]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
gdb: Add switch to disable DWARF stack unwinders
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The symtab builder for this CU. This is only non-NULL when full
439 symbols are being read. */
440 std::unique_ptr<buildsym_compunit> builder;
441
442 /* The generic symbol table building routines have separate lists for
443 file scope symbols and all all other scopes (local scopes). So
444 we need to select the right one to pass to add_symbol_to_list().
445 We do it by keeping a pointer to the correct list in list_in_scope.
446
447 FIXME: The original dwarf code just treated the file scope as the
448 first local scope, and all other local scopes as nested local
449 scopes, and worked fine. Check to see if we really need to
450 distinguish these in buildsym.c. */
451 struct pending **list_in_scope = nullptr;
452
453 /* Hash table holding all the loaded partial DIEs
454 with partial_die->offset.SECT_OFF as hash. */
455 htab_t partial_dies = nullptr;
456
457 /* Storage for things with the same lifetime as this read-in compilation
458 unit, including partial DIEs. */
459 auto_obstack comp_unit_obstack;
460
461 /* When multiple dwarf2_cu structures are living in memory, this field
462 chains them all together, so that they can be released efficiently.
463 We will probably also want a generation counter so that most-recently-used
464 compilation units are cached... */
465 struct dwarf2_per_cu_data *read_in_chain = nullptr;
466
467 /* Backlink to our per_cu entry. */
468 struct dwarf2_per_cu_data *per_cu;
469
470 /* How many compilation units ago was this CU last referenced? */
471 int last_used = 0;
472
473 /* A hash table of DIE cu_offset for following references with
474 die_info->offset.sect_off as hash. */
475 htab_t die_hash = nullptr;
476
477 /* Full DIEs if read in. */
478 struct die_info *dies = nullptr;
479
480 /* A set of pointers to dwarf2_per_cu_data objects for compilation
481 units referenced by this one. Only set during full symbol processing;
482 partial symbol tables do not have dependencies. */
483 htab_t dependencies = nullptr;
484
485 /* Header data from the line table, during full symbol processing. */
486 struct line_header *line_header = nullptr;
487 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
488 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
489 this is the DW_TAG_compile_unit die for this CU. We'll hold on
490 to the line header as long as this DIE is being processed. See
491 process_die_scope. */
492 die_info *line_header_die_owner = nullptr;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 std::vector<delayed_method_info> method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab = nullptr;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit = nullptr;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
515 ULONGEST addr_base = 0;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* Mark used when releasing cached dies. */
538 unsigned int mark : 1;
539
540 /* This CU references .debug_loc. See the symtab->locations_valid field.
541 This test is imperfect as there may exist optimized debug code not using
542 any location list and still facing inlining issues if handled as
543 unoptimized code. For a future better test see GCC PR other/32998. */
544 unsigned int has_loclist : 1;
545
546 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
547 if all the producer_is_* fields are valid. This information is cached
548 because profiling CU expansion showed excessive time spent in
549 producer_is_gxx_lt_4_6. */
550 unsigned int checked_producer : 1;
551 unsigned int producer_is_gxx_lt_4_6 : 1;
552 unsigned int producer_is_gcc_lt_4_3 : 1;
553 unsigned int producer_is_icc_lt_14 : 1;
554
555 /* When set, the file that we're processing is known to have
556 debugging info for C++ namespaces. GCC 3.3.x did not produce
557 this information, but later versions do. */
558
559 unsigned int processing_has_namespace_info : 1;
560
561 struct partial_die_info *find_partial_die (sect_offset sect_off);
562 };
563
564 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
565 This includes type_unit_group and quick_file_names. */
566
567 struct stmt_list_hash
568 {
569 /* The DWO unit this table is from or NULL if there is none. */
570 struct dwo_unit *dwo_unit;
571
572 /* Offset in .debug_line or .debug_line.dwo. */
573 sect_offset line_sect_off;
574 };
575
576 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
577 an object of this type. */
578
579 struct type_unit_group
580 {
581 /* dwarf2read.c's main "handle" on a TU symtab.
582 To simplify things we create an artificial CU that "includes" all the
583 type units using this stmt_list so that the rest of the code still has
584 a "per_cu" handle on the symtab.
585 This PER_CU is recognized by having no section. */
586 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
587 struct dwarf2_per_cu_data per_cu;
588
589 /* The TUs that share this DW_AT_stmt_list entry.
590 This is added to while parsing type units to build partial symtabs,
591 and is deleted afterwards and not used again. */
592 VEC (sig_type_ptr) *tus;
593
594 /* The compunit symtab.
595 Type units in a group needn't all be defined in the same source file,
596 so we create an essentially anonymous symtab as the compunit symtab. */
597 struct compunit_symtab *compunit_symtab;
598
599 /* The data used to construct the hash key. */
600 struct stmt_list_hash hash;
601
602 /* The number of symtabs from the line header.
603 The value here must match line_header.num_file_names. */
604 unsigned int num_symtabs;
605
606 /* The symbol tables for this TU (obtained from the files listed in
607 DW_AT_stmt_list).
608 WARNING: The order of entries here must match the order of entries
609 in the line header. After the first TU using this type_unit_group, the
610 line header for the subsequent TUs is recreated from this. This is done
611 because we need to use the same symtabs for each TU using the same
612 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
613 there's no guarantee the line header doesn't have duplicate entries. */
614 struct symtab **symtabs;
615 };
616
617 /* These sections are what may appear in a (real or virtual) DWO file. */
618
619 struct dwo_sections
620 {
621 struct dwarf2_section_info abbrev;
622 struct dwarf2_section_info line;
623 struct dwarf2_section_info loc;
624 struct dwarf2_section_info loclists;
625 struct dwarf2_section_info macinfo;
626 struct dwarf2_section_info macro;
627 struct dwarf2_section_info str;
628 struct dwarf2_section_info str_offsets;
629 /* In the case of a virtual DWO file, these two are unused. */
630 struct dwarf2_section_info info;
631 VEC (dwarf2_section_info_def) *types;
632 };
633
634 /* CUs/TUs in DWP/DWO files. */
635
636 struct dwo_unit
637 {
638 /* Backlink to the containing struct dwo_file. */
639 struct dwo_file *dwo_file;
640
641 /* The "id" that distinguishes this CU/TU.
642 .debug_info calls this "dwo_id", .debug_types calls this "signature".
643 Since signatures came first, we stick with it for consistency. */
644 ULONGEST signature;
645
646 /* The section this CU/TU lives in, in the DWO file. */
647 struct dwarf2_section_info *section;
648
649 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
650 sect_offset sect_off;
651 unsigned int length;
652
653 /* For types, offset in the type's DIE of the type defined by this TU. */
654 cu_offset type_offset_in_tu;
655 };
656
657 /* include/dwarf2.h defines the DWP section codes.
658 It defines a max value but it doesn't define a min value, which we
659 use for error checking, so provide one. */
660
661 enum dwp_v2_section_ids
662 {
663 DW_SECT_MIN = 1
664 };
665
666 /* Data for one DWO file.
667
668 This includes virtual DWO files (a virtual DWO file is a DWO file as it
669 appears in a DWP file). DWP files don't really have DWO files per se -
670 comdat folding of types "loses" the DWO file they came from, and from
671 a high level view DWP files appear to contain a mass of random types.
672 However, to maintain consistency with the non-DWP case we pretend DWP
673 files contain virtual DWO files, and we assign each TU with one virtual
674 DWO file (generally based on the line and abbrev section offsets -
675 a heuristic that seems to work in practice). */
676
677 struct dwo_file
678 {
679 /* The DW_AT_GNU_dwo_name attribute.
680 For virtual DWO files the name is constructed from the section offsets
681 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
682 from related CU+TUs. */
683 const char *dwo_name;
684
685 /* The DW_AT_comp_dir attribute. */
686 const char *comp_dir;
687
688 /* The bfd, when the file is open. Otherwise this is NULL.
689 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
690 bfd *dbfd;
691
692 /* The sections that make up this DWO file.
693 Remember that for virtual DWO files in DWP V2, these are virtual
694 sections (for lack of a better name). */
695 struct dwo_sections sections;
696
697 /* The CUs in the file.
698 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
699 an extension to handle LLVM's Link Time Optimization output (where
700 multiple source files may be compiled into a single object/dwo pair). */
701 htab_t cus;
702
703 /* Table of TUs in the file.
704 Each element is a struct dwo_unit. */
705 htab_t tus;
706 };
707
708 /* These sections are what may appear in a DWP file. */
709
710 struct dwp_sections
711 {
712 /* These are used by both DWP version 1 and 2. */
713 struct dwarf2_section_info str;
714 struct dwarf2_section_info cu_index;
715 struct dwarf2_section_info tu_index;
716
717 /* These are only used by DWP version 2 files.
718 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
719 sections are referenced by section number, and are not recorded here.
720 In DWP version 2 there is at most one copy of all these sections, each
721 section being (effectively) comprised of the concatenation of all of the
722 individual sections that exist in the version 1 format.
723 To keep the code simple we treat each of these concatenated pieces as a
724 section itself (a virtual section?). */
725 struct dwarf2_section_info abbrev;
726 struct dwarf2_section_info info;
727 struct dwarf2_section_info line;
728 struct dwarf2_section_info loc;
729 struct dwarf2_section_info macinfo;
730 struct dwarf2_section_info macro;
731 struct dwarf2_section_info str_offsets;
732 struct dwarf2_section_info types;
733 };
734
735 /* These sections are what may appear in a virtual DWO file in DWP version 1.
736 A virtual DWO file is a DWO file as it appears in a DWP file. */
737
738 struct virtual_v1_dwo_sections
739 {
740 struct dwarf2_section_info abbrev;
741 struct dwarf2_section_info line;
742 struct dwarf2_section_info loc;
743 struct dwarf2_section_info macinfo;
744 struct dwarf2_section_info macro;
745 struct dwarf2_section_info str_offsets;
746 /* Each DWP hash table entry records one CU or one TU.
747 That is recorded here, and copied to dwo_unit.section. */
748 struct dwarf2_section_info info_or_types;
749 };
750
751 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
752 In version 2, the sections of the DWO files are concatenated together
753 and stored in one section of that name. Thus each ELF section contains
754 several "virtual" sections. */
755
756 struct virtual_v2_dwo_sections
757 {
758 bfd_size_type abbrev_offset;
759 bfd_size_type abbrev_size;
760
761 bfd_size_type line_offset;
762 bfd_size_type line_size;
763
764 bfd_size_type loc_offset;
765 bfd_size_type loc_size;
766
767 bfd_size_type macinfo_offset;
768 bfd_size_type macinfo_size;
769
770 bfd_size_type macro_offset;
771 bfd_size_type macro_size;
772
773 bfd_size_type str_offsets_offset;
774 bfd_size_type str_offsets_size;
775
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 bfd_size_type info_or_types_offset;
779 bfd_size_type info_or_types_size;
780 };
781
782 /* Contents of DWP hash tables. */
783
784 struct dwp_hash_table
785 {
786 uint32_t version, nr_columns;
787 uint32_t nr_units, nr_slots;
788 const gdb_byte *hash_table, *unit_table;
789 union
790 {
791 struct
792 {
793 const gdb_byte *indices;
794 } v1;
795 struct
796 {
797 /* This is indexed by column number and gives the id of the section
798 in that column. */
799 #define MAX_NR_V2_DWO_SECTIONS \
800 (1 /* .debug_info or .debug_types */ \
801 + 1 /* .debug_abbrev */ \
802 + 1 /* .debug_line */ \
803 + 1 /* .debug_loc */ \
804 + 1 /* .debug_str_offsets */ \
805 + 1 /* .debug_macro or .debug_macinfo */)
806 int section_ids[MAX_NR_V2_DWO_SECTIONS];
807 const gdb_byte *offsets;
808 const gdb_byte *sizes;
809 } v2;
810 } section_pool;
811 };
812
813 /* Data for one DWP file. */
814
815 struct dwp_file
816 {
817 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
818 : name (name_),
819 dbfd (std::move (abfd))
820 {
821 }
822
823 /* Name of the file. */
824 const char *name;
825
826 /* File format version. */
827 int version = 0;
828
829 /* The bfd. */
830 gdb_bfd_ref_ptr dbfd;
831
832 /* Section info for this file. */
833 struct dwp_sections sections {};
834
835 /* Table of CUs in the file. */
836 const struct dwp_hash_table *cus = nullptr;
837
838 /* Table of TUs in the file. */
839 const struct dwp_hash_table *tus = nullptr;
840
841 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
842 htab_t loaded_cus {};
843 htab_t loaded_tus {};
844
845 /* Table to map ELF section numbers to their sections.
846 This is only needed for the DWP V1 file format. */
847 unsigned int num_sections = 0;
848 asection **elf_sections = nullptr;
849 };
850
851 /* This represents a '.dwz' file. */
852
853 struct dwz_file
854 {
855 dwz_file (gdb_bfd_ref_ptr &&bfd)
856 : dwz_bfd (std::move (bfd))
857 {
858 }
859
860 /* A dwz file can only contain a few sections. */
861 struct dwarf2_section_info abbrev {};
862 struct dwarf2_section_info info {};
863 struct dwarf2_section_info str {};
864 struct dwarf2_section_info line {};
865 struct dwarf2_section_info macro {};
866 struct dwarf2_section_info gdb_index {};
867 struct dwarf2_section_info debug_names {};
868
869 /* The dwz's BFD. */
870 gdb_bfd_ref_ptr dwz_bfd;
871 };
872
873 /* Struct used to pass misc. parameters to read_die_and_children, et
874 al. which are used for both .debug_info and .debug_types dies.
875 All parameters here are unchanging for the life of the call. This
876 struct exists to abstract away the constant parameters of die reading. */
877
878 struct die_reader_specs
879 {
880 /* The bfd of die_section. */
881 bfd* abfd;
882
883 /* The CU of the DIE we are parsing. */
884 struct dwarf2_cu *cu;
885
886 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
887 struct dwo_file *dwo_file;
888
889 /* The section the die comes from.
890 This is either .debug_info or .debug_types, or the .dwo variants. */
891 struct dwarf2_section_info *die_section;
892
893 /* die_section->buffer. */
894 const gdb_byte *buffer;
895
896 /* The end of the buffer. */
897 const gdb_byte *buffer_end;
898
899 /* The value of the DW_AT_comp_dir attribute. */
900 const char *comp_dir;
901
902 /* The abbreviation table to use when reading the DIEs. */
903 struct abbrev_table *abbrev_table;
904 };
905
906 /* Type of function passed to init_cutu_and_read_dies, et.al. */
907 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
908 const gdb_byte *info_ptr,
909 struct die_info *comp_unit_die,
910 int has_children,
911 void *data);
912
913 /* A 1-based directory index. This is a strong typedef to prevent
914 accidentally using a directory index as a 0-based index into an
915 array/vector. */
916 enum class dir_index : unsigned int {};
917
918 /* Likewise, a 1-based file name index. */
919 enum class file_name_index : unsigned int {};
920
921 struct file_entry
922 {
923 file_entry () = default;
924
925 file_entry (const char *name_, dir_index d_index_,
926 unsigned int mod_time_, unsigned int length_)
927 : name (name_),
928 d_index (d_index_),
929 mod_time (mod_time_),
930 length (length_)
931 {}
932
933 /* Return the include directory at D_INDEX stored in LH. Returns
934 NULL if D_INDEX is out of bounds. */
935 const char *include_dir (const line_header *lh) const;
936
937 /* The file name. Note this is an observing pointer. The memory is
938 owned by debug_line_buffer. */
939 const char *name {};
940
941 /* The directory index (1-based). */
942 dir_index d_index {};
943
944 unsigned int mod_time {};
945
946 unsigned int length {};
947
948 /* True if referenced by the Line Number Program. */
949 bool included_p {};
950
951 /* The associated symbol table, if any. */
952 struct symtab *symtab {};
953 };
954
955 /* The line number information for a compilation unit (found in the
956 .debug_line section) begins with a "statement program header",
957 which contains the following information. */
958 struct line_header
959 {
960 line_header ()
961 : offset_in_dwz {}
962 {}
963
964 /* Add an entry to the include directory table. */
965 void add_include_dir (const char *include_dir);
966
967 /* Add an entry to the file name table. */
968 void add_file_name (const char *name, dir_index d_index,
969 unsigned int mod_time, unsigned int length);
970
971 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
972 is out of bounds. */
973 const char *include_dir_at (dir_index index) const
974 {
975 /* Convert directory index number (1-based) to vector index
976 (0-based). */
977 size_t vec_index = to_underlying (index) - 1;
978
979 if (vec_index >= include_dirs.size ())
980 return NULL;
981 return include_dirs[vec_index];
982 }
983
984 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
985 is out of bounds. */
986 file_entry *file_name_at (file_name_index index)
987 {
988 /* Convert file name index number (1-based) to vector index
989 (0-based). */
990 size_t vec_index = to_underlying (index) - 1;
991
992 if (vec_index >= file_names.size ())
993 return NULL;
994 return &file_names[vec_index];
995 }
996
997 /* Const version of the above. */
998 const file_entry *file_name_at (unsigned int index) const
999 {
1000 if (index >= file_names.size ())
1001 return NULL;
1002 return &file_names[index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 static struct partial_die_info *find_partial_die (sect_offset, int,
1488 struct dwarf2_cu *);
1489
1490 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1491 struct attribute *, struct attr_abbrev *,
1492 const gdb_byte *);
1493
1494 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1495
1496 static int read_1_signed_byte (bfd *, const gdb_byte *);
1497
1498 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1499
1500 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1501
1502 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1503
1504 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1505 unsigned int *);
1506
1507 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1508
1509 static LONGEST read_checked_initial_length_and_offset
1510 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1511 unsigned int *, unsigned int *);
1512
1513 static LONGEST read_offset (bfd *, const gdb_byte *,
1514 const struct comp_unit_head *,
1515 unsigned int *);
1516
1517 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1518
1519 static sect_offset read_abbrev_offset
1520 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1521 struct dwarf2_section_info *, sect_offset);
1522
1523 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1524
1525 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1526
1527 static const char *read_indirect_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_line_string
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1533 const struct comp_unit_head *, unsigned int *);
1534
1535 static const char *read_indirect_string_at_offset
1536 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1537 LONGEST str_offset);
1538
1539 static const char *read_indirect_string_from_dwz
1540 (struct objfile *objfile, struct dwz_file *, LONGEST);
1541
1542 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1543
1544 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1545 const gdb_byte *,
1546 unsigned int *);
1547
1548 static const char *read_str_index (const struct die_reader_specs *reader,
1549 ULONGEST str_index);
1550
1551 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1552
1553 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1554 struct dwarf2_cu *);
1555
1556 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1557 unsigned int);
1558
1559 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1560 struct dwarf2_cu *cu);
1561
1562 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1563 struct dwarf2_cu *cu);
1564
1565 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1566
1567 static struct die_info *die_specification (struct die_info *die,
1568 struct dwarf2_cu **);
1569
1570 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1571 struct dwarf2_cu *cu);
1572
1573 static void dwarf_decode_lines (struct line_header *, const char *,
1574 struct dwarf2_cu *, struct partial_symtab *,
1575 CORE_ADDR, int decode_mapping);
1576
1577 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1578 const char *);
1579
1580 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1581 const char *, const char *,
1582 CORE_ADDR);
1583
1584 static struct symbol *new_symbol (struct die_info *, struct type *,
1585 struct dwarf2_cu *, struct symbol * = NULL);
1586
1587 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1588 struct dwarf2_cu *);
1589
1590 static void dwarf2_const_value_attr (const struct attribute *attr,
1591 struct type *type,
1592 const char *name,
1593 struct obstack *obstack,
1594 struct dwarf2_cu *cu, LONGEST *value,
1595 const gdb_byte **bytes,
1596 struct dwarf2_locexpr_baton **baton);
1597
1598 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1599
1600 static int need_gnat_info (struct dwarf2_cu *);
1601
1602 static struct type *die_descriptive_type (struct die_info *,
1603 struct dwarf2_cu *);
1604
1605 static void set_descriptive_type (struct type *, struct die_info *,
1606 struct dwarf2_cu *);
1607
1608 static struct type *die_containing_type (struct die_info *,
1609 struct dwarf2_cu *);
1610
1611 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1612 struct dwarf2_cu *);
1613
1614 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1615
1616 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1617
1618 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1619
1620 static char *typename_concat (struct obstack *obs, const char *prefix,
1621 const char *suffix, int physname,
1622 struct dwarf2_cu *cu);
1623
1624 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1625
1626 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1629
1630 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1631
1632 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1633
1634 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1635
1636 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *, struct partial_symtab *);
1638
1639 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1640 values. Keep the items ordered with increasing constraints compliance. */
1641 enum pc_bounds_kind
1642 {
1643 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1644 PC_BOUNDS_NOT_PRESENT,
1645
1646 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1647 were present but they do not form a valid range of PC addresses. */
1648 PC_BOUNDS_INVALID,
1649
1650 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1651 PC_BOUNDS_RANGES,
1652
1653 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1654 PC_BOUNDS_HIGH_LOW,
1655 };
1656
1657 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *,
1660 struct partial_symtab *);
1661
1662 static void get_scope_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *);
1665
1666 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1667 CORE_ADDR, struct dwarf2_cu *);
1668
1669 static void dwarf2_add_field (struct field_info *, struct die_info *,
1670 struct dwarf2_cu *);
1671
1672 static void dwarf2_attach_fields_to_type (struct field_info *,
1673 struct type *, struct dwarf2_cu *);
1674
1675 static void dwarf2_add_member_fn (struct field_info *,
1676 struct die_info *, struct type *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1680 struct type *,
1681 struct dwarf2_cu *);
1682
1683 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1684
1685 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1686
1687 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1688
1689 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1690
1691 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1692
1693 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1694
1695 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1696
1697 static struct type *read_module_type (struct die_info *die,
1698 struct dwarf2_cu *cu);
1699
1700 static const char *namespace_name (struct die_info *die,
1701 int *is_anonymous, struct dwarf2_cu *);
1702
1703 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1704
1705 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1706
1707 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1708 struct dwarf2_cu *);
1709
1710 static struct die_info *read_die_and_siblings_1
1711 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1712 struct die_info *);
1713
1714 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1715 const gdb_byte *info_ptr,
1716 const gdb_byte **new_info_ptr,
1717 struct die_info *parent);
1718
1719 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1720 struct die_info **, const gdb_byte *,
1721 int *, int);
1722
1723 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1724 struct die_info **, const gdb_byte *,
1725 int *);
1726
1727 static void process_die (struct die_info *, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1730 struct obstack *);
1731
1732 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1733
1734 static const char *dwarf2_full_name (const char *name,
1735 struct die_info *die,
1736 struct dwarf2_cu *cu);
1737
1738 static const char *dwarf2_physname (const char *name, struct die_info *die,
1739 struct dwarf2_cu *cu);
1740
1741 static struct die_info *dwarf2_extension (struct die_info *die,
1742 struct dwarf2_cu **);
1743
1744 static const char *dwarf_tag_name (unsigned int);
1745
1746 static const char *dwarf_attr_name (unsigned int);
1747
1748 static const char *dwarf_form_name (unsigned int);
1749
1750 static const char *dwarf_bool_name (unsigned int);
1751
1752 static const char *dwarf_type_encoding_name (unsigned int);
1753
1754 static struct die_info *sibling_die (struct die_info *);
1755
1756 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1757
1758 static void dump_die_for_error (struct die_info *);
1759
1760 static void dump_die_1 (struct ui_file *, int level, int max_level,
1761 struct die_info *);
1762
1763 /*static*/ void dump_die (struct die_info *, int max_level);
1764
1765 static void store_in_ref_table (struct die_info *,
1766 struct dwarf2_cu *);
1767
1768 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1769
1770 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1771
1772 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1773 const struct attribute *,
1774 struct dwarf2_cu **);
1775
1776 static struct die_info *follow_die_ref (struct die_info *,
1777 const struct attribute *,
1778 struct dwarf2_cu **);
1779
1780 static struct die_info *follow_die_sig (struct die_info *,
1781 const struct attribute *,
1782 struct dwarf2_cu **);
1783
1784 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1785 struct dwarf2_cu *);
1786
1787 static struct type *get_DW_AT_signature_type (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu *);
1790
1791 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1792
1793 static void read_signatured_type (struct signatured_type *);
1794
1795 static int attr_to_dynamic_prop (const struct attribute *attr,
1796 struct die_info *die, struct dwarf2_cu *cu,
1797 struct dynamic_prop *prop);
1798
1799 /* memory allocation interface */
1800
1801 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1802
1803 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1804
1805 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1806
1807 static int attr_form_is_block (const struct attribute *);
1808
1809 static int attr_form_is_section_offset (const struct attribute *);
1810
1811 static int attr_form_is_constant (const struct attribute *);
1812
1813 static int attr_form_is_ref (const struct attribute *);
1814
1815 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1816 struct dwarf2_loclist_baton *baton,
1817 const struct attribute *attr);
1818
1819 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1820 struct symbol *sym,
1821 struct dwarf2_cu *cu,
1822 int is_block);
1823
1824 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1825 const gdb_byte *info_ptr,
1826 struct abbrev_info *abbrev);
1827
1828 static hashval_t partial_die_hash (const void *item);
1829
1830 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1831
1832 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1833 (sect_offset sect_off, unsigned int offset_in_dwz,
1834 struct dwarf2_per_objfile *dwarf2_per_objfile);
1835
1836 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1837 struct die_info *comp_unit_die,
1838 enum language pretend_language);
1839
1840 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1841
1842 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1843
1844 static struct type *set_die_type (struct die_info *, struct type *,
1845 struct dwarf2_cu *);
1846
1847 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1848
1849 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1850
1851 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1852 enum language);
1853
1854 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1855 enum language);
1856
1857 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1858 enum language);
1859
1860 static void dwarf2_add_dependence (struct dwarf2_cu *,
1861 struct dwarf2_per_cu_data *);
1862
1863 static void dwarf2_mark (struct dwarf2_cu *);
1864
1865 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1866
1867 static struct type *get_die_type_at_offset (sect_offset,
1868 struct dwarf2_per_cu_data *);
1869
1870 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1871
1872 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1873 enum language pretend_language);
1874
1875 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1876
1877 /* Class, the destructor of which frees all allocated queue entries. This
1878 will only have work to do if an error was thrown while processing the
1879 dwarf. If no error was thrown then the queue entries should have all
1880 been processed, and freed, as we went along. */
1881
1882 class dwarf2_queue_guard
1883 {
1884 public:
1885 dwarf2_queue_guard () = default;
1886
1887 /* Free any entries remaining on the queue. There should only be
1888 entries left if we hit an error while processing the dwarf. */
1889 ~dwarf2_queue_guard ()
1890 {
1891 struct dwarf2_queue_item *item, *last;
1892
1893 item = dwarf2_queue;
1894 while (item)
1895 {
1896 /* Anything still marked queued is likely to be in an
1897 inconsistent state, so discard it. */
1898 if (item->per_cu->queued)
1899 {
1900 if (item->per_cu->cu != NULL)
1901 free_one_cached_comp_unit (item->per_cu);
1902 item->per_cu->queued = 0;
1903 }
1904
1905 last = item;
1906 item = item->next;
1907 xfree (last);
1908 }
1909
1910 dwarf2_queue = dwarf2_queue_tail = NULL;
1911 }
1912 };
1913
1914 /* The return type of find_file_and_directory. Note, the enclosed
1915 string pointers are only valid while this object is valid. */
1916
1917 struct file_and_directory
1918 {
1919 /* The filename. This is never NULL. */
1920 const char *name;
1921
1922 /* The compilation directory. NULL if not known. If we needed to
1923 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1924 points directly to the DW_AT_comp_dir string attribute owned by
1925 the obstack that owns the DIE. */
1926 const char *comp_dir;
1927
1928 /* If we needed to build a new string for comp_dir, this is what
1929 owns the storage. */
1930 std::string comp_dir_storage;
1931 };
1932
1933 static file_and_directory find_file_and_directory (struct die_info *die,
1934 struct dwarf2_cu *cu);
1935
1936 static char *file_full_name (int file, struct line_header *lh,
1937 const char *comp_dir);
1938
1939 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1940 enum class rcuh_kind { COMPILE, TYPE };
1941
1942 static const gdb_byte *read_and_check_comp_unit_head
1943 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1944 struct comp_unit_head *header,
1945 struct dwarf2_section_info *section,
1946 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1947 rcuh_kind section_kind);
1948
1949 static void init_cutu_and_read_dies
1950 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1951 int use_existing_cu, int keep, bool skip_partial,
1952 die_reader_func_ftype *die_reader_func, void *data);
1953
1954 static void init_cutu_and_read_dies_simple
1955 (struct dwarf2_per_cu_data *this_cu,
1956 die_reader_func_ftype *die_reader_func, void *data);
1957
1958 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1959
1960 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1961
1962 static struct dwo_unit *lookup_dwo_unit_in_dwp
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1964 struct dwp_file *dwp_file, const char *comp_dir,
1965 ULONGEST signature, int is_debug_types);
1966
1967 static struct dwp_file *get_dwp_file
1968 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1969
1970 static struct dwo_unit *lookup_dwo_comp_unit
1971 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1972
1973 static struct dwo_unit *lookup_dwo_type_unit
1974 (struct signatured_type *, const char *, const char *);
1975
1976 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1977
1978 static void free_dwo_file (struct dwo_file *);
1979
1980 /* A unique_ptr helper to free a dwo_file. */
1981
1982 struct dwo_file_deleter
1983 {
1984 void operator() (struct dwo_file *df) const
1985 {
1986 free_dwo_file (df);
1987 }
1988 };
1989
1990 /* A unique pointer to a dwo_file. */
1991
1992 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1993
1994 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1995
1996 static void check_producer (struct dwarf2_cu *cu);
1997
1998 static void free_line_header_voidp (void *arg);
1999 \f
2000 /* Various complaints about symbol reading that don't abort the process. */
2001
2002 static void
2003 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2004 {
2005 complaint (_("statement list doesn't fit in .debug_line section"));
2006 }
2007
2008 static void
2009 dwarf2_debug_line_missing_file_complaint (void)
2010 {
2011 complaint (_(".debug_line section has line data without a file"));
2012 }
2013
2014 static void
2015 dwarf2_debug_line_missing_end_sequence_complaint (void)
2016 {
2017 complaint (_(".debug_line section has line "
2018 "program sequence without an end"));
2019 }
2020
2021 static void
2022 dwarf2_complex_location_expr_complaint (void)
2023 {
2024 complaint (_("location expression too complex"));
2025 }
2026
2027 static void
2028 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2029 int arg3)
2030 {
2031 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2032 arg1, arg2, arg3);
2033 }
2034
2035 static void
2036 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2037 {
2038 complaint (_("debug info runs off end of %s section"
2039 " [in module %s]"),
2040 get_section_name (section),
2041 get_section_file_name (section));
2042 }
2043
2044 static void
2045 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2046 {
2047 complaint (_("macro debug info contains a "
2048 "malformed macro definition:\n`%s'"),
2049 arg1);
2050 }
2051
2052 static void
2053 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2054 {
2055 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2056 arg1, arg2);
2057 }
2058
2059 /* Hash function for line_header_hash. */
2060
2061 static hashval_t
2062 line_header_hash (const struct line_header *ofs)
2063 {
2064 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2065 }
2066
2067 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash_voidp (const void *item)
2071 {
2072 const struct line_header *ofs = (const struct line_header *) item;
2073
2074 return line_header_hash (ofs);
2075 }
2076
2077 /* Equality function for line_header_hash. */
2078
2079 static int
2080 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2081 {
2082 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2083 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2084
2085 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2086 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2087 }
2088
2089 \f
2090
2091 /* Read the given attribute value as an address, taking the attribute's
2092 form into account. */
2093
2094 static CORE_ADDR
2095 attr_value_as_address (struct attribute *attr)
2096 {
2097 CORE_ADDR addr;
2098
2099 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2100 {
2101 /* Aside from a few clearly defined exceptions, attributes that
2102 contain an address must always be in DW_FORM_addr form.
2103 Unfortunately, some compilers happen to be violating this
2104 requirement by encoding addresses using other forms, such
2105 as DW_FORM_data4 for example. For those broken compilers,
2106 we try to do our best, without any guarantee of success,
2107 to interpret the address correctly. It would also be nice
2108 to generate a complaint, but that would require us to maintain
2109 a list of legitimate cases where a non-address form is allowed,
2110 as well as update callers to pass in at least the CU's DWARF
2111 version. This is more overhead than what we're willing to
2112 expand for a pretty rare case. */
2113 addr = DW_UNSND (attr);
2114 }
2115 else
2116 addr = DW_ADDR (attr);
2117
2118 return addr;
2119 }
2120
2121 /* See declaration. */
2122
2123 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2124 const dwarf2_debug_sections *names)
2125 : objfile (objfile_)
2126 {
2127 if (names == NULL)
2128 names = &dwarf2_elf_names;
2129
2130 bfd *obfd = objfile->obfd;
2131
2132 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2133 locate_sections (obfd, sec, *names);
2134 }
2135
2136 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2137
2138 dwarf2_per_objfile::~dwarf2_per_objfile ()
2139 {
2140 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2141 free_cached_comp_units ();
2142
2143 if (quick_file_names_table)
2144 htab_delete (quick_file_names_table);
2145
2146 if (line_header_hash)
2147 htab_delete (line_header_hash);
2148
2149 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2150 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2151
2152 for (signatured_type *sig_type : all_type_units)
2153 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2154
2155 VEC_free (dwarf2_section_info_def, types);
2156
2157 if (dwo_files != NULL)
2158 free_dwo_files (dwo_files, objfile);
2159
2160 /* Everything else should be on the objfile obstack. */
2161 }
2162
2163 /* See declaration. */
2164
2165 void
2166 dwarf2_per_objfile::free_cached_comp_units ()
2167 {
2168 dwarf2_per_cu_data *per_cu = read_in_chain;
2169 dwarf2_per_cu_data **last_chain = &read_in_chain;
2170 while (per_cu != NULL)
2171 {
2172 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2173
2174 delete per_cu->cu;
2175 *last_chain = next_cu;
2176 per_cu = next_cu;
2177 }
2178 }
2179
2180 /* A helper class that calls free_cached_comp_units on
2181 destruction. */
2182
2183 class free_cached_comp_units
2184 {
2185 public:
2186
2187 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2188 : m_per_objfile (per_objfile)
2189 {
2190 }
2191
2192 ~free_cached_comp_units ()
2193 {
2194 m_per_objfile->free_cached_comp_units ();
2195 }
2196
2197 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2198
2199 private:
2200
2201 dwarf2_per_objfile *m_per_objfile;
2202 };
2203
2204 /* Try to locate the sections we need for DWARF 2 debugging
2205 information and return true if we have enough to do something.
2206 NAMES points to the dwarf2 section names, or is NULL if the standard
2207 ELF names are used. */
2208
2209 int
2210 dwarf2_has_info (struct objfile *objfile,
2211 const struct dwarf2_debug_sections *names)
2212 {
2213 if (objfile->flags & OBJF_READNEVER)
2214 return 0;
2215
2216 struct dwarf2_per_objfile *dwarf2_per_objfile
2217 = get_dwarf2_per_objfile (objfile);
2218
2219 if (dwarf2_per_objfile == NULL)
2220 {
2221 /* Initialize per-objfile state. */
2222 dwarf2_per_objfile
2223 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2224 names);
2225 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2226 }
2227 return (!dwarf2_per_objfile->info.is_virtual
2228 && dwarf2_per_objfile->info.s.section != NULL
2229 && !dwarf2_per_objfile->abbrev.is_virtual
2230 && dwarf2_per_objfile->abbrev.s.section != NULL);
2231 }
2232
2233 /* Return the containing section of virtual section SECTION. */
2234
2235 static struct dwarf2_section_info *
2236 get_containing_section (const struct dwarf2_section_info *section)
2237 {
2238 gdb_assert (section->is_virtual);
2239 return section->s.containing_section;
2240 }
2241
2242 /* Return the bfd owner of SECTION. */
2243
2244 static struct bfd *
2245 get_section_bfd_owner (const struct dwarf2_section_info *section)
2246 {
2247 if (section->is_virtual)
2248 {
2249 section = get_containing_section (section);
2250 gdb_assert (!section->is_virtual);
2251 }
2252 return section->s.section->owner;
2253 }
2254
2255 /* Return the bfd section of SECTION.
2256 Returns NULL if the section is not present. */
2257
2258 static asection *
2259 get_section_bfd_section (const struct dwarf2_section_info *section)
2260 {
2261 if (section->is_virtual)
2262 {
2263 section = get_containing_section (section);
2264 gdb_assert (!section->is_virtual);
2265 }
2266 return section->s.section;
2267 }
2268
2269 /* Return the name of SECTION. */
2270
2271 static const char *
2272 get_section_name (const struct dwarf2_section_info *section)
2273 {
2274 asection *sectp = get_section_bfd_section (section);
2275
2276 gdb_assert (sectp != NULL);
2277 return bfd_section_name (get_section_bfd_owner (section), sectp);
2278 }
2279
2280 /* Return the name of the file SECTION is in. */
2281
2282 static const char *
2283 get_section_file_name (const struct dwarf2_section_info *section)
2284 {
2285 bfd *abfd = get_section_bfd_owner (section);
2286
2287 return bfd_get_filename (abfd);
2288 }
2289
2290 /* Return the id of SECTION.
2291 Returns 0 if SECTION doesn't exist. */
2292
2293 static int
2294 get_section_id (const struct dwarf2_section_info *section)
2295 {
2296 asection *sectp = get_section_bfd_section (section);
2297
2298 if (sectp == NULL)
2299 return 0;
2300 return sectp->id;
2301 }
2302
2303 /* Return the flags of SECTION.
2304 SECTION (or containing section if this is a virtual section) must exist. */
2305
2306 static int
2307 get_section_flags (const struct dwarf2_section_info *section)
2308 {
2309 asection *sectp = get_section_bfd_section (section);
2310
2311 gdb_assert (sectp != NULL);
2312 return bfd_get_section_flags (sectp->owner, sectp);
2313 }
2314
2315 /* When loading sections, we look either for uncompressed section or for
2316 compressed section names. */
2317
2318 static int
2319 section_is_p (const char *section_name,
2320 const struct dwarf2_section_names *names)
2321 {
2322 if (names->normal != NULL
2323 && strcmp (section_name, names->normal) == 0)
2324 return 1;
2325 if (names->compressed != NULL
2326 && strcmp (section_name, names->compressed) == 0)
2327 return 1;
2328 return 0;
2329 }
2330
2331 /* See declaration. */
2332
2333 void
2334 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2335 const dwarf2_debug_sections &names)
2336 {
2337 flagword aflag = bfd_get_section_flags (abfd, sectp);
2338
2339 if ((aflag & SEC_HAS_CONTENTS) == 0)
2340 {
2341 }
2342 else if (section_is_p (sectp->name, &names.info))
2343 {
2344 this->info.s.section = sectp;
2345 this->info.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.abbrev))
2348 {
2349 this->abbrev.s.section = sectp;
2350 this->abbrev.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.line))
2353 {
2354 this->line.s.section = sectp;
2355 this->line.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loc))
2358 {
2359 this->loc.s.section = sectp;
2360 this->loc.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.loclists))
2363 {
2364 this->loclists.s.section = sectp;
2365 this->loclists.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macinfo))
2368 {
2369 this->macinfo.s.section = sectp;
2370 this->macinfo.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.macro))
2373 {
2374 this->macro.s.section = sectp;
2375 this->macro.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.str))
2378 {
2379 this->str.s.section = sectp;
2380 this->str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.line_str))
2383 {
2384 this->line_str.s.section = sectp;
2385 this->line_str.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.addr))
2388 {
2389 this->addr.s.section = sectp;
2390 this->addr.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.frame))
2393 {
2394 this->frame.s.section = sectp;
2395 this->frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.eh_frame))
2398 {
2399 this->eh_frame.s.section = sectp;
2400 this->eh_frame.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.ranges))
2403 {
2404 this->ranges.s.section = sectp;
2405 this->ranges.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.rnglists))
2408 {
2409 this->rnglists.s.section = sectp;
2410 this->rnglists.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.types))
2413 {
2414 struct dwarf2_section_info type_section;
2415
2416 memset (&type_section, 0, sizeof (type_section));
2417 type_section.s.section = sectp;
2418 type_section.size = bfd_get_section_size (sectp);
2419
2420 VEC_safe_push (dwarf2_section_info_def, this->types,
2421 &type_section);
2422 }
2423 else if (section_is_p (sectp->name, &names.gdb_index))
2424 {
2425 this->gdb_index.s.section = sectp;
2426 this->gdb_index.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_names))
2429 {
2430 this->debug_names.s.section = sectp;
2431 this->debug_names.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.debug_aranges))
2434 {
2435 this->debug_aranges.s.section = sectp;
2436 this->debug_aranges.size = bfd_get_section_size (sectp);
2437 }
2438
2439 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2440 && bfd_section_vma (abfd, sectp) == 0)
2441 this->has_section_at_zero = true;
2442 }
2443
2444 /* A helper function that decides whether a section is empty,
2445 or not present. */
2446
2447 static int
2448 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2449 {
2450 if (section->is_virtual)
2451 return section->size == 0;
2452 return section->s.section == NULL || section->size == 0;
2453 }
2454
2455 /* See dwarf2read.h. */
2456
2457 void
2458 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2459 {
2460 asection *sectp;
2461 bfd *abfd;
2462 gdb_byte *buf, *retbuf;
2463
2464 if (info->readin)
2465 return;
2466 info->buffer = NULL;
2467 info->readin = 1;
2468
2469 if (dwarf2_section_empty_p (info))
2470 return;
2471
2472 sectp = get_section_bfd_section (info);
2473
2474 /* If this is a virtual section we need to read in the real one first. */
2475 if (info->is_virtual)
2476 {
2477 struct dwarf2_section_info *containing_section =
2478 get_containing_section (info);
2479
2480 gdb_assert (sectp != NULL);
2481 if ((sectp->flags & SEC_RELOC) != 0)
2482 {
2483 error (_("Dwarf Error: DWP format V2 with relocations is not"
2484 " supported in section %s [in module %s]"),
2485 get_section_name (info), get_section_file_name (info));
2486 }
2487 dwarf2_read_section (objfile, containing_section);
2488 /* Other code should have already caught virtual sections that don't
2489 fit. */
2490 gdb_assert (info->virtual_offset + info->size
2491 <= containing_section->size);
2492 /* If the real section is empty or there was a problem reading the
2493 section we shouldn't get here. */
2494 gdb_assert (containing_section->buffer != NULL);
2495 info->buffer = containing_section->buffer + info->virtual_offset;
2496 return;
2497 }
2498
2499 /* If the section has relocations, we must read it ourselves.
2500 Otherwise we attach it to the BFD. */
2501 if ((sectp->flags & SEC_RELOC) == 0)
2502 {
2503 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2504 return;
2505 }
2506
2507 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2508 info->buffer = buf;
2509
2510 /* When debugging .o files, we may need to apply relocations; see
2511 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2512 We never compress sections in .o files, so we only need to
2513 try this when the section is not compressed. */
2514 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2515 if (retbuf != NULL)
2516 {
2517 info->buffer = retbuf;
2518 return;
2519 }
2520
2521 abfd = get_section_bfd_owner (info);
2522 gdb_assert (abfd != NULL);
2523
2524 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2525 || bfd_bread (buf, info->size, abfd) != info->size)
2526 {
2527 error (_("Dwarf Error: Can't read DWARF data"
2528 " in section %s [in module %s]"),
2529 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2530 }
2531 }
2532
2533 /* A helper function that returns the size of a section in a safe way.
2534 If you are positive that the section has been read before using the
2535 size, then it is safe to refer to the dwarf2_section_info object's
2536 "size" field directly. In other cases, you must call this
2537 function, because for compressed sections the size field is not set
2538 correctly until the section has been read. */
2539
2540 static bfd_size_type
2541 dwarf2_section_size (struct objfile *objfile,
2542 struct dwarf2_section_info *info)
2543 {
2544 if (!info->readin)
2545 dwarf2_read_section (objfile, info);
2546 return info->size;
2547 }
2548
2549 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2550 SECTION_NAME. */
2551
2552 void
2553 dwarf2_get_section_info (struct objfile *objfile,
2554 enum dwarf2_section_enum sect,
2555 asection **sectp, const gdb_byte **bufp,
2556 bfd_size_type *sizep)
2557 {
2558 struct dwarf2_per_objfile *data
2559 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2560 dwarf2_objfile_data_key);
2561 struct dwarf2_section_info *info;
2562
2563 /* We may see an objfile without any DWARF, in which case we just
2564 return nothing. */
2565 if (data == NULL)
2566 {
2567 *sectp = NULL;
2568 *bufp = NULL;
2569 *sizep = 0;
2570 return;
2571 }
2572 switch (sect)
2573 {
2574 case DWARF2_DEBUG_FRAME:
2575 info = &data->frame;
2576 break;
2577 case DWARF2_EH_FRAME:
2578 info = &data->eh_frame;
2579 break;
2580 default:
2581 gdb_assert_not_reached ("unexpected section");
2582 }
2583
2584 dwarf2_read_section (objfile, info);
2585
2586 *sectp = get_section_bfd_section (info);
2587 *bufp = info->buffer;
2588 *sizep = info->size;
2589 }
2590
2591 /* A helper function to find the sections for a .dwz file. */
2592
2593 static void
2594 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2595 {
2596 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2597
2598 /* Note that we only support the standard ELF names, because .dwz
2599 is ELF-only (at the time of writing). */
2600 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2601 {
2602 dwz_file->abbrev.s.section = sectp;
2603 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2606 {
2607 dwz_file->info.s.section = sectp;
2608 dwz_file->info.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2611 {
2612 dwz_file->str.s.section = sectp;
2613 dwz_file->str.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2616 {
2617 dwz_file->line.s.section = sectp;
2618 dwz_file->line.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2621 {
2622 dwz_file->macro.s.section = sectp;
2623 dwz_file->macro.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2626 {
2627 dwz_file->gdb_index.s.section = sectp;
2628 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2629 }
2630 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2631 {
2632 dwz_file->debug_names.s.section = sectp;
2633 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2634 }
2635 }
2636
2637 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2638 there is no .gnu_debugaltlink section in the file. Error if there
2639 is such a section but the file cannot be found. */
2640
2641 static struct dwz_file *
2642 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2643 {
2644 const char *filename;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file.get ();
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.release ();
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 std::unique_ptr<struct dwz_file> result
2697 (new struct dwz_file (std::move (dwz_bfd)));
2698
2699 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2700 result.get ());
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2703 result->dwz_bfd.get ());
2704 dwarf2_per_objfile->dwz_file = std::move (result);
2705 return dwarf2_per_objfile->dwz_file.get ();
2706 }
2707 \f
2708 /* DWARF quick_symbols_functions support. */
2709
2710 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2711 unique line tables, so we maintain a separate table of all .debug_line
2712 derived entries to support the sharing.
2713 All the quick functions need is the list of file names. We discard the
2714 line_header when we're done and don't need to record it here. */
2715 struct quick_file_names
2716 {
2717 /* The data used to construct the hash key. */
2718 struct stmt_list_hash hash;
2719
2720 /* The number of entries in file_names, real_names. */
2721 unsigned int num_file_names;
2722
2723 /* The file names from the line table, after being run through
2724 file_full_name. */
2725 const char **file_names;
2726
2727 /* The file names from the line table after being run through
2728 gdb_realpath. These are computed lazily. */
2729 const char **real_names;
2730 };
2731
2732 /* When using the index (and thus not using psymtabs), each CU has an
2733 object of this type. This is used to hold information needed by
2734 the various "quick" methods. */
2735 struct dwarf2_per_cu_quick_data
2736 {
2737 /* The file table. This can be NULL if there was no file table
2738 or it's currently not read in.
2739 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2740 struct quick_file_names *file_names;
2741
2742 /* The corresponding symbol table. This is NULL if symbols for this
2743 CU have not yet been read. */
2744 struct compunit_symtab *compunit_symtab;
2745
2746 /* A temporary mark bit used when iterating over all CUs in
2747 expand_symtabs_matching. */
2748 unsigned int mark : 1;
2749
2750 /* True if we've tried to read the file table and found there isn't one.
2751 There will be no point in trying to read it again next time. */
2752 unsigned int no_file_data : 1;
2753 };
2754
2755 /* Utility hash function for a stmt_list_hash. */
2756
2757 static hashval_t
2758 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2759 {
2760 hashval_t v = 0;
2761
2762 if (stmt_list_hash->dwo_unit != NULL)
2763 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2764 v += to_underlying (stmt_list_hash->line_sect_off);
2765 return v;
2766 }
2767
2768 /* Utility equality function for a stmt_list_hash. */
2769
2770 static int
2771 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2772 const struct stmt_list_hash *rhs)
2773 {
2774 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2775 return 0;
2776 if (lhs->dwo_unit != NULL
2777 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2778 return 0;
2779
2780 return lhs->line_sect_off == rhs->line_sect_off;
2781 }
2782
2783 /* Hash function for a quick_file_names. */
2784
2785 static hashval_t
2786 hash_file_name_entry (const void *e)
2787 {
2788 const struct quick_file_names *file_data
2789 = (const struct quick_file_names *) e;
2790
2791 return hash_stmt_list_entry (&file_data->hash);
2792 }
2793
2794 /* Equality function for a quick_file_names. */
2795
2796 static int
2797 eq_file_name_entry (const void *a, const void *b)
2798 {
2799 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2800 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2801
2802 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2803 }
2804
2805 /* Delete function for a quick_file_names. */
2806
2807 static void
2808 delete_file_name_entry (void *e)
2809 {
2810 struct quick_file_names *file_data = (struct quick_file_names *) e;
2811 int i;
2812
2813 for (i = 0; i < file_data->num_file_names; ++i)
2814 {
2815 xfree ((void*) file_data->file_names[i]);
2816 if (file_data->real_names)
2817 xfree ((void*) file_data->real_names[i]);
2818 }
2819
2820 /* The space for the struct itself lives on objfile_obstack,
2821 so we don't free it here. */
2822 }
2823
2824 /* Create a quick_file_names hash table. */
2825
2826 static htab_t
2827 create_quick_file_names_table (unsigned int nr_initial_entries)
2828 {
2829 return htab_create_alloc (nr_initial_entries,
2830 hash_file_name_entry, eq_file_name_entry,
2831 delete_file_name_entry, xcalloc, xfree);
2832 }
2833
2834 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2835 have to be created afterwards. You should call age_cached_comp_units after
2836 processing PER_CU->CU. dw2_setup must have been already called. */
2837
2838 static void
2839 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2840 {
2841 if (per_cu->is_debug_types)
2842 load_full_type_unit (per_cu);
2843 else
2844 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2845
2846 if (per_cu->cu == NULL)
2847 return; /* Dummy CU. */
2848
2849 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2850 }
2851
2852 /* Read in the symbols for PER_CU. */
2853
2854 static void
2855 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2856 {
2857 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2858
2859 /* Skip type_unit_groups, reading the type units they contain
2860 is handled elsewhere. */
2861 if (IS_TYPE_UNIT_GROUP (per_cu))
2862 return;
2863
2864 /* The destructor of dwarf2_queue_guard frees any entries left on
2865 the queue. After this point we're guaranteed to leave this function
2866 with the dwarf queue empty. */
2867 dwarf2_queue_guard q_guard;
2868
2869 if (dwarf2_per_objfile->using_index
2870 ? per_cu->v.quick->compunit_symtab == NULL
2871 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2872 {
2873 queue_comp_unit (per_cu, language_minimal);
2874 load_cu (per_cu, skip_partial);
2875
2876 /* If we just loaded a CU from a DWO, and we're working with an index
2877 that may badly handle TUs, load all the TUs in that DWO as well.
2878 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2879 if (!per_cu->is_debug_types
2880 && per_cu->cu != NULL
2881 && per_cu->cu->dwo_unit != NULL
2882 && dwarf2_per_objfile->index_table != NULL
2883 && dwarf2_per_objfile->index_table->version <= 7
2884 /* DWP files aren't supported yet. */
2885 && get_dwp_file (dwarf2_per_objfile) == NULL)
2886 queue_and_load_all_dwo_tus (per_cu);
2887 }
2888
2889 process_queue (dwarf2_per_objfile);
2890
2891 /* Age the cache, releasing compilation units that have not
2892 been used recently. */
2893 age_cached_comp_units (dwarf2_per_objfile);
2894 }
2895
2896 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2897 the objfile from which this CU came. Returns the resulting symbol
2898 table. */
2899
2900 static struct compunit_symtab *
2901 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2902 {
2903 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2904
2905 gdb_assert (dwarf2_per_objfile->using_index);
2906 if (!per_cu->v.quick->compunit_symtab)
2907 {
2908 free_cached_comp_units freer (dwarf2_per_objfile);
2909 scoped_restore decrementer = increment_reading_symtab ();
2910 dw2_do_instantiate_symtab (per_cu, skip_partial);
2911 process_cu_includes (dwarf2_per_objfile);
2912 }
2913
2914 return per_cu->v.quick->compunit_symtab;
2915 }
2916
2917 /* See declaration. */
2918
2919 dwarf2_per_cu_data *
2920 dwarf2_per_objfile::get_cutu (int index)
2921 {
2922 if (index >= this->all_comp_units.size ())
2923 {
2924 index -= this->all_comp_units.size ();
2925 gdb_assert (index < this->all_type_units.size ());
2926 return &this->all_type_units[index]->per_cu;
2927 }
2928
2929 return this->all_comp_units[index];
2930 }
2931
2932 /* See declaration. */
2933
2934 dwarf2_per_cu_data *
2935 dwarf2_per_objfile::get_cu (int index)
2936 {
2937 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2938
2939 return this->all_comp_units[index];
2940 }
2941
2942 /* See declaration. */
2943
2944 signatured_type *
2945 dwarf2_per_objfile::get_tu (int index)
2946 {
2947 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2948
2949 return this->all_type_units[index];
2950 }
2951
2952 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2953 objfile_obstack, and constructed with the specified field
2954 values. */
2955
2956 static dwarf2_per_cu_data *
2957 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2958 struct dwarf2_section_info *section,
2959 int is_dwz,
2960 sect_offset sect_off, ULONGEST length)
2961 {
2962 struct objfile *objfile = dwarf2_per_objfile->objfile;
2963 dwarf2_per_cu_data *the_cu
2964 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2965 struct dwarf2_per_cu_data);
2966 the_cu->sect_off = sect_off;
2967 the_cu->length = length;
2968 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2969 the_cu->section = section;
2970 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2971 struct dwarf2_per_cu_quick_data);
2972 the_cu->is_dwz = is_dwz;
2973 return the_cu;
2974 }
2975
2976 /* A helper for create_cus_from_index that handles a given list of
2977 CUs. */
2978
2979 static void
2980 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2981 const gdb_byte *cu_list, offset_type n_elements,
2982 struct dwarf2_section_info *section,
2983 int is_dwz)
2984 {
2985 for (offset_type i = 0; i < n_elements; i += 2)
2986 {
2987 gdb_static_assert (sizeof (ULONGEST) >= 8);
2988
2989 sect_offset sect_off
2990 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2991 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2992 cu_list += 2 * 8;
2993
2994 dwarf2_per_cu_data *per_cu
2995 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2996 sect_off, length);
2997 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2998 }
2999 }
3000
3001 /* Read the CU list from the mapped index, and use it to create all
3002 the CU objects for this objfile. */
3003
3004 static void
3005 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3006 const gdb_byte *cu_list, offset_type cu_list_elements,
3007 const gdb_byte *dwz_list, offset_type dwz_elements)
3008 {
3009 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3010 dwarf2_per_objfile->all_comp_units.reserve
3011 ((cu_list_elements + dwz_elements) / 2);
3012
3013 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3014 &dwarf2_per_objfile->info, 0);
3015
3016 if (dwz_elements == 0)
3017 return;
3018
3019 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3020 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3021 &dwz->info, 1);
3022 }
3023
3024 /* Create the signatured type hash table from the index. */
3025
3026 static void
3027 create_signatured_type_table_from_index
3028 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3029 struct dwarf2_section_info *section,
3030 const gdb_byte *bytes,
3031 offset_type elements)
3032 {
3033 struct objfile *objfile = dwarf2_per_objfile->objfile;
3034
3035 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3036 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3037
3038 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3039
3040 for (offset_type i = 0; i < elements; i += 3)
3041 {
3042 struct signatured_type *sig_type;
3043 ULONGEST signature;
3044 void **slot;
3045 cu_offset type_offset_in_tu;
3046
3047 gdb_static_assert (sizeof (ULONGEST) >= 8);
3048 sect_offset sect_off
3049 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3050 type_offset_in_tu
3051 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3052 BFD_ENDIAN_LITTLE);
3053 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3054 bytes += 3 * 8;
3055
3056 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3057 struct signatured_type);
3058 sig_type->signature = signature;
3059 sig_type->type_offset_in_tu = type_offset_in_tu;
3060 sig_type->per_cu.is_debug_types = 1;
3061 sig_type->per_cu.section = section;
3062 sig_type->per_cu.sect_off = sect_off;
3063 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3064 sig_type->per_cu.v.quick
3065 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3066 struct dwarf2_per_cu_quick_data);
3067
3068 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3069 *slot = sig_type;
3070
3071 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3072 }
3073
3074 dwarf2_per_objfile->signatured_types = sig_types_hash;
3075 }
3076
3077 /* Create the signatured type hash table from .debug_names. */
3078
3079 static void
3080 create_signatured_type_table_from_debug_names
3081 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3082 const mapped_debug_names &map,
3083 struct dwarf2_section_info *section,
3084 struct dwarf2_section_info *abbrev_section)
3085 {
3086 struct objfile *objfile = dwarf2_per_objfile->objfile;
3087
3088 dwarf2_read_section (objfile, section);
3089 dwarf2_read_section (objfile, abbrev_section);
3090
3091 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3092 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3093
3094 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3095
3096 for (uint32_t i = 0; i < map.tu_count; ++i)
3097 {
3098 struct signatured_type *sig_type;
3099 void **slot;
3100
3101 sect_offset sect_off
3102 = (sect_offset) (extract_unsigned_integer
3103 (map.tu_table_reordered + i * map.offset_size,
3104 map.offset_size,
3105 map.dwarf5_byte_order));
3106
3107 comp_unit_head cu_header;
3108 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3109 abbrev_section,
3110 section->buffer + to_underlying (sect_off),
3111 rcuh_kind::TYPE);
3112
3113 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3114 struct signatured_type);
3115 sig_type->signature = cu_header.signature;
3116 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3117 sig_type->per_cu.is_debug_types = 1;
3118 sig_type->per_cu.section = section;
3119 sig_type->per_cu.sect_off = sect_off;
3120 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3121 sig_type->per_cu.v.quick
3122 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3123 struct dwarf2_per_cu_quick_data);
3124
3125 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3126 *slot = sig_type;
3127
3128 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3129 }
3130
3131 dwarf2_per_objfile->signatured_types = sig_types_hash;
3132 }
3133
3134 /* Read the address map data from the mapped index, and use it to
3135 populate the objfile's psymtabs_addrmap. */
3136
3137 static void
3138 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3139 struct mapped_index *index)
3140 {
3141 struct objfile *objfile = dwarf2_per_objfile->objfile;
3142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3143 const gdb_byte *iter, *end;
3144 struct addrmap *mutable_map;
3145 CORE_ADDR baseaddr;
3146
3147 auto_obstack temp_obstack;
3148
3149 mutable_map = addrmap_create_mutable (&temp_obstack);
3150
3151 iter = index->address_table.data ();
3152 end = iter + index->address_table.size ();
3153
3154 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3155
3156 while (iter < end)
3157 {
3158 ULONGEST hi, lo, cu_index;
3159 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3160 iter += 8;
3161 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3162 iter += 8;
3163 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3164 iter += 4;
3165
3166 if (lo > hi)
3167 {
3168 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (_(".gdb_index address table has invalid CU number %u"),
3176 (unsigned) cu_index);
3177 continue;
3178 }
3179
3180 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3181 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3182 addrmap_set_empty (mutable_map, lo, hi - 1,
3183 dwarf2_per_objfile->get_cu (cu_index));
3184 }
3185
3186 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3187 &objfile->objfile_obstack);
3188 }
3189
3190 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3191 populate the objfile's psymtabs_addrmap. */
3192
3193 static void
3194 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3195 struct dwarf2_section_info *section)
3196 {
3197 struct objfile *objfile = dwarf2_per_objfile->objfile;
3198 bfd *abfd = objfile->obfd;
3199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3200 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3201 SECT_OFF_TEXT (objfile));
3202
3203 auto_obstack temp_obstack;
3204 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3205
3206 std::unordered_map<sect_offset,
3207 dwarf2_per_cu_data *,
3208 gdb::hash_enum<sect_offset>>
3209 debug_info_offset_to_per_cu;
3210 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3211 {
3212 const auto insertpair
3213 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3214 if (!insertpair.second)
3215 {
3216 warning (_("Section .debug_aranges in %s has duplicate "
3217 "debug_info_offset %s, ignoring .debug_aranges."),
3218 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3219 return;
3220 }
3221 }
3222
3223 dwarf2_read_section (objfile, section);
3224
3225 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3226
3227 const gdb_byte *addr = section->buffer;
3228
3229 while (addr < section->buffer + section->size)
3230 {
3231 const gdb_byte *const entry_addr = addr;
3232 unsigned int bytes_read;
3233
3234 const LONGEST entry_length = read_initial_length (abfd, addr,
3235 &bytes_read);
3236 addr += bytes_read;
3237
3238 const gdb_byte *const entry_end = addr + entry_length;
3239 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3240 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3241 if (addr + entry_length > section->buffer + section->size)
3242 {
3243 warning (_("Section .debug_aranges in %s entry at offset %zu "
3244 "length %s exceeds section length %s, "
3245 "ignoring .debug_aranges."),
3246 objfile_name (objfile), entry_addr - section->buffer,
3247 plongest (bytes_read + entry_length),
3248 pulongest (section->size));
3249 return;
3250 }
3251
3252 /* The version number. */
3253 const uint16_t version = read_2_bytes (abfd, addr);
3254 addr += 2;
3255 if (version != 2)
3256 {
3257 warning (_("Section .debug_aranges in %s entry at offset %zu "
3258 "has unsupported version %d, ignoring .debug_aranges."),
3259 objfile_name (objfile), entry_addr - section->buffer,
3260 version);
3261 return;
3262 }
3263
3264 const uint64_t debug_info_offset
3265 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3266 addr += offset_size;
3267 const auto per_cu_it
3268 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3269 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3270 {
3271 warning (_("Section .debug_aranges in %s entry at offset %zu "
3272 "debug_info_offset %s does not exists, "
3273 "ignoring .debug_aranges."),
3274 objfile_name (objfile), entry_addr - section->buffer,
3275 pulongest (debug_info_offset));
3276 return;
3277 }
3278 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3279
3280 const uint8_t address_size = *addr++;
3281 if (address_size < 1 || address_size > 8)
3282 {
3283 warning (_("Section .debug_aranges in %s entry at offset %zu "
3284 "address_size %u is invalid, ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 address_size);
3287 return;
3288 }
3289
3290 const uint8_t segment_selector_size = *addr++;
3291 if (segment_selector_size != 0)
3292 {
3293 warning (_("Section .debug_aranges in %s entry at offset %zu "
3294 "segment_selector_size %u is not supported, "
3295 "ignoring .debug_aranges."),
3296 objfile_name (objfile), entry_addr - section->buffer,
3297 segment_selector_size);
3298 return;
3299 }
3300
3301 /* Must pad to an alignment boundary that is twice the address
3302 size. It is undocumented by the DWARF standard but GCC does
3303 use it. */
3304 for (size_t padding = ((-(addr - section->buffer))
3305 & (2 * address_size - 1));
3306 padding > 0; padding--)
3307 if (*addr++ != 0)
3308 {
3309 warning (_("Section .debug_aranges in %s entry at offset %zu "
3310 "padding is not zero, ignoring .debug_aranges."),
3311 objfile_name (objfile), entry_addr - section->buffer);
3312 return;
3313 }
3314
3315 for (;;)
3316 {
3317 if (addr + 2 * address_size > entry_end)
3318 {
3319 warning (_("Section .debug_aranges in %s entry at offset %zu "
3320 "address list is not properly terminated, "
3321 "ignoring .debug_aranges."),
3322 objfile_name (objfile), entry_addr - section->buffer);
3323 return;
3324 }
3325 ULONGEST start = extract_unsigned_integer (addr, address_size,
3326 dwarf5_byte_order);
3327 addr += address_size;
3328 ULONGEST length = extract_unsigned_integer (addr, address_size,
3329 dwarf5_byte_order);
3330 addr += address_size;
3331 if (start == 0 && length == 0)
3332 break;
3333 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3334 {
3335 /* Symbol was eliminated due to a COMDAT group. */
3336 continue;
3337 }
3338 ULONGEST end = start + length;
3339 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3340 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3346 &objfile->objfile_obstack);
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from SECTION and fills
3412 in MAP. FILENAME is the name of the file containing the section;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns 1 if all went well, 0 otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_section (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 struct dwarf2_section_info *section,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr;
3434 offset_type version;
3435 offset_type *metadata;
3436 int i;
3437
3438 if (dwarf2_section_empty_p (section))
3439 return 0;
3440
3441 /* Older elfutils strip versions could keep the section in the main
3442 executable while splitting it for the separate debug info file. */
3443 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3444 return 0;
3445
3446 dwarf2_read_section (objfile, section);
3447
3448 addr = section->buffer;
3449 /* Version check. */
3450 version = MAYBE_SWAP (*(offset_type *) addr);
3451 /* Versions earlier than 3 emitted every copy of a psymbol. This
3452 causes the index to behave very poorly for certain requests. Version 3
3453 contained incomplete addrmap. So, it seems better to just ignore such
3454 indices. */
3455 if (version < 4)
3456 {
3457 static int warning_printed = 0;
3458 if (!warning_printed)
3459 {
3460 warning (_("Skipping obsolete .gdb_index section in %s."),
3461 filename);
3462 warning_printed = 1;
3463 }
3464 return 0;
3465 }
3466 /* Index version 4 uses a different hash function than index version
3467 5 and later.
3468
3469 Versions earlier than 6 did not emit psymbols for inlined
3470 functions. Using these files will cause GDB not to be able to
3471 set breakpoints on inlined functions by name, so we ignore these
3472 indices unless the user has done
3473 "set use-deprecated-index-sections on". */
3474 if (version < 6 && !deprecated_ok)
3475 {
3476 static int warning_printed = 0;
3477 if (!warning_printed)
3478 {
3479 warning (_("\
3480 Skipping deprecated .gdb_index section in %s.\n\
3481 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3482 to use the section anyway."),
3483 filename);
3484 warning_printed = 1;
3485 }
3486 return 0;
3487 }
3488 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3489 of the TU (for symbols coming from TUs),
3490 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3491 Plus gold-generated indices can have duplicate entries for global symbols,
3492 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3493 These are just performance bugs, and we can't distinguish gdb-generated
3494 indices from gold-generated ones, so issue no warning here. */
3495
3496 /* Indexes with higher version than the one supported by GDB may be no
3497 longer backward compatible. */
3498 if (version > 8)
3499 return 0;
3500
3501 map->version = version;
3502
3503 metadata = (offset_type *) (addr + sizeof (offset_type));
3504
3505 i = 0;
3506 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3507 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3508 / 8);
3509 ++i;
3510
3511 *types_list = addr + MAYBE_SWAP (metadata[i]);
3512 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3513 - MAYBE_SWAP (metadata[i]))
3514 / 8);
3515 ++i;
3516
3517 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->address_table
3520 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3521 ++i;
3522
3523 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3524 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3525 map->symbol_table
3526 = gdb::array_view<mapped_index::symbol_table_slot>
3527 ((mapped_index::symbol_table_slot *) symbol_table,
3528 (mapped_index::symbol_table_slot *) symbol_table_end);
3529
3530 ++i;
3531 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3532
3533 return 1;
3534 }
3535
3536 /* Read .gdb_index. If everything went ok, initialize the "quick"
3537 elements of all the CUs and return 1. Otherwise, return 0. */
3538
3539 static int
3540 dwarf2_read_gdb_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3541 {
3542 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3543 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3544 struct dwz_file *dwz;
3545 struct objfile *objfile = dwarf2_per_objfile->objfile;
3546
3547 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3548 if (!read_gdb_index_from_section (objfile, objfile_name (objfile),
3549 use_deprecated_index_sections,
3550 &dwarf2_per_objfile->gdb_index, map.get (),
3551 &cu_list, &cu_list_elements,
3552 &types_list, &types_list_elements))
3553 return 0;
3554
3555 /* Don't use the index if it's empty. */
3556 if (map->symbol_table.empty ())
3557 return 0;
3558
3559 /* If there is a .dwz file, read it so we can get its CU list as
3560 well. */
3561 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3562 if (dwz != NULL)
3563 {
3564 struct mapped_index dwz_map;
3565 const gdb_byte *dwz_types_ignore;
3566 offset_type dwz_types_elements_ignore;
3567
3568 if (!read_gdb_index_from_section (objfile,
3569 bfd_get_filename (dwz->dwz_bfd), 1,
3570 &dwz->gdb_index, &dwz_map,
3571 &dwz_list, &dwz_list_elements,
3572 &dwz_types_ignore,
3573 &dwz_types_elements_ignore))
3574 {
3575 warning (_("could not read '.gdb_index' section from %s; skipping"),
3576 bfd_get_filename (dwz->dwz_bfd));
3577 return 0;
3578 }
3579 }
3580
3581 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3582 dwz_list, dwz_list_elements);
3583
3584 if (types_list_elements)
3585 {
3586 struct dwarf2_section_info *section;
3587
3588 /* We can only handle a single .debug_types when we have an
3589 index. */
3590 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3591 return 0;
3592
3593 section = VEC_index (dwarf2_section_info_def,
3594 dwarf2_per_objfile->types, 0);
3595
3596 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3597 types_list, types_list_elements);
3598 }
3599
3600 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3601
3602 dwarf2_per_objfile->index_table = std::move (map);
3603 dwarf2_per_objfile->using_index = 1;
3604 dwarf2_per_objfile->quick_file_names_table =
3605 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3606
3607 return 1;
3608 }
3609
3610 /* die_reader_func for dw2_get_file_names. */
3611
3612 static void
3613 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3614 const gdb_byte *info_ptr,
3615 struct die_info *comp_unit_die,
3616 int has_children,
3617 void *data)
3618 {
3619 struct dwarf2_cu *cu = reader->cu;
3620 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3621 struct dwarf2_per_objfile *dwarf2_per_objfile
3622 = cu->per_cu->dwarf2_per_objfile;
3623 struct objfile *objfile = dwarf2_per_objfile->objfile;
3624 struct dwarf2_per_cu_data *lh_cu;
3625 struct attribute *attr;
3626 int i;
3627 void **slot;
3628 struct quick_file_names *qfn;
3629
3630 gdb_assert (! this_cu->is_debug_types);
3631
3632 /* Our callers never want to match partial units -- instead they
3633 will match the enclosing full CU. */
3634 if (comp_unit_die->tag == DW_TAG_partial_unit)
3635 {
3636 this_cu->v.quick->no_file_data = 1;
3637 return;
3638 }
3639
3640 lh_cu = this_cu;
3641 slot = NULL;
3642
3643 line_header_up lh;
3644 sect_offset line_offset {};
3645
3646 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3647 if (attr)
3648 {
3649 struct quick_file_names find_entry;
3650
3651 line_offset = (sect_offset) DW_UNSND (attr);
3652
3653 /* We may have already read in this line header (TU line header sharing).
3654 If we have we're done. */
3655 find_entry.hash.dwo_unit = cu->dwo_unit;
3656 find_entry.hash.line_sect_off = line_offset;
3657 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3658 &find_entry, INSERT);
3659 if (*slot != NULL)
3660 {
3661 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3662 return;
3663 }
3664
3665 lh = dwarf_decode_line_header (line_offset, cu);
3666 }
3667 if (lh == NULL)
3668 {
3669 lh_cu->v.quick->no_file_data = 1;
3670 return;
3671 }
3672
3673 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3674 qfn->hash.dwo_unit = cu->dwo_unit;
3675 qfn->hash.line_sect_off = line_offset;
3676 gdb_assert (slot != NULL);
3677 *slot = qfn;
3678
3679 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3680
3681 qfn->num_file_names = lh->file_names.size ();
3682 qfn->file_names =
3683 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3684 for (i = 0; i < lh->file_names.size (); ++i)
3685 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3686 qfn->real_names = NULL;
3687
3688 lh_cu->v.quick->file_names = qfn;
3689 }
3690
3691 /* A helper for the "quick" functions which attempts to read the line
3692 table for THIS_CU. */
3693
3694 static struct quick_file_names *
3695 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3696 {
3697 /* This should never be called for TUs. */
3698 gdb_assert (! this_cu->is_debug_types);
3699 /* Nor type unit groups. */
3700 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3701
3702 if (this_cu->v.quick->file_names != NULL)
3703 return this_cu->v.quick->file_names;
3704 /* If we know there is no line data, no point in looking again. */
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707
3708 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3709
3710 if (this_cu->v.quick->no_file_data)
3711 return NULL;
3712 return this_cu->v.quick->file_names;
3713 }
3714
3715 /* A helper for the "quick" functions which computes and caches the
3716 real path for a given file name from the line table. */
3717
3718 static const char *
3719 dw2_get_real_path (struct objfile *objfile,
3720 struct quick_file_names *qfn, int index)
3721 {
3722 if (qfn->real_names == NULL)
3723 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3724 qfn->num_file_names, const char *);
3725
3726 if (qfn->real_names[index] == NULL)
3727 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3728
3729 return qfn->real_names[index];
3730 }
3731
3732 static struct symtab *
3733 dw2_find_last_source_symtab (struct objfile *objfile)
3734 {
3735 struct dwarf2_per_objfile *dwarf2_per_objfile
3736 = get_dwarf2_per_objfile (objfile);
3737 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3738 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3739
3740 if (cust == NULL)
3741 return NULL;
3742
3743 return compunit_primary_filetab (cust);
3744 }
3745
3746 /* Traversal function for dw2_forget_cached_source_info. */
3747
3748 static int
3749 dw2_free_cached_file_names (void **slot, void *info)
3750 {
3751 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3752
3753 if (file_data->real_names)
3754 {
3755 int i;
3756
3757 for (i = 0; i < file_data->num_file_names; ++i)
3758 {
3759 xfree ((void*) file_data->real_names[i]);
3760 file_data->real_names[i] = NULL;
3761 }
3762 }
3763
3764 return 1;
3765 }
3766
3767 static void
3768 dw2_forget_cached_source_info (struct objfile *objfile)
3769 {
3770 struct dwarf2_per_objfile *dwarf2_per_objfile
3771 = get_dwarf2_per_objfile (objfile);
3772
3773 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3774 dw2_free_cached_file_names, NULL);
3775 }
3776
3777 /* Helper function for dw2_map_symtabs_matching_filename that expands
3778 the symtabs and calls the iterator. */
3779
3780 static int
3781 dw2_map_expand_apply (struct objfile *objfile,
3782 struct dwarf2_per_cu_data *per_cu,
3783 const char *name, const char *real_path,
3784 gdb::function_view<bool (symtab *)> callback)
3785 {
3786 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3787
3788 /* Don't visit already-expanded CUs. */
3789 if (per_cu->v.quick->compunit_symtab)
3790 return 0;
3791
3792 /* This may expand more than one symtab, and we want to iterate over
3793 all of them. */
3794 dw2_instantiate_symtab (per_cu, false);
3795
3796 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3797 last_made, callback);
3798 }
3799
3800 /* Implementation of the map_symtabs_matching_filename method. */
3801
3802 static bool
3803 dw2_map_symtabs_matching_filename
3804 (struct objfile *objfile, const char *name, const char *real_path,
3805 gdb::function_view<bool (symtab *)> callback)
3806 {
3807 const char *name_basename = lbasename (name);
3808 struct dwarf2_per_objfile *dwarf2_per_objfile
3809 = get_dwarf2_per_objfile (objfile);
3810
3811 /* The rule is CUs specify all the files, including those used by
3812 any TU, so there's no need to scan TUs here. */
3813
3814 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3815 {
3816 /* We only need to look at symtabs not already expanded. */
3817 if (per_cu->v.quick->compunit_symtab)
3818 continue;
3819
3820 quick_file_names *file_data = dw2_get_file_names (per_cu);
3821 if (file_data == NULL)
3822 continue;
3823
3824 for (int j = 0; j < file_data->num_file_names; ++j)
3825 {
3826 const char *this_name = file_data->file_names[j];
3827 const char *this_real_name;
3828
3829 if (compare_filenames_for_search (this_name, name))
3830 {
3831 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3832 callback))
3833 return true;
3834 continue;
3835 }
3836
3837 /* Before we invoke realpath, which can get expensive when many
3838 files are involved, do a quick comparison of the basenames. */
3839 if (! basenames_may_differ
3840 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3841 continue;
3842
3843 this_real_name = dw2_get_real_path (objfile, file_data, j);
3844 if (compare_filenames_for_search (this_real_name, name))
3845 {
3846 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3847 callback))
3848 return true;
3849 continue;
3850 }
3851
3852 if (real_path != NULL)
3853 {
3854 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3855 gdb_assert (IS_ABSOLUTE_PATH (name));
3856 if (this_real_name != NULL
3857 && FILENAME_CMP (real_path, this_real_name) == 0)
3858 {
3859 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3860 callback))
3861 return true;
3862 continue;
3863 }
3864 }
3865 }
3866 }
3867
3868 return false;
3869 }
3870
3871 /* Struct used to manage iterating over all CUs looking for a symbol. */
3872
3873 struct dw2_symtab_iterator
3874 {
3875 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3876 struct dwarf2_per_objfile *dwarf2_per_objfile;
3877 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3878 int want_specific_block;
3879 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3880 Unused if !WANT_SPECIFIC_BLOCK. */
3881 int block_index;
3882 /* The kind of symbol we're looking for. */
3883 domain_enum domain;
3884 /* The list of CUs from the index entry of the symbol,
3885 or NULL if not found. */
3886 offset_type *vec;
3887 /* The next element in VEC to look at. */
3888 int next;
3889 /* The number of elements in VEC, or zero if there is no match. */
3890 int length;
3891 /* Have we seen a global version of the symbol?
3892 If so we can ignore all further global instances.
3893 This is to work around gold/15646, inefficient gold-generated
3894 indices. */
3895 int global_seen;
3896 };
3897
3898 /* Initialize the index symtab iterator ITER.
3899 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3900 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3901
3902 static void
3903 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3904 struct dwarf2_per_objfile *dwarf2_per_objfile,
3905 int want_specific_block,
3906 int block_index,
3907 domain_enum domain,
3908 const char *name)
3909 {
3910 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3911 iter->want_specific_block = want_specific_block;
3912 iter->block_index = block_index;
3913 iter->domain = domain;
3914 iter->next = 0;
3915 iter->global_seen = 0;
3916
3917 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3918
3919 /* index is NULL if OBJF_READNOW. */
3920 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3921 iter->length = MAYBE_SWAP (*iter->vec);
3922 else
3923 {
3924 iter->vec = NULL;
3925 iter->length = 0;
3926 }
3927 }
3928
3929 /* Return the next matching CU or NULL if there are no more. */
3930
3931 static struct dwarf2_per_cu_data *
3932 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3933 {
3934 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3935
3936 for ( ; iter->next < iter->length; ++iter->next)
3937 {
3938 offset_type cu_index_and_attrs =
3939 MAYBE_SWAP (iter->vec[iter->next + 1]);
3940 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3941 int want_static = iter->block_index != GLOBAL_BLOCK;
3942 /* This value is only valid for index versions >= 7. */
3943 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3944 gdb_index_symbol_kind symbol_kind =
3945 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3946 /* Only check the symbol attributes if they're present.
3947 Indices prior to version 7 don't record them,
3948 and indices >= 7 may elide them for certain symbols
3949 (gold does this). */
3950 int attrs_valid =
3951 (dwarf2_per_objfile->index_table->version >= 7
3952 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3953
3954 /* Don't crash on bad data. */
3955 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3956 + dwarf2_per_objfile->all_type_units.size ()))
3957 {
3958 complaint (_(".gdb_index entry has bad CU index"
3959 " [in module %s]"),
3960 objfile_name (dwarf2_per_objfile->objfile));
3961 continue;
3962 }
3963
3964 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3965
3966 /* Skip if already read in. */
3967 if (per_cu->v.quick->compunit_symtab)
3968 continue;
3969
3970 /* Check static vs global. */
3971 if (attrs_valid)
3972 {
3973 if (iter->want_specific_block
3974 && want_static != is_static)
3975 continue;
3976 /* Work around gold/15646. */
3977 if (!is_static && iter->global_seen)
3978 continue;
3979 if (!is_static)
3980 iter->global_seen = 1;
3981 }
3982
3983 /* Only check the symbol's kind if it has one. */
3984 if (attrs_valid)
3985 {
3986 switch (iter->domain)
3987 {
3988 case VAR_DOMAIN:
3989 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3990 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3991 /* Some types are also in VAR_DOMAIN. */
3992 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3993 continue;
3994 break;
3995 case STRUCT_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3997 continue;
3998 break;
3999 case LABEL_DOMAIN:
4000 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4001 continue;
4002 break;
4003 default:
4004 break;
4005 }
4006 }
4007
4008 ++iter->next;
4009 return per_cu;
4010 }
4011
4012 return NULL;
4013 }
4014
4015 static struct compunit_symtab *
4016 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4017 const char *name, domain_enum domain)
4018 {
4019 struct compunit_symtab *stab_best = NULL;
4020 struct dwarf2_per_objfile *dwarf2_per_objfile
4021 = get_dwarf2_per_objfile (objfile);
4022
4023 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4024
4025 struct dw2_symtab_iterator iter;
4026 struct dwarf2_per_cu_data *per_cu;
4027
4028 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4029
4030 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4031 {
4032 struct symbol *sym, *with_opaque = NULL;
4033 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4034 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4035 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4036
4037 sym = block_find_symbol (block, name, domain,
4038 block_find_non_opaque_type_preferred,
4039 &with_opaque);
4040
4041 /* Some caution must be observed with overloaded functions
4042 and methods, since the index will not contain any overload
4043 information (but NAME might contain it). */
4044
4045 if (sym != NULL
4046 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4047 return stab;
4048 if (with_opaque != NULL
4049 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4050 stab_best = stab;
4051
4052 /* Keep looking through other CUs. */
4053 }
4054
4055 return stab_best;
4056 }
4057
4058 static void
4059 dw2_print_stats (struct objfile *objfile)
4060 {
4061 struct dwarf2_per_objfile *dwarf2_per_objfile
4062 = get_dwarf2_per_objfile (objfile);
4063 int total = (dwarf2_per_objfile->all_comp_units.size ()
4064 + dwarf2_per_objfile->all_type_units.size ());
4065 int count = 0;
4066
4067 for (int i = 0; i < total; ++i)
4068 {
4069 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4070
4071 if (!per_cu->v.quick->compunit_symtab)
4072 ++count;
4073 }
4074 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4075 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4076 }
4077
4078 /* This dumps minimal information about the index.
4079 It is called via "mt print objfiles".
4080 One use is to verify .gdb_index has been loaded by the
4081 gdb.dwarf2/gdb-index.exp testcase. */
4082
4083 static void
4084 dw2_dump (struct objfile *objfile)
4085 {
4086 struct dwarf2_per_objfile *dwarf2_per_objfile
4087 = get_dwarf2_per_objfile (objfile);
4088
4089 gdb_assert (dwarf2_per_objfile->using_index);
4090 printf_filtered (".gdb_index:");
4091 if (dwarf2_per_objfile->index_table != NULL)
4092 {
4093 printf_filtered (" version %d\n",
4094 dwarf2_per_objfile->index_table->version);
4095 }
4096 else
4097 printf_filtered (" faked for \"readnow\"\n");
4098 printf_filtered ("\n");
4099 }
4100
4101 static void
4102 dw2_relocate (struct objfile *objfile,
4103 const struct section_offsets *new_offsets,
4104 const struct section_offsets *delta)
4105 {
4106 /* There's nothing to relocate here. */
4107 }
4108
4109 static void
4110 dw2_expand_symtabs_for_function (struct objfile *objfile,
4111 const char *func_name)
4112 {
4113 struct dwarf2_per_objfile *dwarf2_per_objfile
4114 = get_dwarf2_per_objfile (objfile);
4115
4116 struct dw2_symtab_iterator iter;
4117 struct dwarf2_per_cu_data *per_cu;
4118
4119 /* Note: It doesn't matter what we pass for block_index here. */
4120 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4121 func_name);
4122
4123 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4124 dw2_instantiate_symtab (per_cu, false);
4125
4126 }
4127
4128 static void
4129 dw2_expand_all_symtabs (struct objfile *objfile)
4130 {
4131 struct dwarf2_per_objfile *dwarf2_per_objfile
4132 = get_dwarf2_per_objfile (objfile);
4133 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4134 + dwarf2_per_objfile->all_type_units.size ());
4135
4136 for (int i = 0; i < total_units; ++i)
4137 {
4138 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4139
4140 /* We don't want to directly expand a partial CU, because if we
4141 read it with the wrong language, then assertion failures can
4142 be triggered later on. See PR symtab/23010. So, tell
4143 dw2_instantiate_symtab to skip partial CUs -- any important
4144 partial CU will be read via DW_TAG_imported_unit anyway. */
4145 dw2_instantiate_symtab (per_cu, true);
4146 }
4147 }
4148
4149 static void
4150 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4151 const char *fullname)
4152 {
4153 struct dwarf2_per_objfile *dwarf2_per_objfile
4154 = get_dwarf2_per_objfile (objfile);
4155
4156 /* We don't need to consider type units here.
4157 This is only called for examining code, e.g. expand_line_sal.
4158 There can be an order of magnitude (or more) more type units
4159 than comp units, and we avoid them if we can. */
4160
4161 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4162 {
4163 /* We only need to look at symtabs not already expanded. */
4164 if (per_cu->v.quick->compunit_symtab)
4165 continue;
4166
4167 quick_file_names *file_data = dw2_get_file_names (per_cu);
4168 if (file_data == NULL)
4169 continue;
4170
4171 for (int j = 0; j < file_data->num_file_names; ++j)
4172 {
4173 const char *this_fullname = file_data->file_names[j];
4174
4175 if (filename_cmp (this_fullname, fullname) == 0)
4176 {
4177 dw2_instantiate_symtab (per_cu, false);
4178 break;
4179 }
4180 }
4181 }
4182 }
4183
4184 static void
4185 dw2_map_matching_symbols (struct objfile *objfile,
4186 const char * name, domain_enum domain,
4187 int global,
4188 int (*callback) (struct block *,
4189 struct symbol *, void *),
4190 void *data, symbol_name_match_type match,
4191 symbol_compare_ftype *ordered_compare)
4192 {
4193 /* Currently unimplemented; used for Ada. The function can be called if the
4194 current language is Ada for a non-Ada objfile using GNU index. As Ada
4195 does not look for non-Ada symbols this function should just return. */
4196 }
4197
4198 /* Symbol name matcher for .gdb_index names.
4199
4200 Symbol names in .gdb_index have a few particularities:
4201
4202 - There's no indication of which is the language of each symbol.
4203
4204 Since each language has its own symbol name matching algorithm,
4205 and we don't know which language is the right one, we must match
4206 each symbol against all languages. This would be a potential
4207 performance problem if it were not mitigated by the
4208 mapped_index::name_components lookup table, which significantly
4209 reduces the number of times we need to call into this matcher,
4210 making it a non-issue.
4211
4212 - Symbol names in the index have no overload (parameter)
4213 information. I.e., in C++, "foo(int)" and "foo(long)" both
4214 appear as "foo" in the index, for example.
4215
4216 This means that the lookup names passed to the symbol name
4217 matcher functions must have no parameter information either
4218 because (e.g.) symbol search name "foo" does not match
4219 lookup-name "foo(int)" [while swapping search name for lookup
4220 name would match].
4221 */
4222 class gdb_index_symbol_name_matcher
4223 {
4224 public:
4225 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4226 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4227
4228 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4229 Returns true if any matcher matches. */
4230 bool matches (const char *symbol_name);
4231
4232 private:
4233 /* A reference to the lookup name we're matching against. */
4234 const lookup_name_info &m_lookup_name;
4235
4236 /* A vector holding all the different symbol name matchers, for all
4237 languages. */
4238 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4239 };
4240
4241 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4242 (const lookup_name_info &lookup_name)
4243 : m_lookup_name (lookup_name)
4244 {
4245 /* Prepare the vector of comparison functions upfront, to avoid
4246 doing the same work for each symbol. Care is taken to avoid
4247 matching with the same matcher more than once if/when multiple
4248 languages use the same matcher function. */
4249 auto &matchers = m_symbol_name_matcher_funcs;
4250 matchers.reserve (nr_languages);
4251
4252 matchers.push_back (default_symbol_name_matcher);
4253
4254 for (int i = 0; i < nr_languages; i++)
4255 {
4256 const language_defn *lang = language_def ((enum language) i);
4257 symbol_name_matcher_ftype *name_matcher
4258 = get_symbol_name_matcher (lang, m_lookup_name);
4259
4260 /* Don't insert the same comparison routine more than once.
4261 Note that we do this linear walk instead of a seemingly
4262 cheaper sorted insert, or use a std::set or something like
4263 that, because relative order of function addresses is not
4264 stable. This is not a problem in practice because the number
4265 of supported languages is low, and the cost here is tiny
4266 compared to the number of searches we'll do afterwards using
4267 this object. */
4268 if (name_matcher != default_symbol_name_matcher
4269 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4270 == matchers.end ()))
4271 matchers.push_back (name_matcher);
4272 }
4273 }
4274
4275 bool
4276 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4277 {
4278 for (auto matches_name : m_symbol_name_matcher_funcs)
4279 if (matches_name (symbol_name, m_lookup_name, NULL))
4280 return true;
4281
4282 return false;
4283 }
4284
4285 /* Starting from a search name, return the string that finds the upper
4286 bound of all strings that start with SEARCH_NAME in a sorted name
4287 list. Returns the empty string to indicate that the upper bound is
4288 the end of the list. */
4289
4290 static std::string
4291 make_sort_after_prefix_name (const char *search_name)
4292 {
4293 /* When looking to complete "func", we find the upper bound of all
4294 symbols that start with "func" by looking for where we'd insert
4295 the closest string that would follow "func" in lexicographical
4296 order. Usually, that's "func"-with-last-character-incremented,
4297 i.e. "fund". Mind non-ASCII characters, though. Usually those
4298 will be UTF-8 multi-byte sequences, but we can't be certain.
