_NAME (parent_type) != NULL)
22590 return TYPE_NAME (parent_type);
22591 return "";
22592 }
22593 /* Fall through. */
22594 default:
22595 return determine_prefix (parent, cu);
22596 }
22597 }
22598
22599 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22600 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22601 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22602 an obconcat, otherwise allocate storage for the result. The CU argument is
22603 used to determine the language and hence, the appropriate separator. */
22604
22605 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22606
22607 static char *
22608 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22609 int physname, struct dwarf2_cu *cu)
22610 {
22611 const char *lead = "";
22612 const char *sep;
22613
22614 if (suffix == NULL || suffix[0] == '\0'
22615 || prefix == NULL || prefix[0] == '\0')
22616 sep = "";
22617 else if (cu->language == language_d)
22618 {
22619 /* For D, the 'main' function could be defined in any module, but it
22620 should never be prefixed. */
22621 if (strcmp (suffix, "D main") == 0)
22622 {
22623 prefix = "";
22624 sep = "";
22625 }
22626 else
22627 sep = ".";
22628 }
22629 else if (cu->language == language_fortran && physname)
22630 {
22631 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22632 DW_AT_MIPS_linkage_name is preferred and used instead. */
22633
22634 lead = "__";
22635 sep = "_MOD_";
22636 }
22637 else
22638 sep = "::";
22639
22640 if (prefix == NULL)
22641 prefix = "";
22642 if (suffix == NULL)
22643 suffix = "";
22644
22645 if (obs == NULL)
22646 {
22647 char *retval
22648 = ((char *)
22649 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22650
22651 strcpy (retval, lead);
22652 strcat (retval, prefix);
22653 strcat (retval, sep);
22654 strcat (retval, suffix);
22655 return retval;
22656 }
22657 else
22658 {
22659 /* We have an obstack. */
22660 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22661 }
22662 }
22663
22664 /* Return sibling of die, NULL if no sibling. */
22665
22666 static struct die_info *
22667 sibling_die (struct die_info *die)
22668 {
22669 return die->sibling;
22670 }
22671
22672 /* Get name of a die, return NULL if not found. */
22673
22674 static const char *
22675 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22676 struct obstack *obstack)
22677 {
22678 if (name && cu->language == language_cplus)
22679 {
22680 std::string canon_name = cp_canonicalize_string (name);
22681
22682 if (!canon_name.empty ())
22683 {
22684 if (canon_name != name)
22685 name = (const char *) obstack_copy0 (obstack,
22686 canon_name.c_str (),
22687 canon_name.length ());
22688 }
22689 }
22690
22691 return name;
22692 }
22693
22694 /* Get name of a die, return NULL if not found.
22695 Anonymous namespaces are converted to their magic string. */
22696
22697 static const char *
22698 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22699 {
22700 struct attribute *attr;
22701 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22702
22703 attr = dwarf2_attr (die, DW_AT_name, cu);
22704 if ((!attr || !DW_STRING (attr))
22705 && die->tag != DW_TAG_namespace
22706 && die->tag != DW_TAG_class_type
22707 && die->tag != DW_TAG_interface_type
22708 && die->tag != DW_TAG_structure_type
22709 && die->tag != DW_TAG_union_type)
22710 return NULL;
22711
22712 switch (die->tag)
22713 {
22714 case DW_TAG_compile_unit:
22715 case DW_TAG_partial_unit:
22716 /* Compilation units have a DW_AT_name that is a filename, not
22717 a source language identifier. */
22718 case DW_TAG_enumeration_type:
22719 case DW_TAG_enumerator:
22720 /* These tags always have simple identifiers already; no need
22721 to canonicalize them. */
22722 return DW_STRING (attr);
22723
22724 case DW_TAG_namespace:
22725 if (attr != NULL && DW_STRING (attr) != NULL)
22726 return DW_STRING (attr);
22727 return CP_ANONYMOUS_NAMESPACE_STR;
22728
22729 case DW_TAG_class_type:
22730 case DW_TAG_interface_type:
22731 case DW_TAG_structure_type:
22732 case DW_TAG_union_type:
22733 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22734 structures or unions. These were of the form "._%d" in GCC 4.1,
22735 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22736 and GCC 4.4. We work around this problem by ignoring these. */
22737 if (attr && DW_STRING (attr)
22738 && (startswith (DW_STRING (attr), "._")
22739 || startswith (DW_STRING (attr), "<anonymous")))
22740 return NULL;
22741
22742 /* GCC might emit a nameless typedef that has a linkage name. See
22743 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22744 if (!attr || DW_STRING (attr) == NULL)
22745 {
22746 char *demangled = NULL;
22747
22748 attr = dw2_linkage_name_attr (die, cu);
22749 if (attr == NULL || DW_STRING (attr) == NULL)
22750 return NULL;
22751
22752 /* Avoid demangling DW_STRING (attr) the second time on a second
22753 call for the same DIE. */
22754 if (!DW_STRING_IS_CANONICAL (attr))
22755 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22756
22757 if (demangled)
22758 {
22759 const char *base;
22760
22761 /* FIXME: we already did this for the partial symbol... */
22762 DW_STRING (attr)
22763 = ((const char *)
22764 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22765 demangled, strlen (demangled)));
22766 DW_STRING_IS_CANONICAL (attr) = 1;
22767 xfree (demangled);
22768
22769 /* Strip any leading namespaces/classes, keep only the base name.
22770 DW_AT_name for named DIEs does not contain the prefixes. */
22771 base = strrchr (DW_STRING (attr), ':');
22772 if (base && base > DW_STRING (attr) && base[-1] == ':')
22773 return &base[1];
22774 else
22775 return DW_STRING (attr);
22776 }
22777 }
22778 break;
22779
22780 default:
22781 break;
22782 }
22783
22784 if (!DW_STRING_IS_CANONICAL (attr))
22785 {
22786 DW_STRING (attr)
22787 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22788 &objfile->per_bfd->storage_obstack);
22789 DW_STRING_IS_CANONICAL (attr) = 1;
22790 }
22791 return DW_STRING (attr);
22792 }
22793
22794 /* Return the die that this die in an extension of, or NULL if there
22795 is none. *EXT_CU is the CU containing DIE on input, and the CU
22796 containing the return value on output. */
22797
22798 static struct die_info *
22799 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22800 {
22801 struct attribute *attr;
22802
22803 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22804 if (attr == NULL)
22805 return NULL;
22806
22807 return follow_die_ref (die, attr, ext_cu);
22808 }
22809
22810 /* A convenience function that returns an "unknown" DWARF name,
22811 including the value of V. STR is the name of the entity being
22812 printed, e.g., "TAG". */
22813
22814 static const char *
22815 dwarf_unknown (const char *str, unsigned v)
22816 {
22817 char *cell = get_print_cell ();
22818 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22819 return cell;
22820 }
22821
22822 /* Convert a DIE tag into its string name. */
22823
22824 static const char *
22825 dwarf_tag_name (unsigned tag)
22826 {
22827 const char *name = get_DW_TAG_name (tag);
22828
22829 if (name == NULL)
22830 return dwarf_unknown ("TAG", tag);
22831
22832 return name;
22833 }
22834
22835 /* Convert a DWARF attribute code into its string name. */
22836
22837 static const char *
22838 dwarf_attr_name (unsigned attr)
22839 {
22840 const char *name;
22841
22842 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22843 if (attr == DW_AT_MIPS_fde)
22844 return "DW_AT_MIPS_fde";
22845 #else
22846 if (attr == DW_AT_HP_block_index)
22847 return "DW_AT_HP_block_index";
22848 #endif
22849
22850 name = get_DW_AT_name (attr);
22851
22852 if (name == NULL)
22853 return dwarf_unknown ("AT", attr);
22854
22855 return name;
22856 }
22857
22858 /* Convert a DWARF value form code into its string name. */
22859
22860 static const char *
22861 dwarf_form_name (unsigned form)
22862 {
22863 const char *name = get_DW_FORM_name (form);
22864
22865 if (name == NULL)
22866 return dwarf_unknown ("FORM", form);
22867
22868 return name;
22869 }
22870
22871 static const char *
22872 dwarf_bool_name (unsigned mybool)
22873 {
22874 if (mybool)
22875 return "TRUE";
22876 else
22877 return "FALSE";
22878 }
22879
22880 /* Convert a DWARF type code into its string name. */
22881
22882 static const char *
22883 dwarf_type_encoding_name (unsigned enc)
22884 {
22885 const char *name = get_DW_ATE_name (enc);
22886
22887 if (name == NULL)
22888 return dwarf_unknown ("ATE", enc);
22889
22890 return name;
22891 }
22892
22893 static void
22894 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22895 {
22896 unsigned int i;
22897
22898 print_spaces (indent, f);
22899 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22900 dwarf_tag_name (die->tag), die->abbrev,
22901 sect_offset_str (die->sect_off));
22902
22903 if (die->parent != NULL)
22904 {
22905 print_spaces (indent, f);
22906 fprintf_unfiltered (f, " parent at offset: %s\n",
22907 sect_offset_str (die->parent->sect_off));
22908 }
22909
22910 print_spaces (indent, f);
22911 fprintf_unfiltered (f, " has children: %s\n",
22912 dwarf_bool_name (die->child != NULL));
22913
22914 print_spaces (indent, f);
22915 fprintf_unfiltered (f, " attributes:\n");
22916
22917 for (i = 0; i < die->num_attrs; ++i)
22918 {
22919 print_spaces (indent, f);
22920 fprintf_unfiltered (f, " %s (%s) ",
22921 dwarf_attr_name (die->attrs[i].name),
22922 dwarf_form_name (die->attrs[i].form));
22923
22924 switch (die->attrs[i].form)
22925 {
22926 case DW_FORM_addr:
22927 case DW_FORM_addrx:
22928 case DW_FORM_GNU_addr_index:
22929 fprintf_unfiltered (f, "address: ");
22930 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22931 break;
22932 case DW_FORM_block2:
22933 case DW_FORM_block4:
22934 case DW_FORM_block:
22935 case DW_FORM_block1:
22936 fprintf_unfiltered (f, "block: size %s",
22937 pulongest (DW_BLOCK (&die->attrs[i])->size));
22938 break;
22939 case DW_FORM_exprloc:
22940 fprintf_unfiltered (f, "expression: size %s",
22941 pulongest (DW_BLOCK (&die->attrs[i])->size));
22942 break;
22943 case DW_FORM_data16:
22944 fprintf_unfiltered (f, "constant of 16 bytes");
22945 break;
22946 case DW_FORM_ref_addr:
22947 fprintf_unfiltered (f, "ref address: ");
22948 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22949 break;
22950 case DW_FORM_GNU_ref_alt:
22951 fprintf_unfiltered (f, "alt ref address: ");
22952 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22953 break;
22954 case DW_FORM_ref1:
22955 case DW_FORM_ref2:
22956 case DW_FORM_ref4:
22957 case DW_FORM_ref8:
22958 case DW_FORM_ref_udata:
22959 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22960 (long) (DW_UNSND (&die->attrs[i])));
22961 break;
22962 case DW_FORM_data1:
22963 case DW_FORM_data2:
22964 case DW_FORM_data4:
22965 case DW_FORM_data8:
22966 case DW_FORM_udata:
22967 case DW_FORM_sdata:
22968 fprintf_unfiltered (f, "constant: %s",
22969 pulongest (DW_UNSND (&die->attrs[i])));
22970 break;
22971 case DW_FORM_sec_offset:
22972 fprintf_unfiltered (f, "section offset: %s",
22973 pulongest (DW_UNSND (&die->attrs[i])));
22974 break;
22975 case DW_FORM_ref_sig8:
22976 fprintf_unfiltered (f, "signature: %s",
22977 hex_string (DW_SIGNATURE (&die->attrs[i])));
22978 break;
22979 case DW_FORM_string:
22980 case DW_FORM_strp:
22981 case DW_FORM_line_strp:
22982 case DW_FORM_strx:
22983 case DW_FORM_GNU_str_index:
22984 case DW_FORM_GNU_strp_alt:
22985 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22986 DW_STRING (&die->attrs[i])
22987 ? DW_STRING (&die->attrs[i]) : "",
22988 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22989 break;
22990 case DW_FORM_flag:
22991 if (DW_UNSND (&die->attrs[i]))
22992 fprintf_unfiltered (f, "flag: TRUE");
22993 else
22994 fprintf_unfiltered (f, "flag: FALSE");
22995 break;
22996 case DW_FORM_flag_present:
22997 fprintf_unfiltered (f, "flag: TRUE");
22998 break;
22999 case DW_FORM_indirect:
23000 /* The reader will have reduced the indirect form to
23001 the "base form" so this form should not occur. */
23002 fprintf_unfiltered (f,
23003 "unexpected attribute form: DW_FORM_indirect");
23004 break;
23005 case DW_FORM_implicit_const:
23006 fprintf_unfiltered (f, "constant: %s",
23007 plongest (DW_SND (&die->attrs[i])));
23008 break;
23009 default:
23010 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23011 die->attrs[i].form);
23012 break;
23013 }
23014 fprintf_unfiltered (f, "\n");
23015 }
23016 }
23017
23018 static void
23019 dump_die_for_error (struct die_info *die)
23020 {
23021 dump_die_shallow (gdb_stderr, 0, die);
23022 }
23023
23024 static void
23025 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23026 {
23027 int indent = level * 4;
23028
23029 gdb_assert (die != NULL);
23030
23031 if (level >= max_level)
23032 return;
23033
23034 dump_die_shallow (f, indent, die);
23035
23036 if (die->child != NULL)
23037 {
23038 print_spaces (indent, f);
23039 fprintf_unfiltered (f, " Children:");
23040 if (level + 1 < max_level)
23041 {
23042 fprintf_unfiltered (f, "\n");
23043 dump_die_1 (f, level + 1, max_level, die->child);
23044 }
23045 else
23046 {
23047 fprintf_unfiltered (f,
23048 " [not printed, max nesting level reached]\n");
23049 }
23050 }
23051
23052 if (die->sibling != NULL && level > 0)
23053 {
23054 dump_die_1 (f, level, max_level, die->sibling);
23055 }
23056 }
23057
23058 /* This is called from the pdie macro in gdbinit.in.
