]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
Remove symfile_complaints
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
814 : name (name_),
815 dbfd (std::move (abfd))
816 {
817 }
818
819 /* Name of the file. */
820 const char *name;
821
822 /* File format version. */
823 int version = 0;
824
825 /* The bfd. */
826 gdb_bfd_ref_ptr dbfd;
827
828 /* Section info for this file. */
829 struct dwp_sections sections {};
830
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
833
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
836
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
840
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
853 {
854 }
855
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
864
865 /* The dwz's BFD. */
866 gdb_bfd_ref_ptr dwz_bfd;
867 };
868
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
873
874 struct die_reader_specs
875 {
876 /* The bfd of die_section. */
877 bfd* abfd;
878
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
881
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
884
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
888
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
891
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
894
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
897
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
900 };
901
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
911 array/vector. */
912 enum class dir_index : unsigned int {};
913
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
916
917 struct file_entry
918 {
919 file_entry () = default;
920
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
923 : name (name_),
924 d_index (d_index_),
925 mod_time (mod_time_),
926 length (length_)
927 {}
928
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
932
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
935 const char *name {};
936
937 /* The directory index (1-based). */
938 dir_index d_index {};
939
940 unsigned int mod_time {};
941
942 unsigned int length {};
943
944 /* True if referenced by the Line Number Program. */
945 bool included_p {};
946
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
949 };
950
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
954 struct line_header
955 {
956 line_header ()
957 : offset_in_dwz {}
958 {}
959
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
962
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
966
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
968 is out of bounds. */
969 const char *include_dir_at (dir_index index) const
970 {
971 /* Convert directory index number (1-based) to vector index
972 (0-based). */
973 size_t vec_index = to_underlying (index) - 1;
974
975 if (vec_index >= include_dirs.size ())
976 return NULL;
977 return include_dirs[vec_index];
978 }
979
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
981 is out of bounds. */
982 file_entry *file_name_at (file_name_index index)
983 {
984 /* Convert file name index number (1-based) to vector index
985 (0-based). */
986 size_t vec_index = to_underlying (index) - 1;
987
988 if (vec_index >= file_names.size ())
989 return NULL;
990 return &file_names[vec_index];
991 }
992
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
995 {
996 if (index >= file_names.size ())
997 return NULL;
998 return &file_names[index];
999 }
1000
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1003
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1006
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1013 int line_base {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1016
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1022
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1026
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1029
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1033 };
1034
1035 typedef std::unique_ptr<line_header> line_header_up;
1036
1037 const char *
1038 file_entry::include_dir (const line_header *lh) const
1039 {
1040 return lh->include_dir_at (d_index);
1041 }
1042
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1046 {
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1048
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1052
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1055 name. */
1056 void fixup (struct dwarf2_cu *cu);
1057
1058 /* Read a minimal amount of information into the minimal die
1059 structure. */
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1063
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1066
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1069
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1072
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1079
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1082
1083 /* Flag set if the SCOPE field of this structure has been
1084 computed. */
1085 unsigned int scope_set : 1;
1086
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1089
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1092
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1098
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1108
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1111
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1116
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1125 } d {};
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1130
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1147
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1150
1151 private:
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1155 {
1156 }
1157
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1159 int has_children_)
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1161 {
1162 is_external = 0;
1163 is_declaration = 0;
1164 has_type = 0;
1165 has_specification = 0;
1166 has_pc_info = 0;
1167 may_be_inlined = 0;
1168 main_subprogram = 0;
1169 scope_set = 0;
1170 has_byte_size = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1173 fixup_called = 0;
1174 is_dwz = 0;
1175 spec_is_dwz = 0;
1176 }
1177 };
1178
1179 /* This data structure holds the information of an abbrev. */
1180 struct abbrev_info
1181 {
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1188 };
1189
1190 struct attr_abbrev
1191 {
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1194
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1197 };
1198
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1201
1202 /* Top level data structure to contain an abbreviation table. */
1203
1204 struct abbrev_table
1205 {
1206 explicit abbrev_table (sect_offset off)
1207 : sect_off (off)
1208 {
1209 m_abbrevs =
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1212 }
1213
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1215
1216 /* Allocate space for a struct abbrev_info object in
1217 ABBREV_TABLE. */
1218 struct abbrev_info *alloc_abbrev ();
1219
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1222
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1225
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1227
1228
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1232
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1235
1236 private:
1237
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1241 don't either. */
1242 struct abbrev_info **m_abbrevs;
1243 };
1244
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1246
1247 /* Attributes have a name and a value. */
1248 struct attribute
1249 {
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1252
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1257
1258 union
1259 {
1260 const char *str;
1261 struct dwarf_block *blk;
1262 ULONGEST unsnd;
1263 LONGEST snd;
1264 CORE_ADDR addr;
1265 ULONGEST signature;
1266 }
1267 u;
1268 };
1269
1270 /* This data structure holds a complete die structure. */
1271 struct die_info
1272 {
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1275
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1278
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1282
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1285
1286 /* Abbrev number */
1287 unsigned int abbrev;
1288
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1291
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1299
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1304 };
1305
1306 /* Get at parts of an attribute structure. */
1307
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1315
1316 /* Blocks are a bunch of untyped bytes. */
1317 struct dwarf_block
1318 {
1319 size_t size;
1320
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1323 };
1324
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1327 #endif
1328
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1332 #endif
1333
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1336 and friends. */
1337 static int bits_per_byte = 8;
1338
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1341 type. */
1342
1343 struct variant_field
1344 {
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1346 value. */
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1349 default branch. */
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1354 };
1355
1356 struct nextfield
1357 {
1358 int accessibility = 0;
1359 int virtuality = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1363 };
1364
1365 struct fnfieldlist
1366 {
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1369 };
1370
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1374 struct field_info
1375 {
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1379
1380 /* Number of fields (including baseclasses). */
1381 int nfields = 0;
1382
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1385
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1390
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1394
1395 /* Nested types defined by this class and the number of elements in this
1396 list. */
1397 std::vector<struct decl_field> nested_types_list;
1398 };
1399
1400 /* One item on the queue of compilation units to read in full symbols
1401 for. */
1402 struct dwarf2_queue_item
1403 {
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1407 };
1408
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1411
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1418 static void
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1424 value);
1425 }
1426 \f
1427 /* local function prototypes */
1428
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1430
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1432
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1435
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1438
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1443
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1446
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1450
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1457
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1461
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1464
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1468
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1470 struct objfile *);
1471
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1473
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1476 sect_offset);
1477
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1479
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1482
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1485
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1488 const gdb_byte *);
1489
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1491
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1493
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1495
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1497
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1499
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1501 unsigned int *);
1502
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1508
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1511 unsigned int *);
1512
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1514
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1518
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1520
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1522
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1526
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1534
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1537
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1539
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1541 const gdb_byte *,
1542 unsigned int *);
1543
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1546
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1548
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1551
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1553 unsigned int);
1554
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1557
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1560
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1562
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1565
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1568
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1572
1573 static void dwarf2_start_subfile (const char *, const char *);
1574
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1577 CORE_ADDR);
1578
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1581
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1586 struct type *type,
1587 const char *name,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1592
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1594
1595 static int need_gnat_info (struct dwarf2_cu *);
1596
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1599
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1602
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1605
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1608
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1610
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1612
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1614
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1618
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1626
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1630
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1633
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1636 enum pc_bounds_kind
1637 {
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1640
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1643 PC_BOUNDS_INVALID,
1644
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1646 PC_BOUNDS_RANGES,
1647
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1649 PC_BOUNDS_HIGH_LOW,
1650 };
1651
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1654 struct dwarf2_cu *,
1655 struct partial_symtab *);
1656
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1660
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1663
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1666
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1669
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1673
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1675 struct type *,
1676 struct dwarf2_cu *);
1677
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1679
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1681
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1683
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static struct using_direct **using_directives (enum language);
1687
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1689
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1691
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1694
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1697
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1699
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1701
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1704
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1707 struct die_info *);
1708
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1713
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1716 int *, int);
1717
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1720 int *);
1721
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1725 struct obstack *);
1726
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1735
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1738
1739 static const char *dwarf_tag_name (unsigned int);
1740
1741 static const char *dwarf_attr_name (unsigned int);
1742
1743 static const char *dwarf_form_name (unsigned int);
1744
1745 static const char *dwarf_bool_name (unsigned int);
1746
1747 static const char *dwarf_type_encoding_name (unsigned int);
1748
1749 static struct die_info *sibling_die (struct die_info *);
1750
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1752
1753 static void dump_die_for_error (struct die_info *);
1754
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1756 struct die_info *);
1757
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1759
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1762
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1764
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1766
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1770
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1774
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1778
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1781
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1785
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1787
1788 static void read_signatured_type (struct signatured_type *);
1789
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1793
1794 /* memory allocation interface */
1795
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1797
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1799
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1801
1802 static int attr_form_is_block (const struct attribute *);
1803
1804 static int attr_form_is_section_offset (const struct attribute *);
1805
1806 static int attr_form_is_constant (const struct attribute *);
1807
1808 static int attr_form_is_ref (const struct attribute *);
1809
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1813
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1815 struct symbol *sym,
1816 struct dwarf2_cu *cu,
1817 int is_block);
1818
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1822
1823 static hashval_t partial_die_hash (const void *item);
1824
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1826
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1830
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1834
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1836
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1838
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1841
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1843
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1845
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1847 enum language);
1848
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1850 enum language);
1851
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1853 enum language);
1854
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1857
1858 static void dwarf2_mark (struct dwarf2_cu *);
1859
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1861
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1864
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1866
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1869
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1876
1877 class dwarf2_queue_guard
1878 {
1879 public:
1880 dwarf2_queue_guard () = default;
1881
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1885 {
1886 struct dwarf2_queue_item *item, *last;
1887
1888 item = dwarf2_queue;
1889 while (item)
1890 {
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1894 {
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1898 }
1899
1900 last = item;
1901 item = item->next;
1902 xfree (last);
1903 }
1904
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1906 }
1907 };
1908
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1911
1912 struct file_and_directory
1913 {
1914 /* The filename. This is never NULL. */
1915 const char *name;
1916
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1922
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1926 };
1927
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1930
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1933
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1936
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1943
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1948
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1952
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1954
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1956
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1961
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1964
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1967
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1970
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1972
1973 static void free_dwo_file (struct dwo_file *);
1974
1975 /* A unique_ptr helper to free a dwo_file. */
1976
1977 struct dwo_file_deleter
1978 {
1979 void operator() (struct dwo_file *df) const
1980 {
1981 free_dwo_file (df);
1982 }
1983 };
1984
1985 /* A unique pointer to a dwo_file. */
1986
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1988
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1990
1991 static void check_producer (struct dwarf2_cu *cu);
1992
1993 static void free_line_header_voidp (void *arg);
1994 \f
1995 /* Various complaints about symbol reading that don't abort the process. */
1996
1997 static void
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1999 {
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2001 }
2002
2003 static void
2004 dwarf2_debug_line_missing_file_complaint (void)
2005 {
2006 complaint (_(".debug_line section has line data without a file"));
2007 }
2008
2009 static void
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2011 {
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2014 }
2015
2016 static void
2017 dwarf2_complex_location_expr_complaint (void)
2018 {
2019 complaint (_("location expression too complex"));
2020 }
2021
2022 static void
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2024 int arg3)
2025 {
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2027 arg1, arg2, arg3);
2028 }
2029
2030 static void
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2032 {
2033 complaint (_("debug info runs off end of %s section"
2034 " [in module %s]"),
2035 get_section_name (section),
2036 get_section_file_name (section));
2037 }
2038
2039 static void
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2041 {
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2044 arg1);
2045 }
2046
2047 static void
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2049 {
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2051 arg1, arg2);
2052 }
2053
2054 /* Hash function for line_header_hash. */
2055
2056 static hashval_t
2057 line_header_hash (const struct line_header *ofs)
2058 {
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2060 }
2061
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2063
2064 static hashval_t
2065 line_header_hash_voidp (const void *item)
2066 {
2067 const struct line_header *ofs = (const struct line_header *) item;
2068
2069 return line_header_hash (ofs);
2070 }
2071
2072 /* Equality function for line_header_hash. */
2073
2074 static int
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2076 {
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2079
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2082 }
2083
2084 \f
2085
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2088
2089 static CORE_ADDR
2090 attr_value_as_address (struct attribute *attr)
2091 {
2092 CORE_ADDR addr;
2093
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2095 {
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2109 }
2110 else
2111 addr = DW_ADDR (attr);
2112
2113 return addr;
2114 }
2115
2116 /* See declaration. */
2117
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2121 {
2122 if (names == NULL)
2123 names = &dwarf2_elf_names;
2124
2125 bfd *obfd = objfile->obfd;
2126
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2129 }
2130
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2132
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2134 {
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2137
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2140
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2143
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2146
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2149
2150 VEC_free (dwarf2_section_info_def, types);
2151
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2154
2155 /* Everything else should be on the objfile obstack. */
2156 }
2157
2158 /* See declaration. */
2159
2160 void
2161 dwarf2_per_objfile::free_cached_comp_units ()
2162 {
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
2169 delete per_cu->cu;
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173 }
2174
2175 /* A helper class that calls free_cached_comp_units on
2176 destruction. */
2177
2178 class free_cached_comp_units
2179 {
2180 public:
2181
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2184 {
2185 }
2186
2187 ~free_cached_comp_units ()
2188 {
2189 m_per_objfile->free_cached_comp_units ();
2190 }
2191
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2193
2194 private:
2195
2196 dwarf2_per_objfile *m_per_objfile;
2197 };
2198
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2203
2204 int
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2207 {
2208 if (objfile->flags & OBJF_READNEVER)
2209 return 0;
2210
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2213
2214 if (dwarf2_per_objfile == NULL)
2215 {
2216 /* Initialize per-objfile state. */
2217 dwarf2_per_objfile
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2219 names);
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2221 }
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2226 }
2227
2228 /* Return the containing section of virtual section SECTION. */
2229
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2232 {
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2235 }
2236
2237 /* Return the bfd owner of SECTION. */
2238
2239 static struct bfd *
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2241 {
2242 if (section->is_virtual)
2243 {
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2246 }
2247 return section->s.section->owner;
2248 }
2249
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2252
2253 static asection *
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2255 {
2256 if (section->is_virtual)
2257 {
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2260 }
2261 return section->s.section;
2262 }
2263
2264 /* Return the name of SECTION. */
2265
2266 static const char *
2267 get_section_name (const struct dwarf2_section_info *section)
2268 {
2269 asection *sectp = get_section_bfd_section (section);
2270
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2273 }
2274
2275 /* Return the name of the file SECTION is in. */
2276
2277 static const char *
2278 get_section_file_name (const struct dwarf2_section_info *section)
2279 {
2280 bfd *abfd = get_section_bfd_owner (section);
2281
2282 return bfd_get_filename (abfd);
2283 }
2284
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2287
2288 static int
2289 get_section_id (const struct dwarf2_section_info *section)
2290 {
2291 asection *sectp = get_section_bfd_section (section);
2292
2293 if (sectp == NULL)
2294 return 0;
2295 return sectp->id;
2296 }
2297
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2300
2301 static int
2302 get_section_flags (const struct dwarf2_section_info *section)
2303 {
2304 asection *sectp = get_section_bfd_section (section);
2305
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2308 }
2309
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2312
2313 static int
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2316 {
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2319 return 1;
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2322 return 1;
2323 return 0;
2324 }
2325
2326 /* See declaration. */
2327
2328 void
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2331 {
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2333
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2335 {
2336 }
2337 else if (section_is_p (sectp->name, &names.info))
2338 {
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &names.abbrev))
2343 {
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.line))
2348 {
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.loc))
2353 {
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loclists))
2358 {
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.macinfo))
2363 {
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macro))
2368 {
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.str))
2373 {
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.line_str))
2378 {
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.addr))
2383 {
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.frame))
2388 {
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2393 {
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.ranges))
2398 {
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.rnglists))
2403 {
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.types))
2408 {
2409 struct dwarf2_section_info type_section;
2410
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2414
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2416 &type_section);
2417 }
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2419 {
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.debug_names))
2424 {
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2429 {
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 }
2433
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2437 }
2438
2439 /* A helper function that decides whether a section is empty,
2440 or not present. */
2441
2442 static int
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2444 {
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2448 }
2449
2450 /* See dwarf2read.h. */
2451
2452 void
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2454 {
2455 asection *sectp;
2456 bfd *abfd;
2457 gdb_byte *buf, *retbuf;
2458
2459 if (info->readin)
2460 return;
2461 info->buffer = NULL;
2462 info->readin = 1;
2463
2464 if (dwarf2_section_empty_p (info))
2465 return;
2466
2467 sectp = get_section_bfd_section (info);
2468
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2471 {
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2474
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2477 {
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2481 }
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2484 fit. */
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2491 return;
2492 }
2493
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2497 {
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2499 return;
2500 }
2501
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2503 info->buffer = buf;
2504
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2510 if (retbuf != NULL)
2511 {
2512 info->buffer = retbuf;
2513 return;
2514 }
2515
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2518
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2521 {
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2525 }
2526 }
2527
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2534
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2538 {
2539 if (!info->readin)
2540 dwarf2_read_section (objfile, info);
2541 return info->size;
2542 }
2543
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2545 SECTION_NAME. */
2546
2547 void
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2552 {
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2635
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2638 {
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2641 size_t buildid_len;
2642 bfd_byte *buildid;
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2646
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2660
2661 buildid_len = (size_t) buildid_len_arg;
2662
2663 filename = data.get ();
2664
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2670
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2673 }
2674
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2679 {
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.release ();