4299 Especially mind the 0xff character, which is a valid character in
4300 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4301 rule out compilers allowing it in identifiers. Note that
4302 conveniently, strcmp/strcasecmp are specified to compare
4303 characters interpreted as unsigned char. So what we do is treat
4304 the whole string as a base 256 number composed of a sequence of
4305 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4306 to 0, and carries 1 to the following more-significant position.
4307 If the very first character in SEARCH_NAME ends up incremented
4308 and carries/overflows, then the upper bound is the end of the
4309 list. The string after the empty string is also the empty
4310 string.
4311
4312 Some examples of this operation:
4313
4314 SEARCH_NAME => "+1" RESULT
4315
4316 "abc" => "abd"
4317 "ab\xff" => "ac"
4318 "\xff" "a" "\xff" => "\xff" "b"
4319 "\xff" => ""
4320 "\xff\xff" => ""
4321 "" => ""
4322
4323 Then, with these symbols for example:
4324
4325 func
4326 func1
4327 fund
4328
4329 completing "func" looks for symbols between "func" and
4330 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4331 which finds "func" and "func1", but not "fund".
4332
4333 And with:
4334
4335 funcÿ (Latin1 'ÿ' [0xff])
4336 funcÿ1
4337 fund
4338
4339 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4340 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4341
4342 And with:
4343
4344 ÿÿ (Latin1 'ÿ' [0xff])
4345 ÿÿ1
4346
4347 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4348 the end of the list.
4349 */
4350 std::string after = search_name;
4351 while (!after.empty () && (unsigned char) after.back () == 0xff)
4352 after.pop_back ();
4353 if (!after.empty ())
4354 after.back () = (unsigned char) after.back () + 1;
4355 return after;
4356 }
4357
4358 /* See declaration. */
4359
4360 std::pair<std::vector<name_component>::const_iterator,
4361 std::vector<name_component>::const_iterator>
4362 mapped_index_base::find_name_components_bounds
4363 (const lookup_name_info &lookup_name_without_params) const
4364 {
4365 auto *name_cmp
4366 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4367
4368 const char *cplus
4369 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4370
4371 /* Comparison function object for lower_bound that matches against a
4372 given symbol name. */
4373 auto lookup_compare_lower = [&] (const name_component &elem,
4374 const char *name)
4375 {
4376 const char *elem_qualified = this->symbol_name_at (elem.idx);
4377 const char *elem_name = elem_qualified + elem.name_offset;
4378 return name_cmp (elem_name, name) < 0;
4379 };
4380
4381 /* Comparison function object for upper_bound that matches against a
4382 given symbol name. */
4383 auto lookup_compare_upper = [&] (const char *name,
4384 const name_component &elem)
4385 {
4386 const char *elem_qualified = this->symbol_name_at (elem.idx);
4387 const char *elem_name = elem_qualified + elem.name_offset;
4388 return name_cmp (name, elem_name) < 0;
4389 };
4390
4391 auto begin = this->name_components.begin ();
4392 auto end = this->name_components.end ();
4393
4394 /* Find the lower bound. */
4395 auto lower = [&] ()
4396 {
4397 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4398 return begin;
4399 else
4400 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4401 } ();
4402
4403 /* Find the upper bound. */
4404 auto upper = [&] ()
4405 {
4406 if (lookup_name_without_params.completion_mode ())
4407 {
4408 /* In completion mode, we want UPPER to point past all
4409 symbols names that have the same prefix. I.e., with
4410 these symbols, and completing "func":
4411
4412 function << lower bound
4413 function1
4414 other_function << upper bound
4415
4416 We find the upper bound by looking for the insertion
4417 point of "func"-with-last-character-incremented,
4418 i.e. "fund". */
4419 std::string after = make_sort_after_prefix_name (cplus);
4420 if (after.empty ())
4421 return end;
4422 return std::lower_bound (lower, end, after.c_str (),
4423 lookup_compare_lower);
4424 }
4425 else
4426 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4427 } ();
4428
4429 return {lower, upper};
4430 }
4431
4432 /* See declaration. */
4433
4434 void
4435 mapped_index_base::build_name_components ()
4436 {
4437 if (!this->name_components.empty ())
4438 return;
4439
4440 this->name_components_casing = case_sensitivity;
4441 auto *name_cmp
4442 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4443
4444 /* The code below only knows how to break apart components of C++
4445 symbol names (and other languages that use '::' as
4446 namespace/module separator). If we add support for wild matching
4447 to some language that uses some other operator (E.g., Ada, Go and
4448 D use '.'), then we'll need to try splitting the symbol name
4449 according to that language too. Note that Ada does support wild
4450 matching, but doesn't currently support .gdb_index. */
4451 auto count = this->symbol_name_count ();
4452 for (offset_type idx = 0; idx < count; idx++)
4453 {
4454 if (this->symbol_name_slot_invalid (idx))
4455 continue;
4456
4457 const char *name = this->symbol_name_at (idx);
4458
4459 /* Add each name component to the name component table. */
4460 unsigned int previous_len = 0;
4461 for (unsigned int current_len = cp_find_first_component (name);
4462 name[current_len] != '\0';
4463 current_len += cp_find_first_component (name + current_len))
4464 {
4465 gdb_assert (name[current_len] == ':');
4466 this->name_components.push_back ({previous_len, idx});
4467 /* Skip the '::'. */
4468 current_len += 2;
4469 previous_len = current_len;
4470 }
4471 this->name_components.push_back ({previous_len, idx});
4472 }
4473
4474 /* Sort name_components elements by name. */
4475 auto name_comp_compare = [&] (const name_component &left,
4476 const name_component &right)
4477 {
4478 const char *left_qualified = this->symbol_name_at (left.idx);
4479 const char *right_qualified = this->symbol_name_at (right.idx);
4480
4481 const char *left_name = left_qualified + left.name_offset;
4482 const char *right_name = right_qualified + right.name_offset;
4483
4484 return name_cmp (left_name, right_name) < 0;
4485 };
4486
4487 std::sort (this->name_components.begin (),
4488 this->name_components.end (),
4489 name_comp_compare);
4490 }
4491
4492 /* Helper for dw2_expand_symtabs_matching that works with a
4493 mapped_index_base instead of the containing objfile. This is split
4494 to a separate function in order to be able to unit test the
4495 name_components matching using a mock mapped_index_base. For each
4496 symbol name that matches, calls MATCH_CALLBACK, passing it the
4497 symbol's index in the mapped_index_base symbol table. */
4498
4499 static void
4500 dw2_expand_symtabs_matching_symbol
4501 (mapped_index_base &index,
4502 const lookup_name_info &lookup_name_in,
4503 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4504 enum search_domain kind,
4505 gdb::function_view<void (offset_type)> match_callback)
4506 {
4507 lookup_name_info lookup_name_without_params
4508 = lookup_name_in.make_ignore_params ();
4509 gdb_index_symbol_name_matcher lookup_name_matcher
4510 (lookup_name_without_params);
4511
4512 /* Build the symbol name component sorted vector, if we haven't
4513 yet. */
4514 index.build_name_components ();
4515
4516 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4517
4518 /* Now for each symbol name in range, check to see if we have a name
4519 match, and if so, call the MATCH_CALLBACK callback. */
4520
4521 /* The same symbol may appear more than once in the range though.
4522 E.g., if we're looking for symbols that complete "w", and we have
4523 a symbol named "w1::w2", we'll find the two name components for
4524 that same symbol in the range. To be sure we only call the
4525 callback once per symbol, we first collect the symbol name
4526 indexes that matched in a temporary vector and ignore
4527 duplicates. */
4528 std::vector<offset_type> matches;
4529 matches.reserve (std::distance (bounds.first, bounds.second));
4530
4531 for (; bounds.first != bounds.second; ++bounds.first)
4532 {
4533 const char *qualified = index.symbol_name_at (bounds.first->idx);
4534
4535 if (!lookup_name_matcher.matches (qualified)
4536 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4537 continue;
4538
4539 matches.push_back (bounds.first->idx);
4540 }
4541
4542 std::sort (matches.begin (), matches.end ());
4543
4544 /* Finally call the callback, once per match. */
4545 ULONGEST prev = -1;
4546 for (offset_type idx : matches)
4547 {
4548 if (prev != idx)
4549 {
4550 match_callback (idx);
4551 prev = idx;
4552 }
4553 }
4554
4555 /* Above we use a type wider than idx's for 'prev', since 0 and
4556 (offset_type)-1 are both possible values. */
4557 static_assert (sizeof (prev) > sizeof (offset_type), "");
4558 }
4559
4560 #if GDB_SELF_TEST
4561
4562 namespace selftests { namespace dw2_expand_symtabs_matching {
4563
4564 /* A mock .gdb_index/.debug_names-like name index table, enough to
4565 exercise dw2_expand_symtabs_matching_symbol, which works with the
4566 mapped_index_base interface. Builds an index from the symbol list
4567 passed as parameter to the constructor. */
4568 class mock_mapped_index : public mapped_index_base
4569 {
4570 public:
4571 mock_mapped_index (gdb::array_view<const char *> symbols)
4572 : m_symbol_table (symbols)
4573 {}
4574
4575 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4576
4577 /* Return the number of names in the symbol table. */
4578 size_t symbol_name_count () const override
4579 {
4580 return m_symbol_table.size ();
4581 }
4582
4583 /* Get the name of the symbol at IDX in the symbol table. */
4584 const char *symbol_name_at (offset_type idx) const override
4585 {
4586 return m_symbol_table[idx];
4587 }
4588
4589 private:
4590 gdb::array_view<const char *> m_symbol_table;
4591 };
4592
4593 /* Convenience function that converts a NULL pointer to a "<null>"
4594 string, to pass to print routines. */
4595
4596 static const char *
4597 string_or_null (const char *str)
4598 {
4599 return str != NULL ? str : "<null>";
4600 }
4601
4602 /* Check if a lookup_name_info built from
4603 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4604 index. EXPECTED_LIST is the list of expected matches, in expected
4605 matching order. If no match expected, then an empty list is
4606 specified. Returns true on success. On failure prints a warning
4607 indicating the file:line that failed, and returns false. */
4608
4609 static bool
4610 check_match (const char *file, int line,
4611 mock_mapped_index &mock_index,
4612 const char *name, symbol_name_match_type match_type,
4613 bool completion_mode,
4614 std::initializer_list<const char *> expected_list)
4615 {
4616 lookup_name_info lookup_name (name, match_type, completion_mode);
4617
4618 bool matched = true;
4619
4620 auto mismatch = [&] (const char *expected_str,
4621 const char *got)
4622 {
4623 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4624 "expected=\"%s\", got=\"%s\"\n"),
4625 file, line,
4626 (match_type == symbol_name_match_type::FULL
4627 ? "FULL" : "WILD"),
4628 name, string_or_null (expected_str), string_or_null (got));
4629 matched = false;
4630 };
4631
4632 auto expected_it = expected_list.begin ();
4633 auto expected_end = expected_list.end ();
4634
4635 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4636 NULL, ALL_DOMAIN,
4637 [&] (offset_type idx)
4638 {
4639 const char *matched_name = mock_index.symbol_name_at (idx);
4640 const char *expected_str
4641 = expected_it == expected_end ? NULL : *expected_it++;
4642
4643 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4644 mismatch (expected_str, matched_name);
4645 });
4646
4647 const char *expected_str
4648 = expected_it == expected_end ? NULL : *expected_it++;
4649 if (expected_str != NULL)
4650 mismatch (expected_str, NULL);
4651
4652 return matched;
4653 }
4654
4655 /* The symbols added to the mock mapped_index for testing (in
4656 canonical form). */
4657 static const char *test_symbols[] = {
4658 "function",
4659 "std::bar",
4660 "std::zfunction",
4661 "std::zfunction2",
4662 "w1::w2",
4663 "ns::foo<char*>",
4664 "ns::foo<int>",
4665 "ns::foo<long>",
4666 "ns2::tmpl<int>::foo2",
4667 "(anonymous namespace)::A::B::C",
4668
4669 /* These are used to check that the increment-last-char in the
4670 matching algorithm for completion doesn't match "t1_fund" when
4671 completing "t1_func". */
4672 "t1_func",
4673 "t1_func1",
4674 "t1_fund",
4675 "t1_fund1",
4676
4677 /* A UTF-8 name with multi-byte sequences to make sure that
4678 cp-name-parser understands this as a single identifier ("função"
4679 is "function" in PT). */
4680 u8"u8função",
4681
4682 /* \377 (0xff) is Latin1 'ÿ'. */
4683 "yfunc\377",
4684
4685 /* \377 (0xff) is Latin1 'ÿ'. */
4686 "\377",
4687 "\377\377123",
4688
4689 /* A name with all sorts of complications. Starts with "z" to make
4690 it easier for the completion tests below. */
4691 #define Z_SYM_NAME \
4692 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4693 "::tuple<(anonymous namespace)::ui*, " \
4694 "std::default_delete<(anonymous namespace)::ui>, void>"
4695
4696 Z_SYM_NAME
4697 };
4698
4699 /* Returns true if the mapped_index_base::find_name_component_bounds
4700 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4701 in completion mode. */
4702
4703 static bool
4704 check_find_bounds_finds (mapped_index_base &index,
4705 const char *search_name,
4706 gdb::array_view<const char *> expected_syms)
4707 {
4708 lookup_name_info lookup_name (search_name,
4709 symbol_name_match_type::FULL, true);
4710
4711 auto bounds = index.find_name_components_bounds (lookup_name);
4712
4713 size_t distance = std::distance (bounds.first, bounds.second);
4714 if (distance != expected_syms.size ())
4715 return false;
4716
4717 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4718 {
4719 auto nc_elem = bounds.first + exp_elem;
4720 const char *qualified = index.symbol_name_at (nc_elem->idx);
4721 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4722 return false;
4723 }
4724
4725 return true;
4726 }
4727
4728 /* Test the lower-level mapped_index::find_name_component_bounds
4729 method. */
4730
4731 static void
4732 test_mapped_index_find_name_component_bounds ()
4733 {
4734 mock_mapped_index mock_index (test_symbols);
4735
4736 mock_index.build_name_components ();
4737
4738 /* Test the lower-level mapped_index::find_name_component_bounds
4739 method in completion mode. */
4740 {
4741 static const char *expected_syms[] = {
4742 "t1_func",
4743 "t1_func1",
4744 };
4745
4746 SELF_CHECK (check_find_bounds_finds (mock_index,
4747 "t1_func", expected_syms));
4748 }
4749
4750 /* Check that the increment-last-char in the name matching algorithm
4751 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4752 {
4753 static const char *expected_syms1[] = {
4754 "\377",
4755 "\377\377123",
4756 };
4757 SELF_CHECK (check_find_bounds_finds (mock_index,
4758 "\377", expected_syms1));
4759
4760 static const char *expected_syms2[] = {
4761 "\377\377123",
4762 };
4763 SELF_CHECK (check_find_bounds_finds (mock_index,
4764 "\377\377", expected_syms2));
4765 }
4766 }
4767
4768 /* Test dw2_expand_symtabs_matching_symbol. */
4769
4770 static void
4771 test_dw2_expand_symtabs_matching_symbol ()
4772 {
4773 mock_mapped_index mock_index (test_symbols);
4774
4775 /* We let all tests run until the end even if some fails, for debug
4776 convenience. */
4777 bool any_mismatch = false;
4778
4779 /* Create the expected symbols list (an initializer_list). Needed
4780 because lists have commas, and we need to pass them to CHECK,
4781 which is a macro. */
4782 #define EXPECT(...) { __VA_ARGS__ }
4783
4784 /* Wrapper for check_match that passes down the current
4785 __FILE__/__LINE__. */
4786 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4787 any_mismatch |= !check_match (__FILE__, __LINE__, \
4788 mock_index, \
4789 NAME, MATCH_TYPE, COMPLETION_MODE, \
4790 EXPECTED_LIST)
4791
4792 /* Identity checks. */
4793 for (const char *sym : test_symbols)
4794 {
4795 /* Should be able to match all existing symbols. */
4796 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4797 EXPECT (sym));
4798
4799 /* Should be able to match all existing symbols with
4800 parameters. */
4801 std::string with_params = std::string (sym) + "(int)";
4802 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4803 EXPECT (sym));
4804
4805 /* Should be able to match all existing symbols with
4806 parameters and qualifiers. */
4807 with_params = std::string (sym) + " ( int ) const";
4808 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4809 EXPECT (sym));
4810
4811 /* This should really find sym, but cp-name-parser.y doesn't
4812 know about lvalue/rvalue qualifiers yet. */
4813 with_params = std::string (sym) + " ( int ) &&";
4814 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4815 {});
4816 }
4817
4818 /* Check that the name matching algorithm for completion doesn't get
4819 confused with Latin1 'ÿ' / 0xff. */
4820 {
4821 static const char str[] = "\377";
4822 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4823 EXPECT ("\377", "\377\377123"));
4824 }
4825
4826 /* Check that the increment-last-char in the matching algorithm for
4827 completion doesn't match "t1_fund" when completing "t1_func". */
4828 {
4829 static const char str[] = "t1_func";
4830 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4831 EXPECT ("t1_func", "t1_func1"));
4832 }
4833
4834 /* Check that completion mode works at each prefix of the expected
4835 symbol name. */
4836 {
4837 static const char str[] = "function(int)";
4838 size_t len = strlen (str);
4839 std::string lookup;
4840
4841 for (size_t i = 1; i < len; i++)
4842 {
4843 lookup.assign (str, i);
4844 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4845 EXPECT ("function"));
4846 }
4847 }
4848
4849 /* While "w" is a prefix of both components, the match function
4850 should still only be called once. */
4851 {
4852 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4853 EXPECT ("w1::w2"));
4854 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4855 EXPECT ("w1::w2"));
4856 }
4857
4858 /* Same, with a "complicated" symbol. */
4859 {
4860 static const char str[] = Z_SYM_NAME;
4861 size_t len = strlen (str);
4862 std::string lookup;
4863
4864 for (size_t i = 1; i < len; i++)
4865 {
4866 lookup.assign (str, i);
4867 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4868 EXPECT (Z_SYM_NAME));
4869 }
4870 }
4871
4872 /* In FULL mode, an incomplete symbol doesn't match. */
4873 {
4874 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4875 {});
4876 }
4877
4878 /* A complete symbol with parameters matches any overload, since the
4879 index has no overload info. */
4880 {
4881 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4882 EXPECT ("std::zfunction", "std::zfunction2"));
4883 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4884 EXPECT ("std::zfunction", "std::zfunction2"));
4885 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 }
4888
4889 /* Check that whitespace is ignored appropriately. A symbol with a
4890 template argument list. */
4891 {
4892 static const char expected[] = "ns::foo<int>";
4893 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4894 EXPECT (expected));
4895 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4896 EXPECT (expected));
4897 }
4898
4899 /* Check that whitespace is ignored appropriately. A symbol with a
4900 template argument list that includes a pointer. */
4901 {
4902 static const char expected[] = "ns::foo<char*>";
4903 /* Try both completion and non-completion modes. */
4904 static const bool completion_mode[2] = {false, true};
4905 for (size_t i = 0; i < 2; i++)
4906 {
4907 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911
4912 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4913 completion_mode[i], EXPECT (expected));
4914 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4915 completion_mode[i], EXPECT (expected));
4916 }
4917 }
4918
4919 {
4920 /* Check method qualifiers are ignored. */
4921 static const char expected[] = "ns::foo<char*>";
4922 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4923 symbol_name_match_type::FULL, true, EXPECT (expected));
4924 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4925 symbol_name_match_type::FULL, true, EXPECT (expected));
4926 CHECK_MATCH ("foo < char * > ( int ) const",
4927 symbol_name_match_type::WILD, true, EXPECT (expected));
4928 CHECK_MATCH ("foo < char * > ( int ) &&",
4929 symbol_name_match_type::WILD, true, EXPECT (expected));
4930 }
4931
4932 /* Test lookup names that don't match anything. */
4933 {
4934 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4935 {});
4936
4937 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4938 {});
4939 }
4940
4941 /* Some wild matching tests, exercising "(anonymous namespace)",
4942 which should not be confused with a parameter list. */
4943 {
4944 static const char *syms[] = {
4945 "A::B::C",
4946 "B::C",
4947 "C",
4948 "A :: B :: C ( int )",
4949 "B :: C ( int )",
4950 "C ( int )",
4951 };
4952
4953 for (const char *s : syms)
4954 {
4955 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4956 EXPECT ("(anonymous namespace)::A::B::C"));
4957 }
4958 }
4959
4960 {
4961 static const char expected[] = "ns2::tmpl<int>::foo2";
4962 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4963 EXPECT (expected));
4964 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4965 EXPECT (expected));
4966 }
4967
4968 SELF_CHECK (!any_mismatch);
4969
4970 #undef EXPECT
4971 #undef CHECK_MATCH
4972 }
4973
4974 static void
4975 run_test ()
4976 {
4977 test_mapped_index_find_name_component_bounds ();
4978 test_dw2_expand_symtabs_matching_symbol ();
4979 }
4980
4981 }} // namespace selftests::dw2_expand_symtabs_matching
4982
4983 #endif /* GDB_SELF_TEST */
4984
4985 /* If FILE_MATCHER is NULL or if PER_CU has
4986 dwarf2_per_cu_quick_data::MARK set (see
4987 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4988 EXPANSION_NOTIFY on it. */
4989
4990 static void
4991 dw2_expand_symtabs_matching_one
4992 (struct dwarf2_per_cu_data *per_cu,
4993 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4994 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4995 {
4996 if (file_matcher == NULL || per_cu->v.quick->mark)
4997 {
4998 bool symtab_was_null
4999 = (per_cu->v.quick->compunit_symtab == NULL);
5000
5001 dw2_instantiate_symtab (per_cu, false);
5002
5003 if (expansion_notify != NULL
5004 && symtab_was_null
5005 && per_cu->v.quick->compunit_symtab != NULL)
5006 expansion_notify (per_cu->v.quick->compunit_symtab);
5007 }
5008 }
5009
5010 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5011 matched, to expand corresponding CUs that were marked. IDX is the
5012 index of the symbol name that matched. */
5013
5014 static void
5015 dw2_expand_marked_cus
5016 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5017 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5018 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5019 search_domain kind)
5020 {
5021 offset_type *vec, vec_len, vec_idx;
5022 bool global_seen = false;
5023 mapped_index &index = *dwarf2_per_objfile->index_table;
5024
5025 vec = (offset_type *) (index.constant_pool
5026 + MAYBE_SWAP (index.symbol_table[idx].vec));
5027 vec_len = MAYBE_SWAP (vec[0]);
5028 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5029 {
5030 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5031 /* This value is only valid for index versions >= 7. */
5032 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5033 gdb_index_symbol_kind symbol_kind =
5034 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5035 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5036 /* Only check the symbol attributes if they're present.
5037 Indices prior to version 7 don't record them,
5038 and indices >= 7 may elide them for certain symbols
5039 (gold does this). */
5040 int attrs_valid =
5041 (index.version >= 7
5042 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5043
5044 /* Work around gold/15646. */
5045 if (attrs_valid)
5046 {
5047 if (!is_static && global_seen)
5048 continue;
5049 if (!is_static)
5050 global_seen = true;
5051 }
5052
5053 /* Only check the symbol's kind if it has one. */
5054 if (attrs_valid)
5055 {
5056 switch (kind)
5057 {
5058 case VARIABLES_DOMAIN:
5059 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5060 continue;
5061 break;
5062 case FUNCTIONS_DOMAIN:
5063 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5064 continue;
5065 break;
5066 case TYPES_DOMAIN:
5067 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5068 continue;
5069 break;
5070 default:
5071 break;
5072 }
5073 }
5074
5075 /* Don't crash on bad data. */
5076 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5077 + dwarf2_per_objfile->all_type_units.size ()))
5078 {
5079 complaint (_(".gdb_index entry has bad CU index"
5080 " [in module %s]"),
5081 objfile_name (dwarf2_per_objfile->objfile));
5082 continue;
5083 }
5084
5085 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5086 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5087 expansion_notify);
5088 }
5089 }
5090
5091 /* If FILE_MATCHER is non-NULL, set all the
5092 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5093 that match FILE_MATCHER. */
5094
5095 static void
5096 dw_expand_symtabs_matching_file_matcher
5097 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5098 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5099 {
5100 if (file_matcher == NULL)
5101 return;
5102
5103 objfile *const objfile = dwarf2_per_objfile->objfile;
5104
5105 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5106 htab_eq_pointer,
5107 NULL, xcalloc, xfree));
5108 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5109 htab_eq_pointer,
5110 NULL, xcalloc, xfree));
5111
5112 /* The rule is CUs specify all the files, including those used by
5113 any TU, so there's no need to scan TUs here. */
5114
5115 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5116 {
5117 QUIT;
5118
5119 per_cu->v.quick->mark = 0;
5120
5121 /* We only need to look at symtabs not already expanded. */
5122 if (per_cu->v.quick->compunit_symtab)
5123 continue;
5124
5125 quick_file_names *file_data = dw2_get_file_names (per_cu);
5126 if (file_data == NULL)
5127 continue;
5128
5129 if (htab_find (visited_not_found.get (), file_data) != NULL)
5130 continue;
5131 else if (htab_find (visited_found.get (), file_data) != NULL)
5132 {
5133 per_cu->v.quick->mark = 1;
5134 continue;
5135 }
5136
5137 for (int j = 0; j < file_data->num_file_names; ++j)
5138 {
5139 const char *this_real_name;
5140
5141 if (file_matcher (file_data->file_names[j], false))
5142 {
5143 per_cu->v.quick->mark = 1;
5144 break;
5145 }
5146
5147 /* Before we invoke realpath, which can get expensive when many
5148 files are involved, do a quick comparison of the basenames. */
5149 if (!basenames_may_differ
5150 && !file_matcher (lbasename (file_data->file_names[j]),
5151 true))
5152 continue;
5153
5154 this_real_name = dw2_get_real_path (objfile, file_data, j);
5155 if (file_matcher (this_real_name, false))
5156 {
5157 per_cu->v.quick->mark = 1;
5158 break;
5159 }
5160 }
5161
5162 void **slot = htab_find_slot (per_cu->v.quick->mark
5163 ? visited_found.get ()
5164 : visited_not_found.get (),
5165 file_data, INSERT);
5166 *slot = file_data;
5167 }
5168 }
5169
5170 static void
5171 dw2_expand_symtabs_matching
5172 (struct objfile *objfile,
5173 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5174 const lookup_name_info &lookup_name,
5175 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5176 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5177 enum search_domain kind)
5178 {
5179 struct dwarf2_per_objfile *dwarf2_per_objfile
5180 = get_dwarf2_per_objfile (objfile);
5181
5182 /* index_table is NULL if OBJF_READNOW. */
5183 if (!dwarf2_per_objfile->index_table)
5184 return;
5185
5186 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5187
5188 mapped_index &index = *dwarf2_per_objfile->index_table;
5189
5190 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5191 symbol_matcher,
5192 kind, [&] (offset_type idx)
5193 {
5194 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5195 expansion_notify, kind);
5196 });
5197 }
5198
5199 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5200 symtab. */
5201
5202 static struct compunit_symtab *
5203 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5204 CORE_ADDR pc)
5205 {
5206 int i;
5207
5208 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5209 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5210 return cust;
5211
5212 if (cust->includes == NULL)
5213 return NULL;
5214
5215 for (i = 0; cust->includes[i]; ++i)
5216 {
5217 struct compunit_symtab *s = cust->includes[i];
5218
5219 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5220 if (s != NULL)
5221 return s;
5222 }
5223
5224 return NULL;
5225 }
5226
5227 static struct compunit_symtab *
5228 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5229 struct bound_minimal_symbol msymbol,
5230 CORE_ADDR pc,
5231 struct obj_section *section,
5232 int warn_if_readin)
5233 {
5234 struct dwarf2_per_cu_data *data;
5235 struct compunit_symtab *result;
5236
5237 if (!objfile->psymtabs_addrmap)
5238 return NULL;
5239
5240 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5241 pc);
5242 if (!data)
5243 return NULL;
5244
5245 if (warn_if_readin && data->v.quick->compunit_symtab)
5246 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5247 paddress (get_objfile_arch (objfile), pc));
5248
5249 result
5250 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5251 false),
5252 pc);
5253 gdb_assert (result != NULL);
5254 return result;
5255 }
5256
5257 static void
5258 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5259 void *data, int need_fullname)
5260 {
5261 struct dwarf2_per_objfile *dwarf2_per_objfile
5262 = get_dwarf2_per_objfile (objfile);
5263
5264 if (!dwarf2_per_objfile->filenames_cache)
5265 {
5266 dwarf2_per_objfile->filenames_cache.emplace ();
5267
5268 htab_up visited (htab_create_alloc (10,
5269 htab_hash_pointer, htab_eq_pointer,
5270 NULL, xcalloc, xfree));
5271
5272 /* The rule is CUs specify all the files, including those used
5273 by any TU, so there's no need to scan TUs here. We can
5274 ignore file names coming from already-expanded CUs. */
5275
5276 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5277 {
5278 if (per_cu->v.quick->compunit_symtab)
5279 {
5280 void **slot = htab_find_slot (visited.get (),
5281 per_cu->v.quick->file_names,
5282 INSERT);
5283
5284 *slot = per_cu->v.quick->file_names;
5285 }
5286 }
5287
5288 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5289 {
5290 /* We only need to look at symtabs not already expanded. */
5291 if (per_cu->v.quick->compunit_symtab)
5292 continue;
5293
5294 quick_file_names *file_data = dw2_get_file_names (per_cu);
5295 if (file_data == NULL)
5296 continue;
5297
5298 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5299 if (*slot)
5300 {
5301 /* Already visited. */
5302 continue;
5303 }
5304 *slot = file_data;
5305
5306 for (int j = 0; j < file_data->num_file_names; ++j)
5307 {
5308 const char *filename = file_data->file_names[j];
5309 dwarf2_per_objfile->filenames_cache->seen (filename);
5310 }
5311 }
5312 }
5313
5314 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5315 {
5316 gdb::unique_xmalloc_ptr<char> this_real_name;
5317
5318 if (need_fullname)
5319 this_real_name = gdb_realpath (filename);
5320 (*fun) (filename, this_real_name.get (), data);
5321 });
5322 }
5323
5324 static int
5325 dw2_has_symbols (struct objfile *objfile)
5326 {
5327 return 1;
5328 }
5329
5330 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5331 {
5332 dw2_has_symbols,
5333 dw2_find_last_source_symtab,
5334 dw2_forget_cached_source_info,
5335 dw2_map_symtabs_matching_filename,
5336 dw2_lookup_symbol,
5337 dw2_print_stats,
5338 dw2_dump,
5339 dw2_relocate,
5340 dw2_expand_symtabs_for_function,
5341 dw2_expand_all_symtabs,
5342 dw2_expand_symtabs_with_fullname,
5343 dw2_map_matching_symbols,
5344 dw2_expand_symtabs_matching,
5345 dw2_find_pc_sect_compunit_symtab,
5346 NULL,
5347 dw2_map_symbol_filenames
5348 };
5349
5350 /* DWARF-5 debug_names reader. */
5351
5352 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5353 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5354
5355 /* A helper function that reads the .debug_names section in SECTION
5356 and fills in MAP. FILENAME is the name of the file containing the
5357 section; it is used for error reporting.
5358
5359 Returns true if all went well, false otherwise. */
5360
5361 static bool
5362 read_debug_names_from_section (struct objfile *objfile,
5363 const char *filename,
5364 struct dwarf2_section_info *section,
5365 mapped_debug_names &map)
5366 {
5367 if (dwarf2_section_empty_p (section))
5368 return false;
5369
5370 /* Older elfutils strip versions could keep the section in the main
5371 executable while splitting it for the separate debug info file. */
5372 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5373 return false;
5374
5375 dwarf2_read_section (objfile, section);
5376
5377 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5378
5379 const gdb_byte *addr = section->buffer;
5380
5381 bfd *const abfd = get_section_bfd_owner (section);
5382
5383 unsigned int bytes_read;
5384 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5385 addr += bytes_read;
5386
5387 map.dwarf5_is_dwarf64 = bytes_read != 4;
5388 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5389 if (bytes_read + length != section->size)
5390 {
5391 /* There may be multiple per-CU indices. */
5392 warning (_("Section .debug_names in %s length %s does not match "
5393 "section length %s, ignoring .debug_names."),
5394 filename, plongest (bytes_read + length),
5395 pulongest (section->size));
5396 return false;
5397 }
5398
5399 /* The version number. */
5400 uint16_t version = read_2_bytes (abfd, addr);
5401 addr += 2;
5402 if (version != 5)
5403 {
5404 warning (_("Section .debug_names in %s has unsupported version %d, "
5405 "ignoring .debug_names."),
5406 filename, version);
5407 return false;
5408 }
5409
5410 /* Padding. */
5411 uint16_t padding = read_2_bytes (abfd, addr);
5412 addr += 2;
5413 if (padding != 0)
5414 {
5415 warning (_("Section .debug_names in %s has unsupported padding %d, "
5416 "ignoring .debug_names."),
5417 filename, padding);
5418 return false;
5419 }
5420
5421 /* comp_unit_count - The number of CUs in the CU list. */
5422 map.cu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* local_type_unit_count - The number of TUs in the local TU
5426 list. */
5427 map.tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429
5430 /* foreign_type_unit_count - The number of TUs in the foreign TU
5431 list. */
5432 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434 if (foreign_tu_count != 0)
5435 {
5436 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5437 "ignoring .debug_names."),
5438 filename, static_cast<unsigned long> (foreign_tu_count));
5439 return false;
5440 }
5441
5442 /* bucket_count - The number of hash buckets in the hash lookup
5443 table. */
5444 map.bucket_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* name_count - The number of unique names in the index. */
5448 map.name_count = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* abbrev_table_size - The size in bytes of the abbreviations
5452 table. */
5453 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455
5456 /* augmentation_string_size - The size in bytes of the augmentation
5457 string. This value is rounded up to a multiple of 4. */
5458 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5459 addr += 4;
5460 map.augmentation_is_gdb = ((augmentation_string_size
5461 == sizeof (dwarf5_augmentation))
5462 && memcmp (addr, dwarf5_augmentation,
5463 sizeof (dwarf5_augmentation)) == 0);
5464 augmentation_string_size += (-augmentation_string_size) & 3;
5465 addr += augmentation_string_size;
5466
5467 /* List of CUs */
5468 map.cu_table_reordered = addr;
5469 addr += map.cu_count * map.offset_size;
5470
5471 /* List of Local TUs */
5472 map.tu_table_reordered = addr;
5473 addr += map.tu_count * map.offset_size;
5474
5475 /* Hash Lookup Table */
5476 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5477 addr += map.bucket_count * 4;
5478 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5479 addr += map.name_count * 4;
5480
5481 /* Name Table */
5482 map.name_table_string_offs_reordered = addr;
5483 addr += map.name_count * map.offset_size;
5484 map.name_table_entry_offs_reordered = addr;
5485 addr += map.name_count * map.offset_size;
5486
5487 const gdb_byte *abbrev_table_start = addr;
5488 for (;;)
5489 {
5490 unsigned int bytes_read;
5491 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5492 addr += bytes_read;
5493 if (index_num == 0)
5494 break;
5495
5496 const auto insertpair
5497 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5498 if (!insertpair.second)
5499 {
5500 warning (_("Section .debug_names in %s has duplicate index %s, "
5501 "ignoring .debug_names."),
5502 filename, pulongest (index_num));
5503 return false;
5504 }
5505 mapped_debug_names::index_val &indexval = insertpair.first->second;
5506 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5507 addr += bytes_read;
5508
5509 for (;;)
5510 {
5511 mapped_debug_names::index_val::attr attr;
5512 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5513 addr += bytes_read;
5514 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516 if (attr.form == DW_FORM_implicit_const)
5517 {
5518 attr.implicit_const = read_signed_leb128 (abfd, addr,
5519 &bytes_read);
5520 addr += bytes_read;
5521 }
5522 if (attr.dw_idx == 0 && attr.form == 0)
5523 break;
5524 indexval.attr_vec.push_back (std::move (attr));
5525 }
5526 }
5527 if (addr != abbrev_table_start + abbrev_table_size)
5528 {
5529 warning (_("Section .debug_names in %s has abbreviation_table "
5530 "of size %zu vs. written as %u, ignoring .debug_names."),
5531 filename, addr - abbrev_table_start, abbrev_table_size);
5532 return false;
5533 }
5534 map.entry_pool = addr;
5535
5536 return true;
5537 }
5538
5539 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5540 list. */
5541
5542 static void
5543 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5544 const mapped_debug_names &map,
5545 dwarf2_section_info &section,
5546 bool is_dwz)
5547 {
5548 sect_offset sect_off_prev;
5549 for (uint32_t i = 0; i <= map.cu_count; ++i)
5550 {
5551 sect_offset sect_off_next;
5552 if (i < map.cu_count)
5553 {
5554 sect_off_next
5555 = (sect_offset) (extract_unsigned_integer
5556 (map.cu_table_reordered + i * map.offset_size,
5557 map.offset_size,
5558 map.dwarf5_byte_order));
5559 }
5560 else
5561 sect_off_next = (sect_offset) section.size;
5562 if (i >= 1)
5563 {
5564 const ULONGEST length = sect_off_next - sect_off_prev;
5565 dwarf2_per_cu_data *per_cu
5566 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5567 sect_off_prev, length);
5568 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5569 }
5570 sect_off_prev = sect_off_next;
5571 }
5572 }
5573
5574 /* Read the CU list from the mapped index, and use it to create all
5575 the CU objects for this dwarf2_per_objfile. */
5576
5577 static void
5578 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5579 const mapped_debug_names &map,
5580 const mapped_debug_names &dwz_map)
5581 {
5582 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5583 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5584
5585 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5586 dwarf2_per_objfile->info,
5587 false /* is_dwz */);
5588
5589 if (dwz_map.cu_count == 0)
5590 return;
5591
5592 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5593 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5594 true /* is_dwz */);
5595 }
5596
5597 /* Read .debug_names. If everything went ok, initialize the "quick"
5598 elements of all the CUs and return true. Otherwise, return false. */
5599
5600 static bool
5601 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5602 {
5603 std::unique_ptr<mapped_debug_names> map
5604 (new mapped_debug_names (dwarf2_per_objfile));
5605 mapped_debug_names dwz_map (dwarf2_per_objfile);
5606 struct objfile *objfile = dwarf2_per_objfile->objfile;
5607
5608 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5609 &dwarf2_per_objfile->debug_names,
5610 *map))
5611 return false;
5612
5613 /* Don't use the index if it's empty. */
5614 if (map->name_count == 0)
5615 return false;
5616
5617 /* If there is a .dwz file, read it so we can get its CU list as
5618 well. */
5619 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5620 if (dwz != NULL)
5621 {
5622 if (!read_debug_names_from_section (objfile,
5623 bfd_get_filename (dwz->dwz_bfd),
5624 &dwz->debug_names, dwz_map))
5625 {
5626 warning (_("could not read '.debug_names' section from %s; skipping"),
5627 bfd_get_filename (dwz->dwz_bfd));
5628 return false;
5629 }
5630 }
5631
5632 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5633
5634 if (map->tu_count != 0)
5635 {
5636 /* We can only handle a single .debug_types when we have an
5637 index. */
5638 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5639 return false;
5640
5641 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5642 dwarf2_per_objfile->types, 0);
5643
5644 create_signatured_type_table_from_debug_names
5645 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5646 }
5647
5648 create_addrmap_from_aranges (dwarf2_per_objfile,
5649 &dwarf2_per_objfile->debug_aranges);
5650
5651 dwarf2_per_objfile->debug_names_table = std::move (map);
5652 dwarf2_per_objfile->using_index = 1;
5653 dwarf2_per_objfile->quick_file_names_table =
5654 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5655
5656 return true;
5657 }
5658
5659 /* Type used to manage iterating over all CUs looking for a symbol for
5660 .debug_names. */
5661
5662 class dw2_debug_names_iterator
5663 {
5664 public:
5665 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5666 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5667 dw2_debug_names_iterator (const mapped_debug_names &map,
5668 bool want_specific_block,
5669 block_enum block_index, domain_enum domain,
5670 const char *name)
5671 : m_map (map), m_want_specific_block (want_specific_block),
5672 m_block_index (block_index), m_domain (domain),
5673 m_addr (find_vec_in_debug_names (map, name))
5674 {}
5675
5676 dw2_debug_names_iterator (const mapped_debug_names &map,
5677 search_domain search, uint32_t namei)
5678 : m_map (map),
5679 m_search (search),
5680 m_addr (find_vec_in_debug_names (map, namei))
5681 {}
5682
5683 /* Return the next matching CU or NULL if there are no more. */
5684 dwarf2_per_cu_data *next ();
5685
5686 private:
5687 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5688 const char *name);
5689 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5690 uint32_t namei);
5691
5692 /* The internalized form of .debug_names. */
5693 const mapped_debug_names &m_map;
5694
5695 /* If true, only look for symbols that match BLOCK_INDEX. */
5696 const bool m_want_specific_block = false;
5697
5698 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5699 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5700 value. */
5701 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5702
5703 /* The kind of symbol we're looking for. */
5704 const domain_enum m_domain = UNDEF_DOMAIN;
5705 const search_domain m_search = ALL_DOMAIN;
5706
5707 /* The list of CUs from the index entry of the symbol, or NULL if
5708 not found. */
5709 const gdb_byte *m_addr;
5710 };
5711
5712 const char *
5713 mapped_debug_names::namei_to_name (uint32_t namei) const
5714 {
5715 const ULONGEST namei_string_offs
5716 = extract_unsigned_integer ((name_table_string_offs_reordered
5717 + namei * offset_size),
5718 offset_size,
5719 dwarf5_byte_order);
5720 return read_indirect_string_at_offset
5721 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5722 }
5723
5724 /* Find a slot in .debug_names for the object named NAME. If NAME is
5725 found, return pointer to its pool data. If NAME cannot be found,
5726 return NULL. */
5727
5728 const gdb_byte *
5729 dw2_debug_names_iterator::find_vec_in_debug_names
5730 (const mapped_debug_names &map, const char *name)
5731 {
5732 int (*cmp) (const char *, const char *);
5733
5734 if (current_language->la_language == language_cplus
5735 || current_language->la_language == language_fortran
5736 || current_language->la_language == language_d)
5737 {
5738 /* NAME is already canonical. Drop any qualifiers as
5739 .debug_names does not contain any. */
5740
5741 if (strchr (name, '(') != NULL)
5742 {
5743 gdb::unique_xmalloc_ptr<char> without_params
5744 = cp_remove_params (name);
5745
5746 if (without_params != NULL)
5747 {
5748 name = without_params.get();
5749 }
5750 }
5751 }
5752
5753 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5754
5755 const uint32_t full_hash = dwarf5_djb_hash (name);
5756 uint32_t namei
5757 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5758 (map.bucket_table_reordered
5759 + (full_hash % map.bucket_count)), 4,
5760 map.dwarf5_byte_order);
5761 if (namei == 0)
5762 return NULL;
5763 --namei;
5764 if (namei >= map.name_count)
5765 {
5766 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5767 "[in module %s]"),
5768 namei, map.name_count,
5769 objfile_name (map.dwarf2_per_objfile->objfile));
5770 return NULL;
5771 }
5772
5773 for (;;)
5774 {
5775 const uint32_t namei_full_hash
5776 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5777 (map.hash_table_reordered + namei), 4,
5778 map.dwarf5_byte_order);
5779 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5780 return NULL;
5781
5782 if (full_hash == namei_full_hash)
5783 {
5784 const char *const namei_string = map.namei_to_name (namei);
5785
5786 #if 0 /* An expensive sanity check. */
5787 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5788 {
5789 complaint (_("Wrong .debug_names hash for string at index %u "
5790 "[in module %s]"),
5791 namei, objfile_name (dwarf2_per_objfile->objfile));
5792 return NULL;
5793 }
5794 #endif
5795
5796 if (cmp (namei_string, name) == 0)
5797 {
5798 const ULONGEST namei_entry_offs
5799 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5800 + namei * map.offset_size),
5801 map.offset_size, map.dwarf5_byte_order);
5802 return map.entry_pool + namei_entry_offs;
5803 }
5804 }
5805
5806 ++namei;
5807 if (namei >= map.name_count)
5808 return NULL;
5809 }
5810 }
5811
5812 const gdb_byte *
5813 dw2_debug_names_iterator::find_vec_in_debug_names
5814 (const mapped_debug_names &map, uint32_t namei)
5815 {
5816 if (namei >= map.name_count)
5817 {
5818 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5819 "[in module %s]"),
5820 namei, map.name_count,
5821 objfile_name (map.dwarf2_per_objfile->objfile));
5822 return NULL;
5823 }
5824
5825 const ULONGEST namei_entry_offs
5826 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5827 + namei * map.offset_size),
5828 map.offset_size, map.dwarf5_byte_order);
5829 return map.entry_pool + namei_entry_offs;
5830 }
5831
5832 /* See dw2_debug_names_iterator. */
5833
5834 dwarf2_per_cu_data *
5835 dw2_debug_names_iterator::next ()
5836 {
5837 if (m_addr == NULL)
5838 return NULL;
5839
5840 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5841 struct objfile *objfile = dwarf2_per_objfile->objfile;
5842 bfd *const abfd = objfile->obfd;
5843
5844 again:
5845
5846 unsigned int bytes_read;
5847 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5848 m_addr += bytes_read;
5849 if (abbrev == 0)
5850 return NULL;
5851
5852 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5853 if (indexval_it == m_map.abbrev_map.cend ())
5854 {
5855 complaint (_("Wrong .debug_names undefined abbrev code %s "
5856 "[in module %s]"),
5857 pulongest (abbrev), objfile_name (objfile));
5858 return NULL;
5859 }
5860 const mapped_debug_names::index_val &indexval = indexval_it->second;
5861 bool have_is_static = false;
5862 bool is_static;
5863 dwarf2_per_cu_data *per_cu = NULL;
5864 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5865 {
5866 ULONGEST ull;
5867 switch (attr.form)
5868 {
5869 case DW_FORM_implicit_const:
5870 ull = attr.implicit_const;
5871 break;
5872 case DW_FORM_flag_present:
5873 ull = 1;
5874 break;
5875 case DW_FORM_udata:
5876 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5877 m_addr += bytes_read;
5878 break;
5879 default:
5880 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5881 dwarf_form_name (attr.form),
5882 objfile_name (objfile));
5883 return NULL;
5884 }
5885 switch (attr.dw_idx)
5886 {
5887 case DW_IDX_compile_unit:
5888 /* Don't crash on bad data. */
5889 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5890 {
5891 complaint (_(".debug_names entry has bad CU index %s"
5892 " [in module %s]"),
5893 pulongest (ull),
5894 objfile_name (dwarf2_per_objfile->objfile));
5895 continue;
5896 }
5897 per_cu = dwarf2_per_objfile->get_cutu (ull);
5898 break;
5899 case DW_IDX_type_unit:
5900 /* Don't crash on bad data. */
5901 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5902 {
5903 complaint (_(".debug_names entry has bad TU index %s"
5904 " [in module %s]"),
5905 pulongest (ull),
5906 objfile_name (dwarf2_per_objfile->objfile));
5907 continue;
5908 }
5909 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5910 break;
5911 case DW_IDX_GNU_internal:
5912 if (!m_map.augmentation_is_gdb)
5913 break;
5914 have_is_static = true;
5915 is_static = true;
5916 break;
5917 case DW_IDX_GNU_external:
5918 if (!m_map.augmentation_is_gdb)
5919 break;
5920 have_is_static = true;
5921 is_static = false;
5922 break;
5923 }
5924 }
5925
5926 /* Skip if already read in. */
5927 if (per_cu->v.quick->compunit_symtab)
5928 goto again;
5929
5930 /* Check static vs global. */
5931 if (have_is_static)
5932 {
5933 const bool want_static = m_block_index != GLOBAL_BLOCK;
5934 if (m_want_specific_block && want_static != is_static)
5935 goto again;
5936 }
5937
5938 /* Match dw2_symtab_iter_next, symbol_kind
5939 and debug_names::psymbol_tag. */
5940 switch (m_domain)
5941 {
5942 case VAR_DOMAIN:
5943 switch (indexval.dwarf_tag)
5944 {
5945 case DW_TAG_variable:
5946 case DW_TAG_subprogram:
5947 /* Some types are also in VAR_DOMAIN. */
5948 case DW_TAG_typedef:
5949 case DW_TAG_structure_type:
5950 break;
5951 default:
5952 goto again;
5953 }
5954 break;
5955 case STRUCT_DOMAIN:
5956 switch (indexval.dwarf_tag)
5957 {
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case LABEL_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case 0:
5969 case DW_TAG_variable:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 default:
5976 break;
5977 }
5978
5979 /* Match dw2_expand_symtabs_matching, symbol_kind and
5980 debug_names::psymbol_tag. */
5981 switch (m_search)
5982 {
5983 case VARIABLES_DOMAIN:
5984 switch (indexval.dwarf_tag)
5985 {
5986 case DW_TAG_variable:
5987 break;
5988 default:
5989 goto again;
5990 }
5991 break;
5992 case FUNCTIONS_DOMAIN:
5993 switch (indexval.dwarf_tag)
5994 {
5995 case DW_TAG_subprogram:
5996 break;
5997 default:
5998 goto again;
5999 }
6000 break;
6001 case TYPES_DOMAIN:
6002 switch (indexval.dwarf_tag)
6003 {
6004 case DW_TAG_typedef:
6005 case DW_TAG_structure_type:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 default:
6012 break;
6013 }
6014
6015 return per_cu;
6016 }
6017
6018 static struct compunit_symtab *
6019 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6020 const char *name, domain_enum domain)
6021 {
6022 const block_enum block_index = static_cast<block_enum> (block_index_int);
6023 struct dwarf2_per_objfile *dwarf2_per_objfile
6024 = get_dwarf2_per_objfile (objfile);
6025
6026 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6027 if (!mapp)
6028 {
6029 /* index is NULL if OBJF_READNOW. */
6030 return NULL;
6031 }
6032 const auto &map = *mapp;
6033
6034 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6035 block_index, domain, name);
6036
6037 struct compunit_symtab *stab_best = NULL;
6038 struct dwarf2_per_cu_data *per_cu;
6039 while ((per_cu = iter.next ()) != NULL)
6040 {
6041 struct symbol *sym, *with_opaque = NULL;
6042 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6043 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6044 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6045
6046 sym = block_find_symbol (block, name, domain,
6047 block_find_non_opaque_type_preferred,
6048 &with_opaque);
6049
6050 /* Some caution must be observed with overloaded functions and
6051 methods, since the index will not contain any overload
6052 information (but NAME might contain it). */
6053
6054 if (sym != NULL
6055 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6056 return stab;
6057 if (with_opaque != NULL
6058 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6059 stab_best = stab;
6060
6061 /* Keep looking through other CUs. */
6062 }
6063
6064 return stab_best;
6065 }
6066
6067 /* This dumps minimal information about .debug_names. It is called
6068 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6069 uses this to verify that .debug_names has been loaded. */
6070
6071 static void
6072 dw2_debug_names_dump (struct objfile *objfile)
6073 {
6074 struct dwarf2_per_objfile *dwarf2_per_objfile
6075 = get_dwarf2_per_objfile (objfile);
6076
6077 gdb_assert (dwarf2_per_objfile->using_index);
6078 printf_filtered (".debug_names:");
6079 if (dwarf2_per_objfile->debug_names_table)
6080 printf_filtered (" exists\n");
6081 else
6082 printf_filtered (" faked for \"readnow\"\n");
6083 printf_filtered ("\n");
6084 }
6085
6086 static void
6087 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6088 const char *func_name)
6089 {
6090 struct dwarf2_per_objfile *dwarf2_per_objfile
6091 = get_dwarf2_per_objfile (objfile);
6092
6093 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6094 if (dwarf2_per_objfile->debug_names_table)
6095 {
6096 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6097
6098 /* Note: It doesn't matter what we pass for block_index here. */
6099 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6100 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6101
6102 struct dwarf2_per_cu_data *per_cu;
6103 while ((per_cu = iter.next ()) != NULL)
6104 dw2_instantiate_symtab (per_cu, false);
6105 }
6106 }
6107
6108 static void
6109 dw2_debug_names_expand_symtabs_matching
6110 (struct objfile *objfile,
6111 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6112 const lookup_name_info &lookup_name,
6113 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6114 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6115 enum search_domain kind)
6116 {
6117 struct dwarf2_per_objfile *dwarf2_per_objfile
6118 = get_dwarf2_per_objfile (objfile);
6119
6120 /* debug_names_table is NULL if OBJF_READNOW. */
6121 if (!dwarf2_per_objfile->debug_names_table)
6122 return;
6123
6124 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6125
6126 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6127
6128 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6129 symbol_matcher,
6130 kind, [&] (offset_type namei)
6131 {
6132 /* The name was matched, now expand corresponding CUs that were
6133 marked. */
6134 dw2_debug_names_iterator iter (map, kind, namei);
6135
6136 struct dwarf2_per_cu_data *per_cu;
6137 while ((per_cu = iter.next ()) != NULL)
6138 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6139 expansion_notify);
6140 });
6141 }
6142
6143 const struct quick_symbol_functions dwarf2_debug_names_functions =
6144 {
6145 dw2_has_symbols,
6146 dw2_find_last_source_symtab,
6147 dw2_forget_cached_source_info,
6148 dw2_map_symtabs_matching_filename,
6149 dw2_debug_names_lookup_symbol,
6150 dw2_print_stats,
6151 dw2_debug_names_dump,
6152 dw2_relocate,
6153 dw2_debug_names_expand_symtabs_for_function,
6154 dw2_expand_all_symtabs,
6155 dw2_expand_symtabs_with_fullname,
6156 dw2_map_matching_symbols,
6157 dw2_debug_names_expand_symtabs_matching,
6158 dw2_find_pc_sect_compunit_symtab,
6159 NULL,
6160 dw2_map_symbol_filenames
6161 };
6162
6163 /* See symfile.h. */
6164
6165 bool
6166 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6167 {
6168 struct dwarf2_per_objfile *dwarf2_per_objfile
6169 = get_dwarf2_per_objfile (objfile);
6170
6171 /* If we're about to read full symbols, don't bother with the
6172 indices. In this case we also don't care if some other debug
6173 format is making psymtabs, because they are all about to be
6174 expanded anyway. */
6175 if ((objfile->flags & OBJF_READNOW))
6176 {
6177 dwarf2_per_objfile->using_index = 1;
6178 create_all_comp_units (dwarf2_per_objfile);
6179 create_all_type_units (dwarf2_per_objfile);
6180 dwarf2_per_objfile->quick_file_names_table
6181 = create_quick_file_names_table
6182 (dwarf2_per_objfile->all_comp_units.size ());
6183
6184 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6185 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6186 {
6187 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6188
6189 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6190 struct dwarf2_per_cu_quick_data);
6191 }
6192
6193 /* Return 1 so that gdb sees the "quick" functions. However,
6194 these functions will be no-ops because we will have expanded
6195 all symtabs. */
6196 *index_kind = dw_index_kind::GDB_INDEX;
6197 return true;
6198 }
6199
6200 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6201 {
6202 *index_kind = dw_index_kind::DEBUG_NAMES;
6203 return true;
6204 }
6205
6206 if (dwarf2_read_gdb_index (dwarf2_per_objfile))
6207 {
6208 *index_kind = dw_index_kind::GDB_INDEX;
6209 return true;
6210 }
6211
6212 return false;
6213 }
6214
6215 \f
6216
6217 /* Build a partial symbol table. */
6218
6219 void
6220 dwarf2_build_psymtabs (struct objfile *objfile)
6221 {
6222 struct dwarf2_per_objfile *dwarf2_per_objfile
6223 = get_dwarf2_per_objfile (objfile);
6224
6225 if (objfile->global_psymbols.capacity () == 0
6226 && objfile->static_psymbols.capacity () == 0)
6227 init_psymbol_list (objfile, 1024);
6228
6229 TRY
6230 {
6231 /* This isn't really ideal: all the data we allocate on the
6232 objfile's obstack is still uselessly kept around. However,
6233 freeing it seems unsafe. */
6234 psymtab_discarder psymtabs (objfile);
6235 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6236 psymtabs.keep ();
6237 }
6238 CATCH (except, RETURN_MASK_ERROR)
6239 {
6240 exception_print (gdb_stderr, except);
6241 }
6242 END_CATCH
6243 }
6244
6245 /* Return the total length of the CU described by HEADER. */
6246
6247 static unsigned int
6248 get_cu_length (const struct comp_unit_head *header)
6249 {
6250 return header->initial_length_size + header->length;
6251 }
6252
6253 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6254
6255 static inline bool
6256 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6257 {
6258 sect_offset bottom = cu_header->sect_off;
6259 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6260
6261 return sect_off >= bottom && sect_off < top;
6262 }
6263
6264 /* Find the base address of the compilation unit for range lists and
6265 location lists. It will normally be specified by DW_AT_low_pc.
6266 In DWARF-3 draft 4, the base address could be overridden by
6267 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6268 compilation units with discontinuous ranges. */
6269
6270 static void
6271 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6272 {
6273 struct attribute *attr;
6274
6275 cu->base_known = 0;
6276 cu->base_address = 0;
6277
6278 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6279 if (attr)
6280 {
6281 cu->base_address = attr_value_as_address (attr);
6282 cu->base_known = 1;
6283 }
6284 else
6285 {
6286 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6287 if (attr)
6288 {
6289 cu->base_address = attr_value_as_address (attr);
6290 cu->base_known = 1;
6291 }
6292 }
6293 }
6294
6295 /* Read in the comp unit header information from the debug_info at info_ptr.
6296 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6297 NOTE: This leaves members offset, first_die_offset to be filled in
6298 by the caller. */
6299
6300 static const gdb_byte *
6301 read_comp_unit_head (struct comp_unit_head *cu_header,
6302 const gdb_byte *info_ptr,
6303 struct dwarf2_section_info *section,
6304 rcuh_kind section_kind)
6305 {
6306 int signed_addr;
6307 unsigned int bytes_read;
6308 const char *filename = get_section_file_name (section);
6309 bfd *abfd = get_section_bfd_owner (section);
6310
6311 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6312 cu_header->initial_length_size = bytes_read;
6313 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6314 info_ptr += bytes_read;
6315 cu_header->version = read_2_bytes (abfd, info_ptr);
6316 if (cu_header->version < 2 || cu_header->version > 5)
6317 error (_("Dwarf Error: wrong version in compilation unit header "
6318 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6319 cu_header->version, filename);
6320 info_ptr += 2;
6321 if (cu_header->version < 5)
6322 switch (section_kind)
6323 {
6324 case rcuh_kind::COMPILE:
6325 cu_header->unit_type = DW_UT_compile;
6326 break;
6327 case rcuh_kind::TYPE:
6328 cu_header->unit_type = DW_UT_type;
6329 break;
6330 default:
6331 internal_error (__FILE__, __LINE__,
6332 _("read_comp_unit_head: invalid section_kind"));
6333 }
6334 else
6335 {
6336 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6337 (read_1_byte (abfd, info_ptr));
6338 info_ptr += 1;
6339 switch (cu_header->unit_type)
6340 {
6341 case DW_UT_compile:
6342 if (section_kind != rcuh_kind::COMPILE)
6343 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6344 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6345 filename);
6346 break;
6347 case DW_UT_type:
6348 section_kind = rcuh_kind::TYPE;
6349 break;
6350 default:
6351 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6352 "(is %d, should be %d or %d) [in module %s]"),
6353 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6354 }
6355
6356 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6357 info_ptr += 1;
6358 }
6359 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6360 cu_header,
6361 &bytes_read);
6362 info_ptr += bytes_read;
6363 if (cu_header->version < 5)
6364 {
6365 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6366 info_ptr += 1;
6367 }
6368 signed_addr = bfd_get_sign_extend_vma (abfd);
6369 if (signed_addr < 0)
6370 internal_error (__FILE__, __LINE__,
6371 _("read_comp_unit_head: dwarf from non elf file"));
6372 cu_header->signed_addr_p = signed_addr;
6373
6374 if (section_kind == rcuh_kind::TYPE)
6375 {
6376 LONGEST type_offset;
6377
6378 cu_header->signature = read_8_bytes (abfd, info_ptr);
6379 info_ptr += 8;
6380
6381 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6382 info_ptr += bytes_read;
6383 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6384 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6385 error (_("Dwarf Error: Too big type_offset in compilation unit "
6386 "header (is %s) [in module %s]"), plongest (type_offset),
6387 filename);
6388 }
6389
6390 return info_ptr;
6391 }
6392
6393 /* Helper function that returns the proper abbrev section for
6394 THIS_CU. */
6395
6396 static struct dwarf2_section_info *
6397 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6398 {
6399 struct dwarf2_section_info *abbrev;
6400 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6401
6402 if (this_cu->is_dwz)
6403 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6404 else
6405 abbrev = &dwarf2_per_objfile->abbrev;
6406
6407 return abbrev;
6408 }
6409
6410 /* Subroutine of read_and_check_comp_unit_head and
6411 read_and_check_type_unit_head to simplify them.
6412 Perform various error checking on the header. */
6413
6414 static void
6415 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6416 struct comp_unit_head *header,
6417 struct dwarf2_section_info *section,
6418 struct dwarf2_section_info *abbrev_section)
6419 {
6420 const char *filename = get_section_file_name (section);
6421
6422 if (to_underlying (header->abbrev_sect_off)
6423 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6424 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6425 "(offset %s + 6) [in module %s]"),
6426 sect_offset_str (header->abbrev_sect_off),
6427 sect_offset_str (header->sect_off),
6428 filename);
6429
6430 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6431 avoid potential 32-bit overflow. */
6432 if (((ULONGEST) header->sect_off + get_cu_length (header))
6433 > section->size)
6434 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6435 "(offset %s + 0) [in module %s]"),
6436 header->length, sect_offset_str (header->sect_off),
6437 filename);
6438 }
6439
6440 /* Read in a CU/TU header and perform some basic error checking.
6441 The contents of the header are stored in HEADER.
6442 The result is a pointer to the start of the first DIE. */
6443
6444 static const gdb_byte *
6445 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6446 struct comp_unit_head *header,
6447 struct dwarf2_section_info *section,
6448 struct dwarf2_section_info *abbrev_section,
6449 const gdb_byte *info_ptr,
6450 rcuh_kind section_kind)
6451 {
6452 const gdb_byte *beg_of_comp_unit = info_ptr;
6453
6454 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6455
6456 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6457
6458 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6459
6460 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6461 abbrev_section);
6462
6463 return info_ptr;
6464 }
6465
6466 /* Fetch the abbreviation table offset from a comp or type unit header. */
6467
6468 static sect_offset
6469 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6470 struct dwarf2_section_info *section,
6471 sect_offset sect_off)
6472 {
6473 bfd *abfd = get_section_bfd_owner (section);
6474 const gdb_byte *info_ptr;
6475 unsigned int initial_length_size, offset_size;
6476 uint16_t version;
6477
6478 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6479 info_ptr = section->buffer + to_underlying (sect_off);
6480 read_initial_length (abfd, info_ptr, &initial_length_size);
6481 offset_size = initial_length_size == 4 ? 4 : 8;
6482 info_ptr += initial_length_size;
6483
6484 version = read_2_bytes (abfd, info_ptr);
6485 info_ptr += 2;
6486 if (version >= 5)
6487 {
6488 /* Skip unit type and address size. */
6489 info_ptr += 2;
6490 }
6491
6492 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6493 }
6494
6495 /* Allocate a new partial symtab for file named NAME and mark this new
6496 partial symtab as being an include of PST. */
6497
6498 static void
6499 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6500 struct objfile *objfile)
6501 {
6502 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6503
6504 if (!IS_ABSOLUTE_PATH (subpst->filename))
6505 {
6506 /* It shares objfile->objfile_obstack. */
6507 subpst->dirname = pst->dirname;
6508 }
6509
6510 subpst->textlow = 0;
6511 subpst->texthigh = 0;
6512
6513 subpst->dependencies
6514 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6515 subpst->dependencies[0] = pst;
6516 subpst->number_of_dependencies = 1;
6517
6518 subpst->globals_offset = 0;
6519 subpst->n_global_syms = 0;
6520 subpst->statics_offset = 0;
6521 subpst->n_static_syms = 0;
6522 subpst->compunit_symtab = NULL;
6523 subpst->read_symtab = pst->read_symtab;
6524 subpst->readin = 0;
6525
6526 /* No private part is necessary for include psymtabs. This property
6527 can be used to differentiate between such include psymtabs and
6528 the regular ones. */
6529 subpst->read_symtab_private = NULL;
6530 }
6531
6532 /* Read the Line Number Program data and extract the list of files
6533 included by the source file represented by PST. Build an include
6534 partial symtab for each of these included files. */
6535
6536 static void
6537 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6538 struct die_info *die,
6539 struct partial_symtab *pst)
6540 {
6541 line_header_up lh;
6542 struct attribute *attr;
6543
6544 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6545 if (attr)
6546 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6547 if (lh == NULL)
6548 return; /* No linetable, so no includes. */
6549
6550 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6551 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6552 }
6553
6554 static hashval_t
6555 hash_signatured_type (const void *item)
6556 {
6557 const struct signatured_type *sig_type
6558 = (const struct signatured_type *) item;
6559
6560 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6561 return sig_type->signature;
6562 }
6563
6564 static int
6565 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6566 {
6567 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6568 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6569
6570 return lhs->signature == rhs->signature;
6571 }
6572
6573 /* Allocate a hash table for signatured types. */
6574
6575 static htab_t
6576 allocate_signatured_type_table (struct objfile *objfile)
6577 {
6578 return htab_create_alloc_ex (41,
6579 hash_signatured_type,
6580 eq_signatured_type,
6581 NULL,
6582 &objfile->objfile_obstack,
6583 hashtab_obstack_allocate,
6584 dummy_obstack_deallocate);
6585 }
6586
6587 /* A helper function to add a signatured type CU to a table. */
6588
6589 static int
6590 add_signatured_type_cu_to_table (void **slot, void *datum)
6591 {
6592 struct signatured_type *sigt = (struct signatured_type *) *slot;
6593 std::vector<signatured_type *> *all_type_units
6594 = (std::vector<signatured_type *> *) datum;
6595
6596 all_type_units->push_back (sigt);
6597
6598 return 1;
6599 }
6600
6601 /* A helper for create_debug_types_hash_table. Read types from SECTION
6602 and fill them into TYPES_HTAB. It will process only type units,
6603 therefore DW_UT_type. */
6604
6605 static void
6606 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6607 struct dwo_file *dwo_file,
6608 dwarf2_section_info *section, htab_t &types_htab,
6609 rcuh_kind section_kind)
6610 {
6611 struct objfile *objfile = dwarf2_per_objfile->objfile;
6612 struct dwarf2_section_info *abbrev_section;
6613 bfd *abfd;
6614 const gdb_byte *info_ptr, *end_ptr;
6615
6616 abbrev_section = (dwo_file != NULL
6617 ? &dwo_file->sections.abbrev
6618 : &dwarf2_per_objfile->abbrev);
6619
6620 if (dwarf_read_debug)
6621 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6622 get_section_name (section),
6623 get_section_file_name (abbrev_section));
6624
6625 dwarf2_read_section (objfile, section);
6626 info_ptr = section->buffer;
6627
6628 if (info_ptr == NULL)
6629 return;
6630
6631 /* We can't set abfd until now because the section may be empty or
6632 not present, in which case the bfd is unknown. */
6633 abfd = get_section_bfd_owner (section);
6634
6635 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6636 because we don't need to read any dies: the signature is in the
6637 header. */
6638
6639 end_ptr = info_ptr + section->size;
6640 while (info_ptr < end_ptr)
6641 {
6642 struct signatured_type *sig_type;
6643 struct dwo_unit *dwo_tu;
6644 void **slot;
6645 const gdb_byte *ptr = info_ptr;
6646 struct comp_unit_head header;
6647 unsigned int length;
6648
6649 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6650
6651 /* Initialize it due to a false compiler warning. */
6652 header.signature = -1;
6653 header.type_cu_offset_in_tu = (cu_offset) -1;
6654
6655 /* We need to read the type's signature in order to build the hash
6656 table, but we don't need anything else just yet. */
6657
6658 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6659 abbrev_section, ptr, section_kind);
6660
6661 length = get_cu_length (&header);
6662
6663 /* Skip dummy type units. */
6664 if (ptr >= info_ptr + length
6665 || peek_abbrev_code (abfd, ptr) == 0
6666 || header.unit_type != DW_UT_type)
6667 {
6668 info_ptr += length;
6669 continue;
6670 }
6671
6672 if (types_htab == NULL)
6673 {
6674 if (dwo_file)
6675 types_htab = allocate_dwo_unit_table (objfile);
6676 else
6677 types_htab = allocate_signatured_type_table (objfile);
6678 }
6679
6680 if (dwo_file)
6681 {
6682 sig_type = NULL;
6683 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6684 struct dwo_unit);
6685 dwo_tu->dwo_file = dwo_file;
6686 dwo_tu->signature = header.signature;
6687 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6688 dwo_tu->section = section;
6689 dwo_tu->sect_off = sect_off;
6690 dwo_tu->length = length;
6691 }
6692 else
6693 {
6694 /* N.B.: type_offset is not usable if this type uses a DWO file.
6695 The real type_offset is in the DWO file. */
6696 dwo_tu = NULL;
6697 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6698 struct signatured_type);
6699 sig_type->signature = header.signature;
6700 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6701 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6702 sig_type->per_cu.is_debug_types = 1;
6703 sig_type->per_cu.section = section;
6704 sig_type->per_cu.sect_off = sect_off;
6705 sig_type->per_cu.length = length;
6706 }
6707
6708 slot = htab_find_slot (types_htab,
6709 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6710 INSERT);
6711 gdb_assert (slot != NULL);
6712 if (*slot != NULL)
6713 {
6714 sect_offset dup_sect_off;
6715
6716 if (dwo_file)
6717 {
6718 const struct dwo_unit *dup_tu
6719 = (const struct dwo_unit *) *slot;
6720
6721 dup_sect_off = dup_tu->sect_off;
6722 }
6723 else
6724 {
6725 const struct signatured_type *dup_tu
6726 = (const struct signatured_type *) *slot;
6727
6728 dup_sect_off = dup_tu->per_cu.sect_off;
6729 }
6730
6731 complaint (_("debug type entry at offset %s is duplicate to"
6732 " the entry at offset %s, signature %s"),
6733 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6734 hex_string (header.signature));
6735 }
6736 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6737
6738 if (dwarf_read_debug > 1)
6739 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6740 sect_offset_str (sect_off),
6741 hex_string (header.signature));
6742
6743 info_ptr += length;
6744 }
6745 }
6746
6747 /* Create the hash table of all entries in the .debug_types
6748 (or .debug_types.dwo) section(s).
6749 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6750 otherwise it is NULL.
6751
6752 The result is a pointer to the hash table or NULL if there are no types.
6753
6754 Note: This function processes DWO files only, not DWP files. */
6755
6756 static void
6757 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6758 struct dwo_file *dwo_file,
6759 VEC (dwarf2_section_info_def) *types,
6760 htab_t &types_htab)
6761 {
6762 int ix;
6763 struct dwarf2_section_info *section;
6764
6765 if (VEC_empty (dwarf2_section_info_def, types))
6766 return;
6767
6768 for (ix = 0;
6769 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6770 ++ix)
6771 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6772 types_htab, rcuh_kind::TYPE);
6773 }
6774
6775 /* Create the hash table of all entries in the .debug_types section,
6776 and initialize all_type_units.
6777 The result is zero if there is an error (e.g. missing .debug_types section),
6778 otherwise non-zero. */
6779
6780 static int
6781 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6782 {
6783 htab_t types_htab = NULL;
6784
6785 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6786 &dwarf2_per_objfile->info, types_htab,
6787 rcuh_kind::COMPILE);
6788 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6789 dwarf2_per_objfile->types, types_htab);
6790 if (types_htab == NULL)
6791 {
6792 dwarf2_per_objfile->signatured_types = NULL;
6793 return 0;
6794 }
6795
6796 dwarf2_per_objfile->signatured_types = types_htab;
6797
6798 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6799 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6800
6801 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6802 &dwarf2_per_objfile->all_type_units);
6803
6804 return 1;
6805 }
6806
6807 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6808 If SLOT is non-NULL, it is the entry to use in the hash table.
6809 Otherwise we find one. */
6810
6811 static struct signatured_type *
6812 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6813 void **slot)
6814 {
6815 struct objfile *objfile = dwarf2_per_objfile->objfile;
6816
6817 if (dwarf2_per_objfile->all_type_units.size ()
6818 == dwarf2_per_objfile->all_type_units.capacity ())
6819 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6820
6821 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6822 struct signatured_type);
6823
6824 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6825 sig_type->signature = sig;
6826 sig_type->per_cu.is_debug_types = 1;
6827 if (dwarf2_per_objfile->using_index)
6828 {
6829 sig_type->per_cu.v.quick =
6830 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6831 struct dwarf2_per_cu_quick_data);
6832 }
6833
6834 if (slot == NULL)
6835 {
6836 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6837 sig_type, INSERT);
6838 }
6839 gdb_assert (*slot == NULL);
6840 *slot = sig_type;
6841 /* The rest of sig_type must be filled in by the caller. */
6842 return sig_type;
6843 }
6844
6845 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6846 Fill in SIG_ENTRY with DWO_ENTRY. */
6847
6848 static void
6849 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6850 struct signatured_type *sig_entry,
6851 struct dwo_unit *dwo_entry)
6852 {
6853 /* Make sure we're not clobbering something we don't expect to. */
6854 gdb_assert (! sig_entry->per_cu.queued);
6855 gdb_assert (sig_entry->per_cu.cu == NULL);
6856 if (dwarf2_per_objfile->using_index)
6857 {
6858 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6859 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6860 }
6861 else
6862 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6863 gdb_assert (sig_entry->signature == dwo_entry->signature);
6864 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6865 gdb_assert (sig_entry->type_unit_group == NULL);
6866 gdb_assert (sig_entry->dwo_unit == NULL);
6867
6868 sig_entry->per_cu.section = dwo_entry->section;
6869 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6870 sig_entry->per_cu.length = dwo_entry->length;
6871 sig_entry->per_cu.reading_dwo_directly = 1;
6872 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6873 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6874 sig_entry->dwo_unit = dwo_entry;
6875 }
6876
6877 /* Subroutine of lookup_signatured_type.
6878 If we haven't read the TU yet, create the signatured_type data structure
6879 for a TU to be read in directly from a DWO file, bypassing the stub.
6880 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6881 using .gdb_index, then when reading a CU we want to stay in the DWO file
6882 containing that CU. Otherwise we could end up reading several other DWO
6883 files (due to comdat folding) to process the transitive closure of all the
6884 mentioned TUs, and that can be slow. The current DWO file will have every
6885 type signature that it needs.
6886 We only do this for .gdb_index because in the psymtab case we already have
6887 to read all the DWOs to build the type unit groups. */
6888
6889 static struct signatured_type *
6890 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6891 {
6892 struct dwarf2_per_objfile *dwarf2_per_objfile
6893 = cu->per_cu->dwarf2_per_objfile;
6894 struct objfile *objfile = dwarf2_per_objfile->objfile;
6895 struct dwo_file *dwo_file;
6896 struct dwo_unit find_dwo_entry, *dwo_entry;
6897 struct signatured_type find_sig_entry, *sig_entry;
6898 void **slot;
6899
6900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6901
6902 /* If TU skeletons have been removed then we may not have read in any
6903 TUs yet. */
6904 if (dwarf2_per_objfile->signatured_types == NULL)
6905 {
6906 dwarf2_per_objfile->signatured_types
6907 = allocate_signatured_type_table (objfile);
6908 }
6909
6910 /* We only ever need to read in one copy of a signatured type.
6911 Use the global signatured_types array to do our own comdat-folding
6912 of types. If this is the first time we're reading this TU, and
6913 the TU has an entry in .gdb_index, replace the recorded data from
6914 .gdb_index with this TU. */
6915
6916 find_sig_entry.signature = sig;
6917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6918 &find_sig_entry, INSERT);
6919 sig_entry = (struct signatured_type *) *slot;
6920
6921 /* We can get here with the TU already read, *or* in the process of being
6922 read. Don't reassign the global entry to point to this DWO if that's
6923 the case. Also note that if the TU is already being read, it may not
6924 have come from a DWO, the program may be a mix of Fission-compiled
6925 code and non-Fission-compiled code. */
6926
6927 /* Have we already tried to read this TU?
6928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6929 needn't exist in the global table yet). */
6930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6931 return sig_entry;
6932
6933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6934 dwo_unit of the TU itself. */
6935 dwo_file = cu->dwo_unit->dwo_file;
6936
6937 /* Ok, this is the first time we're reading this TU. */
6938 if (dwo_file->tus == NULL)
6939 return NULL;
6940 find_dwo_entry.signature = sig;
6941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6942 if (dwo_entry == NULL)
6943 return NULL;
6944
6945 /* If the global table doesn't have an entry for this TU, add one. */
6946 if (sig_entry == NULL)
6947 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6948
6949 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6950 sig_entry->per_cu.tu_read = 1;
6951 return sig_entry;
6952 }
6953
6954 /* Subroutine of lookup_signatured_type.
6955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6956 then try the DWP file. If the TU stub (skeleton) has been removed then
6957 it won't be in .gdb_index. */
6958
6959 static struct signatured_type *
6960 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6961 {
6962 struct dwarf2_per_objfile *dwarf2_per_objfile
6963 = cu->per_cu->dwarf2_per_objfile;
6964 struct objfile *objfile = dwarf2_per_objfile->objfile;
6965 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6966 struct dwo_unit *dwo_entry;
6967 struct signatured_type find_sig_entry, *sig_entry;
6968 void **slot;
6969
6970 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6971 gdb_assert (dwp_file != NULL);
6972
6973 /* If TU skeletons have been removed then we may not have read in any
6974 TUs yet. */
6975 if (dwarf2_per_objfile->signatured_types == NULL)
6976 {
6977 dwarf2_per_objfile->signatured_types
6978 = allocate_signatured_type_table (objfile);
6979 }
6980
6981 find_sig_entry.signature = sig;
6982 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6983 &find_sig_entry, INSERT);
6984 sig_entry = (struct signatured_type *) *slot;
6985
6986 /* Have we already tried to read this TU?
6987 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6988 needn't exist in the global table yet). */
6989 if (sig_entry != NULL)
6990 return sig_entry;
6991
6992 if (dwp_file->tus == NULL)
6993 return NULL;
6994 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6995 sig, 1 /* is_debug_types */);
6996 if (dwo_entry == NULL)
6997 return NULL;
6998
6999 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7000 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7001
7002 return sig_entry;
7003 }
7004
7005 /* Lookup a signature based type for DW_FORM_ref_sig8.
7006 Returns NULL if signature SIG is not present in the table.
7007 It is up to the caller to complain about this. */
7008
7009 static struct signatured_type *
7010 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7011 {
7012 struct dwarf2_per_objfile *dwarf2_per_objfile
7013 = cu->per_cu->dwarf2_per_objfile;
7014
7015 if (cu->dwo_unit
7016 && dwarf2_per_objfile->using_index)
7017 {
7018 /* We're in a DWO/DWP file, and we're using .gdb_index.
7019 These cases require special processing. */
7020 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7021 return lookup_dwo_signatured_type (cu, sig);
7022 else
7023 return lookup_dwp_signatured_type (cu, sig);
7024 }
7025 else
7026 {
7027 struct signatured_type find_entry, *entry;
7028
7029 if (dwarf2_per_objfile->signatured_types == NULL)
7030 return NULL;
7031 find_entry.signature = sig;
7032 entry = ((struct signatured_type *)
7033 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7034 return entry;
7035 }
7036 }
7037 \f
7038 /* Low level DIE reading support. */
7039
7040 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7041
7042 static void
7043 init_cu_die_reader (struct die_reader_specs *reader,
7044 struct dwarf2_cu *cu,
7045 struct dwarf2_section_info *section,
7046 struct dwo_file *dwo_file,
7047 struct abbrev_table *abbrev_table)
7048 {
7049 gdb_assert (section->readin && section->buffer != NULL);
7050 reader->abfd = get_section_bfd_owner (section);
7051 reader->cu = cu;
7052 reader->dwo_file = dwo_file;
7053 reader->die_section = section;
7054 reader->buffer = section->buffer;
7055 reader->buffer_end = section->buffer + section->size;
7056 reader->comp_dir = NULL;
7057 reader->abbrev_table = abbrev_table;
7058 }
7059
7060 /* Subroutine of init_cutu_and_read_dies to simplify it.
7061 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7062 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7063 already.
7064
7065 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7066 from it to the DIE in the DWO. If NULL we are skipping the stub.
7067 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7068 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7069 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7070 STUB_COMP_DIR may be non-NULL.
7071 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7072 are filled in with the info of the DIE from the DWO file.
7073 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7074 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7075 kept around for at least as long as *RESULT_READER.
7076
7077 The result is non-zero if a valid (non-dummy) DIE was found. */
7078
7079 static int
7080 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7081 struct dwo_unit *dwo_unit,
7082 struct die_info *stub_comp_unit_die,
7083 const char *stub_comp_dir,
7084 struct die_reader_specs *result_reader,
7085 const gdb_byte **result_info_ptr,
7086 struct die_info **result_comp_unit_die,
7087 int *result_has_children,
7088 abbrev_table_up *result_dwo_abbrev_table)
7089 {
7090 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7091 struct objfile *objfile = dwarf2_per_objfile->objfile;
7092 struct dwarf2_cu *cu = this_cu->cu;
7093 bfd *abfd;
7094 const gdb_byte *begin_info_ptr, *info_ptr;
7095 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7096 int i,num_extra_attrs;
7097 struct dwarf2_section_info *dwo_abbrev_section;
7098 struct attribute *attr;
7099 struct die_info *comp_unit_die;
7100
7101 /* At most one of these may be provided. */
7102 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7103
7104 /* These attributes aren't processed until later:
7105 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7106 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7107 referenced later. However, these attributes are found in the stub
7108 which we won't have later. In order to not impose this complication
7109 on the rest of the code, we read them here and copy them to the
7110 DWO CU/TU die. */
7111
7112 stmt_list = NULL;
7113 low_pc = NULL;
7114 high_pc = NULL;
7115 ranges = NULL;
7116 comp_dir = NULL;
7117
7118 if (stub_comp_unit_die != NULL)
7119 {
7120 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7121 DWO file. */
7122 if (! this_cu->is_debug_types)
7123 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7124 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7125 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7126 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7127 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7128
7129 /* There should be a DW_AT_addr_base attribute here (if needed).
7130 We need the value before we can process DW_FORM_GNU_addr_index. */
7131 cu->addr_base = 0;
7132 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7133 if (attr)
7134 cu->addr_base = DW_UNSND (attr);
7135
7136 /* There should be a DW_AT_ranges_base attribute here (if needed).
7137 We need the value before we can process DW_AT_ranges. */
7138 cu->ranges_base = 0;
7139 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7140 if (attr)
7141 cu->ranges_base = DW_UNSND (attr);
7142 }
7143 else if (stub_comp_dir != NULL)
7144 {
7145 /* Reconstruct the comp_dir attribute to simplify the code below. */
7146 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7147 comp_dir->name = DW_AT_comp_dir;
7148 comp_dir->form = DW_FORM_string;
7149 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7150 DW_STRING (comp_dir) = stub_comp_dir;
7151 }
7152
7153 /* Set up for reading the DWO CU/TU. */
7154 cu->dwo_unit = dwo_unit;
7155 dwarf2_section_info *section = dwo_unit->section;
7156 dwarf2_read_section (objfile, section);
7157 abfd = get_section_bfd_owner (section);
7158 begin_info_ptr = info_ptr = (section->buffer
7159 + to_underlying (dwo_unit->sect_off));
7160 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7161
7162 if (this_cu->is_debug_types)
7163 {
7164 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7165
7166 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7167 &cu->header, section,
7168 dwo_abbrev_section,
7169 info_ptr, rcuh_kind::TYPE);
7170 /* This is not an assert because it can be caused by bad debug info. */
7171 if (sig_type->signature != cu->header.signature)
7172 {
7173 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7174 " TU at offset %s [in module %s]"),
7175 hex_string (sig_type->signature),
7176 hex_string (cu->header.signature),
7177 sect_offset_str (dwo_unit->sect_off),
7178 bfd_get_filename (abfd));
7179 }
7180 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7181 /* For DWOs coming from DWP files, we don't know the CU length
7182 nor the type's offset in the TU until now. */
7183 dwo_unit->length = get_cu_length (&cu->header);
7184 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7185
7186 /* Establish the type offset that can be used to lookup the type.
7187 For DWO files, we don't know it until now. */
7188 sig_type->type_offset_in_section
7189 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7190 }
7191 else
7192 {
7193 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7194 &cu->header, section,
7195 dwo_abbrev_section,
7196 info_ptr, rcuh_kind::COMPILE);
7197 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7198 /* For DWOs coming from DWP files, we don't know the CU length
7199 until now. */
7200 dwo_unit->length = get_cu_length (&cu->header);
7201 }
7202
7203 *result_dwo_abbrev_table
7204 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7205 cu->header.abbrev_sect_off);
7206 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7207 result_dwo_abbrev_table->get ());
7208
7209 /* Read in the die, but leave space to copy over the attributes
7210 from the stub. This has the benefit of simplifying the rest of
7211 the code - all the work to maintain the illusion of a single
7212 DW_TAG_{compile,type}_unit DIE is done here. */
7213 num_extra_attrs = ((stmt_list != NULL)
7214 + (low_pc != NULL)
7215 + (high_pc != NULL)
7216 + (ranges != NULL)
7217 + (comp_dir != NULL));
7218 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7219 result_has_children, num_extra_attrs);
7220
7221 /* Copy over the attributes from the stub to the DIE we just read in. */
7222 comp_unit_die = *result_comp_unit_die;
7223 i = comp_unit_die->num_attrs;
7224 if (stmt_list != NULL)
7225 comp_unit_die->attrs[i++] = *stmt_list;
7226 if (low_pc != NULL)
7227 comp_unit_die->attrs[i++] = *low_pc;
7228 if (high_pc != NULL)
7229 comp_unit_die->attrs[i++] = *high_pc;
7230 if (ranges != NULL)
7231 comp_unit_die->attrs[i++] = *ranges;
7232 if (comp_dir != NULL)
7233 comp_unit_die->attrs[i++] = *comp_dir;
7234 comp_unit_die->num_attrs += num_extra_attrs;
7235
7236 if (dwarf_die_debug)
7237 {
7238 fprintf_unfiltered (gdb_stdlog,
7239 "Read die from %s@0x%x of %s:\n",
7240 get_section_name (section),
7241 (unsigned) (begin_info_ptr - section->buffer),
7242 bfd_get_filename (abfd));
7243 dump_die (comp_unit_die, dwarf_die_debug);
7244 }
7245
7246 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7247 TUs by skipping the stub and going directly to the entry in the DWO file.
7248 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7249 to get it via circuitous means. Blech. */
7250 if (comp_dir != NULL)
7251 result_reader->comp_dir = DW_STRING (comp_dir);
7252
7253 /* Skip dummy compilation units. */
7254 if (info_ptr >= begin_info_ptr + dwo_unit->length
7255 || peek_abbrev_code (abfd, info_ptr) == 0)
7256 return 0;
7257
7258 *result_info_ptr = info_ptr;
7259 return 1;
7260 }
7261
7262 /* Subroutine of init_cutu_and_read_dies to simplify it.
7263 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7264 Returns NULL if the specified DWO unit cannot be found. */
7265
7266 static struct dwo_unit *
7267 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7268 struct die_info *comp_unit_die)
7269 {
7270 struct dwarf2_cu *cu = this_cu->cu;
7271 ULONGEST signature;
7272 struct dwo_unit *dwo_unit;
7273 const char *comp_dir, *dwo_name;
7274
7275 gdb_assert (cu != NULL);
7276
7277 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7278 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7279 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7280
7281 if (this_cu->is_debug_types)
7282 {
7283 struct signatured_type *sig_type;
7284
7285 /* Since this_cu is the first member of struct signatured_type,
7286 we can go from a pointer to one to a pointer to the other. */
7287 sig_type = (struct signatured_type *) this_cu;
7288 signature = sig_type->signature;
7289 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7290 }
7291 else
7292 {
7293 struct attribute *attr;
7294
7295 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7296 if (! attr)
7297 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7298 " [in module %s]"),
7299 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7300 signature = DW_UNSND (attr);
7301 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7302 signature);
7303 }
7304
7305 return dwo_unit;
7306 }
7307
7308 /* Subroutine of init_cutu_and_read_dies to simplify it.
7309 See it for a description of the parameters.
7310 Read a TU directly from a DWO file, bypassing the stub. */
7311
7312 static void
7313 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7314 int use_existing_cu, int keep,
7315 die_reader_func_ftype *die_reader_func,
7316 void *data)
7317 {
7318 std::unique_ptr<dwarf2_cu> new_cu;
7319 struct signatured_type *sig_type;
7320 struct die_reader_specs reader;
7321 const gdb_byte *info_ptr;
7322 struct die_info *comp_unit_die;
7323 int has_children;
7324 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7325
7326 /* Verify we can do the following downcast, and that we have the
7327 data we need. */
7328 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7329 sig_type = (struct signatured_type *) this_cu;
7330 gdb_assert (sig_type->dwo_unit != NULL);
7331
7332 if (use_existing_cu && this_cu->cu != NULL)
7333 {
7334 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7335 /* There's no need to do the rereading_dwo_cu handling that
7336 init_cutu_and_read_dies does since we don't read the stub. */
7337 }
7338 else
7339 {
7340 /* If !use_existing_cu, this_cu->cu must be NULL. */
7341 gdb_assert (this_cu->cu == NULL);
7342 new_cu.reset (new dwarf2_cu (this_cu));
7343 }
7344
7345 /* A future optimization, if needed, would be to use an existing
7346 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7347 could share abbrev tables. */
7348
7349 /* The abbreviation table used by READER, this must live at least as long as
7350 READER. */
7351 abbrev_table_up dwo_abbrev_table;
7352
7353 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7354 NULL /* stub_comp_unit_die */,
7355 sig_type->dwo_unit->dwo_file->comp_dir,
7356 &reader, &info_ptr,
7357 &comp_unit_die, &has_children,
7358 &dwo_abbrev_table) == 0)
7359 {
7360 /* Dummy die. */
7361 return;
7362 }
7363
7364 /* All the "real" work is done here. */
7365 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7366
7367 /* This duplicates the code in init_cutu_and_read_dies,
7368 but the alternative is making the latter more complex.