23059 It's not static so gcc will keep a copy callable from gdb. */
23060
23061 void
23062 dump_die (struct die_info *die, int max_level)
23063 {
23064 dump_die_1 (gdb_stdlog, 0, max_level, die);
23065 }
23066
23067 static void
23068 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23069 {
23070 void **slot;
23071
23072 slot = htab_find_slot_with_hash (cu->die_hash, die,
23073 to_underlying (die->sect_off),
23074 INSERT);
23075
23076 *slot = die;
23077 }
23078
23079 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23080 required kind. */
23081
23082 static sect_offset
23083 dwarf2_get_ref_die_offset (const struct attribute *attr)
23084 {
23085 if (attr_form_is_ref (attr))
23086 return (sect_offset) DW_UNSND (attr);
23087
23088 complaint (_("unsupported die ref attribute form: '%s'"),
23089 dwarf_form_name (attr->form));
23090 return {};
23091 }
23092
23093 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23094 * the value held by the attribute is not constant. */
23095
23096 static LONGEST
23097 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23098 {
23099 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23100 return DW_SND (attr);
23101 else if (attr->form == DW_FORM_udata
23102 || attr->form == DW_FORM_data1
23103 || attr->form == DW_FORM_data2
23104 || attr->form == DW_FORM_data4
23105 || attr->form == DW_FORM_data8)
23106 return DW_UNSND (attr);
23107 else
23108 {
23109 /* For DW_FORM_data16 see attr_form_is_constant. */
23110 complaint (_("Attribute value is not a constant (%s)"),
23111 dwarf_form_name (attr->form));
23112 return default_value;
23113 }
23114 }
23115
23116 /* Follow reference or signature attribute ATTR of SRC_DIE.
23117 On entry *REF_CU is the CU of SRC_DIE.
23118 On exit *REF_CU is the CU of the result. */
23119
23120 static struct die_info *
23121 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23122 struct dwarf2_cu **ref_cu)
23123 {
23124 struct die_info *die;
23125
23126 if (attr_form_is_ref (attr))
23127 die = follow_die_ref (src_die, attr, ref_cu);
23128 else if (attr->form == DW_FORM_ref_sig8)
23129 die = follow_die_sig (src_die, attr, ref_cu);
23130 else
23131 {
23132 dump_die_for_error (src_die);
23133 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23134 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23135 }
23136
23137 return die;
23138 }
23139
23140 /* Follow reference OFFSET.
23141 On entry *REF_CU is the CU of the source die referencing OFFSET.
23142 On exit *REF_CU is the CU of the result.
23143 Returns NULL if OFFSET is invalid. */
23144
23145 static struct die_info *
23146 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23147 struct dwarf2_cu **ref_cu)
23148 {
23149 struct die_info temp_die;
23150 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23151 struct dwarf2_per_objfile *dwarf2_per_objfile
23152 = cu->per_cu->dwarf2_per_objfile;
23153
23154 gdb_assert (cu->per_cu != NULL);
23155
23156 target_cu = cu;
23157
23158 if (cu->per_cu->is_debug_types)
23159 {
23160 /* .debug_types CUs cannot reference anything outside their CU.
23161 If they need to, they have to reference a signatured type via
23162 DW_FORM_ref_sig8. */
23163 if (!offset_in_cu_p (&cu->header, sect_off))
23164 return NULL;
23165 }
23166 else if (offset_in_dwz != cu->per_cu->is_dwz
23167 || !offset_in_cu_p (&cu->header, sect_off))
23168 {
23169 struct dwarf2_per_cu_data *per_cu;
23170
23171 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23172 dwarf2_per_objfile);
23173
23174 /* If necessary, add it to the queue and load its DIEs. */
23175 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23176 load_full_comp_unit (per_cu, false, cu->language);
23177
23178 target_cu = per_cu->cu;
23179 }
23180 else if (cu->dies == NULL)
23181 {
23182 /* We're loading full DIEs during partial symbol reading. */
23183 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23184 load_full_comp_unit (cu->per_cu, false, language_minimal);
23185 }
23186
23187 *ref_cu = target_cu;
23188 temp_die.sect_off = sect_off;
23189
23190 if (target_cu != cu)
23191 target_cu->ancestor = cu;
23192
23193 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23194 &temp_die,
23195 to_underlying (sect_off));
23196 }
23197
23198 /* Follow reference attribute ATTR of SRC_DIE.
23199 On entry *REF_CU is the CU of SRC_DIE.
23200 On exit *REF_CU is the CU of the result. */
23201
23202 static struct die_info *
23203 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23204 struct dwarf2_cu **ref_cu)
23205 {
23206 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23207 struct dwarf2_cu *cu = *ref_cu;
23208 struct die_info *die;
23209
23210 die = follow_die_offset (sect_off,
23211 (attr->form == DW_FORM_GNU_ref_alt
23212 || cu->per_cu->is_dwz),
23213 ref_cu);
23214 if (!die)
23215 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23216 "at %s [in module %s]"),
23217 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23218 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23219
23220 return die;
23221 }
23222
23223 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23224 Returned value is intended for DW_OP_call*. Returned
23225 dwarf2_locexpr_baton->data has lifetime of
23226 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23227
23228 struct dwarf2_locexpr_baton
23229 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23230 struct dwarf2_per_cu_data *per_cu,
23231 CORE_ADDR (*get_frame_pc) (void *baton),
23232 void *baton, bool resolve_abstract_p)
23233 {
23234 struct dwarf2_cu *cu;
23235 struct die_info *die;
23236 struct attribute *attr;
23237 struct dwarf2_locexpr_baton retval;
23238 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23239 struct objfile *objfile = dwarf2_per_objfile->objfile;
23240
23241 if (per_cu->cu == NULL)
23242 load_cu (per_cu, false);
23243 cu = per_cu->cu;
23244 if (cu == NULL)
23245 {
23246 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23247 Instead just throw an error, not much else we can do. */
23248 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23249 sect_offset_str (sect_off), objfile_name (objfile));
23250 }
23251
23252 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23253 if (!die)
23254 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23255 sect_offset_str (sect_off), objfile_name (objfile));
23256
23257 attr = dwarf2_attr (die, DW_AT_location, cu);
23258 if (!attr && resolve_abstract_p
23259 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23260 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23261 {
23262 CORE_ADDR pc = (*get_frame_pc) (baton);
23263
23264 for (const auto &cand_off
23265 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23266 {
23267 struct dwarf2_cu *cand_cu = cu;
23268 struct die_info *cand
23269 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23270 if (!cand
23271 || !cand->parent
23272 || cand->parent->tag != DW_TAG_subprogram)
23273 continue;
23274
23275 CORE_ADDR pc_low, pc_high;
23276 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23277 if (pc_low == ((CORE_ADDR) -1)
23278 || !(pc_low <= pc && pc < pc_high))
23279 continue;
23280
23281 die = cand;
23282 attr = dwarf2_attr (die, DW_AT_location, cu);
23283 break;
23284 }
23285 }
23286
23287 if (!attr)
23288 {
23289 /* DWARF: "If there is no such attribute, then there is no effect.".