2682 }
2683
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2693
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
2696
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2701 }
2702 \f
2703 /* DWARF quick_symbols_functions support. */
2704
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2711 {
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725 };
2726
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2731 {
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748 };
2749
2750 /* Utility hash function for a stmt_list_hash. */
2751
2752 static hashval_t
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754 {
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2760 return v;
2761 }
2762
2763 /* Utility equality function for a stmt_list_hash. */
2764
2765 static int
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768 {
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
2775 return lhs->line_sect_off == rhs->line_sect_off;
2776 }
2777
2778 /* Hash function for a quick_file_names. */
2779
2780 static hashval_t
2781 hash_file_name_entry (const void *e)
2782 {
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2785
2786 return hash_stmt_list_entry (&file_data->hash);
2787 }
2788
2789 /* Equality function for a quick_file_names. */
2790
2791 static int
2792 eq_file_name_entry (const void *a, const void *b)
2793 {
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2796
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2798 }
2799
2800 /* Delete function for a quick_file_names. */
2801
2802 static void
2803 delete_file_name_entry (void *e)
2804 {
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817 }
2818
2819 /* Create a quick_file_names hash table. */
2820
2821 static htab_t
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2823 {
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827 }
2828
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833 static void
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2835 {
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2838 else
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2840
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2845 }
2846
2847 /* Read in the symbols for PER_CU. */
2848
2849 static void
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2851 {
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2853
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2863
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2882 }
2883
2884 process_queue (dwarf2_per_objfile);
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2889 }
2890
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2894
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2897 {
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2902 {
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2907 }
2908
2909 return per_cu->v.quick->compunit_symtab;
2910 }
2911
2912 /* See declaration. */
2913
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2916 {
2917 if (index >= this->all_comp_units.size ())
2918 {
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2922 }
2923
2924 return this->all_comp_units[index];
2925 }
2926
2927 /* See declaration. */
2928
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2931 {
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 signatured_type *
2940 dwarf2_per_objfile::get_tu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2943
2944 return this->all_type_units[index];
2945 }
2946
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956 {
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969 }
2970
2971 /* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2973
2974 static void
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2978 int is_dwz)
2979 {
2980 for (offset_type i = 0; i < n_elements; i += 2)
2981 {
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2987 cu_list += 2 * 8;
2988
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2993 }
2994 }
2995
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
2998
2999 static void
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003 {
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3007
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3010
3011 if (dwz_elements == 0)
3012 return;
3013
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3016 &dwz->info, 1);
3017 }
3018
3019 /* Create the signatured type hash table from the index. */
3020
3021 static void
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3027 {
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3029
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3032
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3034
3035 for (offset_type i = 0; i < elements; i += 3)
3036 {
3037 struct signatured_type *sig_type;
3038 ULONGEST signature;
3039 void **slot;
3040 cu_offset type_offset_in_tu;
3041
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
3065
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3067 }
3068
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3070 }
3071
3072 /* Create the signatured type hash table from .debug_names. */
3073
3074 static void
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080 {
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
3094 void **slot;
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127 }
3128
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3131
3132 static void
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3135 {
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3140 CORE_ADDR baseaddr;
3141
3142 auto_obstack temp_obstack;
3143
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
3160
3161 if (lo > hi)
3162 {
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3165 continue;
3166 }
3167
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3169 {
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3172 continue;
3173 }
3174
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3179 }
3180
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3183 }
3184
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188 static void
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3191 {
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3206 {
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3244 return;
3245 }
3246
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3249 addr += 2;
3250 if (version != 2)
3251 {
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3255 version);
3256 return;
3257 }
3258
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3265 {
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3293 return;
3294 }
3295
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3298 use it. */
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3302 if (*addr++ != 0)
3303 {
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3307 return;
3308 }
3309
3310 for (;;)
3311 {
3312 if (addr + 2 * address_size > entry_end)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 dwarf5_byte_order);
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3327 break;
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 {
3330 /* Symbol was eliminated due to a COMDAT group. */
3331 continue;
3332 }
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3337 }
3338 }
3339
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3342 }
3343
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3347 false. */
3348
3349 static bool
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3352 {
3353 offset_type hash;
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3356
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3361 {
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3363 not contain any. */
3364
3365 if (strchr (name, '(') != NULL)
3366 {
3367 without_params = cp_remove_params (name);
3368
3369 if (without_params != NULL)
3370 name = without_params.get ();
3371 }
3372 }
3373
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3380 name);
3381
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3385
3386 for (;;)
3387 {
3388 const char *str;
3389
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3392 return false;
3393
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3396 {
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3399 return true;
3400 }
3401
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3403 }
3404 }
3405
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3410
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3414
3415 Returns 1 if all went well, 0 otherwise. */
3416
3417 static bool
3418 read_index_from_section (struct objfile *objfile,
3419 const char *filename,
3420 bool deprecated_ok,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3427 {
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3431 int i;
3432
3433 if (dwarf2_section_empty_p (section))
3434 return 0;
3435
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3439 return 0;
3440
3441 dwarf2_read_section (objfile, section);
3442
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3536 {
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3541
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3548 return 0;
3549
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3552 return 0;
3553
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3557 if (dwz != NULL)
3558 {
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
3563 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3564 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3567 &dwz_types_ignore,
3568 &dwz_types_elements_ignore))
3569 {
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3572 return 0;
3573 }
3574 }
3575
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3578
3579 if (types_list_elements)
3580 {
3581 struct dwarf2_section_info *section;
3582
3583 /* We can only handle a single .debug_types when we have an
3584 index. */
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3586 return 0;
3587
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3590
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3593 }
3594
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3596
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3601
3602 return 1;
3603 }
3604
3605 /* die_reader_func for dw2_get_file_names. */
3606
3607 static void
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3611 int has_children,
3612 void *data)
3613 {
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3621 int i;
3622 void **slot;
3623 struct quick_file_names *qfn;
3624
3625 gdb_assert (! this_cu->is_debug_types);
3626
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3630 {
3631 this_cu->v.quick->no_file_data = 1;
3632 return;
3633 }
3634
3635 lh_cu = this_cu;
3636 slot = NULL;
3637
3638 line_header_up lh;
3639 sect_offset line_offset {};
3640
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3642 if (attr)
3643 {
3644 struct quick_file_names find_entry;
3645
3646 line_offset = (sect_offset) DW_UNSND (attr);
3647
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3654 if (*slot != NULL)
3655 {
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3657 return;
3658 }
3659
3660 lh = dwarf_decode_line_header (line_offset, cu);
3661 }
3662 if (lh == NULL)
3663 {
3664 lh_cu->v.quick->no_file_data = 1;
3665 return;
3666 }
3667
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3672 *slot = qfn;
3673
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3675
3676 qfn->num_file_names = lh->file_names.size ();
3677 qfn->file_names =
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3682
3683 lh_cu->v.quick->file_names = qfn;
3684 }
3685
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3688
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3691 {
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3696
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3701 return NULL;
3702
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3704
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707 return this_cu->v.quick->file_names;
3708 }
3709
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3712
3713 static const char *
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3716 {
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3720
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3723
3724 return qfn->real_names[index];
3725 }
3726
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3729 {
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3734
3735 if (cust == NULL)
3736 return NULL;
3737
3738 return compunit_primary_filetab (cust);
3739 }
3740
3741 /* Traversal function for dw2_forget_cached_source_info. */
3742
3743 static int
3744 dw2_free_cached_file_names (void **slot, void *info)
3745 {
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3747
3748 if (file_data->real_names)
3749 {
3750 int i;
3751
3752 for (i = 0; i < file_data->num_file_names; ++i)
3753 {
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3756 }
3757 }
3758
3759 return 1;
3760 }
3761
3762 static void
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3764 {
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3767
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3770 }
3771
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3774
3775 static int
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3780 {
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3782
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3785 return 0;
3786
3787 /* This may expand more than one symtab, and we want to iterate over
3788 all of them. */
3789 dw2_instantiate_symtab (per_cu, false);
3790
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3793 }
3794
3795 /* Implementation of the map_symtabs_matching_filename method. */
3796
3797 static bool
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3801 {
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3805
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3808
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3810 {
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3813 continue;
3814
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3817 continue;
3818
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3820 {
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3823
3824 if (compare_filenames_for_search (this_name, name))
3825 {
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3827 callback))
3828 return true;
3829 continue;
3830 }
3831
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3836 continue;
3837
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3840 {
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3842 callback))
3843 return true;
3844 continue;
3845 }
3846
3847 if (real_path != NULL)
3848 {
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3853 {
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3855 callback))
3856 return true;
3857 continue;
3858 }
3859 }
3860 }
3861 }
3862
3863 return false;
3864 }
3865
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3867
3868 struct dw2_symtab_iterator
3869 {
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3876 int block_index;
3877 /* The kind of symbol we're looking for. */
3878 domain_enum domain;
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3881 offset_type *vec;
3882 /* The next element in VEC to look at. */
3883 int next;
3884 /* The number of elements in VEC, or zero if there is no match. */
3885 int length;
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3889 indices. */
3890 int global_seen;
3891 };
3892
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3896
3897 static void
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3901 int block_index,
3902 domain_enum domain,
3903 const char *name)
3904 {
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3909 iter->next = 0;
3910 iter->global_seen = 0;
3911
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3913
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3917 else
3918 {
3919 iter->vec = NULL;
3920 iter->length = 0;
3921 }
3922 }
3923
3924 /* Return the next matching CU or NULL if there are no more. */
3925
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3928 {
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3930
3931 for ( ; iter->next < iter->length; ++iter->next)
3932 {
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3945 int attrs_valid =
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3952 {
3953 complaint (_(".gdb_index entry has bad CU index"
3954 " [in module %s]"),
3955 objfile_name (dwarf2_per_objfile->objfile));
3956 continue;
3957 }
3958
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3960
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3963 continue;
3964
3965 /* Check static vs global. */
3966 if (attrs_valid)
3967 {
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3970 continue;
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3973 continue;
3974 if (!is_static)
3975 iter->global_seen = 1;
3976 }
3977
3978 /* Only check the symbol's kind if it has one. */
3979 if (attrs_valid)
3980 {
3981 switch (iter->domain)
3982 {
3983 case VAR_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3988 continue;
3989 break;
3990 case STRUCT_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3992 continue;
3993 break;
3994 case LABEL_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 ++iter->next;
4004 return per_cu;
4005 }
4006
4007 return NULL;
4008 }
4009
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4013 {
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4017
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4019
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4024
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 {
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4031
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4034 &with_opaque);
4035
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4039
4040 if (sym != NULL
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4042 return stab;
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4045 stab_best = stab;
4046
4047 /* Keep looking through other CUs. */
4048 }
4049
4050 return stab_best;
4051 }
4052
4053 static void
4054 dw2_print_stats (struct objfile *objfile)
4055 {
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4060 int count = 0;
4061
4062 for (int i = 0; i < total; ++i)
4063 {
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4065
4066 if (!per_cu->v.quick->compunit_symtab)
4067 ++count;
4068 }
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4071 }
4072
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4077
4078 static void
4079 dw2_dump (struct objfile *objfile)
4080 {
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4087 {
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4090 }
4091 else
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4094 }
4095
4096 static void
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4100 {
4101 /* There's nothing to relocate here. */
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->psymtabs_addrmap)
5233 return NULL;
5234
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5236 pc);
5237 if (!data)
5238 return NULL;
5239
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5243
5244 result
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5246 false),
5247 pc);
5248 gdb_assert (result != NULL);
5249 return result;
5250 }
5251
5252 static void
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5255 {
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5258
5259 if (!dwarf2_per_objfile->filenames_cache)
5260 {
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5262
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5266
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5270
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5272 {
5273 if (per_cu->v.quick->compunit_symtab)
5274 {
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5277 INSERT);
5278
5279 *slot = per_cu->v.quick->file_names;
5280 }
5281 }
5282
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5284 {
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5287 continue;
5288
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5291 continue;
5292
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5294 if (*slot)
5295 {
5296 /* Already visited. */
5297 continue;
5298 }
5299 *slot = file_data;
5300
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5302 {
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5305 }
5306 }
5307 }
5308
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5310 {
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5312
5313 if (need_fullname)
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5316 });
5317 }
5318
5319 static int
5320 dw2_has_symbols (struct objfile *objfile)
5321 {
5322 return 1;
5323 }
5324
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5326 {
5327 dw2_has_symbols,
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5331 dw2_lookup_symbol,
5332 dw2_print_stats,
5333 dw2_dump,
5334 dw2_relocate,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5341 NULL,
5342 dw2_map_symbol_filenames
5343 };
5344
5345 /* DWARF-5 debug_names reader. */
5346
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5349
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5353
5354 Returns true if all went well, false otherwise. */
5355
5356 static bool
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5361 {
5362 if (dwarf2_section_empty_p (section))
5363 return false;
5364
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5368 return false;
5369
5370 dwarf2_read_section (objfile, section);
5371
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5373
5374 const gdb_byte *addr = section->buffer;
5375
5376 bfd *const abfd = get_section_bfd_owner (section);
5377
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5380 addr += bytes_read;
5381
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5385 {
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5391 return false;
5392 }
5393
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5396 addr += 2;
5397 if (version != 5)
5398 {
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5401 filename, version);
5402 return false;
5403 }
5404
5405 /* Padding. */
5406 uint16_t padding = read_2_bytes (abfd, addr);
5407 addr += 2;
5408 if (padding != 0)
5409 {
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5412 filename, padding);
5413 return false;
5414 }
5415
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5418 addr += 4;
5419
5420 /* local_type_unit_count - The number of TUs in the local TU
5421 list. */
5422 map.tu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5426 list. */
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429 if (foreign_tu_count != 0)
5430 {
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5434 return false;
5435 }
5436
5437 /* bucket_count - The number of hash buckets in the hash lookup
5438 table. */
5439 map.bucket_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5447 table. */
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5461
5462 /* List of CUs */
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5465
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5469
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5475
5476 /* Name Table */
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5481
5482 const gdb_byte *abbrev_table_start = addr;
5483 for (;;)
5484 {
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5527 return false;
5528 }
5529 map.entry_pool = addr;
5530
5531 return true;
5532 }
5533
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5535 list. */
5536
5537 static void
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info &section,
5541 bool is_dwz)
5542 {
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5545 {
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5548 {
5549 sect_off_next
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5552 map.offset_size,
5553 map.dwarf5_byte_order));
5554 }
5555 else
5556 sect_off_next = (sect_offset) section.size;
5557 if (i >= 1)
5558 {
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5564 }
5565 sect_off_prev = sect_off_next;
5566 }
5567 }
5568
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5571
5572 static void
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5576 {
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5579
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5583
5584 if (dwz_map.cu_count == 0)
5585 return;
5586
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5589 true /* is_dwz */);
5590 }
5591
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5594
5595 static bool
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5597 {
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5602
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5605 *map))
5606 return false;
5607
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5610 return false;
5611
5612 /* If there is a .dwz file, read it so we can get its CU list as
5613 well. */
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5615 if (dwz != NULL)
5616 {
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5620 {
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5623 return false;
5624 }
5625 }
5626
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5628
5629 if (map->tu_count != 0)
5630 {
5631 /* We can only handle a single .debug_types when we have an
5632 index. */
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5634 return false;
5635
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6016 {
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6020
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
6023 {
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
6028
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6031
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6040
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
6044
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6048
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
6055
6056 /* Keep looking through other CUs. */
6057 }
6058
6059 return stab_best;
6060 }
6061
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6065
6066 static void
6067 dw2_debug_names_dump (struct objfile *objfile)
6068 {
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6079 }
6080
6081 static void
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6090 {
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6092
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6096
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6100 }
6101 }
6102
6103 static void
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
6118
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6120
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6122
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
6126 {
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
6130
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
6135 });
6136 }
6137
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6139 {
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6145 dw2_print_stats,
6146 dw2_debug_names_dump,
6147 dw2_relocate,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6154 NULL,
6155 dw2_map_symbol_filenames
6156 };
6157
6158 /* See symfile.h. */
6159
6160 bool
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6162 {
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6165
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6169 expanded anyway. */
6170 if ((objfile->flags & OBJF_READNOW))
6171 {
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6178
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6181 {
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6183
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6186 }
6187
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6190 all symtabs. */
6191 *index_kind = dw_index_kind::GDB_INDEX;
6192 return true;
6193 }
6194
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6196 {
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6198 return true;
6199 }
6200
6201 if (dwarf2_read_index (dwarf2_per_objfile))
6202 {
6203 *index_kind = dw_index_kind::GDB_INDEX;
6204 return true;
6205 }
6206
6207 return false;
6208 }
6209
6210 \f
6211
6212 /* Build a partial symbol table. */
6213
6214 void
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6216 {
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6219
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6223
6224 TRY
6225 {
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6231 psymtabs.keep ();
6232 }
6233 CATCH (except, RETURN_MASK_ERROR)
6234 {
6235 exception_print (gdb_stderr, except);
6236 }
6237 END_CATCH
6238 }
6239
6240 /* Return the total length of the CU described by HEADER. */
6241
6242 static unsigned int
6243 get_cu_length (const struct comp_unit_head *header)
6244 {
6245 return header->initial_length_size + header->length;
6246 }
6247
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6249
6250 static inline bool
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6252 {
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6255
6256 return sect_off >= bottom && sect_off < top;
6257 }
6258
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6264
6265 static void
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6267 {
6268 struct attribute *attr;
6269
6270 cu->base_known = 0;
6271 cu->base_address = 0;
6272
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6274 if (attr)
6275 {
6276 cu->base_address = attr_value_as_address (attr);
6277 cu->base_known = 1;
6278 }
6279 else
6280 {
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6282 if (attr)
6283 {
6284 cu->base_address = attr_value_as_address (attr);
6285 cu->base_known = 1;
6286 }
6287 }
6288 }
6289
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6293 by the caller. */
6294
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6300 {
6301 int signed_addr;
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6305
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6311 info_ptr += 2;
6312 if (cu_header->version < 5)
6313 switch (section_kind)
6314 {
6315 case rcuh_kind::COMPILE:
6316 cu_header->unit_type = DW_UT_compile;
6317 break;
6318 case rcuh_kind::TYPE:
6319 cu_header->unit_type = DW_UT_type;
6320 break;
6321 default:
6322 internal_error (__FILE__, __LINE__,
6323 _("read_comp_unit_head: invalid section_kind"));
6324 }
6325 else
6326 {
6327 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6328 (read_1_byte (abfd, info_ptr));
6329 info_ptr += 1;
6330 switch (cu_header->unit_type)
6331 {
6332 case DW_UT_compile:
6333 if (section_kind != rcuh_kind::COMPILE)
6334 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6335 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6336 filename);
6337 break;
6338 case DW_UT_type:
6339 section_kind = rcuh_kind::TYPE;
6340 break;
6341 default:
6342 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6343 "(is %d, should be %d or %d) [in module %s]"),
6344 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6345 }
6346
6347 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6348 info_ptr += 1;
6349 }
6350 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6351 cu_header,
6352 &bytes_read);
6353 info_ptr += bytes_read;
6354 if (cu_header->version < 5)
6355 {
6356 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6357 info_ptr += 1;
6358 }
6359 signed_addr = bfd_get_sign_extend_vma (abfd);
6360 if (signed_addr < 0)
6361 internal_error (__FILE__, __LINE__,
6362 _("read_comp_unit_head: dwarf from non elf file"));
6363 cu_header->signed_addr_p = signed_addr;
6364
6365 if (section_kind == rcuh_kind::TYPE)
6366 {
6367 LONGEST type_offset;
6368
6369 cu_header->signature = read_8_bytes (abfd, info_ptr);
6370 info_ptr += 8;
6371
6372 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6373 info_ptr += bytes_read;
6374 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6375 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6376 error (_("Dwarf Error: Too big type_offset in compilation unit "
6377 "header (is %s) [in module %s]"), plongest (type_offset),
6378 filename);
6379 }
6380
6381 return info_ptr;
6382 }
6383
6384 /* Helper function that returns the proper abbrev section for
6385 THIS_CU. */
6386
6387 static struct dwarf2_section_info *
6388 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6389 {
6390 struct dwarf2_section_info *abbrev;
6391 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6392
6393 if (this_cu->is_dwz)
6394 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6395 else
6396 abbrev = &dwarf2_per_objfile->abbrev;
6397
6398 return abbrev;
6399 }
6400
6401 /* Subroutine of read_and_check_comp_unit_head and
6402 read_and_check_type_unit_head to simplify them.