7369 This function is only for the special case of using DWO files directly:
7370 no point in overly complicating the general case just to handle this. */
7371 if (new_cu != NULL && keep)
7372 {
7373 /* Link this CU into read_in_chain. */
7374 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7375 dwarf2_per_objfile->read_in_chain = this_cu;
7376 /* The chain owns it now. */
7377 new_cu.release ();
7378 }
7379 }
7380
7381 /* Initialize a CU (or TU) and read its DIEs.
7382 If the CU defers to a DWO file, read the DWO file as well.
7383
7384 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7385 Otherwise the table specified in the comp unit header is read in and used.
7386 This is an optimization for when we already have the abbrev table.
7387
7388 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7389 Otherwise, a new CU is allocated with xmalloc.
7390
7391 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7392 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7393
7394 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7395 linker) then DIE_READER_FUNC will not get called. */
7396
7397 static void
7398 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7399 struct abbrev_table *abbrev_table,
7400 int use_existing_cu, int keep,
7401 bool skip_partial,
7402 die_reader_func_ftype *die_reader_func,
7403 void *data)
7404 {
7405 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7406 struct objfile *objfile = dwarf2_per_objfile->objfile;
7407 struct dwarf2_section_info *section = this_cu->section;
7408 bfd *abfd = get_section_bfd_owner (section);
7409 struct dwarf2_cu *cu;
7410 const gdb_byte *begin_info_ptr, *info_ptr;
7411 struct die_reader_specs reader;
7412 struct die_info *comp_unit_die;
7413 int has_children;
7414 struct attribute *attr;
7415 struct signatured_type *sig_type = NULL;
7416 struct dwarf2_section_info *abbrev_section;
7417 /* Non-zero if CU currently points to a DWO file and we need to
7418 reread it. When this happens we need to reread the skeleton die
7419 before we can reread the DWO file (this only applies to CUs, not TUs). */
7420 int rereading_dwo_cu = 0;
7421
7422 if (dwarf_die_debug)
7423 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7424 this_cu->is_debug_types ? "type" : "comp",
7425 sect_offset_str (this_cu->sect_off));
7426
7427 if (use_existing_cu)
7428 gdb_assert (keep);
7429
7430 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7431 file (instead of going through the stub), short-circuit all of this. */
7432 if (this_cu->reading_dwo_directly)
7433 {
7434 /* Narrow down the scope of possibilities to have to understand. */
7435 gdb_assert (this_cu->is_debug_types);
7436 gdb_assert (abbrev_table == NULL);
7437 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7438 die_reader_func, data);
7439 return;
7440 }
7441
7442 /* This is cheap if the section is already read in. */
7443 dwarf2_read_section (objfile, section);
7444
7445 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7446
7447 abbrev_section = get_abbrev_section_for_cu (this_cu);
7448
7449 std::unique_ptr<dwarf2_cu> new_cu;
7450 if (use_existing_cu && this_cu->cu != NULL)
7451 {
7452 cu = this_cu->cu;
7453 /* If this CU is from a DWO file we need to start over, we need to
7454 refetch the attributes from the skeleton CU.
7455 This could be optimized by retrieving those attributes from when we
7456 were here the first time: the previous comp_unit_die was stored in
7457 comp_unit_obstack. But there's no data yet that we need this
7458 optimization. */
7459 if (cu->dwo_unit != NULL)
7460 rereading_dwo_cu = 1;
7461 }
7462 else
7463 {
7464 /* If !use_existing_cu, this_cu->cu must be NULL. */
7465 gdb_assert (this_cu->cu == NULL);
7466 new_cu.reset (new dwarf2_cu (this_cu));
7467 cu = new_cu.get ();
7468 }
7469
7470 /* Get the header. */
7471 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7472 {
7473 /* We already have the header, there's no need to read it in again. */
7474 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7475 }
7476 else
7477 {
7478 if (this_cu->is_debug_types)
7479 {
7480 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7481 &cu->header, section,
7482 abbrev_section, info_ptr,
7483 rcuh_kind::TYPE);
7484
7485 /* Since per_cu is the first member of struct signatured_type,
7486 we can go from a pointer to one to a pointer to the other. */
7487 sig_type = (struct signatured_type *) this_cu;
7488 gdb_assert (sig_type->signature == cu->header.signature);
7489 gdb_assert (sig_type->type_offset_in_tu
7490 == cu->header.type_cu_offset_in_tu);
7491 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7492
7493 /* LENGTH has not been set yet for type units if we're
7494 using .gdb_index. */
7495 this_cu->length = get_cu_length (&cu->header);
7496
7497 /* Establish the type offset that can be used to lookup the type. */
7498 sig_type->type_offset_in_section =
7499 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7500
7501 this_cu->dwarf_version = cu->header.version;
7502 }
7503 else
7504 {
7505 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7506 &cu->header, section,
7507 abbrev_section,
7508 info_ptr,
7509 rcuh_kind::COMPILE);
7510
7511 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7512 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7513 this_cu->dwarf_version = cu->header.version;
7514 }
7515 }
7516
7517 /* Skip dummy compilation units. */
7518 if (info_ptr >= begin_info_ptr + this_cu->length
7519 || peek_abbrev_code (abfd, info_ptr) == 0)
7520 return;
7521
7522 /* If we don't have them yet, read the abbrevs for this compilation unit.
7523 And if we need to read them now, make sure they're freed when we're
7524 done (own the table through ABBREV_TABLE_HOLDER). */
7525 abbrev_table_up abbrev_table_holder;
7526 if (abbrev_table != NULL)
7527 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7528 else
7529 {
7530 abbrev_table_holder
7531 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7532 cu->header.abbrev_sect_off);
7533 abbrev_table = abbrev_table_holder.get ();
7534 }
7535
7536 /* Read the top level CU/TU die. */
7537 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7538 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7539
7540 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7541 return;
7542
7543 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7544 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7545 table from the DWO file and pass the ownership over to us. It will be
7546 referenced from READER, so we must make sure to free it after we're done
7547 with READER.
7548
7549 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7550 DWO CU, that this test will fail (the attribute will not be present). */
7551 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7552 abbrev_table_up dwo_abbrev_table;
7553 if (attr)
7554 {
7555 struct dwo_unit *dwo_unit;
7556 struct die_info *dwo_comp_unit_die;
7557
7558 if (has_children)
7559 {
7560 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7561 " has children (offset %s) [in module %s]"),
7562 sect_offset_str (this_cu->sect_off),
7563 bfd_get_filename (abfd));
7564 }
7565 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7566 if (dwo_unit != NULL)
7567 {
7568 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7569 comp_unit_die, NULL,
7570 &reader, &info_ptr,
7571 &dwo_comp_unit_die, &has_children,
7572 &dwo_abbrev_table) == 0)
7573 {
7574 /* Dummy die. */
7575 return;
7576 }
7577 comp_unit_die = dwo_comp_unit_die;
7578 }
7579 else
7580 {
7581 /* Yikes, we couldn't find the rest of the DIE, we only have
7582 the stub. A complaint has already been logged. There's
7583 not much more we can do except pass on the stub DIE to
7584 die_reader_func. We don't want to throw an error on bad
7585 debug info. */
7586 }
7587 }
7588
7589 /* All of the above is setup for this call. Yikes. */
7590 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7591
7592 /* Done, clean up. */
7593 if (new_cu != NULL && keep)
7594 {
7595 /* Link this CU into read_in_chain. */
7596 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7597 dwarf2_per_objfile->read_in_chain = this_cu;
7598 /* The chain owns it now. */
7599 new_cu.release ();
7600 }
7601 }
7602
7603 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7604 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7605 to have already done the lookup to find the DWO file).
7606
7607 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7608 THIS_CU->is_debug_types, but nothing else.
7609
7610 We fill in THIS_CU->length.
7611
7612 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7613 linker) then DIE_READER_FUNC will not get called.
7614
7615 THIS_CU->cu is always freed when done.
7616 This is done in order to not leave THIS_CU->cu in a state where we have
7617 to care whether it refers to the "main" CU or the DWO CU. */
7618
7619 static void
7620 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7621 struct dwo_file *dwo_file,
7622 die_reader_func_ftype *die_reader_func,
7623 void *data)
7624 {
7625 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7626 struct objfile *objfile = dwarf2_per_objfile->objfile;
7627 struct dwarf2_section_info *section = this_cu->section;
7628 bfd *abfd = get_section_bfd_owner (section);
7629 struct dwarf2_section_info *abbrev_section;
7630 const gdb_byte *begin_info_ptr, *info_ptr;
7631 struct die_reader_specs reader;
7632 struct die_info *comp_unit_die;
7633 int has_children;
7634
7635 if (dwarf_die_debug)
7636 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7637 this_cu->is_debug_types ? "type" : "comp",
7638 sect_offset_str (this_cu->sect_off));
7639
7640 gdb_assert (this_cu->cu == NULL);
7641
7642 abbrev_section = (dwo_file != NULL
7643 ? &dwo_file->sections.abbrev
7644 : get_abbrev_section_for_cu (this_cu));
7645
7646 /* This is cheap if the section is already read in. */
7647 dwarf2_read_section (objfile, section);
7648
7649 struct dwarf2_cu cu (this_cu);
7650
7651 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7652 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7653 &cu.header, section,
7654 abbrev_section, info_ptr,
7655 (this_cu->is_debug_types
7656 ? rcuh_kind::TYPE
7657 : rcuh_kind::COMPILE));
7658
7659 this_cu->length = get_cu_length (&cu.header);
7660
7661 /* Skip dummy compilation units. */
7662 if (info_ptr >= begin_info_ptr + this_cu->length
7663 || peek_abbrev_code (abfd, info_ptr) == 0)
7664 return;
7665
7666 abbrev_table_up abbrev_table
7667 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7668 cu.header.abbrev_sect_off);
7669
7670 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7671 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7672
7673 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7674 }
7675
7676 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7677 does not lookup the specified DWO file.
7678 This cannot be used to read DWO files.
7679
7680 THIS_CU->cu is always freed when done.
7681 This is done in order to not leave THIS_CU->cu in a state where we have
7682 to care whether it refers to the "main" CU or the DWO CU.
7683 We can revisit this if the data shows there's a performance issue. */
7684
7685 static void
7686 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7687 die_reader_func_ftype *die_reader_func,
7688 void *data)
7689 {
7690 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7691 }
7692 \f
7693 /* Type Unit Groups.
7694
7695 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7696 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7697 so that all types coming from the same compilation (.o file) are grouped
7698 together. A future step could be to put the types in the same symtab as
7699 the CU the types ultimately came from. */
7700
7701 static hashval_t
7702 hash_type_unit_group (const void *item)
7703 {
7704 const struct type_unit_group *tu_group
7705 = (const struct type_unit_group *) item;
7706
7707 return hash_stmt_list_entry (&tu_group->hash);
7708 }
7709
7710 static int
7711 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7712 {
7713 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7714 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7715
7716 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7717 }
7718
7719 /* Allocate a hash table for type unit groups. */
7720
7721 static htab_t
7722 allocate_type_unit_groups_table (struct objfile *objfile)
7723 {
7724 return htab_create_alloc_ex (3,
7725 hash_type_unit_group,
7726 eq_type_unit_group,
7727 NULL,
7728 &objfile->objfile_obstack,
7729 hashtab_obstack_allocate,
7730 dummy_obstack_deallocate);
7731 }
7732
7733 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7734 partial symtabs. We combine several TUs per psymtab to not let the size
7735 of any one psymtab grow too big. */
7736 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7737 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7738
7739 /* Helper routine for get_type_unit_group.
7740 Create the type_unit_group object used to hold one or more TUs. */
7741
7742 static struct type_unit_group *
7743 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7744 {
7745 struct dwarf2_per_objfile *dwarf2_per_objfile
7746 = cu->per_cu->dwarf2_per_objfile;
7747 struct objfile *objfile = dwarf2_per_objfile->objfile;
7748 struct dwarf2_per_cu_data *per_cu;
7749 struct type_unit_group *tu_group;
7750
7751 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7752 struct type_unit_group);
7753 per_cu = &tu_group->per_cu;
7754 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7755
7756 if (dwarf2_per_objfile->using_index)
7757 {
7758 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7759 struct dwarf2_per_cu_quick_data);
7760 }
7761 else
7762 {
7763 unsigned int line_offset = to_underlying (line_offset_struct);
7764 struct partial_symtab *pst;
7765 char *name;
7766
7767 /* Give the symtab a useful name for debug purposes. */
7768 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7769 name = xstrprintf ("<type_units_%d>",
7770 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7771 else
7772 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7773
7774 pst = create_partial_symtab (per_cu, name);
7775 pst->anonymous = 1;
7776
7777 xfree (name);
7778 }
7779
7780 tu_group->hash.dwo_unit = cu->dwo_unit;
7781 tu_group->hash.line_sect_off = line_offset_struct;
7782
7783 return tu_group;
7784 }
7785
7786 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7787 STMT_LIST is a DW_AT_stmt_list attribute. */
7788
7789 static struct type_unit_group *
7790 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7791 {
7792 struct dwarf2_per_objfile *dwarf2_per_objfile
7793 = cu->per_cu->dwarf2_per_objfile;
7794 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7795 struct type_unit_group *tu_group;
7796 void **slot;
7797 unsigned int line_offset;
7798 struct type_unit_group type_unit_group_for_lookup;
7799
7800 if (dwarf2_per_objfile->type_unit_groups == NULL)
7801 {
7802 dwarf2_per_objfile->type_unit_groups =
7803 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7804 }
7805
7806 /* Do we need to create a new group, or can we use an existing one? */
7807
7808 if (stmt_list)
7809 {
7810 line_offset = DW_UNSND (stmt_list);
7811 ++tu_stats->nr_symtab_sharers;
7812 }
7813 else
7814 {
7815 /* Ugh, no stmt_list. Rare, but we have to handle it.
7816 We can do various things here like create one group per TU or
7817 spread them over multiple groups to split up the expansion work.
7818 To avoid worst case scenarios (too many groups or too large groups)
7819 we, umm, group them in bunches. */
7820 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7821 | (tu_stats->nr_stmt_less_type_units
7822 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7823 ++tu_stats->nr_stmt_less_type_units;
7824 }
7825
7826 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7827 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7828 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7829 &type_unit_group_for_lookup, INSERT);
7830 if (*slot != NULL)
7831 {
7832 tu_group = (struct type_unit_group *) *slot;
7833 gdb_assert (tu_group != NULL);
7834 }
7835 else
7836 {
7837 sect_offset line_offset_struct = (sect_offset) line_offset;
7838 tu_group = create_type_unit_group (cu, line_offset_struct);
7839 *slot = tu_group;
7840 ++tu_stats->nr_symtabs;
7841 }
7842
7843 return tu_group;
7844 }
7845 \f
7846 /* Partial symbol tables. */
7847
7848 /* Create a psymtab named NAME and assign it to PER_CU.
7849
7850 The caller must fill in the following details:
7851 dirname, textlow, texthigh. */
7852
7853 static struct partial_symtab *
7854 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7855 {
7856 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7857 struct partial_symtab *pst;
7858
7859 pst = start_psymtab_common (objfile, name, 0,
7860 objfile->global_psymbols,
7861 objfile->static_psymbols);
7862
7863 pst->psymtabs_addrmap_supported = 1;
7864
7865 /* This is the glue that links PST into GDB's symbol API. */
7866 pst->read_symtab_private = per_cu;
7867 pst->read_symtab = dwarf2_read_symtab;
7868 per_cu->v.psymtab = pst;
7869
7870 return pst;
7871 }
7872
7873 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7874 type. */
7875
7876 struct process_psymtab_comp_unit_data
7877 {
7878 /* True if we are reading a DW_TAG_partial_unit. */
7879
7880 int want_partial_unit;
7881
7882 /* The "pretend" language that is used if the CU doesn't declare a
7883 language. */
7884
7885 enum language pretend_language;
7886 };
7887
7888 /* die_reader_func for process_psymtab_comp_unit. */
7889
7890 static void
7891 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7892 const gdb_byte *info_ptr,
7893 struct die_info *comp_unit_die,
7894 int has_children,
7895 void *data)
7896 {
7897 struct dwarf2_cu *cu = reader->cu;
7898 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7900 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7901 CORE_ADDR baseaddr;
7902 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7903 struct partial_symtab *pst;
7904 enum pc_bounds_kind cu_bounds_kind;
7905 const char *filename;
7906 struct process_psymtab_comp_unit_data *info
7907 = (struct process_psymtab_comp_unit_data *) data;
7908
7909 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7910 return;
7911
7912 gdb_assert (! per_cu->is_debug_types);
7913
7914 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7915
7916 /* Allocate a new partial symbol table structure. */
7917 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7918 if (filename == NULL)
7919 filename = "";
7920
7921 pst = create_partial_symtab (per_cu, filename);
7922
7923 /* This must be done before calling dwarf2_build_include_psymtabs. */
7924 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7925
7926 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7927
7928 dwarf2_find_base_address (comp_unit_die, cu);
7929
7930 /* Possibly set the default values of LOWPC and HIGHPC from
7931 `DW_AT_ranges'. */
7932 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7933 &best_highpc, cu, pst);
7934 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7935 /* Store the contiguous range if it is not empty; it can be empty for
7936 CUs with no code. */
7937 addrmap_set_empty (objfile->psymtabs_addrmap,
7938 gdbarch_adjust_dwarf2_addr (gdbarch,
7939 best_lowpc + baseaddr),
7940 gdbarch_adjust_dwarf2_addr (gdbarch,
7941 best_highpc + baseaddr) - 1,
7942 pst);
7943
7944 /* Check if comp unit has_children.
7945 If so, read the rest of the partial symbols from this comp unit.
7946 If not, there's no more debug_info for this comp unit. */
7947 if (has_children)
7948 {
7949 struct partial_die_info *first_die;
7950 CORE_ADDR lowpc, highpc;
7951
7952 lowpc = ((CORE_ADDR) -1);
7953 highpc = ((CORE_ADDR) 0);
7954
7955 first_die = load_partial_dies (reader, info_ptr, 1);
7956
7957 scan_partial_symbols (first_die, &lowpc, &highpc,
7958 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7959
7960 /* If we didn't find a lowpc, set it to highpc to avoid
7961 complaints from `maint check'. */
7962 if (lowpc == ((CORE_ADDR) -1))
7963 lowpc = highpc;
7964
7965 /* If the compilation unit didn't have an explicit address range,
7966 then use the information extracted from its child dies. */
7967 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7968 {
7969 best_lowpc = lowpc;
7970 best_highpc = highpc;
7971 }
7972 }
7973 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7974 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7975
7976 end_psymtab_common (objfile, pst);
7977
7978 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7979 {
7980 int i;
7981 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7982 struct dwarf2_per_cu_data *iter;
7983
7984 /* Fill in 'dependencies' here; we fill in 'users' in a
7985 post-pass. */
7986 pst->number_of_dependencies = len;
7987 pst->dependencies =
7988 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7989 for (i = 0;
7990 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7991 i, iter);
7992 ++i)
7993 pst->dependencies[i] = iter->v.psymtab;
7994
7995 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7996 }
7997
7998 /* Get the list of files included in the current compilation unit,
7999 and build a psymtab for each of them. */
8000 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8001
8002 if (dwarf_read_debug)
8003 {
8004 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8005
8006 fprintf_unfiltered (gdb_stdlog,
8007 "Psymtab for %s unit @%s: %s - %s"
8008 ", %d global, %d static syms\n",
8009 per_cu->is_debug_types ? "type" : "comp",
8010 sect_offset_str (per_cu->sect_off),
8011 paddress (gdbarch, pst->textlow),
8012 paddress (gdbarch, pst->texthigh),
8013 pst->n_global_syms, pst->n_static_syms);
8014 }
8015 }
8016
8017 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8018 Process compilation unit THIS_CU for a psymtab. */
8019
8020 static void
8021 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8022 int want_partial_unit,
8023 enum language pretend_language)
8024 {
8025 /* If this compilation unit was already read in, free the
8026 cached copy in order to read it in again. This is
8027 necessary because we skipped some symbols when we first
8028 read in the compilation unit (see load_partial_dies).
8029 This problem could be avoided, but the benefit is unclear. */
8030 if (this_cu->cu != NULL)
8031 free_one_cached_comp_unit (this_cu);
8032
8033 if (this_cu->is_debug_types)
8034 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8035 build_type_psymtabs_reader, NULL);
8036 else
8037 {
8038 process_psymtab_comp_unit_data info;
8039 info.want_partial_unit = want_partial_unit;
8040 info.pretend_language = pretend_language;
8041 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8042 process_psymtab_comp_unit_reader, &info);
8043 }
8044
8045 /* Age out any secondary CUs. */
8046 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8047 }
8048
8049 /* Reader function for build_type_psymtabs. */
8050
8051 static void
8052 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8053 const gdb_byte *info_ptr,
8054 struct die_info *type_unit_die,
8055 int has_children,
8056 void *data)
8057 {
8058 struct dwarf2_per_objfile *dwarf2_per_objfile
8059 = reader->cu->per_cu->dwarf2_per_objfile;
8060 struct objfile *objfile = dwarf2_per_objfile->objfile;
8061 struct dwarf2_cu *cu = reader->cu;
8062 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8063 struct signatured_type *sig_type;
8064 struct type_unit_group *tu_group;
8065 struct attribute *attr;
8066 struct partial_die_info *first_die;
8067 CORE_ADDR lowpc, highpc;
8068 struct partial_symtab *pst;
8069
8070 gdb_assert (data == NULL);
8071 gdb_assert (per_cu->is_debug_types);
8072 sig_type = (struct signatured_type *) per_cu;
8073
8074 if (! has_children)
8075 return;
8076
8077 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8078 tu_group = get_type_unit_group (cu, attr);
8079
8080 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8081
8082 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8083 pst = create_partial_symtab (per_cu, "");
8084 pst->anonymous = 1;
8085
8086 first_die = load_partial_dies (reader, info_ptr, 1);
8087
8088 lowpc = (CORE_ADDR) -1;
8089 highpc = (CORE_ADDR) 0;
8090 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8091
8092 end_psymtab_common (objfile, pst);
8093 }
8094
8095 /* Struct used to sort TUs by their abbreviation table offset. */
8096
8097 struct tu_abbrev_offset
8098 {
8099 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8100 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8101 {}
8102
8103 signatured_type *sig_type;
8104 sect_offset abbrev_offset;
8105 };
8106
8107 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8108
8109 static bool
8110 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8111 const struct tu_abbrev_offset &b)
8112 {
8113 return a.abbrev_offset < b.abbrev_offset;
8114 }
8115
8116 /* Efficiently read all the type units.
8117 This does the bulk of the work for build_type_psymtabs.
8118
8119 The efficiency is because we sort TUs by the abbrev table they use and
8120 only read each abbrev table once. In one program there are 200K TUs
8121 sharing 8K abbrev tables.
8122
8123 The main purpose of this function is to support building the
8124 dwarf2_per_objfile->type_unit_groups table.
8125 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8126 can collapse the search space by grouping them by stmt_list.
8127 The savings can be significant, in the same program from above the 200K TUs
8128 share 8K stmt_list tables.
8129
8130 FUNC is expected to call get_type_unit_group, which will create the
8131 struct type_unit_group if necessary and add it to
8132 dwarf2_per_objfile->type_unit_groups. */
8133
8134 static void
8135 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8136 {
8137 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8138 abbrev_table_up abbrev_table;
8139 sect_offset abbrev_offset;
8140
8141 /* It's up to the caller to not call us multiple times. */
8142 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8143
8144 if (dwarf2_per_objfile->all_type_units.empty ())
8145 return;
8146
8147 /* TUs typically share abbrev tables, and there can be way more TUs than
8148 abbrev tables. Sort by abbrev table to reduce the number of times we
8149 read each abbrev table in.
8150 Alternatives are to punt or to maintain a cache of abbrev tables.
8151 This is simpler and efficient enough for now.
8152
8153 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8154 symtab to use). Typically TUs with the same abbrev offset have the same
8155 stmt_list value too so in practice this should work well.
8156
8157 The basic algorithm here is:
8158
8159 sort TUs by abbrev table
8160 for each TU with same abbrev table:
8161 read abbrev table if first user
8162 read TU top level DIE
8163 [IWBN if DWO skeletons had DW_AT_stmt_list]
8164 call FUNC */
8165
8166 if (dwarf_read_debug)
8167 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8168
8169 /* Sort in a separate table to maintain the order of all_type_units
8170 for .gdb_index: TU indices directly index all_type_units. */
8171 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8172 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8173
8174 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8175 sorted_by_abbrev.emplace_back
8176 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8177 sig_type->per_cu.section,
8178 sig_type->per_cu.sect_off));
8179
8180 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8181 sort_tu_by_abbrev_offset);
8182
8183 abbrev_offset = (sect_offset) ~(unsigned) 0;
8184
8185 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8186 {
8187 /* Switch to the next abbrev table if necessary. */
8188 if (abbrev_table == NULL
8189 || tu.abbrev_offset != abbrev_offset)
8190 {
8191 abbrev_offset = tu.abbrev_offset;
8192 abbrev_table =
8193 abbrev_table_read_table (dwarf2_per_objfile,
8194 &dwarf2_per_objfile->abbrev,
8195 abbrev_offset);
8196 ++tu_stats->nr_uniq_abbrev_tables;
8197 }
8198
8199 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8200 0, 0, false, build_type_psymtabs_reader, NULL);
8201 }
8202 }
8203
8204 /* Print collected type unit statistics. */
8205
8206 static void
8207 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8208 {
8209 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8210
8211 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8212 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8213 dwarf2_per_objfile->all_type_units.size ());
8214 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8215 tu_stats->nr_uniq_abbrev_tables);
8216 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8217 tu_stats->nr_symtabs);
8218 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8219 tu_stats->nr_symtab_sharers);
8220 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8221 tu_stats->nr_stmt_less_type_units);
8222 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8223 tu_stats->nr_all_type_units_reallocs);
8224 }
8225
8226 /* Traversal function for build_type_psymtabs. */
8227
8228 static int
8229 build_type_psymtab_dependencies (void **slot, void *info)
8230 {
8231 struct dwarf2_per_objfile *dwarf2_per_objfile
8232 = (struct dwarf2_per_objfile *) info;
8233 struct objfile *objfile = dwarf2_per_objfile->objfile;
8234 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8235 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8236 struct partial_symtab *pst = per_cu->v.psymtab;
8237 int len = VEC_length (sig_type_ptr, tu_group->tus);
8238 struct signatured_type *iter;
8239 int i;
8240
8241 gdb_assert (len > 0);
8242 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8243
8244 pst->number_of_dependencies = len;
8245 pst->dependencies =
8246 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8247 for (i = 0;
8248 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8249 ++i)
8250 {
8251 gdb_assert (iter->per_cu.is_debug_types);
8252 pst->dependencies[i] = iter->per_cu.v.psymtab;
8253 iter->type_unit_group = tu_group;
8254 }
8255
8256 VEC_free (sig_type_ptr, tu_group->tus);
8257
8258 return 1;
8259 }
8260
8261 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8262 Build partial symbol tables for the .debug_types comp-units. */
8263
8264 static void
8265 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8266 {
8267 if (! create_all_type_units (dwarf2_per_objfile))
8268 return;
8269
8270 build_type_psymtabs_1 (dwarf2_per_objfile);
8271 }
8272
8273 /* Traversal function for process_skeletonless_type_unit.
8274 Read a TU in a DWO file and build partial symbols for it. */
8275
8276 static int
8277 process_skeletonless_type_unit (void **slot, void *info)
8278 {
8279 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8280 struct dwarf2_per_objfile *dwarf2_per_objfile
8281 = (struct dwarf2_per_objfile *) info;
8282 struct signatured_type find_entry, *entry;
8283
8284 /* If this TU doesn't exist in the global table, add it and read it in. */
8285
8286 if (dwarf2_per_objfile->signatured_types == NULL)
8287 {
8288 dwarf2_per_objfile->signatured_types
8289 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8290 }
8291
8292 find_entry.signature = dwo_unit->signature;
8293 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8294 INSERT);
8295 /* If we've already seen this type there's nothing to do. What's happening
8296 is we're doing our own version of comdat-folding here. */
8297 if (*slot != NULL)
8298 return 1;
8299
8300 /* This does the job that create_all_type_units would have done for
8301 this TU. */
8302 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8303 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8304 *slot = entry;
8305
8306 /* This does the job that build_type_psymtabs_1 would have done. */
8307 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8308 build_type_psymtabs_reader, NULL);
8309
8310 return 1;
8311 }
8312
8313 /* Traversal function for process_skeletonless_type_units. */
8314
8315 static int
8316 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8317 {
8318 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8319
8320 if (dwo_file->tus != NULL)
8321 {
8322 htab_traverse_noresize (dwo_file->tus,
8323 process_skeletonless_type_unit, info);
8324 }
8325
8326 return 1;
8327 }
8328
8329 /* Scan all TUs of DWO files, verifying we've processed them.
8330 This is needed in case a TU was emitted without its skeleton.
8331 Note: This can't be done until we know what all the DWO files are. */
8332
8333 static void
8334 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8335 {
8336 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8337 if (get_dwp_file (dwarf2_per_objfile) == NULL
8338 && dwarf2_per_objfile->dwo_files != NULL)
8339 {
8340 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8341 process_dwo_file_for_skeletonless_type_units,
8342 dwarf2_per_objfile);
8343 }
8344 }
8345
8346 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8347
8348 static void
8349 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8350 {
8351 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8352 {
8353 struct partial_symtab *pst = per_cu->v.psymtab;
8354
8355 if (pst == NULL)
8356 continue;
8357
8358 for (int j = 0; j < pst->number_of_dependencies; ++j)
8359 {
8360 /* Set the 'user' field only if it is not already set. */
8361 if (pst->dependencies[j]->user == NULL)
8362 pst->dependencies[j]->user = pst;
8363 }
8364 }
8365 }
8366
8367 /* Build the partial symbol table by doing a quick pass through the
8368 .debug_info and .debug_abbrev sections. */
8369
8370 static void
8371 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8372 {
8373 struct objfile *objfile = dwarf2_per_objfile->objfile;
8374
8375 if (dwarf_read_debug)
8376 {
8377 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8378 objfile_name (objfile));
8379 }
8380
8381 dwarf2_per_objfile->reading_partial_symbols = 1;
8382
8383 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8384
8385 /* Any cached compilation units will be linked by the per-objfile
8386 read_in_chain. Make sure to free them when we're done. */
8387 free_cached_comp_units freer (dwarf2_per_objfile);
8388
8389 build_type_psymtabs (dwarf2_per_objfile);
8390
8391 create_all_comp_units (dwarf2_per_objfile);
8392
8393 /* Create a temporary address map on a temporary obstack. We later
8394 copy this to the final obstack. */
8395 auto_obstack temp_obstack;
8396
8397 scoped_restore save_psymtabs_addrmap
8398 = make_scoped_restore (&objfile->psymtabs_addrmap,
8399 addrmap_create_mutable (&temp_obstack));
8400
8401 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8403
8404 /* This has to wait until we read the CUs, we need the list of DWOs. */
8405 process_skeletonless_type_units (dwarf2_per_objfile);
8406
8407 /* Now that all TUs have been processed we can fill in the dependencies. */
8408 if (dwarf2_per_objfile->type_unit_groups != NULL)
8409 {
8410 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8411 build_type_psymtab_dependencies, dwarf2_per_objfile);
8412 }
8413
8414 if (dwarf_read_debug)
8415 print_tu_stats (dwarf2_per_objfile);
8416
8417 set_partial_user (dwarf2_per_objfile);
8418
8419 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8420 &objfile->objfile_obstack);
8421 /* At this point we want to keep the address map. */
8422 save_psymtabs_addrmap.release ();
8423
8424 if (dwarf_read_debug)
8425 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8426 objfile_name (objfile));
8427 }
8428
8429 /* die_reader_func for load_partial_comp_unit. */
8430
8431 static void
8432 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8433 const gdb_byte *info_ptr,
8434 struct die_info *comp_unit_die,
8435 int has_children,
8436 void *data)
8437 {
8438 struct dwarf2_cu *cu = reader->cu;
8439
8440 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8441
8442 /* Check if comp unit has_children.
8443 If so, read the rest of the partial symbols from this comp unit.
8444 If not, there's no more debug_info for this comp unit. */
8445 if (has_children)
8446 load_partial_dies (reader, info_ptr, 0);
8447 }
8448
8449 /* Load the partial DIEs for a secondary CU into memory.
8450 This is also used when rereading a primary CU with load_all_dies. */
8451
8452 static void
8453 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8454 {
8455 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8456 load_partial_comp_unit_reader, NULL);
8457 }
8458
8459 static void
8460 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8461 struct dwarf2_section_info *section,
8462 struct dwarf2_section_info *abbrev_section,
8463 unsigned int is_dwz)
8464 {
8465 const gdb_byte *info_ptr;
8466 struct objfile *objfile = dwarf2_per_objfile->objfile;
8467
8468 if (dwarf_read_debug)
8469 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8470 get_section_name (section),
8471 get_section_file_name (section));
8472
8473 dwarf2_read_section (objfile, section);
8474
8475 info_ptr = section->buffer;
8476
8477 while (info_ptr < section->buffer + section->size)
8478 {
8479 struct dwarf2_per_cu_data *this_cu;
8480
8481 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8482
8483 comp_unit_head cu_header;
8484 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8485 abbrev_section, info_ptr,
8486 rcuh_kind::COMPILE);
8487
8488 /* Save the compilation unit for later lookup. */
8489 if (cu_header.unit_type != DW_UT_type)
8490 {
8491 this_cu = XOBNEW (&objfile->objfile_obstack,
8492 struct dwarf2_per_cu_data);
8493 memset (this_cu, 0, sizeof (*this_cu));
8494 }
8495 else
8496 {
8497 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8498 struct signatured_type);
8499 memset (sig_type, 0, sizeof (*sig_type));
8500 sig_type->signature = cu_header.signature;
8501 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8502 this_cu = &sig_type->per_cu;
8503 }
8504 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8505 this_cu->sect_off = sect_off;
8506 this_cu->length = cu_header.length + cu_header.initial_length_size;
8507 this_cu->is_dwz = is_dwz;
8508 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8509 this_cu->section = section;
8510
8511 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8512
8513 info_ptr = info_ptr + this_cu->length;
8514 }
8515 }
8516
8517 /* Create a list of all compilation units in OBJFILE.
8518 This is only done for -readnow and building partial symtabs. */
8519
8520 static void
8521 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8522 {
8523 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8524 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8525 &dwarf2_per_objfile->abbrev, 0);
8526
8527 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8528 if (dwz != NULL)
8529 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8530 1);
8531 }
8532
8533 /* Process all loaded DIEs for compilation unit CU, starting at
8534 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8535 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8536 DW_AT_ranges). See the comments of add_partial_subprogram on how
8537 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8538
8539 static void
8540 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8541 CORE_ADDR *highpc, int set_addrmap,
8542 struct dwarf2_cu *cu)
8543 {
8544 struct partial_die_info *pdi;
8545
8546 /* Now, march along the PDI's, descending into ones which have
8547 interesting children but skipping the children of the other ones,
8548 until we reach the end of the compilation unit. */
8549
8550 pdi = first_die;
8551
8552 while (pdi != NULL)
8553 {
8554 pdi->fixup (cu);
8555
8556 /* Anonymous namespaces or modules have no name but have interesting
8557 children, so we need to look at them. Ditto for anonymous
8558 enums. */
8559
8560 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8561 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8562 || pdi->tag == DW_TAG_imported_unit
8563 || pdi->tag == DW_TAG_inlined_subroutine)
8564 {
8565 switch (pdi->tag)
8566 {
8567 case DW_TAG_subprogram:
8568 case DW_TAG_inlined_subroutine:
8569 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8570 break;
8571 case DW_TAG_constant:
8572 case DW_TAG_variable:
8573 case DW_TAG_typedef:
8574 case DW_TAG_union_type:
8575 if (!pdi->is_declaration)
8576 {
8577 add_partial_symbol (pdi, cu);
8578 }
8579 break;
8580 case DW_TAG_class_type:
8581 case DW_TAG_interface_type:
8582 case DW_TAG_structure_type:
8583 if (!pdi->is_declaration)
8584 {
8585 add_partial_symbol (pdi, cu);
8586 }
8587 if ((cu->language == language_rust
8588 || cu->language == language_cplus) && pdi->has_children)
8589 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8590 set_addrmap, cu);
8591 break;
8592 case DW_TAG_enumeration_type:
8593 if (!pdi->is_declaration)
8594 add_partial_enumeration (pdi, cu);
8595 break;
8596 case DW_TAG_base_type:
8597 case DW_TAG_subrange_type:
8598 /* File scope base type definitions are added to the partial
8599 symbol table. */
8600 add_partial_symbol (pdi, cu);
8601 break;
8602 case DW_TAG_namespace:
8603 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8604 break;
8605 case DW_TAG_module:
8606 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8607 break;
8608 case DW_TAG_imported_unit:
8609 {
8610 struct dwarf2_per_cu_data *per_cu;
8611
8612 /* For now we don't handle imported units in type units. */
8613 if (cu->per_cu->is_debug_types)
8614 {
8615 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8616 " supported in type units [in module %s]"),
8617 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8618 }
8619
8620 per_cu = dwarf2_find_containing_comp_unit
8621 (pdi->d.sect_off, pdi->is_dwz,
8622 cu->per_cu->dwarf2_per_objfile);
8623
8624 /* Go read the partial unit, if needed. */
8625 if (per_cu->v.psymtab == NULL)
8626 process_psymtab_comp_unit (per_cu, 1, cu->language);
8627
8628 VEC_safe_push (dwarf2_per_cu_ptr,
8629 cu->per_cu->imported_symtabs, per_cu);
8630 }
8631 break;
8632 case DW_TAG_imported_declaration:
8633 add_partial_symbol (pdi, cu);
8634 break;
8635 default:
8636 break;
8637 }
8638 }
8639
8640 /* If the die has a sibling, skip to the sibling. */
8641
8642 pdi = pdi->die_sibling;
8643 }
8644 }
8645
8646 /* Functions used to compute the fully scoped name of a partial DIE.
8647
8648 Normally, this is simple. For C++, the parent DIE's fully scoped
8649 name is concatenated with "::" and the partial DIE's name.
8650 Enumerators are an exception; they use the scope of their parent
8651 enumeration type, i.e. the name of the enumeration type is not
8652 prepended to the enumerator.
8653
8654 There are two complexities. One is DW_AT_specification; in this
8655 case "parent" means the parent of the target of the specification,
8656 instead of the direct parent of the DIE. The other is compilers
8657 which do not emit DW_TAG_namespace; in this case we try to guess
8658 the fully qualified name of structure types from their members'
8659 linkage names. This must be done using the DIE's children rather
8660 than the children of any DW_AT_specification target. We only need
8661 to do this for structures at the top level, i.e. if the target of
8662 any DW_AT_specification (if any; otherwise the DIE itself) does not
8663 have a parent. */
8664
8665 /* Compute the scope prefix associated with PDI's parent, in
8666 compilation unit CU. The result will be allocated on CU's
8667 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8668 field. NULL is returned if no prefix is necessary. */
8669 static const char *
8670 partial_die_parent_scope (struct partial_die_info *pdi,
8671 struct dwarf2_cu *cu)
8672 {
8673 const char *grandparent_scope;
8674 struct partial_die_info *parent, *real_pdi;
8675
8676 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8677 then this means the parent of the specification DIE. */
8678
8679 real_pdi = pdi;
8680 while (real_pdi->has_specification)
8681 real_pdi = find_partial_die (real_pdi->spec_offset,
8682 real_pdi->spec_is_dwz, cu);
8683
8684 parent = real_pdi->die_parent;
8685 if (parent == NULL)
8686 return NULL;
8687
8688 if (parent->scope_set)
8689 return parent->scope;
8690
8691 parent->fixup (cu);
8692
8693 grandparent_scope = partial_die_parent_scope (parent, cu);
8694
8695 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8696 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8697 Work around this problem here. */
8698 if (cu->language == language_cplus
8699 && parent->tag == DW_TAG_namespace
8700 && strcmp (parent->name, "::") == 0
8701 && grandparent_scope == NULL)
8702 {
8703 parent->scope = NULL;
8704 parent->scope_set = 1;
8705 return NULL;
8706 }
8707
8708 if (pdi->tag == DW_TAG_enumerator)
8709 /* Enumerators should not get the name of the enumeration as a prefix. */
8710 parent->scope = grandparent_scope;
8711 else if (parent->tag == DW_TAG_namespace
8712 || parent->tag == DW_TAG_module
8713 || parent->tag == DW_TAG_structure_type
8714 || parent->tag == DW_TAG_class_type
8715 || parent->tag == DW_TAG_interface_type
8716 || parent->tag == DW_TAG_union_type
8717 || parent->tag == DW_TAG_enumeration_type)
8718 {
8719 if (grandparent_scope == NULL)
8720 parent->scope = parent->name;
8721 else
8722 parent->scope = typename_concat (&cu->comp_unit_obstack,
8723 grandparent_scope,
8724 parent->name, 0, cu);
8725 }
8726 else
8727 {
8728 /* FIXME drow/2004-04-01: What should we be doing with
8729 function-local names? For partial symbols, we should probably be
8730 ignoring them. */
8731 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8732 parent->tag, sect_offset_str (pdi->sect_off));
8733 parent->scope = grandparent_scope;
8734 }
8735
8736 parent->scope_set = 1;
8737 return parent->scope;
8738 }
8739
8740 /* Return the fully scoped name associated with PDI, from compilation unit
8741 CU. The result will be allocated with malloc. */
8742
8743 static char *
8744 partial_die_full_name (struct partial_die_info *pdi,
8745 struct dwarf2_cu *cu)
8746 {
8747 const char *parent_scope;
8748
8749 /* If this is a template instantiation, we can not work out the
8750 template arguments from partial DIEs. So, unfortunately, we have
8751 to go through the full DIEs. At least any work we do building
8752 types here will be reused if full symbols are loaded later. */
8753 if (pdi->has_template_arguments)
8754 {
8755 pdi->fixup (cu);
8756
8757 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8758 {
8759 struct die_info *die;
8760 struct attribute attr;
8761 struct dwarf2_cu *ref_cu = cu;
8762
8763 /* DW_FORM_ref_addr is using section offset. */
8764 attr.name = (enum dwarf_attribute) 0;
8765 attr.form = DW_FORM_ref_addr;
8766 attr.u.unsnd = to_underlying (pdi->sect_off);
8767 die = follow_die_ref (NULL, &attr, &ref_cu);
8768
8769 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8770 }
8771 }
8772
8773 parent_scope = partial_die_parent_scope (pdi, cu);
8774 if (parent_scope == NULL)
8775 return NULL;
8776 else
8777 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8778 }
8779
8780 static void
8781 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8782 {
8783 struct dwarf2_per_objfile *dwarf2_per_objfile
8784 = cu->per_cu->dwarf2_per_objfile;
8785 struct objfile *objfile = dwarf2_per_objfile->objfile;
8786 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8787 CORE_ADDR addr = 0;
8788 const char *actual_name = NULL;
8789 CORE_ADDR baseaddr;
8790 char *built_actual_name;
8791
8792 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8793
8794 built_actual_name = partial_die_full_name (pdi, cu);
8795 if (built_actual_name != NULL)
8796 actual_name = built_actual_name;
8797
8798 if (actual_name == NULL)
8799 actual_name = pdi->name;
8800
8801 switch (pdi->tag)
8802 {
8803 case DW_TAG_inlined_subroutine:
8804 case DW_TAG_subprogram:
8805 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8806 if (pdi->is_external || cu->language == language_ada)
8807 {
8808 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8809 of the global scope. But in Ada, we want to be able to access
8810 nested procedures globally. So all Ada subprograms are stored
8811 in the global scope. */
8812 add_psymbol_to_list (actual_name, strlen (actual_name),
8813 built_actual_name != NULL,
8814 VAR_DOMAIN, LOC_BLOCK,
8815 &objfile->global_psymbols,
8816 addr, cu->language, objfile);
8817 }
8818 else
8819 {
8820 add_psymbol_to_list (actual_name, strlen (actual_name),
8821 built_actual_name != NULL,
8822 VAR_DOMAIN, LOC_BLOCK,
8823 &objfile->static_psymbols,
8824 addr, cu->language, objfile);
8825 }
8826
8827 if (pdi->main_subprogram && actual_name != NULL)
8828 set_objfile_main_name (objfile, actual_name, cu->language);
8829 break;
8830 case DW_TAG_constant:
8831 {
8832 std::vector<partial_symbol *> *list;
8833
8834 if (pdi->is_external)
8835 list = &objfile->global_psymbols;
8836 else
8837 list = &objfile->static_psymbols;
8838 add_psymbol_to_list (actual_name, strlen (actual_name),
8839 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8840 list, 0, cu->language, objfile);
8841 }
8842 break;
8843 case DW_TAG_variable:
8844 if (pdi->d.locdesc)
8845 addr = decode_locdesc (pdi->d.locdesc, cu);
8846
8847 if (pdi->d.locdesc
8848 && addr == 0
8849 && !dwarf2_per_objfile->has_section_at_zero)
8850 {
8851 /* A global or static variable may also have been stripped
8852 out by the linker if unused, in which case its address
8853 will be nullified; do not add such variables into partial
8854 symbol table then. */
8855 }
8856 else if (pdi->is_external)
8857 {
8858 /* Global Variable.
8859 Don't enter into the minimal symbol tables as there is
8860 a minimal symbol table entry from the ELF symbols already.
8861 Enter into partial symbol table if it has a location
8862 descriptor or a type.
8863 If the location descriptor is missing, new_symbol will create
8864 a LOC_UNRESOLVED symbol, the address of the variable will then
8865 be determined from the minimal symbol table whenever the variable
8866 is referenced.
8867 The address for the partial symbol table entry is not
8868 used by GDB, but it comes in handy for debugging partial symbol
8869 table building. */
8870
8871 if (pdi->d.locdesc || pdi->has_type)
8872 add_psymbol_to_list (actual_name, strlen (actual_name),
8873 built_actual_name != NULL,
8874 VAR_DOMAIN, LOC_STATIC,
8875 &objfile->global_psymbols,
8876 addr + baseaddr,
8877 cu->language, objfile);
8878 }
8879 else
8880 {
8881 int has_loc = pdi->d.locdesc != NULL;
8882
8883 /* Static Variable. Skip symbols whose value we cannot know (those
8884 without location descriptors or constant values). */
8885 if (!has_loc && !pdi->has_const_value)
8886 {
8887 xfree (built_actual_name);
8888 return;
8889 }
8890
8891 add_psymbol_to_list (actual_name, strlen (actual_name),
8892 built_actual_name != NULL,
8893 VAR_DOMAIN, LOC_STATIC,
8894 &objfile->static_psymbols,
8895 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8896 cu->language, objfile);
8897 }
8898 break;
8899 case DW_TAG_typedef:
8900 case DW_TAG_base_type:
8901 case DW_TAG_subrange_type:
8902 add_psymbol_to_list (actual_name, strlen (actual_name),
8903 built_actual_name != NULL,
8904 VAR_DOMAIN, LOC_TYPEDEF,
8905 &objfile->static_psymbols,
8906 0, cu->language, objfile);
8907 break;
8908 case DW_TAG_imported_declaration:
8909 case DW_TAG_namespace:
8910 add_psymbol_to_list (actual_name, strlen (actual_name),
8911 built_actual_name != NULL,
8912 VAR_DOMAIN, LOC_TYPEDEF,
8913 &objfile->global_psymbols,
8914 0, cu->language, objfile);
8915 break;
8916 case DW_TAG_module:
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 MODULE_DOMAIN, LOC_TYPEDEF,
8920 &objfile->global_psymbols,
8921 0, cu->language, objfile);
8922 break;
8923 case DW_TAG_class_type:
8924 case DW_TAG_interface_type:
8925 case DW_TAG_structure_type:
8926 case DW_TAG_union_type:
8927 case DW_TAG_enumeration_type:
8928 /* Skip external references. The DWARF standard says in the section
8929 about "Structure, Union, and Class Type Entries": "An incomplete
8930 structure, union or class type is represented by a structure,
8931 union or class entry that does not have a byte size attribute
8932 and that has a DW_AT_declaration attribute." */
8933 if (!pdi->has_byte_size && pdi->is_declaration)
8934 {
8935 xfree (built_actual_name);
8936 return;
8937 }
8938
8939 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8940 static vs. global. */
8941 add_psymbol_to_list (actual_name, strlen (actual_name),
8942 built_actual_name != NULL,
8943 STRUCT_DOMAIN, LOC_TYPEDEF,
8944 cu->language == language_cplus
8945 ? &objfile->global_psymbols
8946 : &objfile->static_psymbols,
8947 0, cu->language, objfile);
8948
8949 break;
8950 case DW_TAG_enumerator:
8951 add_psymbol_to_list (actual_name, strlen (actual_name),
8952 built_actual_name != NULL,
8953 VAR_DOMAIN, LOC_CONST,
8954 cu->language == language_cplus
8955 ? &objfile->global_psymbols
8956 : &objfile->static_psymbols,
8957 0, cu->language, objfile);
8958 break;
8959 default:
8960 break;
8961 }
8962
8963 xfree (built_actual_name);
8964 }
8965
8966 /* Read a partial die corresponding to a namespace; also, add a symbol
8967 corresponding to that namespace to the symbol table. NAMESPACE is
8968 the name of the enclosing namespace. */
8969
8970 static void
8971 add_partial_namespace (struct partial_die_info *pdi,
8972 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8973 int set_addrmap, struct dwarf2_cu *cu)
8974 {
8975 /* Add a symbol for the namespace. */
8976
8977 add_partial_symbol (pdi, cu);
8978
8979 /* Now scan partial symbols in that namespace. */
8980
8981 if (pdi->has_children)
8982 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8983 }
8984
8985 /* Read a partial die corresponding to a Fortran module. */
8986
8987 static void
8988 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8989 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8990 {
8991 /* Add a symbol for the namespace. */
8992
8993 add_partial_symbol (pdi, cu);
8994
8995 /* Now scan partial symbols in that module. */
8996
8997 if (pdi->has_children)
8998 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8999 }
9000
9001 /* Read a partial die corresponding to a subprogram or an inlined
9002 subprogram and create a partial symbol for that subprogram.
9003 When the CU language allows it, this routine also defines a partial
9004 symbol for each nested subprogram that this subprogram contains.
9005 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9006 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9007
9008 PDI may also be a lexical block, in which case we simply search
9009 recursively for subprograms defined inside that lexical block.
9010 Again, this is only performed when the CU language allows this
9011 type of definitions. */
9012
9013 static void
9014 add_partial_subprogram (struct partial_die_info *pdi,
9015 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9016 int set_addrmap, struct dwarf2_cu *cu)
9017 {
9018 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9019 {
9020 if (pdi->has_pc_info)
9021 {
9022 if (pdi->lowpc < *lowpc)
9023 *lowpc = pdi->lowpc;
9024 if (pdi->highpc > *highpc)
9025 *highpc = pdi->highpc;
9026 if (set_addrmap)
9027 {
9028 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9029 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9030 CORE_ADDR baseaddr;
9031 CORE_ADDR highpc;
9032 CORE_ADDR lowpc;
9033
9034 baseaddr = ANOFFSET (objfile->section_offsets,
9035 SECT_OFF_TEXT (objfile));
9036 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9037 pdi->lowpc + baseaddr);
9038 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9039 pdi->highpc + baseaddr);
9040 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9041 cu->per_cu->v.psymtab);
9042 }
9043 }
9044
9045 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9046 {
9047 if (!pdi->is_declaration)
9048 /* Ignore subprogram DIEs that do not have a name, they are
9049 illegal. Do not emit a complaint at this point, we will
9050 do so when we convert this psymtab into a symtab. */
9051 if (pdi->name)
9052 add_partial_symbol (pdi, cu);
9053 }
9054 }
9055
9056 if (! pdi->has_children)
9057 return;
9058
9059 if (cu->language == language_ada)
9060 {
9061 pdi = pdi->die_child;
9062 while (pdi != NULL)
9063 {
9064 pdi->fixup (cu);
9065 if (pdi->tag == DW_TAG_subprogram
9066 || pdi->tag == DW_TAG_inlined_subroutine
9067 || pdi->tag == DW_TAG_lexical_block)
9068 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9069 pdi = pdi->die_sibling;
9070 }
9071 }
9072 }
9073
9074 /* Read a partial die corresponding to an enumeration type. */
9075
9076 static void
9077 add_partial_enumeration (struct partial_die_info *enum_pdi,
9078 struct dwarf2_cu *cu)
9079 {
9080 struct partial_die_info *pdi;
9081
9082 if (enum_pdi->name != NULL)
9083 add_partial_symbol (enum_pdi, cu);
9084
9085 pdi = enum_pdi->die_child;
9086 while (pdi)
9087 {
9088 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9089 complaint (_("malformed enumerator DIE ignored"));
9090 else
9091 add_partial_symbol (pdi, cu);
9092 pdi = pdi->die_sibling;
9093 }
9094 }
9095
9096 /* Return the initial uleb128 in the die at INFO_PTR. */
9097
9098 static unsigned int
9099 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9100 {
9101 unsigned int bytes_read;
9102
9103 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9104 }
9105
9106 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9107 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9108
9109 Return the corresponding abbrev, or NULL if the number is zero (indicating
9110 an empty DIE). In either case *BYTES_READ will be set to the length of
9111 the initial number. */
9112
9113 static struct abbrev_info *
9114 peek_die_abbrev (const die_reader_specs &reader,
9115 const gdb_byte *info_ptr, unsigned int *bytes_read)
9116 {
9117 dwarf2_cu *cu = reader.cu;
9118 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9119 unsigned int abbrev_number
9120 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9121
9122 if (abbrev_number == 0)
9123 return NULL;
9124
9125 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9126 if (!abbrev)
9127 {
9128 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9129 " at offset %s [in module %s]"),
9130 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9131 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9132 }
9133
9134 return abbrev;
9135 }
9136
9137 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9138 Returns a pointer to the end of a series of DIEs, terminated by an empty
9139 DIE. Any children of the skipped DIEs will also be skipped. */
9140
9141 static const gdb_byte *
9142 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9143 {
9144 while (1)
9145 {
9146 unsigned int bytes_read;
9147 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9148
9149 if (abbrev == NULL)
9150 return info_ptr + bytes_read;
9151 else
9152 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9153 }
9154 }
9155
9156 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9157 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9158 abbrev corresponding to that skipped uleb128 should be passed in
9159 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9160 children. */
9161
9162 static const gdb_byte *
9163 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9164 struct abbrev_info *abbrev)
9165 {
9166 unsigned int bytes_read;
9167 struct attribute attr;
9168 bfd *abfd = reader->abfd;
9169 struct dwarf2_cu *cu = reader->cu;
9170 const gdb_byte *buffer = reader->buffer;
9171 const gdb_byte *buffer_end = reader->buffer_end;
9172 unsigned int form, i;
9173
9174 for (i = 0; i < abbrev->num_attrs; i++)
9175 {
9176 /* The only abbrev we care about is DW_AT_sibling. */
9177 if (abbrev->attrs[i].name == DW_AT_sibling)
9178 {
9179 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9180 if (attr.form == DW_FORM_ref_addr)
9181 complaint (_("ignoring absolute DW_AT_sibling"));
9182 else
9183 {
9184 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9185 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9186
9187 if (sibling_ptr < info_ptr)
9188 complaint (_("DW_AT_sibling points backwards"));
9189 else if (sibling_ptr > reader->buffer_end)
9190 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9191 else
9192 return sibling_ptr;
9193 }
9194 }
9195
9196 /* If it isn't DW_AT_sibling, skip this attribute. */
9197 form = abbrev->attrs[i].form;
9198 skip_attribute:
9199 switch (form)
9200 {
9201 case DW_FORM_ref_addr:
9202 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9203 and later it is offset sized. */
9204 if (cu->header.version == 2)
9205 info_ptr += cu->header.addr_size;
9206 else
9207 info_ptr += cu->header.offset_size;
9208 break;
9209 case DW_FORM_GNU_ref_alt:
9210 info_ptr += cu->header.offset_size;
9211 break;
9212 case DW_FORM_addr:
9213 info_ptr += cu->header.addr_size;
9214 break;
9215 case DW_FORM_data1:
9216 case DW_FORM_ref1:
9217 case DW_FORM_flag:
9218 info_ptr += 1;
9219 break;
9220 case DW_FORM_flag_present:
9221 case DW_FORM_implicit_const:
9222 break;
9223 case DW_FORM_data2:
9224 case DW_FORM_ref2:
9225 info_ptr += 2;
9226 break;
9227 case DW_FORM_data4:
9228 case DW_FORM_ref4:
9229 info_ptr += 4;
9230 break;
9231 case DW_FORM_data8:
9232 case DW_FORM_ref8:
9233 case DW_FORM_ref_sig8:
9234 info_ptr += 8;
9235 break;
9236 case DW_FORM_data16:
9237 info_ptr += 16;
9238 break;
9239 case DW_FORM_string:
9240 read_direct_string (abfd, info_ptr, &bytes_read);
9241 info_ptr += bytes_read;
9242 break;
9243 case DW_FORM_sec_offset:
9244 case DW_FORM_strp:
9245 case DW_FORM_GNU_strp_alt:
9246 info_ptr += cu->header.offset_size;
9247 break;
9248 case DW_FORM_exprloc:
9249 case DW_FORM_block:
9250 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9251 info_ptr += bytes_read;
9252 break;
9253 case DW_FORM_block1:
9254 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9255 break;
9256 case DW_FORM_block2:
9257 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9258 break;
9259 case DW_FORM_block4:
9260 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9261 break;
9262 case DW_FORM_sdata:
9263 case DW_FORM_udata:
9264 case DW_FORM_ref_udata:
9265 case DW_FORM_GNU_addr_index:
9266 case DW_FORM_GNU_str_index:
9267 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9268 break;
9269 case DW_FORM_indirect:
9270 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9271 info_ptr += bytes_read;
9272 /* We need to continue parsing from here, so just go back to
9273 the top. */
9274 goto skip_attribute;
9275
9276 default:
9277 error (_("Dwarf Error: Cannot handle %s "
9278 "in DWARF reader [in module %s]"),
9279 dwarf_form_name (form),
9280 bfd_get_filename (abfd));
9281 }
9282 }
9283
9284 if (abbrev->has_children)
9285 return skip_children (reader, info_ptr);
9286 else
9287 return info_ptr;
9288 }
9289
9290 /* Locate ORIG_PDI's sibling.
9291 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9292
9293 static const gdb_byte *
9294 locate_pdi_sibling (const struct die_reader_specs *reader,
9295 struct partial_die_info *orig_pdi,
9296 const gdb_byte *info_ptr)
9297 {
9298 /* Do we know the sibling already? */
9299
9300 if (orig_pdi->sibling)
9301 return orig_pdi->sibling;
9302
9303 /* Are there any children to deal with? */
9304
9305 if (!orig_pdi->has_children)
9306 return info_ptr;
9307
9308 /* Skip the children the long way. */
9309
9310 return skip_children (reader, info_ptr);
9311 }
9312
9313 /* Expand this partial symbol table into a full symbol table. SELF is
9314 not NULL. */
9315
9316 static void
9317 dwarf2_read_symtab (struct partial_symtab *self,
9318 struct objfile *objfile)
9319 {
9320 struct dwarf2_per_objfile *dwarf2_per_objfile
9321 = get_dwarf2_per_objfile (objfile);
9322
9323 if (self->readin)
9324 {
9325 warning (_("bug: psymtab for %s is already read in."),
9326 self->filename);
9327 }
9328 else
9329 {
9330 if (info_verbose)
9331 {
9332 printf_filtered (_("Reading in symbols for %s..."),
9333 self->filename);
9334 gdb_flush (gdb_stdout);
9335 }
9336
9337 /* If this psymtab is constructed from a debug-only objfile, the
9338 has_section_at_zero flag will not necessarily be correct. We
9339 can get the correct value for this flag by looking at the data
9340 associated with the (presumably stripped) associated objfile. */
9341 if (objfile->separate_debug_objfile_backlink)
9342 {
9343 struct dwarf2_per_objfile *dpo_backlink
9344 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9345
9346 dwarf2_per_objfile->has_section_at_zero
9347 = dpo_backlink->has_section_at_zero;
9348 }
9349
9350 dwarf2_per_objfile->reading_partial_symbols = 0;
9351
9352 psymtab_to_symtab_1 (self);
9353
9354 /* Finish up the debug error message. */
9355 if (info_verbose)
9356 printf_filtered (_("done.\n"));
9357 }
9358
9359 process_cu_includes (dwarf2_per_objfile);
9360 }
9361 \f
9362 /* Reading in full CUs. */
9363
9364 /* Add PER_CU to the queue. */
9365
9366 static void
9367 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9368 enum language pretend_language)
9369 {
9370 struct dwarf2_queue_item *item;
9371
9372 per_cu->queued = 1;
9373 item = XNEW (struct dwarf2_queue_item);
9374 item->per_cu = per_cu;
9375 item->pretend_language = pretend_language;
9376 item->next = NULL;
9377
9378 if (dwarf2_queue == NULL)
9379 dwarf2_queue = item;
9380 else
9381 dwarf2_queue_tail->next = item;
9382
9383 dwarf2_queue_tail = item;
9384 }
9385
9386 /* If PER_CU is not yet queued, add it to the queue.
9387 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9388 dependency.
9389 The result is non-zero if PER_CU was queued, otherwise the result is zero
9390 meaning either PER_CU is already queued or it is already loaded.
9391
9392 N.B. There is an invariant here that if a CU is queued then it is loaded.
9393 The caller is required to load PER_CU if we return non-zero. */
9394
9395 static int
9396 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9397 struct dwarf2_per_cu_data *per_cu,
9398 enum language pretend_language)
9399 {
9400 /* We may arrive here during partial symbol reading, if we need full
9401 DIEs to process an unusual case (e.g. template arguments). Do
9402 not queue PER_CU, just tell our caller to load its DIEs. */
9403 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9404 {
9405 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9406 return 1;
9407 return 0;
9408 }
9409
9410 /* Mark the dependence relation so that we don't flush PER_CU
9411 too early. */
9412 if (dependent_cu != NULL)
9413 dwarf2_add_dependence (dependent_cu, per_cu);
9414
9415 /* If it's already on the queue, we have nothing to do. */
9416 if (per_cu->queued)
9417 return 0;
9418
9419 /* If the compilation unit is already loaded, just mark it as
9420 used. */
9421 if (per_cu->cu != NULL)
9422 {
9423 per_cu->cu->last_used = 0;
9424 return 0;
9425 }
9426
9427 /* Add it to the queue. */
9428 queue_comp_unit (per_cu, pretend_language);
9429
9430 return 1;
9431 }
9432
9433 /* Process the queue. */
9434
9435 static void
9436 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9437 {
9438 struct dwarf2_queue_item *item, *next_item;
9439
9440 if (dwarf_read_debug)
9441 {
9442 fprintf_unfiltered (gdb_stdlog,
9443 "Expanding one or more symtabs of objfile %s ...\n",
9444 objfile_name (dwarf2_per_objfile->objfile));
9445 }
9446
9447 /* The queue starts out with one item, but following a DIE reference
9448 may load a new CU, adding it to the end of the queue. */
9449 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9450 {
9451 if ((dwarf2_per_objfile->using_index
9452 ? !item->per_cu->v.quick->compunit_symtab
9453 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9454 /* Skip dummy CUs. */
9455 && item->per_cu->cu != NULL)
9456 {
9457 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9458 unsigned int debug_print_threshold;
9459 char buf[100];
9460
9461 if (per_cu->is_debug_types)
9462 {
9463 struct signatured_type *sig_type =
9464 (struct signatured_type *) per_cu;
9465
9466 sprintf (buf, "TU %s at offset %s",
9467 hex_string (sig_type->signature),
9468 sect_offset_str (per_cu->sect_off));
9469 /* There can be 100s of TUs.
9470 Only print them in verbose mode. */
9471 debug_print_threshold = 2;
9472 }
9473 else
9474 {
9475 sprintf (buf, "CU at offset %s",
9476 sect_offset_str (per_cu->sect_off));
9477 debug_print_threshold = 1;
9478 }
9479
9480 if (dwarf_read_debug >= debug_print_threshold)
9481 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9482
9483 if (per_cu->is_debug_types)
9484 process_full_type_unit (per_cu, item->pretend_language);
9485 else
9486 process_full_comp_unit (per_cu, item->pretend_language);
9487
9488 if (dwarf_read_debug >= debug_print_threshold)
9489 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9490 }
9491
9492 item->per_cu->queued = 0;
9493 next_item = item->next;
9494 xfree (item);
9495 }
9496
9497 dwarf2_queue_tail = NULL;
9498
9499 if (dwarf_read_debug)
9500 {
9501 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9502 objfile_name (dwarf2_per_objfile->objfile));
9503 }
9504 }
9505
9506 /* Read in full symbols for PST, and anything it depends on. */
9507
9508 static void
9509 psymtab_to_symtab_1 (struct partial_symtab *pst)
9510 {
9511 struct dwarf2_per_cu_data *per_cu;
9512 int i;
9513
9514 if (pst->readin)
9515 return;
9516
9517 for (i = 0; i < pst->number_of_dependencies; i++)
9518 if (!pst->dependencies[i]->readin
9519 && pst->dependencies[i]->user == NULL)
9520 {
9521 /* Inform about additional files that need to be read in. */
9522 if (info_verbose)
9523 {
9524 /* FIXME: i18n: Need to make this a single string. */
9525 fputs_filtered (" ", gdb_stdout);
9526 wrap_here ("");
9527 fputs_filtered ("and ", gdb_stdout);
9528 wrap_here ("");
9529 printf_filtered ("%s...", pst->dependencies[i]->filename);
9530 wrap_here (""); /* Flush output. */
9531 gdb_flush (gdb_stdout);
9532 }
9533 psymtab_to_symtab_1 (pst->dependencies[i]);
9534 }
9535
9536 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9537
9538 if (per_cu == NULL)
9539 {
9540 /* It's an include file, no symbols to read for it.
9541 Everything is in the parent symtab. */
9542 pst->readin = 1;
9543 return;
9544 }
9545
9546 dw2_do_instantiate_symtab (per_cu, false);
9547 }
9548
9549 /* Trivial hash function for die_info: the hash value of a DIE
9550 is its offset in .debug_info for this objfile. */
9551
9552 static hashval_t
9553 die_hash (const void *item)
9554 {
9555 const struct die_info *die = (const struct die_info *) item;
9556
9557 return to_underlying (die->sect_off);
9558 }
9559
9560 /* Trivial comparison function for die_info structures: two DIEs
9561 are equal if they have the same offset. */
9562
9563 static int
9564 die_eq (const void *item_lhs, const void *item_rhs)
9565 {
9566 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9567 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9568
9569 return die_lhs->sect_off == die_rhs->sect_off;
9570 }
9571
9572 /* die_reader_func for load_full_comp_unit.
9573 This is identical to read_signatured_type_reader,
9574 but is kept separate for now. */
9575
9576 static void
9577 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9578 const gdb_byte *info_ptr,
9579 struct die_info *comp_unit_die,
9580 int has_children,
9581 void *data)
9582 {
9583 struct dwarf2_cu *cu = reader->cu;
9584 enum language *language_ptr = (enum language *) data;
9585
9586 gdb_assert (cu->die_hash == NULL);
9587 cu->die_hash =
9588 htab_create_alloc_ex (cu->header.length / 12,
9589 die_hash,
9590 die_eq,
9591 NULL,
9592 &cu->comp_unit_obstack,
9593 hashtab_obstack_allocate,
9594 dummy_obstack_deallocate);
9595
9596 if (has_children)
9597 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9598 &info_ptr, comp_unit_die);
9599 cu->dies = comp_unit_die;
9600 /* comp_unit_die is not stored in die_hash, no need. */
9601
9602 /* We try not to read any attributes in this function, because not
9603 all CUs needed for references have been loaded yet, and symbol
9604 table processing isn't initialized. But we have to set the CU language,
9605 or we won't be able to build types correctly.
9606 Similarly, if we do not read the producer, we can not apply
9607 producer-specific interpretation. */
9608 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9609 }
9610
9611 /* Load the DIEs associated with PER_CU into memory. */
9612
9613 static void
9614 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9615 bool skip_partial,
9616 enum language pretend_language)
9617 {
9618 gdb_assert (! this_cu->is_debug_types);
9619
9620 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9621 load_full_comp_unit_reader, &pretend_language);
9622 }
9623
9624 /* Add a DIE to the delayed physname list. */
9625
9626 static void
9627 add_to_method_list (struct type *type, int fnfield_index, int index,
9628 const char *name, struct die_info *die,
9629 struct dwarf2_cu *cu)
9630 {
9631 struct delayed_method_info mi;
9632 mi.type = type;
9633 mi.fnfield_index = fnfield_index;
9634 mi.index = index;
9635 mi.name = name;
9636 mi.die = die;
9637 cu->method_list.push_back (mi);
9638 }
9639
9640 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9641 "const" / "volatile". If so, decrements LEN by the length of the
9642 modifier and return true. Otherwise return false. */
9643
9644 template<size_t N>
9645 static bool
9646 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9647 {
9648 size_t mod_len = sizeof (mod) - 1;
9649 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9650 {
9651 len -= mod_len;
9652 return true;
9653 }
9654 return false;
9655 }
9656
9657 /* Compute the physnames of any methods on the CU's method list.
9658
9659 The computation of method physnames is delayed in order to avoid the
9660 (bad) condition that one of the method's formal parameters is of an as yet
9661 incomplete type. */
9662
9663 static void
9664 compute_delayed_physnames (struct dwarf2_cu *cu)
9665 {
9666 /* Only C++ delays computing physnames. */
9667 if (cu->method_list.empty ())
9668 return;
9669 gdb_assert (cu->language == language_cplus);
9670
9671 for (const delayed_method_info &mi : cu->method_list)
9672 {
9673 const char *physname;
9674 struct fn_fieldlist *fn_flp
9675 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9676 physname = dwarf2_physname (mi.name, mi.die, cu);
9677 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9678 = physname ? physname : "";
9679
9680 /* Since there's no tag to indicate whether a method is a
9681 const/volatile overload, extract that information out of the
9682 demangled name. */
9683 if (physname != NULL)
9684 {
9685 size_t len = strlen (physname);
9686
9687 while (1)
9688 {
9689 if (physname[len] == ')') /* shortcut */
9690 break;
9691 else if (check_modifier (physname, len, " const"))
9692 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9693 else if (check_modifier (physname, len, " volatile"))
9694 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9695 else
9696 break;
9697 }
9698 }
9699 }
9700
9701 /* The list is no longer needed. */
9702 cu->method_list.clear ();
9703 }
9704
9705 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9706 the same as all other symbols in LISTHEAD. If a new symbol is added
9707 with a different language, this function asserts. */
9708
9709 static inline void
9710 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9711 {
9712 /* Only assert if LISTHEAD already contains symbols of a different
9713 language (dict_create_hashed/insert_symbol_hashed requires that all
9714 symbols in this list are of the same language). */
9715 gdb_assert ((*listhead) == NULL
9716 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9717 == SYMBOL_LANGUAGE (symbol)));
9718
9719 add_symbol_to_list (symbol, listhead);
9720 }
9721
9722 /* Go objects should be embedded in a DW_TAG_module DIE,
9723 and it's not clear if/how imported objects will appear.
9724 To keep Go support simple until that's worked out,
9725 go back through what we've read and create something usable.
9726 We could do this while processing each DIE, and feels kinda cleaner,
9727 but that way is more invasive.
9728 This is to, for example, allow the user to type "p var" or "b main"
9729 without having to specify the package name, and allow lookups
9730 of module.object to work in contexts that use the expression
9731 parser. */
9732
9733 static void
9734 fixup_go_packaging (struct dwarf2_cu *cu)
9735 {
9736 char *package_name = NULL;
9737 struct pending *list;
9738 int i;
9739
9740 for (list = *cu->builder->get_global_symbols ();
9741 list != NULL;
9742 list = list->next)
9743 {
9744 for (i = 0; i < list->nsyms; ++i)
9745 {
9746 struct symbol *sym = list->symbol[i];
9747
9748 if (SYMBOL_LANGUAGE (sym) == language_go
9749 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9750 {
9751 char *this_package_name = go_symbol_package_name (sym);
9752
9753 if (this_package_name == NULL)
9754 continue;
9755 if (package_name == NULL)
9756 package_name = this_package_name;
9757 else
9758 {
9759 struct objfile *objfile
9760 = cu->per_cu->dwarf2_per_objfile->objfile;
9761 if (strcmp (package_name, this_package_name) != 0)
9762 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9763 (symbol_symtab (sym) != NULL
9764 ? symtab_to_filename_for_display
9765 (symbol_symtab (sym))
9766 : objfile_name (objfile)),
9767 this_package_name, package_name);
9768 xfree (this_package_name);
9769 }
9770 }
9771 }
9772 }
9773
9774 if (package_name != NULL)
9775 {
9776 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9777 const char *saved_package_name
9778 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9779 package_name,
9780 strlen (package_name));
9781 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9782 saved_package_name);
9783 struct symbol *sym;
9784
9785 sym = allocate_symbol (objfile);
9786 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9787 SYMBOL_SET_NAMES (sym, saved_package_name,
9788 strlen (saved_package_name), 0, objfile);
9789 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9790 e.g., "main" finds the "main" module and not C's main(). */
9791 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9792 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9793 SYMBOL_TYPE (sym) = type;
9794
9795 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9796
9797 xfree (package_name);
9798 }
9799 }
9800
9801 /* Allocate a fully-qualified name consisting of the two parts on the
9802 obstack. */
9803
9804 static const char *
9805 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9806 {
9807 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9808 }
9809
9810 /* A helper that allocates a struct discriminant_info to attach to a
9811 union type. */
9812
9813 static struct discriminant_info *
9814 alloc_discriminant_info (struct type *type, int discriminant_index,
9815 int default_index)
9816 {
9817 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9818 gdb_assert (discriminant_index == -1
9819 || (discriminant_index >= 0
9820 && discriminant_index < TYPE_NFIELDS (type)));
9821 gdb_assert (default_index == -1
9822 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9823
9824 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9825
9826 struct discriminant_info *disc
9827 = ((struct discriminant_info *)
9828 TYPE_ZALLOC (type,
9829 offsetof (struct discriminant_info, discriminants)
9830 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9831 disc->default_index = default_index;
9832 disc->discriminant_index = discriminant_index;
9833
9834 struct dynamic_prop prop;
9835 prop.kind = PROP_UNDEFINED;
9836 prop.data.baton = disc;
9837
9838 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9839
9840 return disc;
9841 }
9842
9843 /* Some versions of rustc emitted enums in an unusual way.
9844
9845 Ordinary enums were emitted as unions. The first element of each
9846 structure in the union was named "RUST$ENUM$DISR". This element
9847 held the discriminant.
9848
9849 These versions of Rust also implemented the "non-zero"
9850 optimization. When the enum had two values, and one is empty and
9851 the other holds a pointer that cannot be zero, the pointer is used
9852 as the discriminant, with a zero value meaning the empty variant.
9853 Here, the union's first member is of the form
9854 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9855 where the fieldnos are the indices of the fields that should be
9856 traversed in order to find the field (which may be several fields deep)
9857 and the variantname is the name of the variant of the case when the
9858 field is zero.
9859
9860 This function recognizes whether TYPE is of one of these forms,
9861 and, if so, smashes it to be a variant type. */
9862
9863 static void
9864 quirk_rust_enum (struct type *type, struct objfile *objfile)
9865 {
9866 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9867
9868 /* We don't need to deal with empty enums. */
9869 if (TYPE_NFIELDS (type) == 0)
9870 return;
9871
9872 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9873 if (TYPE_NFIELDS (type) == 1
9874 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9875 {
9876 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9877
9878 /* Decode the field name to find the offset of the
9879 discriminant. */
9880 ULONGEST bit_offset = 0;
9881 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9882 while (name[0] >= '0' && name[0] <= '9')
9883 {
9884 char *tail;
9885 unsigned long index = strtoul (name, &tail, 10);
9886 name = tail;
9887 if (*name != '$'
9888 || index >= TYPE_NFIELDS (field_type)
9889 || (TYPE_FIELD_LOC_KIND (field_type, index)
9890 != FIELD_LOC_KIND_BITPOS))
9891 {
9892 complaint (_("Could not parse Rust enum encoding string \"%s\""
9893 "[in module %s]"),
9894 TYPE_FIELD_NAME (type, 0),
9895 objfile_name (objfile));
9896 return;
9897 }
9898 ++name;
9899
9900 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9901 field_type = TYPE_FIELD_TYPE (field_type, index);
9902 }
9903
9904 /* Make a union to hold the variants. */
9905 struct type *union_type = alloc_type (objfile);
9906 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9907 TYPE_NFIELDS (union_type) = 3;
9908 TYPE_FIELDS (union_type)
9909 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9910 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9911 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9912
9913 /* Put the discriminant must at index 0. */
9914 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9915 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9916 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9917 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9918
9919 /* The order of fields doesn't really matter, so put the real
9920 field at index 1 and the data-less field at index 2. */
9921 struct discriminant_info *disc
9922 = alloc_discriminant_info (union_type, 0, 1);
9923 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9924 TYPE_FIELD_NAME (union_type, 1)
9925 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9926 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9927 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9928 TYPE_FIELD_NAME (union_type, 1));
9929
9930 const char *dataless_name
9931 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9932 name);
9933 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9934 dataless_name);
9935 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9936 /* NAME points into the original discriminant name, which
9937 already has the correct lifetime. */
9938 TYPE_FIELD_NAME (union_type, 2) = name;
9939 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9940 disc->discriminants[2] = 0;
9941
9942 /* Smash this type to be a structure type. We have to do this
9943 because the type has already been recorded. */
9944 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9945 TYPE_NFIELDS (type) = 1;
9946 TYPE_FIELDS (type)
9947 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9948
9949 /* Install the variant part. */
9950 TYPE_FIELD_TYPE (type, 0) = union_type;
9951 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9952 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9953 }
9954 else if (TYPE_NFIELDS (type) == 1)
9955 {
9956 /* We assume that a union with a single field is a univariant
9957 enum. */
9958 /* Smash this type to be a structure type. We have to do this
9959 because the type has already been recorded. */
9960 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9961
9962 /* Make a union to hold the variants. */
9963 struct type *union_type = alloc_type (objfile);
9964 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9965 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9966 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9967 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9968 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9969
9970 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9971 const char *variant_name
9972 = rust_last_path_segment (TYPE_NAME (field_type));
9973 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9974 TYPE_NAME (field_type)
9975 = rust_fully_qualify (&objfile->objfile_obstack,
9976 TYPE_NAME (type), variant_name);
9977
9978 /* Install the union in the outer struct type. */
9979 TYPE_NFIELDS (type) = 1;
9980 TYPE_FIELDS (type)
9981 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9982 TYPE_FIELD_TYPE (type, 0) = union_type;
9983 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9984 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9985
9986 alloc_discriminant_info (union_type, -1, 0);
9987 }
9988 else
9989 {
9990 struct type *disr_type = nullptr;
9991 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9992 {
9993 disr_type = TYPE_FIELD_TYPE (type, i);
9994
9995 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9996 {
9997 /* All fields of a true enum will be structs. */
9998 return;
9999 }
10000 else if (TYPE_NFIELDS (disr_type) == 0)
10001 {
10002 /* Could be data-less variant, so keep going. */
10003 disr_type = nullptr;
10004 }
10005 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10006 "RUST$ENUM$DISR") != 0)
10007 {
10008 /* Not a Rust enum. */
10009 return;
10010 }
10011 else
10012 {
10013 /* Found one. */
10014 break;
10015 }
10016 }
10017
10018 /* If we got here without a discriminant, then it's probably
10019 just a union. */
10020 if (disr_type == nullptr)
10021 return;
10022
10023 /* Smash this type to be a structure type. We have to do this
10024 because the type has already been recorded. */
10025 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10026
10027 /* Make a union to hold the variants. */
10028 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10029 struct type *union_type = alloc_type (objfile);
10030 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10031 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10032 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10033 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10034 TYPE_FIELDS (union_type)
10035 = (struct field *) TYPE_ZALLOC (union_type,
10036 (TYPE_NFIELDS (union_type)
10037 * sizeof (struct field)));
10038
10039 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10040 TYPE_NFIELDS (type) * sizeof (struct field));
10041
10042 /* Install the discriminant at index 0 in the union. */
10043 TYPE_FIELD (union_type, 0) = *disr_field;
10044 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10045 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10046
10047 /* Install the union in the outer struct type. */
10048 TYPE_FIELD_TYPE (type, 0) = union_type;
10049 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10050 TYPE_NFIELDS (type) = 1;
10051
10052 /* Set the size and offset of the union type. */
10053 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10054
10055 /* We need a way to find the correct discriminant given a
10056 variant name. For convenience we build a map here. */
10057 struct type *enum_type = FIELD_TYPE (*disr_field);
10058 std::unordered_map<std::string, ULONGEST> discriminant_map;
10059 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10060 {
10061 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10062 {
10063 const char *name
10064 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10065 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10066 }
10067 }
10068
10069 int n_fields = TYPE_NFIELDS (union_type);
10070 struct discriminant_info *disc
10071 = alloc_discriminant_info (union_type, 0, -1);
10072 /* Skip the discriminant here. */
10073 for (int i = 1; i < n_fields; ++i)
10074 {
10075 /* Find the final word in the name of this variant's type.
10076 That name can be used to look up the correct
10077 discriminant. */
10078 const char *variant_name
10079 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10080 i)));
10081
10082 auto iter = discriminant_map.find (variant_name);
10083 if (iter != discriminant_map.end ())
10084 disc->discriminants[i] = iter->second;
10085
10086 /* Remove the discriminant field, if it exists. */
10087 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10088 if (TYPE_NFIELDS (sub_type) > 0)
10089 {
10090 --TYPE_NFIELDS (sub_type);
10091 ++TYPE_FIELDS (sub_type);
10092 }
10093 TYPE_FIELD_NAME (union_type, i) = variant_name;
10094 TYPE_NAME (sub_type)
10095 = rust_fully_qualify (&objfile->objfile_obstack,
10096 TYPE_NAME (type), variant_name);
10097 }
10098 }
10099 }
10100
10101 /* Rewrite some Rust unions to be structures with variants parts. */
10102
10103 static void
10104 rust_union_quirks (struct dwarf2_cu *cu)
10105 {
10106 gdb_assert (cu->language == language_rust);
10107 for (type *type_ : cu->rust_unions)
10108 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10109 /* We don't need this any more. */
10110 cu->rust_unions.clear ();
10111 }
10112
10113 /* Return the symtab for PER_CU. This works properly regardless of
10114 whether we're using the index or psymtabs. */
10115
10116 static struct compunit_symtab *
10117 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10118 {
10119 return (per_cu->dwarf2_per_objfile->using_index
10120 ? per_cu->v.quick->compunit_symtab
10121 : per_cu->v.psymtab->compunit_symtab);
10122 }
10123
10124 /* A helper function for computing the list of all symbol tables
10125 included by PER_CU. */
10126
10127 static void
10128 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10129 htab_t all_children, htab_t all_type_symtabs,
10130 struct dwarf2_per_cu_data *per_cu,
10131 struct compunit_symtab *immediate_parent)
10132 {
10133 void **slot;
10134 int ix;
10135 struct compunit_symtab *cust;
10136 struct dwarf2_per_cu_data *iter;
10137
10138 slot = htab_find_slot (all_children, per_cu, INSERT);
10139 if (*slot != NULL)
10140 {
10141 /* This inclusion and its children have been processed. */
10142 return;
10143 }
10144
10145 *slot = per_cu;
10146 /* Only add a CU if it has a symbol table. */
10147 cust = get_compunit_symtab (per_cu);
10148 if (cust != NULL)
10149 {
10150 /* If this is a type unit only add its symbol table if we haven't
10151 seen it yet (type unit per_cu's can share symtabs). */
10152 if (per_cu->is_debug_types)
10153 {
10154 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10155 if (*slot == NULL)
10156 {
10157 *slot = cust;
10158 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10159 if (cust->user == NULL)
10160 cust->user = immediate_parent;
10161 }
10162 }
10163 else
10164 {
10165 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10166 if (cust->user == NULL)
10167 cust->user = immediate_parent;
10168 }
10169 }
10170
10171 for (ix = 0;
10172 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10173 ++ix)
10174 {
10175 recursively_compute_inclusions (result, all_children,
10176 all_type_symtabs, iter, cust);
10177 }
10178 }
10179
10180 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10181 PER_CU. */
10182
10183 static void
10184 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10185 {
10186 gdb_assert (! per_cu->is_debug_types);
10187
10188 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10189 {
10190 int ix, len;
10191 struct dwarf2_per_cu_data *per_cu_iter;
10192 struct compunit_symtab *compunit_symtab_iter;
10193 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10194 htab_t all_children, all_type_symtabs;
10195 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10196
10197 /* If we don't have a symtab, we can just skip this case. */
10198 if (cust == NULL)
10199 return;
10200
10201 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10202 NULL, xcalloc, xfree);
10203 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10204 NULL, xcalloc, xfree);
10205
10206 for (ix = 0;
10207 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10208 ix, per_cu_iter);
10209 ++ix)
10210 {
10211 recursively_compute_inclusions (&result_symtabs, all_children,
10212 all_type_symtabs, per_cu_iter,
10213 cust);
10214 }
10215
10216 /* Now we have a transitive closure of all the included symtabs. */
10217 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10218 cust->includes
10219 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10220 struct compunit_symtab *, len + 1);
10221 for (ix = 0;
10222 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10223 compunit_symtab_iter);
10224 ++ix)
10225 cust->includes[ix] = compunit_symtab_iter;
10226 cust->includes[len] = NULL;
10227
10228 VEC_free (compunit_symtab_ptr, result_symtabs);
10229 htab_delete (all_children);
10230 htab_delete (all_type_symtabs);
10231 }
10232 }
10233
10234 /* Compute the 'includes' field for the symtabs of all the CUs we just
10235 read. */
10236
10237 static void
10238 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10239 {
10240 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10241 {
10242 if (! iter->is_debug_types)
10243 compute_compunit_symtab_includes (iter);
10244 }
10245
10246 dwarf2_per_objfile->just_read_cus.clear ();
10247 }
10248
10249 /* Generate full symbol information for PER_CU, whose DIEs have
10250 already been loaded into memory. */
10251
10252 static void
10253 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10254 enum language pretend_language)
10255 {
10256 struct dwarf2_cu *cu = per_cu->cu;
10257 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10258 struct objfile *objfile = dwarf2_per_objfile->objfile;
10259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10260 CORE_ADDR lowpc, highpc;
10261 struct compunit_symtab *cust;
10262 CORE_ADDR baseaddr;
10263 struct block *static_block;
10264 CORE_ADDR addr;
10265
10266 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10267
10268 /* Clear the list here in case something was left over. */
10269 cu->method_list.clear ();
10270
10271 cu->language = pretend_language;
10272 cu->language_defn = language_def (cu->language);
10273
10274 /* Do line number decoding in read_file_scope () */
10275 process_die (cu->dies, cu);
10276
10277 /* For now fudge the Go package. */
10278 if (cu->language == language_go)
10279 fixup_go_packaging (cu);
10280
10281 /* Now that we have processed all the DIEs in the CU, all the types
10282 should be complete, and it should now be safe to compute all of the
10283 physnames. */
10284 compute_delayed_physnames (cu);
10285
10286 if (cu->language == language_rust)
10287 rust_union_quirks (cu);
10288
10289 /* Some compilers don't define a DW_AT_high_pc attribute for the
10290 compilation unit. If the DW_AT_high_pc is missing, synthesize
10291 it, by scanning the DIE's below the compilation unit. */
10292 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10293
10294 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10295 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10296
10297 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10298 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10299 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10300 addrmap to help ensure it has an accurate map of pc values belonging to
10301 this comp unit. */
10302 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10303
10304 cust = cu->builder->end_symtab_from_static_block (static_block,
10305 SECT_OFF_TEXT (objfile),
10306 0);
10307
10308 if (cust != NULL)
10309 {
10310 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10311
10312 /* Set symtab language to language from DW_AT_language. If the
10313 compilation is from a C file generated by language preprocessors, do
10314 not set the language if it was already deduced by start_subfile. */
10315 if (!(cu->language == language_c
10316 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10317 COMPUNIT_FILETABS (cust)->language = cu->language;
10318
10319 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10320 produce DW_AT_location with location lists but it can be possibly
10321 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10322 there were bugs in prologue debug info, fixed later in GCC-4.5
10323 by "unwind info for epilogues" patch (which is not directly related).
10324
10325 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10326 needed, it would be wrong due to missing DW_AT_producer there.