23290 DATA is ignored if SIZE is 0. */
23291
23292 retval.data = NULL;
23293 retval.size = 0;
23294 }
23295 else if (attr_form_is_section_offset (attr))
23296 {
23297 struct dwarf2_loclist_baton loclist_baton;
23298 CORE_ADDR pc = (*get_frame_pc) (baton);
23299 size_t size;
23300
23301 fill_in_loclist_baton (cu, &loclist_baton, attr);
23302
23303 retval.data = dwarf2_find_location_expression (&loclist_baton,
23304 &size, pc);
23305 retval.size = size;
23306 }
23307 else
23308 {
23309 if (!attr_form_is_block (attr))
23310 error (_("Dwarf Error: DIE at %s referenced in module %s "
23311 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23312 sect_offset_str (sect_off), objfile_name (objfile));
23313
23314 retval.data = DW_BLOCK (attr)->data;
23315 retval.size = DW_BLOCK (attr)->size;
23316 }
23317 retval.per_cu = cu->per_cu;
23318
23319 age_cached_comp_units (dwarf2_per_objfile);
23320
23321 return retval;
23322 }
23323
23324 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23325 offset. */
23326
23327 struct dwarf2_locexpr_baton
23328 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23329 struct dwarf2_per_cu_data *per_cu,
23330 CORE_ADDR (*get_frame_pc) (void *baton),
23331 void *baton)
23332 {
23333 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23334
23335 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23336 }
23337
23338 /* Write a constant of a given type as target-ordered bytes into
23339 OBSTACK. */
23340
23341 static const gdb_byte *
23342 write_constant_as_bytes (struct obstack *obstack,
23343 enum bfd_endian byte_order,
23344 struct type *type,
23345 ULONGEST value,
23346 LONGEST *len)
23347 {
23348 gdb_byte *result;
23349
23350 *len = TYPE_LENGTH (type);
23351 result = (gdb_byte *) obstack_alloc (obstack, *len);
23352 store_unsigned_integer (result, *len, byte_order, value);
23353
23354 return result;
23355 }
23356
23357 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23358 pointer to the constant bytes and set LEN to the length of the
23359 data. If memory is needed, allocate it on OBSTACK. If the DIE
23360 does not have a DW_AT_const_value, return NULL. */
23361
23362 const gdb_byte *
23363 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23364 struct dwarf2_per_cu_data *per_cu,
23365 struct obstack *obstack,
23366 LONGEST *len)
23367 {
23368 struct dwarf2_cu *cu;
23369 struct die_info *die;
23370 struct attribute *attr;
23371 const gdb_byte *result = NULL;
23372 struct type *type;
23373 LONGEST value;
23374 enum bfd_endian byte_order;
23375 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23376
23377 if (per_cu->cu == NULL)
23378 load_cu (per_cu, false);
23379 cu = per_cu->cu;
23380 if (cu == NULL)
23381 {
23382 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23383 Instead just throw an error, not much else we can do. */
23384 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23385 sect_offset_str (sect_off), objfile_name (objfile));
23386 }
23387
23388 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23389 if (!die)
23390 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23391 sect_offset_str (sect_off), objfile_name (objfile));
23392
23393 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23394 if (attr == NULL)
23395 return NULL;
23396
23397 byte_order = (bfd_big_endian (objfile->obfd)
23398 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23399
23400 switch (attr->form)
23401 {
23402 case DW_FORM_addr:
23403 case DW_FORM_addrx:
23404 case DW_FORM_GNU_addr_index:
23405 {
23406 gdb_byte *tem;
23407
23408 *len = cu->header.addr_size;
23409 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23410 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23411 result = tem;
23412 }
23413 break;
23414 case DW_FORM_string:
23415 case DW_FORM_strp:
23416 case DW_FORM_strx:
23417 case DW_FORM_GNU_str_index:
23418 case DW_FORM_GNU_strp_alt:
23419 /* DW_STRING is already allocated on the objfile obstack, point
23420 directly to it. */
23421 result = (const gdb_byte *) DW_STRING (attr);
23422 *len = strlen (DW_STRING (attr));
23423 break;
23424 case DW_FORM_block1:
23425 case DW_FORM_block2:
23426 case DW_FORM_block4:
23427 case DW_FORM_block:
23428 case DW_FORM_exprloc:
23429 case DW_FORM_data16:
23430 result = DW_BLOCK (attr)->data;
23431 *len = DW_BLOCK (attr)->size;
23432 break;
23433
23434 /* The DW_AT_const_value attributes are supposed to carry the
23435 symbol's value "represented as it would be on the target
23436 architecture." By the time we get here, it's already been
23437 converted to host endianness, so we just need to sign- or
23438 zero-extend it as appropriate. */
23439 case DW_FORM_data1:
23440 type = die_type (die, cu);
23441 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23442 if (result == NULL)
23443 result = write_constant_as_bytes (obstack, byte_order,
23444 type, value, len);
23445 break;
23446 case DW_FORM_data2:
23447 type = die_type (die, cu);
23448 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23449 if (result == NULL)
23450 result = write_constant_as_bytes (obstack, byte_order,
23451 type, value, len);
23452 break;
23453 case DW_FORM_data4:
23454 type = die_type (die, cu);
23455 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23456 if (result == NULL)
23457 result = write_constant_as_bytes (obstack, byte_order,
23458 type, value, len);
23459 break;
23460 case DW_FORM_data8:
23461 type = die_type (die, cu);
23462 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23463 if (result == NULL)
23464 result = write_constant_as_bytes (obstack, byte_order,
23465 type, value, len);
23466 break;
23467
23468 case DW_FORM_sdata:
23469 case DW_FORM_implicit_const:
23470 type = die_type (die, cu);
23471 result = write_constant_as_bytes (obstack, byte_order,
23472 type, DW_SND (attr), len);
23473 break;
23474
23475 case DW_FORM_udata:
23476 type = die_type (die, cu);
23477 result = write_constant_as_bytes (obstack, byte_order,
23478 type, DW_UNSND (attr), len);
23479 break;
23480
23481 default:
23482 complaint (_("unsupported const value attribute form: '%s'"),
23483 dwarf_form_name (attr->form));
23484 break;
23485 }
23486
23487 return result;
23488 }
23489
23490 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23491 valid type for this die is found. */
23492
23493 struct type *
23494 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23495 struct dwarf2_per_cu_data *per_cu)
23496 {
23497 struct dwarf2_cu *cu;
23498 struct die_info *die;
23499
23500 if (per_cu->cu == NULL)
23501 load_cu (per_cu, false);
23502 cu = per_cu->cu;
23503 if (!cu)
23504 return NULL;
23505
23506 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23507 if (!die)
23508 return NULL;
23509
23510 return die_type (die, cu);
23511 }
23512
23513 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23514 PER_CU. */
23515
23516 struct type *
23517 dwarf2_get_die_type (cu_offset die_offset,
23518 struct dwarf2_per_cu_data *per_cu)
23519 {
23520 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23521 return get_die_type_at_offset (die_offset_sect, per_cu);
23522 }
23523
23524 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23525 On entry *REF_CU is the CU of SRC_DIE.
23526 On exit *REF_CU is the CU of the result.
23527 Returns NULL if the referenced DIE isn't found. */
23528
23529 static struct die_info *
23530 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23531 struct dwarf2_cu **ref_cu)
23532 {
23533 struct die_info temp_die;
23534 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23535 struct die_info *die;
23536
23537 /* While it might be nice to assert sig_type->type == NULL here,
23538 we can get here for DW_AT_imported_declaration where we need
23539 the DIE not the type. */
23540
23541 /* If necessary, add it to the queue and load its DIEs. */
23542
23543 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23544 read_signatured_type (sig_type);
23545
23546 sig_cu = sig_type->per_cu.cu;
23547 gdb_assert (sig_cu != NULL);
23548 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23549 temp_die.sect_off = sig_type->type_offset_in_section;
23550 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23551 to_underlying (temp_die.sect_off));
23552 if (die)
23553 {
23554 struct dwarf2_per_objfile *dwarf2_per_objfile
23555 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23556
23557 /* For .gdb_index version 7 keep track of included TUs.
23558 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23559 if (dwarf2_per_objfile->index_table != NULL
23560 && dwarf2_per_objfile->index_table->version <= 7)
23561 {
23562 VEC_safe_push (dwarf2_per_cu_ptr,
23563 (*ref_cu)->per_cu->imported_symtabs,
23564 sig_cu->per_cu);
23565 }
23566
23567 *ref_cu = sig_cu;
23568 if (sig_cu != cu)
23569 sig_cu->ancestor = cu;
23570
23571 return die;
23572 }
23573
23574 return NULL;
23575 }
23576
23577 /* Follow signatured type referenced by ATTR in SRC_DIE.
23578 On entry *REF_CU is the CU of SRC_DIE.
23579 On exit *REF_CU is the CU of the result.
23580 The result is the DIE of the type.
23581 If the referenced type cannot be found an error is thrown. */
23582
23583 static struct die_info *
23584 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23585 struct dwarf2_cu **ref_cu)
23586 {
23587 ULONGEST signature = DW_SIGNATURE (attr);
23588 struct signatured_type *sig_type;
23589 struct die_info *die;
23590
23591 gdb_assert (attr->form == DW_FORM_ref_sig8);
23592
23593 sig_type = lookup_signatured_type (*ref_cu, signature);
23594 /* sig_type will be NULL if the signatured type is missing from
23595 the debug info. */
23596 if (sig_type == NULL)
23597 {
23598 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23599 " from DIE at %s [in module %s]"),
23600 hex_string (signature), sect_offset_str (src_die->sect_off),
23601 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23602 }
23603
23604 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23605 if (die == NULL)
23606 {
23607 dump_die_for_error (src_die);
23608 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23609 " from DIE at %s [in module %s]"),
23610 hex_string (signature), sect_offset_str (src_die->sect_off),
23611 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23612 }
23613
23614 return die;
23615 }
23616
23617 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23618 reading in and processing the type unit if necessary. */
23619
23620 static struct type *
23621 get_signatured_type (struct die_info *die, ULONGEST signature,
23622 struct dwarf2_cu *cu)
23623 {
23624 struct dwarf2_per_objfile *dwarf2_per_objfile
23625 = cu->per_cu->dwarf2_per_objfile;
23626 struct signatured_type *sig_type;
23627 struct dwarf2_cu *type_cu;
23628 struct die_info *type_die;
23629 struct type *type;
23630
23631 sig_type = lookup_signatured_type (cu, signature);
23632 /* sig_type will be NULL if the signatured type is missing from
23633 the debug info. */
23634 if (sig_type == NULL)
23635 {
23636 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23637 " from DIE at %s [in module %s]"),
23638 hex_string (signature), sect_offset_str (die->sect_off),
23639 objfile_name (dwarf2_per_objfile->objfile));
23640 return build_error_marker_type (cu, die);
23641 }
23642
23643 /* If we already know the type we're done. */
23644 if (sig_type->type != NULL)
23645 return sig_type->type;
23646
23647 type_cu = cu;
23648 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23649 if (type_die != NULL)
23650 {
23651 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23652 is created. This is important, for example, because for c++ classes
23653 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23654 type = read_type_die (type_die, type_cu);
23655 if (type == NULL)
23656 {
23657 complaint (_("Dwarf Error: Cannot build signatured type %s"
23658 " referenced from DIE at %s [in module %s]"),
23659 hex_string (signature), sect_offset_str (die->sect_off),
23660 objfile_name (dwarf2_per_objfile->objfile));
23661 type = build_error_marker_type (cu, die);
23662 }
23663 }
23664 else
23665 {
23666 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23667 " from DIE at %s [in module %s]"),
23668 hex_string (signature), sect_offset_str (die->sect_off),
23669 objfile_name (dwarf2_per_objfile->objfile));
23670 type = build_error_marker_type (cu, die);
23671 }
23672 sig_type->type = type;
23673
23674 return type;
23675 }
23676
23677 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23678 reading in and processing the type unit if necessary. */
23679
23680 static struct type *
23681 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23682 struct dwarf2_cu *cu) /* ARI: editCase function */
23683 {
23684 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23685 if (attr_form_is_ref (attr))
23686 {
23687 struct dwarf2_cu *type_cu = cu;
23688 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23689
23690 return read_type_die (type_die, type_cu);
23691 }
23692 else if (attr->form == DW_FORM_ref_sig8)
23693 {
23694 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23695 }
23696 else
23697 {
23698 struct dwarf2_per_objfile *dwarf2_per_objfile
23699 = cu->per_cu->dwarf2_per_objfile;
23700
23701 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23702 " at %s [in module %s]"),
23703 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23704 objfile_name (dwarf2_per_objfile->objfile));
23705 return build_error_marker_type (cu, die);
23706 }
23707 }
23708
23709 /* Load the DIEs associated with type unit PER_CU into memory. */
23710
23711 static void
23712 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23713 {
23714 struct signatured_type *sig_type;
23715
23716 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23717 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23718
23719 /* We have the per_cu, but we need the signatured_type.
23720 Fortunately this is an easy translation. */
23721 gdb_assert (per_cu->is_debug_types);
23722 sig_type = (struct signatured_type *) per_cu;
23723
23724 gdb_assert (per_cu->cu == NULL);
23725
23726 read_signatured_type (sig_type);
23727
23728 gdb_assert (per_cu->cu != NULL);
23729 }
23730
23731 /* die_reader_func for read_signatured_type.
23732 This is identical to load_full_comp_unit_reader,
23733 but is kept separate for now. */
23734
23735 static void
23736 read_signatured_type_reader (const struct die_reader_specs *reader,
23737 const gdb_byte *info_ptr,
23738 struct die_info *comp_unit_die,
23739 int has_children,
23740 void *data)
23741 {
23742 struct dwarf2_cu *cu = reader->cu;
23743
23744 gdb_assert (cu->die_hash == NULL);
23745 cu->die_hash =
23746 htab_create_alloc_ex (cu->header.length / 12,
23747 die_hash,
23748 die_eq,
23749 NULL,
23750 &cu->comp_unit_obstack,
23751 hashtab_obstack_allocate,
23752 dummy_obstack_deallocate);
23753
23754 if (has_children)
23755 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23756 &info_ptr, comp_unit_die);
23757 cu->dies = comp_unit_die;
23758 /* comp_unit_die is not stored in die_hash, no need. */
23759
23760 /* We try not to read any attributes in this function, because not
23761 all CUs needed for references have been loaded yet, and symbol
23762 table processing isn't initialized. But we have to set the CU language,
23763 or we won't be able to build types correctly.
23764 Similarly, if we do not read the producer, we can not apply
23765 producer-specific interpretation. */
23766 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23767 }
23768
23769 /* Read in a signatured type and build its CU and DIEs.
23770 If the type is a stub for the real type in a DWO file,
23771 read in the real type from the DWO file as well. */
23772
23773 static void
23774 read_signatured_type (struct signatured_type *sig_type)
23775 {
23776 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23777
23778 gdb_assert (per_cu->is_debug_types);
23779 gdb_assert (per_cu->cu == NULL);
23780
23781 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23782 read_signatured_type_reader, NULL);
23783 sig_type->per_cu.tu_read = 1;
23784 }
23785
23786 /* Decode simple location descriptions.
23787 Given a pointer to a dwarf block that defines a location, compute
23788 the location and return the value.
23789
23790 NOTE drow/2003-11-18: This function is called in two situations
23791 now: for the address of static or global variables (partial symbols
23792 only) and for offsets into structures which are expected to be
23793 (more or less) constant. The partial symbol case should go away,
23794 and only the constant case should remain. That will let this
23795 function complain more accurately. A few special modes are allowed
23796 without complaint for global variables (for instance, global
23797 register values and thread-local values).