6403 Perform various error checking on the header. */
6404
6405 static void
6406 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6407 struct comp_unit_head *header,
6408 struct dwarf2_section_info *section,
6409 struct dwarf2_section_info *abbrev_section)
6410 {
6411 const char *filename = get_section_file_name (section);
6412
6413 if (header->version < 2 || header->version > 5)
6414 error (_("Dwarf Error: wrong version in compilation unit header "
6415 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6416 filename);
6417
6418 if (to_underlying (header->abbrev_sect_off)
6419 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6420 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6421 "(offset %s + 6) [in module %s]"),
6422 sect_offset_str (header->abbrev_sect_off),
6423 sect_offset_str (header->sect_off),
6424 filename);
6425
6426 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6427 avoid potential 32-bit overflow. */
6428 if (((ULONGEST) header->sect_off + get_cu_length (header))
6429 > section->size)
6430 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6431 "(offset %s + 0) [in module %s]"),
6432 header->length, sect_offset_str (header->sect_off),
6433 filename);
6434 }
6435
6436 /* Read in a CU/TU header and perform some basic error checking.
6437 The contents of the header are stored in HEADER.
6438 The result is a pointer to the start of the first DIE. */
6439
6440 static const gdb_byte *
6441 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6442 struct comp_unit_head *header,
6443 struct dwarf2_section_info *section,
6444 struct dwarf2_section_info *abbrev_section,
6445 const gdb_byte *info_ptr,
6446 rcuh_kind section_kind)
6447 {
6448 const gdb_byte *beg_of_comp_unit = info_ptr;
6449
6450 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6451
6452 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6453
6454 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6455
6456 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6457 abbrev_section);
6458
6459 return info_ptr;
6460 }
6461
6462 /* Fetch the abbreviation table offset from a comp or type unit header. */
6463
6464 static sect_offset
6465 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6466 struct dwarf2_section_info *section,
6467 sect_offset sect_off)
6468 {
6469 bfd *abfd = get_section_bfd_owner (section);
6470 const gdb_byte *info_ptr;
6471 unsigned int initial_length_size, offset_size;
6472 uint16_t version;
6473
6474 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6475 info_ptr = section->buffer + to_underlying (sect_off);
6476 read_initial_length (abfd, info_ptr, &initial_length_size);
6477 offset_size = initial_length_size == 4 ? 4 : 8;
6478 info_ptr += initial_length_size;
6479
6480 version = read_2_bytes (abfd, info_ptr);
6481 info_ptr += 2;
6482 if (version >= 5)
6483 {
6484 /* Skip unit type and address size. */
6485 info_ptr += 2;
6486 }
6487
6488 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6489 }
6490
6491 /* Allocate a new partial symtab for file named NAME and mark this new
6492 partial symtab as being an include of PST. */
6493
6494 static void
6495 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6496 struct objfile *objfile)
6497 {
6498 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6499
6500 if (!IS_ABSOLUTE_PATH (subpst->filename))
6501 {
6502 /* It shares objfile->objfile_obstack. */
6503 subpst->dirname = pst->dirname;
6504 }
6505
6506 subpst->textlow = 0;
6507 subpst->texthigh = 0;
6508
6509 subpst->dependencies
6510 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6511 subpst->dependencies[0] = pst;
6512 subpst->number_of_dependencies = 1;
6513
6514 subpst->globals_offset = 0;
6515 subpst->n_global_syms = 0;
6516 subpst->statics_offset = 0;
6517 subpst->n_static_syms = 0;
6518 subpst->compunit_symtab = NULL;
6519 subpst->read_symtab = pst->read_symtab;
6520 subpst->readin = 0;
6521
6522 /* No private part is necessary for include psymtabs. This property
6523 can be used to differentiate between such include psymtabs and
6524 the regular ones. */
6525 subpst->read_symtab_private = NULL;
6526 }
6527
6528 /* Read the Line Number Program data and extract the list of files
6529 included by the source file represented by PST. Build an include
6530 partial symtab for each of these included files. */
6531
6532 static void
6533 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6534 struct die_info *die,
6535 struct partial_symtab *pst)
6536 {
6537 line_header_up lh;
6538 struct attribute *attr;
6539
6540 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6541 if (attr)
6542 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6543 if (lh == NULL)
6544 return; /* No linetable, so no includes. */
6545
6546 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6547 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6548 }
6549
6550 static hashval_t
6551 hash_signatured_type (const void *item)
6552 {
6553 const struct signatured_type *sig_type
6554 = (const struct signatured_type *) item;
6555
6556 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6557 return sig_type->signature;
6558 }
6559
6560 static int
6561 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6562 {
6563 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6564 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6565
6566 return lhs->signature == rhs->signature;
6567 }
6568
6569 /* Allocate a hash table for signatured types. */
6570
6571 static htab_t
6572 allocate_signatured_type_table (struct objfile *objfile)
6573 {
6574 return htab_create_alloc_ex (41,
6575 hash_signatured_type,
6576 eq_signatured_type,
6577 NULL,
6578 &objfile->objfile_obstack,
6579 hashtab_obstack_allocate,
6580 dummy_obstack_deallocate);
6581 }
6582
6583 /* A helper function to add a signatured type CU to a table. */
6584
6585 static int
6586 add_signatured_type_cu_to_table (void **slot, void *datum)
6587 {
6588 struct signatured_type *sigt = (struct signatured_type *) *slot;
6589 std::vector<signatured_type *> *all_type_units
6590 = (std::vector<signatured_type *> *) datum;
6591
6592 all_type_units->push_back (sigt);
6593
6594 return 1;
6595 }
6596
6597 /* A helper for create_debug_types_hash_table. Read types from SECTION
6598 and fill them into TYPES_HTAB. It will process only type units,
6599 therefore DW_UT_type. */
6600
6601 static void
6602 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6603 struct dwo_file *dwo_file,
6604 dwarf2_section_info *section, htab_t &types_htab,
6605 rcuh_kind section_kind)
6606 {
6607 struct objfile *objfile = dwarf2_per_objfile->objfile;
6608 struct dwarf2_section_info *abbrev_section;
6609 bfd *abfd;
6610 const gdb_byte *info_ptr, *end_ptr;
6611
6612 abbrev_section = (dwo_file != NULL
6613 ? &dwo_file->sections.abbrev
6614 : &dwarf2_per_objfile->abbrev);
6615
6616 if (dwarf_read_debug)
6617 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6618 get_section_name (section),
6619 get_section_file_name (abbrev_section));
6620
6621 dwarf2_read_section (objfile, section);
6622 info_ptr = section->buffer;
6623
6624 if (info_ptr == NULL)
6625 return;
6626
6627 /* We can't set abfd until now because the section may be empty or
6628 not present, in which case the bfd is unknown. */
6629 abfd = get_section_bfd_owner (section);
6630
6631 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6632 because we don't need to read any dies: the signature is in the
6633 header. */
6634
6635 end_ptr = info_ptr + section->size;
6636 while (info_ptr < end_ptr)
6637 {
6638 struct signatured_type *sig_type;
6639 struct dwo_unit *dwo_tu;
6640 void **slot;
6641 const gdb_byte *ptr = info_ptr;
6642 struct comp_unit_head header;
6643 unsigned int length;
6644
6645 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6646
6647 /* Initialize it due to a false compiler warning. */
6648 header.signature = -1;
6649 header.type_cu_offset_in_tu = (cu_offset) -1;
6650
6651 /* We need to read the type's signature in order to build the hash
6652 table, but we don't need anything else just yet. */
6653
6654 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6655 abbrev_section, ptr, section_kind);
6656
6657 length = get_cu_length (&header);
6658
6659 /* Skip dummy type units. */
6660 if (ptr >= info_ptr + length
6661 || peek_abbrev_code (abfd, ptr) == 0
6662 || header.unit_type != DW_UT_type)
6663 {
6664 info_ptr += length;
6665 continue;
6666 }
6667
6668 if (types_htab == NULL)
6669 {
6670 if (dwo_file)
6671 types_htab = allocate_dwo_unit_table (objfile);
6672 else
6673 types_htab = allocate_signatured_type_table (objfile);
6674 }
6675
6676 if (dwo_file)
6677 {
6678 sig_type = NULL;
6679 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6680 struct dwo_unit);
6681 dwo_tu->dwo_file = dwo_file;
6682 dwo_tu->signature = header.signature;
6683 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6684 dwo_tu->section = section;
6685 dwo_tu->sect_off = sect_off;
6686 dwo_tu->length = length;
6687 }
6688 else
6689 {
6690 /* N.B.: type_offset is not usable if this type uses a DWO file.
6691 The real type_offset is in the DWO file. */
6692 dwo_tu = NULL;
6693 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6694 struct signatured_type);
6695 sig_type->signature = header.signature;
6696 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6697 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6698 sig_type->per_cu.is_debug_types = 1;
6699 sig_type->per_cu.section = section;
6700 sig_type->per_cu.sect_off = sect_off;
6701 sig_type->per_cu.length = length;
6702 }
6703
6704 slot = htab_find_slot (types_htab,
6705 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6706 INSERT);
6707 gdb_assert (slot != NULL);
6708 if (*slot != NULL)
6709 {
6710 sect_offset dup_sect_off;
6711
6712 if (dwo_file)
6713 {
6714 const struct dwo_unit *dup_tu
6715 = (const struct dwo_unit *) *slot;
6716
6717 dup_sect_off = dup_tu->sect_off;
6718 }
6719 else
6720 {
6721 const struct signatured_type *dup_tu
6722 = (const struct signatured_type *) *slot;
6723
6724 dup_sect_off = dup_tu->per_cu.sect_off;
6725 }
6726
6727 complaint (_("debug type entry at offset %s is duplicate to"
6728 " the entry at offset %s, signature %s"),
6729 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6730 hex_string (header.signature));
6731 }
6732 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6733
6734 if (dwarf_read_debug > 1)
6735 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6736 sect_offset_str (sect_off),
6737 hex_string (header.signature));
6738
6739 info_ptr += length;
6740 }
6741 }
6742
6743 /* Create the hash table of all entries in the .debug_types
6744 (or .debug_types.dwo) section(s).
6745 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6746 otherwise it is NULL.
6747
6748 The result is a pointer to the hash table or NULL if there are no types.
6749
6750 Note: This function processes DWO files only, not DWP files. */
6751
6752 static void
6753 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6754 struct dwo_file *dwo_file,
6755 VEC (dwarf2_section_info_def) *types,
6756 htab_t &types_htab)
6757 {
6758 int ix;
6759 struct dwarf2_section_info *section;
6760
6761 if (VEC_empty (dwarf2_section_info_def, types))
6762 return;
6763
6764 for (ix = 0;
6765 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6766 ++ix)
6767 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6768 types_htab, rcuh_kind::TYPE);
6769 }
6770
6771 /* Create the hash table of all entries in the .debug_types section,
6772 and initialize all_type_units.
6773 The result is zero if there is an error (e.g. missing .debug_types section),
6774 otherwise non-zero. */
6775
6776 static int
6777 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6778 {
6779 htab_t types_htab = NULL;
6780
6781 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6782 &dwarf2_per_objfile->info, types_htab,
6783 rcuh_kind::COMPILE);
6784 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6785 dwarf2_per_objfile->types, types_htab);
6786 if (types_htab == NULL)
6787 {
6788 dwarf2_per_objfile->signatured_types = NULL;
6789 return 0;
6790 }
6791
6792 dwarf2_per_objfile->signatured_types = types_htab;
6793
6794 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6795 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6796
6797 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6798 &dwarf2_per_objfile->all_type_units);
6799
6800 return 1;
6801 }
6802
6803 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6804 If SLOT is non-NULL, it is the entry to use in the hash table.
6805 Otherwise we find one. */
6806
6807 static struct signatured_type *
6808 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6809 void **slot)
6810 {
6811 struct objfile *objfile = dwarf2_per_objfile->objfile;
6812
6813 if (dwarf2_per_objfile->all_type_units.size ()
6814 == dwarf2_per_objfile->all_type_units.capacity ())
6815 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6816
6817 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6818 struct signatured_type);
6819
6820 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6821 sig_type->signature = sig;
6822 sig_type->per_cu.is_debug_types = 1;
6823 if (dwarf2_per_objfile->using_index)
6824 {
6825 sig_type->per_cu.v.quick =
6826 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6827 struct dwarf2_per_cu_quick_data);
6828 }
6829
6830 if (slot == NULL)
6831 {
6832 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6833 sig_type, INSERT);
6834 }
6835 gdb_assert (*slot == NULL);
6836 *slot = sig_type;
6837 /* The rest of sig_type must be filled in by the caller. */
6838 return sig_type;
6839 }
6840
6841 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6842 Fill in SIG_ENTRY with DWO_ENTRY. */
6843
6844 static void
6845 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6846 struct signatured_type *sig_entry,
6847 struct dwo_unit *dwo_entry)
6848 {
6849 /* Make sure we're not clobbering something we don't expect to. */
6850 gdb_assert (! sig_entry->per_cu.queued);
6851 gdb_assert (sig_entry->per_cu.cu == NULL);
6852 if (dwarf2_per_objfile->using_index)
6853 {
6854 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6855 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6856 }
6857 else
6858 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6859 gdb_assert (sig_entry->signature == dwo_entry->signature);
6860 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6861 gdb_assert (sig_entry->type_unit_group == NULL);
6862 gdb_assert (sig_entry->dwo_unit == NULL);
6863
6864 sig_entry->per_cu.section = dwo_entry->section;
6865 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6866 sig_entry->per_cu.length = dwo_entry->length;
6867 sig_entry->per_cu.reading_dwo_directly = 1;
6868 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6869 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6870 sig_entry->dwo_unit = dwo_entry;
6871 }
6872
6873 /* Subroutine of lookup_signatured_type.