10327
10328 Still one can confuse GDB by using non-standard GCC compilation
10329 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10330 */
10331 if (cu->has_loclist && gcc_4_minor >= 5)
10332 cust->locations_valid = 1;
10333
10334 if (gcc_4_minor >= 5)
10335 cust->epilogue_unwind_valid = 1;
10336
10337 cust->call_site_htab = cu->call_site_htab;
10338 }
10339
10340 if (dwarf2_per_objfile->using_index)
10341 per_cu->v.quick->compunit_symtab = cust;
10342 else
10343 {
10344 struct partial_symtab *pst = per_cu->v.psymtab;
10345 pst->compunit_symtab = cust;
10346 pst->readin = 1;
10347 }
10348
10349 /* Push it for inclusion processing later. */
10350 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10351
10352 /* Not needed any more. */
10353 cu->builder.reset ();
10354 }
10355
10356 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10357 already been loaded into memory. */
10358
10359 static void
10360 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10361 enum language pretend_language)
10362 {
10363 struct dwarf2_cu *cu = per_cu->cu;
10364 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10365 struct objfile *objfile = dwarf2_per_objfile->objfile;
10366 struct compunit_symtab *cust;
10367 struct signatured_type *sig_type;
10368
10369 gdb_assert (per_cu->is_debug_types);
10370 sig_type = (struct signatured_type *) per_cu;
10371
10372 /* Clear the list here in case something was left over. */
10373 cu->method_list.clear ();
10374
10375 cu->language = pretend_language;
10376 cu->language_defn = language_def (cu->language);
10377
10378 /* The symbol tables are set up in read_type_unit_scope. */
10379 process_die (cu->dies, cu);
10380
10381 /* For now fudge the Go package. */
10382 if (cu->language == language_go)
10383 fixup_go_packaging (cu);
10384
10385 /* Now that we have processed all the DIEs in the CU, all the types
10386 should be complete, and it should now be safe to compute all of the
10387 physnames. */
10388 compute_delayed_physnames (cu);
10389
10390 if (cu->language == language_rust)
10391 rust_union_quirks (cu);
10392
10393 /* TUs share symbol tables.
10394 If this is the first TU to use this symtab, complete the construction
10395 of it with end_expandable_symtab. Otherwise, complete the addition of
10396 this TU's symbols to the existing symtab. */
10397 if (sig_type->type_unit_group->compunit_symtab == NULL)
10398 {
10399 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10400 sig_type->type_unit_group->compunit_symtab = cust;
10401
10402 if (cust != NULL)
10403 {
10404 /* Set symtab language to language from DW_AT_language. If the
10405 compilation is from a C file generated by language preprocessors,
10406 do not set the language if it was already deduced by
10407 start_subfile. */
10408 if (!(cu->language == language_c
10409 && COMPUNIT_FILETABS (cust)->language != language_c))
10410 COMPUNIT_FILETABS (cust)->language = cu->language;
10411 }
10412 }
10413 else
10414 {
10415 cu->builder->augment_type_symtab ();
10416 cust = sig_type->type_unit_group->compunit_symtab;
10417 }
10418
10419 if (dwarf2_per_objfile->using_index)
10420 per_cu->v.quick->compunit_symtab = cust;
10421 else
10422 {
10423 struct partial_symtab *pst = per_cu->v.psymtab;
10424 pst->compunit_symtab = cust;
10425 pst->readin = 1;
10426 }
10427
10428 /* Not needed any more. */
10429 cu->builder.reset ();
10430 }
10431
10432 /* Process an imported unit DIE. */
10433
10434 static void
10435 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10436 {
10437 struct attribute *attr;
10438
10439 /* For now we don't handle imported units in type units. */
10440 if (cu->per_cu->is_debug_types)
10441 {
10442 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10443 " supported in type units [in module %s]"),
10444 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10445 }
10446
10447 attr = dwarf2_attr (die, DW_AT_import, cu);
10448 if (attr != NULL)
10449 {
10450 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10451 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10452 dwarf2_per_cu_data *per_cu
10453 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10454 cu->per_cu->dwarf2_per_objfile);
10455
10456 /* If necessary, add it to the queue and load its DIEs. */
10457 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10458 load_full_comp_unit (per_cu, false, cu->language);
10459
10460 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10461 per_cu);
10462 }
10463 }
10464
10465 /* RAII object that represents a process_die scope: i.e.,
10466 starts/finishes processing a DIE. */
10467 class process_die_scope
10468 {
10469 public:
10470 process_die_scope (die_info *die, dwarf2_cu *cu)
10471 : m_die (die), m_cu (cu)
10472 {
10473 /* We should only be processing DIEs not already in process. */
10474 gdb_assert (!m_die->in_process);
10475 m_die->in_process = true;
10476 }
10477
10478 ~process_die_scope ()
10479 {
10480 m_die->in_process = false;
10481
10482 /* If we're done processing the DIE for the CU that owns the line
10483 header, we don't need the line header anymore. */
10484 if (m_cu->line_header_die_owner == m_die)
10485 {
10486 delete m_cu->line_header;
10487 m_cu->line_header = NULL;
10488 m_cu->line_header_die_owner = NULL;
10489 }
10490 }
10491
10492 private:
10493 die_info *m_die;
10494 dwarf2_cu *m_cu;
10495 };
10496
10497 /* Process a die and its children. */
10498
10499 static void
10500 process_die (struct die_info *die, struct dwarf2_cu *cu)
10501 {
10502 process_die_scope scope (die, cu);
10503
10504 switch (die->tag)
10505 {
10506 case DW_TAG_padding:
10507 break;
10508 case DW_TAG_compile_unit:
10509 case DW_TAG_partial_unit:
10510 read_file_scope (die, cu);
10511 break;
10512 case DW_TAG_type_unit:
10513 read_type_unit_scope (die, cu);
10514 break;
10515 case DW_TAG_subprogram:
10516 case DW_TAG_inlined_subroutine:
10517 read_func_scope (die, cu);
10518 break;
10519 case DW_TAG_lexical_block:
10520 case DW_TAG_try_block:
10521 case DW_TAG_catch_block:
10522 read_lexical_block_scope (die, cu);
10523 break;
10524 case DW_TAG_call_site:
10525 case DW_TAG_GNU_call_site:
10526 read_call_site_scope (die, cu);
10527 break;
10528 case DW_TAG_class_type:
10529 case DW_TAG_interface_type:
10530 case DW_TAG_structure_type:
10531 case DW_TAG_union_type:
10532 process_structure_scope (die, cu);
10533 break;
10534 case DW_TAG_enumeration_type:
10535 process_enumeration_scope (die, cu);
10536 break;
10537
10538 /* These dies have a type, but processing them does not create
10539 a symbol or recurse to process the children. Therefore we can
10540 read them on-demand through read_type_die. */
10541 case DW_TAG_subroutine_type:
10542 case DW_TAG_set_type:
10543 case DW_TAG_array_type:
10544 case DW_TAG_pointer_type:
10545 case DW_TAG_ptr_to_member_type:
10546 case DW_TAG_reference_type:
10547 case DW_TAG_rvalue_reference_type:
10548 case DW_TAG_string_type:
10549 break;
10550
10551 case DW_TAG_base_type:
10552 case DW_TAG_subrange_type:
10553 case DW_TAG_typedef:
10554 /* Add a typedef symbol for the type definition, if it has a
10555 DW_AT_name. */
10556 new_symbol (die, read_type_die (die, cu), cu);
10557 break;
10558 case DW_TAG_common_block:
10559 read_common_block (die, cu);
10560 break;
10561 case DW_TAG_common_inclusion:
10562 break;
10563 case DW_TAG_namespace:
10564 cu->processing_has_namespace_info = 1;
10565 read_namespace (die, cu);
10566 break;
10567 case DW_TAG_module:
10568 cu->processing_has_namespace_info = 1;
10569 read_module (die, cu);
10570 break;
10571 case DW_TAG_imported_declaration:
10572 cu->processing_has_namespace_info = 1;
10573 if (read_namespace_alias (die, cu))
10574 break;
10575 /* The declaration is not a global namespace alias. */
10576 /* Fall through. */
10577 case DW_TAG_imported_module:
10578 cu->processing_has_namespace_info = 1;
10579 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10580 || cu->language != language_fortran))
10581 complaint (_("Tag '%s' has unexpected children"),
10582 dwarf_tag_name (die->tag));
10583 read_import_statement (die, cu);
10584 break;
10585
10586 case DW_TAG_imported_unit:
10587 process_imported_unit_die (die, cu);
10588 break;
10589
10590 case DW_TAG_variable:
10591 read_variable (die, cu);
10592 break;
10593
10594 default:
10595 new_symbol (die, NULL, cu);
10596 break;
10597 }
10598 }
10599 \f
10600 /* DWARF name computation. */
10601
10602 /* A helper function for dwarf2_compute_name which determines whether DIE
10603 needs to have the name of the scope prepended to the name listed in the
10604 die. */
10605
10606 static int
10607 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10608 {
10609 struct attribute *attr;
10610
10611 switch (die->tag)
10612 {
10613 case DW_TAG_namespace:
10614 case DW_TAG_typedef:
10615 case DW_TAG_class_type:
10616 case DW_TAG_interface_type:
10617 case DW_TAG_structure_type:
10618 case DW_TAG_union_type:
10619 case DW_TAG_enumeration_type:
10620 case DW_TAG_enumerator:
10621 case DW_TAG_subprogram:
10622 case DW_TAG_inlined_subroutine:
10623 case DW_TAG_member:
10624 case DW_TAG_imported_declaration:
10625 return 1;
10626
10627 case DW_TAG_variable:
10628 case DW_TAG_constant:
10629 /* We only need to prefix "globally" visible variables. These include
10630 any variable marked with DW_AT_external or any variable that
10631 lives in a namespace. [Variables in anonymous namespaces
10632 require prefixing, but they are not DW_AT_external.] */
10633
10634 if (dwarf2_attr (die, DW_AT_specification, cu))
10635 {
10636 struct dwarf2_cu *spec_cu = cu;
10637
10638 return die_needs_namespace (die_specification (die, &spec_cu),
10639 spec_cu);
10640 }
10641
10642 attr = dwarf2_attr (die, DW_AT_external, cu);
10643 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10644 && die->parent->tag != DW_TAG_module)
10645 return 0;
10646 /* A variable in a lexical block of some kind does not need a
10647 namespace, even though in C++ such variables may be external
10648 and have a mangled name. */
10649 if (die->parent->tag == DW_TAG_lexical_block
10650 || die->parent->tag == DW_TAG_try_block
10651 || die->parent->tag == DW_TAG_catch_block
10652 || die->parent->tag == DW_TAG_subprogram)
10653 return 0;
10654 return 1;
10655
10656 default:
10657 return 0;
10658 }
10659 }
10660
10661 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10662 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10663 defined for the given DIE. */
10664
10665 static struct attribute *
10666 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10667 {
10668 struct attribute *attr;
10669
10670 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10671 if (attr == NULL)
10672 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10673
10674 return attr;
10675 }
10676
10677 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10678 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10679 defined for the given DIE. */
10680
10681 static const char *
10682 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10683 {
10684 const char *linkage_name;
10685
10686 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10687 if (linkage_name == NULL)
10688 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10689
10690 return linkage_name;
10691 }
10692
10693 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10694 compute the physname for the object, which include a method's:
10695 - formal parameters (C++),
10696 - receiver type (Go),
10697
10698 The term "physname" is a bit confusing.
10699 For C++, for example, it is the demangled name.
10700 For Go, for example, it's the mangled name.
10701
10702 For Ada, return the DIE's linkage name rather than the fully qualified
10703 name. PHYSNAME is ignored..
10704
10705 The result is allocated on the objfile_obstack and canonicalized. */
10706
10707 static const char *
10708 dwarf2_compute_name (const char *name,
10709 struct die_info *die, struct dwarf2_cu *cu,
10710 int physname)
10711 {
10712 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10713
10714 if (name == NULL)
10715 name = dwarf2_name (die, cu);
10716
10717 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10718 but otherwise compute it by typename_concat inside GDB.
10719 FIXME: Actually this is not really true, or at least not always true.
10720 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10721 Fortran names because there is no mangling standard. So new_symbol
10722 will set the demangled name to the result of dwarf2_full_name, and it is
10723 the demangled name that GDB uses if it exists. */
10724 if (cu->language == language_ada
10725 || (cu->language == language_fortran && physname))
10726 {
10727 /* For Ada unit, we prefer the linkage name over the name, as
10728 the former contains the exported name, which the user expects
10729 to be able to reference. Ideally, we want the user to be able
10730 to reference this entity using either natural or linkage name,
10731 but we haven't started looking at this enhancement yet. */
10732 const char *linkage_name = dw2_linkage_name (die, cu);
10733
10734 if (linkage_name != NULL)
10735 return linkage_name;
10736 }
10737
10738 /* These are the only languages we know how to qualify names in. */
10739 if (name != NULL
10740 && (cu->language == language_cplus
10741 || cu->language == language_fortran || cu->language == language_d
10742 || cu->language == language_rust))
10743 {
10744 if (die_needs_namespace (die, cu))
10745 {
10746 const char *prefix;
10747 const char *canonical_name = NULL;
10748
10749 string_file buf;
10750
10751 prefix = determine_prefix (die, cu);
10752 if (*prefix != '\0')
10753 {
10754 char *prefixed_name = typename_concat (NULL, prefix, name,
10755 physname, cu);
10756
10757 buf.puts (prefixed_name);
10758 xfree (prefixed_name);
10759 }
10760 else
10761 buf.puts (name);
10762
10763 /* Template parameters may be specified in the DIE's DW_AT_name, or
10764 as children with DW_TAG_template_type_param or
10765 DW_TAG_value_type_param. If the latter, add them to the name
10766 here. If the name already has template parameters, then
10767 skip this step; some versions of GCC emit both, and
10768 it is more efficient to use the pre-computed name.
10769
10770 Something to keep in mind about this process: it is very
10771 unlikely, or in some cases downright impossible, to produce
10772 something that will match the mangled name of a function.
10773 If the definition of the function has the same debug info,
10774 we should be able to match up with it anyway. But fallbacks
10775 using the minimal symbol, for instance to find a method
10776 implemented in a stripped copy of libstdc++, will not work.
10777 If we do not have debug info for the definition, we will have to
10778 match them up some other way.
10779
10780 When we do name matching there is a related problem with function
10781 templates; two instantiated function templates are allowed to
10782 differ only by their return types, which we do not add here. */
10783
10784 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10785 {
10786 struct attribute *attr;
10787 struct die_info *child;
10788 int first = 1;
10789
10790 die->building_fullname = 1;
10791
10792 for (child = die->child; child != NULL; child = child->sibling)
10793 {
10794 struct type *type;
10795 LONGEST value;
10796 const gdb_byte *bytes;
10797 struct dwarf2_locexpr_baton *baton;
10798 struct value *v;
10799
10800 if (child->tag != DW_TAG_template_type_param
10801 && child->tag != DW_TAG_template_value_param)
10802 continue;
10803
10804 if (first)
10805 {
10806 buf.puts ("<");
10807 first = 0;
10808 }
10809 else
10810 buf.puts (", ");
10811
10812 attr = dwarf2_attr (child, DW_AT_type, cu);
10813 if (attr == NULL)
10814 {
10815 complaint (_("template parameter missing DW_AT_type"));
10816 buf.puts ("UNKNOWN_TYPE");
10817 continue;
10818 }
10819 type = die_type (child, cu);
10820
10821 if (child->tag == DW_TAG_template_type_param)
10822 {
10823 c_print_type (type, "", &buf, -1, 0, cu->language,
10824 &type_print_raw_options);
10825 continue;
10826 }
10827
10828 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10829 if (attr == NULL)
10830 {
10831 complaint (_("template parameter missing "
10832 "DW_AT_const_value"));
10833 buf.puts ("UNKNOWN_VALUE");
10834 continue;
10835 }
10836
10837 dwarf2_const_value_attr (attr, type, name,
10838 &cu->comp_unit_obstack, cu,
10839 &value, &bytes, &baton);
10840
10841 if (TYPE_NOSIGN (type))
10842 /* GDB prints characters as NUMBER 'CHAR'. If that's
10843 changed, this can use value_print instead. */
10844 c_printchar (value, type, &buf);
10845 else
10846 {
10847 struct value_print_options opts;
10848
10849 if (baton != NULL)
10850 v = dwarf2_evaluate_loc_desc (type, NULL,
10851 baton->data,
10852 baton->size,
10853 baton->per_cu);
10854 else if (bytes != NULL)
10855 {
10856 v = allocate_value (type);
10857 memcpy (value_contents_writeable (v), bytes,
10858 TYPE_LENGTH (type));
10859 }
10860 else
10861 v = value_from_longest (type, value);
10862
10863 /* Specify decimal so that we do not depend on
10864 the radix. */
10865 get_formatted_print_options (&opts, 'd');
10866 opts.raw = 1;
10867 value_print (v, &buf, &opts);
10868 release_value (v);
10869 }
10870 }
10871
10872 die->building_fullname = 0;
10873
10874 if (!first)
10875 {
10876 /* Close the argument list, with a space if necessary
10877 (nested templates). */
10878 if (!buf.empty () && buf.string ().back () == '>')
10879 buf.puts (" >");
10880 else
10881 buf.puts (">");
10882 }
10883 }
10884
10885 /* For C++ methods, append formal parameter type
10886 information, if PHYSNAME. */
10887
10888 if (physname && die->tag == DW_TAG_subprogram
10889 && cu->language == language_cplus)
10890 {
10891 struct type *type = read_type_die (die, cu);
10892
10893 c_type_print_args (type, &buf, 1, cu->language,
10894 &type_print_raw_options);
10895
10896 if (cu->language == language_cplus)
10897 {
10898 /* Assume that an artificial first parameter is
10899 "this", but do not crash if it is not. RealView
10900 marks unnamed (and thus unused) parameters as
10901 artificial; there is no way to differentiate
10902 the two cases. */
10903 if (TYPE_NFIELDS (type) > 0
10904 && TYPE_FIELD_ARTIFICIAL (type, 0)
10905 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10906 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10907 0))))
10908 buf.puts (" const");
10909 }
10910 }
10911
10912 const std::string &intermediate_name = buf.string ();
10913
10914 if (cu->language == language_cplus)
10915 canonical_name
10916 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10917 &objfile->per_bfd->storage_obstack);
10918
10919 /* If we only computed INTERMEDIATE_NAME, or if
10920 INTERMEDIATE_NAME is already canonical, then we need to
10921 copy it to the appropriate obstack. */
10922 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10923 name = ((const char *)
10924 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10925 intermediate_name.c_str (),
10926 intermediate_name.length ()));
10927 else
10928 name = canonical_name;
10929 }
10930 }
10931
10932 return name;
10933 }
10934
10935 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10936 If scope qualifiers are appropriate they will be added. The result
10937 will be allocated on the storage_obstack, or NULL if the DIE does
10938 not have a name. NAME may either be from a previous call to
10939 dwarf2_name or NULL.
10940
10941 The output string will be canonicalized (if C++). */
10942
10943 static const char *
10944 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10945 {
10946 return dwarf2_compute_name (name, die, cu, 0);
10947 }
10948
10949 /* Construct a physname for the given DIE in CU. NAME may either be
10950 from a previous call to dwarf2_name or NULL. The result will be
10951 allocated on the objfile_objstack or NULL if the DIE does not have a
10952 name.
10953
10954 The output string will be canonicalized (if C++). */
10955
10956 static const char *
10957 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10958 {
10959 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10960 const char *retval, *mangled = NULL, *canon = NULL;
10961 int need_copy = 1;
10962
10963 /* In this case dwarf2_compute_name is just a shortcut not building anything
10964 on its own. */
10965 if (!die_needs_namespace (die, cu))
10966 return dwarf2_compute_name (name, die, cu, 1);
10967
10968 mangled = dw2_linkage_name (die, cu);
10969
10970 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10971 See https://github.com/rust-lang/rust/issues/32925. */
10972 if (cu->language == language_rust && mangled != NULL
10973 && strchr (mangled, '{') != NULL)
10974 mangled = NULL;
10975
10976 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10977 has computed. */
10978 gdb::unique_xmalloc_ptr<char> demangled;
10979 if (mangled != NULL)
10980 {
10981
10982 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10983 {
10984 /* Do nothing (do not demangle the symbol name). */
10985 }
10986 else if (cu->language == language_go)
10987 {
10988 /* This is a lie, but we already lie to the caller new_symbol.
10989 new_symbol assumes we return the mangled name.
10990 This just undoes that lie until things are cleaned up. */
10991 }
10992 else
10993 {
10994 /* Use DMGL_RET_DROP for C++ template functions to suppress
10995 their return type. It is easier for GDB users to search
10996 for such functions as `name(params)' than `long name(params)'.
10997 In such case the minimal symbol names do not match the full
10998 symbol names but for template functions there is never a need
10999 to look up their definition from their declaration so
11000 the only disadvantage remains the minimal symbol variant
11001 `long name(params)' does not have the proper inferior type. */
11002 demangled.reset (gdb_demangle (mangled,
11003 (DMGL_PARAMS | DMGL_ANSI
11004 | DMGL_RET_DROP)));
11005 }
11006 if (demangled)
11007 canon = demangled.get ();
11008 else
11009 {
11010 canon = mangled;
11011 need_copy = 0;
11012 }
11013 }
11014
11015 if (canon == NULL || check_physname)
11016 {
11017 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11018
11019 if (canon != NULL && strcmp (physname, canon) != 0)
11020 {
11021 /* It may not mean a bug in GDB. The compiler could also
11022 compute DW_AT_linkage_name incorrectly. But in such case
11023 GDB would need to be bug-to-bug compatible. */
11024
11025 complaint (_("Computed physname <%s> does not match demangled <%s> "
11026 "(from linkage <%s>) - DIE at %s [in module %s]"),
11027 physname, canon, mangled, sect_offset_str (die->sect_off),
11028 objfile_name (objfile));
11029
11030 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11031 is available here - over computed PHYSNAME. It is safer
11032 against both buggy GDB and buggy compilers. */
11033
11034 retval = canon;
11035 }
11036 else
11037 {
11038 retval = physname;
11039 need_copy = 0;
11040 }
11041 }
11042 else
11043 retval = canon;
11044
11045 if (need_copy)
11046 retval = ((const char *)
11047 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11048 retval, strlen (retval)));
11049
11050 return retval;
11051 }
11052
11053 /* Inspect DIE in CU for a namespace alias. If one exists, record
11054 a new symbol for it.
11055
11056 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11057
11058 static int
11059 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11060 {
11061 struct attribute *attr;
11062
11063 /* If the die does not have a name, this is not a namespace
11064 alias. */
11065 attr = dwarf2_attr (die, DW_AT_name, cu);
11066 if (attr != NULL)
11067 {
11068 int num;
11069 struct die_info *d = die;
11070 struct dwarf2_cu *imported_cu = cu;
11071
11072 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11073 keep inspecting DIEs until we hit the underlying import. */
11074 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11075 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11076 {
11077 attr = dwarf2_attr (d, DW_AT_import, cu);
11078 if (attr == NULL)
11079 break;
11080
11081 d = follow_die_ref (d, attr, &imported_cu);
11082 if (d->tag != DW_TAG_imported_declaration)
11083 break;
11084 }
11085
11086 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11087 {
11088 complaint (_("DIE at %s has too many recursively imported "
11089 "declarations"), sect_offset_str (d->sect_off));
11090 return 0;
11091 }
11092
11093 if (attr != NULL)
11094 {
11095 struct type *type;
11096 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11097
11098 type = get_die_type_at_offset (sect_off, cu->per_cu);
11099 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11100 {
11101 /* This declaration is a global namespace alias. Add
11102 a symbol for it whose type is the aliased namespace. */
11103 new_symbol (die, type, cu);
11104 return 1;
11105 }
11106 }
11107 }
11108
11109 return 0;
11110 }
11111
11112 /* Return the using directives repository (global or local?) to use in the
11113 current context for CU.
11114
11115 For Ada, imported declarations can materialize renamings, which *may* be
11116 global. However it is impossible (for now?) in DWARF to distinguish
11117 "external" imported declarations and "static" ones. As all imported
11118 declarations seem to be static in all other languages, make them all CU-wide
11119 global only in Ada. */
11120
11121 static struct using_direct **
11122 using_directives (struct dwarf2_cu *cu)
11123 {
11124 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11125 return cu->builder->get_global_using_directives ();
11126 else
11127 return cu->builder->get_local_using_directives ();
11128 }
11129
11130 /* Read the import statement specified by the given die and record it. */
11131
11132 static void
11133 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11134 {
11135 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11136 struct attribute *import_attr;
11137 struct die_info *imported_die, *child_die;
11138 struct dwarf2_cu *imported_cu;
11139 const char *imported_name;
11140 const char *imported_name_prefix;
11141 const char *canonical_name;
11142 const char *import_alias;
11143 const char *imported_declaration = NULL;
11144 const char *import_prefix;
11145 std::vector<const char *> excludes;
11146
11147 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11148 if (import_attr == NULL)
11149 {
11150 complaint (_("Tag '%s' has no DW_AT_import"),
11151 dwarf_tag_name (die->tag));
11152 return;
11153 }
11154
11155 imported_cu = cu;
11156 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11157 imported_name = dwarf2_name (imported_die, imported_cu);
11158 if (imported_name == NULL)
11159 {
11160 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11161
11162 The import in the following code:
11163 namespace A
11164 {
11165 typedef int B;
11166 }
11167
11168 int main ()
11169 {
11170 using A::B;
11171 B b;
11172 return b;
11173 }
11174
11175 ...
11176 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11177 <52> DW_AT_decl_file : 1
11178 <53> DW_AT_decl_line : 6
11179 <54> DW_AT_import : <0x75>
11180 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11181 <59> DW_AT_name : B
11182 <5b> DW_AT_decl_file : 1
11183 <5c> DW_AT_decl_line : 2
11184 <5d> DW_AT_type : <0x6e>
11185 ...
11186 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11187 <76> DW_AT_byte_size : 4
11188 <77> DW_AT_encoding : 5 (signed)
11189
11190 imports the wrong die ( 0x75 instead of 0x58 ).
11191 This case will be ignored until the gcc bug is fixed. */
11192 return;
11193 }
11194
11195 /* Figure out the local name after import. */
11196 import_alias = dwarf2_name (die, cu);
11197
11198 /* Figure out where the statement is being imported to. */
11199 import_prefix = determine_prefix (die, cu);
11200
11201 /* Figure out what the scope of the imported die is and prepend it
11202 to the name of the imported die. */
11203 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11204
11205 if (imported_die->tag != DW_TAG_namespace
11206 && imported_die->tag != DW_TAG_module)
11207 {
11208 imported_declaration = imported_name;
11209 canonical_name = imported_name_prefix;
11210 }
11211 else if (strlen (imported_name_prefix) > 0)
11212 canonical_name = obconcat (&objfile->objfile_obstack,
11213 imported_name_prefix,
11214 (cu->language == language_d ? "." : "::"),
11215 imported_name, (char *) NULL);
11216 else
11217 canonical_name = imported_name;
11218
11219 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11220 for (child_die = die->child; child_die && child_die->tag;
11221 child_die = sibling_die (child_die))
11222 {
11223 /* DWARF-4: A Fortran use statement with a “rename list” may be
11224 represented by an imported module entry with an import attribute
11225 referring to the module and owned entries corresponding to those
11226 entities that are renamed as part of being imported. */
11227
11228 if (child_die->tag != DW_TAG_imported_declaration)
11229 {
11230 complaint (_("child DW_TAG_imported_declaration expected "
11231 "- DIE at %s [in module %s]"),
11232 sect_offset_str (child_die->sect_off),
11233 objfile_name (objfile));
11234 continue;
11235 }
11236
11237 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11238 if (import_attr == NULL)
11239 {
11240 complaint (_("Tag '%s' has no DW_AT_import"),
11241 dwarf_tag_name (child_die->tag));
11242 continue;
11243 }
11244
11245 imported_cu = cu;
11246 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11247 &imported_cu);
11248 imported_name = dwarf2_name (imported_die, imported_cu);
11249 if (imported_name == NULL)
11250 {
11251 complaint (_("child DW_TAG_imported_declaration has unknown "
11252 "imported name - DIE at %s [in module %s]"),
11253 sect_offset_str (child_die->sect_off),
11254 objfile_name (objfile));
11255 continue;
11256 }
11257
11258 excludes.push_back (imported_name);
11259
11260 process_die (child_die, cu);
11261 }
11262
11263 add_using_directive (using_directives (cu),
11264 import_prefix,
11265 canonical_name,
11266 import_alias,
11267 imported_declaration,
11268 excludes,
11269 0,
11270 &objfile->objfile_obstack);
11271 }
11272
11273 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11274 types, but gives them a size of zero. Starting with version 14,
11275 ICC is compatible with GCC. */
11276
11277 static int
11278 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11279 {
11280 if (!cu->checked_producer)
11281 check_producer (cu);
11282
11283 return cu->producer_is_icc_lt_14;
11284 }
11285
11286 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11287 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11288 this, it was first present in GCC release 4.3.0. */
11289
11290 static int
11291 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11292 {
11293 if (!cu->checked_producer)
11294 check_producer (cu);
11295
11296 return cu->producer_is_gcc_lt_4_3;
11297 }
11298
11299 static file_and_directory
11300 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11301 {
11302 file_and_directory res;
11303
11304 /* Find the filename. Do not use dwarf2_name here, since the filename
11305 is not a source language identifier. */
11306 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11307 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11308
11309 if (res.comp_dir == NULL
11310 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11311 && IS_ABSOLUTE_PATH (res.name))
11312 {
11313 res.comp_dir_storage = ldirname (res.name);
11314 if (!res.comp_dir_storage.empty ())
11315 res.comp_dir = res.comp_dir_storage.c_str ();
11316 }
11317 if (res.comp_dir != NULL)
11318 {
11319 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11320 directory, get rid of it. */
11321 const char *cp = strchr (res.comp_dir, ':');
11322
11323 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11324 res.comp_dir = cp + 1;
11325 }
11326
11327 if (res.name == NULL)
11328 res.name = "<unknown>";
11329
11330 return res;
11331 }
11332
11333 /* Handle DW_AT_stmt_list for a compilation unit.
11334 DIE is the DW_TAG_compile_unit die for CU.
11335 COMP_DIR is the compilation directory. LOWPC is passed to
11336 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11337
11338 static void
11339 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11340 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11341 {
11342 struct dwarf2_per_objfile *dwarf2_per_objfile
11343 = cu->per_cu->dwarf2_per_objfile;
11344 struct objfile *objfile = dwarf2_per_objfile->objfile;
11345 struct attribute *attr;
11346 struct line_header line_header_local;
11347 hashval_t line_header_local_hash;
11348 void **slot;
11349 int decode_mapping;
11350
11351 gdb_assert (! cu->per_cu->is_debug_types);
11352
11353 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11354 if (attr == NULL)
11355 return;
11356
11357 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11358
11359 /* The line header hash table is only created if needed (it exists to
11360 prevent redundant reading of the line table for partial_units).
11361 If we're given a partial_unit, we'll need it. If we're given a
11362 compile_unit, then use the line header hash table if it's already
11363 created, but don't create one just yet. */
11364
11365 if (dwarf2_per_objfile->line_header_hash == NULL
11366 && die->tag == DW_TAG_partial_unit)
11367 {
11368 dwarf2_per_objfile->line_header_hash
11369 = htab_create_alloc_ex (127, line_header_hash_voidp,
11370 line_header_eq_voidp,
11371 free_line_header_voidp,
11372 &objfile->objfile_obstack,
11373 hashtab_obstack_allocate,
11374 dummy_obstack_deallocate);
11375 }
11376
11377 line_header_local.sect_off = line_offset;
11378 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11379 line_header_local_hash = line_header_hash (&line_header_local);
11380 if (dwarf2_per_objfile->line_header_hash != NULL)
11381 {
11382 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11383 &line_header_local,
11384 line_header_local_hash, NO_INSERT);
11385
11386 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11387 is not present in *SLOT (since if there is something in *SLOT then
11388 it will be for a partial_unit). */
11389 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11390 {
11391 gdb_assert (*slot != NULL);
11392 cu->line_header = (struct line_header *) *slot;
11393 return;
11394 }
11395 }
11396
11397 /* dwarf_decode_line_header does not yet provide sufficient information.
11398 We always have to call also dwarf_decode_lines for it. */
11399 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11400 if (lh == NULL)
11401 return;
11402
11403 cu->line_header = lh.release ();
11404 cu->line_header_die_owner = die;
11405
11406 if (dwarf2_per_objfile->line_header_hash == NULL)
11407 slot = NULL;
11408 else
11409 {
11410 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11411 &line_header_local,
11412 line_header_local_hash, INSERT);
11413 gdb_assert (slot != NULL);
11414 }
11415 if (slot != NULL && *slot == NULL)
11416 {
11417 /* This newly decoded line number information unit will be owned
11418 by line_header_hash hash table. */
11419 *slot = cu->line_header;
11420 cu->line_header_die_owner = NULL;
11421 }
11422 else
11423 {
11424 /* We cannot free any current entry in (*slot) as that struct line_header
11425 may be already used by multiple CUs. Create only temporary decoded
11426 line_header for this CU - it may happen at most once for each line
11427 number information unit. And if we're not using line_header_hash
11428 then this is what we want as well. */
11429 gdb_assert (die->tag != DW_TAG_partial_unit);
11430 }
11431 decode_mapping = (die->tag != DW_TAG_partial_unit);
11432 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11433 decode_mapping);
11434
11435 }
11436
11437 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11438
11439 static void
11440 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11441 {
11442 struct dwarf2_per_objfile *dwarf2_per_objfile
11443 = cu->per_cu->dwarf2_per_objfile;
11444 struct objfile *objfile = dwarf2_per_objfile->objfile;
11445 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11446 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11447 CORE_ADDR highpc = ((CORE_ADDR) 0);
11448 struct attribute *attr;
11449 struct die_info *child_die;
11450 CORE_ADDR baseaddr;
11451
11452 prepare_one_comp_unit (cu, die, cu->language);
11453 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11454
11455 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11456
11457 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11458 from finish_block. */
11459 if (lowpc == ((CORE_ADDR) -1))
11460 lowpc = highpc;
11461 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11462
11463 file_and_directory fnd = find_file_and_directory (die, cu);
11464
11465 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11466 standardised yet. As a workaround for the language detection we fall
11467 back to the DW_AT_producer string. */
11468 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11469 cu->language = language_opencl;
11470
11471 /* Similar hack for Go. */
11472 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11473 set_cu_language (DW_LANG_Go, cu);
11474
11475 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11476
11477 /* Decode line number information if present. We do this before
11478 processing child DIEs, so that the line header table is available
11479 for DW_AT_decl_file. */
11480 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11481
11482 /* Process all dies in compilation unit. */
11483 if (die->child != NULL)
11484 {
11485 child_die = die->child;
11486 while (child_die && child_die->tag)
11487 {
11488 process_die (child_die, cu);
11489 child_die = sibling_die (child_die);
11490 }
11491 }
11492
11493 /* Decode macro information, if present. Dwarf 2 macro information
11494 refers to information in the line number info statement program
11495 header, so we can only read it if we've read the header
11496 successfully. */
11497 attr = dwarf2_attr (die, DW_AT_macros, cu);
11498 if (attr == NULL)
11499 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11500 if (attr && cu->line_header)
11501 {
11502 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11503 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11504
11505 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11506 }
11507 else
11508 {
11509 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11510 if (attr && cu->line_header)
11511 {
11512 unsigned int macro_offset = DW_UNSND (attr);
11513
11514 dwarf_decode_macros (cu, macro_offset, 0);
11515 }
11516 }
11517 }
11518
11519 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11520 Create the set of symtabs used by this TU, or if this TU is sharing
11521 symtabs with another TU and the symtabs have already been created
11522 then restore those symtabs in the line header.
11523 We don't need the pc/line-number mapping for type units. */
11524
11525 static void
11526 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11527 {
11528 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11529 struct type_unit_group *tu_group;
11530 int first_time;
11531 struct attribute *attr;
11532 unsigned int i;
11533 struct signatured_type *sig_type;
11534
11535 gdb_assert (per_cu->is_debug_types);
11536 sig_type = (struct signatured_type *) per_cu;
11537
11538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11539
11540 /* If we're using .gdb_index (includes -readnow) then
11541 per_cu->type_unit_group may not have been set up yet. */
11542 if (sig_type->type_unit_group == NULL)
11543 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11544 tu_group = sig_type->type_unit_group;
11545
11546 /* If we've already processed this stmt_list there's no real need to
11547 do it again, we could fake it and just recreate the part we need
11548 (file name,index -> symtab mapping). If data shows this optimization
11549 is useful we can do it then. */
11550 first_time = tu_group->compunit_symtab == NULL;
11551
11552 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11553 debug info. */
11554 line_header_up lh;
11555 if (attr != NULL)
11556 {
11557 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11558 lh = dwarf_decode_line_header (line_offset, cu);
11559 }
11560 if (lh == NULL)
11561 {
11562 if (first_time)
11563 dwarf2_start_symtab (cu, "", NULL, 0);
11564 else
11565 {
11566 gdb_assert (tu_group->symtabs == NULL);
11567 gdb_assert (cu->builder == nullptr);
11568 struct compunit_symtab *cust = tu_group->compunit_symtab;
11569 cu->builder.reset (new struct buildsym_compunit
11570 (COMPUNIT_OBJFILE (cust), "",
11571 COMPUNIT_DIRNAME (cust),
11572 compunit_language (cust),
11573 0, cust));
11574 }
11575 return;
11576 }
11577
11578 cu->line_header = lh.release ();
11579 cu->line_header_die_owner = die;
11580
11581 if (first_time)
11582 {
11583 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11584
11585 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11586 still initializing it, and our caller (a few levels up)
11587 process_full_type_unit still needs to know if this is the first
11588 time. */
11589
11590 tu_group->num_symtabs = cu->line_header->file_names.size ();
11591 tu_group->symtabs = XNEWVEC (struct symtab *,
11592 cu->line_header->file_names.size ());
11593
11594 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11595 {
11596 file_entry &fe = cu->line_header->file_names[i];
11597
11598 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11599
11600 if (cu->builder->get_current_subfile ()->symtab == NULL)
11601 {
11602 /* NOTE: start_subfile will recognize when it's been
11603 passed a file it has already seen. So we can't
11604 assume there's a simple mapping from
11605 cu->line_header->file_names to subfiles, plus
11606 cu->line_header->file_names may contain dups. */
11607 cu->builder->get_current_subfile ()->symtab
11608 = allocate_symtab (cust,
11609 cu->builder->get_current_subfile ()->name);
11610 }
11611
11612 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11613 tu_group->symtabs[i] = fe.symtab;
11614 }
11615 }
11616 else
11617 {
11618 gdb_assert (cu->builder == nullptr);
11619 struct compunit_symtab *cust = tu_group->compunit_symtab;
11620 cu->builder.reset (new struct buildsym_compunit
11621 (COMPUNIT_OBJFILE (cust), "",
11622 COMPUNIT_DIRNAME (cust),
11623 compunit_language (cust),
11624 0, cust));
11625
11626 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11627 {
11628 file_entry &fe = cu->line_header->file_names[i];
11629
11630 fe.symtab = tu_group->symtabs[i];
11631 }
11632 }
11633
11634 /* The main symtab is allocated last. Type units don't have DW_AT_name
11635 so they don't have a "real" (so to speak) symtab anyway.
11636 There is later code that will assign the main symtab to all symbols
11637 that don't have one. We need to handle the case of a symbol with a
11638 missing symtab (DW_AT_decl_file) anyway. */
11639 }
11640
11641 /* Process DW_TAG_type_unit.
11642 For TUs we want to skip the first top level sibling if it's not the
11643 actual type being defined by this TU. In this case the first top
11644 level sibling is there to provide context only. */
11645
11646 static void
11647 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11648 {
11649 struct die_info *child_die;
11650
11651 prepare_one_comp_unit (cu, die, language_minimal);
11652
11653 /* Initialize (or reinitialize) the machinery for building symtabs.
11654 We do this before processing child DIEs, so that the line header table
11655 is available for DW_AT_decl_file. */
11656 setup_type_unit_groups (die, cu);
11657
11658 if (die->child != NULL)
11659 {
11660 child_die = die->child;
11661 while (child_die && child_die->tag)
11662 {
11663 process_die (child_die, cu);
11664 child_die = sibling_die (child_die);
11665 }
11666 }
11667 }
11668 \f
11669 /* DWO/DWP files.
11670
11671 http://gcc.gnu.org/wiki/DebugFission
11672 http://gcc.gnu.org/wiki/DebugFissionDWP
11673
11674 To simplify handling of both DWO files ("object" files with the DWARF info)
11675 and DWP files (a file with the DWOs packaged up into one file), we treat
11676 DWP files as having a collection of virtual DWO files. */
11677
11678 static hashval_t
11679 hash_dwo_file (const void *item)
11680 {
11681 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11682 hashval_t hash;
11683
11684 hash = htab_hash_string (dwo_file->dwo_name);
11685 if (dwo_file->comp_dir != NULL)
11686 hash += htab_hash_string (dwo_file->comp_dir);
11687 return hash;
11688 }
11689
11690 static int
11691 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11692 {
11693 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11694 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11695
11696 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11697 return 0;
11698 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11699 return lhs->comp_dir == rhs->comp_dir;
11700 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11701 }
11702
11703 /* Allocate a hash table for DWO files. */
11704
11705 static htab_t
11706 allocate_dwo_file_hash_table (struct objfile *objfile)
11707 {
11708 return htab_create_alloc_ex (41,
11709 hash_dwo_file,
11710 eq_dwo_file,
11711 NULL,
11712 &objfile->objfile_obstack,
11713 hashtab_obstack_allocate,
11714 dummy_obstack_deallocate);
11715 }
11716
11717 /* Lookup DWO file DWO_NAME. */
11718
11719 static void **
11720 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11721 const char *dwo_name,
11722 const char *comp_dir)
11723 {
11724 struct dwo_file find_entry;
11725 void **slot;
11726
11727 if (dwarf2_per_objfile->dwo_files == NULL)
11728 dwarf2_per_objfile->dwo_files
11729 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11730
11731 memset (&find_entry, 0, sizeof (find_entry));
11732 find_entry.dwo_name = dwo_name;
11733 find_entry.comp_dir = comp_dir;
11734 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11735
11736 return slot;
11737 }
11738
11739 static hashval_t
11740 hash_dwo_unit (const void *item)
11741 {
11742 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11743
11744 /* This drops the top 32 bits of the id, but is ok for a hash. */
11745 return dwo_unit->signature;
11746 }
11747
11748 static int
11749 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11750 {
11751 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11752 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11753
11754 /* The signature is assumed to be unique within the DWO file.
11755 So while object file CU dwo_id's always have the value zero,
11756 that's OK, assuming each object file DWO file has only one CU,
11757 and that's the rule for now. */
11758 return lhs->signature == rhs->signature;
11759 }
11760
11761 /* Allocate a hash table for DWO CUs,TUs.
11762 There is one of these tables for each of CUs,TUs for each DWO file. */
11763
11764 static htab_t
11765 allocate_dwo_unit_table (struct objfile *objfile)
11766 {
11767 /* Start out with a pretty small number.
11768 Generally DWO files contain only one CU and maybe some TUs. */
11769 return htab_create_alloc_ex (3,
11770 hash_dwo_unit,
11771 eq_dwo_unit,
11772 NULL,
11773 &objfile->objfile_obstack,
11774 hashtab_obstack_allocate,
11775 dummy_obstack_deallocate);
11776 }
11777
11778 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11779
11780 struct create_dwo_cu_data
11781 {
11782 struct dwo_file *dwo_file;
11783 struct dwo_unit dwo_unit;
11784 };
11785
11786 /* die_reader_func for create_dwo_cu. */
11787
11788 static void
11789 create_dwo_cu_reader (const struct die_reader_specs *reader,
11790 const gdb_byte *info_ptr,
11791 struct die_info *comp_unit_die,
11792 int has_children,
11793 void *datap)
11794 {
11795 struct dwarf2_cu *cu = reader->cu;
11796 sect_offset sect_off = cu->per_cu->sect_off;
11797 struct dwarf2_section_info *section = cu->per_cu->section;
11798 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11799 struct dwo_file *dwo_file = data->dwo_file;
11800 struct dwo_unit *dwo_unit = &data->dwo_unit;
11801 struct attribute *attr;
11802
11803 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11804 if (attr == NULL)
11805 {
11806 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11807 " its dwo_id [in module %s]"),
11808 sect_offset_str (sect_off), dwo_file->dwo_name);
11809 return;
11810 }
11811
11812 dwo_unit->dwo_file = dwo_file;
11813 dwo_unit->signature = DW_UNSND (attr);
11814 dwo_unit->section = section;
11815 dwo_unit->sect_off = sect_off;
11816 dwo_unit->length = cu->per_cu->length;
11817
11818 if (dwarf_read_debug)
11819 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11820 sect_offset_str (sect_off),
11821 hex_string (dwo_unit->signature));
11822 }
11823
11824 /* Create the dwo_units for the CUs in a DWO_FILE.
11825 Note: This function processes DWO files only, not DWP files. */
11826
11827 static void
11828 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11829 struct dwo_file &dwo_file, dwarf2_section_info &section,
11830 htab_t &cus_htab)
11831 {
11832 struct objfile *objfile = dwarf2_per_objfile->objfile;
11833 const gdb_byte *info_ptr, *end_ptr;
11834
11835 dwarf2_read_section (objfile, &section);
11836 info_ptr = section.buffer;
11837
11838 if (info_ptr == NULL)
11839 return;
11840
11841 if (dwarf_read_debug)
11842 {
11843 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11844 get_section_name (&section),
11845 get_section_file_name (&section));
11846 }
11847
11848 end_ptr = info_ptr + section.size;
11849 while (info_ptr < end_ptr)
11850 {
11851 struct dwarf2_per_cu_data per_cu;
11852 struct create_dwo_cu_data create_dwo_cu_data;
11853 struct dwo_unit *dwo_unit;
11854 void **slot;
11855 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11856
11857 memset (&create_dwo_cu_data.dwo_unit, 0,
11858 sizeof (create_dwo_cu_data.dwo_unit));
11859 memset (&per_cu, 0, sizeof (per_cu));
11860 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11861 per_cu.is_debug_types = 0;
11862 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11863 per_cu.section = &section;
11864 create_dwo_cu_data.dwo_file = &dwo_file;
11865
11866 init_cutu_and_read_dies_no_follow (
11867 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11868 info_ptr += per_cu.length;
11869
11870 // If the unit could not be parsed, skip it.
11871 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11872 continue;
11873
11874 if (cus_htab == NULL)
11875 cus_htab = allocate_dwo_unit_table (objfile);
11876
11877 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11878 *dwo_unit = create_dwo_cu_data.dwo_unit;
11879 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11880 gdb_assert (slot != NULL);
11881 if (*slot != NULL)
11882 {
11883 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11884 sect_offset dup_sect_off = dup_cu->sect_off;
11885
11886 complaint (_("debug cu entry at offset %s is duplicate to"
11887 " the entry at offset %s, signature %s"),
11888 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11889 hex_string (dwo_unit->signature));
11890 }
11891 *slot = (void *)dwo_unit;
11892 }
11893 }
11894
11895 /* DWP file .debug_{cu,tu}_index section format:
11896 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11897
11898 DWP Version 1:
11899
11900 Both index sections have the same format, and serve to map a 64-bit
11901 signature to a set of section numbers. Each section begins with a header,
11902 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11903 indexes, and a pool of 32-bit section numbers. The index sections will be
11904 aligned at 8-byte boundaries in the file.
11905
11906 The index section header consists of:
11907
11908 V, 32 bit version number
11909 -, 32 bits unused
11910 N, 32 bit number of compilation units or type units in the index
11911 M, 32 bit number of slots in the hash table
11912
11913 Numbers are recorded using the byte order of the application binary.
11914
11915 The hash table begins at offset 16 in the section, and consists of an array
11916 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11917 order of the application binary). Unused slots in the hash table are 0.
11918 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11919
11920 The parallel table begins immediately after the hash table
11921 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11922 array of 32-bit indexes (using the byte order of the application binary),
11923 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11924 table contains a 32-bit index into the pool of section numbers. For unused
11925 hash table slots, the corresponding entry in the parallel table will be 0.
11926
11927 The pool of section numbers begins immediately following the hash table
11928 (at offset 16 + 12 * M from the beginning of the section). The pool of
11929 section numbers consists of an array of 32-bit words (using the byte order
11930 of the application binary). Each item in the array is indexed starting
11931 from 0. The hash table entry provides the index of the first section
11932 number in the set. Additional section numbers in the set follow, and the
11933 set is terminated by a 0 entry (section number 0 is not used in ELF).
11934
11935 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11936 section must be the first entry in the set, and the .debug_abbrev.dwo must
11937 be the second entry. Other members of the set may follow in any order.
11938
11939 ---
11940
11941 DWP Version 2:
11942
11943 DWP Version 2 combines all the .debug_info, etc. sections into one,
11944 and the entries in the index tables are now offsets into these sections.
11945 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11946 section.
11947
11948 Index Section Contents:
11949 Header
11950 Hash Table of Signatures dwp_hash_table.hash_table
11951 Parallel Table of Indices dwp_hash_table.unit_table
11952 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11953 Table of Section Sizes dwp_hash_table.v2.sizes
11954
11955 The index section header consists of:
11956
11957 V, 32 bit version number
11958 L, 32 bit number of columns in the table of section offsets
11959 N, 32 bit number of compilation units or type units in the index
11960 M, 32 bit number of slots in the hash table
11961
11962 Numbers are recorded using the byte order of the application binary.
11963
11964 The hash table has the same format as version 1.
11965 The parallel table of indices has the same format as version 1,
11966 except that the entries are origin-1 indices into the table of sections
11967 offsets and the table of section sizes.
11968
11969 The table of offsets begins immediately following the parallel table
11970 (at offset 16 + 12 * M from the beginning of the section). The table is
11971 a two-dimensional array of 32-bit words (using the byte order of the
11972 application binary), with L columns and N+1 rows, in row-major order.
11973 Each row in the array is indexed starting from 0. The first row provides
11974 a key to the remaining rows: each column in this row provides an identifier
11975 for a debug section, and the offsets in the same column of subsequent rows
11976 refer to that section. The section identifiers are:
11977
11978 DW_SECT_INFO 1 .debug_info.dwo
11979 DW_SECT_TYPES 2 .debug_types.dwo
11980 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11981 DW_SECT_LINE 4 .debug_line.dwo
11982 DW_SECT_LOC 5 .debug_loc.dwo
11983 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11984 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11985 DW_SECT_MACRO 8 .debug_macro.dwo
11986
11987 The offsets provided by the CU and TU index sections are the base offsets
11988 for the contributions made by each CU or TU to the corresponding section
11989 in the package file. Each CU and TU header contains an abbrev_offset
11990 field, used to find the abbreviations table for that CU or TU within the
11991 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11992 be interpreted as relative to the base offset given in the index section.
11993 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11994 should be interpreted as relative to the base offset for .debug_line.dwo,
11995 and offsets into other debug sections obtained from DWARF attributes should
11996 also be interpreted as relative to the corresponding base offset.
11997
11998 The table of sizes begins immediately following the table of offsets.
11999 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12000 with L columns and N rows, in row-major order. Each row in the array is
12001 indexed starting from 1 (row 0 is shared by the two tables).
12002
12003 ---
12004
12005 Hash table lookup is handled the same in version 1 and 2:
12006
12007 We assume that N and M will not exceed 2^32 - 1.
12008 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12009
12010 Given a 64-bit compilation unit signature or a type signature S, an entry
12011 in the hash table is located as follows:
12012
12013 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12014 the low-order k bits all set to 1.
12015
12016 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12017
12018 3) If the hash table entry at index H matches the signature, use that
12019 entry. If the hash table entry at index H is unused (all zeroes),
12020 terminate the search: the signature is not present in the table.
12021
12022 4) Let H = (H + H') modulo M. Repeat at Step 3.
12023
12024 Because M > N and H' and M are relatively prime, the search is guaranteed
12025 to stop at an unused slot or find the match. */
12026
12027 /* Create a hash table to map DWO IDs to their CU/TU entry in
12028 .debug_{info,types}.dwo in DWP_FILE.
12029 Returns NULL if there isn't one.
12030 Note: This function processes DWP files only, not DWO files. */
12031
12032 static struct dwp_hash_table *
12033 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12034 struct dwp_file *dwp_file, int is_debug_types)
12035 {
12036 struct objfile *objfile = dwarf2_per_objfile->objfile;
12037 bfd *dbfd = dwp_file->dbfd.get ();
12038 const gdb_byte *index_ptr, *index_end;
12039 struct dwarf2_section_info *index;
12040 uint32_t version, nr_columns, nr_units, nr_slots;
12041 struct dwp_hash_table *htab;
12042
12043 if (is_debug_types)
12044 index = &dwp_file->sections.tu_index;
12045 else
12046 index = &dwp_file->sections.cu_index;
12047
12048 if (dwarf2_section_empty_p (index))
12049 return NULL;
12050 dwarf2_read_section (objfile, index);
12051
12052 index_ptr = index->buffer;
12053 index_end = index_ptr + index->size;
12054
12055 version = read_4_bytes (dbfd, index_ptr);
12056 index_ptr += 4;
12057 if (version == 2)
12058 nr_columns = read_4_bytes (dbfd, index_ptr);
12059 else
12060 nr_columns = 0;
12061 index_ptr += 4;
12062 nr_units = read_4_bytes (dbfd, index_ptr);
12063 index_ptr += 4;
12064 nr_slots = read_4_bytes (dbfd, index_ptr);
12065 index_ptr += 4;
12066
12067 if (version != 1 && version != 2)
12068 {
12069 error (_("Dwarf Error: unsupported DWP file version (%s)"
12070 " [in module %s]"),
12071 pulongest (version), dwp_file->name);
12072 }
12073 if (nr_slots != (nr_slots & -nr_slots))
12074 {
12075 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12076 " is not power of 2 [in module %s]"),
12077 pulongest (nr_slots), dwp_file->name);
12078 }
12079
12080 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12081 htab->version = version;
12082 htab->nr_columns = nr_columns;
12083 htab->nr_units = nr_units;
12084 htab->nr_slots = nr_slots;
12085 htab->hash_table = index_ptr;
12086 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12087
12088 /* Exit early if the table is empty. */
12089 if (nr_slots == 0 || nr_units == 0
12090 || (version == 2 && nr_columns == 0))
12091 {
12092 /* All must be zero. */
12093 if (nr_slots != 0 || nr_units != 0
12094 || (version == 2 && nr_columns != 0))
12095 {
12096 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12097 " all zero [in modules %s]"),
12098 dwp_file->name);
12099 }
12100 return htab;
12101 }
12102
12103 if (version == 1)
12104 {
12105 htab->section_pool.v1.indices =
12106 htab->unit_table + sizeof (uint32_t) * nr_slots;
12107 /* It's harder to decide whether the section is too small in v1.
12108 V1 is deprecated anyway so we punt. */
12109 }
12110 else
12111 {
12112 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12113 int *ids = htab->section_pool.v2.section_ids;
12114 /* Reverse map for error checking. */
12115 int ids_seen[DW_SECT_MAX + 1];
12116 int i;
12117
12118 if (nr_columns < 2)
12119 {
12120 error (_("Dwarf Error: bad DWP hash table, too few columns"
12121 " in section table [in module %s]"),
12122 dwp_file->name);
12123 }
12124 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12125 {
12126 error (_("Dwarf Error: bad DWP hash table, too many columns"
12127 " in section table [in module %s]"),
12128 dwp_file->name);
12129 }
12130 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12131 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12132 for (i = 0; i < nr_columns; ++i)
12133 {
12134 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12135
12136 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12137 {
12138 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12139 " in section table [in module %s]"),
12140 id, dwp_file->name);
12141 }
12142 if (ids_seen[id] != -1)
12143 {
12144 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12145 " id %d in section table [in module %s]"),
12146 id, dwp_file->name);
12147 }
12148 ids_seen[id] = i;
12149 ids[i] = id;
12150 }
12151 /* Must have exactly one info or types section. */
12152 if (((ids_seen[DW_SECT_INFO] != -1)
12153 + (ids_seen[DW_SECT_TYPES] != -1))
12154 != 1)
12155 {
12156 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12157 " DWO info/types section [in module %s]"),
12158 dwp_file->name);
12159 }
12160 /* Must have an abbrev section. */
12161 if (ids_seen[DW_SECT_ABBREV] == -1)
12162 {
12163 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12164 " section [in module %s]"),
12165 dwp_file->name);
12166 }
12167 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12168 htab->section_pool.v2.sizes =
12169 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12170 * nr_units * nr_columns);
12171 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12172 * nr_units * nr_columns))
12173 > index_end)
12174 {
12175 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12176 " [in module %s]"),
12177 dwp_file->name);
12178 }
12179 }
12180
12181 return htab;
12182 }
12183
12184 /* Update SECTIONS with the data from SECTP.
12185
12186 This function is like the other "locate" section routines that are
12187 passed to bfd_map_over_sections, but in this context the sections to
12188 read comes from the DWP V1 hash table, not the full ELF section table.
12189
12190 The result is non-zero for success, or zero if an error was found. */
12191
12192 static int
12193 locate_v1_virtual_dwo_sections (asection *sectp,
12194 struct virtual_v1_dwo_sections *sections)
12195 {
12196 const struct dwop_section_names *names = &dwop_section_names;
12197
12198 if (section_is_p (sectp->name, &names->abbrev_dwo))
12199 {
12200 /* There can be only one. */
12201 if (sections->abbrev.s.section != NULL)
12202 return 0;
12203 sections->abbrev.s.section = sectp;
12204 sections->abbrev.size = bfd_get_section_size (sectp);
12205 }
12206 else if (section_is_p (sectp->name, &names->info_dwo)
12207 || section_is_p (sectp->name, &names->types_dwo))
12208 {
12209 /* There can be only one. */
12210 if (sections->info_or_types.s.section != NULL)
12211 return 0;
12212 sections->info_or_types.s.section = sectp;
12213 sections->info_or_types.size = bfd_get_section_size (sectp);
12214 }
12215 else if (section_is_p (sectp->name, &names->line_dwo))
12216 {
12217 /* There can be only one. */
12218 if (sections->line.s.section != NULL)
12219 return 0;
12220 sections->line.s.section = sectp;
12221 sections->line.size = bfd_get_section_size (sectp);
12222 }
12223 else if (section_is_p (sectp->name, &names->loc_dwo))
12224 {
12225 /* There can be only one. */
12226 if (sections->loc.s.section != NULL)
12227 return 0;
12228 sections->loc.s.section = sectp;
12229 sections->loc.size = bfd_get_section_size (sectp);
12230 }
12231 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12232 {
12233 /* There can be only one. */
12234 if (sections->macinfo.s.section != NULL)
12235 return 0;
12236 sections->macinfo.s.section = sectp;
12237 sections->macinfo.size = bfd_get_section_size (sectp);
12238 }
12239 else if (section_is_p (sectp->name, &names->macro_dwo))
12240 {
12241 /* There can be only one. */
12242 if (sections->macro.s.section != NULL)
12243 return 0;
12244 sections->macro.s.section = sectp;
12245 sections->macro.size = bfd_get_section_size (sectp);
12246 }
12247 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12248 {
12249 /* There can be only one. */
12250 if (sections->str_offsets.s.section != NULL)
12251 return 0;
12252 sections->str_offsets.s.section = sectp;
12253 sections->str_offsets.size = bfd_get_section_size (sectp);
12254 }
12255 else
12256 {
12257 /* No other kind of section is valid. */
12258 return 0;
12259 }
12260
12261 return 1;
12262 }
12263
12264 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12265 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12266 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12267 This is for DWP version 1 files. */
12268
12269 static struct dwo_unit *
12270 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12271 struct dwp_file *dwp_file,
12272 uint32_t unit_index,
12273 const char *comp_dir,
12274 ULONGEST signature, int is_debug_types)
12275 {
12276 struct objfile *objfile = dwarf2_per_objfile->objfile;
12277 const struct dwp_hash_table *dwp_htab =
12278 is_debug_types ? dwp_file->tus : dwp_file->cus;
12279 bfd *dbfd = dwp_file->dbfd.get ();
12280 const char *kind = is_debug_types ? "TU" : "CU";
12281 struct dwo_file *dwo_file;
12282 struct dwo_unit *dwo_unit;
12283 struct virtual_v1_dwo_sections sections;
12284 void **dwo_file_slot;
12285 int i;
12286
12287 gdb_assert (dwp_file->version == 1);
12288
12289 if (dwarf_read_debug)
12290 {
12291 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12292 kind,
12293 pulongest (unit_index), hex_string (signature),
12294 dwp_file->name);
12295 }
12296
12297 /* Fetch the sections of this DWO unit.
12298 Put a limit on the number of sections we look for so that bad data
12299 doesn't cause us to loop forever. */
12300
12301 #define MAX_NR_V1_DWO_SECTIONS \
12302 (1 /* .debug_info or .debug_types */ \
12303 + 1 /* .debug_abbrev */ \
12304 + 1 /* .debug_line */ \
12305 + 1 /* .debug_loc */ \
12306 + 1 /* .debug_str_offsets */ \
12307 + 1 /* .debug_macro or .debug_macinfo */ \
12308 + 1 /* trailing zero */)
12309
12310 memset (&sections, 0, sizeof (sections));
12311
12312 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12313 {
12314 asection *sectp;
12315 uint32_t section_nr =
12316 read_4_bytes (dbfd,
12317 dwp_htab->section_pool.v1.indices
12318 + (unit_index + i) * sizeof (uint32_t));
12319
12320 if (section_nr == 0)
12321 break;
12322 if (section_nr >= dwp_file->num_sections)
12323 {
12324 error (_("Dwarf Error: bad DWP hash table, section number too large"
12325 " [in module %s]"),
12326 dwp_file->name);
12327 }
12328
12329 sectp = dwp_file->elf_sections[section_nr];
12330 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12331 {
12332 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12333 " [in module %s]"),
12334 dwp_file->name);
12335 }
12336 }
12337
12338 if (i < 2
12339 || dwarf2_section_empty_p (&sections.info_or_types)
12340 || dwarf2_section_empty_p (&sections.abbrev))
12341 {
12342 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12343 " [in module %s]"),
12344 dwp_file->name);
12345 }
12346 if (i == MAX_NR_V1_DWO_SECTIONS)
12347 {
12348 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12349 " [in module %s]"),
12350 dwp_file->name);
12351 }
12352
12353 /* It's easier for the rest of the code if we fake a struct dwo_file and
12354 have dwo_unit "live" in that. At least for now.
12355
12356 The DWP file can be made up of a random collection of CUs and TUs.
12357 However, for each CU + set of TUs that came from the same original DWO
12358 file, we can combine them back into a virtual DWO file to save space
12359 (fewer struct dwo_file objects to allocate). Remember that for really
12360 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12361
12362 std::string virtual_dwo_name =
12363 string_printf ("virtual-dwo/%d-%d-%d-%d",
12364 get_section_id (&sections.abbrev),
12365 get_section_id (&sections.line),
12366 get_section_id (&sections.loc),
12367 get_section_id (&sections.str_offsets));
12368 /* Can we use an existing virtual DWO file? */
12369 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12370 virtual_dwo_name.c_str (),
12371 comp_dir);
12372 /* Create one if necessary. */
12373 if (*dwo_file_slot == NULL)
12374 {
12375 if (dwarf_read_debug)
12376 {
12377 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12378 virtual_dwo_name.c_str ());
12379 }
12380 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12381 dwo_file->dwo_name
12382 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12383 virtual_dwo_name.c_str (),
12384 virtual_dwo_name.size ());
12385 dwo_file->comp_dir = comp_dir;
12386 dwo_file->sections.abbrev = sections.abbrev;
12387 dwo_file->sections.line = sections.line;
12388 dwo_file->sections.loc = sections.loc;
12389 dwo_file->sections.macinfo = sections.macinfo;
12390 dwo_file->sections.macro = sections.macro;
12391 dwo_file->sections.str_offsets = sections.str_offsets;
12392 /* The "str" section is global to the entire DWP file. */
12393 dwo_file->sections.str = dwp_file->sections.str;
12394 /* The info or types section is assigned below to dwo_unit,
12395 there's no need to record it in dwo_file.
12396 Also, we can't simply record type sections in dwo_file because
12397 we record a pointer into the vector in dwo_unit. As we collect more
12398 types we'll grow the vector and eventually have to reallocate space
12399 for it, invalidating all copies of pointers into the previous
12400 contents. */
12401 *dwo_file_slot = dwo_file;
12402 }
12403 else
12404 {
12405 if (dwarf_read_debug)
12406 {
12407 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12408 virtual_dwo_name.c_str ());
12409 }
12410 dwo_file = (struct dwo_file *) *dwo_file_slot;
12411 }
12412
12413 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12414 dwo_unit->dwo_file = dwo_file;
12415 dwo_unit->signature = signature;
12416 dwo_unit->section =
12417 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12418 *dwo_unit->section = sections.info_or_types;
12419 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12420
12421 return dwo_unit;
12422 }
12423
12424 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12425 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12426 piece within that section used by a TU/CU, return a virtual section
12427 of just that piece. */
12428
12429 static struct dwarf2_section_info
12430 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12431 struct dwarf2_section_info *section,
12432 bfd_size_type offset, bfd_size_type size)
12433 {
12434 struct dwarf2_section_info result;
12435 asection *sectp;
12436
12437 gdb_assert (section != NULL);
12438 gdb_assert (!section->is_virtual);
12439
12440 memset (&result, 0, sizeof (result));
12441 result.s.containing_section = section;
12442 result.is_virtual = 1;
12443
12444 if (size == 0)
12445 return result;
12446
12447 sectp = get_section_bfd_section (section);
12448
12449 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12450 bounds of the real section. This is a pretty-rare event, so just
12451 flag an error (easier) instead of a warning and trying to cope. */
12452 if (sectp == NULL
12453 || offset + size > bfd_get_section_size (sectp))
12454 {
12455 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12456 " in section %s [in module %s]"),
12457 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12458 objfile_name (dwarf2_per_objfile->objfile));
12459 }
12460
12461 result.virtual_offset = offset;
12462 result.size = size;
12463 return result;
12464 }
12465
12466 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12467 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12468 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12469 This is for DWP version 2 files. */
12470
12471 static struct dwo_unit *
12472 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12473 struct dwp_file *dwp_file,
12474 uint32_t unit_index,
12475 const char *comp_dir,
12476 ULONGEST signature, int is_debug_types)
12477 {
12478 struct objfile *objfile = dwarf2_per_objfile->objfile;
12479 const struct dwp_hash_table *dwp_htab =
12480 is_debug_types ? dwp_file->tus : dwp_file->cus;
12481 bfd *dbfd = dwp_file->dbfd.get ();
12482 const char *kind = is_debug_types ? "TU" : "CU";
12483 struct dwo_file *dwo_file;
12484 struct dwo_unit *dwo_unit;
12485 struct virtual_v2_dwo_sections sections;
12486 void **dwo_file_slot;
12487 int i;
12488
12489 gdb_assert (dwp_file->version == 2);
12490
12491 if (dwarf_read_debug)
12492 {
12493 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12494 kind,
12495 pulongest (unit_index), hex_string (signature),
12496 dwp_file->name);
12497 }
12498
12499 /* Fetch the section offsets of this DWO unit. */
12500
12501 memset (&sections, 0, sizeof (sections));
12502
12503 for (i = 0; i < dwp_htab->nr_columns; ++i)
12504 {
12505 uint32_t offset = read_4_bytes (dbfd,
12506 dwp_htab->section_pool.v2.offsets
12507 + (((unit_index - 1) * dwp_htab->nr_columns
12508 + i)
12509 * sizeof (uint32_t)));
12510 uint32_t size = read_4_bytes (dbfd,
12511 dwp_htab->section_pool.v2.sizes
12512 + (((unit_index - 1) * dwp_htab->nr_columns
12513 + i)
12514 * sizeof (uint32_t)));
12515
12516 switch (dwp_htab->section_pool.v2.section_ids[i])
12517 {
12518 case DW_SECT_INFO:
12519 case DW_SECT_TYPES:
12520 sections.info_or_types_offset = offset;
12521 sections.info_or_types_size = size;
12522 break;
12523 case DW_SECT_ABBREV:
12524 sections.abbrev_offset = offset;
12525 sections.abbrev_size = size;
12526 break;
12527 case DW_SECT_LINE:
12528 sections.line_offset = offset;
12529 sections.line_size = size;
12530 break;
12531 case DW_SECT_LOC:
12532 sections.loc_offset = offset;
12533 sections.loc_size = size;
12534 break;
12535 case DW_SECT_STR_OFFSETS:
12536 sections.str_offsets_offset = offset;
12537 sections.str_offsets_size = size;
12538 break;
12539 case DW_SECT_MACINFO:
12540 sections.macinfo_offset = offset;
12541 sections.macinfo_size = size;
12542 break;
12543 case DW_SECT_MACRO:
12544 sections.macro_offset = offset;
12545 sections.macro_size = size;
12546 break;
12547 }
12548 }
12549
12550 /* It's easier for the rest of the code if we fake a struct dwo_file and
12551 have dwo_unit "live" in that. At least for now.
12552
12553 The DWP file can be made up of a random collection of CUs and TUs.
12554 However, for each CU + set of TUs that came from the same original DWO
12555 file, we can combine them back into a virtual DWO file to save space
12556 (fewer struct dwo_file objects to allocate). Remember that for really
12557 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12558
12559 std::string virtual_dwo_name =
12560 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12561 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12562 (long) (sections.line_size ? sections.line_offset : 0),
12563 (long) (sections.loc_size ? sections.loc_offset : 0),
12564 (long) (sections.str_offsets_size
12565 ? sections.str_offsets_offset : 0));
12566 /* Can we use an existing virtual DWO file? */
12567 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12568 virtual_dwo_name.c_str (),
12569 comp_dir);
12570 /* Create one if necessary. */
12571 if (*dwo_file_slot == NULL)
12572 {
12573 if (dwarf_read_debug)
12574 {
12575 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12576 virtual_dwo_name.c_str ());
12577 }
12578 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12579 dwo_file->dwo_name
12580 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12581 virtual_dwo_name.c_str (),
12582 virtual_dwo_name.size ());
12583 dwo_file->comp_dir = comp_dir;
12584 dwo_file->sections.abbrev =
12585 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12586 sections.abbrev_offset, sections.abbrev_size);
12587 dwo_file->sections.line =
12588 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12589 sections.line_offset, sections.line_size);
12590 dwo_file->sections.loc =
12591 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12592 sections.loc_offset, sections.loc_size);
12593 dwo_file->sections.macinfo =
12594 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12595 sections.macinfo_offset, sections.macinfo_size);
12596 dwo_file->sections.macro =
12597 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12598 sections.macro_offset, sections.macro_size);
12599 dwo_file->sections.str_offsets =
12600 create_dwp_v2_section (dwarf2_per_objfile,
12601 &dwp_file->sections.str_offsets,
12602 sections.str_offsets_offset,
12603 sections.str_offsets_size);
12604 /* The "str" section is global to the entire DWP file. */
12605 dwo_file->sections.str = dwp_file->sections.str;
12606 /* The info or types section is assigned below to dwo_unit,
12607 there's no need to record it in dwo_file.
12608 Also, we can't simply record type sections in dwo_file because
12609 we record a pointer into the vector in dwo_unit. As we collect more
12610 types we'll grow the vector and eventually have to reallocate space
12611 for it, invalidating all copies of pointers into the previous
12612 contents. */
12613 *dwo_file_slot = dwo_file;
12614 }
12615 else
12616 {
12617 if (dwarf_read_debug)
12618 {
12619 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12620 virtual_dwo_name.c_str ());
12621 }
12622 dwo_file = (struct dwo_file *) *dwo_file_slot;
12623 }
12624
12625 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12626 dwo_unit->dwo_file = dwo_file;
12627 dwo_unit->signature = signature;
12628 dwo_unit->section =
12629 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12630 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12631 is_debug_types
12632 ? &dwp_file->sections.types
12633 : &dwp_file->sections.info,
12634 sections.info_or_types_offset,
12635 sections.info_or_types_size);
12636 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12637
12638 return dwo_unit;
12639 }
12640
12641 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12642 Returns NULL if the signature isn't found. */
12643
12644 static struct dwo_unit *
12645 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12646 struct dwp_file *dwp_file, const char *comp_dir,
12647 ULONGEST signature, int is_debug_types)
12648 {
12649 const struct dwp_hash_table *dwp_htab =
12650 is_debug_types ? dwp_file->tus : dwp_file->cus;
12651 bfd *dbfd = dwp_file->dbfd.get ();
12652 uint32_t mask = dwp_htab->nr_slots - 1;
12653 uint32_t hash = signature & mask;
12654 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12655 unsigned int i;
12656 void **slot;
12657 struct dwo_unit find_dwo_cu;
12658
12659 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12660 find_dwo_cu.signature = signature;
12661 slot = htab_find_slot (is_debug_types
12662 ? dwp_file->loaded_tus
12663 : dwp_file->loaded_cus,
12664 &find_dwo_cu, INSERT);
12665
12666 if (*slot != NULL)
12667 return (struct dwo_unit *) *slot;
12668
12669 /* Use a for loop so that we don't loop forever on bad debug info. */
12670 for (i = 0; i < dwp_htab->nr_slots; ++i)
12671 {
12672 ULONGEST signature_in_table;
12673
12674 signature_in_table =
12675 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12676 if (signature_in_table == signature)
12677 {
12678 uint32_t unit_index =
12679 read_4_bytes (dbfd,
12680 dwp_htab->unit_table + hash * sizeof (uint32_t));
12681
12682 if (dwp_file->version == 1)
12683 {
12684 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12685 dwp_file, unit_index,
12686 comp_dir, signature,
12687 is_debug_types);
12688 }
12689 else
12690 {
12691 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12692 dwp_file, unit_index,
12693 comp_dir, signature,
12694 is_debug_types);
12695 }
12696 return (struct dwo_unit *) *slot;
12697 }
12698 if (signature_in_table == 0)
12699 return NULL;
12700 hash = (hash + hash2) & mask;
12701 }
12702
12703 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12704 " [in module %s]"),
12705 dwp_file->name);
12706 }
12707
12708 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12709 Open the file specified by FILE_NAME and hand it off to BFD for
12710 preliminary analysis. Return a newly initialized bfd *, which
12711 includes a canonicalized copy of FILE_NAME.
12712 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12713 SEARCH_CWD is true if the current directory is to be searched.
12714 It will be searched before debug-file-directory.
12715 If successful, the file is added to the bfd include table of the
12716 objfile's bfd (see gdb_bfd_record_inclusion).
12717 If unable to find/open the file, return NULL.
12718 NOTE: This function is derived from symfile_bfd_open. */
12719
12720 static gdb_bfd_ref_ptr
12721 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12722 const char *file_name, int is_dwp, int search_cwd)
12723 {
12724 int desc;
12725 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12726 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12727 to debug_file_directory. */
12728 const char *search_path;
12729 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12730
12731 gdb::unique_xmalloc_ptr<char> search_path_holder;
12732 if (search_cwd)
12733 {
12734 if (*debug_file_directory != '\0')
12735 {
12736 search_path_holder.reset (concat (".", dirname_separator_string,
12737 debug_file_directory,
12738 (char *) NULL));
12739 search_path = search_path_holder.get ();
12740 }
12741 else
12742 search_path = ".";
12743 }
12744 else
12745 search_path = debug_file_directory;
12746
12747 openp_flags flags = OPF_RETURN_REALPATH;
12748 if (is_dwp)
12749 flags |= OPF_SEARCH_IN_PATH;
12750
12751 gdb::unique_xmalloc_ptr<char> absolute_name;
12752 desc = openp (search_path, flags, file_name,
12753 O_RDONLY | O_BINARY, &absolute_name);
12754 if (desc < 0)
12755 return NULL;
12756
12757 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12758 gnutarget, desc));
12759 if (sym_bfd == NULL)
12760 return NULL;
12761 bfd_set_cacheable (sym_bfd.get (), 1);
12762
12763 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12764 return NULL;
12765
12766 /* Success. Record the bfd as having been included by the objfile's bfd.
12767 This is important because things like demangled_names_hash lives in the
12768 objfile's per_bfd space and may have references to things like symbol
12769 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12770 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12771
12772 return sym_bfd;
12773 }
12774
12775 /* Try to open DWO file FILE_NAME.
12776 COMP_DIR is the DW_AT_comp_dir attribute.
12777 The result is the bfd handle of the file.
12778 If there is a problem finding or opening the file, return NULL.
12779 Upon success, the canonicalized path of the file is stored in the bfd,
12780 same as symfile_bfd_open. */
12781
12782 static gdb_bfd_ref_ptr
12783 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12784 const char *file_name, const char *comp_dir)
12785 {
12786 if (IS_ABSOLUTE_PATH (file_name))
12787 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12788 0 /*is_dwp*/, 0 /*search_cwd*/);
12789
12790 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12791
12792 if (comp_dir != NULL)
12793 {
12794 char *path_to_try = concat (comp_dir, SLASH_STRING,
12795 file_name, (char *) NULL);
12796
12797 /* NOTE: If comp_dir is a relative path, this will also try the
12798 search path, which seems useful. */
12799 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12800 path_to_try,
12801 0 /*is_dwp*/,
12802 1 /*search_cwd*/));
12803 xfree (path_to_try);
12804 if (abfd != NULL)
12805 return abfd;
12806 }
12807
12808 /* That didn't work, try debug-file-directory, which, despite its name,
12809 is a list of paths. */
12810
12811 if (*debug_file_directory == '\0')
12812 return NULL;
12813
12814 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12815 0 /*is_dwp*/, 1 /*search_cwd*/);
12816 }
12817
12818 /* This function is mapped across the sections and remembers the offset and
12819 size of each of the DWO debugging sections we are interested in. */
12820
12821 static void
12822 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12823 {
12824 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12825 const struct dwop_section_names *names = &dwop_section_names;
12826
12827 if (section_is_p (sectp->name, &names->abbrev_dwo))
12828 {
12829 dwo_sections->abbrev.s.section = sectp;
12830 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12831 }
12832 else if (section_is_p (sectp->name, &names->info_dwo))
12833 {
12834 dwo_sections->info.s.section = sectp;
12835 dwo_sections->info.size = bfd_get_section_size (sectp);
12836 }
12837 else if (section_is_p (sectp->name, &names->line_dwo))
12838 {
12839 dwo_sections->line.s.section = sectp;
12840 dwo_sections->line.size = bfd_get_section_size (sectp);
12841 }
12842 else if (section_is_p (sectp->name, &names->loc_dwo))
12843 {
12844 dwo_sections->loc.s.section = sectp;
12845 dwo_sections->loc.size = bfd_get_section_size (sectp);
12846 }
12847 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12848 {
12849 dwo_sections->macinfo.s.section = sectp;
12850 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12851 }
12852 else if (section_is_p (sectp->name, &names->macro_dwo))
12853 {
12854 dwo_sections->macro.s.section = sectp;
12855 dwo_sections->macro.size = bfd_get_section_size (sectp);
12856 }
12857 else if (section_is_p (sectp->name, &names->str_dwo))
12858 {
12859 dwo_sections->str.s.section = sectp;
12860 dwo_sections->str.size = bfd_get_section_size (sectp);
12861 }
12862 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12863 {
12864 dwo_sections->str_offsets.s.section = sectp;
12865 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12866 }
12867 else if (section_is_p (sectp->name, &names->types_dwo))
12868 {
12869 struct dwarf2_section_info type_section;
12870
12871 memset (&type_section, 0, sizeof (type_section));
12872 type_section.s.section = sectp;
12873 type_section.size = bfd_get_section_size (sectp);
12874 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12875 &type_section);
12876 }
12877 }
12878
12879 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12880 by PER_CU. This is for the non-DWP case.
12881 The result is NULL if DWO_NAME can't be found. */
12882
12883 static struct dwo_file *
12884 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12885 const char *dwo_name, const char *comp_dir)
12886 {
12887 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12888 struct objfile *objfile = dwarf2_per_objfile->objfile;
12889
12890 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12891 if (dbfd == NULL)
12892 {
12893 if (dwarf_read_debug)
12894 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12895 return NULL;
12896 }
12897
12898 /* We use a unique pointer here, despite the obstack allocation,
12899 because a dwo_file needs some cleanup if it is abandoned. */
12900 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12901 struct dwo_file));
12902 dwo_file->dwo_name = dwo_name;
12903 dwo_file->comp_dir = comp_dir;
12904 dwo_file->dbfd = dbfd.release ();
12905
12906 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12907 &dwo_file->sections);
12908
12909 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12910 dwo_file->cus);
12911
12912 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12913 dwo_file->sections.types, dwo_file->tus);
12914
12915 if (dwarf_read_debug)
12916 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12917
12918 return dwo_file.release ();
12919 }
12920
12921 /* This function is mapped across the sections and remembers the offset and
12922 size of each of the DWP debugging sections common to version 1 and 2 that
12923 we are interested in. */
12924
12925 static void
12926 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12927 void *dwp_file_ptr)
12928 {
12929 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12930 const struct dwop_section_names *names = &dwop_section_names;
12931 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12932
12933 /* Record the ELF section number for later lookup: this is what the
12934 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12935 gdb_assert (elf_section_nr < dwp_file->num_sections);
12936 dwp_file->elf_sections[elf_section_nr] = sectp;
12937
12938 /* Look for specific sections that we need. */
12939 if (section_is_p (sectp->name, &names->str_dwo))
12940 {
12941 dwp_file->sections.str.s.section = sectp;
12942 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12943 }
12944 else if (section_is_p (sectp->name, &names->cu_index))
12945 {
12946 dwp_file->sections.cu_index.s.section = sectp;
12947 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12948 }
12949 else if (section_is_p (sectp->name, &names->tu_index))
12950 {
12951 dwp_file->sections.tu_index.s.section = sectp;
12952 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12953 }
12954 }
12955
12956 /* This function is mapped across the sections and remembers the offset and
12957 size of each of the DWP version 2 debugging sections that we are interested
12958 in. This is split into a separate function because we don't know if we
12959 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12960
12961 static void
12962 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12963 {
12964 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12965 const struct dwop_section_names *names = &dwop_section_names;
12966 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12967
12968 /* Record the ELF section number for later lookup: this is what the
12969 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12970 gdb_assert (elf_section_nr < dwp_file->num_sections);
12971 dwp_file->elf_sections[elf_section_nr] = sectp;
12972
12973 /* Look for specific sections that we need. */
12974 if (section_is_p (sectp->name, &names->abbrev_dwo))
12975 {
12976 dwp_file->sections.abbrev.s.section = sectp;
12977 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12978 }
12979 else if (section_is_p (sectp->name, &names->info_dwo))
12980 {
12981 dwp_file->sections.info.s.section = sectp;
12982 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12983 }
12984 else if (section_is_p (sectp->name, &names->line_dwo))
12985 {
12986 dwp_file->sections.line.s.section = sectp;
12987 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12988 }
12989 else if (section_is_p (sectp->name, &names->loc_dwo))
12990 {
12991 dwp_file->sections.loc.s.section = sectp;
12992 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12993 }
12994 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12995 {
12996 dwp_file->sections.macinfo.s.section = sectp;
12997 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12998 }
12999 else if (section_is_p (sectp->name, &names->macro_dwo))
13000 {
13001 dwp_file->sections.macro.s.section = sectp;
13002 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13003 }
13004 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13005 {
13006 dwp_file->sections.str_offsets.s.section = sectp;
13007 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13008 }
13009 else if (section_is_p (sectp->name, &names->types_dwo))
13010 {
13011 dwp_file->sections.types.s.section = sectp;
13012 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13013 }
13014 }
13015
13016 /* Hash function for dwp_file loaded CUs/TUs. */
13017
13018 static hashval_t
13019 hash_dwp_loaded_cutus (const void *item)
13020 {
13021 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13022
13023 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13024 return dwo_unit->signature;
13025 }
13026
13027 /* Equality function for dwp_file loaded CUs/TUs. */
13028
13029 static int
13030 eq_dwp_loaded_cutus (const void *a, const void *b)
13031 {
13032 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13033 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13034
13035 return dua->signature == dub->signature;
13036 }
13037
13038 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13039
13040 static htab_t
13041 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13042 {
13043 return htab_create_alloc_ex (3,
13044 hash_dwp_loaded_cutus,
13045 eq_dwp_loaded_cutus,
13046 NULL,
13047 &objfile->objfile_obstack,
13048 hashtab_obstack_allocate,
13049 dummy_obstack_deallocate);
13050 }
13051
13052 /* Try to open DWP file FILE_NAME.
13053 The result is the bfd handle of the file.
13054 If there is a problem finding or opening the file, return NULL.
13055 Upon success, the canonicalized path of the file is stored in the bfd,
13056 same as symfile_bfd_open. */
13057
13058 static gdb_bfd_ref_ptr
13059 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13060 const char *file_name)
13061 {
13062 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13063 1 /*is_dwp*/,
13064 1 /*search_cwd*/));
13065 if (abfd != NULL)
13066 return abfd;
13067
13068 /* Work around upstream bug 15652.
13069 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13070 [Whether that's a "bug" is debatable, but it is getting in our way.]
13071 We have no real idea where the dwp file is, because gdb's realpath-ing
13072 of the executable's path may have discarded the needed info.
13073 [IWBN if the dwp file name was recorded in the executable, akin to
13074 .gnu_debuglink, but that doesn't exist yet.]
13075 Strip the directory from FILE_NAME and search again. */
13076 if (*debug_file_directory != '\0')
13077 {
13078 /* Don't implicitly search the current directory here.
13079 If the user wants to search "." to handle this case,
13080 it must be added to debug-file-directory. */
13081 return try_open_dwop_file (dwarf2_per_objfile,
13082 lbasename (file_name), 1 /*is_dwp*/,
13083 0 /*search_cwd*/);
13084 }
13085
13086 return NULL;
13087 }
13088
13089 /* Initialize the use of the DWP file for the current objfile.
13090 By convention the name of the DWP file is ${objfile}.dwp.
13091 The result is NULL if it can't be found. */
13092
13093 static std::unique_ptr<struct dwp_file>
13094 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13095 {
13096 struct objfile *objfile = dwarf2_per_objfile->objfile;
13097
13098 /* Try to find first .dwp for the binary file before any symbolic links
13099 resolving. */
13100
13101 /* If the objfile is a debug file, find the name of the real binary
13102 file and get the name of dwp file from there. */
13103 std::string dwp_name;
13104 if (objfile->separate_debug_objfile_backlink != NULL)
13105 {
13106 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13107 const char *backlink_basename = lbasename (backlink->original_name);
13108
13109 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13110 }
13111 else
13112 dwp_name = objfile->original_name;
13113
13114 dwp_name += ".dwp";
13115
13116 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13117 if (dbfd == NULL
13118 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13119 {
13120 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13121 dwp_name = objfile_name (objfile);
13122 dwp_name += ".dwp";
13123 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13124 }
13125
13126 if (dbfd == NULL)
13127 {
13128 if (dwarf_read_debug)
13129 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13130 return std::unique_ptr<dwp_file> ();
13131 }
13132
13133 const char *name = bfd_get_filename (dbfd.get ());
13134 std::unique_ptr<struct dwp_file> dwp_file
13135 (new struct dwp_file (name, std::move (dbfd)));
13136
13137 /* +1: section 0 is unused */
13138 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13139 dwp_file->elf_sections =
13140 OBSTACK_CALLOC (&objfile->objfile_obstack,
13141 dwp_file->num_sections, asection *);
13142
13143 bfd_map_over_sections (dwp_file->dbfd.get (),
13144 dwarf2_locate_common_dwp_sections,
13145 dwp_file.get ());
13146
13147 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13148 0);
13149
13150 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13151 1);
13152
13153 /* The DWP file version is stored in the hash table. Oh well. */
13154 if (dwp_file->cus && dwp_file->tus
13155 && dwp_file->cus->version != dwp_file->tus->version)
13156 {
13157 /* Technically speaking, we should try to limp along, but this is
13158 pretty bizarre. We use pulongest here because that's the established
13159 portability solution (e.g, we cannot use %u for uint32_t). */
13160 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13161 " TU version %s [in DWP file %s]"),
13162 pulongest (dwp_file->cus->version),
13163 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13164 }
13165
13166 if (dwp_file->cus)
13167 dwp_file->version = dwp_file->cus->version;
13168 else if (dwp_file->tus)
13169 dwp_file->version = dwp_file->tus->version;
13170 else
13171 dwp_file->version = 2;
13172
13173 if (dwp_file->version == 2)
13174 bfd_map_over_sections (dwp_file->dbfd.get (),
13175 dwarf2_locate_v2_dwp_sections,
13176 dwp_file.get ());
13177
13178 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13179 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13180
13181 if (dwarf_read_debug)
13182 {
13183 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13184 fprintf_unfiltered (gdb_stdlog,
13185 " %s CUs, %s TUs\n",
13186 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13187 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13188 }
13189
13190 return dwp_file;
13191 }
13192
13193 /* Wrapper around open_and_init_dwp_file, only open it once. */
13194
13195 static struct dwp_file *
13196 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13197 {
13198 if (! dwarf2_per_objfile->dwp_checked)
13199 {
13200 dwarf2_per_objfile->dwp_file
13201 = open_and_init_dwp_file (dwarf2_per_objfile);
13202 dwarf2_per_objfile->dwp_checked = 1;
13203 }
13204 return dwarf2_per_objfile->dwp_file.get ();
13205 }
13206
13207 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13208 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13209 or in the DWP file for the objfile, referenced by THIS_UNIT.
13210 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13211 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13212
13213 This is called, for example, when wanting to read a variable with a
13214 complex location. Therefore we don't want to do file i/o for every call.
13215 Therefore we don't want to look for a DWO file on every call.
13216 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13217 then we check if we've already seen DWO_NAME, and only THEN do we check
13218 for a DWO file.
13219
13220 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13221 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13222
13223 static struct dwo_unit *
13224 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13225 const char *dwo_name, const char *comp_dir,
13226 ULONGEST signature, int is_debug_types)
13227 {
13228 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13229 struct objfile *objfile = dwarf2_per_objfile->objfile;
13230 const char *kind = is_debug_types ? "TU" : "CU";
13231 void **dwo_file_slot;
13232 struct dwo_file *dwo_file;
13233 struct dwp_file *dwp_file;
13234
13235 /* First see if there's a DWP file.