23798
23799 A location description containing no operations indicates that the
23800 object is optimized out. The return value is 0 for that case.
23801 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23802 callers will only want a very basic result and this can become a
23803 complaint.
23804
23805 Note that stack[0] is unused except as a default error return. */
23806
23807 static CORE_ADDR
23808 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23809 {
23810 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23811 size_t i;
23812 size_t size = blk->size;
23813 const gdb_byte *data = blk->data;
23814 CORE_ADDR stack[64];
23815 int stacki;
23816 unsigned int bytes_read, unsnd;
23817 gdb_byte op;
23818
23819 i = 0;
23820 stacki = 0;
23821 stack[stacki] = 0;
23822 stack[++stacki] = 0;
23823
23824 while (i < size)
23825 {
23826 op = data[i++];
23827 switch (op)
23828 {
23829 case DW_OP_lit0:
23830 case DW_OP_lit1:
23831 case DW_OP_lit2:
23832 case DW_OP_lit3:
23833 case DW_OP_lit4:
23834 case DW_OP_lit5:
23835 case DW_OP_lit6:
23836 case DW_OP_lit7:
23837 case DW_OP_lit8:
23838 case DW_OP_lit9:
23839 case DW_OP_lit10:
23840 case DW_OP_lit11:
23841 case DW_OP_lit12:
23842 case DW_OP_lit13:
23843 case DW_OP_lit14:
23844 case DW_OP_lit15:
23845 case DW_OP_lit16:
23846 case DW_OP_lit17:
23847 case DW_OP_lit18:
23848 case DW_OP_lit19:
23849 case DW_OP_lit20:
23850 case DW_OP_lit21:
23851 case DW_OP_lit22:
23852 case DW_OP_lit23:
23853 case DW_OP_lit24:
23854 case DW_OP_lit25:
23855 case DW_OP_lit26:
23856 case DW_OP_lit27:
23857 case DW_OP_lit28:
23858 case DW_OP_lit29:
23859 case DW_OP_lit30:
23860 case DW_OP_lit31:
23861 stack[++stacki] = op - DW_OP_lit0;
23862 break;
23863
23864 case DW_OP_reg0:
23865 case DW_OP_reg1:
23866 case DW_OP_reg2:
23867 case DW_OP_reg3:
23868 case DW_OP_reg4:
23869 case DW_OP_reg5:
23870 case DW_OP_reg6:
23871 case DW_OP_reg7:
23872 case DW_OP_reg8:
23873 case DW_OP_reg9:
23874 case DW_OP_reg10:
23875 case DW_OP_reg11:
23876 case DW_OP_reg12:
23877 case DW_OP_reg13:
23878 case DW_OP_reg14:
23879 case DW_OP_reg15:
23880 case DW_OP_reg16:
23881 case DW_OP_reg17:
23882 case DW_OP_reg18:
23883 case DW_OP_reg19:
23884 case DW_OP_reg20:
23885 case DW_OP_reg21:
23886 case DW_OP_reg22:
23887 case DW_OP_reg23:
23888 case DW_OP_reg24:
23889 case DW_OP_reg25:
23890 case DW_OP_reg26:
23891 case DW_OP_reg27:
23892 case DW_OP_reg28:
23893 case DW_OP_reg29:
23894 case DW_OP_reg30:
23895 case DW_OP_reg31:
23896 stack[++stacki] = op - DW_OP_reg0;
23897 if (i < size)
23898 dwarf2_complex_location_expr_complaint ();
23899 break;
23900
23901 case DW_OP_regx:
23902 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23903 i += bytes_read;
23904 stack[++stacki] = unsnd;
23905 if (i < size)
23906 dwarf2_complex_location_expr_complaint ();
23907 break;
23908
23909 case DW_OP_addr:
23910 stack[++stacki] = read_address (objfile->obfd, &data[i],
23911 cu, &bytes_read);
23912 i += bytes_read;
23913 break;
23914
23915 case DW_OP_const1u:
23916 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23917 i += 1;
23918 break;
23919
23920 case DW_OP_const1s:
23921 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23922 i += 1;
23923 break;
23924
23925 case DW_OP_const2u:
23926 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23927 i += 2;
23928 break;
23929
23930 case DW_OP_const2s:
23931 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23932 i += 2;
23933 break;
23934
23935 case DW_OP_const4u:
23936 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23937 i += 4;
23938 break;
23939
23940 case DW_OP_const4s:
23941 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23942 i += 4;
23943 break;
23944
23945 case DW_OP_const8u:
23946 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23947 i += 8;
23948 break;
23949
23950 case DW_OP_constu:
23951 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23952 &bytes_read);
23953 i += bytes_read;
23954 break;
23955
23956 case DW_OP_consts:
23957 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23958 i += bytes_read;
23959 break;
23960
23961 case DW_OP_dup:
23962 stack[stacki + 1] = stack[stacki];
23963 stacki++;
23964 break;
23965
23966 case DW_OP_plus:
23967 stack[stacki - 1] += stack[stacki];
23968 stacki--;
23969 break;
23970
23971 case DW_OP_plus_uconst:
23972 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23973 &bytes_read);
23974 i += bytes_read;
23975 break;
23976
23977 case DW_OP_minus:
23978 stack[stacki - 1] -= stack[stacki];
23979 stacki--;
23980 break;
23981
23982 case DW_OP_deref:
23983 /* If we're not the last op, then we definitely can't encode
23984 this using GDB's address_class enum. This is valid for partial
23985 global symbols, although the variable's address will be bogus
23986 in the psymtab. */
23987 if (i < size)
23988 dwarf2_complex_location_expr_complaint ();
23989 break;
23990
23991 case DW_OP_GNU_push_tls_address:
23992 case DW_OP_form_tls_address:
23993 /* The top of the stack has the offset from the beginning
23994 of the thread control block at which the variable is located. */
23995 /* Nothing should follow this operator, so the top of stack would
23996 be returned. */
23997 /* This is valid for partial global symbols, but the variable's
23998 address will be bogus in the psymtab. Make it always at least
23999 non-zero to not look as a variable garbage collected by linker
24000 which have DW_OP_addr 0. */
24001 if (i < size)
24002 dwarf2_complex_location_expr_complaint ();
24003 stack[stacki]++;
24004 break;
24005
24006 case DW_OP_GNU_uninit:
24007 break;
24008
24009 case DW_OP_addrx:
24010 case DW_OP_GNU_addr_index:
24011 case DW_OP_GNU_const_index:
24012 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24013 &bytes_read);
24014 i += bytes_read;
24015 break;
24016
24017 default:
24018 {
24019 const char *name = get_DW_OP_name (op);
24020
24021 if (name)
24022 complaint (_("unsupported stack op: '%s'"),
24023 name);
24024 else
24025 complaint (_("unsupported stack op: '%02x'"),
24026 op);
24027 }
24028
24029 return (stack[stacki]);
24030 }
24031
24032 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24033 outside of the allocated space. Also enforce minimum>0. */
24034 if (stacki >= ARRAY_SIZE (stack) - 1)
24035 {
24036 complaint (_("location description stack overflow"));
24037 return 0;
24038 }
24039
24040 if (stacki <= 0)
24041 {
24042 complaint (_("location description stack underflow"));
24043 return 0;
24044 }
24045 }
24046 return (stack[stacki]);
24047 }
24048
24049 /* memory allocation interface */
24050
24051 static struct dwarf_block *
24052 dwarf_alloc_block (struct dwarf2_cu *cu)
24053 {
24054 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24055 }
24056
24057 static struct die_info *
24058 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24059 {
24060 struct die_info *die;
24061 size_t size = sizeof (struct die_info);
24062
24063 if (num_attrs > 1)
24064 size += (num_attrs - 1) * sizeof (struct attribute);
24065
24066 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24067 memset (die, 0, sizeof (struct die_info));
24068 return (die);
24069 }
24070
24071 \f
24072 /* Macro support. */
24073
24074 /* Return file name relative to the compilation directory of file number I in
24075 *LH's file name table. The result is allocated using xmalloc; the caller is
24076 responsible for freeing it. */
24077
24078 static char *
24079 file_file_name (int file, struct line_header *lh)
24080 {
24081 /* Is the file number a valid index into the line header's file name
24082 table? Remember that file numbers start with one, not zero. */
24083 if (1 <= file && file <= lh->file_names.size ())
24084 {
24085 const file_entry &fe = lh->file_names[file - 1];
24086
24087 if (!IS_ABSOLUTE_PATH (fe.name))
24088 {
24089 const char *dir = fe.include_dir (lh);
24090 if (dir != NULL)
24091 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24092 }
24093 return xstrdup (fe.name);
24094 }
24095 else
24096 {
24097 /* The compiler produced a bogus file number. We can at least
24098 record the macro definitions made in the file, even if we
24099 won't be able to find the file by name. */
24100 char fake_name[80];
24101
24102 xsnprintf (fake_name, sizeof (fake_name),
24103 "<bad macro file number %d>", file);
24104
24105 complaint (_("bad file number in macro information (%d)"),
24106 file);
24107
24108 return xstrdup (fake_name);
24109 }
24110 }
24111
24112 /* Return the full name of file number I in *LH's file name table.
24113 Use COMP_DIR as the name of the current directory of the
24114 compilation. The result is allocated using xmalloc; the caller is
24115 responsible for freeing it. */
24116 static char *
24117 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24118 {
24119 /* Is the file number a valid index into the line header's file name
24120 table? Remember that file numbers start with one, not zero. */
24121 if (1 <= file && file <= lh->file_names.size ())
24122 {
24123 char *relative = file_file_name (file, lh);
24124
24125 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24126 return relative;
24127 return reconcat (relative, comp_dir, SLASH_STRING,
24128 relative, (char *) NULL);
24129 }
24130 else
24131 return file_file_name (file, lh);
24132 }
24133
24134
24135 static struct macro_source_file *
24136 macro_start_file (struct dwarf2_cu *cu,
24137 int file, int line,
24138 struct macro_source_file *current_file,
24139 struct line_header *lh)
24140 {
24141 /* File name relative to the compilation directory of this source file. */
24142 char *file_name = file_file_name (file, lh);
24143
24144 if (! current_file)
24145 {
24146 /* Note: We don't create a macro table for this compilation unit
24147 at all until we actually get a filename. */
24148 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24149
24150 /* If we have no current file, then this must be the start_file
24151 directive for the compilation unit's main source file. */
24152 current_file = macro_set_main (macro_table, file_name);
24153 macro_define_special (macro_table);
24154 }
24155 else
24156 current_file = macro_include (current_file, line, file_name);
24157
24158 xfree (file_name);
24159
24160 return current_file;
24161 }
24162
24163 static const char *
24164 consume_improper_spaces (const char *p, const char *body)
24165 {
24166 if (*p == ' ')
24167 {
24168 complaint (_("macro definition contains spaces "
24169 "in formal argument list:\n`%s'"),
24170 body);
24171
24172 while (*p == ' ')
24173 p++;
24174 }
24175
24176 return p;
24177 }
24178
24179
24180 static void
24181 parse_macro_definition (struct macro_source_file *file, int line,
24182 const char *body)
24183 {
24184 const char *p;
24185
24186 /* The body string takes one of two forms. For object-like macro
24187 definitions, it should be:
24188
24189 <macro name> " " <definition>
24190
24191 For function-like macro definitions, it should be:
24192
24193 <macro name> "() " <definition>
24194 or
24195 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24196
24197 Spaces may appear only where explicitly indicated, and in the
24198 <definition>.
24199
24200 The Dwarf 2 spec says that an object-like macro's name is always
24201 followed by a space, but versions of GCC around March 2002 omit
24202 the space when the macro's definition is the empty string.