6874 If we haven't read the TU yet, create the signatured_type data structure
6875 for a TU to be read in directly from a DWO file, bypassing the stub.
6876 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6877 using .gdb_index, then when reading a CU we want to stay in the DWO file
6878 containing that CU. Otherwise we could end up reading several other DWO
6879 files (due to comdat folding) to process the transitive closure of all the
6880 mentioned TUs, and that can be slow. The current DWO file will have every
6881 type signature that it needs.
6882 We only do this for .gdb_index because in the psymtab case we already have
6883 to read all the DWOs to build the type unit groups. */
6884
6885 static struct signatured_type *
6886 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6887 {
6888 struct dwarf2_per_objfile *dwarf2_per_objfile
6889 = cu->per_cu->dwarf2_per_objfile;
6890 struct objfile *objfile = dwarf2_per_objfile->objfile;
6891 struct dwo_file *dwo_file;
6892 struct dwo_unit find_dwo_entry, *dwo_entry;
6893 struct signatured_type find_sig_entry, *sig_entry;
6894 void **slot;
6895
6896 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6897
6898 /* If TU skeletons have been removed then we may not have read in any
6899 TUs yet. */
6900 if (dwarf2_per_objfile->signatured_types == NULL)
6901 {
6902 dwarf2_per_objfile->signatured_types
6903 = allocate_signatured_type_table (objfile);
6904 }
6905
6906 /* We only ever need to read in one copy of a signatured type.
6907 Use the global signatured_types array to do our own comdat-folding
6908 of types. If this is the first time we're reading this TU, and
6909 the TU has an entry in .gdb_index, replace the recorded data from
6910 .gdb_index with this TU. */
6911
6912 find_sig_entry.signature = sig;
6913 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6914 &find_sig_entry, INSERT);
6915 sig_entry = (struct signatured_type *) *slot;
6916
6917 /* We can get here with the TU already read, *or* in the process of being
6918 read. Don't reassign the global entry to point to this DWO if that's
6919 the case. Also note that if the TU is already being read, it may not
6920 have come from a DWO, the program may be a mix of Fission-compiled
6921 code and non-Fission-compiled code. */
6922
6923 /* Have we already tried to read this TU?
6924 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6925 needn't exist in the global table yet). */
6926 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6927 return sig_entry;
6928
6929 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6930 dwo_unit of the TU itself. */
6931 dwo_file = cu->dwo_unit->dwo_file;
6932
6933 /* Ok, this is the first time we're reading this TU. */
6934 if (dwo_file->tus == NULL)
6935 return NULL;
6936 find_dwo_entry.signature = sig;
6937 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6938 if (dwo_entry == NULL)
6939 return NULL;
6940
6941 /* If the global table doesn't have an entry for this TU, add one. */
6942 if (sig_entry == NULL)
6943 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6944
6945 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6946 sig_entry->per_cu.tu_read = 1;
6947 return sig_entry;
6948 }
6949
6950 /* Subroutine of lookup_signatured_type.
6951 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6952 then try the DWP file. If the TU stub (skeleton) has been removed then
6953 it won't be in .gdb_index. */
6954
6955 static struct signatured_type *
6956 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6957 {
6958 struct dwarf2_per_objfile *dwarf2_per_objfile
6959 = cu->per_cu->dwarf2_per_objfile;
6960 struct objfile *objfile = dwarf2_per_objfile->objfile;
6961 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6962 struct dwo_unit *dwo_entry;
6963 struct signatured_type find_sig_entry, *sig_entry;
6964 void **slot;
6965
6966 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6967 gdb_assert (dwp_file != NULL);
6968
6969 /* If TU skeletons have been removed then we may not have read in any
6970 TUs yet. */
6971 if (dwarf2_per_objfile->signatured_types == NULL)
6972 {
6973 dwarf2_per_objfile->signatured_types
6974 = allocate_signatured_type_table (objfile);
6975 }
6976
6977 find_sig_entry.signature = sig;
6978 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6979 &find_sig_entry, INSERT);
6980 sig_entry = (struct signatured_type *) *slot;
6981
6982 /* Have we already tried to read this TU?
6983 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6984 needn't exist in the global table yet). */
6985 if (sig_entry != NULL)
6986 return sig_entry;
6987
6988 if (dwp_file->tus == NULL)
6989 return NULL;
6990 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6991 sig, 1 /* is_debug_types */);
6992 if (dwo_entry == NULL)
6993 return NULL;
6994
6995 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6996 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6997
6998 return sig_entry;
6999 }
7000
7001 /* Lookup a signature based type for DW_FORM_ref_sig8.
7002 Returns NULL if signature SIG is not present in the table.
7003 It is up to the caller to complain about this. */
7004
7005 static struct signatured_type *
7006 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7007 {
7008 struct dwarf2_per_objfile *dwarf2_per_objfile
7009 = cu->per_cu->dwarf2_per_objfile;
7010
7011 if (cu->dwo_unit
7012 && dwarf2_per_objfile->using_index)
7013 {
7014 /* We're in a DWO/DWP file, and we're using .gdb_index.
7015 These cases require special processing. */
7016 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7017 return lookup_dwo_signatured_type (cu, sig);
7018 else
7019 return lookup_dwp_signatured_type (cu, sig);
7020 }
7021 else
7022 {
7023 struct signatured_type find_entry, *entry;
7024
7025 if (dwarf2_per_objfile->signatured_types == NULL)
7026 return NULL;
7027 find_entry.signature = sig;
7028 entry = ((struct signatured_type *)
7029 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7030 return entry;
7031 }
7032 }
7033 \f
7034 /* Low level DIE reading support. */
7035
7036 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7037
7038 static void
7039 init_cu_die_reader (struct die_reader_specs *reader,
7040 struct dwarf2_cu *cu,
7041 struct dwarf2_section_info *section,
7042 struct dwo_file *dwo_file,
7043 struct abbrev_table *abbrev_table)
7044 {
7045 gdb_assert (section->readin && section->buffer != NULL);
7046 reader->abfd = get_section_bfd_owner (section);
7047 reader->cu = cu;
7048 reader->dwo_file = dwo_file;
7049 reader->die_section = section;
7050 reader->buffer = section->buffer;
7051 reader->buffer_end = section->buffer + section->size;
7052 reader->comp_dir = NULL;
7053 reader->abbrev_table = abbrev_table;
7054 }
7055
7056 /* Subroutine of init_cutu_and_read_dies to simplify it.
7057 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7058 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7059 already.
7060
7061 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7062 from it to the DIE in the DWO. If NULL we are skipping the stub.
7063 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7064 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7065 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7066 STUB_COMP_DIR may be non-NULL.
7067 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7068 are filled in with the info of the DIE from the DWO file.
7069 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7070 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7071 kept around for at least as long as *RESULT_READER.
7072
7073 The result is non-zero if a valid (non-dummy) DIE was found. */
7074
7075 static int
7076 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7077 struct dwo_unit *dwo_unit,
7078 struct die_info *stub_comp_unit_die,
7079 const char *stub_comp_dir,
7080 struct die_reader_specs *result_reader,
7081 const gdb_byte **result_info_ptr,
7082 struct die_info **result_comp_unit_die,
7083 int *result_has_children,
7084 abbrev_table_up *result_dwo_abbrev_table)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7087 struct objfile *objfile = dwarf2_per_objfile->objfile;
7088 struct dwarf2_cu *cu = this_cu->cu;
7089 bfd *abfd;
7090 const gdb_byte *begin_info_ptr, *info_ptr;
7091 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7092 int i,num_extra_attrs;
7093 struct dwarf2_section_info *dwo_abbrev_section;
7094 struct attribute *attr;
7095 struct die_info *comp_unit_die;
7096
7097 /* At most one of these may be provided. */
7098 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7099
7100 /* These attributes aren't processed until later:
7101 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7102 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7103 referenced later. However, these attributes are found in the stub
7104 which we won't have later. In order to not impose this complication
7105 on the rest of the code, we read them here and copy them to the
7106 DWO CU/TU die. */
7107
7108 stmt_list = NULL;
7109 low_pc = NULL;
7110 high_pc = NULL;
7111 ranges = NULL;
7112 comp_dir = NULL;
7113
7114 if (stub_comp_unit_die != NULL)
7115 {
7116 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7117 DWO file. */
7118 if (! this_cu->is_debug_types)
7119 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7120 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7121 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7122 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7123 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7124
7125 /* There should be a DW_AT_addr_base attribute here (if needed).
7126 We need the value before we can process DW_FORM_GNU_addr_index. */
7127 cu->addr_base = 0;
7128 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7129 if (attr)
7130 cu->addr_base = DW_UNSND (attr);
7131
7132 /* There should be a DW_AT_ranges_base attribute here (if needed).
7133 We need the value before we can process DW_AT_ranges. */
7134 cu->ranges_base = 0;
7135 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7136 if (attr)
7137 cu->ranges_base = DW_UNSND (attr);
7138 }
7139 else if (stub_comp_dir != NULL)
7140 {
7141 /* Reconstruct the comp_dir attribute to simplify the code below. */
7142 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7143 comp_dir->name = DW_AT_comp_dir;
7144 comp_dir->form = DW_FORM_string;
7145 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7146 DW_STRING (comp_dir) = stub_comp_dir;
7147 }
7148
7149 /* Set up for reading the DWO CU/TU. */
7150 cu->dwo_unit = dwo_unit;
7151 dwarf2_section_info *section = dwo_unit->section;
7152 dwarf2_read_section (objfile, section);
7153 abfd = get_section_bfd_owner (section);
7154 begin_info_ptr = info_ptr = (section->buffer
7155 + to_underlying (dwo_unit->sect_off));
7156 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7157
7158 if (this_cu->is_debug_types)
7159 {
7160 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7161
7162 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7163 &cu->header, section,
7164 dwo_abbrev_section,
7165 info_ptr, rcuh_kind::TYPE);
7166 /* This is not an assert because it can be caused by bad debug info. */
7167 if (sig_type->signature != cu->header.signature)
7168 {
7169 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7170 " TU at offset %s [in module %s]"),
7171 hex_string (sig_type->signature),
7172 hex_string (cu->header.signature),
7173 sect_offset_str (dwo_unit->sect_off),
7174 bfd_get_filename (abfd));
7175 }
7176 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7177 /* For DWOs coming from DWP files, we don't know the CU length
7178 nor the type's offset in the TU until now. */
7179 dwo_unit->length = get_cu_length (&cu->header);
7180 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7181
7182 /* Establish the type offset that can be used to lookup the type.
7183 For DWO files, we don't know it until now. */
7184 sig_type->type_offset_in_section
7185 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7186 }
7187 else
7188 {
7189 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7190 &cu->header, section,
7191 dwo_abbrev_section,
7192 info_ptr, rcuh_kind::COMPILE);
7193 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7194 /* For DWOs coming from DWP files, we don't know the CU length
7195 until now. */
7196 dwo_unit->length = get_cu_length (&cu->header);
7197 }
7198
7199 *result_dwo_abbrev_table
7200 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7201 cu->header.abbrev_sect_off);
7202 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7203 result_dwo_abbrev_table->get ());
7204
7205 /* Read in the die, but leave space to copy over the attributes
7206 from the stub. This has the benefit of simplifying the rest of
7207 the code - all the work to maintain the illusion of a single
7208 DW_TAG_{compile,type}_unit DIE is done here. */
7209 num_extra_attrs = ((stmt_list != NULL)
7210 + (low_pc != NULL)
7211 + (high_pc != NULL)
7212 + (ranges != NULL)
7213 + (comp_dir != NULL));
7214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7215 result_has_children, num_extra_attrs);
7216
7217 /* Copy over the attributes from the stub to the DIE we just read in. */
7218 comp_unit_die = *result_comp_unit_die;
7219 i = comp_unit_die->num_attrs;
7220 if (stmt_list != NULL)
7221 comp_unit_die->attrs[i++] = *stmt_list;
7222 if (low_pc != NULL)
7223 comp_unit_die->attrs[i++] = *low_pc;
7224 if (high_pc != NULL)
7225 comp_unit_die->attrs[i++] = *high_pc;
7226 if (ranges != NULL)
7227 comp_unit_die->attrs[i++] = *ranges;
7228 if (comp_dir != NULL)
7229 comp_unit_die->attrs[i++] = *comp_dir;
7230 comp_unit_die->num_attrs += num_extra_attrs;
7231
7232 if (dwarf_die_debug)
7233 {
7234 fprintf_unfiltered (gdb_stdlog,
7235 "Read die from %s@0x%x of %s:\n",
7236 get_section_name (section),
7237 (unsigned) (begin_info_ptr - section->buffer),
7238 bfd_get_filename (abfd));
7239 dump_die (comp_unit_die, dwarf_die_debug);
7240 }
7241
7242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7243 TUs by skipping the stub and going directly to the entry in the DWO file.
7244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7245 to get it via circuitous means. Blech. */
7246 if (comp_dir != NULL)
7247 result_reader->comp_dir = DW_STRING (comp_dir);
7248
7249 /* Skip dummy compilation units. */
7250 if (info_ptr >= begin_info_ptr + dwo_unit->length
7251 || peek_abbrev_code (abfd, info_ptr) == 0)
7252 return 0;
7253
7254 *result_info_ptr = info_ptr;
7255 return 1;
7256 }
7257
7258 /* Subroutine of init_cutu_and_read_dies to simplify it.
7259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7260 Returns NULL if the specified DWO unit cannot be found. */
7261
7262 static struct dwo_unit *
7263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7264 struct die_info *comp_unit_die)
7265 {
7266 struct dwarf2_cu *cu = this_cu->cu;
7267 ULONGEST signature;
7268 struct dwo_unit *dwo_unit;
7269 const char *comp_dir, *dwo_name;
7270
7271 gdb_assert (cu != NULL);
7272
7273 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7274 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7275 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7276
7277 if (this_cu->is_debug_types)
7278 {
7279 struct signatured_type *sig_type;
7280
7281 /* Since this_cu is the first member of struct signatured_type,
7282 we can go from a pointer to one to a pointer to the other. */
7283 sig_type = (struct signatured_type *) this_cu;
7284 signature = sig_type->signature;
7285 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7286 }
7287 else
7288 {
7289 struct attribute *attr;
7290
7291 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7292 if (! attr)
7293 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7294 " [in module %s]"),
7295 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7296 signature = DW_UNSND (attr);
7297 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7298 signature);
7299 }
7300
7301 return dwo_unit;
7302 }
7303
7304 /* Subroutine of init_cutu_and_read_dies to simplify it.
7305 See it for a description of the parameters.
7306 Read a TU directly from a DWO file, bypassing the stub. */
7307
7308 static void
7309 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7310 int use_existing_cu, int keep,
7311 die_reader_func_ftype *die_reader_func,
7312 void *data)
7313 {
7314 std::unique_ptr<dwarf2_cu> new_cu;
7315 struct signatured_type *sig_type;
7316 struct die_reader_specs reader;
7317 const gdb_byte *info_ptr;
7318 struct die_info *comp_unit_die;
7319 int has_children;
7320 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7321
7322 /* Verify we can do the following downcast, and that we have the
7323 data we need. */
7324 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7325 sig_type = (struct signatured_type *) this_cu;
7326 gdb_assert (sig_type->dwo_unit != NULL);
7327
7328 if (use_existing_cu && this_cu->cu != NULL)
7329 {
7330 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7331 /* There's no need to do the rereading_dwo_cu handling that
7332 init_cutu_and_read_dies does since we don't read the stub. */
7333 }
7334 else
7335 {
7336 /* If !use_existing_cu, this_cu->cu must be NULL. */
7337 gdb_assert (this_cu->cu == NULL);
7338 new_cu.reset (new dwarf2_cu (this_cu));
7339 }
7340
7341 /* A future optimization, if needed, would be to use an existing
7342 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7343 could share abbrev tables. */
7344
7345 /* The abbreviation table used by READER, this must live at least as long as
7346 READER. */
7347 abbrev_table_up dwo_abbrev_table;
7348
7349 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7350 NULL /* stub_comp_unit_die */,
7351 sig_type->dwo_unit->dwo_file->comp_dir,
7352 &reader, &info_ptr,
7353 &comp_unit_die, &has_children,
7354 &dwo_abbrev_table) == 0)
7355 {
7356 /* Dummy die. */
7357 return;
7358 }
7359
7360 /* All the "real" work is done here. */
7361 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7362
7363 /* This duplicates the code in init_cutu_and_read_dies,
7364 but the alternative is making the latter more complex.