13236 If we have a DWP file but didn't find the DWO inside it, don't
13237 look for the original DWO file. It makes gdb behave differently
13238 depending on whether one is debugging in the build tree. */
13239
13240 dwp_file = get_dwp_file (dwarf2_per_objfile);
13241 if (dwp_file != NULL)
13242 {
13243 const struct dwp_hash_table *dwp_htab =
13244 is_debug_types ? dwp_file->tus : dwp_file->cus;
13245
13246 if (dwp_htab != NULL)
13247 {
13248 struct dwo_unit *dwo_cutu =
13249 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13250 signature, is_debug_types);
13251
13252 if (dwo_cutu != NULL)
13253 {
13254 if (dwarf_read_debug)
13255 {
13256 fprintf_unfiltered (gdb_stdlog,
13257 "Virtual DWO %s %s found: @%s\n",
13258 kind, hex_string (signature),
13259 host_address_to_string (dwo_cutu));
13260 }
13261 return dwo_cutu;
13262 }
13263 }
13264 }
13265 else
13266 {
13267 /* No DWP file, look for the DWO file. */
13268
13269 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13270 dwo_name, comp_dir);
13271 if (*dwo_file_slot == NULL)
13272 {
13273 /* Read in the file and build a table of the CUs/TUs it contains. */
13274 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13275 }
13276 /* NOTE: This will be NULL if unable to open the file. */
13277 dwo_file = (struct dwo_file *) *dwo_file_slot;
13278
13279 if (dwo_file != NULL)
13280 {
13281 struct dwo_unit *dwo_cutu = NULL;
13282
13283 if (is_debug_types && dwo_file->tus)
13284 {
13285 struct dwo_unit find_dwo_cutu;
13286
13287 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13288 find_dwo_cutu.signature = signature;
13289 dwo_cutu
13290 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13291 }
13292 else if (!is_debug_types && dwo_file->cus)
13293 {
13294 struct dwo_unit find_dwo_cutu;
13295
13296 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13297 find_dwo_cutu.signature = signature;
13298 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13299 &find_dwo_cutu);
13300 }
13301
13302 if (dwo_cutu != NULL)
13303 {
13304 if (dwarf_read_debug)
13305 {
13306 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13307 kind, dwo_name, hex_string (signature),
13308 host_address_to_string (dwo_cutu));
13309 }
13310 return dwo_cutu;
13311 }
13312 }
13313 }
13314
13315 /* We didn't find it. This could mean a dwo_id mismatch, or
13316 someone deleted the DWO/DWP file, or the search path isn't set up
13317 correctly to find the file. */
13318
13319 if (dwarf_read_debug)
13320 {
13321 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13322 kind, dwo_name, hex_string (signature));
13323 }
13324
13325 /* This is a warning and not a complaint because it can be caused by
13326 pilot error (e.g., user accidentally deleting the DWO). */
13327 {
13328 /* Print the name of the DWP file if we looked there, helps the user
13329 better diagnose the problem. */
13330 std::string dwp_text;
13331
13332 if (dwp_file != NULL)
13333 dwp_text = string_printf (" [in DWP file %s]",
13334 lbasename (dwp_file->name));
13335
13336 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13337 " [in module %s]"),
13338 kind, dwo_name, hex_string (signature),
13339 dwp_text.c_str (),
13340 this_unit->is_debug_types ? "TU" : "CU",
13341 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13342 }
13343 return NULL;
13344 }
13345
13346 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13347 See lookup_dwo_cutu_unit for details. */
13348
13349 static struct dwo_unit *
13350 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13351 const char *dwo_name, const char *comp_dir,
13352 ULONGEST signature)
13353 {
13354 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13355 }
13356
13357 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13358 See lookup_dwo_cutu_unit for details. */
13359
13360 static struct dwo_unit *
13361 lookup_dwo_type_unit (struct signatured_type *this_tu,
13362 const char *dwo_name, const char *comp_dir)
13363 {
13364 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13365 }
13366
13367 /* Traversal function for queue_and_load_all_dwo_tus. */
13368
13369 static int
13370 queue_and_load_dwo_tu (void **slot, void *info)
13371 {
13372 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13373 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13374 ULONGEST signature = dwo_unit->signature;
13375 struct signatured_type *sig_type =
13376 lookup_dwo_signatured_type (per_cu->cu, signature);
13377
13378 if (sig_type != NULL)
13379 {
13380 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13381
13382 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13383 a real dependency of PER_CU on SIG_TYPE. That is detected later
13384 while processing PER_CU. */
13385 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13386 load_full_type_unit (sig_cu);
13387 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13388 }
13389
13390 return 1;
13391 }
13392
13393 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13394 The DWO may have the only definition of the type, though it may not be
13395 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13396 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13397
13398 static void
13399 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13400 {
13401 struct dwo_unit *dwo_unit;
13402 struct dwo_file *dwo_file;
13403
13404 gdb_assert (!per_cu->is_debug_types);
13405 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13406 gdb_assert (per_cu->cu != NULL);
13407
13408 dwo_unit = per_cu->cu->dwo_unit;
13409 gdb_assert (dwo_unit != NULL);
13410
13411 dwo_file = dwo_unit->dwo_file;
13412 if (dwo_file->tus != NULL)
13413 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13414 }
13415
13416 /* Free all resources associated with DWO_FILE.
13417 Close the DWO file and munmap the sections. */
13418
13419 static void
13420 free_dwo_file (struct dwo_file *dwo_file)
13421 {
13422 /* Note: dbfd is NULL for virtual DWO files. */
13423 gdb_bfd_unref (dwo_file->dbfd);
13424
13425 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13426 }
13427
13428 /* Traversal function for free_dwo_files. */
13429
13430 static int
13431 free_dwo_file_from_slot (void **slot, void *info)
13432 {
13433 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13434
13435 free_dwo_file (dwo_file);
13436
13437 return 1;
13438 }
13439
13440 /* Free all resources associated with DWO_FILES. */
13441
13442 static void
13443 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13444 {
13445 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13446 }
13447 \f
13448 /* Read in various DIEs. */
13449
13450 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13451 Inherit only the children of the DW_AT_abstract_origin DIE not being
13452 already referenced by DW_AT_abstract_origin from the children of the
13453 current DIE. */
13454
13455 static void
13456 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13457 {
13458 struct die_info *child_die;
13459 sect_offset *offsetp;
13460 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13461 struct die_info *origin_die;
13462 /* Iterator of the ORIGIN_DIE children. */
13463 struct die_info *origin_child_die;
13464 struct attribute *attr;
13465 struct dwarf2_cu *origin_cu;
13466 struct pending **origin_previous_list_in_scope;
13467
13468 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13469 if (!attr)
13470 return;
13471
13472 /* Note that following die references may follow to a die in a
13473 different cu. */
13474
13475 origin_cu = cu;
13476 origin_die = follow_die_ref (die, attr, &origin_cu);
13477
13478 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13479 symbols in. */
13480 origin_previous_list_in_scope = origin_cu->list_in_scope;
13481 origin_cu->list_in_scope = cu->list_in_scope;
13482
13483 if (die->tag != origin_die->tag
13484 && !(die->tag == DW_TAG_inlined_subroutine
13485 && origin_die->tag == DW_TAG_subprogram))
13486 complaint (_("DIE %s and its abstract origin %s have different tags"),
13487 sect_offset_str (die->sect_off),
13488 sect_offset_str (origin_die->sect_off));
13489
13490 std::vector<sect_offset> offsets;
13491
13492 for (child_die = die->child;
13493 child_die && child_die->tag;
13494 child_die = sibling_die (child_die))
13495 {
13496 struct die_info *child_origin_die;
13497 struct dwarf2_cu *child_origin_cu;
13498
13499 /* We are trying to process concrete instance entries:
13500 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13501 it's not relevant to our analysis here. i.e. detecting DIEs that are
13502 present in the abstract instance but not referenced in the concrete
13503 one. */
13504 if (child_die->tag == DW_TAG_call_site
13505 || child_die->tag == DW_TAG_GNU_call_site)
13506 continue;
13507
13508 /* For each CHILD_DIE, find the corresponding child of
13509 ORIGIN_DIE. If there is more than one layer of
13510 DW_AT_abstract_origin, follow them all; there shouldn't be,
13511 but GCC versions at least through 4.4 generate this (GCC PR
13512 40573). */
13513 child_origin_die = child_die;
13514 child_origin_cu = cu;
13515 while (1)
13516 {
13517 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13518 child_origin_cu);
13519 if (attr == NULL)
13520 break;
13521 child_origin_die = follow_die_ref (child_origin_die, attr,
13522 &child_origin_cu);
13523 }
13524
13525 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13526 counterpart may exist. */
13527 if (child_origin_die != child_die)
13528 {
13529 if (child_die->tag != child_origin_die->tag
13530 && !(child_die->tag == DW_TAG_inlined_subroutine
13531 && child_origin_die->tag == DW_TAG_subprogram))
13532 complaint (_("Child DIE %s and its abstract origin %s have "
13533 "different tags"),
13534 sect_offset_str (child_die->sect_off),
13535 sect_offset_str (child_origin_die->sect_off));
13536 if (child_origin_die->parent != origin_die)
13537 complaint (_("Child DIE %s and its abstract origin %s have "
13538 "different parents"),
13539 sect_offset_str (child_die->sect_off),
13540 sect_offset_str (child_origin_die->sect_off));
13541 else
13542 offsets.push_back (child_origin_die->sect_off);
13543 }
13544 }
13545 std::sort (offsets.begin (), offsets.end ());
13546 sect_offset *offsets_end = offsets.data () + offsets.size ();
13547 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13548 if (offsetp[-1] == *offsetp)
13549 complaint (_("Multiple children of DIE %s refer "
13550 "to DIE %s as their abstract origin"),
13551 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13552
13553 offsetp = offsets.data ();
13554 origin_child_die = origin_die->child;
13555 while (origin_child_die && origin_child_die->tag)
13556 {
13557 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13558 while (offsetp < offsets_end
13559 && *offsetp < origin_child_die->sect_off)
13560 offsetp++;
13561 if (offsetp >= offsets_end
13562 || *offsetp > origin_child_die->sect_off)
13563 {
13564 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13565 Check whether we're already processing ORIGIN_CHILD_DIE.
13566 This can happen with mutually referenced abstract_origins.
13567 PR 16581. */
13568 if (!origin_child_die->in_process)
13569 process_die (origin_child_die, origin_cu);
13570 }
13571 origin_child_die = sibling_die (origin_child_die);
13572 }
13573 origin_cu->list_in_scope = origin_previous_list_in_scope;
13574 }
13575
13576 static void
13577 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13578 {
13579 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13580 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13581 struct context_stack *newobj;
13582 CORE_ADDR lowpc;
13583 CORE_ADDR highpc;
13584 struct die_info *child_die;
13585 struct attribute *attr, *call_line, *call_file;
13586 const char *name;
13587 CORE_ADDR baseaddr;
13588 struct block *block;
13589 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13590 std::vector<struct symbol *> template_args;
13591 struct template_symbol *templ_func = NULL;
13592
13593 if (inlined_func)
13594 {
13595 /* If we do not have call site information, we can't show the
13596 caller of this inlined function. That's too confusing, so
13597 only use the scope for local variables. */
13598 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13599 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13600 if (call_line == NULL || call_file == NULL)
13601 {
13602 read_lexical_block_scope (die, cu);
13603 return;
13604 }
13605 }
13606
13607 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13608
13609 name = dwarf2_name (die, cu);
13610
13611 /* Ignore functions with missing or empty names. These are actually
13612 illegal according to the DWARF standard. */
13613 if (name == NULL)
13614 {
13615 complaint (_("missing name for subprogram DIE at %s"),
13616 sect_offset_str (die->sect_off));
13617 return;
13618 }
13619
13620 /* Ignore functions with missing or invalid low and high pc attributes. */
13621 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13622 <= PC_BOUNDS_INVALID)
13623 {
13624 attr = dwarf2_attr (die, DW_AT_external, cu);
13625 if (!attr || !DW_UNSND (attr))
13626 complaint (_("cannot get low and high bounds "
13627 "for subprogram DIE at %s"),
13628 sect_offset_str (die->sect_off));
13629 return;
13630 }
13631
13632 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13633 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13634
13635 /* If we have any template arguments, then we must allocate a
13636 different sort of symbol. */
13637 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13638 {
13639 if (child_die->tag == DW_TAG_template_type_param
13640 || child_die->tag == DW_TAG_template_value_param)
13641 {
13642 templ_func = allocate_template_symbol (objfile);
13643 templ_func->subclass = SYMBOL_TEMPLATE;
13644 break;
13645 }
13646 }
13647
13648 newobj = cu->builder->push_context (0, lowpc);
13649 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13650 (struct symbol *) templ_func);
13651
13652 /* If there is a location expression for DW_AT_frame_base, record
13653 it. */
13654 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13655 if (attr)
13656 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13657
13658 /* If there is a location for the static link, record it. */
13659 newobj->static_link = NULL;
13660 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13661 if (attr)
13662 {
13663 newobj->static_link
13664 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13665 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13666 }
13667
13668 cu->list_in_scope = cu->builder->get_local_symbols ();
13669
13670 if (die->child != NULL)
13671 {
13672 child_die = die->child;
13673 while (child_die && child_die->tag)
13674 {
13675 if (child_die->tag == DW_TAG_template_type_param
13676 || child_die->tag == DW_TAG_template_value_param)
13677 {
13678 struct symbol *arg = new_symbol (child_die, NULL, cu);
13679
13680 if (arg != NULL)
13681 template_args.push_back (arg);
13682 }
13683 else
13684 process_die (child_die, cu);
13685 child_die = sibling_die (child_die);
13686 }
13687 }
13688
13689 inherit_abstract_dies (die, cu);
13690
13691 /* If we have a DW_AT_specification, we might need to import using
13692 directives from the context of the specification DIE. See the
13693 comment in determine_prefix. */
13694 if (cu->language == language_cplus
13695 && dwarf2_attr (die, DW_AT_specification, cu))
13696 {
13697 struct dwarf2_cu *spec_cu = cu;
13698 struct die_info *spec_die = die_specification (die, &spec_cu);
13699
13700 while (spec_die)
13701 {
13702 child_die = spec_die->child;
13703 while (child_die && child_die->tag)
13704 {
13705 if (child_die->tag == DW_TAG_imported_module)
13706 process_die (child_die, spec_cu);
13707 child_die = sibling_die (child_die);
13708 }
13709
13710 /* In some cases, GCC generates specification DIEs that
13711 themselves contain DW_AT_specification attributes. */
13712 spec_die = die_specification (spec_die, &spec_cu);
13713 }
13714 }
13715
13716 struct context_stack cstk = cu->builder->pop_context ();
13717 /* Make a block for the local symbols within. */
13718 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13719 cstk.static_link, lowpc, highpc);
13720
13721 /* For C++, set the block's scope. */
13722 if ((cu->language == language_cplus
13723 || cu->language == language_fortran
13724 || cu->language == language_d
13725 || cu->language == language_rust)
13726 && cu->processing_has_namespace_info)
13727 block_set_scope (block, determine_prefix (die, cu),
13728 &objfile->objfile_obstack);
13729
13730 /* If we have address ranges, record them. */
13731 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13732
13733 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13734
13735 /* Attach template arguments to function. */
13736 if (!template_args.empty ())
13737 {
13738 gdb_assert (templ_func != NULL);
13739
13740 templ_func->n_template_arguments = template_args.size ();
13741 templ_func->template_arguments
13742 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13743 templ_func->n_template_arguments);
13744 memcpy (templ_func->template_arguments,
13745 template_args.data (),
13746 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13747 }
13748
13749 /* In C++, we can have functions nested inside functions (e.g., when
13750 a function declares a class that has methods). This means that
13751 when we finish processing a function scope, we may need to go
13752 back to building a containing block's symbol lists. */
13753 *cu->builder->get_local_symbols () = cstk.locals;
13754 cu->builder->set_local_using_directives (cstk.local_using_directives);
13755
13756 /* If we've finished processing a top-level function, subsequent
13757 symbols go in the file symbol list. */
13758 if (cu->builder->outermost_context_p ())
13759 cu->list_in_scope = cu->builder->get_file_symbols ();
13760 }
13761
13762 /* Process all the DIES contained within a lexical block scope. Start
13763 a new scope, process the dies, and then close the scope. */
13764
13765 static void
13766 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13767 {
13768 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13769 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13770 CORE_ADDR lowpc, highpc;
13771 struct die_info *child_die;
13772 CORE_ADDR baseaddr;
13773
13774 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13775
13776 /* Ignore blocks with missing or invalid low and high pc attributes. */
13777 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13778 as multiple lexical blocks? Handling children in a sane way would
13779 be nasty. Might be easier to properly extend generic blocks to
13780 describe ranges. */
13781 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13782 {
13783 case PC_BOUNDS_NOT_PRESENT:
13784 /* DW_TAG_lexical_block has no attributes, process its children as if
13785 there was no wrapping by that DW_TAG_lexical_block.
13786 GCC does no longer produces such DWARF since GCC r224161. */
13787 for (child_die = die->child;
13788 child_die != NULL && child_die->tag;
13789 child_die = sibling_die (child_die))
13790 process_die (child_die, cu);
13791 return;
13792 case PC_BOUNDS_INVALID:
13793 return;
13794 }
13795 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13796 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13797
13798 cu->builder->push_context (0, lowpc);
13799 if (die->child != NULL)
13800 {
13801 child_die = die->child;
13802 while (child_die && child_die->tag)
13803 {
13804 process_die (child_die, cu);
13805 child_die = sibling_die (child_die);
13806 }
13807 }
13808 inherit_abstract_dies (die, cu);
13809 struct context_stack cstk = cu->builder->pop_context ();
13810
13811 if (*cu->builder->get_local_symbols () != NULL
13812 || (*cu->builder->get_local_using_directives ()) != NULL)
13813 {
13814 struct block *block
13815 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13816 cstk.start_addr, highpc);
13817
13818 /* Note that recording ranges after traversing children, as we
13819 do here, means that recording a parent's ranges entails
13820 walking across all its children's ranges as they appear in
13821 the address map, which is quadratic behavior.
13822
13823 It would be nicer to record the parent's ranges before
13824 traversing its children, simply overriding whatever you find
13825 there. But since we don't even decide whether to create a
13826 block until after we've traversed its children, that's hard
13827 to do. */
13828 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13829 }
13830 *cu->builder->get_local_symbols () = cstk.locals;
13831 cu->builder->set_local_using_directives (cstk.local_using_directives);
13832 }
13833
13834 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13835
13836 static void
13837 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13838 {
13839 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13841 CORE_ADDR pc, baseaddr;
13842 struct attribute *attr;
13843 struct call_site *call_site, call_site_local;
13844 void **slot;
13845 int nparams;
13846 struct die_info *child_die;
13847
13848 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13849
13850 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13851 if (attr == NULL)
13852 {
13853 /* This was a pre-DWARF-5 GNU extension alias
13854 for DW_AT_call_return_pc. */
13855 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13856 }
13857 if (!attr)
13858 {
13859 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13860 "DIE %s [in module %s]"),
13861 sect_offset_str (die->sect_off), objfile_name (objfile));
13862 return;
13863 }
13864 pc = attr_value_as_address (attr) + baseaddr;
13865 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13866
13867 if (cu->call_site_htab == NULL)
13868 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13869 NULL, &objfile->objfile_obstack,
13870 hashtab_obstack_allocate, NULL);
13871 call_site_local.pc = pc;
13872 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13873 if (*slot != NULL)
13874 {
13875 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13876 "DIE %s [in module %s]"),
13877 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13878 objfile_name (objfile));
13879 return;
13880 }
13881
13882 /* Count parameters at the caller. */
13883
13884 nparams = 0;
13885 for (child_die = die->child; child_die && child_die->tag;
13886 child_die = sibling_die (child_die))
13887 {
13888 if (child_die->tag != DW_TAG_call_site_parameter
13889 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13890 {
13891 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13892 "DW_TAG_call_site child DIE %s [in module %s]"),
13893 child_die->tag, sect_offset_str (child_die->sect_off),
13894 objfile_name (objfile));
13895 continue;
13896 }
13897
13898 nparams++;
13899 }
13900
13901 call_site
13902 = ((struct call_site *)
13903 obstack_alloc (&objfile->objfile_obstack,
13904 sizeof (*call_site)
13905 + (sizeof (*call_site->parameter) * (nparams - 1))));
13906 *slot = call_site;
13907 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13908 call_site->pc = pc;
13909
13910 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13911 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13912 {
13913 struct die_info *func_die;
13914
13915 /* Skip also over DW_TAG_inlined_subroutine. */
13916 for (func_die = die->parent;
13917 func_die && func_die->tag != DW_TAG_subprogram
13918 && func_die->tag != DW_TAG_subroutine_type;
13919 func_die = func_die->parent);
13920
13921 /* DW_AT_call_all_calls is a superset
13922 of DW_AT_call_all_tail_calls. */
13923 if (func_die
13924 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13925 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13926 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13927 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13928 {
13929 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13930 not complete. But keep CALL_SITE for look ups via call_site_htab,
13931 both the initial caller containing the real return address PC and
13932 the final callee containing the current PC of a chain of tail
13933 calls do not need to have the tail call list complete. But any
13934 function candidate for a virtual tail call frame searched via
13935 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13936 determined unambiguously. */
13937 }
13938 else
13939 {
13940 struct type *func_type = NULL;
13941
13942 if (func_die)
13943 func_type = get_die_type (func_die, cu);
13944 if (func_type != NULL)
13945 {
13946 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13947
13948 /* Enlist this call site to the function. */
13949 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13950 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13951 }
13952 else
13953 complaint (_("Cannot find function owning DW_TAG_call_site "
13954 "DIE %s [in module %s]"),
13955 sect_offset_str (die->sect_off), objfile_name (objfile));
13956 }
13957 }
13958
13959 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13960 if (attr == NULL)
13961 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13962 if (attr == NULL)
13963 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13964 if (attr == NULL)
13965 {
13966 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13967 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13968 }
13969 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13970 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13971 /* Keep NULL DWARF_BLOCK. */;
13972 else if (attr_form_is_block (attr))
13973 {
13974 struct dwarf2_locexpr_baton *dlbaton;
13975
13976 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13977 dlbaton->data = DW_BLOCK (attr)->data;
13978 dlbaton->size = DW_BLOCK (attr)->size;
13979 dlbaton->per_cu = cu->per_cu;
13980
13981 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13982 }
13983 else if (attr_form_is_ref (attr))
13984 {
13985 struct dwarf2_cu *target_cu = cu;
13986 struct die_info *target_die;
13987
13988 target_die = follow_die_ref (die, attr, &target_cu);
13989 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13990 if (die_is_declaration (target_die, target_cu))
13991 {
13992 const char *target_physname;
13993
13994 /* Prefer the mangled name; otherwise compute the demangled one. */
13995 target_physname = dw2_linkage_name (target_die, target_cu);
13996 if (target_physname == NULL)
13997 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13998 if (target_physname == NULL)
13999 complaint (_("DW_AT_call_target target DIE has invalid "
14000 "physname, for referencing DIE %s [in module %s]"),
14001 sect_offset_str (die->sect_off), objfile_name (objfile));
14002 else
14003 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14004 }
14005 else
14006 {
14007 CORE_ADDR lowpc;
14008
14009 /* DW_AT_entry_pc should be preferred. */
14010 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14011 <= PC_BOUNDS_INVALID)
14012 complaint (_("DW_AT_call_target target DIE has invalid "
14013 "low pc, for referencing DIE %s [in module %s]"),
14014 sect_offset_str (die->sect_off), objfile_name (objfile));
14015 else
14016 {
14017 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14018 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14019 }
14020 }
14021 }
14022 else
14023 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14024 "block nor reference, for DIE %s [in module %s]"),
14025 sect_offset_str (die->sect_off), objfile_name (objfile));
14026
14027 call_site->per_cu = cu->per_cu;
14028
14029 for (child_die = die->child;
14030 child_die && child_die->tag;
14031 child_die = sibling_die (child_die))
14032 {
14033 struct call_site_parameter *parameter;
14034 struct attribute *loc, *origin;
14035
14036 if (child_die->tag != DW_TAG_call_site_parameter
14037 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14038 {
14039 /* Already printed the complaint above. */
14040 continue;
14041 }
14042
14043 gdb_assert (call_site->parameter_count < nparams);
14044 parameter = &call_site->parameter[call_site->parameter_count];
14045
14046 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14047 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14048 register is contained in DW_AT_call_value. */
14049
14050 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14051 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14052 if (origin == NULL)
14053 {
14054 /* This was a pre-DWARF-5 GNU extension alias
14055 for DW_AT_call_parameter. */
14056 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14057 }
14058 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14059 {
14060 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14061
14062 sect_offset sect_off
14063 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14064 if (!offset_in_cu_p (&cu->header, sect_off))
14065 {
14066 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14067 binding can be done only inside one CU. Such referenced DIE
14068 therefore cannot be even moved to DW_TAG_partial_unit. */
14069 complaint (_("DW_AT_call_parameter offset is not in CU for "
14070 "DW_TAG_call_site child DIE %s [in module %s]"),
14071 sect_offset_str (child_die->sect_off),
14072 objfile_name (objfile));
14073 continue;
14074 }
14075 parameter->u.param_cu_off
14076 = (cu_offset) (sect_off - cu->header.sect_off);
14077 }
14078 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14079 {
14080 complaint (_("No DW_FORM_block* DW_AT_location for "
14081 "DW_TAG_call_site child DIE %s [in module %s]"),
14082 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14083 continue;
14084 }
14085 else
14086 {
14087 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14088 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14089 if (parameter->u.dwarf_reg != -1)
14090 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14091 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14092 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14093 &parameter->u.fb_offset))
14094 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14095 else
14096 {
14097 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14098 "for DW_FORM_block* DW_AT_location is supported for "
14099 "DW_TAG_call_site child DIE %s "
14100 "[in module %s]"),
14101 sect_offset_str (child_die->sect_off),
14102 objfile_name (objfile));
14103 continue;
14104 }
14105 }
14106
14107 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14108 if (attr == NULL)
14109 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14110 if (!attr_form_is_block (attr))
14111 {
14112 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14113 "DW_TAG_call_site child DIE %s [in module %s]"),
14114 sect_offset_str (child_die->sect_off),
14115 objfile_name (objfile));
14116 continue;
14117 }
14118 parameter->value = DW_BLOCK (attr)->data;
14119 parameter->value_size = DW_BLOCK (attr)->size;
14120
14121 /* Parameters are not pre-cleared by memset above. */
14122 parameter->data_value = NULL;
14123 parameter->data_value_size = 0;
14124 call_site->parameter_count++;
14125
14126 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14127 if (attr == NULL)
14128 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14129 if (attr)
14130 {
14131 if (!attr_form_is_block (attr))
14132 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14133 "DW_TAG_call_site child DIE %s [in module %s]"),
14134 sect_offset_str (child_die->sect_off),
14135 objfile_name (objfile));
14136 else
14137 {
14138 parameter->data_value = DW_BLOCK (attr)->data;
14139 parameter->data_value_size = DW_BLOCK (attr)->size;
14140 }
14141 }
14142 }
14143 }
14144
14145 /* Helper function for read_variable. If DIE represents a virtual
14146 table, then return the type of the concrete object that is
14147 associated with the virtual table. Otherwise, return NULL. */
14148
14149 static struct type *
14150 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14151 {
14152 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14153 if (attr == NULL)
14154 return NULL;
14155
14156 /* Find the type DIE. */
14157 struct die_info *type_die = NULL;
14158 struct dwarf2_cu *type_cu = cu;
14159
14160 if (attr_form_is_ref (attr))
14161 type_die = follow_die_ref (die, attr, &type_cu);
14162 if (type_die == NULL)
14163 return NULL;
14164
14165 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14166 return NULL;
14167 return die_containing_type (type_die, type_cu);
14168 }
14169
14170 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14171
14172 static void
14173 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14174 {
14175 struct rust_vtable_symbol *storage = NULL;
14176
14177 if (cu->language == language_rust)
14178 {
14179 struct type *containing_type = rust_containing_type (die, cu);
14180
14181 if (containing_type != NULL)
14182 {
14183 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14184
14185 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14186 struct rust_vtable_symbol);
14187 initialize_objfile_symbol (storage);
14188 storage->concrete_type = containing_type;
14189 storage->subclass = SYMBOL_RUST_VTABLE;
14190 }
14191 }
14192
14193 new_symbol (die, NULL, cu, storage);
14194 }
14195
14196 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14197 reading .debug_rnglists.
14198 Callback's type should be:
14199 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14200 Return true if the attributes are present and valid, otherwise,
14201 return false. */
14202
14203 template <typename Callback>
14204 static bool
14205 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14206 Callback &&callback)
14207 {
14208 struct dwarf2_per_objfile *dwarf2_per_objfile
14209 = cu->per_cu->dwarf2_per_objfile;
14210 struct objfile *objfile = dwarf2_per_objfile->objfile;
14211 bfd *obfd = objfile->obfd;
14212 /* Base address selection entry. */
14213 CORE_ADDR base;
14214 int found_base;
14215 const gdb_byte *buffer;
14216 CORE_ADDR baseaddr;
14217 bool overflow = false;
14218
14219 found_base = cu->base_known;
14220 base = cu->base_address;
14221
14222 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14223 if (offset >= dwarf2_per_objfile->rnglists.size)
14224 {
14225 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14226 offset);
14227 return false;
14228 }
14229 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14230
14231 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14232
14233 while (1)
14234 {
14235 /* Initialize it due to a false compiler warning. */
14236 CORE_ADDR range_beginning = 0, range_end = 0;
14237 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14238 + dwarf2_per_objfile->rnglists.size);
14239 unsigned int bytes_read;
14240
14241 if (buffer == buf_end)
14242 {
14243 overflow = true;
14244 break;
14245 }
14246 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14247 switch (rlet)
14248 {
14249 case DW_RLE_end_of_list:
14250 break;
14251 case DW_RLE_base_address:
14252 if (buffer + cu->header.addr_size > buf_end)
14253 {
14254 overflow = true;
14255 break;
14256 }
14257 base = read_address (obfd, buffer, cu, &bytes_read);
14258 found_base = 1;
14259 buffer += bytes_read;
14260 break;
14261 case DW_RLE_start_length:
14262 if (buffer + cu->header.addr_size > buf_end)
14263 {
14264 overflow = true;
14265 break;
14266 }
14267 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14268 buffer += bytes_read;
14269 range_end = (range_beginning
14270 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14271 buffer += bytes_read;
14272 if (buffer > buf_end)
14273 {
14274 overflow = true;
14275 break;
14276 }
14277 break;
14278 case DW_RLE_offset_pair:
14279 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14280 buffer += bytes_read;
14281 if (buffer > buf_end)
14282 {
14283 overflow = true;
14284 break;
14285 }
14286 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14287 buffer += bytes_read;
14288 if (buffer > buf_end)
14289 {
14290 overflow = true;
14291 break;
14292 }
14293 break;
14294 case DW_RLE_start_end:
14295 if (buffer + 2 * cu->header.addr_size > buf_end)
14296 {
14297 overflow = true;
14298 break;
14299 }
14300 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14301 buffer += bytes_read;
14302 range_end = read_address (obfd, buffer, cu, &bytes_read);
14303 buffer += bytes_read;
14304 break;
14305 default:
14306 complaint (_("Invalid .debug_rnglists data (no base address)"));
14307 return false;
14308 }
14309 if (rlet == DW_RLE_end_of_list || overflow)
14310 break;
14311 if (rlet == DW_RLE_base_address)
14312 continue;
14313
14314 if (!found_base)
14315 {
14316 /* We have no valid base address for the ranges
14317 data. */
14318 complaint (_("Invalid .debug_rnglists data (no base address)"));
14319 return false;
14320 }
14321
14322 if (range_beginning > range_end)
14323 {
14324 /* Inverted range entries are invalid. */
14325 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14326 return false;
14327 }
14328
14329 /* Empty range entries have no effect. */
14330 if (range_beginning == range_end)
14331 continue;
14332
14333 range_beginning += base;
14334 range_end += base;
14335
14336 /* A not-uncommon case of bad debug info.
14337 Don't pollute the addrmap with bad data. */
14338 if (range_beginning + baseaddr == 0
14339 && !dwarf2_per_objfile->has_section_at_zero)
14340 {
14341 complaint (_(".debug_rnglists entry has start address of zero"
14342 " [in module %s]"), objfile_name (objfile));
14343 continue;
14344 }
14345
14346 callback (range_beginning, range_end);
14347 }
14348
14349 if (overflow)
14350 {
14351 complaint (_("Offset %d is not terminated "
14352 "for DW_AT_ranges attribute"),
14353 offset);
14354 return false;
14355 }
14356
14357 return true;
14358 }
14359
14360 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14361 Callback's type should be:
14362 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14363 Return 1 if the attributes are present and valid, otherwise, return 0. */
14364
14365 template <typename Callback>
14366 static int
14367 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14368 Callback &&callback)
14369 {
14370 struct dwarf2_per_objfile *dwarf2_per_objfile
14371 = cu->per_cu->dwarf2_per_objfile;
14372 struct objfile *objfile = dwarf2_per_objfile->objfile;
14373 struct comp_unit_head *cu_header = &cu->header;
14374 bfd *obfd = objfile->obfd;
14375 unsigned int addr_size = cu_header->addr_size;
14376 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14377 /* Base address selection entry. */
14378 CORE_ADDR base;
14379 int found_base;
14380 unsigned int dummy;
14381 const gdb_byte *buffer;
14382 CORE_ADDR baseaddr;
14383
14384 if (cu_header->version >= 5)
14385 return dwarf2_rnglists_process (offset, cu, callback);
14386
14387 found_base = cu->base_known;
14388 base = cu->base_address;
14389
14390 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14391 if (offset >= dwarf2_per_objfile->ranges.size)
14392 {
14393 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14394 offset);
14395 return 0;
14396 }
14397 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14398
14399 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14400
14401 while (1)
14402 {
14403 CORE_ADDR range_beginning, range_end;
14404
14405 range_beginning = read_address (obfd, buffer, cu, &dummy);
14406 buffer += addr_size;
14407 range_end = read_address (obfd, buffer, cu, &dummy);
14408 buffer += addr_size;
14409 offset += 2 * addr_size;
14410
14411 /* An end of list marker is a pair of zero addresses. */
14412 if (range_beginning == 0 && range_end == 0)
14413 /* Found the end of list entry. */
14414 break;
14415
14416 /* Each base address selection entry is a pair of 2 values.
14417 The first is the largest possible address, the second is
14418 the base address. Check for a base address here. */
14419 if ((range_beginning & mask) == mask)
14420 {
14421 /* If we found the largest possible address, then we already
14422 have the base address in range_end. */
14423 base = range_end;
14424 found_base = 1;
14425 continue;
14426 }
14427
14428 if (!found_base)
14429 {
14430 /* We have no valid base address for the ranges
14431 data. */
14432 complaint (_("Invalid .debug_ranges data (no base address)"));
14433 return 0;
14434 }
14435
14436 if (range_beginning > range_end)
14437 {
14438 /* Inverted range entries are invalid. */
14439 complaint (_("Invalid .debug_ranges data (inverted range)"));
14440 return 0;
14441 }
14442
14443 /* Empty range entries have no effect. */
14444 if (range_beginning == range_end)
14445 continue;
14446
14447 range_beginning += base;
14448 range_end += base;
14449
14450 /* A not-uncommon case of bad debug info.
14451 Don't pollute the addrmap with bad data. */
14452 if (range_beginning + baseaddr == 0
14453 && !dwarf2_per_objfile->has_section_at_zero)
14454 {
14455 complaint (_(".debug_ranges entry has start address of zero"
14456 " [in module %s]"), objfile_name (objfile));
14457 continue;
14458 }
14459
14460 callback (range_beginning, range_end);
14461 }
14462
14463 return 1;
14464 }
14465
14466 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14467 Return 1 if the attributes are present and valid, otherwise, return 0.
14468 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14469
14470 static int
14471 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14472 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14473 struct partial_symtab *ranges_pst)
14474 {
14475 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14476 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14477 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14478 SECT_OFF_TEXT (objfile));
14479 int low_set = 0;
14480 CORE_ADDR low = 0;
14481 CORE_ADDR high = 0;
14482 int retval;
14483
14484 retval = dwarf2_ranges_process (offset, cu,
14485 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14486 {
14487 if (ranges_pst != NULL)
14488 {
14489 CORE_ADDR lowpc;
14490 CORE_ADDR highpc;
14491
14492 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14493 range_beginning + baseaddr);
14494 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14495 range_end + baseaddr);
14496 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14497 ranges_pst);
14498 }
14499
14500 /* FIXME: This is recording everything as a low-high
14501 segment of consecutive addresses. We should have a
14502 data structure for discontiguous block ranges
14503 instead. */
14504 if (! low_set)
14505 {
14506 low = range_beginning;
14507 high = range_end;
14508 low_set = 1;
14509 }
14510 else
14511 {
14512 if (range_beginning < low)
14513 low = range_beginning;
14514 if (range_end > high)
14515 high = range_end;
14516 }
14517 });
14518 if (!retval)
14519 return 0;
14520
14521 if (! low_set)
14522 /* If the first entry is an end-of-list marker, the range
14523 describes an empty scope, i.e. no instructions. */
14524 return 0;
14525
14526 if (low_return)
14527 *low_return = low;
14528 if (high_return)
14529 *high_return = high;
14530 return 1;
14531 }
14532
14533 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14534 definition for the return value. *LOWPC and *HIGHPC are set iff
14535 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14536
14537 static enum pc_bounds_kind
14538 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14539 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14540 struct partial_symtab *pst)
14541 {
14542 struct dwarf2_per_objfile *dwarf2_per_objfile
14543 = cu->per_cu->dwarf2_per_objfile;
14544 struct attribute *attr;
14545 struct attribute *attr_high;
14546 CORE_ADDR low = 0;
14547 CORE_ADDR high = 0;
14548 enum pc_bounds_kind ret;
14549
14550 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14551 if (attr_high)
14552 {
14553 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14554 if (attr)
14555 {
14556 low = attr_value_as_address (attr);
14557 high = attr_value_as_address (attr_high);
14558 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14559 high += low;
14560 }
14561 else
14562 /* Found high w/o low attribute. */
14563 return PC_BOUNDS_INVALID;
14564
14565 /* Found consecutive range of addresses. */
14566 ret = PC_BOUNDS_HIGH_LOW;
14567 }
14568 else
14569 {
14570 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14571 if (attr != NULL)
14572 {
14573 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14574 We take advantage of the fact that DW_AT_ranges does not appear
14575 in DW_TAG_compile_unit of DWO files. */
14576 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14577 unsigned int ranges_offset = (DW_UNSND (attr)
14578 + (need_ranges_base
14579 ? cu->ranges_base
14580 : 0));
14581
14582 /* Value of the DW_AT_ranges attribute is the offset in the
14583 .debug_ranges section. */
14584 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14585 return PC_BOUNDS_INVALID;
14586 /* Found discontinuous range of addresses. */
14587 ret = PC_BOUNDS_RANGES;
14588 }
14589 else
14590 return PC_BOUNDS_NOT_PRESENT;
14591 }
14592
14593 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14594 if (high <= low)
14595 return PC_BOUNDS_INVALID;
14596
14597 /* When using the GNU linker, .gnu.linkonce. sections are used to
14598 eliminate duplicate copies of functions and vtables and such.
14599 The linker will arbitrarily choose one and discard the others.
14600 The AT_*_pc values for such functions refer to local labels in
14601 these sections. If the section from that file was discarded, the
14602 labels are not in the output, so the relocs get a value of 0.
14603 If this is a discarded function, mark the pc bounds as invalid,
14604 so that GDB will ignore it. */
14605 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14606 return PC_BOUNDS_INVALID;
14607
14608 *lowpc = low;
14609 if (highpc)
14610 *highpc = high;
14611 return ret;
14612 }
14613
14614 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14615 its low and high PC addresses. Do nothing if these addresses could not
14616 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14617 and HIGHPC to the high address if greater than HIGHPC. */
14618
14619 static void
14620 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14621 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14622 struct dwarf2_cu *cu)
14623 {
14624 CORE_ADDR low, high;
14625 struct die_info *child = die->child;
14626
14627 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14628 {
14629 *lowpc = std::min (*lowpc, low);
14630 *highpc = std::max (*highpc, high);
14631 }
14632
14633 /* If the language does not allow nested subprograms (either inside
14634 subprograms or lexical blocks), we're done. */
14635 if (cu->language != language_ada)
14636 return;
14637
14638 /* Check all the children of the given DIE. If it contains nested
14639 subprograms, then check their pc bounds. Likewise, we need to
14640 check lexical blocks as well, as they may also contain subprogram
14641 definitions. */
14642 while (child && child->tag)
14643 {
14644 if (child->tag == DW_TAG_subprogram
14645 || child->tag == DW_TAG_lexical_block)
14646 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14647 child = sibling_die (child);
14648 }
14649 }
14650
14651 /* Get the low and high pc's represented by the scope DIE, and store
14652 them in *LOWPC and *HIGHPC. If the correct values can't be
14653 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14654
14655 static void
14656 get_scope_pc_bounds (struct die_info *die,
14657 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14658 struct dwarf2_cu *cu)
14659 {
14660 CORE_ADDR best_low = (CORE_ADDR) -1;
14661 CORE_ADDR best_high = (CORE_ADDR) 0;
14662 CORE_ADDR current_low, current_high;
14663
14664 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14665 >= PC_BOUNDS_RANGES)
14666 {
14667 best_low = current_low;
14668 best_high = current_high;
14669 }
14670 else
14671 {
14672 struct die_info *child = die->child;
14673
14674 while (child && child->tag)
14675 {
14676 switch (child->tag) {
14677 case DW_TAG_subprogram:
14678 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14679 break;
14680 case DW_TAG_namespace:
14681 case DW_TAG_module:
14682 /* FIXME: carlton/2004-01-16: Should we do this for
14683 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14684 that current GCC's always emit the DIEs corresponding
14685 to definitions of methods of classes as children of a
14686 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14687 the DIEs giving the declarations, which could be
14688 anywhere). But I don't see any reason why the
14689 standards says that they have to be there. */
14690 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14691
14692 if (current_low != ((CORE_ADDR) -1))
14693 {
14694 best_low = std::min (best_low, current_low);
14695 best_high = std::max (best_high, current_high);
14696 }
14697 break;
14698 default:
14699 /* Ignore. */
14700 break;
14701 }
14702
14703 child = sibling_die (child);
14704 }
14705 }
14706
14707 *lowpc = best_low;
14708 *highpc = best_high;
14709 }
14710
14711 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14712 in DIE. */
14713
14714 static void
14715 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14716 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14717 {
14718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14720 struct attribute *attr;
14721 struct attribute *attr_high;
14722
14723 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14724 if (attr_high)
14725 {
14726 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14727 if (attr)
14728 {
14729 CORE_ADDR low = attr_value_as_address (attr);
14730 CORE_ADDR high = attr_value_as_address (attr_high);
14731
14732 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14733 high += low;
14734
14735 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14736 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14737 cu->builder->record_block_range (block, low, high - 1);
14738 }
14739 }
14740
14741 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14742 if (attr)
14743 {
14744 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14745 We take advantage of the fact that DW_AT_ranges does not appear
14746 in DW_TAG_compile_unit of DWO files. */
14747 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14748
14749 /* The value of the DW_AT_ranges attribute is the offset of the
14750 address range list in the .debug_ranges section. */
14751 unsigned long offset = (DW_UNSND (attr)
14752 + (need_ranges_base ? cu->ranges_base : 0));
14753
14754 dwarf2_ranges_process (offset, cu,
14755 [&] (CORE_ADDR start, CORE_ADDR end)
14756 {
14757 start += baseaddr;
14758 end += baseaddr;
14759 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14760 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14761 cu->builder->record_block_range (block, start, end - 1);
14762 });
14763 }
14764 }
14765
14766 /* Check whether the producer field indicates either of GCC < 4.6, or the
14767 Intel C/C++ compiler, and cache the result in CU. */
14768
14769 static void
14770 check_producer (struct dwarf2_cu *cu)
14771 {
14772 int major, minor;
14773
14774 if (cu->producer == NULL)
14775 {
14776 /* For unknown compilers expect their behavior is DWARF version
14777 compliant.
14778
14779 GCC started to support .debug_types sections by -gdwarf-4 since
14780 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14781 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14782 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14783 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14784 }
14785 else if (producer_is_gcc (cu->producer, &major, &minor))
14786 {
14787 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14788 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14789 }
14790 else if (producer_is_icc (cu->producer, &major, &minor))
14791 cu->producer_is_icc_lt_14 = major < 14;
14792 else
14793 {
14794 /* For other non-GCC compilers, expect their behavior is DWARF version
14795 compliant. */
14796 }
14797
14798 cu->checked_producer = 1;
14799 }
14800
14801 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14802 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14803 during 4.6.0 experimental. */
14804
14805 static int
14806 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14807 {
14808 if (!cu->checked_producer)
14809 check_producer (cu);
14810
14811 return cu->producer_is_gxx_lt_4_6;
14812 }
14813
14814 /* Return the default accessibility type if it is not overriden by
14815 DW_AT_accessibility. */
14816
14817 static enum dwarf_access_attribute
14818 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14819 {
14820 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14821 {
14822 /* The default DWARF 2 accessibility for members is public, the default
14823 accessibility for inheritance is private. */
14824
14825 if (die->tag != DW_TAG_inheritance)
14826 return DW_ACCESS_public;
14827 else
14828 return DW_ACCESS_private;
14829 }
14830 else
14831 {
14832 /* DWARF 3+ defines the default accessibility a different way. The same
14833 rules apply now for DW_TAG_inheritance as for the members and it only
14834 depends on the container kind. */
14835
14836 if (die->parent->tag == DW_TAG_class_type)
14837 return DW_ACCESS_private;
14838 else
14839 return DW_ACCESS_public;
14840 }
14841 }
14842
14843 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14844 offset. If the attribute was not found return 0, otherwise return
14845 1. If it was found but could not properly be handled, set *OFFSET
14846 to 0. */
14847
14848 static int
14849 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14850 LONGEST *offset)
14851 {
14852 struct attribute *attr;
14853
14854 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14855 if (attr != NULL)
14856 {
14857 *offset = 0;
14858
14859 /* Note that we do not check for a section offset first here.
14860 This is because DW_AT_data_member_location is new in DWARF 4,
14861 so if we see it, we can assume that a constant form is really
14862 a constant and not a section offset. */
14863 if (attr_form_is_constant (attr))
14864 *offset = dwarf2_get_attr_constant_value (attr, 0);
14865 else if (attr_form_is_section_offset (attr))
14866 dwarf2_complex_location_expr_complaint ();
14867 else if (attr_form_is_block (attr))
14868 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14869 else
14870 dwarf2_complex_location_expr_complaint ();
14871
14872 return 1;
14873 }
14874
14875 return 0;
14876 }
14877
14878 /* Add an aggregate field to the field list. */
14879
14880 static void
14881 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14882 struct dwarf2_cu *cu)
14883 {
14884 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14886 struct nextfield *new_field;
14887 struct attribute *attr;
14888 struct field *fp;
14889 const char *fieldname = "";
14890
14891 if (die->tag == DW_TAG_inheritance)
14892 {
14893 fip->baseclasses.emplace_back ();
14894 new_field = &fip->baseclasses.back ();
14895 }
14896 else
14897 {
14898 fip->fields.emplace_back ();
14899 new_field = &fip->fields.back ();
14900 }
14901
14902 fip->nfields++;
14903
14904 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14905 if (attr)
14906 new_field->accessibility = DW_UNSND (attr);
14907 else
14908 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14909 if (new_field->accessibility != DW_ACCESS_public)
14910 fip->non_public_fields = 1;
14911
14912 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14913 if (attr)
14914 new_field->virtuality = DW_UNSND (attr);
14915 else
14916 new_field->virtuality = DW_VIRTUALITY_none;
14917
14918 fp = &new_field->field;
14919
14920 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14921 {
14922 LONGEST offset;
14923
14924 /* Data member other than a C++ static data member. */
14925
14926 /* Get type of field. */
14927 fp->type = die_type (die, cu);
14928
14929 SET_FIELD_BITPOS (*fp, 0);
14930
14931 /* Get bit size of field (zero if none). */
14932 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14933 if (attr)
14934 {
14935 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14936 }
14937 else
14938 {
14939 FIELD_BITSIZE (*fp) = 0;
14940 }
14941
14942 /* Get bit offset of field. */
14943 if (handle_data_member_location (die, cu, &offset))
14944 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14945 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14946 if (attr)
14947 {
14948 if (gdbarch_bits_big_endian (gdbarch))
14949 {
14950 /* For big endian bits, the DW_AT_bit_offset gives the
14951 additional bit offset from the MSB of the containing
14952 anonymous object to the MSB of the field. We don't
14953 have to do anything special since we don't need to
14954 know the size of the anonymous object. */
14955 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14956 }
14957 else
14958 {
14959 /* For little endian bits, compute the bit offset to the
14960 MSB of the anonymous object, subtract off the number of
14961 bits from the MSB of the field to the MSB of the
14962 object, and then subtract off the number of bits of
14963 the field itself. The result is the bit offset of
14964 the LSB of the field. */
14965 int anonymous_size;
14966 int bit_offset = DW_UNSND (attr);
14967
14968 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14969 if (attr)
14970 {
14971 /* The size of the anonymous object containing
14972 the bit field is explicit, so use the
14973 indicated size (in bytes). */
14974 anonymous_size = DW_UNSND (attr);
14975 }
14976 else
14977 {
14978 /* The size of the anonymous object containing
14979 the bit field must be inferred from the type
14980 attribute of the data member containing the
14981 bit field. */
14982 anonymous_size = TYPE_LENGTH (fp->type);
14983 }
14984 SET_FIELD_BITPOS (*fp,
14985 (FIELD_BITPOS (*fp)
14986 + anonymous_size * bits_per_byte
14987 - bit_offset - FIELD_BITSIZE (*fp)));
14988 }
14989 }
14990 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14991 if (attr != NULL)
14992 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14993 + dwarf2_get_attr_constant_value (attr, 0)));
14994
14995 /* Get name of field. */
14996 fieldname = dwarf2_name (die, cu);
14997 if (fieldname == NULL)
14998 fieldname = "";
14999
15000 /* The name is already allocated along with this objfile, so we don't
15001 need to duplicate it for the type. */
15002 fp->name = fieldname;
15003
15004 /* Change accessibility for artificial fields (e.g. virtual table
15005 pointer or virtual base class pointer) to private. */
15006 if (dwarf2_attr (die, DW_AT_artificial, cu))
15007 {
15008 FIELD_ARTIFICIAL (*fp) = 1;
15009 new_field->accessibility = DW_ACCESS_private;
15010 fip->non_public_fields = 1;
15011 }
15012 }
15013 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15014 {
15015 /* C++ static member. */
15016
15017 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15018 is a declaration, but all versions of G++ as of this writing
15019 (so through at least 3.2.1) incorrectly generate
15020 DW_TAG_variable tags. */
15021
15022 const char *physname;
15023
15024 /* Get name of field. */
15025 fieldname = dwarf2_name (die, cu);
15026 if (fieldname == NULL)
15027 return;
15028
15029 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15030 if (attr
15031 /* Only create a symbol if this is an external value.
15032 new_symbol checks this and puts the value in the global symbol
15033 table, which we want. If it is not external, new_symbol
15034 will try to put the value in cu->list_in_scope which is wrong. */
15035 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15036 {
15037 /* A static const member, not much different than an enum as far as
15038 we're concerned, except that we can support more types. */
15039 new_symbol (die, NULL, cu);
15040 }
15041
15042 /* Get physical name. */
15043 physname = dwarf2_physname (fieldname, die, cu);
15044
15045 /* The name is already allocated along with this objfile, so we don't
15046 need to duplicate it for the type. */
15047 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15048 FIELD_TYPE (*fp) = die_type (die, cu);
15049 FIELD_NAME (*fp) = fieldname;
15050 }
15051 else if (die->tag == DW_TAG_inheritance)
15052 {
15053 LONGEST offset;
15054
15055 /* C++ base class field. */
15056 if (handle_data_member_location (die, cu, &offset))
15057 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15058 FIELD_BITSIZE (*fp) = 0;
15059 FIELD_TYPE (*fp) = die_type (die, cu);
15060 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15061 }
15062 else if (die->tag == DW_TAG_variant_part)
15063 {
15064 /* process_structure_scope will treat this DIE as a union. */
15065 process_structure_scope (die, cu);
15066
15067 /* The variant part is relative to the start of the enclosing
15068 structure. */
15069 SET_FIELD_BITPOS (*fp, 0);
15070 fp->type = get_die_type (die, cu);
15071 fp->artificial = 1;
15072 fp->name = "<<variant>>";
15073 }
15074 else
15075 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15076 }
15077
15078 /* Can the type given by DIE define another type? */
15079
15080 static bool
15081 type_can_define_types (const struct die_info *die)
15082 {
15083 switch (die->tag)
15084 {
15085 case DW_TAG_typedef:
15086 case DW_TAG_class_type:
15087 case DW_TAG_structure_type:
15088 case DW_TAG_union_type:
15089 case DW_TAG_enumeration_type:
15090 return true;
15091
15092 default:
15093 return false;
15094 }
15095 }
15096
15097 /* Add a type definition defined in the scope of the FIP's class. */
15098
15099 static void
15100 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15101 struct dwarf2_cu *cu)
15102 {
15103 struct decl_field fp;
15104 memset (&fp, 0, sizeof (fp));
15105
15106 gdb_assert (type_can_define_types (die));
15107
15108 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15109 fp.name = dwarf2_name (die, cu);
15110 fp.type = read_type_die (die, cu);
15111
15112 /* Save accessibility. */
15113 enum dwarf_access_attribute accessibility;
15114 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15115 if (attr != NULL)
15116 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15117 else
15118 accessibility = dwarf2_default_access_attribute (die, cu);
15119 switch (accessibility)
15120 {
15121 case DW_ACCESS_public:
15122 /* The assumed value if neither private nor protected. */
15123 break;
15124 case DW_ACCESS_private:
15125 fp.is_private = 1;
15126 break;
15127 case DW_ACCESS_protected:
15128 fp.is_protected = 1;
15129 break;
15130 default:
15131 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15132 }
15133
15134 if (die->tag == DW_TAG_typedef)
15135 fip->typedef_field_list.push_back (fp);
15136 else
15137 fip->nested_types_list.push_back (fp);
15138 }
15139
15140 /* Create the vector of fields, and attach it to the type. */
15141
15142 static void
15143 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15144 struct dwarf2_cu *cu)
15145 {
15146 int nfields = fip->nfields;
15147
15148 /* Record the field count, allocate space for the array of fields,
15149 and create blank accessibility bitfields if necessary. */
15150 TYPE_NFIELDS (type) = nfields;
15151 TYPE_FIELDS (type) = (struct field *)
15152 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15153
15154 if (fip->non_public_fields && cu->language != language_ada)
15155 {
15156 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15157
15158 TYPE_FIELD_PRIVATE_BITS (type) =
15159 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15160 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15161
15162 TYPE_FIELD_PROTECTED_BITS (type) =
15163 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15164 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15165
15166 TYPE_FIELD_IGNORE_BITS (type) =
15167 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15168 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15169 }
15170
15171 /* If the type has baseclasses, allocate and clear a bit vector for
15172 TYPE_FIELD_VIRTUAL_BITS. */
15173 if (!fip->baseclasses.empty () && cu->language != language_ada)
15174 {
15175 int num_bytes = B_BYTES (fip->baseclasses.size ());
15176 unsigned char *pointer;
15177
15178 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15179 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15180 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15181 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15182 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15183 }
15184
15185 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15186 {
15187 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15188
15189 for (int index = 0; index < nfields; ++index)
15190 {
15191 struct nextfield &field = fip->fields[index];
15192
15193 if (field.variant.is_discriminant)
15194 di->discriminant_index = index;
15195 else if (field.variant.default_branch)
15196 di->default_index = index;
15197 else
15198 di->discriminants[index] = field.variant.discriminant_value;
15199 }
15200 }
15201
15202 /* Copy the saved-up fields into the field vector. */
15203 for (int i = 0; i < nfields; ++i)
15204 {
15205 struct nextfield &field
15206 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15207 : fip->fields[i - fip->baseclasses.size ()]);
15208
15209 TYPE_FIELD (type, i) = field.field;
15210 switch (field.accessibility)
15211 {
15212 case DW_ACCESS_private:
15213 if (cu->language != language_ada)
15214 SET_TYPE_FIELD_PRIVATE (type, i);
15215 break;
15216
15217 case DW_ACCESS_protected:
15218 if (cu->language != language_ada)
15219 SET_TYPE_FIELD_PROTECTED (type, i);
15220 break;
15221
15222 case DW_ACCESS_public:
15223 break;
15224
15225 default:
15226 /* Unknown accessibility. Complain and treat it as public. */
15227 {
15228 complaint (_("unsupported accessibility %d"),
15229 field.accessibility);
15230 }
15231 break;
15232 }
15233 if (i < fip->baseclasses.size ())
15234 {
15235 switch (field.virtuality)
15236 {
15237 case DW_VIRTUALITY_virtual:
15238 case DW_VIRTUALITY_pure_virtual:
15239 if (cu->language == language_ada)
15240 error (_("unexpected virtuality in component of Ada type"));
15241 SET_TYPE_FIELD_VIRTUAL (type, i);
15242 break;
15243 }
15244 }
15245 }
15246 }
15247
15248 /* Return true if this member function is a constructor, false
15249 otherwise. */
15250
15251 static int
15252 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15253 {
15254 const char *fieldname;
15255 const char *type_name;
15256 int len;
15257
15258 if (die->parent == NULL)
15259 return 0;
15260
15261 if (die->parent->tag != DW_TAG_structure_type
15262 && die->parent->tag != DW_TAG_union_type
15263 && die->parent->tag != DW_TAG_class_type)
15264 return 0;
15265
15266 fieldname = dwarf2_name (die, cu);
15267 type_name = dwarf2_name (die->parent, cu);
15268 if (fieldname == NULL || type_name == NULL)
15269 return 0;
15270
15271 len = strlen (fieldname);
15272 return (strncmp (fieldname, type_name, len) == 0
15273 && (type_name[len] == '\0' || type_name[len] == '<'));
15274 }
15275
15276 /* Add a member function to the proper fieldlist. */
15277
15278 static void
15279 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15280 struct type *type, struct dwarf2_cu *cu)
15281 {
15282 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15283 struct attribute *attr;
15284 int i;
15285 struct fnfieldlist *flp = nullptr;
15286 struct fn_field *fnp;
15287 const char *fieldname;
15288 struct type *this_type;
15289 enum dwarf_access_attribute accessibility;
15290
15291 if (cu->language == language_ada)
15292 error (_("unexpected member function in Ada type"));
15293
15294 /* Get name of member function. */
15295 fieldname = dwarf2_name (die, cu);
15296 if (fieldname == NULL)
15297 return;
15298
15299 /* Look up member function name in fieldlist. */
15300 for (i = 0; i < fip->fnfieldlists.size (); i++)
15301 {
15302 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15303 {
15304 flp = &fip->fnfieldlists[i];
15305 break;
15306 }
15307 }
15308
15309 /* Create a new fnfieldlist if necessary. */
15310 if (flp == nullptr)
15311 {
15312 fip->fnfieldlists.emplace_back ();
15313 flp = &fip->fnfieldlists.back ();
15314 flp->name = fieldname;
15315 i = fip->fnfieldlists.size () - 1;
15316 }
15317
15318 /* Create a new member function field and add it to the vector of
15319 fnfieldlists. */
15320 flp->fnfields.emplace_back ();
15321 fnp = &flp->fnfields.back ();
15322
15323 /* Delay processing of the physname until later. */
15324 if (cu->language == language_cplus)
15325 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15326 die, cu);
15327 else
15328 {
15329 const char *physname = dwarf2_physname (fieldname, die, cu);
15330 fnp->physname = physname ? physname : "";
15331 }
15332
15333 fnp->type = alloc_type (objfile);
15334 this_type = read_type_die (die, cu);
15335 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15336 {
15337 int nparams = TYPE_NFIELDS (this_type);
15338
15339 /* TYPE is the domain of this method, and THIS_TYPE is the type
15340 of the method itself (TYPE_CODE_METHOD). */
15341 smash_to_method_type (fnp->type, type,
15342 TYPE_TARGET_TYPE (this_type),
15343 TYPE_FIELDS (this_type),
15344 TYPE_NFIELDS (this_type),
15345 TYPE_VARARGS (this_type));
15346
15347 /* Handle static member functions.
15348 Dwarf2 has no clean way to discern C++ static and non-static
15349 member functions. G++ helps GDB by marking the first
15350 parameter for non-static member functions (which is the this
15351 pointer) as artificial. We obtain this information from
15352 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15353 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15354 fnp->voffset = VOFFSET_STATIC;
15355 }
15356 else
15357 complaint (_("member function type missing for '%s'"),
15358 dwarf2_full_name (fieldname, die, cu));
15359
15360 /* Get fcontext from DW_AT_containing_type if present. */
15361 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15362 fnp->fcontext = die_containing_type (die, cu);
15363
15364 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15365 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15366
15367 /* Get accessibility. */
15368 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15369 if (attr)
15370 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15371 else
15372 accessibility = dwarf2_default_access_attribute (die, cu);
15373 switch (accessibility)
15374 {
15375 case DW_ACCESS_private:
15376 fnp->is_private = 1;
15377 break;
15378 case DW_ACCESS_protected:
15379 fnp->is_protected = 1;
15380 break;
15381 }
15382
15383 /* Check for artificial methods. */
15384 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15385 if (attr && DW_UNSND (attr) != 0)
15386 fnp->is_artificial = 1;
15387
15388 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15389
15390 /* Get index in virtual function table if it is a virtual member
15391 function. For older versions of GCC, this is an offset in the
15392 appropriate virtual table, as specified by DW_AT_containing_type.
15393 For everyone else, it is an expression to be evaluated relative
15394 to the object address. */
15395
15396 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15397 if (attr)
15398 {
15399 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15400 {
15401 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15402 {
15403 /* Old-style GCC. */
15404 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15405 }
15406 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15407 || (DW_BLOCK (attr)->size > 1
15408 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15409 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15410 {
15411 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15412 if ((fnp->voffset % cu->header.addr_size) != 0)
15413 dwarf2_complex_location_expr_complaint ();
15414 else
15415 fnp->voffset /= cu->header.addr_size;
15416 fnp->voffset += 2;
15417 }
15418 else
15419 dwarf2_complex_location_expr_complaint ();
15420
15421 if (!fnp->fcontext)
15422 {
15423 /* If there is no `this' field and no DW_AT_containing_type,
15424 we cannot actually find a base class context for the
15425 vtable! */
15426 if (TYPE_NFIELDS (this_type) == 0
15427 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15428 {
15429 complaint (_("cannot determine context for virtual member "
15430 "function \"%s\" (offset %s)"),
15431 fieldname, sect_offset_str (die->sect_off));
15432 }
15433 else
15434 {
15435 fnp->fcontext
15436 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15437 }
15438 }
15439 }
15440 else if (attr_form_is_section_offset (attr))
15441 {
15442 dwarf2_complex_location_expr_complaint ();
15443 }
15444 else
15445 {
15446 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15447 fieldname);
15448 }
15449 }
15450 else
15451 {
15452 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15453 if (attr && DW_UNSND (attr))
15454 {
15455 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15456 complaint (_("Member function \"%s\" (offset %s) is virtual "
15457 "but the vtable offset is not specified"),
15458 fieldname, sect_offset_str (die->sect_off));
15459 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15460 TYPE_CPLUS_DYNAMIC (type) = 1;
15461 }
15462 }
15463 }
15464
15465 /* Create the vector of member function fields, and attach it to the type. */
15466
15467 static void
15468 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15469 struct dwarf2_cu *cu)
15470 {
15471 if (cu->language == language_ada)
15472 error (_("unexpected member functions in Ada type"));
15473
15474 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15475 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15476 TYPE_ALLOC (type,
15477 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15478
15479 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15480 {
15481 struct fnfieldlist &nf = fip->fnfieldlists[i];
15482 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15483
15484 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15485 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15486 fn_flp->fn_fields = (struct fn_field *)
15487 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15488
15489 for (int k = 0; k < nf.fnfields.size (); ++k)
15490 fn_flp->fn_fields[k] = nf.fnfields[k];
15491 }
15492
15493 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15494 }
15495
15496 /* Returns non-zero if NAME is the name of a vtable member in CU's
15497 language, zero otherwise. */
15498 static int
15499 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15500 {
15501 static const char vptr[] = "_vptr";
15502
15503 /* Look for the C++ form of the vtable. */
15504 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15505 return 1;
15506
15507 return 0;
15508 }
15509
15510 /* GCC outputs unnamed structures that are really pointers to member
15511 functions, with the ABI-specified layout. If TYPE describes
15512 such a structure, smash it into a member function type.
15513
15514 GCC shouldn't do this; it should just output pointer to member DIEs.
15515 This is GCC PR debug/28767. */
15516
15517 static void
15518 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15519 {
15520 struct type *pfn_type, *self_type, *new_type;
15521
15522 /* Check for a structure with no name and two children. */
15523 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15524 return;
15525
15526 /* Check for __pfn and __delta members. */
15527 if (TYPE_FIELD_NAME (type, 0) == NULL
15528 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15529 || TYPE_FIELD_NAME (type, 1) == NULL
15530 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15531 return;
15532
15533 /* Find the type of the method. */
15534 pfn_type = TYPE_FIELD_TYPE (type, 0);
15535 if (pfn_type == NULL
15536 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15537 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15538 return;
15539
15540 /* Look for the "this" argument. */
15541 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15542 if (TYPE_NFIELDS (pfn_type) == 0
15543 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15544 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15545 return;
15546
15547 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15548 new_type = alloc_type (objfile);
15549 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15550 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15551 TYPE_VARARGS (pfn_type));
15552 smash_to_methodptr_type (type, new_type);
15553 }
15554
15555 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15556 appropriate error checking and issuing complaints if there is a
15557 problem. */
15558
15559 static ULONGEST
15560 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15561 {
15562 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15563
15564 if (attr == nullptr)
15565 return 0;
15566
15567 if (!attr_form_is_constant (attr))
15568 {
15569 complaint (_("DW_AT_alignment must have constant form"
15570 " - DIE at %s [in module %s]"),
15571 sect_offset_str (die->sect_off),
15572 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15573 return 0;
15574 }
15575
15576 ULONGEST align;
15577 if (attr->form == DW_FORM_sdata)
15578 {
15579 LONGEST val = DW_SND (attr);
15580 if (val < 0)
15581 {
15582 complaint (_("DW_AT_alignment value must not be negative"
15583 " - DIE at %s [in module %s]"),
15584 sect_offset_str (die->sect_off),
15585 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15586 return 0;
15587 }
15588 align = val;
15589 }
15590 else
15591 align = DW_UNSND (attr);
15592
15593 if (align == 0)
15594 {
15595 complaint (_("DW_AT_alignment value must not be zero"
15596 " - DIE at %s [in module %s]"),
15597 sect_offset_str (die->sect_off),
15598 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15599 return 0;
15600 }
15601 if ((align & (align - 1)) != 0)
15602 {
15603 complaint (_("DW_AT_alignment value must be a power of 2"
15604 " - DIE at %s [in module %s]"),
15605 sect_offset_str (die->sect_off),
15606 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15607 return 0;
15608 }
15609
15610 return align;
15611 }
15612
15613 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15614 the alignment for TYPE. */
15615
15616 static void
15617 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15618 struct type *type)
15619 {
15620 if (!set_type_align (type, get_alignment (cu, die)))
15621 complaint (_("DW_AT_alignment value too large"
15622 " - DIE at %s [in module %s]"),
15623 sect_offset_str (die->sect_off),
15624 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15625 }
15626
15627 /* Called when we find the DIE that starts a structure or union scope
15628 (definition) to create a type for the structure or union. Fill in
15629 the type's name and general properties; the members will not be
15630 processed until process_structure_scope. A symbol table entry for
15631 the type will also not be done until process_structure_scope (assuming
15632 the type has a name).
15633
15634 NOTE: we need to call these functions regardless of whether or not the
15635 DIE has a DW_AT_name attribute, since it might be an anonymous
15636 structure or union. This gets the type entered into our set of
15637 user defined types. */
15638
15639 static struct type *
15640 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15641 {
15642 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15643 struct type *type;
15644 struct attribute *attr;
15645 const char *name;
15646
15647 /* If the definition of this type lives in .debug_types, read that type.
15648 Don't follow DW_AT_specification though, that will take us back up
15649 the chain and we want to go down. */
15650 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15651 if (attr)
15652 {
15653 type = get_DW_AT_signature_type (die, attr, cu);
15654
15655 /* The type's CU may not be the same as CU.
15656 Ensure TYPE is recorded with CU in die_type_hash. */
15657 return set_die_type (die, type, cu);
15658 }
15659
15660 type = alloc_type (objfile);
15661 INIT_CPLUS_SPECIFIC (type);
15662
15663 name = dwarf2_name (die, cu);
15664 if (name != NULL)
15665 {
15666 if (cu->language == language_cplus
15667 || cu->language == language_d
15668 || cu->language == language_rust)
15669 {
15670 const char *full_name = dwarf2_full_name (name, die, cu);
15671
15672 /* dwarf2_full_name might have already finished building the DIE's
15673 type. If so, there is no need to continue. */
15674 if (get_die_type (die, cu) != NULL)
15675 return get_die_type (die, cu);
15676
15677 TYPE_NAME (type) = full_name;
15678 }
15679 else
15680 {
15681 /* The name is already allocated along with this objfile, so
15682 we don't need to duplicate it for the type. */
15683 TYPE_NAME (type) = name;
15684 }
15685 }
15686
15687 if (die->tag == DW_TAG_structure_type)
15688 {
15689 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15690 }
15691 else if (die->tag == DW_TAG_union_type)
15692 {
15693 TYPE_CODE (type) = TYPE_CODE_UNION;
15694 }
15695 else if (die->tag == DW_TAG_variant_part)
15696 {
15697 TYPE_CODE (type) = TYPE_CODE_UNION;
15698 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15699 }
15700 else
15701 {
15702 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15703 }
15704
15705 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15706 TYPE_DECLARED_CLASS (type) = 1;
15707
15708 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15709 if (attr)
15710 {
15711 if (attr_form_is_constant (attr))
15712 TYPE_LENGTH (type) = DW_UNSND (attr);
15713 else
15714 {
15715 /* For the moment, dynamic type sizes are not supported
15716 by GDB's struct type. The actual size is determined
15717 on-demand when resolving the type of a given object,
15718 so set the type's length to zero for now. Otherwise,
15719 we record an expression as the length, and that expression
15720 could lead to a very large value, which could eventually
15721 lead to us trying to allocate that much memory when creating
15722 a value of that type. */
15723 TYPE_LENGTH (type) = 0;
15724 }
15725 }
15726 else
15727 {
15728 TYPE_LENGTH (type) = 0;
15729 }
15730
15731 maybe_set_alignment (cu, die, type);
15732
15733 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15734 {
15735 /* ICC<14 does not output the required DW_AT_declaration on
15736 incomplete types, but gives them a size of zero. */
15737 TYPE_STUB (type) = 1;
15738 }
15739 else
15740 TYPE_STUB_SUPPORTED (type) = 1;
15741
15742 if (die_is_declaration (die, cu))
15743 TYPE_STUB (type) = 1;
15744 else if (attr == NULL && die->child == NULL
15745 && producer_is_realview (cu->producer))
15746 /* RealView does not output the required DW_AT_declaration
15747 on incomplete types. */
15748 TYPE_STUB (type) = 1;
15749
15750 /* We need to add the type field to the die immediately so we don't
15751 infinitely recurse when dealing with pointers to the structure
15752 type within the structure itself. */
15753 set_die_type (die, type, cu);
15754
15755 /* set_die_type should be already done. */
15756 set_descriptive_type (type, die, cu);
15757
15758 return type;
15759 }
15760
15761 /* A helper for process_structure_scope that handles a single member
15762 DIE. */
15763
15764 static void
15765 handle_struct_member_die (struct die_info *child_die, struct type *type,
15766 struct field_info *fi,
15767 std::vector<struct symbol *> *template_args,
15768 struct dwarf2_cu *cu)
15769 {
15770 if (child_die->tag == DW_TAG_member
15771 || child_die->tag == DW_TAG_variable
15772 || child_die->tag == DW_TAG_variant_part)
15773 {
15774 /* NOTE: carlton/2002-11-05: A C++ static data member
15775 should be a DW_TAG_member that is a declaration, but
15776 all versions of G++ as of this writing (so through at
15777 least 3.2.1) incorrectly generate DW_TAG_variable
15778 tags for them instead. */
15779 dwarf2_add_field (fi, child_die, cu);
15780 }
15781 else if (child_die->tag == DW_TAG_subprogram)
15782 {
15783 /* Rust doesn't have member functions in the C++ sense.
15784 However, it does emit ordinary functions as children
15785 of a struct DIE. */
15786 if (cu->language == language_rust)
15787 read_func_scope (child_die, cu);
15788 else
15789 {
15790 /* C++ member function. */
15791 dwarf2_add_member_fn (fi, child_die, type, cu);
15792 }
15793 }
15794 else if (child_die->tag == DW_TAG_inheritance)
15795 {
15796 /* C++ base class field. */
15797 dwarf2_add_field (fi, child_die, cu);
15798 }
15799 else if (type_can_define_types (child_die))
15800 dwarf2_add_type_defn (fi, child_die, cu);
15801 else if (child_die->tag == DW_TAG_template_type_param
15802 || child_die->tag == DW_TAG_template_value_param)
15803 {
15804 struct symbol *arg = new_symbol (child_die, NULL, cu);
15805
15806 if (arg != NULL)
15807 template_args->push_back (arg);
15808 }
15809 else if (child_die->tag == DW_TAG_variant)
15810 {
15811 /* In a variant we want to get the discriminant and also add a
15812 field for our sole member child. */
15813 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15814
15815 for (struct die_info *variant_child = child_die->child;
15816 variant_child != NULL;
15817 variant_child = sibling_die (variant_child))
15818 {
15819 if (variant_child->tag == DW_TAG_member)
15820 {
15821 handle_struct_member_die (variant_child, type, fi,
15822 template_args, cu);
15823 /* Only handle the one. */
15824 break;
15825 }
15826 }
15827
15828 /* We don't handle this but we might as well report it if we see
15829 it. */
15830 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15831 complaint (_("DW_AT_discr_list is not supported yet"
15832 " - DIE at %s [in module %s]"),
15833 sect_offset_str (child_die->sect_off),
15834 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15835
15836 /* The first field was just added, so we can stash the
15837 discriminant there. */
15838 gdb_assert (!fi->fields.empty ());
15839 if (discr == NULL)
15840 fi->fields.back ().variant.default_branch = true;
15841 else
15842 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15843 }
15844 }
15845
15846 /* Finish creating a structure or union type, including filling in
15847 its members and creating a symbol for it. */
15848
15849 static void
15850 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15851 {
15852 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15853 struct die_info *child_die;
15854 struct type *type;
15855
15856 type = get_die_type (die, cu);
15857 if (type == NULL)
15858 type = read_structure_type (die, cu);
15859
15860 /* When reading a DW_TAG_variant_part, we need to notice when we
15861 read the discriminant member, so we can record it later in the
15862 discriminant_info. */
15863 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15864 sect_offset discr_offset;
15865
15866 if (is_variant_part)
15867 {
15868 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15869 if (discr == NULL)
15870 {
15871 /* Maybe it's a univariant form, an extension we support.
15872 In this case arrange not to check the offset. */
15873 is_variant_part = false;
15874 }
15875 else if (attr_form_is_ref (discr))
15876 {
15877 struct dwarf2_cu *target_cu = cu;
15878 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15879
15880 discr_offset = target_die->sect_off;
15881 }
15882 else
15883 {
15884 complaint (_("DW_AT_discr does not have DIE reference form"
15885 " - DIE at %s [in module %s]"),
15886 sect_offset_str (die->sect_off),
15887 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15888 is_variant_part = false;
15889 }
15890 }
15891
15892 if (die->child != NULL && ! die_is_declaration (die, cu))
15893 {
15894 struct field_info fi;
15895 std::vector<struct symbol *> template_args;
15896
15897 child_die = die->child;
15898
15899 while (child_die && child_die->tag)
15900 {
15901 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15902
15903 if (is_variant_part && discr_offset == child_die->sect_off)
15904 fi.fields.back ().variant.is_discriminant = true;
15905
15906 child_die = sibling_die (child_die);
15907 }
15908
15909 /* Attach template arguments to type. */
15910 if (!template_args.empty ())
15911 {
15912 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15913 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15914 TYPE_TEMPLATE_ARGUMENTS (type)
15915 = XOBNEWVEC (&objfile->objfile_obstack,
15916 struct symbol *,
15917 TYPE_N_TEMPLATE_ARGUMENTS (type));
15918 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15919 template_args.data (),
15920 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15921 * sizeof (struct symbol *)));
15922 }
15923
15924 /* Attach fields and member functions to the type. */
15925 if (fi.nfields)
15926 dwarf2_attach_fields_to_type (&fi, type, cu);
15927 if (!fi.fnfieldlists.empty ())
15928 {
15929 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15930
15931 /* Get the type which refers to the base class (possibly this
15932 class itself) which contains the vtable pointer for the current
15933 class from the DW_AT_containing_type attribute. This use of
15934 DW_AT_containing_type is a GNU extension. */
15935
15936 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15937 {
15938 struct type *t = die_containing_type (die, cu);
15939
15940 set_type_vptr_basetype (type, t);
15941 if (type == t)
15942 {
15943 int i;
15944
15945 /* Our own class provides vtbl ptr. */
15946 for (i = TYPE_NFIELDS (t) - 1;
15947 i >= TYPE_N_BASECLASSES (t);
15948 --i)
15949 {
15950 const char *fieldname = TYPE_FIELD_NAME (t, i);
15951
15952 if (is_vtable_name (fieldname, cu))
15953 {
15954 set_type_vptr_fieldno (type, i);
15955 break;
15956 }
15957 }
15958
15959 /* Complain if virtual function table field not found. */
15960 if (i < TYPE_N_BASECLASSES (t))
15961 complaint (_("virtual function table pointer "
15962 "not found when defining class '%s'"),
15963 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15964 }
15965 else
15966 {
15967 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15968 }
15969 }
15970 else if (cu->producer
15971 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15972 {
15973 /* The IBM XLC compiler does not provide direct indication
15974 of the containing type, but the vtable pointer is
15975 always named __vfp. */
15976
15977 int i;
15978
15979 for (i = TYPE_NFIELDS (type) - 1;
15980 i >= TYPE_N_BASECLASSES (type);
15981 --i)
15982 {
15983 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15984 {
15985 set_type_vptr_fieldno (type, i);
15986 set_type_vptr_basetype (type, type);
15987 break;
15988 }
15989 }
15990 }
15991 }
15992
15993 /* Copy fi.typedef_field_list linked list elements content into the
15994 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15995 if (!fi.typedef_field_list.empty ())
15996 {
15997 int count = fi.typedef_field_list.size ();
15998
15999 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16000 TYPE_TYPEDEF_FIELD_ARRAY (type)
16001 = ((struct decl_field *)
16002 TYPE_ALLOC (type,
16003 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16004 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16005
16006 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16007 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16008 }
16009
16010 /* Copy fi.nested_types_list linked list elements content into the
16011 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16012 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16013 {
16014 int count = fi.nested_types_list.size ();
16015
16016 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16017 TYPE_NESTED_TYPES_ARRAY (type)
16018 = ((struct decl_field *)
16019 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16020 TYPE_NESTED_TYPES_COUNT (type) = count;
16021
16022 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16023 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16024 }
16025 }
16026
16027 quirk_gcc_member_function_pointer (type, objfile);
16028 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16029 cu->rust_unions.push_back (type);
16030
16031 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16032 snapshots) has been known to create a die giving a declaration
16033 for a class that has, as a child, a die giving a definition for a
16034 nested class. So we have to process our children even if the
16035 current die is a declaration. Normally, of course, a declaration
16036 won't have any children at all. */
16037
16038 child_die = die->child;
16039
16040 while (child_die != NULL && child_die->tag)
16041 {
16042 if (child_die->tag == DW_TAG_member
16043 || child_die->tag == DW_TAG_variable
16044 || child_die->tag == DW_TAG_inheritance
16045 || child_die->tag == DW_TAG_template_value_param
16046 || child_die->tag == DW_TAG_template_type_param)
16047 {
16048 /* Do nothing. */
16049 }
16050 else
16051 process_die (child_die, cu);
16052
16053 child_die = sibling_die (child_die);
16054 }
16055
16056 /* Do not consider external references. According to the DWARF standard,
16057 these DIEs are identified by the fact that they have no byte_size
16058 attribute, and a declaration attribute. */
16059 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16060 || !die_is_declaration (die, cu))
16061 new_symbol (die, type, cu);
16062 }
16063
16064 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16065 update TYPE using some information only available in DIE's children. */
16066
16067 static void
16068 update_enumeration_type_from_children (struct die_info *die,
16069 struct type *type,
16070 struct dwarf2_cu *cu)
16071 {
16072 struct die_info *child_die;
16073 int unsigned_enum = 1;
16074 int flag_enum = 1;
16075 ULONGEST mask = 0;
16076
16077 auto_obstack obstack;
16078
16079 for (child_die = die->child;
16080 child_die != NULL && child_die->tag;
16081 child_die = sibling_die (child_die))
16082 {
16083 struct attribute *attr;
16084 LONGEST value;
16085 const gdb_byte *bytes;
16086 struct dwarf2_locexpr_baton *baton;
16087 const char *name;
16088
16089 if (child_die->tag != DW_TAG_enumerator)
16090 continue;
16091
16092 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16093 if (attr == NULL)
16094 continue;
16095
16096 name = dwarf2_name (child_die, cu);
16097 if (name == NULL)
16098 name = "<anonymous enumerator>";
16099
16100 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16101 &value, &bytes, &baton);
16102 if (value < 0)
16103 {
16104 unsigned_enum = 0;
16105 flag_enum = 0;
16106 }
16107 else if ((mask & value) != 0)
16108 flag_enum = 0;
16109 else
16110 mask |= value;
16111
16112 /* If we already know that the enum type is neither unsigned, nor
16113 a flag type, no need to look at the rest of the enumerates. */
16114 if (!unsigned_enum && !flag_enum)
16115 break;
16116 }
16117
16118 if (unsigned_enum)
16119 TYPE_UNSIGNED (type) = 1;
16120 if (flag_enum)
16121 TYPE_FLAG_ENUM (type) = 1;
16122 }
16123
16124 /* Given a DW_AT_enumeration_type die, set its type. We do not
16125 complete the type's fields yet, or create any symbols. */
16126
16127 static struct type *
16128 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16129 {
16130 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16131 struct type *type;
16132 struct attribute *attr;
16133 const char *name;
16134
16135 /* If the definition of this type lives in .debug_types, read that type.
16136 Don't follow DW_AT_specification though, that will take us back up
16137 the chain and we want to go down. */
16138 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16139 if (attr)
16140 {
16141 type = get_DW_AT_signature_type (die, attr, cu);
16142
16143 /* The type's CU may not be the same as CU.
16144 Ensure TYPE is recorded with CU in die_type_hash. */
16145 return set_die_type (die, type, cu);
16146 }
16147
16148 type = alloc_type (objfile);
16149
16150 TYPE_CODE (type) = TYPE_CODE_ENUM;
16151 name = dwarf2_full_name (NULL, die, cu);
16152 if (name != NULL)
16153 TYPE_NAME (type) = name;
16154
16155 attr = dwarf2_attr (die, DW_AT_type, cu);
16156 if (attr != NULL)
16157 {
16158 struct type *underlying_type = die_type (die, cu);
16159
16160 TYPE_TARGET_TYPE (type) = underlying_type;
16161 }
16162
16163 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16164 if (attr)
16165 {
16166 TYPE_LENGTH (type) = DW_UNSND (attr);
16167 }
16168 else
16169 {
16170 TYPE_LENGTH (type) = 0;
16171 }
16172
16173 maybe_set_alignment (cu, die, type);
16174
16175 /* The enumeration DIE can be incomplete. In Ada, any type can be
16176 declared as private in the package spec, and then defined only
16177 inside the package body. Such types are known as Taft Amendment
16178 Types. When another package uses such a type, an incomplete DIE
16179 may be generated by the compiler. */
16180 if (die_is_declaration (die, cu))
16181 TYPE_STUB (type) = 1;
16182
16183 /* Finish the creation of this type by using the enum's children.
16184 We must call this even when the underlying type has been provided
16185 so that we can determine if we're looking at a "flag" enum. */
16186 update_enumeration_type_from_children (die, type, cu);
16187
16188 /* If this type has an underlying type that is not a stub, then we
16189 may use its attributes. We always use the "unsigned" attribute
16190 in this situation, because ordinarily we guess whether the type
16191 is unsigned -- but the guess can be wrong and the underlying type
16192 can tell us the reality. However, we defer to a local size
16193 attribute if one exists, because this lets the compiler override
16194 the underlying type if needed. */
16195 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16196 {
16197 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16198 if (TYPE_LENGTH (type) == 0)
16199 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16200 if (TYPE_RAW_ALIGN (type) == 0
16201 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16202 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16203 }
16204
16205 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16206
16207 return set_die_type (die, type, cu);
16208 }
16209
16210 /* Given a pointer to a die which begins an enumeration, process all
16211 the dies that define the members of the enumeration, and create the
16212 symbol for the enumeration type.
16213
16214 NOTE: We reverse the order of the element list. */
16215
16216 static void
16217 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16218 {
16219 struct type *this_type;
16220
16221 this_type = get_die_type (die, cu);
16222 if (this_type == NULL)
16223 this_type = read_enumeration_type (die, cu);
16224
16225 if (die->child != NULL)
16226 {
16227 struct die_info *child_die;
16228 struct symbol *sym;
16229 struct field *fields = NULL;
16230 int num_fields = 0;
16231 const char *name;
16232
16233 child_die = die->child;
16234 while (child_die && child_die->tag)
16235 {
16236 if (child_die->tag != DW_TAG_enumerator)
16237 {
16238 process_die (child_die, cu);
16239 }
16240 else
16241 {
16242 name = dwarf2_name (child_die, cu);
16243 if (name)
16244 {
16245 sym = new_symbol (child_die, this_type, cu);
16246
16247 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16248 {
16249 fields = (struct field *)
16250 xrealloc (fields,
16251 (num_fields + DW_FIELD_ALLOC_CHUNK)
16252 * sizeof (struct field));
16253 }
16254
16255 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16256 FIELD_TYPE (fields[num_fields]) = NULL;
16257 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16258 FIELD_BITSIZE (fields[num_fields]) = 0;
16259
16260 num_fields++;
16261 }
16262 }
16263
16264 child_die = sibling_die (child_die);
16265 }
16266
16267 if (num_fields)
16268 {
16269 TYPE_NFIELDS (this_type) = num_fields;
16270 TYPE_FIELDS (this_type) = (struct field *)
16271 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16272 memcpy (TYPE_FIELDS (this_type), fields,
16273 sizeof (struct field) * num_fields);
16274 xfree (fields);
16275 }
16276 }
16277
16278 /* If we are reading an enum from a .debug_types unit, and the enum
16279 is a declaration, and the enum is not the signatured type in the
16280 unit, then we do not want to add a symbol for it. Adding a
16281 symbol would in some cases obscure the true definition of the
16282 enum, giving users an incomplete type when the definition is
16283 actually available. Note that we do not want to do this for all
16284 enums which are just declarations, because C++0x allows forward
16285 enum declarations. */
16286 if (cu->per_cu->is_debug_types
16287 && die_is_declaration (die, cu))
16288 {
16289 struct signatured_type *sig_type;
16290
16291 sig_type = (struct signatured_type *) cu->per_cu;
16292 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16293 if (sig_type->type_offset_in_section != die->sect_off)
16294 return;
16295 }
16296
16297 new_symbol (die, this_type, cu);
16298 }
16299
16300 /* Extract all information from a DW_TAG_array_type DIE and put it in
16301 the DIE's type field. For now, this only handles one dimensional
16302 arrays. */
16303
16304 static struct type *
16305 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16306 {
16307 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16308 struct die_info *child_die;
16309 struct type *type;
16310 struct type *element_type, *range_type, *index_type;
16311 struct attribute *attr;
16312 const char *name;
16313 struct dynamic_prop *byte_stride_prop = NULL;
16314 unsigned int bit_stride = 0;
16315
16316 element_type = die_type (die, cu);
16317
16318 /* The die_type call above may have already set the type for this DIE. */
16319 type = get_die_type (die, cu);
16320 if (type)
16321 return type;
16322
16323 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16324 if (attr != NULL)
16325 {
16326 int stride_ok;
16327
16328 byte_stride_prop
16329 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16330 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16331 if (!stride_ok)
16332 {
16333 complaint (_("unable to read array DW_AT_byte_stride "
16334 " - DIE at %s [in module %s]"),
16335 sect_offset_str (die->sect_off),
16336 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16337 /* Ignore this attribute. We will likely not be able to print
16338 arrays of this type correctly, but there is little we can do
16339 to help if we cannot read the attribute's value. */
16340 byte_stride_prop = NULL;
16341 }
16342 }
16343
16344 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16345 if (attr != NULL)
16346 bit_stride = DW_UNSND (attr);
16347
16348 /* Irix 6.2 native cc creates array types without children for
16349 arrays with unspecified length. */
16350 if (die->child == NULL)
16351 {
16352 index_type = objfile_type (objfile)->builtin_int;
16353 range_type = create_static_range_type (NULL, index_type, 0, -1);
16354 type = create_array_type_with_stride (NULL, element_type, range_type,
16355 byte_stride_prop, bit_stride);
16356 return set_die_type (die, type, cu);
16357 }
16358
16359 std::vector<struct type *> range_types;
16360 child_die = die->child;
16361 while (child_die && child_die->tag)
16362 {
16363 if (child_die->tag == DW_TAG_subrange_type)
16364 {
16365 struct type *child_type = read_type_die (child_die, cu);
16366
16367 if (child_type != NULL)
16368 {
16369 /* The range type was succesfully read. Save it for the
16370 array type creation. */
16371 range_types.push_back (child_type);
16372 }
16373 }
16374 child_die = sibling_die (child_die);
16375 }
16376
16377 /* Dwarf2 dimensions are output from left to right, create the
16378 necessary array types in backwards order. */
16379
16380 type = element_type;
16381
16382 if (read_array_order (die, cu) == DW_ORD_col_major)
16383 {
16384 int i = 0;
16385
16386 while (i < range_types.size ())
16387 type = create_array_type_with_stride (NULL, type, range_types[i++],
16388 byte_stride_prop, bit_stride);
16389 }
16390 else
16391 {
16392 size_t ndim = range_types.size ();
16393 while (ndim-- > 0)
16394 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16395 byte_stride_prop, bit_stride);
16396 }
16397
16398 /* Understand Dwarf2 support for vector types (like they occur on
16399 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16400 array type. This is not part of the Dwarf2/3 standard yet, but a
16401 custom vendor extension. The main difference between a regular
16402 array and the vector variant is that vectors are passed by value
16403 to functions. */
16404 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16405 if (attr)
16406 make_vector_type (type);
16407
16408 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16409 implementation may choose to implement triple vectors using this
16410 attribute. */
16411 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16412 if (attr)
16413 {
16414 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16415 TYPE_LENGTH (type) = DW_UNSND (attr);
16416 else
16417 complaint (_("DW_AT_byte_size for array type smaller "
16418 "than the total size of elements"));
16419 }
16420
16421 name = dwarf2_name (die, cu);
16422 if (name)
16423 TYPE_NAME (type) = name;
16424
16425 maybe_set_alignment (cu, die, type);
16426
16427 /* Install the type in the die. */
16428 set_die_type (die, type, cu);
16429
16430 /* set_die_type should be already done. */
16431 set_descriptive_type (type, die, cu);
16432
16433 return type;
16434 }
16435
16436 static enum dwarf_array_dim_ordering
16437 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16438 {
16439 struct attribute *attr;
16440
16441 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16442
16443 if (attr)
16444 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16445
16446 /* GNU F77 is a special case, as at 08/2004 array type info is the
16447 opposite order to the dwarf2 specification, but data is still
16448 laid out as per normal fortran.