24203
24204 The Dwarf 2 spec says that there should be no spaces between the
24205 formal arguments in a function-like macro's formal argument list,
24206 but versions of GCC around March 2002 include spaces after the
24207 commas. */
24208
24209
24210 /* Find the extent of the macro name. The macro name is terminated
24211 by either a space or null character (for an object-like macro) or
24212 an opening paren (for a function-like macro). */
24213 for (p = body; *p; p++)
24214 if (*p == ' ' || *p == '(')
24215 break;
24216
24217 if (*p == ' ' || *p == '\0')
24218 {
24219 /* It's an object-like macro. */
24220 int name_len = p - body;
24221 char *name = savestring (body, name_len);
24222 const char *replacement;
24223
24224 if (*p == ' ')
24225 replacement = body + name_len + 1;
24226 else
24227 {
24228 dwarf2_macro_malformed_definition_complaint (body);
24229 replacement = body + name_len;
24230 }
24231
24232 macro_define_object (file, line, name, replacement);
24233
24234 xfree (name);
24235 }
24236 else if (*p == '(')
24237 {
24238 /* It's a function-like macro. */
24239 char *name = savestring (body, p - body);
24240 int argc = 0;
24241 int argv_size = 1;
24242 char **argv = XNEWVEC (char *, argv_size);
24243
24244 p++;
24245
24246 p = consume_improper_spaces (p, body);
24247
24248 /* Parse the formal argument list. */
24249 while (*p && *p != ')')
24250 {
24251 /* Find the extent of the current argument name. */
24252 const char *arg_start = p;
24253
24254 while (*p && *p != ',' && *p != ')' && *p != ' ')
24255 p++;
24256
24257 if (! *p || p == arg_start)
24258 dwarf2_macro_malformed_definition_complaint (body);
24259 else
24260 {
24261 /* Make sure argv has room for the new argument. */
24262 if (argc >= argv_size)
24263 {
24264 argv_size *= 2;
24265 argv = XRESIZEVEC (char *, argv, argv_size);
24266 }
24267
24268 argv[argc++] = savestring (arg_start, p - arg_start);
24269 }
24270
24271 p = consume_improper_spaces (p, body);
24272
24273 /* Consume the comma, if present. */
24274 if (*p == ',')
24275 {
24276 p++;
24277
24278 p = consume_improper_spaces (p, body);
24279 }
24280 }
24281
24282 if (*p == ')')
24283 {
24284 p++;
24285
24286 if (*p == ' ')
24287 /* Perfectly formed definition, no complaints. */
24288 macro_define_function (file, line, name,
24289 argc, (const char **) argv,
24290 p + 1);
24291 else if (*p == '\0')
24292 {
24293 /* Complain, but do define it. */
24294 dwarf2_macro_malformed_definition_complaint (body);
24295 macro_define_function (file, line, name,
24296 argc, (const char **) argv,
24297 p);
24298 }
24299 else
24300 /* Just complain. */
24301 dwarf2_macro_malformed_definition_complaint (body);
24302 }
24303 else
24304 /* Just complain. */
24305 dwarf2_macro_malformed_definition_complaint (body);
24306
24307 xfree (name);
24308 {
24309 int i;
24310
24311 for (i = 0; i < argc; i++)
24312 xfree (argv[i]);
24313 }
24314 xfree (argv);
24315 }
24316 else
24317 dwarf2_macro_malformed_definition_complaint (body);
24318 }
24319
24320 /* Skip some bytes from BYTES according to the form given in FORM.
24321 Returns the new pointer. */
24322
24323 static const gdb_byte *
24324 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24325 enum dwarf_form form,
24326 unsigned int offset_size,
24327 struct dwarf2_section_info *section)
24328 {
24329 unsigned int bytes_read;
24330
24331 switch (form)
24332 {
24333 case DW_FORM_data1:
24334 case DW_FORM_flag:
24335 ++bytes;
24336 break;
24337
24338 case DW_FORM_data2:
24339 bytes += 2;
24340 break;
24341
24342 case DW_FORM_data4:
24343 bytes += 4;
24344 break;
24345
24346 case DW_FORM_data8:
24347 bytes += 8;
24348 break;
24349
24350 case DW_FORM_data16:
24351 bytes += 16;
24352 break;
24353
24354 case DW_FORM_string:
24355 read_direct_string (abfd, bytes, &bytes_read);
24356 bytes += bytes_read;
24357 break;
24358
24359 case DW_FORM_sec_offset:
24360 case DW_FORM_strp:
24361 case DW_FORM_GNU_strp_alt:
24362 bytes += offset_size;
24363 break;
24364
24365 case DW_FORM_block:
24366 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24367 bytes += bytes_read;
24368 break;
24369
24370 case DW_FORM_block1:
24371 bytes += 1 + read_1_byte (abfd, bytes);
24372 break;
24373 case DW_FORM_block2:
24374 bytes += 2 + read_2_bytes (abfd, bytes);
24375 break;
24376 case DW_FORM_block4:
24377 bytes += 4 + read_4_bytes (abfd, bytes);
24378 break;
24379
24380 case DW_FORM_addrx:
24381 case DW_FORM_sdata:
24382 case DW_FORM_strx:
24383 case DW_FORM_udata:
24384 case DW_FORM_GNU_addr_index:
24385 case DW_FORM_GNU_str_index:
24386 bytes = gdb_skip_leb128 (bytes, buffer_end);
24387 if (bytes == NULL)
24388 {
24389 dwarf2_section_buffer_overflow_complaint (section);
24390 return NULL;
24391 }
24392 break;
24393
24394 case DW_FORM_implicit_const:
24395 break;
24396
24397 default:
24398 {
24399 complaint (_("invalid form 0x%x in `%s'"),
24400 form, get_section_name (section));
24401 return NULL;
24402 }
24403 }
24404
24405 return bytes;
24406 }
24407
24408 /* A helper for dwarf_decode_macros that handles skipping an unknown
24409 opcode. Returns an updated pointer to the macro data buffer; or,
24410 on error, issues a complaint and returns NULL. */
24411
24412 static const gdb_byte *
24413 skip_unknown_opcode (unsigned int opcode,
24414 const gdb_byte **opcode_definitions,
24415 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24416 bfd *abfd,
24417 unsigned int offset_size,
24418 struct dwarf2_section_info *section)
24419 {
24420 unsigned int bytes_read, i;
24421 unsigned long arg;
24422 const gdb_byte *defn;
24423
24424 if (opcode_definitions[opcode] == NULL)
24425 {
24426 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24427 opcode);
24428 return NULL;
24429 }
24430
24431 defn = opcode_definitions[opcode];
24432 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24433 defn += bytes_read;
24434
24435 for (i = 0; i < arg; ++i)
24436 {
24437 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24438 (enum dwarf_form) defn[i], offset_size,
24439 section);
24440 if (mac_ptr == NULL)
24441 {
24442 /* skip_form_bytes already issued the complaint. */
24443 return NULL;
24444 }
24445 }
24446
24447 return mac_ptr;
24448 }
24449
24450 /* A helper function which parses the header of a macro section.
24451 If the macro section is the extended (for now called "GNU") type,
24452 then this updates *OFFSET_SIZE. Returns a pointer to just after
24453 the header, or issues a complaint and returns NULL on error. */
24454
24455 static const gdb_byte *
24456 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24457 bfd *abfd,
24458 const gdb_byte *mac_ptr,
24459 unsigned int *offset_size,
24460 int section_is_gnu)
24461 {
24462 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24463
24464 if (section_is_gnu)
24465 {
24466 unsigned int version, flags;
24467
24468 version = read_2_bytes (abfd, mac_ptr);
24469 if (version != 4 && version != 5)
24470 {
24471 complaint (_("unrecognized version `%d' in .debug_macro section"),
24472 version);
24473 return NULL;
24474 }
24475 mac_ptr += 2;
24476
24477 flags = read_1_byte (abfd, mac_ptr);
24478 ++mac_ptr;
24479 *offset_size = (flags & 1) ? 8 : 4;
24480
24481 if ((flags & 2) != 0)
24482 /* We don't need the line table offset. */
24483 mac_ptr += *offset_size;
24484
24485 /* Vendor opcode descriptions. */
24486 if ((flags & 4) != 0)
24487 {
24488 unsigned int i, count;
24489
24490 count = read_1_byte (abfd, mac_ptr);
24491 ++mac_ptr;
24492 for (i = 0; i < count; ++i)
24493 {
24494 unsigned int opcode, bytes_read;
24495 unsigned long arg;
24496
24497 opcode = read_1_byte (abfd, mac_ptr);
24498 ++mac_ptr;
24499 opcode_definitions[opcode] = mac_ptr;
24500 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24501 mac_ptr += bytes_read;
24502 mac_ptr += arg;
24503 }
24504 }
24505 }
24506
24507 return mac_ptr;
24508 }
24509
24510 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24511 including DW_MACRO_import. */
24512
24513 static void
24514 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24515 bfd *abfd,
24516 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24517 struct macro_source_file *current_file,
24518 struct line_header *lh,
24519 struct dwarf2_section_info *section,
24520 int section_is_gnu, int section_is_dwz,
24521 unsigned int offset_size,
24522 htab_t include_hash)
24523 {
24524 struct dwarf2_per_objfile *dwarf2_per_objfile
24525 = cu->per_cu->dwarf2_per_objfile;
24526 struct objfile *objfile = dwarf2_per_objfile->objfile;
24527 enum dwarf_macro_record_type macinfo_type;
24528 int at_commandline;
24529 const gdb_byte *opcode_definitions[256];
24530
24531 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24532 &offset_size, section_is_gnu);
24533 if (mac_ptr == NULL)
24534 {
24535 /* We already issued a complaint. */
24536 return;
24537 }
24538
24539 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24540 GDB is still reading the definitions from command line. First
24541 DW_MACINFO_start_file will need to be ignored as it was already executed
24542 to create CURRENT_FILE for the main source holding also the command line
24543 definitions. On first met DW_MACINFO_start_file this flag is reset to
24544 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24545
24546 at_commandline = 1;
24547
24548 do
24549 {
24550 /* Do we at least have room for a macinfo type byte? */
24551 if (mac_ptr >= mac_end)
24552 {
24553 dwarf2_section_buffer_overflow_complaint (section);
24554 break;
24555 }
24556
24557 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24558 mac_ptr++;
24559
24560 /* Note that we rely on the fact that the corresponding GNU and
24561 DWARF constants are the same. */
24562 DIAGNOSTIC_PUSH
24563 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24564 switch (macinfo_type)
24565 {
24566 /* A zero macinfo type indicates the end of the macro
24567 information. */
24568 case 0:
24569 break;
24570
24571 case DW_MACRO_define:
24572 case DW_MACRO_undef:
24573 case DW_MACRO_define_strp:
24574 case DW_MACRO_undef_strp:
24575 case DW_MACRO_define_sup:
24576 case DW_MACRO_undef_sup:
24577 {
24578 unsigned int bytes_read;
24579 int line;
24580 const char *body;
24581 int is_define;
24582
24583 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24584 mac_ptr += bytes_read;
24585
24586 if (macinfo_type == DW_MACRO_define
24587 || macinfo_type == DW_MACRO_undef)
24588 {
24589 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24590 mac_ptr += bytes_read;
24591 }
24592 else
24593 {
24594 LONGEST str_offset;
24595
24596 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24597 mac_ptr += offset_size;
24598
24599 if (macinfo_type == DW_MACRO_define_sup
24600 || macinfo_type == DW_MACRO_undef_sup
24601 || section_is_dwz)
24602 {
24603 struct dwz_file *dwz
24604 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24605
24606 body = read_indirect_string_from_dwz (objfile,
24607 dwz, str_offset);
24608 }
24609 else
24610 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24611 abfd, str_offset);
24612 }
24613
24614 is_define = (macinfo_type == DW_MACRO_define
24615 || macinfo_type == DW_MACRO_define_strp
24616 || macinfo_type == DW_MACRO_define_sup);
24617 if (! current_file)
24618 {
24619 /* DWARF violation as no main source is present. */
24620 complaint (_("debug info with no main source gives macro %s "
24621 "on line %d: %s"),
24622 is_define ? _("definition") : _("undefinition"),
24623 line, body);
24624 break;
24625 }
24626 if ((line == 0 && !at_commandline)
24627 || (line != 0 && at_commandline))
24628 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24629 at_commandline ? _("command-line") : _("in-file"),
24630 is_define ? _("definition") : _("undefinition"),
24631 line == 0 ? _("zero") : _("non-zero"), line, body);
24632
24633 if (body == NULL)
24634 {
24635 /* Fedora's rpm-build's "debugedit" binary
24636 corrupted .debug_macro sections.