7365 This function is only for the special case of using DWO files directly:
7366 no point in overly complicating the general case just to handle this. */
7367 if (new_cu != NULL && keep)
7368 {
7369 /* Link this CU into read_in_chain. */
7370 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7371 dwarf2_per_objfile->read_in_chain = this_cu;
7372 /* The chain owns it now. */
7373 new_cu.release ();
7374 }
7375 }
7376
7377 /* Initialize a CU (or TU) and read its DIEs.
7378 If the CU defers to a DWO file, read the DWO file as well.
7379
7380 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7381 Otherwise the table specified in the comp unit header is read in and used.
7382 This is an optimization for when we already have the abbrev table.
7383
7384 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7385 Otherwise, a new CU is allocated with xmalloc.
7386
7387 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7388 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7389
7390 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7391 linker) then DIE_READER_FUNC will not get called. */
7392
7393 static void
7394 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7395 struct abbrev_table *abbrev_table,
7396 int use_existing_cu, int keep,
7397 bool skip_partial,
7398 die_reader_func_ftype *die_reader_func,
7399 void *data)
7400 {
7401 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7402 struct objfile *objfile = dwarf2_per_objfile->objfile;
7403 struct dwarf2_section_info *section = this_cu->section;
7404 bfd *abfd = get_section_bfd_owner (section);
7405 struct dwarf2_cu *cu;
7406 const gdb_byte *begin_info_ptr, *info_ptr;
7407 struct die_reader_specs reader;
7408 struct die_info *comp_unit_die;
7409 int has_children;
7410 struct attribute *attr;
7411 struct signatured_type *sig_type = NULL;
7412 struct dwarf2_section_info *abbrev_section;
7413 /* Non-zero if CU currently points to a DWO file and we need to
7414 reread it. When this happens we need to reread the skeleton die
7415 before we can reread the DWO file (this only applies to CUs, not TUs). */
7416 int rereading_dwo_cu = 0;
7417
7418 if (dwarf_die_debug)
7419 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7420 this_cu->is_debug_types ? "type" : "comp",
7421 sect_offset_str (this_cu->sect_off));
7422
7423 if (use_existing_cu)
7424 gdb_assert (keep);
7425
7426 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7427 file (instead of going through the stub), short-circuit all of this. */
7428 if (this_cu->reading_dwo_directly)
7429 {
7430 /* Narrow down the scope of possibilities to have to understand. */
7431 gdb_assert (this_cu->is_debug_types);
7432 gdb_assert (abbrev_table == NULL);
7433 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7434 die_reader_func, data);
7435 return;
7436 }
7437
7438 /* This is cheap if the section is already read in. */
7439 dwarf2_read_section (objfile, section);
7440
7441 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7442
7443 abbrev_section = get_abbrev_section_for_cu (this_cu);
7444
7445 std::unique_ptr<dwarf2_cu> new_cu;
7446 if (use_existing_cu && this_cu->cu != NULL)
7447 {
7448 cu = this_cu->cu;
7449 /* If this CU is from a DWO file we need to start over, we need to
7450 refetch the attributes from the skeleton CU.
7451 This could be optimized by retrieving those attributes from when we
7452 were here the first time: the previous comp_unit_die was stored in
7453 comp_unit_obstack. But there's no data yet that we need this
7454 optimization. */
7455 if (cu->dwo_unit != NULL)
7456 rereading_dwo_cu = 1;
7457 }
7458 else
7459 {
7460 /* If !use_existing_cu, this_cu->cu must be NULL. */
7461 gdb_assert (this_cu->cu == NULL);
7462 new_cu.reset (new dwarf2_cu (this_cu));
7463 cu = new_cu.get ();
7464 }
7465
7466 /* Get the header. */
7467 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7468 {
7469 /* We already have the header, there's no need to read it in again. */
7470 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7471 }
7472 else
7473 {
7474 if (this_cu->is_debug_types)
7475 {
7476 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7477 &cu->header, section,
7478 abbrev_section, info_ptr,
7479 rcuh_kind::TYPE);
7480
7481 /* Since per_cu is the first member of struct signatured_type,
7482 we can go from a pointer to one to a pointer to the other. */
7483 sig_type = (struct signatured_type *) this_cu;
7484 gdb_assert (sig_type->signature == cu->header.signature);
7485 gdb_assert (sig_type->type_offset_in_tu
7486 == cu->header.type_cu_offset_in_tu);
7487 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7488
7489 /* LENGTH has not been set yet for type units if we're
7490 using .gdb_index. */
7491 this_cu->length = get_cu_length (&cu->header);
7492
7493 /* Establish the type offset that can be used to lookup the type. */
7494 sig_type->type_offset_in_section =
7495 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7496
7497 this_cu->dwarf_version = cu->header.version;
7498 }
7499 else
7500 {
7501 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7502 &cu->header, section,
7503 abbrev_section,
7504 info_ptr,
7505 rcuh_kind::COMPILE);
7506
7507 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7508 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7509 this_cu->dwarf_version = cu->header.version;
7510 }
7511 }
7512
7513 /* Skip dummy compilation units. */
7514 if (info_ptr >= begin_info_ptr + this_cu->length
7515 || peek_abbrev_code (abfd, info_ptr) == 0)
7516 return;
7517
7518 /* If we don't have them yet, read the abbrevs for this compilation unit.
7519 And if we need to read them now, make sure they're freed when we're
7520 done (own the table through ABBREV_TABLE_HOLDER). */
7521 abbrev_table_up abbrev_table_holder;
7522 if (abbrev_table != NULL)
7523 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7524 else
7525 {
7526 abbrev_table_holder
7527 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7528 cu->header.abbrev_sect_off);
7529 abbrev_table = abbrev_table_holder.get ();
7530 }
7531
7532 /* Read the top level CU/TU die. */
7533 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7534 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7535
7536 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7537 return;
7538
7539 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7540 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7541 table from the DWO file and pass the ownership over to us. It will be
7542 referenced from READER, so we must make sure to free it after we're done
7543 with READER.
7544
7545 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7546 DWO CU, that this test will fail (the attribute will not be present). */
7547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7548 abbrev_table_up dwo_abbrev_table;
7549 if (attr)
7550 {
7551 struct dwo_unit *dwo_unit;
7552 struct die_info *dwo_comp_unit_die;
7553
7554 if (has_children)
7555 {
7556 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7557 " has children (offset %s) [in module %s]"),
7558 sect_offset_str (this_cu->sect_off),
7559 bfd_get_filename (abfd));
7560 }
7561 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7562 if (dwo_unit != NULL)
7563 {
7564 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7565 comp_unit_die, NULL,
7566 &reader, &info_ptr,
7567 &dwo_comp_unit_die, &has_children,
7568 &dwo_abbrev_table) == 0)
7569 {
7570 /* Dummy die. */
7571 return;
7572 }
7573 comp_unit_die = dwo_comp_unit_die;
7574 }
7575 else
7576 {
7577 /* Yikes, we couldn't find the rest of the DIE, we only have
7578 the stub. A complaint has already been logged. There's
7579 not much more we can do except pass on the stub DIE to
7580 die_reader_func. We don't want to throw an error on bad
7581 debug info. */
7582 }
7583 }
7584
7585 /* All of the above is setup for this call. Yikes. */
7586 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7587
7588 /* Done, clean up. */
7589 if (new_cu != NULL && keep)
7590 {
7591 /* Link this CU into read_in_chain. */
7592 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7593 dwarf2_per_objfile->read_in_chain = this_cu;
7594 /* The chain owns it now. */
7595 new_cu.release ();
7596 }
7597 }
7598
7599 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7600 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7601 to have already done the lookup to find the DWO file).
7602
7603 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7604 THIS_CU->is_debug_types, but nothing else.
7605
7606 We fill in THIS_CU->length.
7607
7608 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7609 linker) then DIE_READER_FUNC will not get called.
7610
7611 THIS_CU->cu is always freed when done.
7612 This is done in order to not leave THIS_CU->cu in a state where we have
7613 to care whether it refers to the "main" CU or the DWO CU. */
7614
7615 static void
7616 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7617 struct dwo_file *dwo_file,
7618 die_reader_func_ftype *die_reader_func,
7619 void *data)
7620 {
7621 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7622 struct objfile *objfile = dwarf2_per_objfile->objfile;
7623 struct dwarf2_section_info *section = this_cu->section;
7624 bfd *abfd = get_section_bfd_owner (section);
7625 struct dwarf2_section_info *abbrev_section;
7626 const gdb_byte *begin_info_ptr, *info_ptr;
7627 struct die_reader_specs reader;
7628 struct die_info *comp_unit_die;
7629 int has_children;
7630
7631 if (dwarf_die_debug)
7632 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7633 this_cu->is_debug_types ? "type" : "comp",
7634 sect_offset_str (this_cu->sect_off));
7635
7636 gdb_assert (this_cu->cu == NULL);
7637
7638 abbrev_section = (dwo_file != NULL
7639 ? &dwo_file->sections.abbrev
7640 : get_abbrev_section_for_cu (this_cu));
7641
7642 /* This is cheap if the section is already read in. */
7643 dwarf2_read_section (objfile, section);
7644
7645 struct dwarf2_cu cu (this_cu);
7646
7647 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7648 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7649 &cu.header, section,
7650 abbrev_section, info_ptr,
7651 (this_cu->is_debug_types
7652 ? rcuh_kind::TYPE
7653 : rcuh_kind::COMPILE));
7654
7655 this_cu->length = get_cu_length (&cu.header);
7656
7657 /* Skip dummy compilation units. */
7658 if (info_ptr >= begin_info_ptr + this_cu->length
7659 || peek_abbrev_code (abfd, info_ptr) == 0)
7660 return;
7661
7662 abbrev_table_up abbrev_table
7663 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7664 cu.header.abbrev_sect_off);
7665
7666 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7667 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7668
7669 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7670 }
7671
7672 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7673 does not lookup the specified DWO file.
7674 This cannot be used to read DWO files.
7675
7676 THIS_CU->cu is always freed when done.
7677 This is done in order to not leave THIS_CU->cu in a state where we have
7678 to care whether it refers to the "main" CU or the DWO CU.
7679 We can revisit this if the data shows there's a performance issue. */
7680
7681 static void
7682 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7683 die_reader_func_ftype *die_reader_func,
7684 void *data)
7685 {
7686 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7687 }
7688 \f
7689 /* Type Unit Groups.
7690
7691 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7692 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7693 so that all types coming from the same compilation (.o file) are grouped
7694 together. A future step could be to put the types in the same symtab as
7695 the CU the types ultimately came from. */
7696
7697 static hashval_t
7698 hash_type_unit_group (const void *item)
7699 {
7700 const struct type_unit_group *tu_group
7701 = (const struct type_unit_group *) item;
7702
7703 return hash_stmt_list_entry (&tu_group->hash);
7704 }
7705
7706 static int
7707 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7708 {
7709 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7710 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7711
7712 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7713 }
7714
7715 /* Allocate a hash table for type unit groups. */
7716
7717 static htab_t
7718 allocate_type_unit_groups_table (struct objfile *objfile)
7719 {
7720 return htab_create_alloc_ex (3,
7721 hash_type_unit_group,
7722 eq_type_unit_group,
7723 NULL,
7724 &objfile->objfile_obstack,
7725 hashtab_obstack_allocate,
7726 dummy_obstack_deallocate);
7727 }
7728
7729 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7730 partial symtabs. We combine several TUs per psymtab to not let the size
7731 of any one psymtab grow too big. */
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7733 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7734
7735 /* Helper routine for get_type_unit_group.
7736 Create the type_unit_group object used to hold one or more TUs. */
7737
7738 static struct type_unit_group *
7739 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7740 {
7741 struct dwarf2_per_objfile *dwarf2_per_objfile
7742 = cu->per_cu->dwarf2_per_objfile;
7743 struct objfile *objfile = dwarf2_per_objfile->objfile;
7744 struct dwarf2_per_cu_data *per_cu;
7745 struct type_unit_group *tu_group;
7746
7747 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7748 struct type_unit_group);
7749 per_cu = &tu_group->per_cu;
7750 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7751
7752 if (dwarf2_per_objfile->using_index)
7753 {
7754 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7755 struct dwarf2_per_cu_quick_data);
7756 }
7757 else
7758 {
7759 unsigned int line_offset = to_underlying (line_offset_struct);
7760 struct partial_symtab *pst;
7761 char *name;
7762
7763 /* Give the symtab a useful name for debug purposes. */
7764 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7765 name = xstrprintf ("<type_units_%d>",
7766 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7767 else
7768 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7769
7770 pst = create_partial_symtab (per_cu, name);
7771 pst->anonymous = 1;
7772
7773 xfree (name);
7774 }
7775
7776 tu_group->hash.dwo_unit = cu->dwo_unit;
7777 tu_group->hash.line_sect_off = line_offset_struct;
7778
7779 return tu_group;
7780 }
7781
7782 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7783 STMT_LIST is a DW_AT_stmt_list attribute. */
7784
7785 static struct type_unit_group *
7786 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7787 {
7788 struct dwarf2_per_objfile *dwarf2_per_objfile
7789 = cu->per_cu->dwarf2_per_objfile;
7790 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7791 struct type_unit_group *tu_group;
7792 void **slot;
7793 unsigned int line_offset;
7794 struct type_unit_group type_unit_group_for_lookup;
7795
7796 if (dwarf2_per_objfile->type_unit_groups == NULL)
7797 {
7798 dwarf2_per_objfile->type_unit_groups =
7799 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7800 }
7801
7802 /* Do we need to create a new group, or can we use an existing one? */
7803
7804 if (stmt_list)
7805 {
7806 line_offset = DW_UNSND (stmt_list);
7807 ++tu_stats->nr_symtab_sharers;
7808 }
7809 else
7810 {
7811 /* Ugh, no stmt_list. Rare, but we have to handle it.
7812 We can do various things here like create one group per TU or
7813 spread them over multiple groups to split up the expansion work.
7814 To avoid worst case scenarios (too many groups or too large groups)
7815 we, umm, group them in bunches. */
7816 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7817 | (tu_stats->nr_stmt_less_type_units
7818 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7819 ++tu_stats->nr_stmt_less_type_units;
7820 }
7821
7822 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7823 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7824 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7825 &type_unit_group_for_lookup, INSERT);
7826 if (*slot != NULL)
7827 {
7828 tu_group = (struct type_unit_group *) *slot;
7829 gdb_assert (tu_group != NULL);
7830 }
7831 else
7832 {
7833 sect_offset line_offset_struct = (sect_offset) line_offset;
7834 tu_group = create_type_unit_group (cu, line_offset_struct);
7835 *slot = tu_group;
7836 ++tu_stats->nr_symtabs;
7837 }
7838
7839 return tu_group;
7840 }
7841 \f
7842 /* Partial symbol tables. */
7843
7844 /* Create a psymtab named NAME and assign it to PER_CU.
7845
7846 The caller must fill in the following details:
7847 dirname, textlow, texthigh. */
7848
7849 static struct partial_symtab *
7850 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7851 {
7852 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7853 struct partial_symtab *pst;
7854
7855 pst = start_psymtab_common (objfile, name, 0,
7856 objfile->global_psymbols,
7857 objfile->static_psymbols);
7858
7859 pst->psymtabs_addrmap_supported = 1;
7860
7861 /* This is the glue that links PST into GDB's symbol API. */
7862 pst->read_symtab_private = per_cu;
7863 pst->read_symtab = dwarf2_read_symtab;
7864 per_cu->v.psymtab = pst;
7865
7866 return pst;
7867 }
7868
7869 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7870 type. */
7871
7872 struct process_psymtab_comp_unit_data
7873 {
7874 /* True if we are reading a DW_TAG_partial_unit. */
7875
7876 int want_partial_unit;
7877
7878 /* The "pretend" language that is used if the CU doesn't declare a
7879 language. */
7880
7881 enum language pretend_language;
7882 };
7883
7884 /* die_reader_func for process_psymtab_comp_unit. */
7885
7886 static void
7887 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7888 const gdb_byte *info_ptr,
7889 struct die_info *comp_unit_die,
7890 int has_children,
7891 void *data)
7892 {
7893 struct dwarf2_cu *cu = reader->cu;
7894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7896 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7897 CORE_ADDR baseaddr;
7898 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7899 struct partial_symtab *pst;
7900 enum pc_bounds_kind cu_bounds_kind;
7901 const char *filename;
7902 struct process_psymtab_comp_unit_data *info
7903 = (struct process_psymtab_comp_unit_data *) data;
7904
7905 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7906 return;
7907
7908 gdb_assert (! per_cu->is_debug_types);
7909
7910 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7911
7912 cu->list_in_scope = &file_symbols;
7913
7914 /* Allocate a new partial symbol table structure. */
7915 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7916 if (filename == NULL)
7917 filename = "";
7918
7919 pst = create_partial_symtab (per_cu, filename);
7920
7921 /* This must be done before calling dwarf2_build_include_psymtabs. */
7922 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7923
7924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7925
7926 dwarf2_find_base_address (comp_unit_die, cu);
7927
7928 /* Possibly set the default values of LOWPC and HIGHPC from
7929 `DW_AT_ranges'. */
7930 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7931 &best_highpc, cu, pst);
7932 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7933 /* Store the contiguous range if it is not empty; it can be empty for
7934 CUs with no code. */
7935 addrmap_set_empty (objfile->psymtabs_addrmap,
7936 gdbarch_adjust_dwarf2_addr (gdbarch,
7937 best_lowpc + baseaddr),
7938 gdbarch_adjust_dwarf2_addr (gdbarch,
7939 best_highpc + baseaddr) - 1,
7940 pst);
7941
7942 /* Check if comp unit has_children.