16449
16450 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16451 version checking. */
16452
16453 if (cu->language == language_fortran
16454 && cu->producer && strstr (cu->producer, "GNU F77"))
16455 {
16456 return DW_ORD_row_major;
16457 }
16458
16459 switch (cu->language_defn->la_array_ordering)
16460 {
16461 case array_column_major:
16462 return DW_ORD_col_major;
16463 case array_row_major:
16464 default:
16465 return DW_ORD_row_major;
16466 };
16467 }
16468
16469 /* Extract all information from a DW_TAG_set_type DIE and put it in
16470 the DIE's type field. */
16471
16472 static struct type *
16473 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16474 {
16475 struct type *domain_type, *set_type;
16476 struct attribute *attr;
16477
16478 domain_type = die_type (die, cu);
16479
16480 /* The die_type call above may have already set the type for this DIE. */
16481 set_type = get_die_type (die, cu);
16482 if (set_type)
16483 return set_type;
16484
16485 set_type = create_set_type (NULL, domain_type);
16486
16487 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16488 if (attr)
16489 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16490
16491 maybe_set_alignment (cu, die, set_type);
16492
16493 return set_die_type (die, set_type, cu);
16494 }
16495
16496 /* A helper for read_common_block that creates a locexpr baton.
16497 SYM is the symbol which we are marking as computed.
16498 COMMON_DIE is the DIE for the common block.
16499 COMMON_LOC is the location expression attribute for the common
16500 block itself.
16501 MEMBER_LOC is the location expression attribute for the particular
16502 member of the common block that we are processing.
16503 CU is the CU from which the above come. */
16504
16505 static void
16506 mark_common_block_symbol_computed (struct symbol *sym,
16507 struct die_info *common_die,
16508 struct attribute *common_loc,
16509 struct attribute *member_loc,
16510 struct dwarf2_cu *cu)
16511 {
16512 struct dwarf2_per_objfile *dwarf2_per_objfile
16513 = cu->per_cu->dwarf2_per_objfile;
16514 struct objfile *objfile = dwarf2_per_objfile->objfile;
16515 struct dwarf2_locexpr_baton *baton;
16516 gdb_byte *ptr;
16517 unsigned int cu_off;
16518 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16519 LONGEST offset = 0;
16520
16521 gdb_assert (common_loc && member_loc);
16522 gdb_assert (attr_form_is_block (common_loc));
16523 gdb_assert (attr_form_is_block (member_loc)
16524 || attr_form_is_constant (member_loc));
16525
16526 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16527 baton->per_cu = cu->per_cu;
16528 gdb_assert (baton->per_cu);
16529
16530 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16531
16532 if (attr_form_is_constant (member_loc))
16533 {
16534 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16535 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16536 }
16537 else
16538 baton->size += DW_BLOCK (member_loc)->size;
16539
16540 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16541 baton->data = ptr;
16542
16543 *ptr++ = DW_OP_call4;
16544 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16545 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16546 ptr += 4;
16547
16548 if (attr_form_is_constant (member_loc))
16549 {
16550 *ptr++ = DW_OP_addr;
16551 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16552 ptr += cu->header.addr_size;
16553 }
16554 else
16555 {
16556 /* We have to copy the data here, because DW_OP_call4 will only
16557 use a DW_AT_location attribute. */
16558 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16559 ptr += DW_BLOCK (member_loc)->size;
16560 }
16561
16562 *ptr++ = DW_OP_plus;
16563 gdb_assert (ptr - baton->data == baton->size);
16564
16565 SYMBOL_LOCATION_BATON (sym) = baton;
16566 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16567 }
16568
16569 /* Create appropriate locally-scoped variables for all the
16570 DW_TAG_common_block entries. Also create a struct common_block
16571 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16572 is used to sepate the common blocks name namespace from regular
16573 variable names. */
16574
16575 static void
16576 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16577 {
16578 struct attribute *attr;
16579
16580 attr = dwarf2_attr (die, DW_AT_location, cu);
16581 if (attr)
16582 {
16583 /* Support the .debug_loc offsets. */
16584 if (attr_form_is_block (attr))
16585 {
16586 /* Ok. */
16587 }
16588 else if (attr_form_is_section_offset (attr))
16589 {
16590 dwarf2_complex_location_expr_complaint ();
16591 attr = NULL;
16592 }
16593 else
16594 {
16595 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16596 "common block member");
16597 attr = NULL;
16598 }
16599 }
16600
16601 if (die->child != NULL)
16602 {
16603 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16604 struct die_info *child_die;
16605 size_t n_entries = 0, size;
16606 struct common_block *common_block;
16607 struct symbol *sym;
16608
16609 for (child_die = die->child;
16610 child_die && child_die->tag;
16611 child_die = sibling_die (child_die))
16612 ++n_entries;
16613
16614 size = (sizeof (struct common_block)
16615 + (n_entries - 1) * sizeof (struct symbol *));
16616 common_block
16617 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16618 size);
16619 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16620 common_block->n_entries = 0;
16621
16622 for (child_die = die->child;
16623 child_die && child_die->tag;
16624 child_die = sibling_die (child_die))
16625 {
16626 /* Create the symbol in the DW_TAG_common_block block in the current
16627 symbol scope. */
16628 sym = new_symbol (child_die, NULL, cu);
16629 if (sym != NULL)
16630 {
16631 struct attribute *member_loc;
16632
16633 common_block->contents[common_block->n_entries++] = sym;
16634
16635 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16636 cu);
16637 if (member_loc)
16638 {
16639 /* GDB has handled this for a long time, but it is
16640 not specified by DWARF. It seems to have been
16641 emitted by gfortran at least as recently as:
16642 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16643 complaint (_("Variable in common block has "
16644 "DW_AT_data_member_location "
16645 "- DIE at %s [in module %s]"),
16646 sect_offset_str (child_die->sect_off),
16647 objfile_name (objfile));
16648
16649 if (attr_form_is_section_offset (member_loc))
16650 dwarf2_complex_location_expr_complaint ();
16651 else if (attr_form_is_constant (member_loc)
16652 || attr_form_is_block (member_loc))
16653 {
16654 if (attr)
16655 mark_common_block_symbol_computed (sym, die, attr,
16656 member_loc, cu);
16657 }
16658 else
16659 dwarf2_complex_location_expr_complaint ();
16660 }
16661 }
16662 }
16663
16664 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16665 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16666 }
16667 }
16668
16669 /* Create a type for a C++ namespace. */
16670
16671 static struct type *
16672 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16673 {
16674 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16675 const char *previous_prefix, *name;
16676 int is_anonymous;
16677 struct type *type;
16678
16679 /* For extensions, reuse the type of the original namespace. */
16680 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16681 {
16682 struct die_info *ext_die;
16683 struct dwarf2_cu *ext_cu = cu;
16684
16685 ext_die = dwarf2_extension (die, &ext_cu);
16686 type = read_type_die (ext_die, ext_cu);
16687
16688 /* EXT_CU may not be the same as CU.
16689 Ensure TYPE is recorded with CU in die_type_hash. */
16690 return set_die_type (die, type, cu);
16691 }
16692
16693 name = namespace_name (die, &is_anonymous, cu);
16694
16695 /* Now build the name of the current namespace. */
16696
16697 previous_prefix = determine_prefix (die, cu);
16698 if (previous_prefix[0] != '\0')
16699 name = typename_concat (&objfile->objfile_obstack,
16700 previous_prefix, name, 0, cu);
16701
16702 /* Create the type. */
16703 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16704
16705 return set_die_type (die, type, cu);
16706 }
16707
16708 /* Read a namespace scope. */
16709
16710 static void
16711 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16712 {
16713 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16714 int is_anonymous;
16715
16716 /* Add a symbol associated to this if we haven't seen the namespace
16717 before. Also, add a using directive if it's an anonymous
16718 namespace. */
16719
16720 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16721 {
16722 struct type *type;
16723
16724 type = read_type_die (die, cu);
16725 new_symbol (die, type, cu);
16726
16727 namespace_name (die, &is_anonymous, cu);
16728 if (is_anonymous)
16729 {
16730 const char *previous_prefix = determine_prefix (die, cu);
16731
16732 std::vector<const char *> excludes;
16733 add_using_directive (using_directives (cu),
16734 previous_prefix, TYPE_NAME (type), NULL,
16735 NULL, excludes, 0, &objfile->objfile_obstack);
16736 }
16737 }
16738
16739 if (die->child != NULL)
16740 {
16741 struct die_info *child_die = die->child;
16742
16743 while (child_die && child_die->tag)
16744 {
16745 process_die (child_die, cu);
16746 child_die = sibling_die (child_die);
16747 }
16748 }
16749 }
16750
16751 /* Read a Fortran module as type. This DIE can be only a declaration used for
16752 imported module. Still we need that type as local Fortran "use ... only"
16753 declaration imports depend on the created type in determine_prefix. */
16754
16755 static struct type *
16756 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16757 {
16758 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16759 const char *module_name;
16760 struct type *type;
16761
16762 module_name = dwarf2_name (die, cu);
16763 if (!module_name)
16764 complaint (_("DW_TAG_module has no name, offset %s"),
16765 sect_offset_str (die->sect_off));
16766 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16767
16768 return set_die_type (die, type, cu);
16769 }
16770
16771 /* Read a Fortran module. */
16772
16773 static void
16774 read_module (struct die_info *die, struct dwarf2_cu *cu)
16775 {
16776 struct die_info *child_die = die->child;
16777 struct type *type;
16778
16779 type = read_type_die (die, cu);
16780 new_symbol (die, type, cu);
16781
16782 while (child_die && child_die->tag)
16783 {
16784 process_die (child_die, cu);
16785 child_die = sibling_die (child_die);
16786 }
16787 }
16788
16789 /* Return the name of the namespace represented by DIE. Set
16790 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16791 namespace. */
16792
16793 static const char *
16794 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16795 {
16796 struct die_info *current_die;
16797 const char *name = NULL;
16798
16799 /* Loop through the extensions until we find a name. */
16800
16801 for (current_die = die;
16802 current_die != NULL;
16803 current_die = dwarf2_extension (die, &cu))
16804 {
16805 /* We don't use dwarf2_name here so that we can detect the absence
16806 of a name -> anonymous namespace. */
16807 name = dwarf2_string_attr (die, DW_AT_name, cu);
16808
16809 if (name != NULL)
16810 break;
16811 }
16812
16813 /* Is it an anonymous namespace? */
16814
16815 *is_anonymous = (name == NULL);
16816 if (*is_anonymous)
16817 name = CP_ANONYMOUS_NAMESPACE_STR;
16818
16819 return name;
16820 }
16821
16822 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16823 the user defined type vector. */
16824
16825 static struct type *
16826 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16827 {
16828 struct gdbarch *gdbarch
16829 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16830 struct comp_unit_head *cu_header = &cu->header;
16831 struct type *type;
16832 struct attribute *attr_byte_size;
16833 struct attribute *attr_address_class;
16834 int byte_size, addr_class;
16835 struct type *target_type;
16836
16837 target_type = die_type (die, cu);
16838
16839 /* The die_type call above may have already set the type for this DIE. */
16840 type = get_die_type (die, cu);
16841 if (type)
16842 return type;
16843
16844 type = lookup_pointer_type (target_type);
16845
16846 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16847 if (attr_byte_size)
16848 byte_size = DW_UNSND (attr_byte_size);
16849 else
16850 byte_size = cu_header->addr_size;
16851
16852 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16853 if (attr_address_class)
16854 addr_class = DW_UNSND (attr_address_class);
16855 else
16856 addr_class = DW_ADDR_none;
16857
16858 ULONGEST alignment = get_alignment (cu, die);
16859
16860 /* If the pointer size, alignment, or address class is different
16861 than the default, create a type variant marked as such and set
16862 the length accordingly. */
16863 if (TYPE_LENGTH (type) != byte_size
16864 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16865 && alignment != TYPE_RAW_ALIGN (type))
16866 || addr_class != DW_ADDR_none)
16867 {
16868 if (gdbarch_address_class_type_flags_p (gdbarch))
16869 {
16870 int type_flags;
16871
16872 type_flags = gdbarch_address_class_type_flags
16873 (gdbarch, byte_size, addr_class);
16874 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16875 == 0);
16876 type = make_type_with_address_space (type, type_flags);
16877 }
16878 else if (TYPE_LENGTH (type) != byte_size)
16879 {
16880 complaint (_("invalid pointer size %d"), byte_size);
16881 }
16882 else if (TYPE_RAW_ALIGN (type) != alignment)
16883 {
16884 complaint (_("Invalid DW_AT_alignment"
16885 " - DIE at %s [in module %s]"),
16886 sect_offset_str (die->sect_off),
16887 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16888 }
16889 else
16890 {
16891 /* Should we also complain about unhandled address classes? */
16892 }
16893 }
16894
16895 TYPE_LENGTH (type) = byte_size;
16896 set_type_align (type, alignment);
16897 return set_die_type (die, type, cu);
16898 }
16899
16900 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16901 the user defined type vector. */
16902
16903 static struct type *
16904 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16905 {
16906 struct type *type;
16907 struct type *to_type;
16908 struct type *domain;
16909
16910 to_type = die_type (die, cu);
16911 domain = die_containing_type (die, cu);
16912
16913 /* The calls above may have already set the type for this DIE. */
16914 type = get_die_type (die, cu);
16915 if (type)
16916 return type;
16917
16918 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16919 type = lookup_methodptr_type (to_type);
16920 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16921 {
16922 struct type *new_type
16923 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16924
16925 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16926 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16927 TYPE_VARARGS (to_type));
16928 type = lookup_methodptr_type (new_type);
16929 }
16930 else
16931 type = lookup_memberptr_type (to_type, domain);
16932
16933 return set_die_type (die, type, cu);
16934 }
16935
16936 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16937 the user defined type vector. */
16938
16939 static struct type *
16940 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16941 enum type_code refcode)
16942 {
16943 struct comp_unit_head *cu_header = &cu->header;
16944 struct type *type, *target_type;
16945 struct attribute *attr;
16946
16947 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16948
16949 target_type = die_type (die, cu);
16950
16951 /* The die_type call above may have already set the type for this DIE. */
16952 type = get_die_type (die, cu);
16953 if (type)
16954 return type;
16955
16956 type = lookup_reference_type (target_type, refcode);
16957 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16958 if (attr)
16959 {
16960 TYPE_LENGTH (type) = DW_UNSND (attr);
16961 }
16962 else
16963 {
16964 TYPE_LENGTH (type) = cu_header->addr_size;
16965 }
16966 maybe_set_alignment (cu, die, type);
16967 return set_die_type (die, type, cu);
16968 }
16969
16970 /* Add the given cv-qualifiers to the element type of the array. GCC
16971 outputs DWARF type qualifiers that apply to an array, not the
16972 element type. But GDB relies on the array element type to carry
16973 the cv-qualifiers. This mimics section 6.7.3 of the C99
16974 specification. */
16975
16976 static struct type *
16977 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16978 struct type *base_type, int cnst, int voltl)
16979 {
16980 struct type *el_type, *inner_array;
16981
16982 base_type = copy_type (base_type);
16983 inner_array = base_type;
16984
16985 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16986 {
16987 TYPE_TARGET_TYPE (inner_array) =
16988 copy_type (TYPE_TARGET_TYPE (inner_array));
16989 inner_array = TYPE_TARGET_TYPE (inner_array);
16990 }
16991
16992 el_type = TYPE_TARGET_TYPE (inner_array);
16993 cnst |= TYPE_CONST (el_type);
16994 voltl |= TYPE_VOLATILE (el_type);
16995 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16996
16997 return set_die_type (die, base_type, cu);
16998 }
16999
17000 static struct type *
17001 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17002 {
17003 struct type *base_type, *cv_type;
17004
17005 base_type = die_type (die, cu);
17006
17007 /* The die_type call above may have already set the type for this DIE. */
17008 cv_type = get_die_type (die, cu);
17009 if (cv_type)
17010 return cv_type;
17011
17012 /* In case the const qualifier is applied to an array type, the element type
17013 is so qualified, not the array type (section 6.7.3 of C99). */
17014 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17015 return add_array_cv_type (die, cu, base_type, 1, 0);
17016
17017 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17018 return set_die_type (die, cv_type, cu);
17019 }
17020
17021 static struct type *
17022 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17023 {
17024 struct type *base_type, *cv_type;
17025
17026 base_type = die_type (die, cu);
17027
17028 /* The die_type call above may have already set the type for this DIE. */
17029 cv_type = get_die_type (die, cu);
17030 if (cv_type)
17031 return cv_type;
17032
17033 /* In case the volatile qualifier is applied to an array type, the
17034 element type is so qualified, not the array type (section 6.7.3
17035 of C99). */
17036 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17037 return add_array_cv_type (die, cu, base_type, 0, 1);
17038
17039 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17040 return set_die_type (die, cv_type, cu);
17041 }
17042
17043 /* Handle DW_TAG_restrict_type. */
17044
17045 static struct type *
17046 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17047 {
17048 struct type *base_type, *cv_type;
17049
17050 base_type = die_type (die, cu);
17051
17052 /* The die_type call above may have already set the type for this DIE. */
17053 cv_type = get_die_type (die, cu);
17054 if (cv_type)
17055 return cv_type;
17056
17057 cv_type = make_restrict_type (base_type);
17058 return set_die_type (die, cv_type, cu);
17059 }
17060
17061 /* Handle DW_TAG_atomic_type. */
17062
17063 static struct type *
17064 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17065 {
17066 struct type *base_type, *cv_type;
17067
17068 base_type = die_type (die, cu);
17069
17070 /* The die_type call above may have already set the type for this DIE. */
17071 cv_type = get_die_type (die, cu);
17072 if (cv_type)
17073 return cv_type;
17074
17075 cv_type = make_atomic_type (base_type);
17076 return set_die_type (die, cv_type, cu);
17077 }
17078
17079 /* Extract all information from a DW_TAG_string_type DIE and add to
17080 the user defined type vector. It isn't really a user defined type,
17081 but it behaves like one, with other DIE's using an AT_user_def_type
17082 attribute to reference it. */
17083
17084 static struct type *
17085 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17086 {
17087 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17088 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17089 struct type *type, *range_type, *index_type, *char_type;
17090 struct attribute *attr;
17091 unsigned int length;
17092
17093 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17094 if (attr)
17095 {
17096 length = DW_UNSND (attr);
17097 }
17098 else
17099 {
17100 /* Check for the DW_AT_byte_size attribute. */
17101 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17102 if (attr)
17103 {
17104 length = DW_UNSND (attr);
17105 }
17106 else
17107 {
17108 length = 1;
17109 }
17110 }
17111
17112 index_type = objfile_type (objfile)->builtin_int;
17113 range_type = create_static_range_type (NULL, index_type, 1, length);
17114 char_type = language_string_char_type (cu->language_defn, gdbarch);
17115 type = create_string_type (NULL, char_type, range_type);
17116
17117 return set_die_type (die, type, cu);
17118 }
17119
17120 /* Assuming that DIE corresponds to a function, returns nonzero
17121 if the function is prototyped. */
17122
17123 static int
17124 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17125 {
17126 struct attribute *attr;
17127
17128 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17129 if (attr && (DW_UNSND (attr) != 0))
17130 return 1;
17131
17132 /* The DWARF standard implies that the DW_AT_prototyped attribute
17133 is only meaninful for C, but the concept also extends to other
17134 languages that allow unprototyped functions (Eg: Objective C).
17135 For all other languages, assume that functions are always
17136 prototyped. */
17137 if (cu->language != language_c
17138 && cu->language != language_objc
17139 && cu->language != language_opencl)
17140 return 1;
17141
17142 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17143 prototyped and unprototyped functions; default to prototyped,
17144 since that is more common in modern code (and RealView warns
17145 about unprototyped functions). */
17146 if (producer_is_realview (cu->producer))
17147 return 1;
17148
17149 return 0;
17150 }
17151
17152 /* Handle DIES due to C code like:
17153
17154 struct foo
17155 {
17156 int (*funcp)(int a, long l);
17157 int b;
17158 };
17159
17160 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17161
17162 static struct type *
17163 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17164 {
17165 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17166 struct type *type; /* Type that this function returns. */
17167 struct type *ftype; /* Function that returns above type. */
17168 struct attribute *attr;
17169
17170 type = die_type (die, cu);
17171
17172 /* The die_type call above may have already set the type for this DIE. */
17173 ftype = get_die_type (die, cu);
17174 if (ftype)
17175 return ftype;
17176
17177 ftype = lookup_function_type (type);
17178
17179 if (prototyped_function_p (die, cu))
17180 TYPE_PROTOTYPED (ftype) = 1;
17181
17182 /* Store the calling convention in the type if it's available in
17183 the subroutine die. Otherwise set the calling convention to
17184 the default value DW_CC_normal. */
17185 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17186 if (attr)
17187 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17188 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17189 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17190 else
17191 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17192
17193 /* Record whether the function returns normally to its caller or not
17194 if the DWARF producer set that information. */
17195 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17196 if (attr && (DW_UNSND (attr) != 0))
17197 TYPE_NO_RETURN (ftype) = 1;
17198
17199 /* We need to add the subroutine type to the die immediately so
17200 we don't infinitely recurse when dealing with parameters
17201 declared as the same subroutine type. */
17202 set_die_type (die, ftype, cu);
17203
17204 if (die->child != NULL)
17205 {
17206 struct type *void_type = objfile_type (objfile)->builtin_void;
17207 struct die_info *child_die;
17208 int nparams, iparams;
17209
17210 /* Count the number of parameters.
17211 FIXME: GDB currently ignores vararg functions, but knows about
17212 vararg member functions. */
17213 nparams = 0;
17214 child_die = die->child;
17215 while (child_die && child_die->tag)
17216 {
17217 if (child_die->tag == DW_TAG_formal_parameter)
17218 nparams++;
17219 else if (child_die->tag == DW_TAG_unspecified_parameters)
17220 TYPE_VARARGS (ftype) = 1;
17221 child_die = sibling_die (child_die);
17222 }
17223
17224 /* Allocate storage for parameters and fill them in. */
17225 TYPE_NFIELDS (ftype) = nparams;
17226 TYPE_FIELDS (ftype) = (struct field *)
17227 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17228
17229 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17230 even if we error out during the parameters reading below. */
17231 for (iparams = 0; iparams < nparams; iparams++)
17232 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17233
17234 iparams = 0;
17235 child_die = die->child;
17236 while (child_die && child_die->tag)
17237 {
17238 if (child_die->tag == DW_TAG_formal_parameter)
17239 {
17240 struct type *arg_type;
17241
17242 /* DWARF version 2 has no clean way to discern C++
17243 static and non-static member functions. G++ helps
17244 GDB by marking the first parameter for non-static
17245 member functions (which is the this pointer) as
17246 artificial. We pass this information to
17247 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17248
17249 DWARF version 3 added DW_AT_object_pointer, which GCC
17250 4.5 does not yet generate. */
17251 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17252 if (attr)
17253 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17254 else
17255 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17256 arg_type = die_type (child_die, cu);
17257
17258 /* RealView does not mark THIS as const, which the testsuite
17259 expects. GCC marks THIS as const in method definitions,
17260 but not in the class specifications (GCC PR 43053). */
17261 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17262 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17263 {
17264 int is_this = 0;
17265 struct dwarf2_cu *arg_cu = cu;
17266 const char *name = dwarf2_name (child_die, cu);
17267
17268 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17269 if (attr)
17270 {
17271 /* If the compiler emits this, use it. */
17272 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17273 is_this = 1;
17274 }
17275 else if (name && strcmp (name, "this") == 0)
17276 /* Function definitions will have the argument names. */
17277 is_this = 1;
17278 else if (name == NULL && iparams == 0)
17279 /* Declarations may not have the names, so like
17280 elsewhere in GDB, assume an artificial first
17281 argument is "this". */
17282 is_this = 1;
17283
17284 if (is_this)
17285 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17286 arg_type, 0);
17287 }
17288
17289 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17290 iparams++;
17291 }
17292 child_die = sibling_die (child_die);
17293 }
17294 }
17295
17296 return ftype;
17297 }
17298
17299 static struct type *
17300 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17301 {
17302 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17303 const char *name = NULL;
17304 struct type *this_type, *target_type;
17305
17306 name = dwarf2_full_name (NULL, die, cu);
17307 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17308 TYPE_TARGET_STUB (this_type) = 1;
17309 set_die_type (die, this_type, cu);
17310 target_type = die_type (die, cu);
17311 if (target_type != this_type)
17312 TYPE_TARGET_TYPE (this_type) = target_type;
17313 else
17314 {
17315 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17316 spec and cause infinite loops in GDB. */
17317 complaint (_("Self-referential DW_TAG_typedef "
17318 "- DIE at %s [in module %s]"),
17319 sect_offset_str (die->sect_off), objfile_name (objfile));
17320 TYPE_TARGET_TYPE (this_type) = NULL;
17321 }
17322 return this_type;
17323 }
17324
17325 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17326 (which may be different from NAME) to the architecture back-end to allow
17327 it to guess the correct format if necessary. */
17328
17329 static struct type *
17330 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17331 const char *name_hint)
17332 {
17333 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17334 const struct floatformat **format;
17335 struct type *type;
17336
17337 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17338 if (format)
17339 type = init_float_type (objfile, bits, name, format);
17340 else
17341 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17342
17343 return type;
17344 }
17345
17346 /* Find a representation of a given base type and install
17347 it in the TYPE field of the die. */
17348
17349 static struct type *
17350 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17351 {
17352 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17353 struct type *type;
17354 struct attribute *attr;
17355 int encoding = 0, bits = 0;
17356 const char *name;
17357
17358 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17359 if (attr)
17360 {
17361 encoding = DW_UNSND (attr);
17362 }
17363 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17364 if (attr)
17365 {
17366 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17367 }
17368 name = dwarf2_name (die, cu);
17369 if (!name)
17370 {
17371 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17372 }
17373
17374 switch (encoding)
17375 {
17376 case DW_ATE_address:
17377 /* Turn DW_ATE_address into a void * pointer. */
17378 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17379 type = init_pointer_type (objfile, bits, name, type);
17380 break;
17381 case DW_ATE_boolean:
17382 type = init_boolean_type (objfile, bits, 1, name);
17383 break;
17384 case DW_ATE_complex_float:
17385 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17386 type = init_complex_type (objfile, name, type);
17387 break;
17388 case DW_ATE_decimal_float:
17389 type = init_decfloat_type (objfile, bits, name);
17390 break;
17391 case DW_ATE_float:
17392 type = dwarf2_init_float_type (objfile, bits, name, name);
17393 break;
17394 case DW_ATE_signed:
17395 type = init_integer_type (objfile, bits, 0, name);
17396 break;
17397 case DW_ATE_unsigned:
17398 if (cu->language == language_fortran
17399 && name
17400 && startswith (name, "character("))
17401 type = init_character_type (objfile, bits, 1, name);
17402 else
17403 type = init_integer_type (objfile, bits, 1, name);
17404 break;
17405 case DW_ATE_signed_char:
17406 if (cu->language == language_ada || cu->language == language_m2
17407 || cu->language == language_pascal
17408 || cu->language == language_fortran)
17409 type = init_character_type (objfile, bits, 0, name);
17410 else
17411 type = init_integer_type (objfile, bits, 0, name);
17412 break;
17413 case DW_ATE_unsigned_char:
17414 if (cu->language == language_ada || cu->language == language_m2
17415 || cu->language == language_pascal
17416 || cu->language == language_fortran
17417 || cu->language == language_rust)
17418 type = init_character_type (objfile, bits, 1, name);
17419 else
17420 type = init_integer_type (objfile, bits, 1, name);
17421 break;
17422 case DW_ATE_UTF:
17423 {
17424 gdbarch *arch = get_objfile_arch (objfile);
17425
17426 if (bits == 16)
17427 type = builtin_type (arch)->builtin_char16;
17428 else if (bits == 32)
17429 type = builtin_type (arch)->builtin_char32;
17430 else
17431 {
17432 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17433 bits);
17434 type = init_integer_type (objfile, bits, 1, name);
17435 }
17436 return set_die_type (die, type, cu);
17437 }
17438 break;
17439
17440 default:
17441 complaint (_("unsupported DW_AT_encoding: '%s'"),
17442 dwarf_type_encoding_name (encoding));
17443 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17444 break;
17445 }
17446
17447 if (name && strcmp (name, "char") == 0)
17448 TYPE_NOSIGN (type) = 1;
17449
17450 maybe_set_alignment (cu, die, type);
17451
17452 return set_die_type (die, type, cu);
17453 }
17454
17455 /* Parse dwarf attribute if it's a block, reference or constant and put the
17456 resulting value of the attribute into struct bound_prop.
17457 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17458
17459 static int
17460 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17461 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17462 {
17463 struct dwarf2_property_baton *baton;
17464 struct obstack *obstack
17465 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17466
17467 if (attr == NULL || prop == NULL)
17468 return 0;
17469
17470 if (attr_form_is_block (attr))
17471 {
17472 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17473 baton->referenced_type = NULL;
17474 baton->locexpr.per_cu = cu->per_cu;
17475 baton->locexpr.size = DW_BLOCK (attr)->size;
17476 baton->locexpr.data = DW_BLOCK (attr)->data;
17477 prop->data.baton = baton;
17478 prop->kind = PROP_LOCEXPR;
17479 gdb_assert (prop->data.baton != NULL);
17480 }
17481 else if (attr_form_is_ref (attr))
17482 {
17483 struct dwarf2_cu *target_cu = cu;
17484 struct die_info *target_die;
17485 struct attribute *target_attr;
17486
17487 target_die = follow_die_ref (die, attr, &target_cu);
17488 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17489 if (target_attr == NULL)
17490 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17491 target_cu);
17492 if (target_attr == NULL)
17493 return 0;
17494
17495 switch (target_attr->name)
17496 {
17497 case DW_AT_location:
17498 if (attr_form_is_section_offset (target_attr))
17499 {
17500 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17501 baton->referenced_type = die_type (target_die, target_cu);
17502 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17503 prop->data.baton = baton;
17504 prop->kind = PROP_LOCLIST;
17505 gdb_assert (prop->data.baton != NULL);
17506 }
17507 else if (attr_form_is_block (target_attr))
17508 {
17509 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17510 baton->referenced_type = die_type (target_die, target_cu);
17511 baton->locexpr.per_cu = cu->per_cu;
17512 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17513 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17514 prop->data.baton = baton;
17515 prop->kind = PROP_LOCEXPR;
17516 gdb_assert (prop->data.baton != NULL);
17517 }
17518 else
17519 {
17520 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17521 "dynamic property");
17522 return 0;
17523 }
17524 break;
17525 case DW_AT_data_member_location:
17526 {
17527 LONGEST offset;
17528
17529 if (!handle_data_member_location (target_die, target_cu,
17530 &offset))
17531 return 0;
17532
17533 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17534 baton->referenced_type = read_type_die (target_die->parent,
17535 target_cu);
17536 baton->offset_info.offset = offset;
17537 baton->offset_info.type = die_type (target_die, target_cu);
17538 prop->data.baton = baton;
17539 prop->kind = PROP_ADDR_OFFSET;
17540 break;
17541 }
17542 }
17543 }
17544 else if (attr_form_is_constant (attr))
17545 {
17546 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17547 prop->kind = PROP_CONST;
17548 }
17549 else
17550 {
17551 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17552 dwarf2_name (die, cu));
17553 return 0;
17554 }
17555
17556 return 1;
17557 }
17558
17559 /* Read the given DW_AT_subrange DIE. */
17560
17561 static struct type *
17562 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17563 {
17564 struct type *base_type, *orig_base_type;
17565 struct type *range_type;
17566 struct attribute *attr;
17567 struct dynamic_prop low, high;
17568 int low_default_is_valid;
17569 int high_bound_is_count = 0;
17570 const char *name;
17571 LONGEST negative_mask;
17572
17573 orig_base_type = die_type (die, cu);
17574 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17575 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17576 creating the range type, but we use the result of check_typedef
17577 when examining properties of the type. */
17578 base_type = check_typedef (orig_base_type);
17579
17580 /* The die_type call above may have already set the type for this DIE. */
17581 range_type = get_die_type (die, cu);
17582 if (range_type)
17583 return range_type;
17584
17585 low.kind = PROP_CONST;
17586 high.kind = PROP_CONST;
17587 high.data.const_val = 0;
17588
17589 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17590 omitting DW_AT_lower_bound. */
17591 switch (cu->language)
17592 {
17593 case language_c:
17594 case language_cplus:
17595 low.data.const_val = 0;
17596 low_default_is_valid = 1;
17597 break;
17598 case language_fortran:
17599 low.data.const_val = 1;
17600 low_default_is_valid = 1;
17601 break;
17602 case language_d:
17603 case language_objc:
17604 case language_rust:
17605 low.data.const_val = 0;
17606 low_default_is_valid = (cu->header.version >= 4);
17607 break;
17608 case language_ada:
17609 case language_m2:
17610 case language_pascal:
17611 low.data.const_val = 1;
17612 low_default_is_valid = (cu->header.version >= 4);
17613 break;
17614 default:
17615 low.data.const_val = 0;
17616 low_default_is_valid = 0;
17617 break;
17618 }
17619
17620 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17621 if (attr)
17622 attr_to_dynamic_prop (attr, die, cu, &low);
17623 else if (!low_default_is_valid)
17624 complaint (_("Missing DW_AT_lower_bound "
17625 "- DIE at %s [in module %s]"),
17626 sect_offset_str (die->sect_off),
17627 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17628
17629 struct attribute *attr_ub, *attr_count;
17630 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17631 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17632 {
17633 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17634 if (attr_to_dynamic_prop (attr, die, cu, &high))
17635 {
17636 /* If bounds are constant do the final calculation here. */
17637 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17638 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17639 else
17640 high_bound_is_count = 1;
17641 }
17642 else
17643 {
17644 if (attr_ub != NULL)
17645 complaint (_("Unresolved DW_AT_upper_bound "
17646 "- DIE at %s [in module %s]"),
17647 sect_offset_str (die->sect_off),
17648 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17649 if (attr_count != NULL)
17650 complaint (_("Unresolved DW_AT_count "
17651 "- DIE at %s [in module %s]"),
17652 sect_offset_str (die->sect_off),
17653 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17654 }
17655
17656 }
17657
17658 /* Dwarf-2 specifications explicitly allows to create subrange types
17659 without specifying a base type.
17660 In that case, the base type must be set to the type of
17661 the lower bound, upper bound or count, in that order, if any of these
17662 three attributes references an object that has a type.
17663 If no base type is found, the Dwarf-2 specifications say that
17664 a signed integer type of size equal to the size of an address should
17665 be used.
17666 For the following C code: `extern char gdb_int [];'
17667 GCC produces an empty range DIE.
17668 FIXME: muller/2010-05-28: Possible references to object for low bound,
17669 high bound or count are not yet handled by this code. */
17670 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17671 {
17672 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17673 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17674 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17675 struct type *int_type = objfile_type (objfile)->builtin_int;
17676
17677 /* Test "int", "long int", and "long long int" objfile types,
17678 and select the first one having a size above or equal to the
17679 architecture address size. */
17680 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17681 base_type = int_type;
17682 else
17683 {
17684 int_type = objfile_type (objfile)->builtin_long;
17685 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17686 base_type = int_type;
17687 else
17688 {
17689 int_type = objfile_type (objfile)->builtin_long_long;
17690 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17691 base_type = int_type;
17692 }
17693 }
17694 }
17695
17696 /* Normally, the DWARF producers are expected to use a signed
17697 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17698 But this is unfortunately not always the case, as witnessed
17699 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17700 is used instead. To work around that ambiguity, we treat
17701 the bounds as signed, and thus sign-extend their values, when
17702 the base type is signed. */
17703 negative_mask =
17704 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17705 if (low.kind == PROP_CONST
17706 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17707 low.data.const_val |= negative_mask;
17708 if (high.kind == PROP_CONST
17709 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17710 high.data.const_val |= negative_mask;
17711
17712 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17713
17714 if (high_bound_is_count)
17715 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17716
17717 /* Ada expects an empty array on no boundary attributes. */
17718 if (attr == NULL && cu->language != language_ada)
17719 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17720
17721 name = dwarf2_name (die, cu);
17722 if (name)
17723 TYPE_NAME (range_type) = name;
17724
17725 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17726 if (attr)
17727 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17728
17729 maybe_set_alignment (cu, die, range_type);
17730
17731 set_die_type (die, range_type, cu);
17732
17733 /* set_die_type should be already done. */
17734 set_descriptive_type (range_type, die, cu);
17735
17736 return range_type;
17737 }
17738
17739 static struct type *
17740 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17741 {
17742 struct type *type;
17743
17744 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17745 NULL);
17746 TYPE_NAME (type) = dwarf2_name (die, cu);
17747
17748 /* In Ada, an unspecified type is typically used when the description
17749 of the type is defered to a different unit. When encountering
17750 such a type, we treat it as a stub, and try to resolve it later on,
17751 when needed. */
17752 if (cu->language == language_ada)
17753 TYPE_STUB (type) = 1;
17754
17755 return set_die_type (die, type, cu);
17756 }
17757
17758 /* Read a single die and all its descendents. Set the die's sibling
17759 field to NULL; set other fields in the die correctly, and set all
17760 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17761 location of the info_ptr after reading all of those dies. PARENT
17762 is the parent of the die in question. */
17763
17764 static struct die_info *
17765 read_die_and_children (const struct die_reader_specs *reader,
17766 const gdb_byte *info_ptr,
17767 const gdb_byte **new_info_ptr,
17768 struct die_info *parent)
17769 {
17770 struct die_info *die;
17771 const gdb_byte *cur_ptr;
17772 int has_children;
17773
17774 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17775 if (die == NULL)
17776 {
17777 *new_info_ptr = cur_ptr;
17778 return NULL;
17779 }
17780 store_in_ref_table (die, reader->cu);
17781
17782 if (has_children)
17783 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17784 else
17785 {
17786 die->child = NULL;
17787 *new_info_ptr = cur_ptr;
17788 }
17789
17790 die->sibling = NULL;
17791 die->parent = parent;
17792 return die;
17793 }
17794
17795 /* Read a die, all of its descendents, and all of its siblings; set
17796 all of the fields of all of the dies correctly. Arguments are as
17797 in read_die_and_children. */
17798
17799 static struct die_info *
17800 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17801 const gdb_byte *info_ptr,
17802 const gdb_byte **new_info_ptr,
17803 struct die_info *parent)
17804 {
17805 struct die_info *first_die, *last_sibling;
17806 const gdb_byte *cur_ptr;
17807
17808 cur_ptr = info_ptr;
17809 first_die = last_sibling = NULL;
17810
17811 while (1)
17812 {
17813 struct die_info *die
17814 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17815
17816 if (die == NULL)
17817 {
17818 *new_info_ptr = cur_ptr;
17819 return first_die;
17820 }
17821
17822 if (!first_die)
17823 first_die = die;
17824 else
17825 last_sibling->sibling = die;
17826
17827 last_sibling = die;
17828 }
17829 }
17830
17831 /* Read a die, all of its descendents, and all of its siblings; set
17832 all of the fields of all of the dies correctly. Arguments are as
17833 in read_die_and_children.
17834 This the main entry point for reading a DIE and all its children. */
17835
17836 static struct die_info *
17837 read_die_and_siblings (const struct die_reader_specs *reader,
17838 const gdb_byte *info_ptr,
17839 const gdb_byte **new_info_ptr,
17840 struct die_info *parent)
17841 {
17842 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17843 new_info_ptr, parent);
17844
17845 if (dwarf_die_debug)
17846 {
17847 fprintf_unfiltered (gdb_stdlog,
17848 "Read die from %s@0x%x of %s:\n",
17849 get_section_name (reader->die_section),
17850 (unsigned) (info_ptr - reader->die_section->buffer),
17851 bfd_get_filename (reader->abfd));
17852 dump_die (die, dwarf_die_debug);
17853 }
17854
17855 return die;
17856 }
17857
17858 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17859 attributes.
17860 The caller is responsible for filling in the extra attributes
17861 and updating (*DIEP)->num_attrs.
17862 Set DIEP to point to a newly allocated die with its information,
17863 except for its child, sibling, and parent fields.
17864 Set HAS_CHILDREN to tell whether the die has children or not. */
17865
17866 static const gdb_byte *
17867 read_full_die_1 (const struct die_reader_specs *reader,
17868 struct die_info **diep, const gdb_byte *info_ptr,
17869 int *has_children, int num_extra_attrs)
17870 {
17871 unsigned int abbrev_number, bytes_read, i;
17872 struct abbrev_info *abbrev;
17873 struct die_info *die;
17874 struct dwarf2_cu *cu = reader->cu;
17875 bfd *abfd = reader->abfd;
17876
17877 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17878 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17879 info_ptr += bytes_read;
17880 if (!abbrev_number)
17881 {
17882 *diep = NULL;
17883 *has_children = 0;
17884 return info_ptr;
17885 }
17886
17887 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17888 if (!abbrev)
17889 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17890 abbrev_number,
17891 bfd_get_filename (abfd));
17892
17893 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17894 die->sect_off = sect_off;
17895 die->tag = abbrev->tag;
17896 die->abbrev = abbrev_number;
17897
17898 /* Make the result usable.
17899 The caller needs to update num_attrs after adding the extra
17900 attributes. */
17901 die->num_attrs = abbrev->num_attrs;
17902
17903 for (i = 0; i < abbrev->num_attrs; ++i)
17904 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17905 info_ptr);
17906
17907 *diep = die;
17908 *has_children = abbrev->has_children;
17909 return info_ptr;
17910 }
17911
17912 /* Read a die and all its attributes.
17913 Set DIEP to point to a newly allocated die with its information,
17914 except for its child, sibling, and parent fields.
17915 Set HAS_CHILDREN to tell whether the die has children or not. */
17916
17917 static const gdb_byte *
17918 read_full_die (const struct die_reader_specs *reader,
17919 struct die_info **diep, const gdb_byte *info_ptr,
17920 int *has_children)
17921 {
17922 const gdb_byte *result;
17923
17924 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17925
17926 if (dwarf_die_debug)
17927 {
17928 fprintf_unfiltered (gdb_stdlog,
17929 "Read die from %s@0x%x of %s:\n",
17930 get_section_name (reader->die_section),
17931 (unsigned) (info_ptr - reader->die_section->buffer),
17932 bfd_get_filename (reader->abfd));
17933 dump_die (*diep, dwarf_die_debug);
17934 }
17935
17936 return result;
17937 }
17938 \f
17939 /* Abbreviation tables.
17940
17941 In DWARF version 2, the description of the debugging information is
17942 stored in a separate .debug_abbrev section. Before we read any
17943 dies from a section we read in all abbreviations and install them
17944 in a hash table. */
17945
17946 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17947
17948 struct abbrev_info *
17949 abbrev_table::alloc_abbrev ()
17950 {
17951 struct abbrev_info *abbrev;
17952
17953 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17954 memset (abbrev, 0, sizeof (struct abbrev_info));
17955
17956 return abbrev;
17957 }
17958
17959 /* Add an abbreviation to the table. */
17960
17961 void
17962 abbrev_table::add_abbrev (unsigned int abbrev_number,
17963 struct abbrev_info *abbrev)
17964 {
17965 unsigned int hash_number;
17966
17967 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17968 abbrev->next = m_abbrevs[hash_number];
17969 m_abbrevs[hash_number] = abbrev;
17970 }
17971
17972 /* Look up an abbrev in the table.
17973 Returns NULL if the abbrev is not found. */
17974
17975 struct abbrev_info *
17976 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17977 {
17978 unsigned int hash_number;
17979 struct abbrev_info *abbrev;
17980
17981 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17982 abbrev = m_abbrevs[hash_number];
17983
17984 while (abbrev)
17985 {
17986 if (abbrev->number == abbrev_number)
17987 return abbrev;
17988 abbrev = abbrev->next;
17989 }
17990 return NULL;
17991 }
17992
17993 /* Read in an abbrev table. */
17994
17995 static abbrev_table_up
17996 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17997 struct dwarf2_section_info *section,
17998 sect_offset sect_off)
17999 {
18000 struct objfile *objfile = dwarf2_per_objfile->objfile;
18001 bfd *abfd = get_section_bfd_owner (section);
18002 const gdb_byte *abbrev_ptr;
18003 struct abbrev_info *cur_abbrev;
18004 unsigned int abbrev_number, bytes_read, abbrev_name;
18005 unsigned int abbrev_form;
18006 struct attr_abbrev *cur_attrs;
18007 unsigned int allocated_attrs;
18008
18009 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18010
18011 dwarf2_read_section (objfile, section);
18012 abbrev_ptr = section->buffer + to_underlying (sect_off);
18013 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18014 abbrev_ptr += bytes_read;
18015
18016 allocated_attrs = ATTR_ALLOC_CHUNK;
18017 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18018
18019 /* Loop until we reach an abbrev number of 0. */
18020 while (abbrev_number)
18021 {
18022 cur_abbrev = abbrev_table->alloc_abbrev ();
18023
18024 /* read in abbrev header */
18025 cur_abbrev->number = abbrev_number;
18026 cur_abbrev->tag
18027 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18028 abbrev_ptr += bytes_read;
18029 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18030 abbrev_ptr += 1;
18031
18032 /* now read in declarations */
18033 for (;;)
18034 {
18035 LONGEST implicit_const;
18036
18037 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18038 abbrev_ptr += bytes_read;
18039 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18040 abbrev_ptr += bytes_read;
18041 if (abbrev_form == DW_FORM_implicit_const)
18042 {
18043 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18044 &bytes_read);
18045 abbrev_ptr += bytes_read;
18046 }
18047 else
18048 {
18049 /* Initialize it due to a false compiler warning. */
18050 implicit_const = -1;
18051 }
18052
18053 if (abbrev_name == 0)
18054 break;
18055
18056 if (cur_abbrev->num_attrs == allocated_attrs)
18057 {
18058 allocated_attrs += ATTR_ALLOC_CHUNK;
18059 cur_attrs
18060 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18061 }
18062
18063 cur_attrs[cur_abbrev->num_attrs].name
18064 = (enum dwarf_attribute) abbrev_name;
18065 cur_attrs[cur_abbrev->num_attrs].form
18066 = (enum dwarf_form) abbrev_form;
18067 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18068 ++cur_abbrev->num_attrs;
18069 }
18070
18071 cur_abbrev->attrs =
18072 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18073 cur_abbrev->num_attrs);
18074 memcpy (cur_abbrev->attrs, cur_attrs,
18075 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18076
18077 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18078
18079 /* Get next abbreviation.
18080 Under Irix6 the abbreviations for a compilation unit are not
18081 always properly terminated with an abbrev number of 0.
18082 Exit loop if we encounter an abbreviation which we have
18083 already read (which means we are about to read the abbreviations
18084 for the next compile unit) or if the end of the abbreviation
18085 table is reached. */
18086 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18087 break;
18088 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18089 abbrev_ptr += bytes_read;
18090 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18091 break;
18092 }
18093
18094 xfree (cur_attrs);
18095 return abbrev_table;
18096 }
18097
18098 /* Returns nonzero if TAG represents a type that we might generate a partial
18099 symbol for. */
18100
18101 static int
18102 is_type_tag_for_partial (int tag)
18103 {
18104 switch (tag)
18105 {
18106 #if 0
18107 /* Some types that would be reasonable to generate partial symbols for,
18108 that we don't at present. */
18109 case DW_TAG_array_type:
18110 case DW_TAG_file_type:
18111 case DW_TAG_ptr_to_member_type:
18112 case DW_TAG_set_type:
18113 case DW_TAG_string_type:
18114 case DW_TAG_subroutine_type:
18115 #endif
18116 case DW_TAG_base_type:
18117 case DW_TAG_class_type:
18118 case DW_TAG_interface_type:
18119 case DW_TAG_enumeration_type:
18120 case DW_TAG_structure_type:
18121 case DW_TAG_subrange_type:
18122 case DW_TAG_typedef:
18123 case DW_TAG_union_type:
18124 return 1;
18125 default:
18126 return 0;
18127 }
18128 }
18129
18130 /* Load all DIEs that are interesting for partial symbols into memory. */
18131
18132 static struct partial_die_info *
18133 load_partial_dies (const struct die_reader_specs *reader,
18134 const gdb_byte *info_ptr, int building_psymtab)
18135 {
18136 struct dwarf2_cu *cu = reader->cu;
18137 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18138 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18139 unsigned int bytes_read;
18140 unsigned int load_all = 0;
18141 int nesting_level = 1;
18142
18143 parent_die = NULL;
18144 last_die = NULL;
18145
18146 gdb_assert (cu->per_cu != NULL);
18147 if (cu->per_cu->load_all_dies)
18148 load_all = 1;
18149
18150 cu->partial_dies
18151 = htab_create_alloc_ex (cu->header.length / 12,
18152 partial_die_hash,
18153 partial_die_eq,
18154 NULL,
18155 &cu->comp_unit_obstack,
18156 hashtab_obstack_allocate,
18157 dummy_obstack_deallocate);
18158
18159 while (1)
18160 {
18161 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18162
18163 /* A NULL abbrev means the end of a series of children. */
18164 if (abbrev == NULL)
18165 {
18166 if (--nesting_level == 0)
18167 return first_die;
18168
18169 info_ptr += bytes_read;
18170 last_die = parent_die;
18171 parent_die = parent_die->die_parent;
18172 continue;
18173 }
18174
18175 /* Check for template arguments. We never save these; if
18176 they're seen, we just mark the parent, and go on our way. */
18177 if (parent_die != NULL
18178 && cu->language == language_cplus
18179 && (abbrev->tag == DW_TAG_template_type_param
18180 || abbrev->tag == DW_TAG_template_value_param))
18181 {
18182 parent_die->has_template_arguments = 1;
18183
18184 if (!load_all)
18185 {
18186 /* We don't need a partial DIE for the template argument. */
18187 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18188 continue;
18189 }
18190 }
18191
18192 /* We only recurse into c++ subprograms looking for template arguments.
18193 Skip their other children. */
18194 if (!load_all
18195 && cu->language == language_cplus
18196 && parent_die != NULL
18197 && parent_die->tag == DW_TAG_subprogram)
18198 {
18199 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18200 continue;
18201 }
18202
18203 /* Check whether this DIE is interesting enough to save. Normally
18204 we would not be interested in members here, but there may be
18205 later variables referencing them via DW_AT_specification (for
18206 static members). */
18207 if (!load_all
18208 && !is_type_tag_for_partial (abbrev->tag)
18209 && abbrev->tag != DW_TAG_constant
18210 && abbrev->tag != DW_TAG_enumerator
18211 && abbrev->tag != DW_TAG_subprogram
18212 && abbrev->tag != DW_TAG_inlined_subroutine
18213 && abbrev->tag != DW_TAG_lexical_block
18214 && abbrev->tag != DW_TAG_variable
18215 && abbrev->tag != DW_TAG_namespace
18216 && abbrev->tag != DW_TAG_module
18217 && abbrev->tag != DW_TAG_member
18218 && abbrev->tag != DW_TAG_imported_unit
18219 && abbrev->tag != DW_TAG_imported_declaration)
18220 {
18221 /* Otherwise we skip to the next sibling, if any. */
18222 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18223 continue;
18224 }
18225
18226 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18227 abbrev);
18228
18229 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18230
18231 /* This two-pass algorithm for processing partial symbols has a
18232 high cost in cache pressure. Thus, handle some simple cases
18233 here which cover the majority of C partial symbols. DIEs
18234 which neither have specification tags in them, nor could have
18235 specification tags elsewhere pointing at them, can simply be
18236 processed and discarded.
18237
18238 This segment is also optional; scan_partial_symbols and
18239 add_partial_symbol will handle these DIEs if we chain
18240 them in normally. When compilers which do not emit large
18241 quantities of duplicate debug information are more common,
18242 this code can probably be removed. */
18243
18244 /* Any complete simple types at the top level (pretty much all
18245 of them, for a language without namespaces), can be processed
18246 directly. */
18247 if (parent_die == NULL
18248 && pdi.has_specification == 0
18249 && pdi.is_declaration == 0
18250 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18251 || pdi.tag == DW_TAG_base_type
18252 || pdi.tag == DW_TAG_subrange_type))
18253 {
18254 if (building_psymtab && pdi.name != NULL)
18255 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18256 VAR_DOMAIN, LOC_TYPEDEF,
18257 &objfile->static_psymbols,
18258 0, cu->language, objfile);
18259 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18260 continue;
18261 }
18262
18263 /* The exception for DW_TAG_typedef with has_children above is
18264 a workaround of GCC PR debug/47510. In the case of this complaint
18265 type_name_or_error will error on such types later.
18266
18267 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18268 it could not find the child DIEs referenced later, this is checked
18269 above. In correct DWARF DW_TAG_typedef should have no children. */
18270
18271 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18272 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18273 "- DIE at %s [in module %s]"),
18274 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18275
18276 /* If we're at the second level, and we're an enumerator, and
18277 our parent has no specification (meaning possibly lives in a
18278 namespace elsewhere), then we can add the partial symbol now
18279 instead of queueing it. */
18280 if (pdi.tag == DW_TAG_enumerator
18281 && parent_die != NULL
18282 && parent_die->die_parent == NULL
18283 && parent_die->tag == DW_TAG_enumeration_type
18284 && parent_die->has_specification == 0)
18285 {
18286 if (pdi.name == NULL)
18287 complaint (_("malformed enumerator DIE ignored"));
18288 else if (building_psymtab)
18289 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18290 VAR_DOMAIN, LOC_CONST,
18291 cu->language == language_cplus
18292 ? &objfile->global_psymbols
18293 : &objfile->static_psymbols,
18294 0, cu->language, objfile);
18295
18296 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18297 continue;
18298 }
18299
18300 struct partial_die_info *part_die
18301 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18302
18303 /* We'll save this DIE so link it in. */
18304 part_die->die_parent = parent_die;
18305 part_die->die_sibling = NULL;
18306 part_die->die_child = NULL;
18307
18308 if (last_die && last_die == parent_die)
18309 last_die->die_child = part_die;
18310 else if (last_die)
18311 last_die->die_sibling = part_die;
18312
18313 last_die = part_die;
18314
18315 if (first_die == NULL)
18316 first_die = part_die;
18317
18318 /* Maybe add the DIE to the hash table. Not all DIEs that we
18319 find interesting need to be in the hash table, because we
18320 also have the parent/sibling/child chains; only those that we
18321 might refer to by offset later during partial symbol reading.
18322
18323 For now this means things that might have be the target of a
18324 DW_AT_specification, DW_AT_abstract_origin, or
18325 DW_AT_extension. DW_AT_extension will refer only to
18326 namespaces; DW_AT_abstract_origin refers to functions (and
18327 many things under the function DIE, but we do not recurse
18328 into function DIEs during partial symbol reading) and
18329 possibly variables as well; DW_AT_specification refers to
18330 declarations. Declarations ought to have the DW_AT_declaration
18331 flag. It happens that GCC forgets to put it in sometimes, but
18332 only for functions, not for types.
18333
18334 Adding more things than necessary to the hash table is harmless
18335 except for the performance cost. Adding too few will result in
18336 wasted time in find_partial_die, when we reread the compilation
18337 unit with load_all_dies set. */
18338
18339 if (load_all
18340 || abbrev->tag == DW_TAG_constant
18341 || abbrev->tag == DW_TAG_subprogram
18342 || abbrev->tag == DW_TAG_variable
18343 || abbrev->tag == DW_TAG_namespace
18344 || part_die->is_declaration)
18345 {
18346 void **slot;
18347
18348 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18349 to_underlying (part_die->sect_off),
18350 INSERT);
18351 *slot = part_die;
18352 }
18353
18354 /* For some DIEs we want to follow their children (if any). For C
18355 we have no reason to follow the children of structures; for other
18356 languages we have to, so that we can get at method physnames
18357 to infer fully qualified class names, for DW_AT_specification,
18358 and for C++ template arguments. For C++, we also look one level
18359 inside functions to find template arguments (if the name of the
18360 function does not already contain the template arguments).
18361
18362 For Ada, we need to scan the children of subprograms and lexical
18363 blocks as well because Ada allows the definition of nested
18364 entities that could be interesting for the debugger, such as
18365 nested subprograms for instance. */
18366 if (last_die->has_children
18367 && (load_all
18368 || last_die->tag == DW_TAG_namespace
18369 || last_die->tag == DW_TAG_module
18370 || last_die->tag == DW_TAG_enumeration_type
18371 || (cu->language == language_cplus
18372 && last_die->tag == DW_TAG_subprogram
18373 && (last_die->name == NULL
18374 || strchr (last_die->name, '<') == NULL))
18375 || (cu->language != language_c
18376 && (last_die->tag == DW_TAG_class_type
18377 || last_die->tag == DW_TAG_interface_type
18378 || last_die->tag == DW_TAG_structure_type
18379 || last_die->tag == DW_TAG_union_type))
18380 || (cu->language == language_ada
18381 && (last_die->tag == DW_TAG_subprogram
18382 || last_die->tag == DW_TAG_lexical_block))))
18383 {
18384 nesting_level++;
18385 parent_die = last_die;
18386 continue;
18387 }
18388
18389 /* Otherwise we skip to the next sibling, if any. */
18390 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18391
18392 /* Back to the top, do it again. */
18393 }
18394 }
18395
18396 partial_die_info::partial_die_info (sect_offset sect_off_,
18397 struct abbrev_info *abbrev)
18398 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18399 {
18400 }
18401
18402 /* Read a minimal amount of information into the minimal die structure.
18403 INFO_PTR should point just after the initial uleb128 of a DIE. */
18404
18405 const gdb_byte *
18406 partial_die_info::read (const struct die_reader_specs *reader,
18407 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18408 {
18409 struct dwarf2_cu *cu = reader->cu;
18410 struct dwarf2_per_objfile *dwarf2_per_objfile
18411 = cu->per_cu->dwarf2_per_objfile;
18412 unsigned int i;
18413 int has_low_pc_attr = 0;
18414 int has_high_pc_attr = 0;
18415 int high_pc_relative = 0;
18416
18417 for (i = 0; i < abbrev.num_attrs; ++i)
18418 {
18419 struct attribute attr;
18420
18421 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18422
18423 /* Store the data if it is of an attribute we want to keep in a
18424 partial symbol table. */
18425 switch (attr.name)
18426 {
18427 case DW_AT_name:
18428 switch (tag)
18429 {
18430 case DW_TAG_compile_unit:
18431 case DW_TAG_partial_unit:
18432 case DW_TAG_type_unit:
18433 /* Compilation units have a DW_AT_name that is a filename, not
18434 a source language identifier. */
18435 case DW_TAG_enumeration_type:
18436 case DW_TAG_enumerator:
18437 /* These tags always have simple identifiers already; no need
18438 to canonicalize them. */
18439 name = DW_STRING (&attr);
18440 break;
18441 default:
18442 {
18443 struct objfile *objfile = dwarf2_per_objfile->objfile;
18444
18445 name
18446 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18447 &objfile->per_bfd->storage_obstack);
18448 }
18449 break;
18450 }
18451 break;
18452 case DW_AT_linkage_name:
18453 case DW_AT_MIPS_linkage_name:
18454 /* Note that both forms of linkage name might appear. We
18455 assume they will be the same, and we only store the last
18456 one we see. */
18457 if (cu->language == language_ada)
18458 name = DW_STRING (&attr);
18459 linkage_name = DW_STRING (&attr);
18460 break;
18461 case DW_AT_low_pc:
18462 has_low_pc_attr = 1;
18463 lowpc = attr_value_as_address (&attr);
18464 break;
18465 case DW_AT_high_pc:
18466 has_high_pc_attr = 1;
18467 highpc = attr_value_as_address (&attr);
18468 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18469 high_pc_relative = 1;
18470 break;
18471 case DW_AT_location:
18472 /* Support the .debug_loc offsets. */
18473 if (attr_form_is_block (&attr))
18474 {
18475 d.locdesc = DW_BLOCK (&attr);
18476 }
18477 else if (attr_form_is_section_offset (&attr))
18478 {
18479 dwarf2_complex_location_expr_complaint ();
18480 }
18481 else
18482 {
18483 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18484 "partial symbol information");
18485 }
18486 break;
18487 case DW_AT_external:
18488 is_external = DW_UNSND (&attr);
18489 break;
18490 case DW_AT_declaration:
18491 is_declaration = DW_UNSND (&attr);
18492 break;
18493 case DW_AT_type:
18494 has_type = 1;
18495 break;
18496 case DW_AT_abstract_origin:
18497 case DW_AT_specification:
18498 case DW_AT_extension:
18499 has_specification = 1;
18500 spec_offset = dwarf2_get_ref_die_offset (&attr);
18501 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18502 || cu->per_cu->is_dwz);
18503 break;
18504 case DW_AT_sibling:
18505 /* Ignore absolute siblings, they might point outside of
18506 the current compile unit. */
18507 if (attr.form == DW_FORM_ref_addr)
18508 complaint (_("ignoring absolute DW_AT_sibling"));
18509 else
18510 {
18511 const gdb_byte *buffer = reader->buffer;
18512 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18513 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18514
18515 if (sibling_ptr < info_ptr)
18516 complaint (_("DW_AT_sibling points backwards"));
18517 else if (sibling_ptr > reader->buffer_end)
18518 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18519 else
18520 sibling = sibling_ptr;
18521 }
18522 break;
18523 case DW_AT_byte_size:
18524 has_byte_size = 1;
18525 break;
18526 case DW_AT_const_value:
18527 has_const_value = 1;
18528 break;
18529 case DW_AT_calling_convention:
18530 /* DWARF doesn't provide a way to identify a program's source-level
18531 entry point. DW_AT_calling_convention attributes are only meant
18532 to describe functions' calling conventions.
18533
18534 However, because it's a necessary piece of information in
18535 Fortran, and before DWARF 4 DW_CC_program was the only
18536 piece of debugging information whose definition refers to
18537 a 'main program' at all, several compilers marked Fortran
18538 main programs with DW_CC_program --- even when those
18539 functions use the standard calling conventions.
18540
18541 Although DWARF now specifies a way to provide this
18542 information, we support this practice for backward
18543 compatibility. */
18544 if (DW_UNSND (&attr) == DW_CC_program
18545 && cu->language == language_fortran)
18546 main_subprogram = 1;
18547 break;
18548 case DW_AT_inline:
18549 if (DW_UNSND (&attr) == DW_INL_inlined
18550 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18551 may_be_inlined = 1;
18552 break;
18553
18554 case DW_AT_import:
18555 if (tag == DW_TAG_imported_unit)
18556 {
18557 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18558 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18559 || cu->per_cu->is_dwz);
18560 }
18561 break;
18562
18563 case DW_AT_main_subprogram:
18564 main_subprogram = DW_UNSND (&attr);
18565 break;
18566
18567 default:
18568 break;
18569 }
18570 }
18571
18572 if (high_pc_relative)
18573 highpc += lowpc;
18574
18575 if (has_low_pc_attr && has_high_pc_attr)
18576 {
18577 /* When using the GNU linker, .gnu.linkonce. sections are used to
18578 eliminate duplicate copies of functions and vtables and such.
18579 The linker will arbitrarily choose one and discard the others.
18580 The AT_*_pc values for such functions refer to local labels in
18581 these sections. If the section from that file was discarded, the
18582 labels are not in the output, so the relocs get a value of 0.
18583 If this is a discarded function, mark the pc bounds as invalid,
18584 so that GDB will ignore it. */
18585 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18586 {
18587 struct objfile *objfile = dwarf2_per_objfile->objfile;
18588 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18589
18590 complaint (_("DW_AT_low_pc %s is zero "
18591 "for DIE at %s [in module %s]"),
18592 paddress (gdbarch, lowpc),
18593 sect_offset_str (sect_off),
18594 objfile_name (objfile));
18595 }
18596 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18597 else if (lowpc >= highpc)
18598 {
18599 struct objfile *objfile = dwarf2_per_objfile->objfile;
18600 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18601
18602 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18603 "for DIE at %s [in module %s]"),
18604 paddress (gdbarch, lowpc),
18605 paddress (gdbarch, highpc),
18606 sect_offset_str (sect_off),
18607 objfile_name (objfile));
18608 }
18609 else
18610 has_pc_info = 1;
18611 }
18612
18613 return info_ptr;
18614 }
18615
18616 /* Find a cached partial DIE at OFFSET in CU. */
18617
18618 struct partial_die_info *
18619 dwarf2_cu::find_partial_die (sect_offset sect_off)
18620 {
18621 struct partial_die_info *lookup_die = NULL;
18622 struct partial_die_info part_die (sect_off);
18623
18624 lookup_die = ((struct partial_die_info *)
18625 htab_find_with_hash (partial_dies, &part_die,
18626 to_underlying (sect_off)));
18627
18628 return lookup_die;
18629 }
18630
18631 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18632 except in the case of .debug_types DIEs which do not reference
18633 outside their CU (they do however referencing other types via
18634 DW_FORM_ref_sig8). */
18635
18636 static struct partial_die_info *
18637 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18638 {
18639 struct dwarf2_per_objfile *dwarf2_per_objfile
18640 = cu->per_cu->dwarf2_per_objfile;
18641 struct objfile *objfile = dwarf2_per_objfile->objfile;
18642 struct dwarf2_per_cu_data *per_cu = NULL;
18643 struct partial_die_info *pd = NULL;
18644
18645 if (offset_in_dwz == cu->per_cu->is_dwz
18646 && offset_in_cu_p (&cu->header, sect_off))
18647 {
18648 pd = cu->find_partial_die (sect_off);
18649 if (pd != NULL)
18650 return pd;
18651 /* We missed recording what we needed.
18652 Load all dies and try again. */
18653 per_cu = cu->per_cu;
18654 }
18655 else
18656 {
18657 /* TUs don't reference other CUs/TUs (except via type signatures). */
18658 if (cu->per_cu->is_debug_types)
18659 {
18660 error (_("Dwarf Error: Type Unit at offset %s contains"
18661 " external reference to offset %s [in module %s].\n"),
18662 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18663 bfd_get_filename (objfile->obfd));
18664 }
18665 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18666 dwarf2_per_objfile);
18667
18668 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18669 load_partial_comp_unit (per_cu);
18670
18671 per_cu->cu->last_used = 0;
18672 pd = per_cu->cu->find_partial_die (sect_off);
18673 }
18674
18675 /* If we didn't find it, and not all dies have been loaded,
18676 load them all and try again. */
18677
18678 if (pd == NULL && per_cu->load_all_dies == 0)
18679 {
18680 per_cu->load_all_dies = 1;
18681
18682 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18683 THIS_CU->cu may already be in use. So we can't just free it and
18684 replace its DIEs with the ones we read in. Instead, we leave those
18685 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18686 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18687 set. */
18688 load_partial_comp_unit (per_cu);
18689
18690 pd = per_cu->cu->find_partial_die (sect_off);
18691 }
18692
18693 if (pd == NULL)
18694 internal_error (__FILE__, __LINE__,
18695 _("could not find partial DIE %s "
18696 "in cache [from module %s]\n"),
18697 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18698 return pd;
18699 }
18700
18701 /* See if we can figure out if the class lives in a namespace. We do
18702 this by looking for a member function; its demangled name will
18703 contain namespace info, if there is any. */
18704
18705 static void
18706 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18707 struct dwarf2_cu *cu)
18708 {
18709 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18710 what template types look like, because the demangler
18711 frequently doesn't give the same name as the debug info. We
18712 could fix this by only using the demangled name to get the
18713 prefix (but see comment in read_structure_type). */
18714
18715 struct partial_die_info *real_pdi;
18716 struct partial_die_info *child_pdi;
18717
18718 /* If this DIE (this DIE's specification, if any) has a parent, then
18719 we should not do this. We'll prepend the parent's fully qualified
18720 name when we create the partial symbol. */
18721
18722 real_pdi = struct_pdi;
18723 while (real_pdi->has_specification)
18724 real_pdi = find_partial_die (real_pdi->spec_offset,
18725 real_pdi->spec_is_dwz, cu);
18726
18727 if (real_pdi->die_parent != NULL)
18728 return;
18729
18730 for (child_pdi = struct_pdi->die_child;
18731 child_pdi != NULL;
18732 child_pdi = child_pdi->die_sibling)
18733 {
18734 if (child_pdi->tag == DW_TAG_subprogram
18735 && child_pdi->linkage_name != NULL)
18736 {
18737 char *actual_class_name
18738 = language_class_name_from_physname (cu->language_defn,
18739 child_pdi->linkage_name);
18740 if (actual_class_name != NULL)
18741 {
18742 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18743 struct_pdi->name
18744 = ((const char *)
18745 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18746 actual_class_name,
18747 strlen (actual_class_name)));
18748 xfree (actual_class_name);
18749 }
18750 break;
18751 }
18752 }
18753 }
18754
18755 void
18756 partial_die_info::fixup (struct dwarf2_cu *cu)
18757 {
18758 /* Once we've fixed up a die, there's no point in doing so again.
18759 This also avoids a memory leak if we were to call
18760 guess_partial_die_structure_name multiple times. */
18761 if (fixup_called)
18762 return;
18763
18764 /* If we found a reference attribute and the DIE has no name, try
18765 to find a name in the referred to DIE. */
18766
18767 if (name == NULL && has_specification)
18768 {
18769 struct partial_die_info *spec_die;
18770
18771 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18772
18773 spec_die->fixup (cu);
18774
18775 if (spec_die->name)
18776 {
18777 name = spec_die->name;
18778
18779 /* Copy DW_AT_external attribute if it is set. */
18780 if (spec_die->is_external)
18781 is_external = spec_die->is_external;
18782 }
18783 }
18784
18785 /* Set default names for some unnamed DIEs. */
18786
18787 if (name == NULL && tag == DW_TAG_namespace)
18788 name = CP_ANONYMOUS_NAMESPACE_STR;
18789
18790 /* If there is no parent die to provide a namespace, and there are
18791 children, see if we can determine the namespace from their linkage
18792 name. */
18793 if (cu->language == language_cplus
18794 && !VEC_empty (dwarf2_section_info_def,
18795 cu->per_cu->dwarf2_per_objfile->types)
18796 && die_parent == NULL
18797 && has_children
18798 && (tag == DW_TAG_class_type
18799 || tag == DW_TAG_structure_type
18800 || tag == DW_TAG_union_type))
18801 guess_partial_die_structure_name (this, cu);
18802
18803 /* GCC might emit a nameless struct or union that has a linkage
18804 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18805 if (name == NULL
18806 && (tag == DW_TAG_class_type
18807 || tag == DW_TAG_interface_type
18808 || tag == DW_TAG_structure_type
18809 || tag == DW_TAG_union_type)
18810 && linkage_name != NULL)
18811 {
18812 char *demangled;
18813
18814 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18815 if (demangled)
18816 {
18817 const char *base;
18818
18819 /* Strip any leading namespaces/classes, keep only the base name.
18820 DW_AT_name for named DIEs does not contain the prefixes. */
18821 base = strrchr (demangled, ':');
18822 if (base && base > demangled && base[-1] == ':')
18823 base++;
18824 else
18825 base = demangled;
18826
18827 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18828 name
18829 = ((const char *)
18830 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18831 base, strlen (base)));
18832 xfree (demangled);
18833 }
18834 }
18835
18836 fixup_called = 1;
18837 }
18838
18839 /* Read an attribute value described by an attribute form. */
18840
18841 static const gdb_byte *
18842 read_attribute_value (const struct die_reader_specs *reader,
18843 struct attribute *attr, unsigned form,
18844 LONGEST implicit_const, const gdb_byte *info_ptr)
18845 {
18846 struct dwarf2_cu *cu = reader->cu;
18847 struct dwarf2_per_objfile *dwarf2_per_objfile
18848 = cu->per_cu->dwarf2_per_objfile;
18849 struct objfile *objfile = dwarf2_per_objfile->objfile;
18850 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18851 bfd *abfd = reader->abfd;
18852 struct comp_unit_head *cu_header = &cu->header;
18853 unsigned int bytes_read;
18854 struct dwarf_block *blk;
18855
18856 attr->form = (enum dwarf_form) form;
18857 switch (form)
18858 {
18859 case DW_FORM_ref_addr:
18860 if (cu->header.version == 2)
18861 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18862 else
18863 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18864 &cu->header, &bytes_read);
18865 info_ptr += bytes_read;
18866 break;
18867 case DW_FORM_GNU_ref_alt:
18868 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18869 info_ptr += bytes_read;
18870 break;
18871 case DW_FORM_addr:
18872 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18873 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18874 info_ptr += bytes_read;
18875 break;
18876 case DW_FORM_block2:
18877 blk = dwarf_alloc_block (cu);
18878 blk->size = read_2_bytes (abfd, info_ptr);
18879 info_ptr += 2;
18880 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18881 info_ptr += blk->size;
18882 DW_BLOCK (attr) = blk;
18883 break;
18884 case DW_FORM_block4:
18885 blk = dwarf_alloc_block (cu);
18886 blk->size = read_4_bytes (abfd, info_ptr);
18887 info_ptr += 4;
18888 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18889 info_ptr += blk->size;
18890 DW_BLOCK (attr) = blk;
18891 break;
18892 case DW_FORM_data2:
18893 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18894 info_ptr += 2;
18895 break;
18896 case DW_FORM_data4:
18897 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18898 info_ptr += 4;
18899 break;
18900 case DW_FORM_data8:
18901 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18902 info_ptr += 8;
18903 break;
18904 case DW_FORM_data16:
18905 blk = dwarf_alloc_block (cu);
18906 blk->size = 16;
18907 blk->data = read_n_bytes (abfd, info_ptr, 16);
18908 info_ptr += 16;
18909 DW_BLOCK (attr) = blk;
18910 break;
18911 case DW_FORM_sec_offset:
18912 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18913 info_ptr += bytes_read;
18914 break;
18915 case DW_FORM_string:
18916 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18917 DW_STRING_IS_CANONICAL (attr) = 0;
18918 info_ptr += bytes_read;
18919 break;
18920 case DW_FORM_strp:
18921 if (!cu->per_cu->is_dwz)
18922 {
18923 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18924 abfd, info_ptr, cu_header,
18925 &bytes_read);
18926 DW_STRING_IS_CANONICAL (attr) = 0;
18927 info_ptr += bytes_read;
18928 break;
18929 }
18930 /* FALLTHROUGH */
18931 case DW_FORM_line_strp:
18932 if (!cu->per_cu->is_dwz)
18933 {
18934 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18935 abfd, info_ptr,
18936 cu_header, &bytes_read);
18937 DW_STRING_IS_CANONICAL (attr) = 0;
18938 info_ptr += bytes_read;
18939 break;
18940 }
18941 /* FALLTHROUGH */
18942 case DW_FORM_GNU_strp_alt:
18943 {
18944 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18945 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18946 &bytes_read);
18947
18948 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18949 dwz, str_offset);
18950 DW_STRING_IS_CANONICAL (attr) = 0;
18951 info_ptr += bytes_read;
18952 }
18953 break;
18954 case DW_FORM_exprloc:
18955 case DW_FORM_block:
18956 blk = dwarf_alloc_block (cu);
18957 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18958 info_ptr += bytes_read;
18959 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18960 info_ptr += blk->size;
18961 DW_BLOCK (attr) = blk;
18962 break;
18963 case DW_FORM_block1:
18964 blk = dwarf_alloc_block (cu);
18965 blk->size = read_1_byte (abfd, info_ptr);
18966 info_ptr += 1;
18967 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18968 info_ptr += blk->size;
18969 DW_BLOCK (attr) = blk;
18970 break;
18971 case DW_FORM_data1:
18972 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18973 info_ptr += 1;
18974 break;
18975 case DW_FORM_flag:
18976 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18977 info_ptr += 1;
18978 break;
18979 case DW_FORM_flag_present:
18980 DW_UNSND (attr) = 1;
18981 break;
18982 case DW_FORM_sdata:
18983 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18984 info_ptr += bytes_read;
18985 break;
18986 case DW_FORM_udata:
18987 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18988 info_ptr += bytes_read;
18989 break;
18990 case DW_FORM_ref1:
18991 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18992 + read_1_byte (abfd, info_ptr));
18993 info_ptr += 1;
18994 break;
18995 case DW_FORM_ref2:
18996 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18997 + read_2_bytes (abfd, info_ptr));
18998 info_ptr += 2;
18999 break;
19000 case DW_FORM_ref4:
19001 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19002 + read_4_bytes (abfd, info_ptr));
19003 info_ptr += 4;
19004 break;
19005 case DW_FORM_ref8:
19006 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19007 + read_8_bytes (abfd, info_ptr));
19008 info_ptr += 8;
19009 break;
19010 case DW_FORM_ref_sig8:
19011 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19012 info_ptr += 8;
19013 break;
19014 case DW_FORM_ref_udata:
19015 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19016 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19017 info_ptr += bytes_read;
19018 break;
19019 case DW_FORM_indirect:
19020 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19021 info_ptr += bytes_read;
19022 if (form == DW_FORM_implicit_const)
19023 {
19024 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19025 info_ptr += bytes_read;
19026 }
19027 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19028 info_ptr);
19029 break;
19030 case DW_FORM_implicit_const:
19031 DW_SND (attr) = implicit_const;
19032 break;
19033 case DW_FORM_GNU_addr_index:
19034 if (reader->dwo_file == NULL)
19035 {
19036 /* For now flag a hard error.
19037 Later we can turn this into a complaint. */
19038 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19039 dwarf_form_name (form),
19040 bfd_get_filename (abfd));
19041 }
19042 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19043 info_ptr += bytes_read;
19044 break;
19045 case DW_FORM_GNU_str_index:
19046 if (reader->dwo_file == NULL)
19047 {
19048 /* For now flag a hard error.
19049 Later we can turn this into a complaint if warranted. */
19050 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19051 dwarf_form_name (form),
19052 bfd_get_filename (abfd));
19053 }
19054 {
19055 ULONGEST str_index =
19056 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19057
19058 DW_STRING (attr) = read_str_index (reader, str_index);
19059 DW_STRING_IS_CANONICAL (attr) = 0;
19060 info_ptr += bytes_read;
19061 }
19062 break;
19063 default:
19064 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19065 dwarf_form_name (form),
19066 bfd_get_filename (abfd));
19067 }
19068
19069 /* Super hack. */
19070 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19071 attr->form = DW_FORM_GNU_ref_alt;
19072
19073 /* We have seen instances where the compiler tried to emit a byte
19074 size attribute of -1 which ended up being encoded as an unsigned
19075 0xffffffff. Although 0xffffffff is technically a valid size value,
19076 an object of this size seems pretty unlikely so we can relatively
19077 safely treat these cases as if the size attribute was invalid and
19078 treat them as zero by default. */
19079 if (attr->name == DW_AT_byte_size
19080 && form == DW_FORM_data4
19081 && DW_UNSND (attr) >= 0xffffffff)
19082 {
19083 complaint
19084 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19085 hex_string (DW_UNSND (attr)));
19086 DW_UNSND (attr) = 0;
19087 }
19088
19089 return info_ptr;
19090 }
19091
19092 /* Read an attribute described by an abbreviated attribute. */
19093
19094 static const gdb_byte *
19095 read_attribute (const struct die_reader_specs *reader,
19096 struct attribute *attr, struct attr_abbrev *abbrev,
19097 const gdb_byte *info_ptr)
19098 {
19099 attr->name = abbrev->name;
19100 return read_attribute_value (reader, attr, abbrev->form,
19101 abbrev->implicit_const, info_ptr);
19102 }
19103
19104 /* Read dwarf information from a buffer. */
19105
19106 static unsigned int
19107 read_1_byte (bfd *abfd, const gdb_byte *buf)
19108 {
19109 return bfd_get_8 (abfd, buf);
19110 }
19111
19112 static int
19113 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19114 {
19115 return bfd_get_signed_8 (abfd, buf);
19116 }
19117
19118 static unsigned int
19119 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19120 {
19121 return bfd_get_16 (abfd, buf);
19122 }
19123
19124 static int
19125 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19126 {
19127 return bfd_get_signed_16 (abfd, buf);
19128 }
19129
19130 static unsigned int
19131 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19132 {
19133 return bfd_get_32 (abfd, buf);
19134 }
19135
19136 static int
19137 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19138 {
19139 return bfd_get_signed_32 (abfd, buf);
19140 }
19141
19142 static ULONGEST
19143 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19144 {
19145 return bfd_get_64 (abfd, buf);
19146 }
19147
19148 static CORE_ADDR
19149 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19150 unsigned int *bytes_read)
19151 {
19152 struct comp_unit_head *cu_header = &cu->header;
19153 CORE_ADDR retval = 0;
19154
19155 if (cu_header->signed_addr_p)
19156 {
19157 switch (cu_header->addr_size)
19158 {
19159 case 2:
19160 retval = bfd_get_signed_16 (abfd, buf);
19161 break;
19162 case 4:
19163 retval = bfd_get_signed_32 (abfd, buf);
19164 break;
19165 case 8:
19166 retval = bfd_get_signed_64 (abfd, buf);
19167 break;
19168 default:
19169 internal_error (__FILE__, __LINE__,
19170 _("read_address: bad switch, signed [in module %s]"),
19171 bfd_get_filename (abfd));
19172 }
19173 }
19174 else
19175 {
19176 switch (cu_header->addr_size)
19177 {
19178 case 2:
19179 retval = bfd_get_16 (abfd, buf);
19180 break;
19181 case 4:
19182 retval = bfd_get_32 (abfd, buf);
19183 break;
19184 case 8:
19185 retval = bfd_get_64 (abfd, buf);
19186 break;
19187 default:
19188 internal_error (__FILE__, __LINE__,
19189 _("read_address: bad switch, "
19190 "unsigned [in module %s]"),
19191 bfd_get_filename (abfd));
19192 }
19193 }
19194
19195 *bytes_read = cu_header->addr_size;
19196 return retval;
19197 }
19198
19199 /* Read the initial length from a section. The (draft) DWARF 3
19200 specification allows the initial length to take up either 4 bytes
19201 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19202 bytes describe the length and all offsets will be 8 bytes in length
19203 instead of 4.
19204
19205 An older, non-standard 64-bit format is also handled by this
19206 function. The older format in question stores the initial length
19207 as an 8-byte quantity without an escape value. Lengths greater
19208 than 2^32 aren't very common which means that the initial 4 bytes
19209 is almost always zero. Since a length value of zero doesn't make
19210 sense for the 32-bit format, this initial zero can be considered to
19211 be an escape value which indicates the presence of the older 64-bit
19212 format. As written, the code can't detect (old format) lengths
19213 greater than 4GB. If it becomes necessary to handle lengths
19214 somewhat larger than 4GB, we could allow other small values (such
19215 as the non-sensical values of 1, 2, and 3) to also be used as
19216 escape values indicating the presence of the old format.
19217
19218 The value returned via bytes_read should be used to increment the
19219 relevant pointer after calling read_initial_length().
19220
19221 [ Note: read_initial_length() and read_offset() are based on the
19222 document entitled "DWARF Debugging Information Format", revision
19223 3, draft 8, dated November 19, 2001. This document was obtained
19224 from:
19225
19226 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19227
19228 This document is only a draft and is subject to change. (So beware.)
19229
19230 Details regarding the older, non-standard 64-bit format were
19231 determined empirically by examining 64-bit ELF files produced by
19232 the SGI toolchain on an IRIX 6.5 machine.
19233
19234 - Kevin, July 16, 2002
19235 ] */
19236
19237 static LONGEST
19238 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19239 {
19240 LONGEST length = bfd_get_32 (abfd, buf);
19241
19242 if (length == 0xffffffff)
19243 {
19244 length = bfd_get_64 (abfd, buf + 4);
19245 *bytes_read = 12;
19246 }
19247 else if (length == 0)
19248 {
19249 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19250 length = bfd_get_64 (abfd, buf);
19251 *bytes_read = 8;
19252 }
19253 else
19254 {
19255 *bytes_read = 4;
19256 }
19257
19258 return length;
19259 }
19260
19261 /* Cover function for read_initial_length.
19262 Returns the length of the object at BUF, and stores the size of the
19263 initial length in *BYTES_READ and stores the size that offsets will be in
19264 *OFFSET_SIZE.
19265 If the initial length size is not equivalent to that specified in
19266 CU_HEADER then issue a complaint.
19267 This is useful when reading non-comp-unit headers. */
19268
19269 static LONGEST
19270 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19271 const struct comp_unit_head *cu_header,
19272 unsigned int *bytes_read,
19273 unsigned int *offset_size)
19274 {
19275 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19276
19277 gdb_assert (cu_header->initial_length_size == 4
19278 || cu_header->initial_length_size == 8
19279 || cu_header->initial_length_size == 12);
19280
19281 if (cu_header->initial_length_size != *bytes_read)
19282 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19283
19284 *offset_size = (*bytes_read == 4) ? 4 : 8;
19285 return length;
19286 }
19287
19288 /* Read an offset from the data stream. The size of the offset is
19289 given by cu_header->offset_size. */
19290
19291 static LONGEST
19292 read_offset (bfd *abfd, const gdb_byte *buf,
19293 const struct comp_unit_head *cu_header,
19294 unsigned int *bytes_read)
19295 {
19296 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19297
19298 *bytes_read = cu_header->offset_size;
19299 return offset;
19300 }
19301
19302 /* Read an offset from the data stream. */
19303
19304 static LONGEST
19305 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19306 {
19307 LONGEST retval = 0;
19308
19309 switch (offset_size)
19310 {
19311 case 4:
19312 retval = bfd_get_32 (abfd, buf);
19313 break;
19314 case 8:
19315 retval = bfd_get_64 (abfd, buf);
19316 break;
19317 default:
19318 internal_error (__FILE__, __LINE__,
19319 _("read_offset_1: bad switch [in module %s]"),
19320 bfd_get_filename (abfd));
19321 }
19322
19323 return retval;
19324 }
19325
19326 static const gdb_byte *
19327 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19328 {
19329 /* If the size of a host char is 8 bits, we can return a pointer
19330 to the buffer, otherwise we have to copy the data to a buffer
19331 allocated on the temporary obstack. */
19332 gdb_assert (HOST_CHAR_BIT == 8);
19333 return buf;
19334 }
19335
19336 static const char *
19337 read_direct_string (bfd *abfd, const gdb_byte *buf,
19338 unsigned int *bytes_read_ptr)
19339 {
19340 /* If the size of a host char is 8 bits, we can return a pointer
19341 to the string, otherwise we have to copy the string to a buffer
19342 allocated on the temporary obstack. */
19343 gdb_assert (HOST_CHAR_BIT == 8);
19344 if (*buf == '\0')
19345 {
19346 *bytes_read_ptr = 1;
19347 return NULL;
19348 }
19349 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19350 return (const char *) buf;
19351 }
19352
19353 /* Return pointer to string at section SECT offset STR_OFFSET with error
19354 reporting strings FORM_NAME and SECT_NAME. */
19355
19356 static const char *
19357 read_indirect_string_at_offset_from (struct objfile *objfile,
19358 bfd *abfd, LONGEST str_offset,
19359 struct dwarf2_section_info *sect,
19360 const char *form_name,
19361 const char *sect_name)
19362 {
19363 dwarf2_read_section (objfile, sect);
19364 if (sect->buffer == NULL)
19365 error (_("%s used without %s section [in module %s]"),
19366 form_name, sect_name, bfd_get_filename (abfd));
19367 if (str_offset >= sect->size)
19368 error (_("%s pointing outside of %s section [in module %s]"),
19369 form_name, sect_name, bfd_get_filename (abfd));
19370 gdb_assert (HOST_CHAR_BIT == 8);
19371 if (sect->buffer[str_offset] == '\0')
19372 return NULL;
19373 return (const char *) (sect->buffer + str_offset);
19374 }
19375
19376 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19377
19378 static const char *
19379 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19380 bfd *abfd, LONGEST str_offset)
19381 {
19382 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19383 abfd, str_offset,
19384 &dwarf2_per_objfile->str,
19385 "DW_FORM_strp", ".debug_str");
19386 }
19387
19388 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19389
19390 static const char *
19391 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19392 bfd *abfd, LONGEST str_offset)
19393 {
19394 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19395 abfd, str_offset,
19396 &dwarf2_per_objfile->line_str,
19397 "DW_FORM_line_strp",
19398 ".debug_line_str");
19399 }
19400
19401 /* Read a string at offset STR_OFFSET in the .debug_str section from
19402 the .dwz file DWZ. Throw an error if the offset is too large. If
19403 the string consists of a single NUL byte, return NULL; otherwise
19404 return a pointer to the string. */
19405
19406 static const char *
19407 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19408 LONGEST str_offset)
19409 {
19410 dwarf2_read_section (objfile, &dwz->str);
19411
19412 if (dwz->str.buffer == NULL)
19413 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19414 "section [in module %s]"),
19415 bfd_get_filename (dwz->dwz_bfd));
19416 if (str_offset >= dwz->str.size)
19417 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19418 ".debug_str section [in module %s]"),
19419 bfd_get_filename (dwz->dwz_bfd));
19420 gdb_assert (HOST_CHAR_BIT == 8);
19421 if (dwz->str.buffer[str_offset] == '\0')
19422 return NULL;
19423 return (const char *) (dwz->str.buffer + str_offset);
19424 }
19425
19426 /* Return pointer to string at .debug_str offset as read from BUF.