24637
24638 For more info, see
24639 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24640 complaint (_("debug info gives %s invalid macro %s "
24641 "without body (corrupted?) at line %d "
24642 "on file %s"),
24643 at_commandline ? _("command-line") : _("in-file"),
24644 is_define ? _("definition") : _("undefinition"),
24645 line, current_file->filename);
24646 }
24647 else if (is_define)
24648 parse_macro_definition (current_file, line, body);
24649 else
24650 {
24651 gdb_assert (macinfo_type == DW_MACRO_undef
24652 || macinfo_type == DW_MACRO_undef_strp
24653 || macinfo_type == DW_MACRO_undef_sup);
24654 macro_undef (current_file, line, body);
24655 }
24656 }
24657 break;
24658
24659 case DW_MACRO_start_file:
24660 {
24661 unsigned int bytes_read;
24662 int line, file;
24663
24664 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24665 mac_ptr += bytes_read;
24666 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24667 mac_ptr += bytes_read;
24668
24669 if ((line == 0 && !at_commandline)
24670 || (line != 0 && at_commandline))
24671 complaint (_("debug info gives source %d included "
24672 "from %s at %s line %d"),
24673 file, at_commandline ? _("command-line") : _("file"),
24674 line == 0 ? _("zero") : _("non-zero"), line);
24675
24676 if (at_commandline)
24677 {
24678 /* This DW_MACRO_start_file was executed in the
24679 pass one. */
24680 at_commandline = 0;
24681 }
24682 else
24683 current_file = macro_start_file (cu, file, line, current_file,
24684 lh);
24685 }
24686 break;
24687
24688 case DW_MACRO_end_file:
24689 if (! current_file)
24690 complaint (_("macro debug info has an unmatched "
24691 "`close_file' directive"));
24692 else
24693 {
24694 current_file = current_file->included_by;
24695 if (! current_file)
24696 {
24697 enum dwarf_macro_record_type next_type;
24698
24699 /* GCC circa March 2002 doesn't produce the zero
24700 type byte marking the end of the compilation
24701 unit. Complain if it's not there, but exit no
24702 matter what. */
24703
24704 /* Do we at least have room for a macinfo type byte? */
24705 if (mac_ptr >= mac_end)
24706 {
24707 dwarf2_section_buffer_overflow_complaint (section);
24708 return;
24709 }
24710
24711 /* We don't increment mac_ptr here, so this is just
24712 a look-ahead. */
24713 next_type
24714 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24715 mac_ptr);
24716 if (next_type != 0)
24717 complaint (_("no terminating 0-type entry for "
24718 "macros in `.debug_macinfo' section"));
24719
24720 return;
24721 }
24722 }
24723 break;
24724
24725 case DW_MACRO_import:
24726 case DW_MACRO_import_sup:
24727 {
24728 LONGEST offset;
24729 void **slot;
24730 bfd *include_bfd = abfd;
24731 struct dwarf2_section_info *include_section = section;
24732 const gdb_byte *include_mac_end = mac_end;
24733 int is_dwz = section_is_dwz;
24734 const gdb_byte *new_mac_ptr;
24735
24736 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24737 mac_ptr += offset_size;
24738
24739 if (macinfo_type == DW_MACRO_import_sup)
24740 {
24741 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24742
24743 dwarf2_read_section (objfile, &dwz->macro);
24744
24745 include_section = &dwz->macro;
24746 include_bfd = get_section_bfd_owner (include_section);
24747 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24748 is_dwz = 1;
24749 }
24750
24751 new_mac_ptr = include_section->buffer + offset;
24752 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24753
24754 if (*slot != NULL)
24755 {
24756 /* This has actually happened; see
24757 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24758 complaint (_("recursive DW_MACRO_import in "
24759 ".debug_macro section"));
24760 }
24761 else
24762 {
24763 *slot = (void *) new_mac_ptr;
24764
24765 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24766 include_mac_end, current_file, lh,
24767 section, section_is_gnu, is_dwz,
24768 offset_size, include_hash);
24769
24770 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24771 }
24772 }
24773 break;
24774
24775 case DW_MACINFO_vendor_ext:
24776 if (!section_is_gnu)
24777 {
24778 unsigned int bytes_read;
24779
24780 /* This reads the constant, but since we don't recognize
24781 any vendor extensions, we ignore it. */
24782 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24783 mac_ptr += bytes_read;
24784 read_direct_string (abfd, mac_ptr, &bytes_read);
24785 mac_ptr += bytes_read;
24786
24787 /* We don't recognize any vendor extensions. */
24788 break;
24789 }
24790 /* FALLTHROUGH */
24791
24792 default:
24793 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24794 mac_ptr, mac_end, abfd, offset_size,
24795 section);
24796 if (mac_ptr == NULL)
24797 return;
24798 break;
24799 }
24800 DIAGNOSTIC_POP
24801 } while (macinfo_type != 0);
24802 }
24803
24804 static void
24805 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24806 int section_is_gnu)
24807 {
24808 struct dwarf2_per_objfile *dwarf2_per_objfile
24809 = cu->per_cu->dwarf2_per_objfile;
24810 struct objfile *objfile = dwarf2_per_objfile->objfile;
24811 struct line_header *lh = cu->line_header;
24812 bfd *abfd;
24813 const gdb_byte *mac_ptr, *mac_end;
24814 struct macro_source_file *current_file = 0;
24815 enum dwarf_macro_record_type macinfo_type;
24816 unsigned int offset_size = cu->header.offset_size;
24817 const gdb_byte *opcode_definitions[256];
24818 void **slot;
24819 struct dwarf2_section_info *section;
24820 const char *section_name;
24821
24822 if (cu->dwo_unit != NULL)
24823 {
24824 if (section_is_gnu)
24825 {
24826 section = &cu->dwo_unit->dwo_file->sections.macro;
24827 section_name = ".debug_macro.dwo";
24828 }
24829 else
24830 {
24831 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24832 section_name = ".debug_macinfo.dwo";
24833 }
24834 }
24835 else
24836 {
24837 if (section_is_gnu)
24838 {
24839 section = &dwarf2_per_objfile->macro;
24840 section_name = ".debug_macro";
24841 }
24842 else
24843 {
24844 section = &dwarf2_per_objfile->macinfo;
24845 section_name = ".debug_macinfo";
24846 }
24847 }
24848
24849 dwarf2_read_section (objfile, section);
24850 if (section->buffer == NULL)
24851 {
24852 complaint (_("missing %s section"), section_name);
24853 return;
24854 }
24855 abfd = get_section_bfd_owner (section);
24856
24857 /* First pass: Find the name of the base filename.
24858 This filename is needed in order to process all macros whose definition
24859 (or undefinition) comes from the command line. These macros are defined
24860 before the first DW_MACINFO_start_file entry, and yet still need to be
24861 associated to the base file.
24862
24863 To determine the base file name, we scan the macro definitions until we
24864 reach the first DW_MACINFO_start_file entry. We then initialize
24865 CURRENT_FILE accordingly so that any macro definition found before the
24866 first DW_MACINFO_start_file can still be associated to the base file. */
24867
24868 mac_ptr = section->buffer + offset;
24869 mac_end = section->buffer + section->size;
24870
24871 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24872 &offset_size, section_is_gnu);
24873 if (mac_ptr == NULL)
24874 {
24875 /* We already issued a complaint. */
24876 return;
24877 }
24878
24879 do
24880 {
24881 /* Do we at least have room for a macinfo type byte? */
24882 if (mac_ptr >= mac_end)
24883 {
24884 /* Complaint is printed during the second pass as GDB will probably
24885 stop the first pass earlier upon finding
24886 DW_MACINFO_start_file. */
24887 break;
24888 }
24889
24890 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24891 mac_ptr++;
24892
24893 /* Note that we rely on the fact that the corresponding GNU and
24894 DWARF constants are the same. */
24895 DIAGNOSTIC_PUSH
24896 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24897 switch (macinfo_type)
24898 {
24899 /* A zero macinfo type indicates the end of the macro
24900 information. */
24901 case 0:
24902 break;
24903
24904 case DW_MACRO_define:
24905 case DW_MACRO_undef:
24906 /* Only skip the data by MAC_PTR. */
24907 {
24908 unsigned int bytes_read;
24909
24910 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24911 mac_ptr += bytes_read;
24912 read_direct_string (abfd, mac_ptr, &bytes_read);
24913 mac_ptr += bytes_read;
24914 }
24915 break;
24916
24917 case DW_MACRO_start_file:
24918 {
24919 unsigned int bytes_read;
24920 int line, file;
24921
24922 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24923 mac_ptr += bytes_read;
24924 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24925 mac_ptr += bytes_read;
24926
24927 current_file = macro_start_file (cu, file, line, current_file, lh);
24928 }
24929 break;
24930
24931 case DW_MACRO_end_file:
24932 /* No data to skip by MAC_PTR. */
24933 break;
24934
24935 case DW_MACRO_define_strp:
24936 case DW_MACRO_undef_strp:
24937 case DW_MACRO_define_sup:
24938 case DW_MACRO_undef_sup:
24939 {
24940 unsigned int bytes_read;
24941
24942 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24943 mac_ptr += bytes_read;
24944 mac_ptr += offset_size;
24945 }
24946 break;
24947
24948 case DW_MACRO_import:
24949 case DW_MACRO_import_sup:
24950 /* Note that, according to the spec, a transparent include
24951 chain cannot call DW_MACRO_start_file. So, we can just
24952 skip this opcode. */
24953 mac_ptr += offset_size;
24954 break;
24955
24956 case DW_MACINFO_vendor_ext:
24957 /* Only skip the data by MAC_PTR. */
24958 if (!section_is_gnu)
24959 {
24960 unsigned int bytes_read;
24961
24962 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24963 mac_ptr += bytes_read;
24964 read_direct_string (abfd, mac_ptr, &bytes_read);
24965 mac_ptr += bytes_read;
24966 }
24967 /* FALLTHROUGH */
24968
24969 default:
24970 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24971 mac_ptr, mac_end, abfd, offset_size,
24972 section);
24973 if (mac_ptr == NULL)
24974 return;
24975 break;
24976 }
24977 DIAGNOSTIC_POP
24978 } while (macinfo_type != 0 && current_file == NULL);
24979
24980 /* Second pass: Process all entries.
24981
24982 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24983 command-line macro definitions/undefinitions. This flag is unset when we
24984 reach the first DW_MACINFO_start_file entry. */
24985
24986 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24987 htab_eq_pointer,
24988 NULL, xcalloc, xfree));
24989 mac_ptr = section->buffer + offset;
24990 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24991 *slot = (void *) mac_ptr;
24992 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24993 current_file, lh, section,
24994 section_is_gnu, 0, offset_size,
24995 include_hash.get ());
24996 }
24997
24998 /* Check if the attribute's form is a DW_FORM_block*
24999 if so return true else false. */
25000
25001 static int
25002 attr_form_is_block (const struct attribute *attr)
25003 {
25004 return (attr == NULL ? 0 :
25005 attr->form == DW_FORM_block1
25006 || attr->form == DW_FORM_block2
25007 || attr->form == DW_FORM_block4
25008 || attr->form == DW_FORM_block
25009 || attr->form == DW_FORM_exprloc);
25010 }
25011
25012 /* Return non-zero if ATTR's value is a section offset --- classes
25013 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25014 You may use DW_UNSND (attr) to retrieve such offsets.
25015
25016 Section 7.5.4, "Attribute Encodings", explains that no attribute
25017 may have a value that belongs to more than one of these classes; it
25018 would be ambiguous if we did, because we use the same forms for all
25019 of them. */
25020
25021 static int
25022 attr_form_is_section_offset (const struct attribute *attr)
25023 {
25024 return (attr->form == DW_FORM_data4
25025 || attr->form == DW_FORM_data8
25026 || attr->form == DW_FORM_sec_offset);
25027 }
25028
25029 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25030 zero otherwise. When this function returns true, you can apply
25031 dwarf2_get_attr_constant_value to it.
25032
25033 However, note that for some attributes you must check
25034 attr_form_is_section_offset before using this test. DW_FORM_data4
25035 and DW_FORM_data8 are members of both the constant class, and of
25036 the classes that contain offsets into other debug sections
25037 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25038 that, if an attribute's can be either a constant or one of the
25039 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25040 taken as section offsets, not constants.