7943 If so, read the rest of the partial symbols from this comp unit.
7944 If not, there's no more debug_info for this comp unit. */
7945 if (has_children)
7946 {
7947 struct partial_die_info *first_die;
7948 CORE_ADDR lowpc, highpc;
7949
7950 lowpc = ((CORE_ADDR) -1);
7951 highpc = ((CORE_ADDR) 0);
7952
7953 first_die = load_partial_dies (reader, info_ptr, 1);
7954
7955 scan_partial_symbols (first_die, &lowpc, &highpc,
7956 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7957
7958 /* If we didn't find a lowpc, set it to highpc to avoid
7959 complaints from `maint check'. */
7960 if (lowpc == ((CORE_ADDR) -1))
7961 lowpc = highpc;
7962
7963 /* If the compilation unit didn't have an explicit address range,
7964 then use the information extracted from its child dies. */
7965 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7966 {
7967 best_lowpc = lowpc;
7968 best_highpc = highpc;
7969 }
7970 }
7971 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7972 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7973
7974 end_psymtab_common (objfile, pst);
7975
7976 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7977 {
7978 int i;
7979 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7980 struct dwarf2_per_cu_data *iter;
7981
7982 /* Fill in 'dependencies' here; we fill in 'users' in a
7983 post-pass. */
7984 pst->number_of_dependencies = len;
7985 pst->dependencies =
7986 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7987 for (i = 0;
7988 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7989 i, iter);
7990 ++i)
7991 pst->dependencies[i] = iter->v.psymtab;
7992
7993 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7994 }
7995
7996 /* Get the list of files included in the current compilation unit,
7997 and build a psymtab for each of them. */
7998 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7999
8000 if (dwarf_read_debug)
8001 {
8002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8003
8004 fprintf_unfiltered (gdb_stdlog,
8005 "Psymtab for %s unit @%s: %s - %s"
8006 ", %d global, %d static syms\n",
8007 per_cu->is_debug_types ? "type" : "comp",
8008 sect_offset_str (per_cu->sect_off),
8009 paddress (gdbarch, pst->textlow),
8010 paddress (gdbarch, pst->texthigh),
8011 pst->n_global_syms, pst->n_static_syms);
8012 }
8013 }
8014
8015 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8016 Process compilation unit THIS_CU for a psymtab. */
8017
8018 static void
8019 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8020 int want_partial_unit,
8021 enum language pretend_language)
8022 {
8023 /* If this compilation unit was already read in, free the
8024 cached copy in order to read it in again. This is
8025 necessary because we skipped some symbols when we first
8026 read in the compilation unit (see load_partial_dies).
8027 This problem could be avoided, but the benefit is unclear. */
8028 if (this_cu->cu != NULL)
8029 free_one_cached_comp_unit (this_cu);
8030
8031 if (this_cu->is_debug_types)
8032 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8033 build_type_psymtabs_reader, NULL);
8034 else
8035 {
8036 process_psymtab_comp_unit_data info;
8037 info.want_partial_unit = want_partial_unit;
8038 info.pretend_language = pretend_language;
8039 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8040 process_psymtab_comp_unit_reader, &info);
8041 }
8042
8043 /* Age out any secondary CUs. */
8044 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8045 }
8046
8047 /* Reader function for build_type_psymtabs. */
8048
8049 static void
8050 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8051 const gdb_byte *info_ptr,
8052 struct die_info *type_unit_die,
8053 int has_children,
8054 void *data)
8055 {
8056 struct dwarf2_per_objfile *dwarf2_per_objfile
8057 = reader->cu->per_cu->dwarf2_per_objfile;
8058 struct objfile *objfile = dwarf2_per_objfile->objfile;
8059 struct dwarf2_cu *cu = reader->cu;
8060 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8061 struct signatured_type *sig_type;
8062 struct type_unit_group *tu_group;
8063 struct attribute *attr;
8064 struct partial_die_info *first_die;
8065 CORE_ADDR lowpc, highpc;
8066 struct partial_symtab *pst;
8067
8068 gdb_assert (data == NULL);
8069 gdb_assert (per_cu->is_debug_types);
8070 sig_type = (struct signatured_type *) per_cu;
8071
8072 if (! has_children)
8073 return;
8074
8075 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8076 tu_group = get_type_unit_group (cu, attr);
8077
8078 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8079
8080 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8081 cu->list_in_scope = &file_symbols;
8082 pst = create_partial_symtab (per_cu, "");
8083 pst->anonymous = 1;
8084
8085 first_die = load_partial_dies (reader, info_ptr, 1);
8086
8087 lowpc = (CORE_ADDR) -1;
8088 highpc = (CORE_ADDR) 0;
8089 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8090
8091 end_psymtab_common (objfile, pst);
8092 }
8093
8094 /* Struct used to sort TUs by their abbreviation table offset. */
8095
8096 struct tu_abbrev_offset
8097 {
8098 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8099 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8100 {}
8101
8102 signatured_type *sig_type;
8103 sect_offset abbrev_offset;
8104 };
8105
8106 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8107
8108 static bool
8109 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8110 const struct tu_abbrev_offset &b)
8111 {
8112 return a.abbrev_offset < b.abbrev_offset;
8113 }
8114
8115 /* Efficiently read all the type units.
8116 This does the bulk of the work for build_type_psymtabs.
8117
8118 The efficiency is because we sort TUs by the abbrev table they use and
8119 only read each abbrev table once. In one program there are 200K TUs
8120 sharing 8K abbrev tables.
8121
8122 The main purpose of this function is to support building the
8123 dwarf2_per_objfile->type_unit_groups table.
8124 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8125 can collapse the search space by grouping them by stmt_list.
8126 The savings can be significant, in the same program from above the 200K TUs
8127 share 8K stmt_list tables.
8128
8129 FUNC is expected to call get_type_unit_group, which will create the
8130 struct type_unit_group if necessary and add it to
8131 dwarf2_per_objfile->type_unit_groups. */
8132
8133 static void
8134 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8135 {
8136 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8137 abbrev_table_up abbrev_table;
8138 sect_offset abbrev_offset;
8139
8140 /* It's up to the caller to not call us multiple times. */
8141 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8142
8143 if (dwarf2_per_objfile->all_type_units.empty ())
8144 return;
8145
8146 /* TUs typically share abbrev tables, and there can be way more TUs than
8147 abbrev tables. Sort by abbrev table to reduce the number of times we
8148 read each abbrev table in.
8149 Alternatives are to punt or to maintain a cache of abbrev tables.
8150 This is simpler and efficient enough for now.
8151
8152 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8153 symtab to use). Typically TUs with the same abbrev offset have the same
8154 stmt_list value too so in practice this should work well.
8155
8156 The basic algorithm here is:
8157
8158 sort TUs by abbrev table
8159 for each TU with same abbrev table:
8160 read abbrev table if first user
8161 read TU top level DIE
8162 [IWBN if DWO skeletons had DW_AT_stmt_list]
8163 call FUNC */
8164
8165 if (dwarf_read_debug)
8166 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8167
8168 /* Sort in a separate table to maintain the order of all_type_units
8169 for .gdb_index: TU indices directly index all_type_units. */
8170 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8171 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8172
8173 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8174 sorted_by_abbrev.emplace_back
8175 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8176 sig_type->per_cu.section,
8177 sig_type->per_cu.sect_off));
8178
8179 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8180 sort_tu_by_abbrev_offset);
8181
8182 abbrev_offset = (sect_offset) ~(unsigned) 0;
8183
8184 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8185 {
8186 /* Switch to the next abbrev table if necessary. */
8187 if (abbrev_table == NULL
8188 || tu.abbrev_offset != abbrev_offset)
8189 {
8190 abbrev_offset = tu.abbrev_offset;
8191 abbrev_table =
8192 abbrev_table_read_table (dwarf2_per_objfile,
8193 &dwarf2_per_objfile->abbrev,
8194 abbrev_offset);
8195 ++tu_stats->nr_uniq_abbrev_tables;
8196 }
8197
8198 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8199 0, 0, false, build_type_psymtabs_reader, NULL);
8200 }
8201 }
8202
8203 /* Print collected type unit statistics. */
8204
8205 static void
8206 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8207 {
8208 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8209
8210 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8211 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8212 dwarf2_per_objfile->all_type_units.size ());
8213 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8214 tu_stats->nr_uniq_abbrev_tables);
8215 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8216 tu_stats->nr_symtabs);
8217 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8218 tu_stats->nr_symtab_sharers);
8219 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8220 tu_stats->nr_stmt_less_type_units);
8221 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8222 tu_stats->nr_all_type_units_reallocs);
8223 }
8224
8225 /* Traversal function for build_type_psymtabs. */
8226
8227 static int
8228 build_type_psymtab_dependencies (void **slot, void *info)
8229 {
8230 struct dwarf2_per_objfile *dwarf2_per_objfile
8231 = (struct dwarf2_per_objfile *) info;
8232 struct objfile *objfile = dwarf2_per_objfile->objfile;
8233 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8234 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8235 struct partial_symtab *pst = per_cu->v.psymtab;
8236 int len = VEC_length (sig_type_ptr, tu_group->tus);
8237 struct signatured_type *iter;
8238 int i;
8239
8240 gdb_assert (len > 0);
8241 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8242
8243 pst->number_of_dependencies = len;
8244 pst->dependencies =
8245 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8246 for (i = 0;
8247 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8248 ++i)
8249 {
8250 gdb_assert (iter->per_cu.is_debug_types);
8251 pst->dependencies[i] = iter->per_cu.v.psymtab;
8252 iter->type_unit_group = tu_group;
8253 }
8254
8255 VEC_free (sig_type_ptr, tu_group->tus);
8256
8257 return 1;
8258 }
8259
8260 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8261 Build partial symbol tables for the .debug_types comp-units. */
8262
8263 static void
8264 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8265 {
8266 if (! create_all_type_units (dwarf2_per_objfile))
8267 return;
8268
8269 build_type_psymtabs_1 (dwarf2_per_objfile);
8270 }
8271
8272 /* Traversal function for process_skeletonless_type_unit.
8273 Read a TU in a DWO file and build partial symbols for it. */
8274
8275 static int
8276 process_skeletonless_type_unit (void **slot, void *info)
8277 {
8278 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8279 struct dwarf2_per_objfile *dwarf2_per_objfile
8280 = (struct dwarf2_per_objfile *) info;
8281 struct signatured_type find_entry, *entry;
8282
8283 /* If this TU doesn't exist in the global table, add it and read it in. */
8284
8285 if (dwarf2_per_objfile->signatured_types == NULL)
8286 {
8287 dwarf2_per_objfile->signatured_types
8288 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8289 }
8290
8291 find_entry.signature = dwo_unit->signature;
8292 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8293 INSERT);
8294 /* If we've already seen this type there's nothing to do. What's happening
8295 is we're doing our own version of comdat-folding here. */
8296 if (*slot != NULL)
8297 return 1;
8298
8299 /* This does the job that create_all_type_units would have done for
8300 this TU. */
8301 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8302 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8303 *slot = entry;
8304
8305 /* This does the job that build_type_psymtabs_1 would have done. */
8306 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8307 build_type_psymtabs_reader, NULL);
8308
8309 return 1;
8310 }
8311
8312 /* Traversal function for process_skeletonless_type_units. */
8313
8314 static int
8315 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8316 {
8317 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8318
8319 if (dwo_file->tus != NULL)
8320 {
8321 htab_traverse_noresize (dwo_file->tus,
8322 process_skeletonless_type_unit, info);
8323 }
8324
8325 return 1;
8326 }
8327
8328 /* Scan all TUs of DWO files, verifying we've processed them.
8329 This is needed in case a TU was emitted without its skeleton.
8330 Note: This can't be done until we know what all the DWO files are. */
8331
8332 static void
8333 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8334 {
8335 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8336 if (get_dwp_file (dwarf2_per_objfile) == NULL
8337 && dwarf2_per_objfile->dwo_files != NULL)
8338 {
8339 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8340 process_dwo_file_for_skeletonless_type_units,
8341 dwarf2_per_objfile);
8342 }
8343 }
8344
8345 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8346
8347 static void
8348 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8349 {
8350 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8351 {
8352 struct partial_symtab *pst = per_cu->v.psymtab;
8353
8354 if (pst == NULL)
8355 continue;
8356
8357 for (int j = 0; j < pst->number_of_dependencies; ++j)
8358 {
8359 /* Set the 'user' field only if it is not already set. */
8360 if (pst->dependencies[j]->user == NULL)
8361 pst->dependencies[j]->user = pst;
8362 }
8363 }
8364 }
8365
8366 /* Build the partial symbol table by doing a quick pass through the
8367 .debug_info and .debug_abbrev sections. */
8368
8369 static void
8370 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8371 {
8372 struct objfile *objfile = dwarf2_per_objfile->objfile;
8373
8374 if (dwarf_read_debug)
8375 {
8376 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8377 objfile_name (objfile));
8378 }
8379
8380 dwarf2_per_objfile->reading_partial_symbols = 1;
8381
8382 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8383
8384 /* Any cached compilation units will be linked by the per-objfile
8385 read_in_chain. Make sure to free them when we're done. */
8386 free_cached_comp_units freer (dwarf2_per_objfile);
8387
8388 build_type_psymtabs (dwarf2_per_objfile);
8389
8390 create_all_comp_units (dwarf2_per_objfile);
8391
8392 /* Create a temporary address map on a temporary obstack. We later
8393 copy this to the final obstack. */
8394 auto_obstack temp_obstack;
8395
8396 scoped_restore save_psymtabs_addrmap
8397 = make_scoped_restore (&objfile->psymtabs_addrmap,
8398 addrmap_create_mutable (&temp_obstack));
8399
8400 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8401 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8402
8403 /* This has to wait until we read the CUs, we need the list of DWOs. */
8404 process_skeletonless_type_units (dwarf2_per_objfile);
8405
8406 /* Now that all TUs have been processed we can fill in the dependencies. */
8407 if (dwarf2_per_objfile->type_unit_groups != NULL)
8408 {
8409 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8410 build_type_psymtab_dependencies, dwarf2_per_objfile);
8411 }
8412
8413 if (dwarf_read_debug)
8414 print_tu_stats (dwarf2_per_objfile);
8415
8416 set_partial_user (dwarf2_per_objfile);
8417
8418 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8419 &objfile->objfile_obstack);
8420 /* At this point we want to keep the address map. */
8421 save_psymtabs_addrmap.release ();
8422
8423 if (dwarf_read_debug)
8424 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8425 objfile_name (objfile));
8426 }
8427
8428 /* die_reader_func for load_partial_comp_unit. */
8429
8430 static void
8431 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8432 const gdb_byte *info_ptr,
8433 struct die_info *comp_unit_die,
8434 int has_children,
8435 void *data)
8436 {
8437 struct dwarf2_cu *cu = reader->cu;
8438
8439 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8440
8441 /* Check if comp unit has_children.
8442 If so, read the rest of the partial symbols from this comp unit.
8443 If not, there's no more debug_info for this comp unit. */
8444 if (has_children)
8445 load_partial_dies (reader, info_ptr, 0);
8446 }
8447
8448 /* Load the partial DIEs for a secondary CU into memory.