19427 BUF is assumed to be in a compilation unit described by CU_HEADER.
19428 Return *BYTES_READ_PTR count of bytes read from BUF. */
19429
19430 static const char *
19431 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19432 const gdb_byte *buf,
19433 const struct comp_unit_head *cu_header,
19434 unsigned int *bytes_read_ptr)
19435 {
19436 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19437
19438 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19439 }
19440
19441 /* Return pointer to string at .debug_line_str offset as read from BUF.
19442 BUF is assumed to be in a compilation unit described by CU_HEADER.
19443 Return *BYTES_READ_PTR count of bytes read from BUF. */
19444
19445 static const char *
19446 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19447 bfd *abfd, const gdb_byte *buf,
19448 const struct comp_unit_head *cu_header,
19449 unsigned int *bytes_read_ptr)
19450 {
19451 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19452
19453 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19454 str_offset);
19455 }
19456
19457 ULONGEST
19458 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19459 unsigned int *bytes_read_ptr)
19460 {
19461 ULONGEST result;
19462 unsigned int num_read;
19463 int shift;
19464 unsigned char byte;
19465
19466 result = 0;
19467 shift = 0;
19468 num_read = 0;
19469 while (1)
19470 {
19471 byte = bfd_get_8 (abfd, buf);
19472 buf++;
19473 num_read++;
19474 result |= ((ULONGEST) (byte & 127) << shift);
19475 if ((byte & 128) == 0)
19476 {
19477 break;
19478 }
19479 shift += 7;
19480 }
19481 *bytes_read_ptr = num_read;
19482 return result;
19483 }
19484
19485 static LONGEST
19486 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19487 unsigned int *bytes_read_ptr)
19488 {
19489 LONGEST result;
19490 int shift, num_read;
19491 unsigned char byte;
19492
19493 result = 0;
19494 shift = 0;
19495 num_read = 0;
19496 while (1)
19497 {
19498 byte = bfd_get_8 (abfd, buf);
19499 buf++;
19500 num_read++;
19501 result |= ((LONGEST) (byte & 127) << shift);
19502 shift += 7;
19503 if ((byte & 128) == 0)
19504 {
19505 break;
19506 }
19507 }
19508 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19509 result |= -(((LONGEST) 1) << shift);
19510 *bytes_read_ptr = num_read;
19511 return result;
19512 }
19513
19514 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19515 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19516 ADDR_SIZE is the size of addresses from the CU header. */
19517
19518 static CORE_ADDR
19519 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19520 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19521 {
19522 struct objfile *objfile = dwarf2_per_objfile->objfile;
19523 bfd *abfd = objfile->obfd;
19524 const gdb_byte *info_ptr;
19525
19526 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19527 if (dwarf2_per_objfile->addr.buffer == NULL)
19528 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19529 objfile_name (objfile));
19530 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19531 error (_("DW_FORM_addr_index pointing outside of "
19532 ".debug_addr section [in module %s]"),
19533 objfile_name (objfile));
19534 info_ptr = (dwarf2_per_objfile->addr.buffer
19535 + addr_base + addr_index * addr_size);
19536 if (addr_size == 4)
19537 return bfd_get_32 (abfd, info_ptr);
19538 else
19539 return bfd_get_64 (abfd, info_ptr);
19540 }
19541
19542 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19543
19544 static CORE_ADDR
19545 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19546 {
19547 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19548 cu->addr_base, cu->header.addr_size);
19549 }
19550
19551 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19552
19553 static CORE_ADDR
19554 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19555 unsigned int *bytes_read)
19556 {
19557 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19558 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19559
19560 return read_addr_index (cu, addr_index);
19561 }
19562
19563 /* Data structure to pass results from dwarf2_read_addr_index_reader
19564 back to dwarf2_read_addr_index. */
19565
19566 struct dwarf2_read_addr_index_data
19567 {
19568 ULONGEST addr_base;
19569 int addr_size;
19570 };
19571
19572 /* die_reader_func for dwarf2_read_addr_index. */
19573
19574 static void
19575 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19576 const gdb_byte *info_ptr,
19577 struct die_info *comp_unit_die,
19578 int has_children,
19579 void *data)
19580 {
19581 struct dwarf2_cu *cu = reader->cu;
19582 struct dwarf2_read_addr_index_data *aidata =
19583 (struct dwarf2_read_addr_index_data *) data;
19584
19585 aidata->addr_base = cu->addr_base;
19586 aidata->addr_size = cu->header.addr_size;
19587 }
19588
19589 /* Given an index in .debug_addr, fetch the value.
19590 NOTE: This can be called during dwarf expression evaluation,
19591 long after the debug information has been read, and thus per_cu->cu
19592 may no longer exist. */
19593
19594 CORE_ADDR
19595 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19596 unsigned int addr_index)
19597 {
19598 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19599 struct dwarf2_cu *cu = per_cu->cu;
19600 ULONGEST addr_base;
19601 int addr_size;
19602
19603 /* We need addr_base and addr_size.
19604 If we don't have PER_CU->cu, we have to get it.
19605 Nasty, but the alternative is storing the needed info in PER_CU,
19606 which at this point doesn't seem justified: it's not clear how frequently
19607 it would get used and it would increase the size of every PER_CU.
19608 Entry points like dwarf2_per_cu_addr_size do a similar thing
19609 so we're not in uncharted territory here.
19610 Alas we need to be a bit more complicated as addr_base is contained
19611 in the DIE.
19612
19613 We don't need to read the entire CU(/TU).
19614 We just need the header and top level die.
19615
19616 IWBN to use the aging mechanism to let us lazily later discard the CU.
19617 For now we skip this optimization. */
19618
19619 if (cu != NULL)
19620 {
19621 addr_base = cu->addr_base;
19622 addr_size = cu->header.addr_size;
19623 }
19624 else
19625 {
19626 struct dwarf2_read_addr_index_data aidata;
19627
19628 /* Note: We can't use init_cutu_and_read_dies_simple here,
19629 we need addr_base. */
19630 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19631 dwarf2_read_addr_index_reader, &aidata);
19632 addr_base = aidata.addr_base;
19633 addr_size = aidata.addr_size;
19634 }
19635
19636 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19637 addr_size);
19638 }
19639
19640 /* Given a DW_FORM_GNU_str_index, fetch the string.
19641 This is only used by the Fission support. */
19642
19643 static const char *
19644 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19645 {
19646 struct dwarf2_cu *cu = reader->cu;
19647 struct dwarf2_per_objfile *dwarf2_per_objfile
19648 = cu->per_cu->dwarf2_per_objfile;
19649 struct objfile *objfile = dwarf2_per_objfile->objfile;
19650 const char *objf_name = objfile_name (objfile);
19651 bfd *abfd = objfile->obfd;
19652 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19653 struct dwarf2_section_info *str_offsets_section =
19654 &reader->dwo_file->sections.str_offsets;
19655 const gdb_byte *info_ptr;
19656 ULONGEST str_offset;
19657 static const char form_name[] = "DW_FORM_GNU_str_index";
19658
19659 dwarf2_read_section (objfile, str_section);
19660 dwarf2_read_section (objfile, str_offsets_section);
19661 if (str_section->buffer == NULL)
19662 error (_("%s used without .debug_str.dwo section"
19663 " in CU at offset %s [in module %s]"),
19664 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19665 if (str_offsets_section->buffer == NULL)
19666 error (_("%s used without .debug_str_offsets.dwo section"
19667 " in CU at offset %s [in module %s]"),
19668 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19669 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19670 error (_("%s pointing outside of .debug_str_offsets.dwo"
19671 " section in CU at offset %s [in module %s]"),
19672 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19673 info_ptr = (str_offsets_section->buffer
19674 + str_index * cu->header.offset_size);
19675 if (cu->header.offset_size == 4)
19676 str_offset = bfd_get_32 (abfd, info_ptr);
19677 else
19678 str_offset = bfd_get_64 (abfd, info_ptr);
19679 if (str_offset >= str_section->size)
19680 error (_("Offset from %s pointing outside of"
19681 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19682 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19683 return (const char *) (str_section->buffer + str_offset);
19684 }
19685
19686 /* Return the length of an LEB128 number in BUF. */
19687
19688 static int
19689 leb128_size (const gdb_byte *buf)
19690 {
19691 const gdb_byte *begin = buf;
19692 gdb_byte byte;
19693
19694 while (1)
19695 {
19696 byte = *buf++;
19697 if ((byte & 128) == 0)
19698 return buf - begin;
19699 }
19700 }
19701
19702 static void
19703 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19704 {
19705 switch (lang)
19706 {
19707 case DW_LANG_C89:
19708 case DW_LANG_C99:
19709 case DW_LANG_C11:
19710 case DW_LANG_C:
19711 case DW_LANG_UPC:
19712 cu->language = language_c;
19713 break;
19714 case DW_LANG_Java:
19715 case DW_LANG_C_plus_plus:
19716 case DW_LANG_C_plus_plus_11:
19717 case DW_LANG_C_plus_plus_14:
19718 cu->language = language_cplus;
19719 break;
19720 case DW_LANG_D:
19721 cu->language = language_d;
19722 break;
19723 case DW_LANG_Fortran77:
19724 case DW_LANG_Fortran90:
19725 case DW_LANG_Fortran95:
19726 case DW_LANG_Fortran03:
19727 case DW_LANG_Fortran08:
19728 cu->language = language_fortran;
19729 break;
19730 case DW_LANG_Go:
19731 cu->language = language_go;
19732 break;
19733 case DW_LANG_Mips_Assembler:
19734 cu->language = language_asm;
19735 break;
19736 case DW_LANG_Ada83:
19737 case DW_LANG_Ada95:
19738 cu->language = language_ada;
19739 break;
19740 case DW_LANG_Modula2:
19741 cu->language = language_m2;
19742 break;
19743 case DW_LANG_Pascal83:
19744 cu->language = language_pascal;
19745 break;
19746 case DW_LANG_ObjC:
19747 cu->language = language_objc;
19748 break;
19749 case DW_LANG_Rust:
19750 case DW_LANG_Rust_old:
19751 cu->language = language_rust;
19752 break;
19753 case DW_LANG_Cobol74:
19754 case DW_LANG_Cobol85:
19755 default:
19756 cu->language = language_minimal;
19757 break;
19758 }
19759 cu->language_defn = language_def (cu->language);
19760 }
19761
19762 /* Return the named attribute or NULL if not there. */
19763
19764 static struct attribute *
19765 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19766 {
19767 for (;;)
19768 {
19769 unsigned int i;
19770 struct attribute *spec = NULL;
19771
19772 for (i = 0; i < die->num_attrs; ++i)
19773 {
19774 if (die->attrs[i].name == name)
19775 return &die->attrs[i];
19776 if (die->attrs[i].name == DW_AT_specification
19777 || die->attrs[i].name == DW_AT_abstract_origin)
19778 spec = &die->attrs[i];
19779 }
19780
19781 if (!spec)
19782 break;
19783
19784 die = follow_die_ref (die, spec, &cu);
19785 }
19786
19787 return NULL;
19788 }
19789
19790 /* Return the named attribute or NULL if not there,
19791 but do not follow DW_AT_specification, etc.
19792 This is for use in contexts where we're reading .debug_types dies.
19793 Following DW_AT_specification, DW_AT_abstract_origin will take us
19794 back up the chain, and we want to go down. */
19795
19796 static struct attribute *
19797 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19798 {
19799 unsigned int i;
19800
19801 for (i = 0; i < die->num_attrs; ++i)
19802 if (die->attrs[i].name == name)
19803 return &die->attrs[i];
19804
19805 return NULL;
19806 }
19807
19808 /* Return the string associated with a string-typed attribute, or NULL if it
19809 is either not found or is of an incorrect type. */
19810
19811 static const char *
19812 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19813 {
19814 struct attribute *attr;
19815 const char *str = NULL;
19816
19817 attr = dwarf2_attr (die, name, cu);
19818
19819 if (attr != NULL)
19820 {
19821 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19822 || attr->form == DW_FORM_string
19823 || attr->form == DW_FORM_GNU_str_index
19824 || attr->form == DW_FORM_GNU_strp_alt)
19825 str = DW_STRING (attr);
19826 else
19827 complaint (_("string type expected for attribute %s for "
19828 "DIE at %s in module %s"),
19829 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19830 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19831 }
19832
19833 return str;
19834 }
19835
19836 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19837 and holds a non-zero value. This function should only be used for
19838 DW_FORM_flag or DW_FORM_flag_present attributes. */
19839
19840 static int
19841 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19842 {
19843 struct attribute *attr = dwarf2_attr (die, name, cu);
19844
19845 return (attr && DW_UNSND (attr));
19846 }
19847
19848 static int
19849 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19850 {
19851 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19852 which value is non-zero. However, we have to be careful with
19853 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19854 (via dwarf2_flag_true_p) follows this attribute. So we may
19855 end up accidently finding a declaration attribute that belongs
19856 to a different DIE referenced by the specification attribute,
19857 even though the given DIE does not have a declaration attribute. */
19858 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19859 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19860 }
19861
19862 /* Return the die giving the specification for DIE, if there is
19863 one. *SPEC_CU is the CU containing DIE on input, and the CU
19864 containing the return value on output. If there is no
19865 specification, but there is an abstract origin, that is
19866 returned. */
19867
19868 static struct die_info *
19869 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19870 {
19871 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19872 *spec_cu);
19873
19874 if (spec_attr == NULL)
19875 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19876
19877 if (spec_attr == NULL)
19878 return NULL;
19879 else
19880 return follow_die_ref (die, spec_attr, spec_cu);
19881 }
19882
19883 /* Stub for free_line_header to match void * callback types. */
19884
19885 static void
19886 free_line_header_voidp (void *arg)
19887 {
19888 struct line_header *lh = (struct line_header *) arg;
19889
19890 delete lh;
19891 }
19892
19893 void
19894 line_header::add_include_dir (const char *include_dir)
19895 {
19896 if (dwarf_line_debug >= 2)
19897 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19898 include_dirs.size () + 1, include_dir);
19899
19900 include_dirs.push_back (include_dir);
19901 }
19902
19903 void
19904 line_header::add_file_name (const char *name,
19905 dir_index d_index,
19906 unsigned int mod_time,
19907 unsigned int length)
19908 {
19909 if (dwarf_line_debug >= 2)
19910 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19911 (unsigned) file_names.size () + 1, name);
19912
19913 file_names.emplace_back (name, d_index, mod_time, length);
19914 }
19915
19916 /* A convenience function to find the proper .debug_line section for a CU. */
19917
19918 static struct dwarf2_section_info *
19919 get_debug_line_section (struct dwarf2_cu *cu)
19920 {
19921 struct dwarf2_section_info *section;
19922 struct dwarf2_per_objfile *dwarf2_per_objfile
19923 = cu->per_cu->dwarf2_per_objfile;
19924
19925 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19926 DWO file. */
19927 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19928 section = &cu->dwo_unit->dwo_file->sections.line;
19929 else if (cu->per_cu->is_dwz)
19930 {
19931 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19932
19933 section = &dwz->line;
19934 }
19935 else
19936 section = &dwarf2_per_objfile->line;
19937
19938 return section;
19939 }
19940
19941 /* Read directory or file name entry format, starting with byte of
19942 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19943 entries count and the entries themselves in the described entry
19944 format. */
19945
19946 static void
19947 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19948 bfd *abfd, const gdb_byte **bufp,
19949 struct line_header *lh,
19950 const struct comp_unit_head *cu_header,
19951 void (*callback) (struct line_header *lh,
19952 const char *name,
19953 dir_index d_index,
19954 unsigned int mod_time,
19955 unsigned int length))
19956 {
19957 gdb_byte format_count, formati;
19958 ULONGEST data_count, datai;
19959 const gdb_byte *buf = *bufp;
19960 const gdb_byte *format_header_data;
19961 unsigned int bytes_read;
19962
19963 format_count = read_1_byte (abfd, buf);
19964 buf += 1;
19965 format_header_data = buf;
19966 for (formati = 0; formati < format_count; formati++)
19967 {
19968 read_unsigned_leb128 (abfd, buf, &bytes_read);
19969 buf += bytes_read;
19970 read_unsigned_leb128 (abfd, buf, &bytes_read);
19971 buf += bytes_read;
19972 }
19973
19974 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19975 buf += bytes_read;
19976 for (datai = 0; datai < data_count; datai++)
19977 {
19978 const gdb_byte *format = format_header_data;
19979 struct file_entry fe;
19980
19981 for (formati = 0; formati < format_count; formati++)
19982 {
19983 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19984 format += bytes_read;
19985
19986 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19987 format += bytes_read;
19988
19989 gdb::optional<const char *> string;
19990 gdb::optional<unsigned int> uint;
19991
19992 switch (form)
19993 {
19994 case DW_FORM_string:
19995 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19996 buf += bytes_read;
19997 break;
19998
19999 case DW_FORM_line_strp:
20000 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20001 abfd, buf,
20002 cu_header,
20003 &bytes_read));
20004 buf += bytes_read;
20005 break;
20006
20007 case DW_FORM_data1:
20008 uint.emplace (read_1_byte (abfd, buf));
20009 buf += 1;
20010 break;
20011
20012 case DW_FORM_data2:
20013 uint.emplace (read_2_bytes (abfd, buf));
20014 buf += 2;
20015 break;
20016
20017 case DW_FORM_data4:
20018 uint.emplace (read_4_bytes (abfd, buf));
20019 buf += 4;
20020 break;
20021
20022 case DW_FORM_data8:
20023 uint.emplace (read_8_bytes (abfd, buf));
20024 buf += 8;
20025 break;
20026
20027 case DW_FORM_udata:
20028 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20029 buf += bytes_read;
20030 break;
20031
20032 case DW_FORM_block:
20033 /* It is valid only for DW_LNCT_timestamp which is ignored by
20034 current GDB. */
20035 break;
20036 }
20037
20038 switch (content_type)
20039 {
20040 case DW_LNCT_path:
20041 if (string.has_value ())
20042 fe.name = *string;
20043 break;
20044 case DW_LNCT_directory_index:
20045 if (uint.has_value ())
20046 fe.d_index = (dir_index) *uint;
20047 break;
20048 case DW_LNCT_timestamp:
20049 if (uint.has_value ())
20050 fe.mod_time = *uint;
20051 break;
20052 case DW_LNCT_size:
20053 if (uint.has_value ())
20054 fe.length = *uint;
20055 break;
20056 case DW_LNCT_MD5:
20057 break;
20058 default:
20059 complaint (_("Unknown format content type %s"),
20060 pulongest (content_type));
20061 }
20062 }
20063
20064 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20065 }
20066
20067 *bufp = buf;
20068 }
20069
20070 /* Read the statement program header starting at OFFSET in
20071 .debug_line, or .debug_line.dwo. Return a pointer
20072 to a struct line_header, allocated using xmalloc.
20073 Returns NULL if there is a problem reading the header, e.g., if it
20074 has a version we don't understand.
20075
20076 NOTE: the strings in the include directory and file name tables of
20077 the returned object point into the dwarf line section buffer,
20078 and must not be freed. */
20079
20080 static line_header_up
20081 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20082 {
20083 const gdb_byte *line_ptr;
20084 unsigned int bytes_read, offset_size;
20085 int i;
20086 const char *cur_dir, *cur_file;
20087 struct dwarf2_section_info *section;
20088 bfd *abfd;
20089 struct dwarf2_per_objfile *dwarf2_per_objfile
20090 = cu->per_cu->dwarf2_per_objfile;
20091
20092 section = get_debug_line_section (cu);
20093 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20094 if (section->buffer == NULL)
20095 {
20096 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20097 complaint (_("missing .debug_line.dwo section"));
20098 else
20099 complaint (_("missing .debug_line section"));
20100 return 0;
20101 }
20102
20103 /* We can't do this until we know the section is non-empty.
20104 Only then do we know we have such a section. */
20105 abfd = get_section_bfd_owner (section);
20106
20107 /* Make sure that at least there's room for the total_length field.
20108 That could be 12 bytes long, but we're just going to fudge that. */
20109 if (to_underlying (sect_off) + 4 >= section->size)
20110 {
20111 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20112 return 0;
20113 }
20114
20115 line_header_up lh (new line_header ());
20116
20117 lh->sect_off = sect_off;
20118 lh->offset_in_dwz = cu->per_cu->is_dwz;
20119
20120 line_ptr = section->buffer + to_underlying (sect_off);
20121
20122 /* Read in the header. */
20123 lh->total_length =
20124 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20125 &bytes_read, &offset_size);
20126 line_ptr += bytes_read;
20127 if (line_ptr + lh->total_length > (section->buffer + section->size))
20128 {
20129 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20130 return 0;
20131 }
20132 lh->statement_program_end = line_ptr + lh->total_length;
20133 lh->version = read_2_bytes (abfd, line_ptr);
20134 line_ptr += 2;
20135 if (lh->version > 5)
20136 {
20137 /* This is a version we don't understand. The format could have
20138 changed in ways we don't handle properly so just punt. */
20139 complaint (_("unsupported version in .debug_line section"));
20140 return NULL;
20141 }
20142 if (lh->version >= 5)
20143 {
20144 gdb_byte segment_selector_size;
20145
20146 /* Skip address size. */
20147 read_1_byte (abfd, line_ptr);
20148 line_ptr += 1;
20149
20150 segment_selector_size = read_1_byte (abfd, line_ptr);
20151 line_ptr += 1;
20152 if (segment_selector_size != 0)
20153 {
20154 complaint (_("unsupported segment selector size %u "
20155 "in .debug_line section"),
20156 segment_selector_size);
20157 return NULL;
20158 }
20159 }
20160 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20161 line_ptr += offset_size;
20162 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20163 line_ptr += 1;
20164 if (lh->version >= 4)
20165 {
20166 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20167 line_ptr += 1;
20168 }
20169 else
20170 lh->maximum_ops_per_instruction = 1;
20171
20172 if (lh->maximum_ops_per_instruction == 0)
20173 {
20174 lh->maximum_ops_per_instruction = 1;
20175 complaint (_("invalid maximum_ops_per_instruction "
20176 "in `.debug_line' section"));
20177 }
20178
20179 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20180 line_ptr += 1;
20181 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20182 line_ptr += 1;
20183 lh->line_range = read_1_byte (abfd, line_ptr);
20184 line_ptr += 1;
20185 lh->opcode_base = read_1_byte (abfd, line_ptr);
20186 line_ptr += 1;
20187 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20188
20189 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20190 for (i = 1; i < lh->opcode_base; ++i)
20191 {
20192 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20193 line_ptr += 1;
20194 }
20195
20196 if (lh->version >= 5)
20197 {
20198 /* Read directory table. */
20199 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20200 &cu->header,
20201 [] (struct line_header *lh, const char *name,
20202 dir_index d_index, unsigned int mod_time,
20203 unsigned int length)
20204 {
20205 lh->add_include_dir (name);
20206 });
20207
20208 /* Read file name table. */
20209 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20210 &cu->header,
20211 [] (struct line_header *lh, const char *name,
20212 dir_index d_index, unsigned int mod_time,
20213 unsigned int length)
20214 {
20215 lh->add_file_name (name, d_index, mod_time, length);
20216 });
20217 }
20218 else
20219 {
20220 /* Read directory table. */
20221 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20222 {
20223 line_ptr += bytes_read;
20224 lh->add_include_dir (cur_dir);
20225 }
20226 line_ptr += bytes_read;
20227
20228 /* Read file name table. */
20229 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20230 {
20231 unsigned int mod_time, length;
20232 dir_index d_index;
20233
20234 line_ptr += bytes_read;
20235 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20236 line_ptr += bytes_read;
20237 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20238 line_ptr += bytes_read;
20239 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20240 line_ptr += bytes_read;
20241
20242 lh->add_file_name (cur_file, d_index, mod_time, length);
20243 }
20244 line_ptr += bytes_read;
20245 }
20246 lh->statement_program_start = line_ptr;
20247
20248 if (line_ptr > (section->buffer + section->size))
20249 complaint (_("line number info header doesn't "
20250 "fit in `.debug_line' section"));
20251
20252 return lh;
20253 }
20254
20255 /* Subroutine of dwarf_decode_lines to simplify it.
20256 Return the file name of the psymtab for included file FILE_INDEX
20257 in line header LH of PST.
20258 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20259 If space for the result is malloc'd, *NAME_HOLDER will be set.
20260 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20261
20262 static const char *
20263 psymtab_include_file_name (const struct line_header *lh, int file_index,
20264 const struct partial_symtab *pst,
20265 const char *comp_dir,
20266 gdb::unique_xmalloc_ptr<char> *name_holder)
20267 {
20268 const file_entry &fe = lh->file_names[file_index];
20269 const char *include_name = fe.name;
20270 const char *include_name_to_compare = include_name;
20271 const char *pst_filename;
20272 int file_is_pst;
20273
20274 const char *dir_name = fe.include_dir (lh);
20275
20276 gdb::unique_xmalloc_ptr<char> hold_compare;
20277 if (!IS_ABSOLUTE_PATH (include_name)
20278 && (dir_name != NULL || comp_dir != NULL))
20279 {
20280 /* Avoid creating a duplicate psymtab for PST.
20281 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20282 Before we do the comparison, however, we need to account
20283 for DIR_NAME and COMP_DIR.
20284 First prepend dir_name (if non-NULL). If we still don't
20285 have an absolute path prepend comp_dir (if non-NULL).
20286 However, the directory we record in the include-file's
20287 psymtab does not contain COMP_DIR (to match the
20288 corresponding symtab(s)).
20289
20290 Example:
20291
20292 bash$ cd /tmp
20293 bash$ gcc -g ./hello.c
20294 include_name = "hello.c"
20295 dir_name = "."
20296 DW_AT_comp_dir = comp_dir = "/tmp"
20297 DW_AT_name = "./hello.c"
20298
20299 */
20300
20301 if (dir_name != NULL)
20302 {
20303 name_holder->reset (concat (dir_name, SLASH_STRING,
20304 include_name, (char *) NULL));
20305 include_name = name_holder->get ();
20306 include_name_to_compare = include_name;
20307 }
20308 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20309 {
20310 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20311 include_name, (char *) NULL));
20312 include_name_to_compare = hold_compare.get ();
20313 }
20314 }
20315
20316 pst_filename = pst->filename;
20317 gdb::unique_xmalloc_ptr<char> copied_name;
20318 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20319 {
20320 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20321 pst_filename, (char *) NULL));
20322 pst_filename = copied_name.get ();
20323 }
20324
20325 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20326
20327 if (file_is_pst)
20328 return NULL;
20329 return include_name;
20330 }
20331
20332 /* State machine to track the state of the line number program. */
20333
20334 class lnp_state_machine
20335 {
20336 public:
20337 /* Initialize a machine state for the start of a line number
20338 program. */
20339 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20340 bool record_lines_p);
20341
20342 file_entry *current_file ()
20343 {
20344 /* lh->file_names is 0-based, but the file name numbers in the
20345 statement program are 1-based. */
20346 return m_line_header->file_name_at (m_file);
20347 }
20348
20349 /* Record the line in the state machine. END_SEQUENCE is true if
20350 we're processing the end of a sequence. */
20351 void record_line (bool end_sequence);
20352
20353 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20354 nop-out rest of the lines in this sequence. */
20355 void check_line_address (struct dwarf2_cu *cu,
20356 const gdb_byte *line_ptr,
20357 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20358
20359 void handle_set_discriminator (unsigned int discriminator)
20360 {
20361 m_discriminator = discriminator;
20362 m_line_has_non_zero_discriminator |= discriminator != 0;
20363 }
20364
20365 /* Handle DW_LNE_set_address. */
20366 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20367 {
20368 m_op_index = 0;
20369 address += baseaddr;
20370 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20371 }
20372
20373 /* Handle DW_LNS_advance_pc. */
20374 void handle_advance_pc (CORE_ADDR adjust);
20375
20376 /* Handle a special opcode. */
20377 void handle_special_opcode (unsigned char op_code);
20378
20379 /* Handle DW_LNS_advance_line. */
20380 void handle_advance_line (int line_delta)
20381 {
20382 advance_line (line_delta);
20383 }
20384
20385 /* Handle DW_LNS_set_file. */
20386 void handle_set_file (file_name_index file);
20387
20388 /* Handle DW_LNS_negate_stmt. */
20389 void handle_negate_stmt ()
20390 {
20391 m_is_stmt = !m_is_stmt;
20392 }
20393
20394 /* Handle DW_LNS_const_add_pc. */
20395 void handle_const_add_pc ();
20396
20397 /* Handle DW_LNS_fixed_advance_pc. */
20398 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20399 {
20400 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20401 m_op_index = 0;
20402 }
20403
20404 /* Handle DW_LNS_copy. */
20405 void handle_copy ()
20406 {
20407 record_line (false);
20408 m_discriminator = 0;
20409 }
20410
20411 /* Handle DW_LNE_end_sequence. */
20412 void handle_end_sequence ()
20413 {
20414 m_currently_recording_lines = true;
20415 }
20416
20417 private:
20418 /* Advance the line by LINE_DELTA. */
20419 void advance_line (int line_delta)
20420 {
20421 m_line += line_delta;
20422
20423 if (line_delta != 0)
20424 m_line_has_non_zero_discriminator = m_discriminator != 0;
20425 }
20426
20427 struct dwarf2_cu *m_cu;
20428
20429 gdbarch *m_gdbarch;
20430
20431 /* True if we're recording lines.
20432 Otherwise we're building partial symtabs and are just interested in
20433 finding include files mentioned by the line number program. */
20434 bool m_record_lines_p;
20435
20436 /* The line number header. */
20437 line_header *m_line_header;
20438
20439 /* These are part of the standard DWARF line number state machine,
20440 and initialized according to the DWARF spec. */
20441
20442 unsigned char m_op_index = 0;
20443 /* The line table index (1-based) of the current file. */
20444 file_name_index m_file = (file_name_index) 1;
20445 unsigned int m_line = 1;
20446
20447 /* These are initialized in the constructor. */
20448
20449 CORE_ADDR m_address;
20450 bool m_is_stmt;
20451 unsigned int m_discriminator;
20452
20453 /* Additional bits of state we need to track. */
20454
20455 /* The last file that we called dwarf2_start_subfile for.
20456 This is only used for TLLs. */
20457 unsigned int m_last_file = 0;
20458 /* The last file a line number was recorded for. */
20459 struct subfile *m_last_subfile = NULL;
20460
20461 /* When true, record the lines we decode. */
20462 bool m_currently_recording_lines = false;
20463
20464 /* The last line number that was recorded, used to coalesce
20465 consecutive entries for the same line. This can happen, for
20466 example, when discriminators are present. PR 17276. */
20467 unsigned int m_last_line = 0;
20468 bool m_line_has_non_zero_discriminator = false;
20469 };
20470
20471 void
20472 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20473 {
20474 CORE_ADDR addr_adj = (((m_op_index + adjust)
20475 / m_line_header->maximum_ops_per_instruction)
20476 * m_line_header->minimum_instruction_length);
20477 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20478 m_op_index = ((m_op_index + adjust)
20479 % m_line_header->maximum_ops_per_instruction);
20480 }
20481
20482 void
20483 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20484 {
20485 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20486 CORE_ADDR addr_adj = (((m_op_index
20487 + (adj_opcode / m_line_header->line_range))
20488 / m_line_header->maximum_ops_per_instruction)
20489 * m_line_header->minimum_instruction_length);
20490 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20491 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20492 % m_line_header->maximum_ops_per_instruction);
20493
20494 int line_delta = (m_line_header->line_base
20495 + (adj_opcode % m_line_header->line_range));
20496 advance_line (line_delta);
20497 record_line (false);
20498 m_discriminator = 0;
20499 }
20500
20501 void
20502 lnp_state_machine::handle_set_file (file_name_index file)
20503 {
20504 m_file = file;
20505
20506 const file_entry *fe = current_file ();
20507 if (fe == NULL)
20508 dwarf2_debug_line_missing_file_complaint ();
20509 else if (m_record_lines_p)
20510 {
20511 const char *dir = fe->include_dir (m_line_header);
20512
20513 m_last_subfile = m_cu->builder->get_current_subfile ();
20514 m_line_has_non_zero_discriminator = m_discriminator != 0;
20515 dwarf2_start_subfile (m_cu, fe->name, dir);
20516 }
20517 }
20518
20519 void
20520 lnp_state_machine::handle_const_add_pc ()
20521 {
20522 CORE_ADDR adjust
20523 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20524
20525 CORE_ADDR addr_adj
20526 = (((m_op_index + adjust)
20527 / m_line_header->maximum_ops_per_instruction)
20528 * m_line_header->minimum_instruction_length);
20529
20530 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20531 m_op_index = ((m_op_index + adjust)
20532 % m_line_header->maximum_ops_per_instruction);
20533 }
20534
20535 /* Return non-zero if we should add LINE to the line number table.
20536 LINE is the line to add, LAST_LINE is the last line that was added,
20537 LAST_SUBFILE is the subfile for LAST_LINE.
20538 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20539 had a non-zero discriminator.
20540
20541 We have to be careful in the presence of discriminators.
20542 E.g., for this line:
20543
20544 for (i = 0; i < 100000; i++);
20545
20546 clang can emit four line number entries for that one line,
20547 each with a different discriminator.
20548 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20549
20550 However, we want gdb to coalesce all four entries into one.
20551 Otherwise the user could stepi into the middle of the line and
20552 gdb would get confused about whether the pc really was in the
20553 middle of the line.
20554
20555 Things are further complicated by the fact that two consecutive
20556 line number entries for the same line is a heuristic used by gcc
20557 to denote the end of the prologue. So we can't just discard duplicate
20558 entries, we have to be selective about it. The heuristic we use is
20559 that we only collapse consecutive entries for the same line if at least
20560 one of those entries has a non-zero discriminator. PR 17276.
20561
20562 Note: Addresses in the line number state machine can never go backwards
20563 within one sequence, thus this coalescing is ok. */
20564
20565 static int
20566 dwarf_record_line_p (struct dwarf2_cu *cu,
20567 unsigned int line, unsigned int last_line,
20568 int line_has_non_zero_discriminator,
20569 struct subfile *last_subfile)
20570 {
20571 if (cu->builder->get_current_subfile () != last_subfile)
20572 return 1;
20573 if (line != last_line)
20574 return 1;
20575 /* Same line for the same file that we've seen already.
20576 As a last check, for pr 17276, only record the line if the line
20577 has never had a non-zero discriminator. */
20578 if (!line_has_non_zero_discriminator)
20579 return 1;
20580 return 0;
20581 }
20582
20583 /* Use the CU's builder to record line number LINE beginning at
20584 address ADDRESS in the line table of subfile SUBFILE. */
20585
20586 static void
20587 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20588 unsigned int line, CORE_ADDR address,
20589 struct dwarf2_cu *cu)
20590 {
20591 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20592
20593 if (dwarf_line_debug)
20594 {
20595 fprintf_unfiltered (gdb_stdlog,
20596 "Recording line %u, file %s, address %s\n",
20597 line, lbasename (subfile->name),
20598 paddress (gdbarch, address));
20599 }
20600
20601 if (cu != nullptr)
20602 cu->builder->record_line (subfile, line, addr);
20603 }
20604
20605 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20606 Mark the end of a set of line number records.
20607 The arguments are the same as for dwarf_record_line_1.
20608 If SUBFILE is NULL the request is ignored. */
20609
20610 static void
20611 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20612 CORE_ADDR address, struct dwarf2_cu *cu)
20613 {
20614 if (subfile == NULL)
20615 return;
20616
20617 if (dwarf_line_debug)
20618 {
20619 fprintf_unfiltered (gdb_stdlog,
20620 "Finishing current line, file %s, address %s\n",
20621 lbasename (subfile->name),
20622 paddress (gdbarch, address));
20623 }
20624
20625 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20626 }
20627
20628 void
20629 lnp_state_machine::record_line (bool end_sequence)
20630 {
20631 if (dwarf_line_debug)
20632 {
20633 fprintf_unfiltered (gdb_stdlog,
20634 "Processing actual line %u: file %u,"
20635 " address %s, is_stmt %u, discrim %u\n",
20636 m_line, to_underlying (m_file),
20637 paddress (m_gdbarch, m_address),
20638 m_is_stmt, m_discriminator);
20639 }
20640
20641 file_entry *fe = current_file ();
20642
20643 if (fe == NULL)
20644 dwarf2_debug_line_missing_file_complaint ();
20645 /* For now we ignore lines not starting on an instruction boundary.
20646 But not when processing end_sequence for compatibility with the
20647 previous version of the code. */
20648 else if (m_op_index == 0 || end_sequence)
20649 {
20650 fe->included_p = 1;
20651 if (m_record_lines_p && m_is_stmt)
20652 {
20653 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20654 || end_sequence)
20655 {
20656 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20657 m_currently_recording_lines ? m_cu : nullptr);
20658 }
20659
20660 if (!end_sequence)
20661 {
20662 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20663 m_line_has_non_zero_discriminator,
20664 m_last_subfile))
20665 {
20666 dwarf_record_line_1 (m_gdbarch,
20667 m_cu->builder->get_current_subfile (),
20668 m_line, m_address,
20669 m_currently_recording_lines ? m_cu : nullptr);
20670 }
20671 m_last_subfile = m_cu->builder->get_current_subfile ();
20672 m_last_line = m_line;
20673 }
20674 }
20675 }
20676 }
20677
20678 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20679 line_header *lh, bool record_lines_p)
20680 {
20681 m_cu = cu;
20682 m_gdbarch = arch;
20683 m_record_lines_p = record_lines_p;
20684 m_line_header = lh;
20685
20686 m_currently_recording_lines = true;
20687
20688 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20689 was a line entry for it so that the backend has a chance to adjust it
20690 and also record it in case it needs it. This is currently used by MIPS
20691 code, cf. `mips_adjust_dwarf2_line'. */
20692 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20693 m_is_stmt = lh->default_is_stmt;
20694 m_discriminator = 0;
20695 }
20696
20697 void
20698 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20699 const gdb_byte *line_ptr,
20700 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20701 {
20702 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20703 the pc range of the CU. However, we restrict the test to only ADDRESS
20704 values of zero to preserve GDB's previous behaviour which is to handle
20705 the specific case of a function being GC'd by the linker. */
20706
20707 if (address == 0 && address < unrelocated_lowpc)
20708 {
20709 /* This line table is for a function which has been
20710 GCd by the linker. Ignore it. PR gdb/12528 */
20711
20712 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20713 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20714
20715 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20716 line_offset, objfile_name (objfile));
20717 m_currently_recording_lines = false;
20718 /* Note: m_currently_recording_lines is left as false until we see
20719 DW_LNE_end_sequence. */
20720 }
20721 }
20722
20723 /* Subroutine of dwarf_decode_lines to simplify it.
20724 Process the line number information in LH.
20725 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20726 program in order to set included_p for every referenced header. */
20727
20728 static void
20729 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20730 const int decode_for_pst_p, CORE_ADDR lowpc)
20731 {
20732 const gdb_byte *line_ptr, *extended_end;
20733 const gdb_byte *line_end;
20734 unsigned int bytes_read, extended_len;
20735 unsigned char op_code, extended_op;
20736 CORE_ADDR baseaddr;
20737 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20738 bfd *abfd = objfile->obfd;
20739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20740 /* True if we're recording line info (as opposed to building partial
20741 symtabs and just interested in finding include files mentioned by
20742 the line number program). */
20743 bool record_lines_p = !decode_for_pst_p;
20744
20745 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20746
20747 line_ptr = lh->statement_program_start;
20748 line_end = lh->statement_program_end;
20749
20750 /* Read the statement sequences until there's nothing left. */
20751 while (line_ptr < line_end)
20752 {
20753 /* The DWARF line number program state machine. Reset the state
20754 machine at the start of each sequence. */
20755 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20756 bool end_sequence = false;
20757
20758 if (record_lines_p)
20759 {
20760 /* Start a subfile for the current file of the state
20761 machine. */
20762 const file_entry *fe = state_machine.current_file ();
20763
20764 if (fe != NULL)
20765 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20766 }
20767
20768 /* Decode the table. */
20769 while (line_ptr < line_end && !end_sequence)
20770 {
20771 op_code = read_1_byte (abfd, line_ptr);
20772 line_ptr += 1;
20773
20774 if (op_code >= lh->opcode_base)
20775 {
20776 /* Special opcode. */
20777 state_machine.handle_special_opcode (op_code);
20778 }
20779 else switch (op_code)
20780 {
20781 case DW_LNS_extended_op:
20782 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20783 &bytes_read);
20784 line_ptr += bytes_read;
20785 extended_end = line_ptr + extended_len;
20786 extended_op = read_1_byte (abfd, line_ptr);
20787 line_ptr += 1;
20788 switch (extended_op)
20789 {
20790 case DW_LNE_end_sequence:
20791 state_machine.handle_end_sequence ();
20792 end_sequence = true;
20793 break;
20794 case DW_LNE_set_address:
20795 {
20796 CORE_ADDR address
20797 = read_address (abfd, line_ptr, cu, &bytes_read);
20798 line_ptr += bytes_read;
20799
20800 state_machine.check_line_address (cu, line_ptr,
20801 lowpc - baseaddr, address);
20802 state_machine.handle_set_address (baseaddr, address);
20803 }
20804 break;
20805 case DW_LNE_define_file:
20806 {
20807 const char *cur_file;
20808 unsigned int mod_time, length;
20809 dir_index dindex;
20810
20811 cur_file = read_direct_string (abfd, line_ptr,
20812 &bytes_read);
20813 line_ptr += bytes_read;
20814 dindex = (dir_index)
20815 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20816 line_ptr += bytes_read;
20817 mod_time =
20818 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20819 line_ptr += bytes_read;
20820 length =
20821 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20822 line_ptr += bytes_read;
20823 lh->add_file_name (cur_file, dindex, mod_time, length);
20824 }
20825 break;
20826 case DW_LNE_set_discriminator:
20827 {
20828 /* The discriminator is not interesting to the
20829 debugger; just ignore it. We still need to
20830 check its value though:
20831 if there are consecutive entries for the same
20832 (non-prologue) line we want to coalesce them.
20833 PR 17276. */
20834 unsigned int discr
20835 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20836 line_ptr += bytes_read;
20837
20838 state_machine.handle_set_discriminator (discr);
20839 }
20840 break;
20841 default:
20842 complaint (_("mangled .debug_line section"));
20843 return;
20844 }
20845 /* Make sure that we parsed the extended op correctly. If e.g.
20846 we expected a different address size than the producer used,
20847 we may have read the wrong number of bytes. */
20848 if (line_ptr != extended_end)
20849 {
20850 complaint (_("mangled .debug_line section"));
20851 return;
20852 }
20853 break;
20854 case DW_LNS_copy:
20855 state_machine.handle_copy ();
20856 break;
20857 case DW_LNS_advance_pc:
20858 {
20859 CORE_ADDR adjust
20860 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20861 line_ptr += bytes_read;
20862
20863 state_machine.handle_advance_pc (adjust);
20864 }
20865 break;
20866 case DW_LNS_advance_line:
20867 {
20868 int line_delta
20869 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20870 line_ptr += bytes_read;
20871
20872 state_machine.handle_advance_line (line_delta);
20873 }
20874 break;
20875 case DW_LNS_set_file:
20876 {
20877 file_name_index file
20878 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20879 &bytes_read);
20880 line_ptr += bytes_read;
20881
20882 state_machine.handle_set_file (file);
20883 }
20884 break;
20885 case DW_LNS_set_column:
20886 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20887 line_ptr += bytes_read;
20888 break;
20889 case DW_LNS_negate_stmt:
20890 state_machine.handle_negate_stmt ();
20891 break;
20892 case DW_LNS_set_basic_block:
20893 break;
20894 /* Add to the address register of the state machine the
20895 address increment value corresponding to special opcode
20896 255. I.e., this value is scaled by the minimum
20897 instruction length since special opcode 255 would have
20898 scaled the increment. */
20899 case DW_LNS_const_add_pc:
20900 state_machine.handle_const_add_pc ();
20901 break;
20902 case DW_LNS_fixed_advance_pc:
20903 {
20904 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20905 line_ptr += 2;
20906
20907 state_machine.handle_fixed_advance_pc (addr_adj);
20908 }
20909 break;
20910 default:
20911 {
20912 /* Unknown standard opcode, ignore it. */
20913 int i;
20914
20915 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20916 {
20917 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20918 line_ptr += bytes_read;
20919 }
20920 }
20921 }
20922 }
20923
20924 if (!end_sequence)
20925 dwarf2_debug_line_missing_end_sequence_complaint ();
20926
20927 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20928 in which case we still finish recording the last line). */
20929 state_machine.record_line (true);
20930 }
20931 }
20932
20933 /* Decode the Line Number Program (LNP) for the given line_header
20934 structure and CU. The actual information extracted and the type
20935 of structures created from the LNP depends on the value of PST.
20936
20937 1. If PST is NULL, then this procedure uses the data from the program
20938 to create all necessary symbol tables, and their linetables.
20939
20940 2. If PST is not NULL, this procedure reads the program to determine
20941 the list of files included by the unit represented by PST, and
20942 builds all the associated partial symbol tables.
20943
20944 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20945 It is used for relative paths in the line table.
20946 NOTE: When processing partial symtabs (pst != NULL),
20947 comp_dir == pst->dirname.
20948
20949 NOTE: It is important that psymtabs have the same file name (via strcmp)
20950 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20951 symtab we don't use it in the name of the psymtabs we create.
20952 E.g. expand_line_sal requires this when finding psymtabs to expand.
20953 A good testcase for this is mb-inline.exp.
20954
20955 LOWPC is the lowest address in CU (or 0 if not known).
20956
20957 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20958 for its PC<->lines mapping information. Otherwise only the filename
20959 table is read in. */
20960
20961 static void
20962 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20963 struct dwarf2_cu *cu, struct partial_symtab *pst,
20964 CORE_ADDR lowpc, int decode_mapping)
20965 {
20966 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20967 const int decode_for_pst_p = (pst != NULL);
20968
20969 if (decode_mapping)
20970 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20971
20972 if (decode_for_pst_p)
20973 {
20974 int file_index;
20975
20976 /* Now that we're done scanning the Line Header Program, we can
20977 create the psymtab of each included file. */
20978 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20979 if (lh->file_names[file_index].included_p == 1)
20980 {
20981 gdb::unique_xmalloc_ptr<char> name_holder;
20982 const char *include_name =
20983 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20984 &name_holder);
20985 if (include_name != NULL)
20986 dwarf2_create_include_psymtab (include_name, pst, objfile);
20987 }
20988 }
20989 else
20990 {
20991 /* Make sure a symtab is created for every file, even files
20992 which contain only variables (i.e. no code with associated
20993 line numbers). */
20994 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
20995 int i;
20996
20997 for (i = 0; i < lh->file_names.size (); i++)
20998 {
20999 file_entry &fe = lh->file_names[i];
21000
21001 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21002
21003 if (cu->builder->get_current_subfile ()->symtab == NULL)
21004 {
21005 cu->builder->get_current_subfile ()->symtab
21006 = allocate_symtab (cust,
21007 cu->builder->get_current_subfile ()->name);
21008 }
21009 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21010 }
21011 }
21012 }
21013
21014 /* Start a subfile for DWARF. FILENAME is the name of the file and
21015 DIRNAME the name of the source directory which contains FILENAME
21016 or NULL if not known.
21017 This routine tries to keep line numbers from identical absolute and
21018 relative file names in a common subfile.
21019
21020 Using the `list' example from the GDB testsuite, which resides in
21021 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21022 of /srcdir/list0.c yields the following debugging information for list0.c:
21023
21024 DW_AT_name: /srcdir/list0.c
21025 DW_AT_comp_dir: /compdir
21026 files.files[0].name: list0.h
21027 files.files[0].dir: /srcdir
21028 files.files[1].name: list0.c
21029 files.files[1].dir: /srcdir
21030
21031 The line number information for list0.c has to end up in a single
21032 subfile, so that `break /srcdir/list0.c:1' works as expected.
21033 start_subfile will ensure that this happens provided that we pass the
21034 concatenation of files.files[1].dir and files.files[1].name as the
21035 subfile's name. */
21036
21037 static void
21038 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21039 const char *dirname)
21040 {
21041 char *copy = NULL;
21042
21043 /* In order not to lose the line information directory,
21044 we concatenate it to the filename when it makes sense.
21045 Note that the Dwarf3 standard says (speaking of filenames in line
21046 information): ``The directory index is ignored for file names
21047 that represent full path names''. Thus ignoring dirname in the
21048 `else' branch below isn't an issue. */
21049
21050 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21051 {
21052 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21053 filename = copy;
21054 }
21055
21056 cu->builder->start_subfile (filename);
21057
21058 if (copy != NULL)
21059 xfree (copy);
21060 }
21061
21062 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21063 buildsym_compunit constructor. */
21064
21065 static struct compunit_symtab *
21066 dwarf2_start_symtab (struct dwarf2_cu *cu,
21067 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21068 {
21069 gdb_assert (cu->builder == nullptr);
21070
21071 cu->builder.reset (new struct buildsym_compunit
21072 (cu->per_cu->dwarf2_per_objfile->objfile,
21073 name, comp_dir, cu->language, low_pc));
21074
21075 cu->list_in_scope = cu->builder->get_file_symbols ();
21076
21077 cu->builder->record_debugformat ("DWARF 2");
21078 cu->builder->record_producer (cu->producer);
21079
21080 cu->processing_has_namespace_info = 0;
21081
21082 return cu->builder->get_compunit_symtab ();
21083 }
21084
21085 static void
21086 var_decode_location (struct attribute *attr, struct symbol *sym,
21087 struct dwarf2_cu *cu)
21088 {
21089 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21090 struct comp_unit_head *cu_header = &cu->header;
21091
21092 /* NOTE drow/2003-01-30: There used to be a comment and some special
21093 code here to turn a symbol with DW_AT_external and a
21094 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21095 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21096 with some versions of binutils) where shared libraries could have
21097 relocations against symbols in their debug information - the
21098 minimal symbol would have the right address, but the debug info
21099 would not. It's no longer necessary, because we will explicitly
21100 apply relocations when we read in the debug information now. */
21101
21102 /* A DW_AT_location attribute with no contents indicates that a
21103 variable has been optimized away. */
21104 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21105 {
21106 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21107 return;
21108 }
21109
21110 /* Handle one degenerate form of location expression specially, to
21111 preserve GDB's previous behavior when section offsets are
21112 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21113 then mark this symbol as LOC_STATIC. */
21114
21115 if (attr_form_is_block (attr)
21116 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21117 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21118 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21119 && (DW_BLOCK (attr)->size
21120 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21121 {
21122 unsigned int dummy;
21123
21124 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21125 SYMBOL_VALUE_ADDRESS (sym) =
21126 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21127 else
21128 SYMBOL_VALUE_ADDRESS (sym) =
21129 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21130 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21131 fixup_symbol_section (sym, objfile);
21132 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21133 SYMBOL_SECTION (sym));
21134 return;
21135 }
21136
21137 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21138 expression evaluator, and use LOC_COMPUTED only when necessary
21139 (i.e. when the value of a register or memory location is
21140 referenced, or a thread-local block, etc.). Then again, it might
21141 not be worthwhile. I'm assuming that it isn't unless performance
21142 or memory numbers show me otherwise. */
21143
21144 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21145
21146 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21147 cu->has_loclist = 1;
21148 }
21149
21150 /* Given a pointer to a DWARF information entry, figure out if we need
21151 to make a symbol table entry for it, and if so, create a new entry
21152 and return a pointer to it.
21153 If TYPE is NULL, determine symbol type from the die, otherwise
21154 used the passed type.
21155 If SPACE is not NULL, use it to hold the new symbol. If it is
21156 NULL, allocate a new symbol on the objfile's obstack. */
21157
21158 static struct symbol *
21159 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21160 struct symbol *space)
21161 {
21162 struct dwarf2_per_objfile *dwarf2_per_objfile
21163 = cu->per_cu->dwarf2_per_objfile;
21164 struct objfile *objfile = dwarf2_per_objfile->objfile;
21165 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21166 struct symbol *sym = NULL;
21167 const char *name;
21168 struct attribute *attr = NULL;
21169 struct attribute *attr2 = NULL;
21170 CORE_ADDR baseaddr;
21171 struct pending **list_to_add = NULL;
21172
21173 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21174
21175 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21176
21177 name = dwarf2_name (die, cu);
21178 if (name)
21179 {
21180 const char *linkagename;
21181 int suppress_add = 0;
21182
21183 if (space)
21184 sym = space;
21185 else
21186 sym = allocate_symbol (objfile);
21187 OBJSTAT (objfile, n_syms++);
21188
21189 /* Cache this symbol's name and the name's demangled form (if any). */
21190 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21191 linkagename = dwarf2_physname (name, die, cu);
21192 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21193
21194 /* Fortran does not have mangling standard and the mangling does differ
21195 between gfortran, iFort etc. */
21196 if (cu->language == language_fortran
21197 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21198 symbol_set_demangled_name (&(sym->ginfo),
21199 dwarf2_full_name (name, die, cu),
21200 NULL);
21201
21202 /* Default assumptions.
21203 Use the passed type or decode it from the die. */
21204 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21205 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21206 if (type != NULL)
21207 SYMBOL_TYPE (sym) = type;
21208 else
21209 SYMBOL_TYPE (sym) = die_type (die, cu);
21210 attr = dwarf2_attr (die,
21211 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21212 cu);
21213 if (attr)
21214 {
21215 SYMBOL_LINE (sym) = DW_UNSND (attr);
21216 }
21217
21218 attr = dwarf2_attr (die,
21219 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21220 cu);
21221 if (attr)
21222 {
21223 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21224 struct file_entry *fe;
21225
21226 if (cu->line_header != NULL)
21227 fe = cu->line_header->file_name_at (file_index);
21228 else
21229 fe = NULL;
21230
21231 if (fe == NULL)
21232 complaint (_("file index out of range"));
21233 else
21234 symbol_set_symtab (sym, fe->symtab);
21235 }
21236
21237 switch (die->tag)
21238 {
21239 case DW_TAG_label:
21240 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21241 if (attr)
21242 {
21243 CORE_ADDR addr;
21244
21245 addr = attr_value_as_address (attr);
21246 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21247 SYMBOL_VALUE_ADDRESS (sym) = addr;
21248 }
21249 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21250 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21251 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21252 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21253 break;
21254 case DW_TAG_subprogram:
21255 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21256 finish_block. */
21257 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21258 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21259 if ((attr2 && (DW_UNSND (attr2) != 0))
21260 || cu->language == language_ada)
21261 {
21262 /* Subprograms marked external are stored as a global symbol.
21263 Ada subprograms, whether marked external or not, are always
21264 stored as a global symbol, because we want to be able to
21265 access them globally. For instance, we want to be able
21266 to break on a nested subprogram without having to
21267 specify the context. */
21268 list_to_add = cu->builder->get_global_symbols ();
21269 }
21270 else
21271 {
21272 list_to_add = cu->list_in_scope;
21273 }
21274 break;
21275 case DW_TAG_inlined_subroutine:
21276 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21277 finish_block. */
21278 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21279 SYMBOL_INLINED (sym) = 1;
21280 list_to_add = cu->list_in_scope;
21281 break;
21282 case DW_TAG_template_value_param:
21283 suppress_add = 1;
21284 /* Fall through. */
21285 case DW_TAG_constant:
21286 case DW_TAG_variable:
21287 case DW_TAG_member:
21288 /* Compilation with minimal debug info may result in
21289 variables with missing type entries. Change the
21290 misleading `void' type to something sensible. */
21291 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21292 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21293
21294 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21295 /* In the case of DW_TAG_member, we should only be called for
21296 static const members. */
21297 if (die->tag == DW_TAG_member)
21298 {
21299 /* dwarf2_add_field uses die_is_declaration,
21300 so we do the same. */
21301 gdb_assert (die_is_declaration (die, cu));
21302 gdb_assert (attr);
21303 }
21304 if (attr)
21305 {
21306 dwarf2_const_value (attr, sym, cu);
21307 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21308 if (!suppress_add)
21309 {
21310 if (attr2 && (DW_UNSND (attr2) != 0))
21311 list_to_add = cu->builder->get_global_symbols ();
21312 else
21313 list_to_add = cu->list_in_scope;
21314 }
21315 break;
21316 }
21317 attr = dwarf2_attr (die, DW_AT_location, cu);
21318 if (attr)
21319 {
21320 var_decode_location (attr, sym, cu);
21321 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21322
21323 /* Fortran explicitly imports any global symbols to the local
21324 scope by DW_TAG_common_block. */
21325 if (cu->language == language_fortran && die->parent
21326 && die->parent->tag == DW_TAG_common_block)
21327 attr2 = NULL;
21328
21329 if (SYMBOL_CLASS (sym) == LOC_STATIC
21330 && SYMBOL_VALUE_ADDRESS (sym) == 0
21331 && !dwarf2_per_objfile->has_section_at_zero)
21332 {
21333 /* When a static variable is eliminated by the linker,
21334 the corresponding debug information is not stripped
21335 out, but the variable address is set to null;
21336 do not add such variables into symbol table. */
21337 }
21338 else if (attr2 && (DW_UNSND (attr2) != 0))
21339 {
21340 /* Workaround gfortran PR debug/40040 - it uses
21341 DW_AT_location for variables in -fPIC libraries which may
21342 get overriden by other libraries/executable and get
21343 a different address. Resolve it by the minimal symbol
21344 which may come from inferior's executable using copy
21345 relocation. Make this workaround only for gfortran as for
21346 other compilers GDB cannot guess the minimal symbol
21347 Fortran mangling kind. */
21348 if (cu->language == language_fortran && die->parent
21349 && die->parent->tag == DW_TAG_module
21350 && cu->producer
21351 && startswith (cu->producer, "GNU Fortran"))
21352 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21353
21354 /* A variable with DW_AT_external is never static,
21355 but it may be block-scoped. */
21356 list_to_add
21357 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21358 ? cu->builder->get_global_symbols ()
21359 : cu->list_in_scope);
21360 }
21361 else
21362 list_to_add = cu->list_in_scope;
21363 }
21364 else
21365 {
21366 /* We do not know the address of this symbol.
21367 If it is an external symbol and we have type information
21368 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21369 The address of the variable will then be determined from
21370 the minimal symbol table whenever the variable is
21371 referenced. */
21372 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21373
21374 /* Fortran explicitly imports any global symbols to the local
21375 scope by DW_TAG_common_block. */
21376 if (cu->language == language_fortran && die->parent
21377 && die->parent->tag == DW_TAG_common_block)
21378 {
21379 /* SYMBOL_CLASS doesn't matter here because
21380 read_common_block is going to reset it. */
21381 if (!suppress_add)
21382 list_to_add = cu->list_in_scope;
21383 }
21384 else if (attr2 && (DW_UNSND (attr2) != 0)
21385 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21386 {
21387 /* A variable with DW_AT_external is never static, but it
21388 may be block-scoped. */
21389 list_to_add
21390 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21391 ? cu->builder->get_global_symbols ()
21392 : cu->list_in_scope);
21393
21394 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21395 }
21396 else if (!die_is_declaration (die, cu))
21397 {
21398 /* Use the default LOC_OPTIMIZED_OUT class. */
21399 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21400 if (!suppress_add)
21401 list_to_add = cu->list_in_scope;
21402 }
21403 }
21404 break;
21405 case DW_TAG_formal_parameter:
21406 {
21407 /* If we are inside a function, mark this as an argument. If
21408 not, we might be looking at an argument to an inlined function
21409 when we do not have enough information to show inlined frames;
21410 pretend it's a local variable in that case so that the user can
21411 still see it. */
21412 struct context_stack *curr
21413 = cu->builder->get_current_context_stack ();
21414 if (curr != nullptr && curr->name != nullptr)
21415 SYMBOL_IS_ARGUMENT (sym) = 1;
21416 attr = dwarf2_attr (die, DW_AT_location, cu);
21417 if (attr)
21418 {
21419 var_decode_location (attr, sym, cu);
21420 }
21421 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21422 if (attr)
21423 {
21424 dwarf2_const_value (attr, sym, cu);
21425 }
21426
21427 list_to_add = cu->list_in_scope;
21428 }
21429 break;
21430 case DW_TAG_unspecified_parameters:
21431 /* From varargs functions; gdb doesn't seem to have any
21432 interest in this information, so just ignore it for now.
21433 (FIXME?) */
21434 break;
21435 case DW_TAG_template_type_param:
21436 suppress_add = 1;
21437 /* Fall through. */
21438 case DW_TAG_class_type:
21439 case DW_TAG_interface_type:
21440 case DW_TAG_structure_type:
21441 case DW_TAG_union_type:
21442 case DW_TAG_set_type:
21443 case DW_TAG_enumeration_type:
21444 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21445 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21446
21447 {
21448 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21449 really ever be static objects: otherwise, if you try
21450 to, say, break of a class's method and you're in a file
21451 which doesn't mention that class, it won't work unless
21452 the check for all static symbols in lookup_symbol_aux
21453 saves you. See the OtherFileClass tests in
21454 gdb.c++/namespace.exp. */
21455
21456 if (!suppress_add)
21457 {
21458 list_to_add
21459 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21460 && cu->language == language_cplus
21461 ? cu->builder->get_global_symbols ()
21462 : cu->list_in_scope);
21463
21464 /* The semantics of C++ state that "struct foo {
21465 ... }" also defines a typedef for "foo". */
21466 if (cu->language == language_cplus
21467 || cu->language == language_ada
21468 || cu->language == language_d
21469 || cu->language == language_rust)
21470 {
21471 /* The symbol's name is already allocated along
21472 with this objfile, so we don't need to
21473 duplicate it for the type. */
21474 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21475 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21476 }
21477 }
21478 }
21479 break;
21480 case DW_TAG_typedef:
21481 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21482 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21483 list_to_add = cu->list_in_scope;
21484 break;
21485 case DW_TAG_base_type:
21486 case DW_TAG_subrange_type:
21487 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21488 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21489 list_to_add = cu->list_in_scope;
21490 break;
21491 case DW_TAG_enumerator:
21492 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21493 if (attr)
21494 {
21495 dwarf2_const_value (attr, sym, cu);
21496 }
21497 {
21498 /* NOTE: carlton/2003-11-10: See comment above in the
21499 DW_TAG_class_type, etc. block. */
21500
21501 list_to_add
21502 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21503 && cu->language == language_cplus
21504 ? cu->builder->get_global_symbols ()
21505 : cu->list_in_scope);
21506 }
21507 break;
21508 case DW_TAG_imported_declaration:
21509 case DW_TAG_namespace:
21510 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21511 list_to_add = cu->builder->get_global_symbols ();
21512 break;
21513 case DW_TAG_module:
21514 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21515 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21516 list_to_add = cu->builder->get_global_symbols ();
21517 break;
21518 case DW_TAG_common_block:
21519 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21520 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21521 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21522 break;
21523 default:
21524 /* Not a tag we recognize. Hopefully we aren't processing
21525 trash data, but since we must specifically ignore things
21526 we don't recognize, there is nothing else we should do at
21527 this point. */
21528 complaint (_("unsupported tag: '%s'"),
21529 dwarf_tag_name (die->tag));
21530 break;
21531 }
21532
21533 if (suppress_add)
21534 {
21535 sym->hash_next = objfile->template_symbols;
21536 objfile->template_symbols = sym;
21537 list_to_add = NULL;
21538 }
21539
21540 if (list_to_add != NULL)
21541 dw2_add_symbol_to_list (sym, list_to_add);
21542
21543 /* For the benefit of old versions of GCC, check for anonymous
21544 namespaces based on the demangled name. */
21545 if (!cu->processing_has_namespace_info
21546 && cu->language == language_cplus)
21547 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21548 }
21549 return (sym);
21550 }
21551
21552 /* Given an attr with a DW_FORM_dataN value in host byte order,
21553 zero-extend it as appropriate for the symbol's type. The DWARF
21554 standard (v4) is not entirely clear about the meaning of using
21555 DW_FORM_dataN for a constant with a signed type, where the type is
21556 wider than the data. The conclusion of a discussion on the DWARF
21557 list was that this is unspecified. We choose to always zero-extend
21558 because that is the interpretation long in use by GCC. */
21559
21560 static gdb_byte *
21561 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21562 struct dwarf2_cu *cu, LONGEST *value, int bits)
21563 {
21564 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21565 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21566 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21567 LONGEST l = DW_UNSND (attr);
21568
21569 if (bits < sizeof (*value) * 8)
21570 {
21571 l &= ((LONGEST) 1 << bits) - 1;
21572 *value = l;
21573 }
21574 else if (bits == sizeof (*value) * 8)
21575 *value = l;
21576 else
21577 {
21578 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21579 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21580 return bytes;
21581 }
21582
21583 return NULL;
21584 }
21585
21586 /* Read a constant value from an attribute. Either set *VALUE, or if
21587 the value does not fit in *VALUE, set *BYTES - either already
21588 allocated on the objfile obstack, or newly allocated on OBSTACK,
21589 or, set *BATON, if we translated the constant to a location
21590 expression. */
21591
21592 static void
21593 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21594 const char *name, struct obstack *obstack,
21595 struct dwarf2_cu *cu,
21596 LONGEST *value, const gdb_byte **bytes,
21597 struct dwarf2_locexpr_baton **baton)
21598 {
21599 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21600 struct comp_unit_head *cu_header = &cu->header;
21601 struct dwarf_block *blk;
21602 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21603 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21604
21605 *value = 0;
21606 *bytes = NULL;
21607 *baton = NULL;
21608
21609 switch (attr->form)
21610 {
21611 case DW_FORM_addr:
21612 case DW_FORM_GNU_addr_index:
21613 {
21614 gdb_byte *data;
21615
21616 if (TYPE_LENGTH (type) != cu_header->addr_size)
21617 dwarf2_const_value_length_mismatch_complaint (name,
21618 cu_header->addr_size,
21619 TYPE_LENGTH (type));
21620 /* Symbols of this form are reasonably rare, so we just
21621 piggyback on the existing location code rather than writing
21622 a new implementation of symbol_computed_ops. */
21623 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21624 (*baton)->per_cu = cu->per_cu;
21625 gdb_assert ((*baton)->per_cu);
21626
21627 (*baton)->size = 2 + cu_header->addr_size;
21628 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21629 (*baton)->data = data;
21630
21631 data[0] = DW_OP_addr;
21632 store_unsigned_integer (&data[1], cu_header->addr_size,
21633 byte_order, DW_ADDR (attr));
21634 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21635 }
21636 break;
21637 case DW_FORM_string:
21638 case DW_FORM_strp:
21639 case DW_FORM_GNU_str_index:
21640 case DW_FORM_GNU_strp_alt:
21641 /* DW_STRING is already allocated on the objfile obstack, point
21642 directly to it. */
21643 *bytes = (const gdb_byte *) DW_STRING (attr);
21644 break;
21645 case DW_FORM_block1:
21646 case DW_FORM_block2:
21647 case DW_FORM_block4:
21648 case DW_FORM_block:
21649 case DW_FORM_exprloc:
21650 case DW_FORM_data16:
21651 blk = DW_BLOCK (attr);
21652 if (TYPE_LENGTH (type) != blk->size)
21653 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21654 TYPE_LENGTH (type));
21655 *bytes = blk->data;
21656 break;
21657
21658 /* The DW_AT_const_value attributes are supposed to carry the
21659 symbol's value "represented as it would be on the target
21660 architecture." By the time we get here, it's already been
21661 converted to host endianness, so we just need to sign- or
21662 zero-extend it as appropriate. */
21663 case DW_FORM_data1:
21664 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21665 break;
21666 case DW_FORM_data2:
21667 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21668 break;
21669 case DW_FORM_data4:
21670 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21671 break;
21672 case DW_FORM_data8:
21673 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21674 break;
21675
21676 case DW_FORM_sdata:
21677 case DW_FORM_implicit_const:
21678 *value = DW_SND (attr);
21679 break;
21680
21681 case DW_FORM_udata:
21682 *value = DW_UNSND (attr);
21683 break;
21684
21685 default:
21686 complaint (_("unsupported const value attribute form: '%s'"),
21687 dwarf_form_name (attr->form));
21688 *value = 0;
21689 break;
21690 }
21691 }
21692
21693
21694 /* Copy constant value from an attribute to a symbol. */
21695
21696 static void
21697 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21698 struct dwarf2_cu *cu)
21699 {
21700 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21701 LONGEST value;
21702 const gdb_byte *bytes;
21703 struct dwarf2_locexpr_baton *baton;
21704
21705 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21706 SYMBOL_PRINT_NAME (sym),
21707 &objfile->objfile_obstack, cu,
21708 &value, &bytes, &baton);
21709
21710 if (baton != NULL)
21711 {
21712 SYMBOL_LOCATION_BATON (sym) = baton;
21713 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21714 }
21715 else if (bytes != NULL)
21716 {
21717 SYMBOL_VALUE_BYTES (sym) = bytes;
21718 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21719 }
21720 else
21721 {
21722 SYMBOL_VALUE (sym) = value;
21723 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21724 }
21725 }
21726
21727 /* Return the type of the die in question using its DW_AT_type attribute. */
21728
21729 static struct type *
21730 die_type (struct die_info *die, struct dwarf2_cu *cu)
21731 {
21732 struct attribute *type_attr;
21733
21734 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21735 if (!type_attr)
21736 {
21737 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21738 /* A missing DW_AT_type represents a void type. */
21739 return objfile_type (objfile)->builtin_void;
21740 }
21741
21742 return lookup_die_type (die, type_attr, cu);
21743 }
21744
21745 /* True iff CU's producer generates GNAT Ada auxiliary information
21746 that allows to find parallel types through that information instead
21747 of having to do expensive parallel lookups by type name. */
21748
21749 static int
21750 need_gnat_info (struct dwarf2_cu *cu)
21751 {
21752 /* Assume that the Ada compiler was GNAT, which always produces
21753 the auxiliary information. */
21754 return (cu->language == language_ada);
21755 }
21756
21757 /* Return the auxiliary type of the die in question using its
21758 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21759 attribute is not present. */
21760
21761 static struct type *
21762 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21763 {
21764 struct attribute *type_attr;
21765
21766 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21767 if (!type_attr)
21768 return NULL;
21769
21770 return lookup_die_type (die, type_attr, cu);
21771 }
21772
21773 /* If DIE has a descriptive_type attribute, then set the TYPE's
21774 descriptive type accordingly. */
21775
21776 static void
21777 set_descriptive_type (struct type *type, struct die_info *die,
21778 struct dwarf2_cu *cu)
21779 {
21780 struct type *descriptive_type = die_descriptive_type (die, cu);
21781
21782 if (descriptive_type)
21783 {
21784 ALLOCATE_GNAT_AUX_TYPE (type);
21785 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21786 }
21787 }
21788
21789 /* Return the containing type of the die in question using its
21790 DW_AT_containing_type attribute. */
21791
21792 static struct type *
21793 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21794 {
21795 struct attribute *type_attr;
21796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21797
21798 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21799 if (!type_attr)
21800 error (_("Dwarf Error: Problem turning containing type into gdb type "
21801 "[in module %s]"), objfile_name (objfile));
21802
21803 return lookup_die_type (die, type_attr, cu);
21804 }
21805
21806 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21807
21808 static struct type *
21809 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21810 {
21811 struct dwarf2_per_objfile *dwarf2_per_objfile
21812 = cu->per_cu->dwarf2_per_objfile;
21813 struct objfile *objfile = dwarf2_per_objfile->objfile;
21814 char *message, *saved;
21815
21816 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21817 objfile_name (objfile),
21818 sect_offset_str (cu->header.sect_off),
21819 sect_offset_str (die->sect_off));
21820 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21821 message, strlen (message));
21822 xfree (message);
21823
21824 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21825 }
21826
21827 /* Look up the type of DIE in CU using its type attribute ATTR.
21828 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21829 DW_AT_containing_type.
21830 If there is no type substitute an error marker. */
21831
21832 static struct type *
21833 lookup_die_type (struct die_info *die, const struct attribute *attr,
21834 struct dwarf2_cu *cu)
21835 {
21836 struct dwarf2_per_objfile *dwarf2_per_objfile
21837 = cu->per_cu->dwarf2_per_objfile;
21838 struct objfile *objfile = dwarf2_per_objfile->objfile;
21839 struct type *this_type;
21840
21841 gdb_assert (attr->name == DW_AT_type
21842 || attr->name == DW_AT_GNAT_descriptive_type
21843 || attr->name == DW_AT_containing_type);
21844
21845 /* First see if we have it cached. */
21846
21847 if (attr->form == DW_FORM_GNU_ref_alt)
21848 {
21849 struct dwarf2_per_cu_data *per_cu;
21850 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21851
21852 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21853 dwarf2_per_objfile);
21854 this_type = get_die_type_at_offset (sect_off, per_cu);
21855 }
21856 else if (attr_form_is_ref (attr))
21857 {
21858 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21859
21860 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21861 }
21862 else if (attr->form == DW_FORM_ref_sig8)
21863 {
21864 ULONGEST signature = DW_SIGNATURE (attr);
21865
21866 return get_signatured_type (die, signature, cu);
21867 }
21868 else
21869 {
21870 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21871 " at %s [in module %s]"),
21872 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21873 objfile_name (objfile));
21874 return build_error_marker_type (cu, die);
21875 }
21876
21877 /* If not cached we need to read it in. */
21878
21879 if (this_type == NULL)
21880 {
21881 struct die_info *type_die = NULL;
21882 struct dwarf2_cu *type_cu = cu;
21883
21884 if (attr_form_is_ref (attr))
21885 type_die = follow_die_ref (die, attr, &type_cu);
21886 if (type_die == NULL)
21887 return build_error_marker_type (cu, die);
21888 /* If we find the type now, it's probably because the type came
21889 from an inter-CU reference and the type's CU got expanded before
21890 ours. */
21891 this_type = read_type_die (type_die, type_cu);
21892 }
21893
21894 /* If we still don't have a type use an error marker. */
21895
21896 if (this_type == NULL)
21897 return build_error_marker_type (cu, die);
21898
21899 return this_type;
21900 }
21901
21902 /* Return the type in DIE, CU.
21903 Returns NULL for invalid types.
21904
21905 This first does a lookup in die_type_hash,
21906 and only reads the die in if necessary.
21907
21908 NOTE: This can be called when reading in partial or full symbols. */
21909
21910 static struct type *
21911 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21912 {
21913 struct type *this_type;
21914
21915 this_type = get_die_type (die, cu);
21916 if (this_type)
21917 return this_type;
21918
21919 return read_type_die_1 (die, cu);
21920 }
21921
21922 /* Read the type in DIE, CU.
21923 Returns NULL for invalid types. */
21924
21925 static struct type *
21926 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21927 {
21928 struct type *this_type = NULL;
21929
21930 switch (die->tag)
21931 {
21932 case DW_TAG_class_type:
21933 case DW_TAG_interface_type:
21934 case DW_TAG_structure_type:
21935 case DW_TAG_union_type:
21936 this_type = read_structure_type (die, cu);
21937 break;
21938 case DW_TAG_enumeration_type:
21939 this_type = read_enumeration_type (die, cu);
21940 break;
21941 case DW_TAG_subprogram:
21942 case DW_TAG_subroutine_type:
21943 case DW_TAG_inlined_subroutine:
21944 this_type = read_subroutine_type (die, cu);
21945 break;
21946 case DW_TAG_array_type:
21947 this_type = read_array_type (die, cu);
21948 break;
21949 case DW_TAG_set_type:
21950 this_type = read_set_type (die, cu);
21951 break;
21952 case DW_TAG_pointer_type:
21953 this_type = read_tag_pointer_type (die, cu);
21954 break;
21955 case DW_TAG_ptr_to_member_type:
21956 this_type = read_tag_ptr_to_member_type (die, cu);
21957 break;
21958 case DW_TAG_reference_type:
21959 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21960 break;
21961 case DW_TAG_rvalue_reference_type:
21962 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21963 break;
21964 case DW_TAG_const_type:
21965 this_type = read_tag_const_type (die, cu);
21966 break;
21967 case DW_TAG_volatile_type:
21968 this_type = read_tag_volatile_type (die, cu);
21969 break;
21970 case DW_TAG_restrict_type:
21971 this_type = read_tag_restrict_type (die, cu);
21972 break;
21973 case DW_TAG_string_type:
21974 this_type = read_tag_string_type (die, cu);
21975 break;
21976 case DW_TAG_typedef:
21977 this_type = read_typedef (die, cu);
21978 break;
21979 case DW_TAG_subrange_type:
21980 this_type = read_subrange_type (die, cu);
21981 break;
21982 case DW_TAG_base_type:
21983 this_type = read_base_type (die, cu);
21984 break;
21985 case DW_TAG_unspecified_type:
21986 this_type = read_unspecified_type (die, cu);
21987 break;
21988 case DW_TAG_namespace:
21989 this_type = read_namespace_type (die, cu);
21990 break;
21991 case DW_TAG_module:
21992 this_type = read_module_type (die, cu);
21993 break;
21994 case DW_TAG_atomic_type:
21995 this_type = read_tag_atomic_type (die, cu);
21996 break;
21997 default:
21998 complaint (_("unexpected tag in read_type_die: '%s'"),
21999 dwarf_tag_name (die->tag));
22000 break;
22001 }
22002
22003 return this_type;
22004 }
22005
22006 /* See if we can figure out if the class lives in a namespace. We do
22007 this by looking for a member function; its demangled name will
22008 contain namespace info, if there is any.
22009 Return the computed name or NULL.
22010 Space for the result is allocated on the objfile's obstack.
22011 This is the full-die version of guess_partial_die_structure_name.
22012 In this case we know DIE has no useful parent. */
22013
22014 static char *
22015 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22016 {
22017 struct die_info *spec_die;
22018 struct dwarf2_cu *spec_cu;
22019 struct die_info *child;
22020 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22021
22022 spec_cu = cu;
22023 spec_die = die_specification (die, &spec_cu);
22024 if (spec_die != NULL)
22025 {
22026 die = spec_die;
22027 cu = spec_cu;
22028 }
22029
22030 for (child = die->child;
22031 child != NULL;
22032 child = child->sibling)
22033 {
22034 if (child->tag == DW_TAG_subprogram)
22035 {
22036 const char *linkage_name = dw2_linkage_name (child, cu);
22037
22038 if (linkage_name != NULL)
22039 {
22040 char *actual_name
22041 = language_class_name_from_physname (cu->language_defn,
22042 linkage_name);
22043 char *name = NULL;
22044
22045 if (actual_name != NULL)
22046 {
22047 const char *die_name = dwarf2_name (die, cu);
22048
22049 if (die_name != NULL
22050 && strcmp (die_name, actual_name) != 0)
22051 {
22052 /* Strip off the class name from the full name.
22053 We want the prefix. */
22054 int die_name_len = strlen (die_name);
22055 int actual_name_len = strlen (actual_name);
22056
22057 /* Test for '::' as a sanity check. */
22058 if (actual_name_len > die_name_len + 2
22059 && actual_name[actual_name_len
22060 - die_name_len - 1] == ':')
22061 name = (char *) obstack_copy0 (
22062 &objfile->per_bfd->storage_obstack,
22063 actual_name, actual_name_len - die_name_len - 2);
22064 }
22065 }
22066 xfree (actual_name);
22067 return name;
22068 }
22069 }
22070 }
22071
22072 return NULL;
22073 }
22074
22075 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22076 prefix part in such case. See
22077 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22078
22079 static const char *
22080 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22081 {
22082 struct attribute *attr;
22083 const char *base;
22084
22085 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22086 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22087 return NULL;
22088
22089 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22090 return NULL;
22091
22092 attr = dw2_linkage_name_attr (die, cu);
22093 if (attr == NULL || DW_STRING (attr) == NULL)
22094 return NULL;
22095
22096 /* dwarf2_name had to be already called. */
22097 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22098
22099 /* Strip the base name, keep any leading namespaces/classes. */
22100 base = strrchr (DW_STRING (attr), ':');
22101 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22102 return "";
22103
22104 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22105 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22106 DW_STRING (attr),
22107 &base[-1] - DW_STRING (attr));
22108 }
22109
22110 /* Return the name of the namespace/class that DIE is defined within,
22111 or "" if we can't tell. The caller should not xfree the result.
22112
22113 For example, if we're within the method foo() in the following
22114 code:
22115
22116 namespace N {
22117 class C {
22118 void foo () {
22119 }
22120 };
22121 }
22122
22123 then determine_prefix on foo's die will return "N::C". */
22124
22125 static const char *
22126 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22127 {
22128 struct dwarf2_per_objfile *dwarf2_per_objfile
22129 = cu->per_cu->dwarf2_per_objfile;
22130 struct die_info *parent, *spec_die;
22131 struct dwarf2_cu *spec_cu;
22132 struct type *parent_type;
22133 const char *retval;
22134
22135 if (cu->language != language_cplus
22136 && cu->language != language_fortran && cu->language != language_d
22137 && cu->language != language_rust)
22138 return "";
22139
22140 retval = anonymous_struct_prefix (die, cu);
22141 if (retval)
22142 return retval;
22143
22144 /* We have to be careful in the presence of DW_AT_specification.
22145 For example, with GCC 3.4, given the code
22146
22147 namespace N {
22148 void foo() {
22149 // Definition of N::foo.
22150 }
22151 }
22152
22153 then we'll have a tree of DIEs like this:
22154
22155 1: DW_TAG_compile_unit
22156 2: DW_TAG_namespace // N
22157 3: DW_TAG_subprogram // declaration of N::foo
22158 4: DW_TAG_subprogram // definition of N::foo
22159 DW_AT_specification // refers to die #3
22160
22161 Thus, when processing die #4, we have to pretend that we're in
22162 the context of its DW_AT_specification, namely the contex of die
22163 #3. */
22164 spec_cu = cu;
22165 spec_die = die_specification (die, &spec_cu);
22166 if (spec_die == NULL)
22167 parent = die->parent;
22168 else
22169 {
22170 parent = spec_die->parent;
22171 cu = spec_cu;
22172 }
22173
22174 if (parent == NULL)
22175 return "";
22176 else if (parent->building_fullname)
22177 {
22178 const char *name;
22179 const char *parent_name;
22180
22181 /* It has been seen on RealView 2.2 built binaries,
22182 DW_TAG_template_type_param types actually _defined_ as
22183 children of the parent class:
22184
22185 enum E {};
22186 template class <class Enum> Class{};
22187 Class<enum E> class_e;
22188
22189 1: DW_TAG_class_type (Class)
22190 2: DW_TAG_enumeration_type (E)
22191 3: DW_TAG_enumerator (enum1:0)
22192 3: DW_TAG_enumerator (enum2:1)
22193 ...
22194 2: DW_TAG_template_type_param
22195 DW_AT_type DW_FORM_ref_udata (E)
22196
22197 Besides being broken debug info, it can put GDB into an
22198 infinite loop. Consider:
22199
22200 When we're building the full name for Class<E>, we'll start
22201 at Class, and go look over its template type parameters,
22202 finding E. We'll then try to build the full name of E, and
22203 reach here. We're now trying to build the full name of E,
22204 and look over the parent DIE for containing scope. In the
22205 broken case, if we followed the parent DIE of E, we'd again
22206 find Class, and once again go look at its template type
22207 arguments, etc., etc. Simply don't consider such parent die
22208 as source-level parent of this die (it can't be, the language
22209 doesn't allow it), and break the loop here. */
22210 name = dwarf2_name (die, cu);
22211 parent_name = dwarf2_name (parent, cu);
22212 complaint (_("template param type '%s' defined within parent '%s'"),
22213 name ? name : "<unknown>",
22214 parent_name ? parent_name : "<unknown>");
22215 return "";
22216 }
22217 else
22218 switch (parent->tag)
22219 {
22220 case DW_TAG_namespace:
22221 parent_type = read_type_die (parent, cu);
22222 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22223 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22224 Work around this problem here. */
22225 if (cu->language == language_cplus
22226 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22227 return "";
22228 /* We give a name to even anonymous namespaces. */
22229 return TYPE_NAME (parent_type);
22230 case DW_TAG_class_type:
22231 case DW_TAG_interface_type:
22232 case DW_TAG_structure_type:
22233 case DW_TAG_union_type:
22234 case DW_TAG_module:
22235 parent_type = read_type_die (parent, cu);
22236 if (TYPE_NAME (parent_type) != NULL)
22237 return TYPE_NAME (parent_type);
22238 else
22239 /* An anonymous structure is only allowed non-static data
22240 members; no typedefs, no member functions, et cetera.
22241 So it does not need a prefix. */
22242 return "";
22243 case DW_TAG_compile_unit:
22244 case DW_TAG_partial_unit:
22245 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22246 if (cu->language == language_cplus
22247 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22248 && die->child != NULL
22249 && (die->tag == DW_TAG_class_type
22250 || die->tag == DW_TAG_structure_type
22251 || die->tag == DW_TAG_union_type))
22252 {
22253 char *name = guess_full_die_structure_name (die, cu);
22254 if (name != NULL)
22255 return name;
22256 }
22257 return "";
22258 case DW_TAG_enumeration_type:
22259 parent_type = read_type_die (parent, cu);
22260 if (TYPE_DECLARED_CLASS (parent_type))
22261 {
22262 if (TYPE_NAME (parent_type) != NULL)
22263 return TYPE_NAME (parent_type);
22264 return "";
22265 }
22266 /* Fall through. */
22267 default:
22268 return determine_prefix (parent, cu);
22269 }
22270 }
22271
22272 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22273 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22274 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22275 an obconcat, otherwise allocate storage for the result. The CU argument is
22276 used to determine the language and hence, the appropriate separator. */
22277
22278 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22279
22280 static char *
22281 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22282 int physname, struct dwarf2_cu *cu)
22283 {
22284 const char *lead = "";
22285 const char *sep;
22286
22287 if (suffix == NULL || suffix[0] == '\0'
22288 || prefix == NULL || prefix[0] == '\0')
22289 sep = "";
22290 else if (cu->language == language_d)
22291 {
22292 /* For D, the 'main' function could be defined in any module, but it
22293 should never be prefixed. */
22294 if (strcmp (suffix, "D main") == 0)
22295 {
22296 prefix = "";
22297 sep = "";
22298 }
22299 else
22300 sep = ".";
22301 }
22302 else if (cu->language == language_fortran && physname)
22303 {
22304 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22305 DW_AT_MIPS_linkage_name is preferred and used instead. */
22306
22307 lead = "__";
22308 sep = "_MOD_";
22309 }
22310 else
22311 sep = "::";
22312
22313 if (prefix == NULL)
22314 prefix = "";
22315 if (suffix == NULL)
22316 suffix = "";
22317
22318 if (obs == NULL)
22319 {
22320 char *retval
22321 = ((char *)
22322 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22323
22324 strcpy (retval, lead);
22325 strcat (retval, prefix);
22326 strcat (retval, sep);
22327 strcat (retval, suffix);
22328 return retval;
22329 }
22330 else
22331 {
22332 /* We have an obstack. */
22333 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22334 }
22335 }
22336
22337 /* Return sibling of die, NULL if no sibling. */
22338
22339 static struct die_info *
22340 sibling_die (struct die_info *die)
22341 {
22342 return die->sibling;
22343 }
22344
22345 /* Get name of a die, return NULL if not found. */
22346
22347 static const char *
22348 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22349 struct obstack *obstack)
22350 {
22351 if (name && cu->language == language_cplus)
22352 {
22353 std::string canon_name = cp_canonicalize_string (name);
22354
22355 if (!canon_name.empty ())
22356 {
22357 if (canon_name != name)
22358 name = (const char *) obstack_copy0 (obstack,
22359 canon_name.c_str (),
22360 canon_name.length ());
22361 }
22362 }
22363
22364 return name;
22365 }
22366
22367 /* Get name of a die, return NULL if not found.
22368 Anonymous namespaces are converted to their magic string. */
22369
22370 static const char *
22371 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22372 {
22373 struct attribute *attr;
22374 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22375
22376 attr = dwarf2_attr (die, DW_AT_name, cu);
22377 if ((!attr || !DW_STRING (attr))
22378 && die->tag != DW_TAG_namespace
22379 && die->tag != DW_TAG_class_type
22380 && die->tag != DW_TAG_interface_type
22381 && die->tag != DW_TAG_structure_type
22382 && die->tag != DW_TAG_union_type)
22383 return NULL;
22384
22385 switch (die->tag)
22386 {
22387 case DW_TAG_compile_unit:
22388 case DW_TAG_partial_unit:
22389 /* Compilation units have a DW_AT_name that is a filename, not
22390 a source language identifier. */
22391 case DW_TAG_enumeration_type:
22392 case DW_TAG_enumerator:
22393 /* These tags always have simple identifiers already; no need
22394 to canonicalize them. */
22395 return DW_STRING (attr);
22396
22397 case DW_TAG_namespace:
22398 if (attr != NULL && DW_STRING (attr) != NULL)
22399 return DW_STRING (attr);
22400 return CP_ANONYMOUS_NAMESPACE_STR;
22401
22402 case DW_TAG_class_type:
22403 case DW_TAG_interface_type:
22404 case DW_TAG_structure_type:
22405 case DW_TAG_union_type:
22406 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22407 structures or unions. These were of the form "._%d" in GCC 4.1,
22408 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22409 and GCC 4.4. We work around this problem by ignoring these. */
22410 if (attr && DW_STRING (attr)
22411 && (startswith (DW_STRING (attr), "._")
22412 || startswith (DW_STRING (attr), "<anonymous")))
22413 return NULL;
22414
22415 /* GCC might emit a nameless typedef that has a linkage name. See
22416 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22417 if (!attr || DW_STRING (attr) == NULL)
22418 {
22419 char *demangled = NULL;
22420
22421 attr = dw2_linkage_name_attr (die, cu);
22422 if (attr == NULL || DW_STRING (attr) == NULL)
22423 return NULL;
22424
22425 /* Avoid demangling DW_STRING (attr) the second time on a second
22426 call for the same DIE. */
22427 if (!DW_STRING_IS_CANONICAL (attr))
22428 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22429
22430 if (demangled)
22431 {
22432 const char *base;
22433
22434 /* FIXME: we already did this for the partial symbol... */
22435 DW_STRING (attr)
22436 = ((const char *)
22437 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22438 demangled, strlen (demangled)));
22439 DW_STRING_IS_CANONICAL (attr) = 1;
22440 xfree (demangled);
22441
22442 /* Strip any leading namespaces/classes, keep only the base name.