25041
25042 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25043 cannot handle that. */
25044
25045 static int
25046 attr_form_is_constant (const struct attribute *attr)
25047 {
25048 switch (attr->form)
25049 {
25050 case DW_FORM_sdata:
25051 case DW_FORM_udata:
25052 case DW_FORM_data1:
25053 case DW_FORM_data2:
25054 case DW_FORM_data4:
25055 case DW_FORM_data8:
25056 case DW_FORM_implicit_const:
25057 return 1;
25058 default:
25059 return 0;
25060 }
25061 }
25062
25063
25064 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25065 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25066
25067 static int
25068 attr_form_is_ref (const struct attribute *attr)
25069 {
25070 switch (attr->form)
25071 {
25072 case DW_FORM_ref_addr:
25073 case DW_FORM_ref1:
25074 case DW_FORM_ref2:
25075 case DW_FORM_ref4:
25076 case DW_FORM_ref8:
25077 case DW_FORM_ref_udata:
25078 case DW_FORM_GNU_ref_alt:
25079 return 1;
25080 default:
25081 return 0;
25082 }
25083 }
25084
25085 /* Return the .debug_loc section to use for CU.
25086 For DWO files use .debug_loc.dwo. */
25087
25088 static struct dwarf2_section_info *
25089 cu_debug_loc_section (struct dwarf2_cu *cu)
25090 {
25091 struct dwarf2_per_objfile *dwarf2_per_objfile
25092 = cu->per_cu->dwarf2_per_objfile;
25093
25094 if (cu->dwo_unit)
25095 {
25096 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25097
25098 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25099 }
25100 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25101 : &dwarf2_per_objfile->loc);
25102 }
25103
25104 /* A helper function that fills in a dwarf2_loclist_baton. */
25105
25106 static void
25107 fill_in_loclist_baton (struct dwarf2_cu *cu,
25108 struct dwarf2_loclist_baton *baton,
25109 const struct attribute *attr)
25110 {
25111 struct dwarf2_per_objfile *dwarf2_per_objfile
25112 = cu->per_cu->dwarf2_per_objfile;
25113 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25114
25115 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25116
25117 baton->per_cu = cu->per_cu;
25118 gdb_assert (baton->per_cu);
25119 /* We don't know how long the location list is, but make sure we
25120 don't run off the edge of the section. */
25121 baton->size = section->size - DW_UNSND (attr);
25122 baton->data = section->buffer + DW_UNSND (attr);
25123 baton->base_address = cu->base_address;
25124 baton->from_dwo = cu->dwo_unit != NULL;
25125 }
25126
25127 static void
25128 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25129 struct dwarf2_cu *cu, int is_block)
25130 {
25131 struct dwarf2_per_objfile *dwarf2_per_objfile
25132 = cu->per_cu->dwarf2_per_objfile;
25133 struct objfile *objfile = dwarf2_per_objfile->objfile;
25134 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25135
25136 if (attr_form_is_section_offset (attr)
25137 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25138 the section. If so, fall through to the complaint in the
25139 other branch. */
25140 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25141 {
25142 struct dwarf2_loclist_baton *baton;
25143
25144 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25145
25146 fill_in_loclist_baton (cu, baton, attr);
25147
25148 if (cu->base_known == 0)
25149 complaint (_("Location list used without "
25150 "specifying the CU base address."));
25151
25152 SYMBOL_ACLASS_INDEX (sym) = (is_block
25153 ? dwarf2_loclist_block_index
25154 : dwarf2_loclist_index);
25155 SYMBOL_LOCATION_BATON (sym) = baton;
25156 }
25157 else
25158 {
25159 struct dwarf2_locexpr_baton *baton;
25160
25161 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25162 baton->per_cu = cu->per_cu;
25163 gdb_assert (baton->per_cu);
25164
25165 if (attr_form_is_block (attr))
25166 {
25167 /* Note that we're just copying the block's data pointer
25168 here, not the actual data. We're still pointing into the
25169 info_buffer for SYM's objfile; right now we never release
25170 that buffer, but when we do clean up properly this may
25171 need to change. */
25172 baton->size = DW_BLOCK (attr)->size;
25173 baton->data = DW_BLOCK (attr)->data;
25174 }
25175 else
25176 {
25177 dwarf2_invalid_attrib_class_complaint ("location description",
25178 SYMBOL_NATURAL_NAME (sym));
25179 baton->size = 0;
25180 }
25181
25182 SYMBOL_ACLASS_INDEX (sym) = (is_block
25183 ? dwarf2_locexpr_block_index
25184 : dwarf2_locexpr_index);
25185 SYMBOL_LOCATION_BATON (sym) = baton;
25186 }
25187 }
25188
25189 /* Return the OBJFILE associated with the compilation unit CU. If CU
25190 came from a separate debuginfo file, then the master objfile is
25191 returned. */
25192
25193 struct objfile *
25194 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25195 {
25196 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25197
25198 /* Return the master objfile, so that we can report and look up the
25199 correct file containing this variable. */
25200 if (objfile->separate_debug_objfile_backlink)
25201 objfile = objfile->separate_debug_objfile_backlink;
25202
25203 return objfile;
25204 }
25205
25206 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25207 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25208 CU_HEADERP first. */
25209
25210 static const struct comp_unit_head *
25211 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25212 struct dwarf2_per_cu_data *per_cu)
25213 {
25214 const gdb_byte *info_ptr;
25215
25216 if (per_cu->cu)
25217 return &per_cu->cu->header;
25218
25219 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25220
25221 memset (cu_headerp, 0, sizeof (*cu_headerp));
25222 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25223 rcuh_kind::COMPILE);
25224
25225 return cu_headerp;
25226 }
25227
25228 /* Return the address size given in the compilation unit header for CU. */
25229
25230 int
25231 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25232 {
25233 struct comp_unit_head cu_header_local;
25234 const struct comp_unit_head *cu_headerp;
25235
25236 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25237
25238 return cu_headerp->addr_size;
25239 }
25240
25241 /* Return the offset size given in the compilation unit header for CU. */
25242
25243 int
25244 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25245 {
25246 struct comp_unit_head cu_header_local;
25247 const struct comp_unit_head *cu_headerp;
25248
25249 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25250
25251 return cu_headerp->offset_size;
25252 }
25253
25254 /* See its dwarf2loc.h declaration. */
25255
25256 int
25257 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25258 {
25259 struct comp_unit_head cu_header_local;
25260 const struct comp_unit_head *cu_headerp;
25261
25262 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25263
25264 if (cu_headerp->version == 2)
25265 return cu_headerp->addr_size;
25266 else
25267 return cu_headerp->offset_size;
25268 }
25269
25270 /* Return the text offset of the CU. The returned offset comes from
25271 this CU's objfile. If this objfile came from a separate debuginfo
25272 file, then the offset may be different from the corresponding
25273 offset in the parent objfile. */
25274
25275 CORE_ADDR
25276 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25277 {
25278 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25279
25280 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25281 }
25282
25283 /* Return DWARF version number of PER_CU. */
25284
25285 short
25286 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25287 {
25288 return per_cu->dwarf_version;
25289 }
25290
25291 /* Locate the .debug_info compilation unit from CU's objfile which contains
25292 the DIE at OFFSET. Raises an error on failure. */
25293
25294 static struct dwarf2_per_cu_data *
25295 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25296 unsigned int offset_in_dwz,
25297 struct dwarf2_per_objfile *dwarf2_per_objfile)
25298 {
25299 struct dwarf2_per_cu_data *this_cu;
25300 int low, high;
25301
25302 low = 0;
25303 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25304 while (high > low)
25305 {
25306 struct dwarf2_per_cu_data *mid_cu;
25307 int mid = low + (high - low) / 2;
25308
25309 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25310 if (mid_cu->is_dwz > offset_in_dwz
25311 || (mid_cu->is_dwz == offset_in_dwz
25312 && mid_cu->sect_off + mid_cu->length >= sect_off))
25313 high = mid;
25314 else
25315 low = mid + 1;
25316 }
25317 gdb_assert (low == high);
25318 this_cu = dwarf2_per_objfile->all_comp_units[low];
25319 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25320 {
25321 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25322 error (_("Dwarf Error: could not find partial DIE containing "
25323 "offset %s [in module %s]"),
25324 sect_offset_str (sect_off),
25325 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25326
25327 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25328 <= sect_off);
25329 return dwarf2_per_objfile->all_comp_units[low-1];
25330 }
25331 else
25332 {
25333 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25334 && sect_off >= this_cu->sect_off + this_cu->length)
25335 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25336 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25337 return this_cu;
25338 }
25339 }
25340
25341 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25342
25343 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25344 : per_cu (per_cu_),
25345 mark (false),
25346 has_loclist (false),
25347 checked_producer (false),
25348 producer_is_gxx_lt_4_6 (false),
25349 producer_is_gcc_lt_4_3 (false),
25350 producer_is_icc (false),
25351 producer_is_icc_lt_14 (false),
25352 producer_is_codewarrior (false),
25353 processing_has_namespace_info (false)
25354 {
25355 per_cu->cu = this;
25356 }
25357
25358 /* Destroy a dwarf2_cu. */
25359
25360 dwarf2_cu::~dwarf2_cu ()
25361 {
25362 per_cu->cu = NULL;
25363 }
25364
25365 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25366
25367 static void
25368 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25369 enum language pretend_language)
25370 {
25371 struct attribute *attr;
25372
25373 /* Set the language we're debugging. */
25374 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25375 if (attr)
25376 set_cu_language (DW_UNSND (attr), cu);
25377 else
25378 {
25379 cu->language = pretend_language;
25380 cu->language_defn = language_def (cu->language);
25381 }
25382
25383 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25384 }
25385
25386 /* Increase the age counter on each cached compilation unit, and free
25387 any that are too old. */
25388
25389 static void
25390 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25391 {
25392 struct dwarf2_per_cu_data *per_cu, **last_chain;
25393
25394 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25395 per_cu = dwarf2_per_objfile->read_in_chain;
25396 while (per_cu != NULL)
25397 {
25398 per_cu->cu->last_used ++;
25399 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25400 dwarf2_mark (per_cu->cu);
25401 per_cu = per_cu->cu->read_in_chain;
25402 }
25403
25404 per_cu = dwarf2_per_objfile->read_in_chain;
25405 last_chain = &dwarf2_per_objfile->read_in_chain;
25406 while (per_cu != NULL)
25407 {
25408 struct dwarf2_per_cu_data *next_cu;
25409
25410 next_cu = per_cu->cu->read_in_chain;
25411
25412 if (!per_cu->cu->mark)
25413 {
25414 delete per_cu->cu;
25415 *last_chain = next_cu;
25416 }
25417 else
25418 last_chain = &per_cu->cu->read_in_chain;
25419
25420 per_cu = next_cu;
25421 }
25422 }
25423
25424 /* Remove a single compilation unit from the cache. */
25425
25426 static void
25427 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25428 {
25429 struct dwarf2_per_cu_data *per_cu, **last_chain;
25430 struct dwarf2_per_objfile *dwarf2_per_objfile
25431 = target_per_cu->dwarf2_per_objfile;
25432
25433 per_cu = dwarf2_per_objfile->read_in_chain;
25434 last_chain = &dwarf2_per_objfile->read_in_chain;
25435 while (per_cu != NULL)
25436 {
25437 struct dwarf2_per_cu_data *next_cu;
25438
25439 next_cu = per_cu->cu->read_in_chain;
25440
25441 if (per_cu == target_per_cu)
25442 {
25443 delete per_cu->cu;
25444 per_cu->cu = NULL;
25445 *last_chain = next_cu;
25446 break;
25447 }
25448 else
25449 last_chain = &per_cu->cu->read_in_chain;
25450
25451 per_cu = next_cu;
25452 }
25453 }
25454
25455 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25456 We store these in a hash table separate from the DIEs, and preserve them
25457 when the DIEs are flushed out of cache.
25458
25459 The CU "per_cu" pointer is needed because offset alone is not enough to
25460 uniquely identify the type. A file may have multiple .debug_types sections,
25461 or the type may come from a DWO file. Furthermore, while it's more logical
25462 to use per_cu->section+offset, with Fission the section with the data is in
25463 the DWO file but we don't know that section at the point we need it.
25464 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25465 because we can enter the lookup routine, get_die_type_at_offset, from
25466 outside this file, and thus won't necessarily have PER_CU->cu.
25467 Fortunately, PER_CU is stable for the life of the objfile. */
25468
25469 struct dwarf2_per_cu_offset_and_type
25470 {
25471 const struct dwarf2_per_cu_data *per_cu;
25472 sect_offset sect_off;
25473 struct type *type;
25474 };
25475
25476 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25477
25478 static hashval_t
25479 per_cu_offset_and_type_hash (const void *item)
25480 {
25481 const struct dwarf2_per_cu_offset_and_type *ofs
25482 = (const struct dwarf2_per_cu_offset_and_type *) item;
25483
25484 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25485 }
25486
25487 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25488
25489 static int
25490 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25491 {
25492 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25493 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25494 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25495 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25496
25497 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25498 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25499 }
25500
25501 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25502 table if necessary. For convenience, return TYPE.