8449 This is also used when rereading a primary CU with load_all_dies. */
8450
8451 static void
8452 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8453 {
8454 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8455 load_partial_comp_unit_reader, NULL);
8456 }
8457
8458 static void
8459 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8460 struct dwarf2_section_info *section,
8461 struct dwarf2_section_info *abbrev_section,
8462 unsigned int is_dwz)
8463 {
8464 const gdb_byte *info_ptr;
8465 struct objfile *objfile = dwarf2_per_objfile->objfile;
8466
8467 if (dwarf_read_debug)
8468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8469 get_section_name (section),
8470 get_section_file_name (section));
8471
8472 dwarf2_read_section (objfile, section);
8473
8474 info_ptr = section->buffer;
8475
8476 while (info_ptr < section->buffer + section->size)
8477 {
8478 struct dwarf2_per_cu_data *this_cu;
8479
8480 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8481
8482 comp_unit_head cu_header;
8483 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8484 abbrev_section, info_ptr,
8485 rcuh_kind::COMPILE);
8486
8487 /* Save the compilation unit for later lookup. */
8488 if (cu_header.unit_type != DW_UT_type)
8489 {
8490 this_cu = XOBNEW (&objfile->objfile_obstack,
8491 struct dwarf2_per_cu_data);
8492 memset (this_cu, 0, sizeof (*this_cu));
8493 }
8494 else
8495 {
8496 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8497 struct signatured_type);
8498 memset (sig_type, 0, sizeof (*sig_type));
8499 sig_type->signature = cu_header.signature;
8500 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8501 this_cu = &sig_type->per_cu;
8502 }
8503 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8504 this_cu->sect_off = sect_off;
8505 this_cu->length = cu_header.length + cu_header.initial_length_size;
8506 this_cu->is_dwz = is_dwz;
8507 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8508 this_cu->section = section;
8509
8510 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8511
8512 info_ptr = info_ptr + this_cu->length;
8513 }
8514 }
8515
8516 /* Create a list of all compilation units in OBJFILE.
8517 This is only done for -readnow and building partial symtabs. */
8518
8519 static void
8520 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8521 {
8522 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8523 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8524 &dwarf2_per_objfile->abbrev, 0);
8525
8526 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8527 if (dwz != NULL)
8528 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8529 1);
8530 }
8531
8532 /* Process all loaded DIEs for compilation unit CU, starting at
8533 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8534 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8535 DW_AT_ranges). See the comments of add_partial_subprogram on how
8536 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8537
8538 static void
8539 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8540 CORE_ADDR *highpc, int set_addrmap,
8541 struct dwarf2_cu *cu)
8542 {
8543 struct partial_die_info *pdi;
8544
8545 /* Now, march along the PDI's, descending into ones which have
8546 interesting children but skipping the children of the other ones,
8547 until we reach the end of the compilation unit. */
8548
8549 pdi = first_die;
8550
8551 while (pdi != NULL)
8552 {
8553 pdi->fixup (cu);
8554
8555 /* Anonymous namespaces or modules have no name but have interesting
8556 children, so we need to look at them. Ditto for anonymous
8557 enums. */
8558
8559 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8560 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8561 || pdi->tag == DW_TAG_imported_unit
8562 || pdi->tag == DW_TAG_inlined_subroutine)
8563 {
8564 switch (pdi->tag)
8565 {
8566 case DW_TAG_subprogram:
8567 case DW_TAG_inlined_subroutine:
8568 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8569 break;
8570 case DW_TAG_constant:
8571 case DW_TAG_variable:
8572 case DW_TAG_typedef:
8573 case DW_TAG_union_type:
8574 if (!pdi->is_declaration)
8575 {
8576 add_partial_symbol (pdi, cu);
8577 }
8578 break;
8579 case DW_TAG_class_type:
8580 case DW_TAG_interface_type:
8581 case DW_TAG_structure_type:
8582 if (!pdi->is_declaration)
8583 {
8584 add_partial_symbol (pdi, cu);
8585 }
8586 if ((cu->language == language_rust
8587 || cu->language == language_cplus) && pdi->has_children)
8588 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8589 set_addrmap, cu);
8590 break;
8591 case DW_TAG_enumeration_type:
8592 if (!pdi->is_declaration)
8593 add_partial_enumeration (pdi, cu);
8594 break;
8595 case DW_TAG_base_type:
8596 case DW_TAG_subrange_type:
8597 /* File scope base type definitions are added to the partial
8598 symbol table. */
8599 add_partial_symbol (pdi, cu);
8600 break;
8601 case DW_TAG_namespace:
8602 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8603 break;
8604 case DW_TAG_module:
8605 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8606 break;
8607 case DW_TAG_imported_unit:
8608 {
8609 struct dwarf2_per_cu_data *per_cu;
8610
8611 /* For now we don't handle imported units in type units. */
8612 if (cu->per_cu->is_debug_types)
8613 {
8614 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8615 " supported in type units [in module %s]"),
8616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8617 }
8618
8619 per_cu = dwarf2_find_containing_comp_unit
8620 (pdi->d.sect_off, pdi->is_dwz,
8621 cu->per_cu->dwarf2_per_objfile);
8622
8623 /* Go read the partial unit, if needed. */
8624 if (per_cu->v.psymtab == NULL)
8625 process_psymtab_comp_unit (per_cu, 1, cu->language);
8626
8627 VEC_safe_push (dwarf2_per_cu_ptr,
8628 cu->per_cu->imported_symtabs, per_cu);
8629 }
8630 break;
8631 case DW_TAG_imported_declaration:
8632 add_partial_symbol (pdi, cu);
8633 break;
8634 default:
8635 break;
8636 }
8637 }
8638
8639 /* If the die has a sibling, skip to the sibling. */
8640
8641 pdi = pdi->die_sibling;
8642 }
8643 }
8644
8645 /* Functions used to compute the fully scoped name of a partial DIE.
8646
8647 Normally, this is simple. For C++, the parent DIE's fully scoped
8648 name is concatenated with "::" and the partial DIE's name.
8649 Enumerators are an exception; they use the scope of their parent
8650 enumeration type, i.e. the name of the enumeration type is not
8651 prepended to the enumerator.
8652
8653 There are two complexities. One is DW_AT_specification; in this
8654 case "parent" means the parent of the target of the specification,
8655 instead of the direct parent of the DIE. The other is compilers
8656 which do not emit DW_TAG_namespace; in this case we try to guess
8657 the fully qualified name of structure types from their members'
8658 linkage names. This must be done using the DIE's children rather
8659 than the children of any DW_AT_specification target. We only need
8660 to do this for structures at the top level, i.e. if the target of
8661 any DW_AT_specification (if any; otherwise the DIE itself) does not
8662 have a parent. */
8663
8664 /* Compute the scope prefix associated with PDI's parent, in
8665 compilation unit CU. The result will be allocated on CU's
8666 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8667 field. NULL is returned if no prefix is necessary. */
8668 static const char *
8669 partial_die_parent_scope (struct partial_die_info *pdi,
8670 struct dwarf2_cu *cu)
8671 {
8672 const char *grandparent_scope;
8673 struct partial_die_info *parent, *real_pdi;
8674
8675 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8676 then this means the parent of the specification DIE. */
8677
8678 real_pdi = pdi;
8679 while (real_pdi->has_specification)
8680 real_pdi = find_partial_die (real_pdi->spec_offset,
8681 real_pdi->spec_is_dwz, cu);
8682
8683 parent = real_pdi->die_parent;
8684 if (parent == NULL)
8685 return NULL;
8686
8687 if (parent->scope_set)
8688 return parent->scope;
8689
8690 parent->fixup (cu);
8691
8692 grandparent_scope = partial_die_parent_scope (parent, cu);
8693
8694 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8695 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8696 Work around this problem here. */
8697 if (cu->language == language_cplus
8698 && parent->tag == DW_TAG_namespace
8699 && strcmp (parent->name, "::") == 0
8700 && grandparent_scope == NULL)
8701 {
8702 parent->scope = NULL;
8703 parent->scope_set = 1;
8704 return NULL;
8705 }
8706
8707 if (pdi->tag == DW_TAG_enumerator)
8708 /* Enumerators should not get the name of the enumeration as a prefix. */
8709 parent->scope = grandparent_scope;
8710 else if (parent->tag == DW_TAG_namespace
8711 || parent->tag == DW_TAG_module
8712 || parent->tag == DW_TAG_structure_type
8713 || parent->tag == DW_TAG_class_type
8714 || parent->tag == DW_TAG_interface_type
8715 || parent->tag == DW_TAG_union_type
8716 || parent->tag == DW_TAG_enumeration_type)
8717 {
8718 if (grandparent_scope == NULL)
8719 parent->scope = parent->name;
8720 else
8721 parent->scope = typename_concat (&cu->comp_unit_obstack,
8722 grandparent_scope,
8723 parent->name, 0, cu);
8724 }
8725 else
8726 {
8727 /* FIXME drow/2004-04-01: What should we be doing with
8728 function-local names? For partial symbols, we should probably be
8729 ignoring them. */
8730 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8731 parent->tag, sect_offset_str (pdi->sect_off));
8732 parent->scope = grandparent_scope;
8733 }
8734
8735 parent->scope_set = 1;
8736 return parent->scope;
8737 }
8738
8739 /* Return the fully scoped name associated with PDI, from compilation unit
8740 CU. The result will be allocated with malloc. */
8741
8742 static char *
8743 partial_die_full_name (struct partial_die_info *pdi,
8744 struct dwarf2_cu *cu)
8745 {
8746 const char *parent_scope;
8747
8748 /* If this is a template instantiation, we can not work out the
8749 template arguments from partial DIEs. So, unfortunately, we have
8750 to go through the full DIEs. At least any work we do building
8751 types here will be reused if full symbols are loaded later. */
8752 if (pdi->has_template_arguments)
8753 {
8754 pdi->fixup (cu);
8755
8756 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8757 {
8758 struct die_info *die;
8759 struct attribute attr;
8760 struct dwarf2_cu *ref_cu = cu;
8761
8762 /* DW_FORM_ref_addr is using section offset. */
8763 attr.name = (enum dwarf_attribute) 0;
8764 attr.form = DW_FORM_ref_addr;
8765 attr.u.unsnd = to_underlying (pdi->sect_off);
8766 die = follow_die_ref (NULL, &attr, &ref_cu);
8767
8768 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8769 }
8770 }
8771
8772 parent_scope = partial_die_parent_scope (pdi, cu);
8773 if (parent_scope == NULL)
8774 return NULL;
8775 else
8776 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8777 }
8778
8779 static void
8780 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8781 {
8782 struct dwarf2_per_objfile *dwarf2_per_objfile
8783 = cu->per_cu->dwarf2_per_objfile;
8784 struct objfile *objfile = dwarf2_per_objfile->objfile;
8785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8786 CORE_ADDR addr = 0;
8787 const char *actual_name = NULL;
8788 CORE_ADDR baseaddr;
8789 char *built_actual_name;
8790
8791 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8792
8793 built_actual_name = partial_die_full_name (pdi, cu);
8794 if (built_actual_name != NULL)
8795 actual_name = built_actual_name;
8796
8797 if (actual_name == NULL)
8798 actual_name = pdi->name;
8799
8800 switch (pdi->tag)
8801 {
8802 case DW_TAG_inlined_subroutine:
8803 case DW_TAG_subprogram:
8804 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8805 if (pdi->is_external || cu->language == language_ada)
8806 {
8807 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8808 of the global scope. But in Ada, we want to be able to access
8809 nested procedures globally. So all Ada subprograms are stored
8810 in the global scope. */
8811 add_psymbol_to_list (actual_name, strlen (actual_name),
8812 built_actual_name != NULL,
8813 VAR_DOMAIN, LOC_BLOCK,
8814 &objfile->global_psymbols,
8815 addr, cu->language, objfile);
8816 }
8817 else
8818 {
8819 add_psymbol_to_list (actual_name, strlen (actual_name),
8820 built_actual_name != NULL,
8821 VAR_DOMAIN, LOC_BLOCK,
8822 &objfile->static_psymbols,
8823 addr, cu->language, objfile);
8824 }
8825
8826 if (pdi->main_subprogram && actual_name != NULL)
8827 set_objfile_main_name (objfile, actual_name, cu->language);
8828 break;
8829 case DW_TAG_constant:
8830 {
8831 std::vector<partial_symbol *> *list;
8832
8833 if (pdi->is_external)
8834 list = &objfile->global_psymbols;
8835 else
8836 list = &objfile->static_psymbols;
8837 add_psymbol_to_list (actual_name, strlen (actual_name),
8838 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8839 list, 0, cu->language, objfile);
8840 }
8841 break;
8842 case DW_TAG_variable:
8843 if (pdi->d.locdesc)
8844 addr = decode_locdesc (pdi->d.locdesc, cu);
8845
8846 if (pdi->d.locdesc
8847 && addr == 0
8848 && !dwarf2_per_objfile->has_section_at_zero)
8849 {
8850 /* A global or static variable may also have been stripped
8851 out by the linker if unused, in which case its address
8852 will be nullified; do not add such variables into partial
8853 symbol table then. */
8854 }
8855 else if (pdi->is_external)
8856 {
8857 /* Global Variable.
8858 Don't enter into the minimal symbol tables as there is
8859 a minimal symbol table entry from the ELF symbols already.
8860 Enter into partial symbol table if it has a location
8861 descriptor or a type.
8862 If the location descriptor is missing, new_symbol will create
8863 a LOC_UNRESOLVED symbol, the address of the variable will then
8864 be determined from the minimal symbol table whenever the variable
8865 is referenced.
8866 The address for the partial symbol table entry is not
8867 used by GDB, but it comes in handy for debugging partial symbol
8868 table building. */
8869
8870 if (pdi->d.locdesc || pdi->has_type)
8871 add_psymbol_to_list (actual_name, strlen (actual_name),
8872 built_actual_name != NULL,
8873 VAR_DOMAIN, LOC_STATIC,
8874 &objfile->global_psymbols,
8875 addr + baseaddr,
8876 cu->language, objfile);
8877 }
8878 else
8879 {
8880 int has_loc = pdi->d.locdesc != NULL;
8881
8882 /* Static Variable. Skip symbols whose value we cannot know (those
8883 without location descriptors or constant values). */
8884 if (!has_loc && !pdi->has_const_value)
8885 {
8886 xfree (built_actual_name);
8887 return;
8888 }
8889
8890 add_psymbol_to_list (actual_name, strlen (actual_name),
8891 built_actual_name != NULL,
8892 VAR_DOMAIN, LOC_STATIC,
8893 &objfile->static_psymbols,
8894 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8895 cu->language, objfile);
8896 }
8897 break;
8898 case DW_TAG_typedef:
8899 case DW_TAG_base_type:
8900 case DW_TAG_subrange_type:
8901 add_psymbol_to_list (actual_name, strlen (actual_name),
8902 built_actual_name != NULL,
8903 VAR_DOMAIN, LOC_TYPEDEF,
8904 &objfile->static_psymbols,
8905 0, cu->language, objfile);
8906 break;
8907 case DW_TAG_imported_declaration:
8908 case DW_TAG_namespace:
8909 add_psymbol_to_list (actual_name, strlen (actual_name),
8910 built_actual_name != NULL,
8911 VAR_DOMAIN, LOC_TYPEDEF,
8912 &objfile->global_psymbols,
8913 0, cu->language, objfile);
8914 break;
8915 case DW_TAG_module:
8916 add_psymbol_to_list (actual_name, strlen (actual_name),
8917 built_actual_name != NULL,
8918 MODULE_DOMAIN, LOC_TYPEDEF,
8919 &objfile->global_psymbols,
8920 0, cu->language, objfile);
8921 break;
8922 case DW_TAG_class_type:
8923 case DW_TAG_interface_type:
8924 case DW_TAG_structure_type:
8925 case DW_TAG_union_type:
8926 case DW_TAG_enumeration_type:
8927 /* Skip external references. The DWARF standard says in the section
8928 about "Structure, Union, and Class Type Entries": "An incomplete
8929 structure, union or class type is represented by a structure,
8930 union or class entry that does not have a byte size attribute
8931 and that has a DW_AT_declaration attribute." */
8932 if (!pdi->has_byte_size && pdi->is_declaration)
8933 {
8934 xfree (built_actual_name);
8935 return;
8936 }
8937
8938 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8939 static vs. global. */
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL,
8942 STRUCT_DOMAIN, LOC_TYPEDEF,
8943 cu->language == language_cplus
8944 ? &objfile->global_psymbols
8945 : &objfile->static_psymbols,
8946 0, cu->language, objfile);
8947
8948 break;
8949 case DW_TAG_enumerator:
8950 add_psymbol_to_list (actual_name, strlen (actual_name),
8951 built_actual_name != NULL,
8952 VAR_DOMAIN, LOC_CONST,
8953 cu->language == language_cplus
8954 ? &objfile->global_psymbols
8955 : &objfile->static_psymbols,
8956 0, cu->language, objfile);
8957 break;
8958 default:
8959 break;
8960 }
8961
8962 xfree (built_actual_name);
8963 }
8964
8965 /* Read a partial die corresponding to a namespace; also, add a symbol
8966 corresponding to that namespace to the symbol table. NAMESPACE is
8967 the name of the enclosing namespace. */
8968
8969 static void
8970 add_partial_namespace (struct partial_die_info *pdi,
8971 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8972 int set_addrmap, struct dwarf2_cu *cu)
8973 {
8974 /* Add a symbol for the namespace. */
8975
8976 add_partial_symbol (pdi, cu);
8977
8978 /* Now scan partial symbols in that namespace. */
8979
8980 if (pdi->has_children)
8981 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8982 }
8983
8984 /* Read a partial die corresponding to a Fortran module. */
8985
8986 static void
8987 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8988 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8989 {
8990 /* Add a symbol for the namespace. */
8991
8992 add_partial_symbol (pdi, cu);
8993
8994 /* Now scan partial symbols in that module. */
8995
8996 if (pdi->has_children)
8997 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8998 }
8999
9000 /* Read a partial die corresponding to a subprogram or an inlined
9001 subprogram and create a partial symbol for that subprogram.