22443 DW_AT_name for named DIEs does not contain the prefixes. */
22444 base = strrchr (DW_STRING (attr), ':');
22445 if (base && base > DW_STRING (attr) && base[-1] == ':')
22446 return &base[1];
22447 else
22448 return DW_STRING (attr);
22449 }
22450 }
22451 break;
22452
22453 default:
22454 break;
22455 }
22456
22457 if (!DW_STRING_IS_CANONICAL (attr))
22458 {
22459 DW_STRING (attr)
22460 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22461 &objfile->per_bfd->storage_obstack);
22462 DW_STRING_IS_CANONICAL (attr) = 1;
22463 }
22464 return DW_STRING (attr);
22465 }
22466
22467 /* Return the die that this die in an extension of, or NULL if there
22468 is none. *EXT_CU is the CU containing DIE on input, and the CU
22469 containing the return value on output. */
22470
22471 static struct die_info *
22472 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22473 {
22474 struct attribute *attr;
22475
22476 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22477 if (attr == NULL)
22478 return NULL;
22479
22480 return follow_die_ref (die, attr, ext_cu);
22481 }
22482
22483 /* Convert a DIE tag into its string name. */
22484
22485 static const char *
22486 dwarf_tag_name (unsigned tag)
22487 {
22488 const char *name = get_DW_TAG_name (tag);
22489
22490 if (name == NULL)
22491 return "DW_TAG_<unknown>";
22492
22493 return name;
22494 }
22495
22496 /* Convert a DWARF attribute code into its string name. */
22497
22498 static const char *
22499 dwarf_attr_name (unsigned attr)
22500 {
22501 const char *name;
22502
22503 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22504 if (attr == DW_AT_MIPS_fde)
22505 return "DW_AT_MIPS_fde";
22506 #else
22507 if (attr == DW_AT_HP_block_index)
22508 return "DW_AT_HP_block_index";
22509 #endif
22510
22511 name = get_DW_AT_name (attr);
22512
22513 if (name == NULL)
22514 return "DW_AT_<unknown>";
22515
22516 return name;
22517 }
22518
22519 /* Convert a DWARF value form code into its string name. */
22520
22521 static const char *
22522 dwarf_form_name (unsigned form)
22523 {
22524 const char *name = get_DW_FORM_name (form);
22525
22526 if (name == NULL)
22527 return "DW_FORM_<unknown>";
22528
22529 return name;
22530 }
22531
22532 static const char *
22533 dwarf_bool_name (unsigned mybool)
22534 {
22535 if (mybool)
22536 return "TRUE";
22537 else
22538 return "FALSE";
22539 }
22540
22541 /* Convert a DWARF type code into its string name. */
22542
22543 static const char *
22544 dwarf_type_encoding_name (unsigned enc)
22545 {
22546 const char *name = get_DW_ATE_name (enc);
22547
22548 if (name == NULL)
22549 return "DW_ATE_<unknown>";
22550
22551 return name;
22552 }
22553
22554 static void
22555 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22556 {
22557 unsigned int i;
22558
22559 print_spaces (indent, f);
22560 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22561 dwarf_tag_name (die->tag), die->abbrev,
22562 sect_offset_str (die->sect_off));
22563
22564 if (die->parent != NULL)
22565 {
22566 print_spaces (indent, f);
22567 fprintf_unfiltered (f, " parent at offset: %s\n",
22568 sect_offset_str (die->parent->sect_off));
22569 }
22570
22571 print_spaces (indent, f);
22572 fprintf_unfiltered (f, " has children: %s\n",
22573 dwarf_bool_name (die->child != NULL));
22574
22575 print_spaces (indent, f);
22576 fprintf_unfiltered (f, " attributes:\n");
22577
22578 for (i = 0; i < die->num_attrs; ++i)
22579 {
22580 print_spaces (indent, f);
22581 fprintf_unfiltered (f, " %s (%s) ",
22582 dwarf_attr_name (die->attrs[i].name),
22583 dwarf_form_name (die->attrs[i].form));
22584
22585 switch (die->attrs[i].form)
22586 {
22587 case DW_FORM_addr:
22588 case DW_FORM_GNU_addr_index:
22589 fprintf_unfiltered (f, "address: ");
22590 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22591 break;
22592 case DW_FORM_block2:
22593 case DW_FORM_block4:
22594 case DW_FORM_block:
22595 case DW_FORM_block1:
22596 fprintf_unfiltered (f, "block: size %s",
22597 pulongest (DW_BLOCK (&die->attrs[i])->size));
22598 break;
22599 case DW_FORM_exprloc:
22600 fprintf_unfiltered (f, "expression: size %s",
22601 pulongest (DW_BLOCK (&die->attrs[i])->size));
22602 break;
22603 case DW_FORM_data16:
22604 fprintf_unfiltered (f, "constant of 16 bytes");
22605 break;
22606 case DW_FORM_ref_addr:
22607 fprintf_unfiltered (f, "ref address: ");
22608 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22609 break;
22610 case DW_FORM_GNU_ref_alt:
22611 fprintf_unfiltered (f, "alt ref address: ");
22612 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22613 break;
22614 case DW_FORM_ref1:
22615 case DW_FORM_ref2:
22616 case DW_FORM_ref4:
22617 case DW_FORM_ref8:
22618 case DW_FORM_ref_udata:
22619 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22620 (long) (DW_UNSND (&die->attrs[i])));
22621 break;
22622 case DW_FORM_data1:
22623 case DW_FORM_data2:
22624 case DW_FORM_data4:
22625 case DW_FORM_data8:
22626 case DW_FORM_udata:
22627 case DW_FORM_sdata:
22628 fprintf_unfiltered (f, "constant: %s",
22629 pulongest (DW_UNSND (&die->attrs[i])));
22630 break;
22631 case DW_FORM_sec_offset:
22632 fprintf_unfiltered (f, "section offset: %s",
22633 pulongest (DW_UNSND (&die->attrs[i])));
22634 break;
22635 case DW_FORM_ref_sig8:
22636 fprintf_unfiltered (f, "signature: %s",
22637 hex_string (DW_SIGNATURE (&die->attrs[i])));
22638 break;
22639 case DW_FORM_string:
22640 case DW_FORM_strp:
22641 case DW_FORM_line_strp:
22642 case DW_FORM_GNU_str_index:
22643 case DW_FORM_GNU_strp_alt:
22644 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22645 DW_STRING (&die->attrs[i])
22646 ? DW_STRING (&die->attrs[i]) : "",
22647 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22648 break;
22649 case DW_FORM_flag:
22650 if (DW_UNSND (&die->attrs[i]))
22651 fprintf_unfiltered (f, "flag: TRUE");
22652 else
22653 fprintf_unfiltered (f, "flag: FALSE");
22654 break;
22655 case DW_FORM_flag_present:
22656 fprintf_unfiltered (f, "flag: TRUE");
22657 break;
22658 case DW_FORM_indirect:
22659 /* The reader will have reduced the indirect form to
22660 the "base form" so this form should not occur. */
22661 fprintf_unfiltered (f,
22662 "unexpected attribute form: DW_FORM_indirect");
22663 break;
22664 case DW_FORM_implicit_const:
22665 fprintf_unfiltered (f, "constant: %s",
22666 plongest (DW_SND (&die->attrs[i])));
22667 break;
22668 default:
22669 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22670 die->attrs[i].form);
22671 break;
22672 }
22673 fprintf_unfiltered (f, "\n");
22674 }
22675 }
22676
22677 static void
22678 dump_die_for_error (struct die_info *die)
22679 {
22680 dump_die_shallow (gdb_stderr, 0, die);
22681 }
22682
22683 static void
22684 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22685 {
22686 int indent = level * 4;
22687
22688 gdb_assert (die != NULL);
22689
22690 if (level >= max_level)
22691 return;
22692
22693 dump_die_shallow (f, indent, die);
22694
22695 if (die->child != NULL)
22696 {
22697 print_spaces (indent, f);
22698 fprintf_unfiltered (f, " Children:");
22699 if (level + 1 < max_level)
22700 {
22701 fprintf_unfiltered (f, "\n");
22702 dump_die_1 (f, level + 1, max_level, die->child);
22703 }
22704 else
22705 {
22706 fprintf_unfiltered (f,
22707 " [not printed, max nesting level reached]\n");
22708 }
22709 }
22710
22711 if (die->sibling != NULL && level > 0)
22712 {
22713 dump_die_1 (f, level, max_level, die->sibling);
22714 }
22715 }
22716
22717 /* This is called from the pdie macro in gdbinit.in.
22718 It's not static so gcc will keep a copy callable from gdb. */
22719
22720 void
22721 dump_die (struct die_info *die, int max_level)
22722 {
22723 dump_die_1 (gdb_stdlog, 0, max_level, die);
22724 }
22725
22726 static void
22727 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22728 {
22729 void **slot;
22730
22731 slot = htab_find_slot_with_hash (cu->die_hash, die,
22732 to_underlying (die->sect_off),
22733 INSERT);
22734
22735 *slot = die;
22736 }
22737
22738 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22739 required kind. */
22740
22741 static sect_offset
22742 dwarf2_get_ref_die_offset (const struct attribute *attr)
22743 {
22744 if (attr_form_is_ref (attr))
22745 return (sect_offset) DW_UNSND (attr);
22746
22747 complaint (_("unsupported die ref attribute form: '%s'"),
22748 dwarf_form_name (attr->form));
22749 return {};
22750 }
22751
22752 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22753 * the value held by the attribute is not constant. */
22754
22755 static LONGEST
22756 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22757 {
22758 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22759 return DW_SND (attr);
22760 else if (attr->form == DW_FORM_udata
22761 || attr->form == DW_FORM_data1
22762 || attr->form == DW_FORM_data2
22763 || attr->form == DW_FORM_data4
22764 || attr->form == DW_FORM_data8)
22765 return DW_UNSND (attr);
22766 else
22767 {
22768 /* For DW_FORM_data16 see attr_form_is_constant. */
22769 complaint (_("Attribute value is not a constant (%s)"),
22770 dwarf_form_name (attr->form));
22771 return default_value;
22772 }
22773 }
22774
22775 /* Follow reference or signature attribute ATTR of SRC_DIE.
22776 On entry *REF_CU is the CU of SRC_DIE.
22777 On exit *REF_CU is the CU of the result. */
22778
22779 static struct die_info *
22780 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22781 struct dwarf2_cu **ref_cu)
22782 {
22783 struct die_info *die;
22784
22785 if (attr_form_is_ref (attr))
22786 die = follow_die_ref (src_die, attr, ref_cu);
22787 else if (attr->form == DW_FORM_ref_sig8)
22788 die = follow_die_sig (src_die, attr, ref_cu);
22789 else
22790 {
22791 dump_die_for_error (src_die);
22792 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22793 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22794 }
22795
22796 return die;
22797 }
22798
22799 /* Follow reference OFFSET.
22800 On entry *REF_CU is the CU of the source die referencing OFFSET.
22801 On exit *REF_CU is the CU of the result.
22802 Returns NULL if OFFSET is invalid. */
22803
22804 static struct die_info *
22805 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22806 struct dwarf2_cu **ref_cu)
22807 {
22808 struct die_info temp_die;
22809 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22810 struct dwarf2_per_objfile *dwarf2_per_objfile
22811 = cu->per_cu->dwarf2_per_objfile;
22812
22813 gdb_assert (cu->per_cu != NULL);
22814
22815 target_cu = cu;
22816
22817 if (cu->per_cu->is_debug_types)
22818 {
22819 /* .debug_types CUs cannot reference anything outside their CU.
22820 If they need to, they have to reference a signatured type via
22821 DW_FORM_ref_sig8. */
22822 if (!offset_in_cu_p (&cu->header, sect_off))
22823 return NULL;
22824 }
22825 else if (offset_in_dwz != cu->per_cu->is_dwz
22826 || !offset_in_cu_p (&cu->header, sect_off))
22827 {
22828 struct dwarf2_per_cu_data *per_cu;
22829
22830 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22831 dwarf2_per_objfile);
22832
22833 /* If necessary, add it to the queue and load its DIEs. */
22834 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22835 load_full_comp_unit (per_cu, false, cu->language);
22836
22837 target_cu = per_cu->cu;
22838 }
22839 else if (cu->dies == NULL)
22840 {
22841 /* We're loading full DIEs during partial symbol reading. */
22842 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22843 load_full_comp_unit (cu->per_cu, false, language_minimal);
22844 }
22845
22846 *ref_cu = target_cu;
22847 temp_die.sect_off = sect_off;
22848 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22849 &temp_die,
22850 to_underlying (sect_off));
22851 }
22852
22853 /* Follow reference attribute ATTR of SRC_DIE.
22854 On entry *REF_CU is the CU of SRC_DIE.
22855 On exit *REF_CU is the CU of the result. */
22856
22857 static struct die_info *
22858 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22859 struct dwarf2_cu **ref_cu)
22860 {
22861 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22862 struct dwarf2_cu *cu = *ref_cu;
22863 struct die_info *die;
22864
22865 die = follow_die_offset (sect_off,
22866 (attr->form == DW_FORM_GNU_ref_alt
22867 || cu->per_cu->is_dwz),
22868 ref_cu);
22869 if (!die)
22870 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22871 "at %s [in module %s]"),
22872 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22873 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22874
22875 return die;
22876 }
22877
22878 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22879 Returned value is intended for DW_OP_call*. Returned
22880 dwarf2_locexpr_baton->data has lifetime of
22881 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22882
22883 struct dwarf2_locexpr_baton
22884 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22885 struct dwarf2_per_cu_data *per_cu,
22886 CORE_ADDR (*get_frame_pc) (void *baton),
22887 void *baton)
22888 {
22889 struct dwarf2_cu *cu;
22890 struct die_info *die;
22891 struct attribute *attr;
22892 struct dwarf2_locexpr_baton retval;
22893 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22894 struct objfile *objfile = dwarf2_per_objfile->objfile;
22895
22896 if (per_cu->cu == NULL)
22897 load_cu (per_cu, false);
22898 cu = per_cu->cu;
22899 if (cu == NULL)
22900 {
22901 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22902 Instead just throw an error, not much else we can do. */
22903 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22904 sect_offset_str (sect_off), objfile_name (objfile));
22905 }
22906
22907 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22908 if (!die)
22909 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22910 sect_offset_str (sect_off), objfile_name (objfile));
22911
22912 attr = dwarf2_attr (die, DW_AT_location, cu);
22913 if (!attr)
22914 {
22915 /* DWARF: "If there is no such attribute, then there is no effect.".
22916 DATA is ignored if SIZE is 0. */
22917
22918 retval.data = NULL;
22919 retval.size = 0;
22920 }
22921 else if (attr_form_is_section_offset (attr))
22922 {
22923 struct dwarf2_loclist_baton loclist_baton;
22924 CORE_ADDR pc = (*get_frame_pc) (baton);
22925 size_t size;
22926
22927 fill_in_loclist_baton (cu, &loclist_baton, attr);
22928
22929 retval.data = dwarf2_find_location_expression (&loclist_baton,
22930 &size, pc);
22931 retval.size = size;
22932 }
22933 else
22934 {
22935 if (!attr_form_is_block (attr))
22936 error (_("Dwarf Error: DIE at %s referenced in module %s "
22937 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22938 sect_offset_str (sect_off), objfile_name (objfile));
22939
22940 retval.data = DW_BLOCK (attr)->data;
22941 retval.size = DW_BLOCK (attr)->size;
22942 }
22943 retval.per_cu = cu->per_cu;
22944
22945 age_cached_comp_units (dwarf2_per_objfile);
22946
22947 return retval;
22948 }
22949
22950 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22951 offset. */
22952
22953 struct dwarf2_locexpr_baton
22954 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22955 struct dwarf2_per_cu_data *per_cu,
22956 CORE_ADDR (*get_frame_pc) (void *baton),
22957 void *baton)
22958 {
22959 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22960
22961 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22962 }
22963
22964 /* Write a constant of a given type as target-ordered bytes into
22965 OBSTACK. */
22966
22967 static const gdb_byte *
22968 write_constant_as_bytes (struct obstack *obstack,
22969 enum bfd_endian byte_order,
22970 struct type *type,
22971 ULONGEST value,
22972 LONGEST *len)
22973 {
22974 gdb_byte *result;
22975
22976 *len = TYPE_LENGTH (type);
22977 result = (gdb_byte *) obstack_alloc (obstack, *len);
22978 store_unsigned_integer (result, *len, byte_order, value);
22979
22980 return result;
22981 }
22982
22983 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22984 pointer to the constant bytes and set LEN to the length of the
22985 data. If memory is needed, allocate it on OBSTACK. If the DIE
22986 does not have a DW_AT_const_value, return NULL. */
22987
22988 const gdb_byte *
22989 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22990 struct dwarf2_per_cu_data *per_cu,
22991 struct obstack *obstack,
22992 LONGEST *len)
22993 {
22994 struct dwarf2_cu *cu;
22995 struct die_info *die;
22996 struct attribute *attr;
22997 const gdb_byte *result = NULL;
22998 struct type *type;
22999 LONGEST value;
23000 enum bfd_endian byte_order;
23001 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23002
23003 if (per_cu->cu == NULL)
23004 load_cu (per_cu, false);
23005 cu = per_cu->cu;
23006 if (cu == NULL)
23007 {
23008 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23009 Instead just throw an error, not much else we can do. */
23010 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23011 sect_offset_str (sect_off), objfile_name (objfile));
23012 }
23013
23014 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23015 if (!die)
23016 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23017 sect_offset_str (sect_off), objfile_name (objfile));
23018
23019 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23020 if (attr == NULL)
23021 return NULL;
23022
23023 byte_order = (bfd_big_endian (objfile->obfd)
23024 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23025
23026 switch (attr->form)
23027 {
23028 case DW_FORM_addr:
23029 case DW_FORM_GNU_addr_index:
23030 {
23031 gdb_byte *tem;
23032
23033 *len = cu->header.addr_size;
23034 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23035 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23036 result = tem;
23037 }
23038 break;
23039 case DW_FORM_string:
23040 case DW_FORM_strp:
23041 case DW_FORM_GNU_str_index:
23042 case DW_FORM_GNU_strp_alt:
23043 /* DW_STRING is already allocated on the objfile obstack, point
23044 directly to it. */
23045 result = (const gdb_byte *) DW_STRING (attr);
23046 *len = strlen (DW_STRING (attr));
23047 break;
23048 case DW_FORM_block1:
23049 case DW_FORM_block2:
23050 case DW_FORM_block4:
23051 case DW_FORM_block:
23052 case DW_FORM_exprloc:
23053 case DW_FORM_data16:
23054 result = DW_BLOCK (attr)->data;
23055 *len = DW_BLOCK (attr)->size;
23056 break;
23057
23058 /* The DW_AT_const_value attributes are supposed to carry the
23059 symbol's value "represented as it would be on the target
23060 architecture." By the time we get here, it's already been
23061 converted to host endianness, so we just need to sign- or
23062 zero-extend it as appropriate. */
23063 case DW_FORM_data1:
23064 type = die_type (die, cu);
23065 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23066 if (result == NULL)
23067 result = write_constant_as_bytes (obstack, byte_order,
23068 type, value, len);
23069 break;
23070 case DW_FORM_data2:
23071 type = die_type (die, cu);
23072 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23073 if (result == NULL)
23074 result = write_constant_as_bytes (obstack, byte_order,
23075 type, value, len);
23076 break;
23077 case DW_FORM_data4:
23078 type = die_type (die, cu);
23079 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23080 if (result == NULL)
23081 result = write_constant_as_bytes (obstack, byte_order,
23082 type, value, len);
23083 break;
23084 case DW_FORM_data8:
23085 type = die_type (die, cu);
23086 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23087 if (result == NULL)
23088 result = write_constant_as_bytes (obstack, byte_order,
23089 type, value, len);
23090 break;
23091
23092 case DW_FORM_sdata:
23093 case DW_FORM_implicit_const:
23094 type = die_type (die, cu);
23095 result = write_constant_as_bytes (obstack, byte_order,
23096 type, DW_SND (attr), len);
23097 break;
23098
23099 case DW_FORM_udata:
23100 type = die_type (die, cu);
23101 result = write_constant_as_bytes (obstack, byte_order,
23102 type, DW_UNSND (attr), len);
23103 break;
23104
23105 default:
23106 complaint (_("unsupported const value attribute form: '%s'"),
23107 dwarf_form_name (attr->form));
23108 break;
23109 }
23110
23111 return result;
23112 }
23113
23114 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23115 valid type for this die is found. */
23116
23117 struct type *
23118 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23119 struct dwarf2_per_cu_data *per_cu)
23120 {
23121 struct dwarf2_cu *cu;
23122 struct die_info *die;
23123
23124 if (per_cu->cu == NULL)
23125 load_cu (per_cu, false);
23126 cu = per_cu->cu;
23127 if (!cu)
23128 return NULL;
23129
23130 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23131 if (!die)
23132 return NULL;
23133
23134 return die_type (die, cu);
23135 }
23136
23137 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23138 PER_CU. */
23139
23140 struct type *
23141 dwarf2_get_die_type (cu_offset die_offset,
23142 struct dwarf2_per_cu_data *per_cu)
23143 {
23144 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23145 return get_die_type_at_offset (die_offset_sect, per_cu);
23146 }
23147
23148 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23149 On entry *REF_CU is the CU of SRC_DIE.
23150 On exit *REF_CU is the CU of the result.
23151 Returns NULL if the referenced DIE isn't found. */
23152
23153 static struct die_info *
23154 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23155 struct dwarf2_cu **ref_cu)
23156 {
23157 struct die_info temp_die;
23158 struct dwarf2_cu *sig_cu;
23159 struct die_info *die;
23160
23161 /* While it might be nice to assert sig_type->type == NULL here,
23162 we can get here for DW_AT_imported_declaration where we need
23163 the DIE not the type. */
23164
23165 /* If necessary, add it to the queue and load its DIEs. */
23166
23167 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23168 read_signatured_type (sig_type);
23169
23170 sig_cu = sig_type->per_cu.cu;
23171 gdb_assert (sig_cu != NULL);
23172 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23173 temp_die.sect_off = sig_type->type_offset_in_section;
23174 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23175 to_underlying (temp_die.sect_off));
23176 if (die)
23177 {
23178 struct dwarf2_per_objfile *dwarf2_per_objfile
23179 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23180
23181 /* For .gdb_index version 7 keep track of included TUs.
23182 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23183 if (dwarf2_per_objfile->index_table != NULL
23184 && dwarf2_per_objfile->index_table->version <= 7)
23185 {
23186 VEC_safe_push (dwarf2_per_cu_ptr,
23187 (*ref_cu)->per_cu->imported_symtabs,
23188 sig_cu->per_cu);
23189 }
23190
23191 *ref_cu = sig_cu;
23192 return die;
23193 }
23194
23195 return NULL;
23196 }
23197
23198 /* Follow signatured type referenced by ATTR in SRC_DIE.
23199 On entry *REF_CU is the CU of SRC_DIE.
23200 On exit *REF_CU is the CU of the result.
23201 The result is the DIE of the type.
23202 If the referenced type cannot be found an error is thrown. */
23203
23204 static struct die_info *
23205 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23206 struct dwarf2_cu **ref_cu)
23207 {
23208 ULONGEST signature = DW_SIGNATURE (attr);
23209 struct signatured_type *sig_type;
23210 struct die_info *die;
23211
23212 gdb_assert (attr->form == DW_FORM_ref_sig8);
23213
23214 sig_type = lookup_signatured_type (*ref_cu, signature);
23215 /* sig_type will be NULL if the signatured type is missing from
23216 the debug info. */
23217 if (sig_type == NULL)
23218 {
23219 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23220 " from DIE at %s [in module %s]"),
23221 hex_string (signature), sect_offset_str (src_die->sect_off),
23222 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23223 }
23224
23225 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23226 if (die == NULL)
23227 {
23228 dump_die_for_error (src_die);
23229 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23230 " from DIE at %s [in module %s]"),
23231 hex_string (signature), sect_offset_str (src_die->sect_off),
23232 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23233 }
23234
23235 return die;
23236 }
23237
23238 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23239 reading in and processing the type unit if necessary. */
23240
23241 static struct type *
23242 get_signatured_type (struct die_info *die, ULONGEST signature,
23243 struct dwarf2_cu *cu)
23244 {
23245 struct dwarf2_per_objfile *dwarf2_per_objfile
23246 = cu->per_cu->dwarf2_per_objfile;
23247 struct signatured_type *sig_type;
23248 struct dwarf2_cu *type_cu;
23249 struct die_info *type_die;
23250 struct type *type;
23251
23252 sig_type = lookup_signatured_type (cu, signature);
23253 /* sig_type will be NULL if the signatured type is missing from
23254 the debug info. */
23255 if (sig_type == NULL)
23256 {
23257 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23258 " from DIE at %s [in module %s]"),
23259 hex_string (signature), sect_offset_str (die->sect_off),
23260 objfile_name (dwarf2_per_objfile->objfile));
23261 return build_error_marker_type (cu, die);
23262 }
23263
23264 /* If we already know the type we're done. */
23265 if (sig_type->type != NULL)
23266 return sig_type->type;
23267
23268 type_cu = cu;
23269 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23270 if (type_die != NULL)
23271 {
23272 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23273 is created. This is important, for example, because for c++ classes
23274 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23275 type = read_type_die (type_die, type_cu);
23276 if (type == NULL)
23277 {
23278 complaint (_("Dwarf Error: Cannot build signatured type %s"
23279 " referenced from DIE at %s [in module %s]"),
23280 hex_string (signature), sect_offset_str (die->sect_off),
23281 objfile_name (dwarf2_per_objfile->objfile));
23282 type = build_error_marker_type (cu, die);
23283 }
23284 }
23285 else
23286 {
23287 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23288 " from DIE at %s [in module %s]"),
23289 hex_string (signature), sect_offset_str (die->sect_off),
23290 objfile_name (dwarf2_per_objfile->objfile));
23291 type = build_error_marker_type (cu, die);
23292 }
23293 sig_type->type = type;
23294
23295 return type;
23296 }
23297
23298 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23299 reading in and processing the type unit if necessary. */
23300
23301 static struct type *
23302 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23303 struct dwarf2_cu *cu) /* ARI: editCase function */
23304 {
23305 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23306 if (attr_form_is_ref (attr))
23307 {
23308 struct dwarf2_cu *type_cu = cu;
23309 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23310
23311 return read_type_die (type_die, type_cu);
23312 }
23313 else if (attr->form == DW_FORM_ref_sig8)
23314 {
23315 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23316 }
23317 else
23318 {
23319 struct dwarf2_per_objfile *dwarf2_per_objfile
23320 = cu->per_cu->dwarf2_per_objfile;
23321
23322 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23323 " at %s [in module %s]"),
23324 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23325 objfile_name (dwarf2_per_objfile->objfile));
23326 return build_error_marker_type (cu, die);
23327 }
23328 }
23329
23330 /* Load the DIEs associated with type unit PER_CU into memory. */
23331
23332 static void
23333 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23334 {
23335 struct signatured_type *sig_type;
23336
23337 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23338 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23339
23340 /* We have the per_cu, but we need the signatured_type.
23341 Fortunately this is an easy translation. */
23342 gdb_assert (per_cu->is_debug_types);
23343 sig_type = (struct signatured_type *) per_cu;
23344
23345 gdb_assert (per_cu->cu == NULL);
23346
23347 read_signatured_type (sig_type);
23348
23349 gdb_assert (per_cu->cu != NULL);
23350 }
23351
23352 /* die_reader_func for read_signatured_type.
23353 This is identical to load_full_comp_unit_reader,
23354 but is kept separate for now. */
23355
23356 static void
23357 read_signatured_type_reader (const struct die_reader_specs *reader,
23358 const gdb_byte *info_ptr,
23359 struct die_info *comp_unit_die,
23360 int has_children,
23361 void *data)
23362 {
23363 struct dwarf2_cu *cu = reader->cu;
23364
23365 gdb_assert (cu->die_hash == NULL);
23366 cu->die_hash =
23367 htab_create_alloc_ex (cu->header.length / 12,
23368 die_hash,
23369 die_eq,
23370 NULL,
23371 &cu->comp_unit_obstack,
23372 hashtab_obstack_allocate,
23373 dummy_obstack_deallocate);
23374
23375 if (has_children)
23376 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23377 &info_ptr, comp_unit_die);
23378 cu->dies = comp_unit_die;
23379 /* comp_unit_die is not stored in die_hash, no need. */
23380
23381 /* We try not to read any attributes in this function, because not
23382 all CUs needed for references have been loaded yet, and symbol
23383 table processing isn't initialized. But we have to set the CU language,
23384 or we won't be able to build types correctly.
23385 Similarly, if we do not read the producer, we can not apply
23386 producer-specific interpretation. */
23387 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23388 }
23389
23390 /* Read in a signatured type and build its CU and DIEs.
23391 If the type is a stub for the real type in a DWO file,
23392 read in the real type from the DWO file as well. */
23393
23394 static void
23395 read_signatured_type (struct signatured_type *sig_type)
23396 {
23397 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23398
23399 gdb_assert (per_cu->is_debug_types);
23400 gdb_assert (per_cu->cu == NULL);
23401
23402 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23403 read_signatured_type_reader, NULL);
23404 sig_type->per_cu.tu_read = 1;
23405 }
23406
23407 /* Decode simple location descriptions.
23408 Given a pointer to a dwarf block that defines a location, compute
23409 the location and return the value.
23410
23411 NOTE drow/2003-11-18: This function is called in two situations
23412 now: for the address of static or global variables (partial symbols
23413 only) and for offsets into structures which are expected to be
23414 (more or less) constant. The partial symbol case should go away,
23415 and only the constant case should remain. That will let this
23416 function complain more accurately. A few special modes are allowed
23417 without complaint for global variables (for instance, global
23418 register values and thread-local values).
23419
23420 A location description containing no operations indicates that the
23421 object is optimized out. The return value is 0 for that case.
23422 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23423 callers will only want a very basic result and this can become a
23424 complaint.
23425
23426 Note that stack[0] is unused except as a default error return. */
23427
23428 static CORE_ADDR
23429 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23430 {
23431 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23432 size_t i;
23433 size_t size = blk->size;
23434 const gdb_byte *data = blk->data;
23435 CORE_ADDR stack[64];
23436 int stacki;
23437 unsigned int bytes_read, unsnd;
23438 gdb_byte op;
23439
23440 i = 0;
23441 stacki = 0;
23442 stack[stacki] = 0;
23443 stack[++stacki] = 0;
23444
23445 while (i < size)
23446 {
23447 op = data[i++];
23448 switch (op)
23449 {
23450 case DW_OP_lit0:
23451 case DW_OP_lit1:
23452 case DW_OP_lit2:
23453 case DW_OP_lit3:
23454 case DW_OP_lit4:
23455 case DW_OP_lit5:
23456 case DW_OP_lit6:
23457 case DW_OP_lit7:
23458 case DW_OP_lit8:
23459 case DW_OP_lit9:
23460 case DW_OP_lit10:
23461 case DW_OP_lit11:
23462 case DW_OP_lit12:
23463 case DW_OP_lit13:
23464 case DW_OP_lit14:
23465 case DW_OP_lit15:
23466 case DW_OP_lit16:
23467 case DW_OP_lit17:
23468 case DW_OP_lit18:
23469 case DW_OP_lit19:
23470 case DW_OP_lit20:
23471 case DW_OP_lit21:
23472 case DW_OP_lit22:
23473 case DW_OP_lit23:
23474 case DW_OP_lit24:
23475 case DW_OP_lit25:
23476 case DW_OP_lit26:
23477 case DW_OP_lit27:
23478 case DW_OP_lit28:
23479 case DW_OP_lit29:
23480 case DW_OP_lit30:
23481 case DW_OP_lit31:
23482 stack[++stacki] = op - DW_OP_lit0;
23483 break;
23484
23485 case DW_OP_reg0:
23486 case DW_OP_reg1:
23487 case DW_OP_reg2:
23488 case DW_OP_reg3:
23489 case DW_OP_reg4:
23490 case DW_OP_reg5:
23491 case DW_OP_reg6:
23492 case DW_OP_reg7:
23493 case DW_OP_reg8:
23494 case DW_OP_reg9:
23495 case DW_OP_reg10:
23496 case DW_OP_reg11:
23497 case DW_OP_reg12:
23498 case DW_OP_reg13:
23499 case DW_OP_reg14:
23500 case DW_OP_reg15:
23501 case DW_OP_reg16:
23502 case DW_OP_reg17:
23503 case DW_OP_reg18:
23504 case DW_OP_reg19:
23505 case DW_OP_reg20:
23506 case DW_OP_reg21:
23507 case DW_OP_reg22:
23508 case DW_OP_reg23:
23509 case DW_OP_reg24:
23510 case DW_OP_reg25:
23511 case DW_OP_reg26:
23512 case DW_OP_reg27:
23513 case DW_OP_reg28:
23514 case DW_OP_reg29:
23515 case DW_OP_reg30:
23516 case DW_OP_reg31:
23517 stack[++stacki] = op - DW_OP_reg0;
23518 if (i < size)
23519 dwarf2_complex_location_expr_complaint ();
23520 break;
23521
23522 case DW_OP_regx:
23523 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23524 i += bytes_read;
23525 stack[++stacki] = unsnd;
23526 if (i < size)
23527 dwarf2_complex_location_expr_complaint ();
23528 break;
23529
23530 case DW_OP_addr:
23531 stack[++stacki] = read_address (objfile->obfd, &data[i],
23532 cu, &bytes_read);
23533 i += bytes_read;
23534 break;
23535
23536 case DW_OP_const1u:
23537 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23538 i += 1;
23539 break;
23540
23541 case DW_OP_const1s:
23542 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23543 i += 1;
23544 break;
23545
23546 case DW_OP_const2u:
23547 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23548 i += 2;
23549 break;
23550
23551 case DW_OP_const2s:
23552 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23553 i += 2;
23554 break;
23555
23556 case DW_OP_const4u:
23557 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23558 i += 4;
23559 break;
23560
23561 case DW_OP_const4s:
23562 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23563 i += 4;
23564 break;
23565
23566 case DW_OP_const8u:
23567 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23568 i += 8;
23569 break;
23570
23571 case DW_OP_constu:
23572 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23573 &bytes_read);
23574 i += bytes_read;
23575 break;
23576
23577 case DW_OP_consts:
23578 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23579 i += bytes_read;
23580 break;
23581
23582 case DW_OP_dup:
23583 stack[stacki + 1] = stack[stacki];
23584 stacki++;
23585 break;
23586
23587 case DW_OP_plus:
23588 stack[stacki - 1] += stack[stacki];
23589 stacki--;
23590 break;
23591
23592 case DW_OP_plus_uconst:
23593 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23594 &bytes_read);
23595 i += bytes_read;
23596 break;
23597
23598 case DW_OP_minus:
23599 stack[stacki - 1] -= stack[stacki];
23600 stacki--;
23601 break;
23602
23603 case DW_OP_deref:
23604 /* If we're not the last op, then we definitely can't encode
23605 this using GDB's address_class enum. This is valid for partial
23606 global symbols, although the variable's address will be bogus
23607 in the psymtab. */
23608 if (i < size)
23609 dwarf2_complex_location_expr_complaint ();
23610 break;
23611
23612 case DW_OP_GNU_push_tls_address:
23613 case DW_OP_form_tls_address:
23614 /* The top of the stack has the offset from the beginning
23615 of the thread control block at which the variable is located. */
23616 /* Nothing should follow this operator, so the top of stack would
23617 be returned. */
23618 /* This is valid for partial global symbols, but the variable's
23619 address will be bogus in the psymtab. Make it always at least
23620 non-zero to not look as a variable garbage collected by linker
23621 which have DW_OP_addr 0. */
23622 if (i < size)
23623 dwarf2_complex_location_expr_complaint ();
23624 stack[stacki]++;
23625 break;
23626
23627 case DW_OP_GNU_uninit:
23628 break;
23629
23630 case DW_OP_GNU_addr_index:
23631 case DW_OP_GNU_const_index:
23632 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23633 &bytes_read);
23634 i += bytes_read;
23635 break;
23636
23637 default:
23638 {
23639 const char *name = get_DW_OP_name (op);
23640
23641 if (name)
23642 complaint (_("unsupported stack op: '%s'"),
23643 name);
23644 else
23645 complaint (_("unsupported stack op: '%02x'"),
23646 op);
23647 }
23648
23649 return (stack[stacki]);
23650 }
23651
23652 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23653 outside of the allocated space. Also enforce minimum>0. */
23654 if (stacki >= ARRAY_SIZE (stack) - 1)
23655 {
23656 complaint (_("location description stack overflow"));
23657 return 0;
23658 }
23659
23660 if (stacki <= 0)
23661 {
23662 complaint (_("location description stack underflow"));
23663 return 0;
23664 }
23665 }
23666 return (stack[stacki]);
23667 }
23668
23669 /* memory allocation interface */
23670
23671 static struct dwarf_block *
23672 dwarf_alloc_block (struct dwarf2_cu *cu)
23673 {
23674 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23675 }
23676
23677 static struct die_info *
23678 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23679 {
23680 struct die_info *die;
23681 size_t size = sizeof (struct die_info);
23682
23683 if (num_attrs > 1)
23684 size += (num_attrs - 1) * sizeof (struct attribute);
23685
23686 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23687 memset (die, 0, sizeof (struct die_info));
23688 return (die);
23689 }
23690
23691 \f
23692 /* Macro support. */
23693
23694 /* Return file name relative to the compilation directory of file number I in
23695 *LH's file name table. The result is allocated using xmalloc; the caller is
23696 responsible for freeing it. */
23697
23698 static char *
23699 file_file_name (int file, struct line_header *lh)
23700 {
23701 /* Is the file number a valid index into the line header's file name
23702 table? Remember that file numbers start with one, not zero. */
23703 if (1 <= file && file <= lh->file_names.size ())
23704 {
23705 const file_entry &fe = lh->file_names[file - 1];
23706
23707 if (!IS_ABSOLUTE_PATH (fe.name))
23708 {
23709 const char *dir = fe.include_dir (lh);
23710 if (dir != NULL)
23711 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23712 }
23713 return xstrdup (fe.name);
23714 }
23715 else
23716 {
23717 /* The compiler produced a bogus file number. We can at least
23718 record the macro definitions made in the file, even if we
23719 won't be able to find the file by name. */
23720 char fake_name[80];
23721
23722 xsnprintf (fake_name, sizeof (fake_name),
23723 "<bad macro file number %d>", file);
23724
23725 complaint (_("bad file number in macro information (%d)"),
23726 file);
23727
23728 return xstrdup (fake_name);
23729 }
23730 }
23731
23732 /* Return the full name of file number I in *LH's file name table.
23733 Use COMP_DIR as the name of the current directory of the
23734 compilation. The result is allocated using xmalloc; the caller is
23735 responsible for freeing it. */
23736 static char *
23737 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23738 {
23739 /* Is the file number a valid index into the line header's file name
23740 table? Remember that file numbers start with one, not zero. */
23741 if (1 <= file && file <= lh->file_names.size ())
23742 {
23743 char *relative = file_file_name (file, lh);
23744
23745 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23746 return relative;
23747 return reconcat (relative, comp_dir, SLASH_STRING,
23748 relative, (char *) NULL);
23749 }
23750 else
23751 return file_file_name (file, lh);
23752 }
23753
23754
23755 static struct macro_source_file *
23756 macro_start_file (struct dwarf2_cu *cu,
23757 int file, int line,
23758 struct macro_source_file *current_file,
23759 struct line_header *lh)
23760 {
23761 /* File name relative to the compilation directory of this source file. */
23762 char *file_name = file_file_name (file, lh);
23763
23764 if (! current_file)
23765 {
23766 /* Note: We don't create a macro table for this compilation unit
23767 at all until we actually get a filename. */
23768 struct macro_table *macro_table = cu->builder->get_macro_table ();
23769
23770 /* If we have no current file, then this must be the start_file
23771 directive for the compilation unit's main source file. */
23772 current_file = macro_set_main (macro_table, file_name);
23773 macro_define_special (macro_table);
23774 }
23775 else
23776 current_file = macro_include (current_file, line, file_name);
23777
23778 xfree (file_name);
23779
23780 return current_file;
23781 }
23782
23783 static const char *
23784 consume_improper_spaces (const char *p, const char *body)
23785 {
23786 if (*p == ' ')
23787 {
23788 complaint (_("macro definition contains spaces "
23789 "in formal argument list:\n`%s'"),
23790 body);
23791
23792 while (*p == ' ')
23793 p++;
23794 }
23795
23796 return p;
23797 }
23798
23799
23800 static void
23801 parse_macro_definition (struct macro_source_file *file, int line,
23802 const char *body)
23803 {
23804 const char *p;
23805
23806 /* The body string takes one of two forms. For object-like macro
23807 definitions, it should be:
23808
23809 <macro name> " " <definition>
23810
23811 For function-like macro definitions, it should be:
23812
23813 <macro name> "() " <definition>
23814 or
23815 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23816
23817 Spaces may appear only where explicitly indicated, and in the
23818 <definition>.
23819
23820 The Dwarf 2 spec says that an object-like macro's name is always
23821 followed by a space, but versions of GCC around March 2002 omit
23822 the space when the macro's definition is the empty string.
23823
23824 The Dwarf 2 spec says that there should be no spaces between the
23825 formal arguments in a function-like macro's formal argument list,
23826 but versions of GCC around March 2002 include spaces after the
23827 commas. */
23828
23829
23830 /* Find the extent of the macro name. The macro name is terminated
23831 by either a space or null character (for an object-like macro) or
23832 an opening paren (for a function-like macro). */
23833 for (p = body; *p; p++)
23834 if (*p == ' ' || *p == '(')
23835 break;
23836
23837 if (*p == ' ' || *p == '\0')
23838 {
23839 /* It's an object-like macro. */
23840 int name_len = p - body;
23841 char *name = savestring (body, name_len);
23842 const char *replacement;
23843
23844 if (*p == ' ')
23845 replacement = body + name_len + 1;
23846 else
23847 {
23848 dwarf2_macro_malformed_definition_complaint (body);
23849 replacement = body + name_len;
23850 }
23851
23852 macro_define_object (file, line, name, replacement);
23853
23854 xfree (name);
23855 }
23856 else if (*p == '(')
23857 {
23858 /* It's a function-like macro. */
23859 char *name = savestring (body, p - body);
23860 int argc = 0;
23861 int argv_size = 1;
23862 char **argv = XNEWVEC (char *, argv_size);
23863
23864 p++;
23865
23866 p = consume_improper_spaces (p, body);
23867
23868 /* Parse the formal argument list. */
23869 while (*p && *p != ')')
23870 {
23871 /* Find the extent of the current argument name. */
23872 const char *arg_start = p;
23873
23874 while (*p && *p != ',' && *p != ')' && *p != ' ')
23875 p++;
23876
23877 if (! *p || p == arg_start)
23878 dwarf2_macro_malformed_definition_complaint (body);
23879 else
23880 {
23881 /* Make sure argv has room for the new argument. */
23882 if (argc >= argv_size)
23883 {
23884 argv_size *= 2;
23885 argv = XRESIZEVEC (char *, argv, argv_size);
23886 }
23887
23888 argv[argc++] = savestring (arg_start, p - arg_start);
23889 }
23890
23891 p = consume_improper_spaces (p, body);
23892
23893 /* Consume the comma, if present. */
23894 if (*p == ',')
23895 {
23896 p++;
23897
23898 p = consume_improper_spaces (p, body);
23899 }
23900 }
23901
23902 if (*p == ')')
23903 {
23904 p++;
23905
23906 if (*p == ' ')
23907 /* Perfectly formed definition, no complaints. */
23908 macro_define_function (file, line, name,
23909 argc, (const char **) argv,
23910 p + 1);
23911 else if (*p == '\0')
23912 {
23913 /* Complain, but do define it. */
23914 dwarf2_macro_malformed_definition_complaint (body);
23915 macro_define_function (file, line, name,
23916 argc, (const char **) argv,
23917 p);
23918 }
23919 else
23920 /* Just complain. */
23921 dwarf2_macro_malformed_definition_complaint (body);
23922 }
23923 else
23924 /* Just complain. */
23925 dwarf2_macro_malformed_definition_complaint (body);
23926
23927 xfree (name);
23928 {
23929 int i;
23930
23931 for (i = 0; i < argc; i++)
23932 xfree (argv[i]);
23933 }
23934 xfree (argv);
23935 }
23936 else
23937 dwarf2_macro_malformed_definition_complaint (body);
23938 }
23939
23940 /* Skip some bytes from BYTES according to the form given in FORM.
23941 Returns the new pointer. */
23942
23943 static const gdb_byte *
23944 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23945 enum dwarf_form form,
23946 unsigned int offset_size,
23947 struct dwarf2_section_info *section)
23948 {
23949 unsigned int bytes_read;
23950
23951 switch (form)
23952 {
23953 case DW_FORM_data1:
23954 case DW_FORM_flag:
23955 ++bytes;
23956 break;
23957
23958 case DW_FORM_data2:
23959 bytes += 2;
23960 break;
23961
23962 case DW_FORM_data4:
23963 bytes += 4;
23964 break;
23965
23966 case DW_FORM_data8:
23967 bytes += 8;
23968 break;
23969
23970 case DW_FORM_data16:
23971 bytes += 16;
23972 break;
23973
23974 case DW_FORM_string:
23975 read_direct_string (abfd, bytes, &bytes_read);
23976 bytes += bytes_read;
23977 break;
23978
23979 case DW_FORM_sec_offset:
23980 case DW_FORM_strp:
23981 case DW_FORM_GNU_strp_alt:
23982 bytes += offset_size;
23983 break;
23984
23985 case DW_FORM_block:
23986 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23987 bytes += bytes_read;
23988 break;
23989
23990 case DW_FORM_block1:
23991 bytes += 1 + read_1_byte (abfd, bytes);
23992 break;
23993 case DW_FORM_block2:
23994 bytes += 2 + read_2_bytes (abfd, bytes);
23995 break;
23996 case DW_FORM_block4:
23997 bytes += 4 + read_4_bytes (abfd, bytes);
23998 break;
23999
24000 case DW_FORM_sdata:
24001 case DW_FORM_udata:
24002 case DW_FORM_GNU_addr_index:
24003 case DW_FORM_GNU_str_index:
24004 bytes = gdb_skip_leb128 (bytes, buffer_end);
24005 if (bytes == NULL)
24006 {
24007 dwarf2_section_buffer_overflow_complaint (section);
24008 return NULL;
24009 }
24010 break;
24011
24012 case DW_FORM_implicit_const:
24013 break;
24014
24015 default:
24016 {
24017 complaint (_("invalid form 0x%x in `%s'"),
24018 form, get_section_name (section));
24019 return NULL;
24020 }
24021 }
24022
24023 return bytes;
24024 }
24025
24026 /* A helper for dwarf_decode_macros that handles skipping an unknown
24027 opcode. Returns an updated pointer to the macro data buffer; or,
24028 on error, issues a complaint and returns NULL. */
24029
24030 static const gdb_byte *
24031 skip_unknown_opcode (unsigned int opcode,
24032 const gdb_byte **opcode_definitions,
24033 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24034 bfd *abfd,
24035 unsigned int offset_size,
24036 struct dwarf2_section_info *section)
24037 {
24038 unsigned int bytes_read, i;
24039 unsigned long arg;
24040 const gdb_byte *defn;
24041
24042 if (opcode_definitions[opcode] == NULL)
24043 {
24044 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24045 opcode);
24046 return NULL;
24047 }
24048
24049 defn = opcode_definitions[opcode];
24050 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24051 defn += bytes_read;
24052
24053 for (i = 0; i < arg; ++i)
24054 {
24055 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24056 (enum dwarf_form) defn[i], offset_size,
24057 section);
24058 if (mac_ptr == NULL)
24059 {
24060 /* skip_form_bytes already issued the complaint. */
24061 return NULL;
24062 }
24063 }
24064
24065 return mac_ptr;
24066 }
24067
24068 /* A helper function which parses the header of a macro section.
24069 If the macro section is the extended (for now called "GNU") type,
24070 then this updates *OFFSET_SIZE. Returns a pointer to just after
24071 the header, or issues a complaint and returns NULL on error. */
24072
24073 static const gdb_byte *
24074 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24075 bfd *abfd,
24076 const gdb_byte *mac_ptr,
24077 unsigned int *offset_size,
24078 int section_is_gnu)
24079 {
24080 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24081
24082 if (section_is_gnu)
24083 {
24084 unsigned int version, flags;
24085
24086 version = read_2_bytes (abfd, mac_ptr);
24087 if (version != 4 && version != 5)
24088 {
24089 complaint (_("unrecognized version `%d' in .debug_macro section"),
24090 version);
24091 return NULL;
24092 }
24093 mac_ptr += 2;
24094
24095 flags = read_1_byte (abfd, mac_ptr);
24096 ++mac_ptr;
24097 *offset_size = (flags & 1) ? 8 : 4;
24098
24099 if ((flags & 2) != 0)
24100 /* We don't need the line table offset. */
24101 mac_ptr += *offset_size;
24102
24103 /* Vendor opcode descriptions. */
24104 if ((flags & 4) != 0)
24105 {
24106 unsigned int i, count;
24107
24108 count = read_1_byte (abfd, mac_ptr);
24109 ++mac_ptr;
24110 for (i = 0; i < count; ++i)
24111 {
24112 unsigned int opcode, bytes_read;
24113 unsigned long arg;
24114
24115 opcode = read_1_byte (abfd, mac_ptr);
24116 ++mac_ptr;
24117 opcode_definitions[opcode] = mac_ptr;
24118 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24119 mac_ptr += bytes_read;
24120 mac_ptr += arg;
24121 }
24122 }
24123 }
24124
24125 return mac_ptr;
24126 }
24127
24128 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24129 including DW_MACRO_import. */
24130
24131 static void
24132 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24133 bfd *abfd,
24134 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24135 struct macro_source_file *current_file,
24136 struct line_header *lh,
24137 struct dwarf2_section_info *section,
24138 int section_is_gnu, int section_is_dwz,
24139 unsigned int offset_size,
24140 htab_t include_hash)
24141 {
24142 struct dwarf2_per_objfile *dwarf2_per_objfile
24143 = cu->per_cu->dwarf2_per_objfile;
24144 struct objfile *objfile = dwarf2_per_objfile->objfile;
24145 enum dwarf_macro_record_type macinfo_type;
24146 int at_commandline;
24147 const gdb_byte *opcode_definitions[256];
24148
24149 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24150 &offset_size, section_is_gnu);
24151 if (mac_ptr == NULL)
24152 {
24153 /* We already issued a complaint. */
24154 return;
24155 }
24156
24157 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24158 GDB is still reading the definitions from command line. First
24159 DW_MACINFO_start_file will need to be ignored as it was already executed
24160 to create CURRENT_FILE for the main source holding also the command line
24161 definitions. On first met DW_MACINFO_start_file this flag is reset to
24162 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24163
24164 at_commandline = 1;
24165
24166 do
24167 {
24168 /* Do we at least have room for a macinfo type byte? */
24169 if (mac_ptr >= mac_end)
24170 {
24171 dwarf2_section_buffer_overflow_complaint (section);
24172 break;
24173 }
24174
24175 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24176 mac_ptr++;
24177
24178 /* Note that we rely on the fact that the corresponding GNU and
24179 DWARF constants are the same. */
24180 DIAGNOSTIC_PUSH
24181 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24182 switch (macinfo_type)
24183 {
24184 /* A zero macinfo type indicates the end of the macro
24185 information. */
24186 case 0:
24187 break;
24188
24189 case DW_MACRO_define:
24190 case DW_MACRO_undef:
24191 case DW_MACRO_define_strp:
24192 case DW_MACRO_undef_strp:
24193 case DW_MACRO_define_sup:
24194 case DW_MACRO_undef_sup:
24195 {
24196 unsigned int bytes_read;
24197 int line;
24198 const char *body;
24199 int is_define;
24200
24201 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24202 mac_ptr += bytes_read;
24203
24204 if (macinfo_type == DW_MACRO_define
24205 || macinfo_type == DW_MACRO_undef)
24206 {
24207 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24208 mac_ptr += bytes_read;
24209 }
24210 else
24211 {
24212 LONGEST str_offset;
24213
24214 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24215 mac_ptr += offset_size;
24216
24217 if (macinfo_type == DW_MACRO_define_sup
24218 || macinfo_type == DW_MACRO_undef_sup
24219 || section_is_dwz)
24220 {
24221 struct dwz_file *dwz
24222 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24223
24224 body = read_indirect_string_from_dwz (objfile,
24225 dwz, str_offset);
24226 }
24227 else
24228 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24229 abfd, str_offset);
24230 }
24231
24232 is_define = (macinfo_type == DW_MACRO_define
24233 || macinfo_type == DW_MACRO_define_strp
24234 || macinfo_type == DW_MACRO_define_sup);
24235 if (! current_file)
24236 {
24237 /* DWARF violation as no main source is present. */
24238 complaint (_("debug info with no main source gives macro %s "
24239 "on line %d: %s"),
24240 is_define ? _("definition") : _("undefinition"),
24241 line, body);
24242 break;
24243 }
24244 if ((line == 0 && !at_commandline)
24245 || (line != 0 && at_commandline))
24246 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24247 at_commandline ? _("command-line") : _("in-file"),
24248 is_define ? _("definition") : _("undefinition"),
24249 line == 0 ? _("zero") : _("non-zero"), line, body);
24250
24251 if (is_define)
24252 parse_macro_definition (current_file, line, body);
24253 else
24254 {
24255 gdb_assert (macinfo_type == DW_MACRO_undef
24256 || macinfo_type == DW_MACRO_undef_strp
24257 || macinfo_type == DW_MACRO_undef_sup);
24258 macro_undef (current_file, line, body);
24259 }
24260 }
24261 break;
24262
24263 case DW_MACRO_start_file:
24264 {
24265 unsigned int bytes_read;
24266 int line, file;
24267
24268 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24269 mac_ptr += bytes_read;
24270 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24271 mac_ptr += bytes_read;
24272
24273 if ((line == 0 && !at_commandline)
24274 || (line != 0 && at_commandline))
24275 complaint (_("debug info gives source %d included "
24276 "from %s at %s line %d"),
24277 file, at_commandline ? _("command-line") : _("file"),
24278 line == 0 ? _("zero") : _("non-zero"), line);
24279
24280 if (at_commandline)
24281 {
24282 /* This DW_MACRO_start_file was executed in the
24283 pass one. */
24284 at_commandline = 0;
24285 }
24286 else
24287 current_file = macro_start_file (cu, file, line, current_file,
24288 lh);
24289 }
24290 break;
24291
24292 case DW_MACRO_end_file:
24293 if (! current_file)
24294 complaint (_("macro debug info has an unmatched "
24295 "`close_file' directive"));
24296 else
24297 {
24298 current_file = current_file->included_by;
24299 if (! current_file)
24300 {
24301 enum dwarf_macro_record_type next_type;
24302
24303 /* GCC circa March 2002 doesn't produce the zero
24304 type byte marking the end of the compilation
24305 unit. Complain if it's not there, but exit no
24306 matter what. */
24307
24308 /* Do we at least have room for a macinfo type byte? */
24309 if (mac_ptr >= mac_end)
24310 {
24311 dwarf2_section_buffer_overflow_complaint (section);
24312 return;
24313 }
24314
24315 /* We don't increment mac_ptr here, so this is just
24316 a look-ahead. */
24317 next_type
24318 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24319 mac_ptr);
24320 if (next_type != 0)
24321 complaint (_("no terminating 0-type entry for "
24322 "macros in `.debug_macinfo' section"));
24323
24324 return;
24325 }
24326 }
24327 break;
24328
24329 case DW_MACRO_import:
24330 case DW_MACRO_import_sup:
24331 {
24332 LONGEST offset;
24333 void **slot;
24334 bfd *include_bfd = abfd;
24335 struct dwarf2_section_info *include_section = section;
24336 const gdb_byte *include_mac_end = mac_end;
24337 int is_dwz = section_is_dwz;
24338 const gdb_byte *new_mac_ptr;
24339
24340 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24341 mac_ptr += offset_size;
24342
24343 if (macinfo_type == DW_MACRO_import_sup)
24344 {
24345 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24346
24347 dwarf2_read_section (objfile, &dwz->macro);
24348
24349 include_section = &dwz->macro;
24350 include_bfd = get_section_bfd_owner (include_section);
24351 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24352 is_dwz = 1;
24353 }
24354
24355 new_mac_ptr = include_section->buffer + offset;
24356 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24357
24358 if (*slot != NULL)
24359 {
24360 /* This has actually happened; see
24361 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24362 complaint (_("recursive DW_MACRO_import in "
24363 ".debug_macro section"));
24364 }
24365 else
24366 {
24367 *slot = (void *) new_mac_ptr;
24368
24369 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24370 include_mac_end, current_file, lh,
24371 section, section_is_gnu, is_dwz,
24372 offset_size, include_hash);
24373
24374 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24375 }
24376 }
24377 break;
24378
24379 case DW_MACINFO_vendor_ext:
24380 if (!section_is_gnu)
24381 {
24382 unsigned int bytes_read;
24383
24384 /* This reads the constant, but since we don't recognize
24385 any vendor extensions, we ignore it. */
24386 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24387 mac_ptr += bytes_read;
24388 read_direct_string (abfd, mac_ptr, &bytes_read);
24389 mac_ptr += bytes_read;
24390
24391 /* We don't recognize any vendor extensions. */
24392 break;
24393 }
24394 /* FALLTHROUGH */
24395
24396 default:
24397 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24398 mac_ptr, mac_end, abfd, offset_size,
24399 section);
24400 if (mac_ptr == NULL)
24401 return;
24402 break;
24403 }
24404 DIAGNOSTIC_POP
24405 } while (macinfo_type != 0);
24406 }
24407
24408 static void
24409 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24410 int section_is_gnu)
24411 {
24412 struct dwarf2_per_objfile *dwarf2_per_objfile
24413 = cu->per_cu->dwarf2_per_objfile;
24414 struct objfile *objfile = dwarf2_per_objfile->objfile;
24415 struct line_header *lh = cu->line_header;
24416 bfd *abfd;
24417 const gdb_byte *mac_ptr, *mac_end;
24418 struct macro_source_file *current_file = 0;
24419 enum dwarf_macro_record_type macinfo_type;
24420 unsigned int offset_size = cu->header.offset_size;
24421 const gdb_byte *opcode_definitions[256];
24422 void **slot;
24423 struct dwarf2_section_info *section;
24424 const char *section_name;
24425
24426 if (cu->dwo_unit != NULL)
24427 {
24428 if (section_is_gnu)
24429 {
24430 section = &cu->dwo_unit->dwo_file->sections.macro;
24431 section_name = ".debug_macro.dwo";
24432 }
24433 else
24434 {
24435 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24436 section_name = ".debug_macinfo.dwo";
24437 }
24438 }
24439 else
24440 {
24441 if (section_is_gnu)
24442 {
24443 section = &dwarf2_per_objfile->macro;
24444 section_name = ".debug_macro";
24445 }
24446 else
24447 {
24448 section = &dwarf2_per_objfile->macinfo;
24449 section_name = ".debug_macinfo";
24450 }
24451 }
24452
24453 dwarf2_read_section (objfile, section);
24454 if (section->buffer == NULL)
24455 {
24456 complaint (_("missing %s section"), section_name);
24457 return;
24458 }
24459 abfd = get_section_bfd_owner (section);
24460
24461 /* First pass: Find the name of the base filename.
24462 This filename is needed in order to process all macros whose definition
24463 (or undefinition) comes from the command line. These macros are defined
24464 before the first DW_MACINFO_start_file entry, and yet still need to be
24465 associated to the base file.
24466
24467 To determine the base file name, we scan the macro definitions until we
24468 reach the first DW_MACINFO_start_file entry. We then initialize
24469 CURRENT_FILE accordingly so that any macro definition found before the
24470 first DW_MACINFO_start_file can still be associated to the base file. */
24471
24472 mac_ptr = section->buffer + offset;
24473 mac_end = section->buffer + section->size;
24474
24475 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24476 &offset_size, section_is_gnu);
24477 if (mac_ptr == NULL)
24478 {
24479 /* We already issued a complaint. */
24480 return;
24481 }
24482
24483 do
24484 {
24485 /* Do we at least have room for a macinfo type byte? */
24486 if (mac_ptr >= mac_end)
24487 {
24488 /* Complaint is printed during the second pass as GDB will probably
24489 stop the first pass earlier upon finding
24490 DW_MACINFO_start_file. */
24491 break;
24492 }
24493
24494 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24495 mac_ptr++;
24496
24497 /* Note that we rely on the fact that the corresponding GNU and
24498 DWARF constants are the same. */
24499 DIAGNOSTIC_PUSH
24500 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24501 switch (macinfo_type)
24502 {
24503 /* A zero macinfo type indicates the end of the macro
24504 information. */
24505 case 0:
24506 break;
24507
24508 case DW_MACRO_define:
24509 case DW_MACRO_undef:
24510 /* Only skip the data by MAC_PTR. */
24511 {
24512 unsigned int bytes_read;
24513
24514 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24515 mac_ptr += bytes_read;
24516 read_direct_string (abfd, mac_ptr, &bytes_read);
24517 mac_ptr += bytes_read;
24518 }
24519 break;
24520
24521 case DW_MACRO_start_file:
24522 {
24523 unsigned int bytes_read;
24524 int line, file;
24525
24526 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24527 mac_ptr += bytes_read;
24528 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24529 mac_ptr += bytes_read;
24530
24531 current_file = macro_start_file (cu, file, line, current_file, lh);
24532 }
24533 break;
24534
24535 case DW_MACRO_end_file:
24536 /* No data to skip by MAC_PTR. */
24537 break;
24538
24539 case DW_MACRO_define_strp:
24540 case DW_MACRO_undef_strp:
24541 case DW_MACRO_define_sup:
24542 case DW_MACRO_undef_sup:
24543 {
24544 unsigned int bytes_read;
24545
24546 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24547 mac_ptr += bytes_read;
24548 mac_ptr += offset_size;
24549 }
24550 break;
24551
24552 case DW_MACRO_import:
24553 case DW_MACRO_import_sup:
24554 /* Note that, according to the spec, a transparent include
24555 chain cannot call DW_MACRO_start_file. So, we can just
24556 skip this opcode. */
24557 mac_ptr += offset_size;
24558 break;
24559
24560 case DW_MACINFO_vendor_ext:
24561 /* Only skip the data by MAC_PTR. */
24562 if (!section_is_gnu)
24563 {
24564 unsigned int bytes_read;
24565
24566 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24567 mac_ptr += bytes_read;
24568 read_direct_string (abfd, mac_ptr, &bytes_read);
24569 mac_ptr += bytes_read;
24570 }
24571 /* FALLTHROUGH */
24572
24573 default:
24574 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24575 mac_ptr, mac_end, abfd, offset_size,
24576 section);
24577 if (mac_ptr == NULL)
24578 return;
24579 break;
24580 }
24581 DIAGNOSTIC_POP
24582 } while (macinfo_type != 0 && current_file == NULL);
24583
24584 /* Second pass: Process all entries.
24585
24586 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24587 command-line macro definitions/undefinitions. This flag is unset when we
24588 reach the first DW_MACINFO_start_file entry. */
24589
24590 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24591 htab_eq_pointer,
24592 NULL, xcalloc, xfree));
24593 mac_ptr = section->buffer + offset;
24594 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24595 *slot = (void *) mac_ptr;
24596 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24597 current_file, lh, section,
24598 section_is_gnu, 0, offset_size,
24599 include_hash.get ());
24600 }
24601
24602 /* Check if the attribute's form is a DW_FORM_block*
24603 if so return true else false. */
24604
24605 static int
24606 attr_form_is_block (const struct attribute *attr)
24607 {
24608 return (attr == NULL ? 0 :
24609 attr->form == DW_FORM_block1
24610 || attr->form == DW_FORM_block2
24611 || attr->form == DW_FORM_block4
24612 || attr->form == DW_FORM_block
24613 || attr->form == DW_FORM_exprloc);
24614 }
24615
24616 /* Return non-zero if ATTR's value is a section offset --- classes
24617 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24618 You may use DW_UNSND (attr) to retrieve such offsets.
24619
24620 Section 7.5.4, "Attribute Encodings", explains that no attribute
24621 may have a value that belongs to more than one of these classes; it
24622 would be ambiguous if we did, because we use the same forms for all
24623 of them. */
24624
24625 static int
24626 attr_form_is_section_offset (const struct attribute *attr)
24627 {
24628 return (attr->form == DW_FORM_data4
24629 || attr->form == DW_FORM_data8
24630 || attr->form == DW_FORM_sec_offset);
24631 }
24632
24633 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24634 zero otherwise. When this function returns true, you can apply
24635 dwarf2_get_attr_constant_value to it.
24636
24637 However, note that for some attributes you must check
24638 attr_form_is_section_offset before using this test. DW_FORM_data4
24639 and DW_FORM_data8 are members of both the constant class, and of
24640 the classes that contain offsets into other debug sections
24641 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24642 that, if an attribute's can be either a constant or one of the
24643 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24644 taken as section offsets, not constants.
24645
24646 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24647 cannot handle that. */
24648
24649 static int
24650 attr_form_is_constant (const struct attribute *attr)
24651 {
24652 switch (attr->form)
24653 {
24654 case DW_FORM_sdata:
24655 case DW_FORM_udata:
24656 case DW_FORM_data1:
24657 case DW_FORM_data2:
24658 case DW_FORM_data4:
24659 case DW_FORM_data8:
24660 case DW_FORM_implicit_const:
24661 return 1;
24662 default:
24663 return 0;
24664 }
24665 }
24666
24667
24668 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24669 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24670
24671 static int
24672 attr_form_is_ref (const struct attribute *attr)
24673 {
24674 switch (attr->form)
24675 {
24676 case DW_FORM_ref_addr:
24677 case DW_FORM_ref1:
24678 case DW_FORM_ref2:
24679 case DW_FORM_ref4:
24680 case DW_FORM_ref8:
24681 case DW_FORM_ref_udata:
24682 case DW_FORM_GNU_ref_alt:
24683 return 1;
24684 default:
24685 return 0;
24686 }
24687 }
24688
24689 /* Return the .debug_loc section to use for CU.
24690 For DWO files use .debug_loc.dwo. */
24691
24692 static struct dwarf2_section_info *
24693 cu_debug_loc_section (struct dwarf2_cu *cu)
24694 {
24695 struct dwarf2_per_objfile *dwarf2_per_objfile
24696 = cu->per_cu->dwarf2_per_objfile;
24697
24698 if (cu->dwo_unit)
24699 {
24700 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24701
24702 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24703 }
24704 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24705 : &dwarf2_per_objfile->loc);
24706 }
24707
24708 /* A helper function that fills in a dwarf2_loclist_baton. */
24709
24710 static void
24711 fill_in_loclist_baton (struct dwarf2_cu *cu,
24712 struct dwarf2_loclist_baton *baton,
24713 const struct attribute *attr)
24714 {
24715 struct dwarf2_per_objfile *dwarf2_per_objfile
24716 = cu->per_cu->dwarf2_per_objfile;
24717 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24718
24719 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24720
24721 baton->per_cu = cu->per_cu;
24722 gdb_assert (baton->per_cu);
24723 /* We don't know how long the location list is, but make sure we
24724 don't run off the edge of the section. */
24725 baton->size = section->size - DW_UNSND (attr);
24726 baton->data = section->buffer + DW_UNSND (attr);
24727 baton->base_address = cu->base_address;
24728 baton->from_dwo = cu->dwo_unit != NULL;
24729 }
24730
24731 static void
24732 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24733 struct dwarf2_cu *cu, int is_block)
24734 {
24735 struct dwarf2_per_objfile *dwarf2_per_objfile
24736 = cu->per_cu->dwarf2_per_objfile;
24737 struct objfile *objfile = dwarf2_per_objfile->objfile;
24738 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24739
24740 if (attr_form_is_section_offset (attr)
24741 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24742 the section. If so, fall through to the complaint in the
24743 other branch. */
24744 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24745 {
24746 struct dwarf2_loclist_baton *baton;
24747
24748 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24749
24750 fill_in_loclist_baton (cu, baton, attr);
24751
24752 if (cu->base_known == 0)
24753 complaint (_("Location list used without "
24754 "specifying the CU base address."));
24755
24756 SYMBOL_ACLASS_INDEX (sym) = (is_block
24757 ? dwarf2_loclist_block_index
24758 : dwarf2_loclist_index);
24759 SYMBOL_LOCATION_BATON (sym) = baton;
24760 }
24761 else
24762 {
24763 struct dwarf2_locexpr_baton *baton;
24764
24765 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24766 baton->per_cu = cu->per_cu;
24767 gdb_assert (baton->per_cu);
24768
24769 if (attr_form_is_block (attr))
24770 {
24771 /* Note that we're just copying the block's data pointer
24772 here, not the actual data. We're still pointing into the
24773 info_buffer for SYM's objfile; right now we never release
24774 that buffer, but when we do clean up properly this may
24775 need to change. */
24776 baton->size = DW_BLOCK (attr)->size;
24777 baton->data = DW_BLOCK (attr)->data;
24778 }
24779 else
24780 {
24781 dwarf2_invalid_attrib_class_complaint ("location description",
24782 SYMBOL_NATURAL_NAME (sym));
24783 baton->size = 0;
24784 }
24785
24786 SYMBOL_ACLASS_INDEX (sym) = (is_block
24787 ? dwarf2_locexpr_block_index
24788 : dwarf2_locexpr_index);
24789 SYMBOL_LOCATION_BATON (sym) = baton;
24790 }
24791 }
24792
24793 /* Return the OBJFILE associated with the compilation unit CU. If CU
24794 came from a separate debuginfo file, then the master objfile is
24795 returned. */
24796
24797 struct objfile *
24798 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24799 {
24800 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24801
24802 /* Return the master objfile, so that we can report and look up the
24803 correct file containing this variable. */
24804 if (objfile->separate_debug_objfile_backlink)
24805 objfile = objfile->separate_debug_objfile_backlink;
24806
24807 return objfile;
24808 }
24809
24810 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24811 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24812 CU_HEADERP first. */
24813
24814 static const struct comp_unit_head *
24815 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24816 struct dwarf2_per_cu_data *per_cu)
24817 {
24818 const gdb_byte *info_ptr;
24819
24820 if (per_cu->cu)
24821 return &per_cu->cu->header;
24822
24823 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24824
24825 memset (cu_headerp, 0, sizeof (*cu_headerp));
24826 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24827 rcuh_kind::COMPILE);
24828
24829 return cu_headerp;
24830 }
24831
24832 /* Return the address size given in the compilation unit header for CU. */
24833
24834 int
24835 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24836 {
24837 struct comp_unit_head cu_header_local;
24838 const struct comp_unit_head *cu_headerp;
24839
24840 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24841
24842 return cu_headerp->addr_size;
24843 }
24844
24845 /* Return the offset size given in the compilation unit header for CU. */
24846
24847 int
24848 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24849 {
24850 struct comp_unit_head cu_header_local;
24851 const struct comp_unit_head *cu_headerp;
24852
24853 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24854
24855 return cu_headerp->offset_size;
24856 }
24857
24858 /* See its dwarf2loc.h declaration. */
24859
24860 int
24861 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24862 {
24863 struct comp_unit_head cu_header_local;
24864 const struct comp_unit_head *cu_headerp;
24865
24866 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24867
24868 if (cu_headerp->version == 2)
24869 return cu_headerp->addr_size;
24870 else
24871 return cu_headerp->offset_size;
24872 }
24873
24874 /* Return the text offset of the CU. The returned offset comes from
24875 this CU's objfile. If this objfile came from a separate debuginfo
24876 file, then the offset may be different from the corresponding
24877 offset in the parent objfile. */
24878
24879 CORE_ADDR
24880 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24881 {
24882 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24883
24884 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24885 }
24886
24887 /* Return DWARF version number of PER_CU. */
24888
24889 short
24890 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24891 {
24892 return per_cu->dwarf_version;
24893 }
24894
24895 /* Locate the .debug_info compilation unit from CU's objfile which contains
24896 the DIE at OFFSET. Raises an error on failure. */
24897
24898 static struct dwarf2_per_cu_data *
24899 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24900 unsigned int offset_in_dwz,
24901 struct dwarf2_per_objfile *dwarf2_per_objfile)
24902 {
24903 struct dwarf2_per_cu_data *this_cu;
24904 int low, high;
24905 const sect_offset *cu_off;
24906
24907 low = 0;
24908 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24909 while (high > low)
24910 {
24911 struct dwarf2_per_cu_data *mid_cu;
24912 int mid = low + (high - low) / 2;
24913
24914 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24915 cu_off = &mid_cu->sect_off;
24916 if (mid_cu->is_dwz > offset_in_dwz
24917 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24918 high = mid;
24919 else
24920 low = mid + 1;
24921 }
24922 gdb_assert (low == high);
24923 this_cu = dwarf2_per_objfile->all_comp_units[low];
24924 cu_off = &this_cu->sect_off;
24925 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24926 {
24927 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24928 error (_("Dwarf Error: could not find partial DIE containing "
24929 "offset %s [in module %s]"),
24930 sect_offset_str (sect_off),
24931 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24932
24933 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24934 <= sect_off);
24935 return dwarf2_per_objfile->all_comp_units[low-1];
24936 }
24937 else
24938 {
24939 this_cu = dwarf2_per_objfile->all_comp_units[low];
24940 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24941 && sect_off >= this_cu->sect_off + this_cu->length)
24942 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24943 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24944 return this_cu;
24945 }
24946 }
24947
24948 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24949
24950 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24951 : per_cu (per_cu_),
24952 mark (0),
24953 has_loclist (0),
24954 checked_producer (0),
24955 producer_is_gxx_lt_4_6 (0),
24956 producer_is_gcc_lt_4_3 (0),
24957 producer_is_icc_lt_14 (0),
24958 processing_has_namespace_info (0)
24959 {
24960 per_cu->cu = this;
24961 }
24962
24963 /* Destroy a dwarf2_cu. */
24964
24965 dwarf2_cu::~dwarf2_cu ()
24966 {
24967 per_cu->cu = NULL;
24968 }
24969
24970 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24971
24972 static void
24973 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24974 enum language pretend_language)
24975 {
24976 struct attribute *attr;
24977
24978 /* Set the language we're debugging. */
24979 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24980 if (attr)
24981 set_cu_language (DW_UNSND (attr), cu);
24982 else
24983 {
24984 cu->language = pretend_language;
24985 cu->language_defn = language_def (cu->language);
24986 }
24987
24988 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24989 }
24990
24991 /* Increase the age counter on each cached compilation unit, and free
24992 any that are too old. */
24993
24994 static void
24995 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24996 {
24997 struct dwarf2_per_cu_data *per_cu, **last_chain;
24998
24999 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25000 per_cu = dwarf2_per_objfile->read_in_chain;
25001 while (per_cu != NULL)
25002 {
25003 per_cu->cu->last_used ++;
25004 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25005 dwarf2_mark (per_cu->cu);
25006 per_cu = per_cu->cu->read_in_chain;
25007 }
25008
25009 per_cu = dwarf2_per_objfile->read_in_chain;
25010 last_chain = &dwarf2_per_objfile->read_in_chain;
25011 while (per_cu != NULL)
25012 {
25013 struct dwarf2_per_cu_data *next_cu;
25014
25015 next_cu = per_cu->cu->read_in_chain;
25016
25017 if (!per_cu->cu->mark)
25018 {
25019 delete per_cu->cu;
25020 *last_chain = next_cu;
25021 }
25022 else
25023 last_chain = &per_cu->cu->read_in_chain;
25024
25025 per_cu = next_cu;
25026 }
25027 }
25028
25029 /* Remove a single compilation unit from the cache. */
25030
25031 static void
25032 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25033 {
25034 struct dwarf2_per_cu_data *per_cu, **last_chain;
25035 struct dwarf2_per_objfile *dwarf2_per_objfile
25036 = target_per_cu->dwarf2_per_objfile;
25037
25038 per_cu = dwarf2_per_objfile->read_in_chain;
25039 last_chain = &dwarf2_per_objfile->read_in_chain;
25040 while (per_cu != NULL)
25041 {
25042 struct dwarf2_per_cu_data *next_cu;
25043
25044 next_cu = per_cu->cu->read_in_chain;
25045
25046 if (per_cu == target_per_cu)
25047 {
25048 delete per_cu->cu;
25049 per_cu->cu = NULL;
25050 *last_chain = next_cu;
25051 break;
25052 }
25053 else
25054 last_chain = &per_cu->cu->read_in_chain;
25055
25056 per_cu = next_cu;
25057 }
25058 }
25059
25060 /* Cleanup function for the dwarf2_per_objfile data. */
25061
25062 static void
25063 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25064 {
25065 struct dwarf2_per_objfile *dwarf2_per_objfile
25066 = static_cast<struct dwarf2_per_objfile *> (datum);
25067
25068 delete dwarf2_per_objfile;
25069 }
25070
25071 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25072 We store these in a hash table separate from the DIEs, and preserve them
25073 when the DIEs are flushed out of cache.
25074
25075 The CU "per_cu" pointer is needed because offset alone is not enough to
25076 uniquely identify the type. A file may have multiple .debug_types sections,
25077 or the type may come from a DWO file. Furthermore, while it's more logical
25078 to use per_cu->section+offset, with Fission the section with the data is in
25079 the DWO file but we don't know that section at the point we need it.
25080 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25081 because we can enter the lookup routine, get_die_type_at_offset, from
25082 outside this file, and thus won't necessarily have PER_CU->cu.
25083 Fortunately, PER_CU is stable for the life of the objfile. */
25084
25085 struct dwarf2_per_cu_offset_and_type
25086 {
25087 const struct dwarf2_per_cu_data *per_cu;
25088 sect_offset sect_off;
25089 struct type *type;
25090 };
25091
25092 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25093
25094 static hashval_t
25095 per_cu_offset_and_type_hash (const void *item)
25096 {
25097 const struct dwarf2_per_cu_offset_and_type *ofs
25098 = (const struct dwarf2_per_cu_offset_and_type *) item;
25099
25100 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25101 }
25102
25103 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25104
25105 static int
25106 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25107 {
25108 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25109 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25110 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25111 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25112
25113 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25114 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25115 }
25116
25117 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25118 table if necessary. For convenience, return TYPE.
25119
25120 The DIEs reading must have careful ordering to:
25121 * Not cause infite loops trying to read in DIEs as a prerequisite for
25122 reading current DIE.
25123 * Not trying to dereference contents of still incompletely read in types
25124 while reading in other DIEs.
25125 * Enable referencing still incompletely read in types just by a pointer to
25126 the type without accessing its fields.
25127
25128 Therefore caller should follow these rules:
25129 * Try to fetch any prerequisite types we may need to build this DIE type
25130 before building the type and calling set_die_type.
25131 * After building type call set_die_type for current DIE as soon as
25132 possible before fetching more types to complete the current type.
25133 * Make the type as complete as possible before fetching more types. */
25134
25135 static struct type *
25136 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25137 {
25138 struct dwarf2_per_objfile *dwarf2_per_objfile
25139 = cu->per_cu->dwarf2_per_objfile;
25140 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25141 struct objfile *objfile = dwarf2_per_objfile->objfile;
25142 struct attribute *attr;
25143 struct dynamic_prop prop;
25144
25145 /* For Ada types, make sure that the gnat-specific data is always
25146 initialized (if not already set). There are a few types where
25147 we should not be doing so, because the type-specific area is
25148 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25149 where the type-specific area is used to store the floatformat).
25150 But this is not a problem, because the gnat-specific information
25151 is actually not needed for these types. */
25152 if (need_gnat_info (cu)
25153 && TYPE_CODE (type) != TYPE_CODE_FUNC
25154 && TYPE_CODE (type) != TYPE_CODE_FLT
25155 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25156 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25157 && TYPE_CODE (type) != TYPE_CODE_METHOD
25158 && !HAVE_GNAT_AUX_INFO (type))
25159 INIT_GNAT_SPECIFIC (type);
25160
25161 /* Read DW_AT_allocated and set in type. */
25162 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25163 if (attr_form_is_block (attr))
25164 {
25165 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25166 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25167 }
25168 else if (attr != NULL)
25169 {
25170 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25171 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25172 sect_offset_str (die->sect_off));
25173 }
25174
25175 /* Read DW_AT_associated and set in type. */
25176 attr = dwarf2_attr (die, DW_AT_associated, cu);
25177 if (attr_form_is_block (attr))
25178 {
25179 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25180 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25181 }
25182 else if (attr != NULL)
25183 {
25184 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25185 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25186 sect_offset_str (die->sect_off));
25187 }
25188
25189 /* Read DW_AT_data_location and set in type. */
25190 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25191 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25192 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25193
25194 if (dwarf2_per_objfile->die_type_hash == NULL)
25195 {
25196 dwarf2_per_objfile->die_type_hash =
25197 htab_create_alloc_ex (127,
25198 per_cu_offset_and_type_hash,
25199 per_cu_offset_and_type_eq,
25200 NULL,
25201 &objfile->objfile_obstack,
25202 hashtab_obstack_allocate,
25203 dummy_obstack_deallocate);
25204 }
25205
25206 ofs.per_cu = cu->per_cu;
25207 ofs.sect_off = die->sect_off;
25208 ofs.type = type;
25209 slot = (struct dwarf2_per_cu_offset_and_type **)
25210 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25211 if (*slot)
25212 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25213 sect_offset_str (die->sect_off));
25214 *slot = XOBNEW (&objfile->objfile_obstack,
25215 struct dwarf2_per_cu_offset_and_type);
25216 **slot = ofs;
25217 return type;
25218 }
25219
25220 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25221 or return NULL if the die does not have a saved type. */
25222
25223 static struct type *
25224 get_die_type_at_offset (sect_offset sect_off,
25225 struct dwarf2_per_cu_data *per_cu)
25226 {
25227 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25228 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25229
25230 if (dwarf2_per_objfile->die_type_hash == NULL)
25231 return NULL;
25232
25233 ofs.per_cu = per_cu;
25234 ofs.sect_off = sect_off;
25235 slot = ((struct dwarf2_per_cu_offset_and_type *)
25236 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25237 if (slot)
25238 return slot->type;
25239 else
25240 return NULL;
25241 }
25242
25243 /* Look up the type for DIE in CU in die_type_hash,
25244 or return NULL if DIE does not have a saved type. */
25245
25246 static struct type *
25247 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25248 {
25249 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25250 }
25251
25252 /* Add a dependence relationship from CU to REF_PER_CU. */
25253
25254 static void
25255 dwarf2_add_dependence (struct dwarf2_cu *cu,
25256 struct dwarf2_per_cu_data *ref_per_cu)
25257 {
25258 void **slot;
25259
25260 if (cu->dependencies == NULL)
25261 cu->dependencies
25262 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25263 NULL, &cu->comp_unit_obstack,
25264 hashtab_obstack_allocate,
25265 dummy_obstack_deallocate);
25266
25267 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25268 if (*slot == NULL)
25269 *slot = ref_per_cu;
25270 }
25271
25272 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25273 Set the mark field in every compilation unit in the
25274 cache that we must keep because we are keeping CU. */
25275
25276 static int
25277 dwarf2_mark_helper (void **slot, void *data)
25278 {
25279 struct dwarf2_per_cu_data *per_cu;
25280
25281 per_cu = (struct dwarf2_per_cu_data *) *slot;
25282
25283 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25284 reading of the chain. As such dependencies remain valid it is not much
25285 useful to track and undo them during QUIT cleanups. */
25286 if (per_cu->cu == NULL)
25287 return 1;
25288
25289 if (per_cu->cu->mark)
25290 return 1;
25291 per_cu->cu->mark = 1;
25292
25293 if (per_cu->cu->dependencies != NULL)
25294 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25295
25296 return 1;
25297 }
25298
25299 /* Set the mark field in CU and in every other compilation unit in the
25300 cache that we must keep because we are keeping CU. */
25301
25302 static void
25303 dwarf2_mark (struct dwarf2_cu *cu)
25304 {
25305 if (cu->mark)
25306 return;
25307 cu->mark = 1;
25308 if (cu->dependencies != NULL)
25309 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25310 }
25311
25312 static void
25313 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25314 {
25315 while (per_cu)
25316 {
25317 per_cu->cu->mark = 0;
25318 per_cu = per_cu->cu->read_in_chain;
25319 }
25320 }
25321
25322 /* Trivial hash function for partial_die_info: the hash value of a DIE
25323 is its offset in .debug_info for this objfile. */
25324
25325 static hashval_t
25326 partial_die_hash (const void *item)
25327 {
25328 const struct partial_die_info *part_die
25329 = (const struct partial_die_info *) item;
25330
25331 return to_underlying (part_die->sect_off);
25332 }
25333
25334 /* Trivial comparison function for partial_die_info structures: two DIEs
25335 are equal if they have the same offset. */
25336
25337 static int
25338 partial_die_eq (const void *item_lhs, const void *item_rhs)
25339 {
25340 const struct partial_die_info *part_die_lhs
25341 = (const struct partial_die_info *) item_lhs;
25342 const struct partial_die_info *part_die_rhs
25343 = (const struct partial_die_info *) item_rhs;
25344
25345 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25346 }
25347
25348 struct cmd_list_element *set_dwarf_cmdlist;
25349 struct cmd_list_element *show_dwarf_cmdlist;
25350
25351 static void
25352 set_dwarf_cmd (const char *args, int from_tty)
25353 {
25354 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25355 gdb_stdout);
25356 }
25357
25358 static void
25359 show_dwarf_cmd (const char *args, int from_tty)
25360 {
25361 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25362 }
25363
25364 int dwarf_always_disassemble;
25365
25366 static void
25367 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25368 struct cmd_list_element *c, const char *value)
25369 {
25370 fprintf_filtered (file,
25371 _("Whether to always disassemble "
25372 "DWARF expressions is %s.\n"),
25373 value);
25374 }
25375
25376 static void
25377 show_check_physname (struct ui_file *file, int from_tty,
25378 struct cmd_list_element *c, const char *value)
25379 {
25380 fprintf_filtered (file,
25381 _("Whether to check \"physname\" is %s.\n"),
25382 value);
25383 }
25384
25385 void
25386 _initialize_dwarf2_read (void)
25387 {
25388 dwarf2_objfile_data_key
25389 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25390
25391 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25392 Set DWARF specific variables.\n\
25393 Configure DWARF variables such as the cache size"),
25394 &set_dwarf_cmdlist, "maintenance set dwarf ",
25395 0/*allow-unknown*/, &maintenance_set_cmdlist);
25396
25397 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25398 Show DWARF specific variables\n\
25399 Show DWARF variables such as the cache size"),
25400 &show_dwarf_cmdlist, "maintenance show dwarf ",
25401 0/*allow-unknown*/, &maintenance_show_cmdlist);
25402
25403 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25404 &dwarf_max_cache_age, _("\
25405 Set the upper bound on the age of cached DWARF compilation units."), _("\
25406 Show the upper bound on the age of cached DWARF compilation units."), _("\
25407 A higher limit means that cached compilation units will be stored\n\
25408 in memory longer, and more total memory will be used. Zero disables\n\
25409 caching, which can slow down startup."),
25410 NULL,
25411 show_dwarf_max_cache_age,
25412 &set_dwarf_cmdlist,
25413 &show_dwarf_cmdlist);
25414
25415 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25416 &dwarf_always_disassemble, _("\
25417 Set whether `info address' always disassembles DWARF expressions."), _("\
25418 Show whether `info address' always disassembles DWARF expressions."), _("\
25419 When enabled, DWARF expressions are always printed in an assembly-like\n\
25420 syntax. When disabled, expressions will be printed in a more\n\
25421 conversational style, when possible."),
25422 NULL,
25423 show_dwarf_always_disassemble,
25424 &set_dwarf_cmdlist,
25425 &show_dwarf_cmdlist);
25426
25427 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25428 Set debugging of the DWARF reader."), _("\
25429 Show debugging of the DWARF reader."), _("\
25430 When enabled (non-zero), debugging messages are printed during DWARF\n\
25431 reading and symtab expansion. A value of 1 (one) provides basic\n\
25432 information. A value greater than 1 provides more verbose information."),
25433 NULL,
25434 NULL,
25435 &setdebuglist, &showdebuglist);
25436
25437 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25438 Set debugging of the DWARF DIE reader."), _("\
25439 Show debugging of the DWARF DIE reader."), _("\
25440 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25441 The value is the maximum depth to print."),
25442 NULL,
25443 NULL,
25444 &setdebuglist, &showdebuglist);
25445
25446 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25447 Set debugging of the dwarf line reader."), _("\
25448 Show debugging of the dwarf line reader."), _("\
25449 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25450 A value of 1 (one) provides basic information.\n\
25451 A value greater than 1 provides more verbose information."),
25452 NULL,
25453 NULL,
25454 &setdebuglist, &showdebuglist);
25455
25456 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25457 Set cross-checking of \"physname\" code against demangler."), _("\
25458 Show cross-checking of \"physname\" code against demangler."), _("\
25459 When enabled, GDB's internal \"physname\" code is checked against\n\
25460 the demangler."),
25461 NULL, show_check_physname,
25462 &setdebuglist, &showdebuglist);
25463
25464 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25465 no_class, &use_deprecated_index_sections, _("\
25466 Set whether to use deprecated gdb_index sections."), _("\
25467 Show whether to use deprecated gdb_index sections."), _("\
25468 When enabled, deprecated .gdb_index sections are used anyway.\n\
25469 Normally they are ignored either because of a missing feature or\n\
25470 performance issue.\n\
25471 Warning: This option must be enabled before gdb reads the file."),
25472 NULL,
25473 NULL,
25474 &setlist, &showlist);
25475
25476 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25477 &dwarf2_locexpr_funcs);
25478 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25479 &dwarf2_loclist_funcs);
25480
25481 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25482 &dwarf2_block_frame_base_locexpr_funcs);
25483 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25484 &dwarf2_block_frame_base_loclist_funcs);
25485
25486 #if GDB_SELF_TEST
25487 selftests::register_test ("dw2_expand_symtabs_matching",
25488 selftests::dw2_expand_symtabs_matching::run_test);
25489 #endif
25490 }