25503
25504 The DIEs reading must have careful ordering to:
25505 * Not cause infite loops trying to read in DIEs as a prerequisite for
25506 reading current DIE.
25507 * Not trying to dereference contents of still incompletely read in types
25508 while reading in other DIEs.
25509 * Enable referencing still incompletely read in types just by a pointer to
25510 the type without accessing its fields.
25511
25512 Therefore caller should follow these rules:
25513 * Try to fetch any prerequisite types we may need to build this DIE type
25514 before building the type and calling set_die_type.
25515 * After building type call set_die_type for current DIE as soon as
25516 possible before fetching more types to complete the current type.
25517 * Make the type as complete as possible before fetching more types. */
25518
25519 static struct type *
25520 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25521 {
25522 struct dwarf2_per_objfile *dwarf2_per_objfile
25523 = cu->per_cu->dwarf2_per_objfile;
25524 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25525 struct objfile *objfile = dwarf2_per_objfile->objfile;
25526 struct attribute *attr;
25527 struct dynamic_prop prop;
25528
25529 /* For Ada types, make sure that the gnat-specific data is always
25530 initialized (if not already set). There are a few types where
25531 we should not be doing so, because the type-specific area is
25532 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25533 where the type-specific area is used to store the floatformat).
25534 But this is not a problem, because the gnat-specific information
25535 is actually not needed for these types. */
25536 if (need_gnat_info (cu)
25537 && TYPE_CODE (type) != TYPE_CODE_FUNC
25538 && TYPE_CODE (type) != TYPE_CODE_FLT
25539 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25540 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25541 && TYPE_CODE (type) != TYPE_CODE_METHOD
25542 && !HAVE_GNAT_AUX_INFO (type))
25543 INIT_GNAT_SPECIFIC (type);
25544
25545 /* Read DW_AT_allocated and set in type. */
25546 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25547 if (attr_form_is_block (attr))
25548 {
25549 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25550 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25551 }
25552 else if (attr != NULL)
25553 {
25554 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25555 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25556 sect_offset_str (die->sect_off));
25557 }
25558
25559 /* Read DW_AT_associated and set in type. */
25560 attr = dwarf2_attr (die, DW_AT_associated, cu);
25561 if (attr_form_is_block (attr))
25562 {
25563 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25564 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25565 }
25566 else if (attr != NULL)
25567 {
25568 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25569 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25570 sect_offset_str (die->sect_off));
25571 }
25572
25573 /* Read DW_AT_data_location and set in type. */
25574 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25575 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25576 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25577
25578 if (dwarf2_per_objfile->die_type_hash == NULL)
25579 {
25580 dwarf2_per_objfile->die_type_hash =
25581 htab_create_alloc_ex (127,
25582 per_cu_offset_and_type_hash,
25583 per_cu_offset_and_type_eq,
25584 NULL,
25585 &objfile->objfile_obstack,
25586 hashtab_obstack_allocate,
25587 dummy_obstack_deallocate);
25588 }
25589
25590 ofs.per_cu = cu->per_cu;
25591 ofs.sect_off = die->sect_off;
25592 ofs.type = type;
25593 slot = (struct dwarf2_per_cu_offset_and_type **)
25594 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25595 if (*slot)
25596 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25597 sect_offset_str (die->sect_off));
25598 *slot = XOBNEW (&objfile->objfile_obstack,
25599 struct dwarf2_per_cu_offset_and_type);
25600 **slot = ofs;
25601 return type;
25602 }
25603
25604 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25605 or return NULL if the die does not have a saved type. */
25606
25607 static struct type *
25608 get_die_type_at_offset (sect_offset sect_off,
25609 struct dwarf2_per_cu_data *per_cu)
25610 {
25611 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25612 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25613
25614 if (dwarf2_per_objfile->die_type_hash == NULL)
25615 return NULL;
25616
25617 ofs.per_cu = per_cu;
25618 ofs.sect_off = sect_off;
25619 slot = ((struct dwarf2_per_cu_offset_and_type *)
25620 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25621 if (slot)
25622 return slot->type;
25623 else
25624 return NULL;
25625 }
25626
25627 /* Look up the type for DIE in CU in die_type_hash,
25628 or return NULL if DIE does not have a saved type. */
25629
25630 static struct type *
25631 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25632 {
25633 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25634 }
25635
25636 /* Add a dependence relationship from CU to REF_PER_CU. */
25637
25638 static void
25639 dwarf2_add_dependence (struct dwarf2_cu *cu,
25640 struct dwarf2_per_cu_data *ref_per_cu)
25641 {
25642 void **slot;
25643
25644 if (cu->dependencies == NULL)
25645 cu->dependencies
25646 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25647 NULL, &cu->comp_unit_obstack,
25648 hashtab_obstack_allocate,
25649 dummy_obstack_deallocate);
25650
25651 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25652 if (*slot == NULL)
25653 *slot = ref_per_cu;
25654 }
25655
25656 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25657 Set the mark field in every compilation unit in the
25658 cache that we must keep because we are keeping CU. */
25659
25660 static int
25661 dwarf2_mark_helper (void **slot, void *data)
25662 {
25663 struct dwarf2_per_cu_data *per_cu;
25664
25665 per_cu = (struct dwarf2_per_cu_data *) *slot;
25666
25667 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25668 reading of the chain. As such dependencies remain valid it is not much
25669 useful to track and undo them during QUIT cleanups. */
25670 if (per_cu->cu == NULL)
25671 return 1;
25672
25673 if (per_cu->cu->mark)
25674 return 1;
25675 per_cu->cu->mark = true;
25676
25677 if (per_cu->cu->dependencies != NULL)
25678 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25679
25680 return 1;
25681 }
25682
25683 /* Set the mark field in CU and in every other compilation unit in the
25684 cache that we must keep because we are keeping CU. */
25685
25686 static void
25687 dwarf2_mark (struct dwarf2_cu *cu)
25688 {
25689 if (cu->mark)
25690 return;
25691 cu->mark = true;
25692 if (cu->dependencies != NULL)
25693 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25694 }
25695
25696 static void
25697 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25698 {
25699 while (per_cu)
25700 {
25701 per_cu->cu->mark = false;
25702 per_cu = per_cu->cu->read_in_chain;
25703 }
25704 }
25705
25706 /* Trivial hash function for partial_die_info: the hash value of a DIE
25707 is its offset in .debug_info for this objfile. */
25708
25709 static hashval_t
25710 partial_die_hash (const void *item)
25711 {
25712 const struct partial_die_info *part_die
25713 = (const struct partial_die_info *) item;
25714
25715 return to_underlying (part_die->sect_off);
25716 }
25717
25718 /* Trivial comparison function for partial_die_info structures: two DIEs
25719 are equal if they have the same offset. */
25720
25721 static int
25722 partial_die_eq (const void *item_lhs, const void *item_rhs)
25723 {
25724 const struct partial_die_info *part_die_lhs
25725 = (const struct partial_die_info *) item_lhs;
25726 const struct partial_die_info *part_die_rhs
25727 = (const struct partial_die_info *) item_rhs;
25728
25729 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25730 }
25731
25732 struct cmd_list_element *set_dwarf_cmdlist;
25733 struct cmd_list_element *show_dwarf_cmdlist;
25734
25735 static void
25736 set_dwarf_cmd (const char *args, int from_tty)
25737 {
25738 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25739 gdb_stdout);
25740 }
25741
25742 static void
25743 show_dwarf_cmd (const char *args, int from_tty)
25744 {
25745 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25746 }
25747
25748 int dwarf_always_disassemble;
25749
25750 static void
25751 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25752 struct cmd_list_element *c, const char *value)
25753 {
25754 fprintf_filtered (file,
25755 _("Whether to always disassemble "
25756 "DWARF expressions is %s.\n"),
25757 value);
25758 }
25759
25760 static void
25761 show_check_physname (struct ui_file *file, int from_tty,
25762 struct cmd_list_element *c, const char *value)
25763 {
25764 fprintf_filtered (file,
25765 _("Whether to check \"physname\" is %s.\n"),
25766 value);
25767 }
25768
25769 void
25770 _initialize_dwarf2_read (void)
25771 {
25772 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25773 Set DWARF specific variables.\n\
25774 Configure DWARF variables such as the cache size"),
25775 &set_dwarf_cmdlist, "maintenance set dwarf ",
25776 0/*allow-unknown*/, &maintenance_set_cmdlist);
25777
25778 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25779 Show DWARF specific variables\n\
25780 Show DWARF variables such as the cache size"),
25781 &show_dwarf_cmdlist, "maintenance show dwarf ",
25782 0/*allow-unknown*/, &maintenance_show_cmdlist);
25783
25784 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25785 &dwarf_max_cache_age, _("\
25786 Set the upper bound on the age of cached DWARF compilation units."), _("\
25787 Show the upper bound on the age of cached DWARF compilation units."), _("\
25788 A higher limit means that cached compilation units will be stored\n\
25789 in memory longer, and more total memory will be used. Zero disables\n\
25790 caching, which can slow down startup."),
25791 NULL,
25792 show_dwarf_max_cache_age,
25793 &set_dwarf_cmdlist,
25794 &show_dwarf_cmdlist);
25795
25796 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25797 &dwarf_always_disassemble, _("\
25798 Set whether `info address' always disassembles DWARF expressions."), _("\
25799 Show whether `info address' always disassembles DWARF expressions."), _("\
25800 When enabled, DWARF expressions are always printed in an assembly-like\n\
25801 syntax. When disabled, expressions will be printed in a more\n\
25802 conversational style, when possible."),
25803 NULL,
25804 show_dwarf_always_disassemble,
25805 &set_dwarf_cmdlist,
25806 &show_dwarf_cmdlist);
25807
25808 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25809 Set debugging of the DWARF reader."), _("\
25810 Show debugging of the DWARF reader."), _("\
25811 When enabled (non-zero), debugging messages are printed during DWARF\n\
25812 reading and symtab expansion. A value of 1 (one) provides basic\n\
25813 information. A value greater than 1 provides more verbose information."),
25814 NULL,
25815 NULL,
25816 &setdebuglist, &showdebuglist);
25817
25818 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25819 Set debugging of the DWARF DIE reader."), _("\
25820 Show debugging of the DWARF DIE reader."), _("\
25821 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25822 The value is the maximum depth to print."),
25823 NULL,
25824 NULL,
25825 &setdebuglist, &showdebuglist);
25826
25827 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25828 Set debugging of the dwarf line reader."), _("\
25829 Show debugging of the dwarf line reader."), _("\
25830 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25831 A value of 1 (one) provides basic information.\n\
25832 A value greater than 1 provides more verbose information."),
25833 NULL,
25834 NULL,
25835 &setdebuglist, &showdebuglist);
25836
25837 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25838 Set cross-checking of \"physname\" code against demangler."), _("\
25839 Show cross-checking of \"physname\" code against demangler."), _("\
25840 When enabled, GDB's internal \"physname\" code is checked against\n\
25841 the demangler."),
25842 NULL, show_check_physname,
25843 &setdebuglist, &showdebuglist);
25844
25845 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25846 no_class, &use_deprecated_index_sections, _("\
25847 Set whether to use deprecated gdb_index sections."), _("\
25848 Show whether to use deprecated gdb_index sections."), _("\
25849 When enabled, deprecated .gdb_index sections are used anyway.\n\
25850 Normally they are ignored either because of a missing feature or\n\
25851 performance issue.\n\
25852 Warning: This option must be enabled before gdb reads the file."),
25853 NULL,
25854 NULL,
25855 &setlist, &showlist);
25856
25857 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25858 &dwarf2_locexpr_funcs);
25859 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25860 &dwarf2_loclist_funcs);
25861
25862 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25863 &dwarf2_block_frame_base_locexpr_funcs);
25864 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25865 &dwarf2_block_frame_base_loclist_funcs);
25866
25867 #if GDB_SELF_TEST
25868 selftests::register_test ("dw2_expand_symtabs_matching",
25869 selftests::dw2_expand_symtabs_matching::run_test);
25870 #endif
25871 }