9002 When the CU language allows it, this routine also defines a partial
9003 symbol for each nested subprogram that this subprogram contains.
9004 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9005 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9006
9007 PDI may also be a lexical block, in which case we simply search
9008 recursively for subprograms defined inside that lexical block.
9009 Again, this is only performed when the CU language allows this
9010 type of definitions. */
9011
9012 static void
9013 add_partial_subprogram (struct partial_die_info *pdi,
9014 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9015 int set_addrmap, struct dwarf2_cu *cu)
9016 {
9017 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9018 {
9019 if (pdi->has_pc_info)
9020 {
9021 if (pdi->lowpc < *lowpc)
9022 *lowpc = pdi->lowpc;
9023 if (pdi->highpc > *highpc)
9024 *highpc = pdi->highpc;
9025 if (set_addrmap)
9026 {
9027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9028 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9029 CORE_ADDR baseaddr;
9030 CORE_ADDR highpc;
9031 CORE_ADDR lowpc;
9032
9033 baseaddr = ANOFFSET (objfile->section_offsets,
9034 SECT_OFF_TEXT (objfile));
9035 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9036 pdi->lowpc + baseaddr);
9037 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9038 pdi->highpc + baseaddr);
9039 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9040 cu->per_cu->v.psymtab);
9041 }
9042 }
9043
9044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9045 {
9046 if (!pdi->is_declaration)
9047 /* Ignore subprogram DIEs that do not have a name, they are
9048 illegal. Do not emit a complaint at this point, we will
9049 do so when we convert this psymtab into a symtab. */
9050 if (pdi->name)
9051 add_partial_symbol (pdi, cu);
9052 }
9053 }
9054
9055 if (! pdi->has_children)
9056 return;
9057
9058 if (cu->language == language_ada)
9059 {
9060 pdi = pdi->die_child;
9061 while (pdi != NULL)
9062 {
9063 pdi->fixup (cu);
9064 if (pdi->tag == DW_TAG_subprogram
9065 || pdi->tag == DW_TAG_inlined_subroutine
9066 || pdi->tag == DW_TAG_lexical_block)
9067 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9068 pdi = pdi->die_sibling;
9069 }
9070 }
9071 }
9072
9073 /* Read a partial die corresponding to an enumeration type. */
9074
9075 static void
9076 add_partial_enumeration (struct partial_die_info *enum_pdi,
9077 struct dwarf2_cu *cu)
9078 {
9079 struct partial_die_info *pdi;
9080
9081 if (enum_pdi->name != NULL)
9082 add_partial_symbol (enum_pdi, cu);
9083
9084 pdi = enum_pdi->die_child;
9085 while (pdi)
9086 {
9087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9088 complaint (_("malformed enumerator DIE ignored"));
9089 else
9090 add_partial_symbol (pdi, cu);
9091 pdi = pdi->die_sibling;
9092 }
9093 }
9094
9095 /* Return the initial uleb128 in the die at INFO_PTR. */
9096
9097 static unsigned int
9098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9099 {
9100 unsigned int bytes_read;
9101
9102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9103 }
9104
9105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9106 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9107
9108 Return the corresponding abbrev, or NULL if the number is zero (indicating
9109 an empty DIE). In either case *BYTES_READ will be set to the length of
9110 the initial number. */
9111
9112 static struct abbrev_info *
9113 peek_die_abbrev (const die_reader_specs &reader,
9114 const gdb_byte *info_ptr, unsigned int *bytes_read)
9115 {
9116 dwarf2_cu *cu = reader.cu;
9117 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9118 unsigned int abbrev_number
9119 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9120
9121 if (abbrev_number == 0)
9122 return NULL;
9123
9124 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9125 if (!abbrev)
9126 {
9127 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9128 " at offset %s [in module %s]"),
9129 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9130 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9131 }
9132
9133 return abbrev;
9134 }
9135
9136 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9137 Returns a pointer to the end of a series of DIEs, terminated by an empty
9138 DIE. Any children of the skipped DIEs will also be skipped. */
9139
9140 static const gdb_byte *
9141 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9142 {
9143 while (1)
9144 {
9145 unsigned int bytes_read;
9146 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9147
9148 if (abbrev == NULL)
9149 return info_ptr + bytes_read;
9150 else
9151 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9152 }
9153 }
9154
9155 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9156 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9157 abbrev corresponding to that skipped uleb128 should be passed in
9158 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9159 children. */
9160
9161 static const gdb_byte *
9162 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9163 struct abbrev_info *abbrev)
9164 {
9165 unsigned int bytes_read;
9166 struct attribute attr;
9167 bfd *abfd = reader->abfd;
9168 struct dwarf2_cu *cu = reader->cu;
9169 const gdb_byte *buffer = reader->buffer;
9170 const gdb_byte *buffer_end = reader->buffer_end;
9171 unsigned int form, i;
9172
9173 for (i = 0; i < abbrev->num_attrs; i++)
9174 {
9175 /* The only abbrev we care about is DW_AT_sibling. */
9176 if (abbrev->attrs[i].name == DW_AT_sibling)
9177 {
9178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9179 if (attr.form == DW_FORM_ref_addr)
9180 complaint (_("ignoring absolute DW_AT_sibling"));
9181 else
9182 {
9183 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9184 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9185
9186 if (sibling_ptr < info_ptr)
9187 complaint (_("DW_AT_sibling points backwards"));
9188 else if (sibling_ptr > reader->buffer_end)
9189 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9190 else
9191 return sibling_ptr;
9192 }
9193 }
9194
9195 /* If it isn't DW_AT_sibling, skip this attribute. */
9196 form = abbrev->attrs[i].form;
9197 skip_attribute:
9198 switch (form)
9199 {
9200 case DW_FORM_ref_addr:
9201 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9202 and later it is offset sized. */
9203 if (cu->header.version == 2)
9204 info_ptr += cu->header.addr_size;
9205 else
9206 info_ptr += cu->header.offset_size;
9207 break;
9208 case DW_FORM_GNU_ref_alt:
9209 info_ptr += cu->header.offset_size;
9210 break;
9211 case DW_FORM_addr:
9212 info_ptr += cu->header.addr_size;
9213 break;
9214 case DW_FORM_data1:
9215 case DW_FORM_ref1:
9216 case DW_FORM_flag:
9217 info_ptr += 1;
9218 break;
9219 case DW_FORM_flag_present:
9220 case DW_FORM_implicit_const:
9221 break;
9222 case DW_FORM_data2:
9223 case DW_FORM_ref2:
9224 info_ptr += 2;
9225 break;
9226 case DW_FORM_data4:
9227 case DW_FORM_ref4:
9228 info_ptr += 4;
9229 break;
9230 case DW_FORM_data8:
9231 case DW_FORM_ref8:
9232 case DW_FORM_ref_sig8:
9233 info_ptr += 8;
9234 break;
9235 case DW_FORM_data16:
9236 info_ptr += 16;
9237 break;
9238 case DW_FORM_string:
9239 read_direct_string (abfd, info_ptr, &bytes_read);
9240 info_ptr += bytes_read;
9241 break;
9242 case DW_FORM_sec_offset:
9243 case DW_FORM_strp:
9244 case DW_FORM_GNU_strp_alt:
9245 info_ptr += cu->header.offset_size;
9246 break;
9247 case DW_FORM_exprloc:
9248 case DW_FORM_block:
9249 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9250 info_ptr += bytes_read;
9251 break;
9252 case DW_FORM_block1:
9253 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9254 break;
9255 case DW_FORM_block2:
9256 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9257 break;
9258 case DW_FORM_block4:
9259 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9260 break;
9261 case DW_FORM_sdata:
9262 case DW_FORM_udata:
9263 case DW_FORM_ref_udata:
9264 case DW_FORM_GNU_addr_index:
9265 case DW_FORM_GNU_str_index:
9266 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9267 break;
9268 case DW_FORM_indirect:
9269 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9270 info_ptr += bytes_read;
9271 /* We need to continue parsing from here, so just go back to
9272 the top. */
9273 goto skip_attribute;
9274
9275 default:
9276 error (_("Dwarf Error: Cannot handle %s "
9277 "in DWARF reader [in module %s]"),
9278 dwarf_form_name (form),
9279 bfd_get_filename (abfd));
9280 }
9281 }
9282
9283 if (abbrev->has_children)
9284 return skip_children (reader, info_ptr);
9285 else
9286 return info_ptr;
9287 }
9288
9289 /* Locate ORIG_PDI's sibling.
9290 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9291
9292 static const gdb_byte *
9293 locate_pdi_sibling (const struct die_reader_specs *reader,
9294 struct partial_die_info *orig_pdi,
9295 const gdb_byte *info_ptr)
9296 {
9297 /* Do we know the sibling already? */
9298
9299 if (orig_pdi->sibling)
9300 return orig_pdi->sibling;
9301
9302 /* Are there any children to deal with? */
9303
9304 if (!orig_pdi->has_children)
9305 return info_ptr;
9306
9307 /* Skip the children the long way. */
9308
9309 return skip_children (reader, info_ptr);
9310 }
9311
9312 /* Expand this partial symbol table into a full symbol table. SELF is
9313 not NULL. */
9314
9315 static void
9316 dwarf2_read_symtab (struct partial_symtab *self,
9317 struct objfile *objfile)
9318 {
9319 struct dwarf2_per_objfile *dwarf2_per_objfile
9320 = get_dwarf2_per_objfile (objfile);
9321
9322 if (self->readin)
9323 {
9324 warning (_("bug: psymtab for %s is already read in."),
9325 self->filename);
9326 }
9327 else
9328 {
9329 if (info_verbose)
9330 {
9331 printf_filtered (_("Reading in symbols for %s..."),
9332 self->filename);
9333 gdb_flush (gdb_stdout);
9334 }
9335
9336 /* If this psymtab is constructed from a debug-only objfile, the
9337 has_section_at_zero flag will not necessarily be correct. We
9338 can get the correct value for this flag by looking at the data
9339 associated with the (presumably stripped) associated objfile. */
9340 if (objfile->separate_debug_objfile_backlink)
9341 {
9342 struct dwarf2_per_objfile *dpo_backlink
9343 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9344
9345 dwarf2_per_objfile->has_section_at_zero
9346 = dpo_backlink->has_section_at_zero;
9347 }
9348
9349 dwarf2_per_objfile->reading_partial_symbols = 0;
9350
9351 psymtab_to_symtab_1 (self);
9352
9353 /* Finish up the debug error message. */
9354 if (info_verbose)
9355 printf_filtered (_("done.\n"));
9356 }
9357
9358 process_cu_includes (dwarf2_per_objfile);
9359 }
9360 \f
9361 /* Reading in full CUs. */
9362
9363 /* Add PER_CU to the queue. */
9364
9365 static void
9366 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9367 enum language pretend_language)
9368 {
9369 struct dwarf2_queue_item *item;
9370
9371 per_cu->queued = 1;
9372 item = XNEW (struct dwarf2_queue_item);
9373 item->per_cu = per_cu;
9374 item->pretend_language = pretend_language;
9375 item->next = NULL;
9376
9377 if (dwarf2_queue == NULL)
9378 dwarf2_queue = item;
9379 else
9380 dwarf2_queue_tail->next = item;
9381
9382 dwarf2_queue_tail = item;
9383 }
9384
9385 /* If PER_CU is not yet queued, add it to the queue.
9386 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9387 dependency.
9388 The result is non-zero if PER_CU was queued, otherwise the result is zero
9389 meaning either PER_CU is already queued or it is already loaded.
9390
9391 N.B. There is an invariant here that if a CU is queued then it is loaded.
9392 The caller is required to load PER_CU if we return non-zero. */
9393
9394 static int
9395 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9396 struct dwarf2_per_cu_data *per_cu,
9397 enum language pretend_language)
9398 {
9399 /* We may arrive here during partial symbol reading, if we need full
9400 DIEs to process an unusual case (e.g. template arguments). Do
9401 not queue PER_CU, just tell our caller to load its DIEs. */
9402 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9403 {
9404 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9405 return 1;
9406 return 0;
9407 }
9408
9409 /* Mark the dependence relation so that we don't flush PER_CU
9410 too early. */
9411 if (dependent_cu != NULL)
9412 dwarf2_add_dependence (dependent_cu, per_cu);
9413
9414 /* If it's already on the queue, we have nothing to do. */
9415 if (per_cu->queued)
9416 return 0;
9417
9418 /* If the compilation unit is already loaded, just mark it as
9419 used. */
9420 if (per_cu->cu != NULL)
9421 {
9422 per_cu->cu->last_used = 0;
9423 return 0;
9424 }
9425
9426 /* Add it to the queue. */
9427 queue_comp_unit (per_cu, pretend_language);
9428
9429 return 1;
9430 }
9431
9432 /* Process the queue. */
9433
9434 static void
9435 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9436 {
9437 struct dwarf2_queue_item *item, *next_item;
9438
9439 if (dwarf_read_debug)
9440 {
9441 fprintf_unfiltered (gdb_stdlog,
9442 "Expanding one or more symtabs of objfile %s ...\n",
9443 objfile_name (dwarf2_per_objfile->objfile));
9444 }
9445
9446 /* The queue starts out with one item, but following a DIE reference
9447 may load a new CU, adding it to the end of the queue. */
9448 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9449 {
9450 if ((dwarf2_per_objfile->using_index
9451 ? !item->per_cu->v.quick->compunit_symtab
9452 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9453 /* Skip dummy CUs. */
9454 && item->per_cu->cu != NULL)
9455 {
9456 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9457 unsigned int debug_print_threshold;
9458 char buf[100];
9459
9460 if (per_cu->is_debug_types)
9461 {
9462 struct signatured_type *sig_type =
9463 (struct signatured_type *) per_cu;
9464
9465 sprintf (buf, "TU %s at offset %s",
9466 hex_string (sig_type->signature),
9467 sect_offset_str (per_cu->sect_off));
9468 /* There can be 100s of TUs.
9469 Only print them in verbose mode. */
9470 debug_print_threshold = 2;
9471 }
9472 else
9473 {
9474 sprintf (buf, "CU at offset %s",
9475 sect_offset_str (per_cu->sect_off));
9476 debug_print_threshold = 1;
9477 }
9478
9479 if (dwarf_read_debug >= debug_print_threshold)
9480 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9481
9482 if (per_cu->is_debug_types)
9483 process_full_type_unit (per_cu, item->pretend_language);
9484 else
9485 process_full_comp_unit (per_cu, item->pretend_language);
9486
9487 if (dwarf_read_debug >= debug_print_threshold)
9488 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9489 }
9490
9491 item->per_cu->queued = 0;
9492 next_item = item->next;
9493 xfree (item);
9494 }
9495
9496 dwarf2_queue_tail = NULL;
9497
9498 if (dwarf_read_debug)
9499 {
9500 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9501 objfile_name (dwarf2_per_objfile->objfile));
9502 }
9503 }
9504
9505 /* Read in full symbols for PST, and anything it depends on. */
9506
9507 static void
9508 psymtab_to_symtab_1 (struct partial_symtab *pst)
9509 {
9510 struct dwarf2_per_cu_data *per_cu;
9511 int i;
9512
9513 if (pst->readin)
9514 return;
9515
9516 for (i = 0; i < pst->number_of_dependencies; i++)
9517 if (!pst->dependencies[i]->readin
9518 && pst->dependencies[i]->user == NULL)
9519 {
9520 /* Inform about additional files that need to be read in. */
9521 if (info_verbose)
9522 {
9523 /* FIXME: i18n: Need to make this a single string. */
9524 fputs_filtered (" ", gdb_stdout);
9525 wrap_here ("");
9526 fputs_filtered ("and ", gdb_stdout);
9527 wrap_here ("");
9528 printf_filtered ("%s...", pst->dependencies[i]->filename);
9529 wrap_here (""); /* Flush output. */
9530 gdb_flush (gdb_stdout);
9531 }
9532 psymtab_to_symtab_1 (pst->dependencies[i]);
9533 }
9534
9535 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9536
9537 if (per_cu == NULL)
9538 {
9539 /* It's an include file, no symbols to read for it.
9540 Everything is in the parent symtab. */
9541 pst->readin = 1;
9542 return;
9543 }
9544
9545 dw2_do_instantiate_symtab (per_cu, false);
9546 }
9547
9548 /* Trivial hash function for die_info: the hash value of a DIE
9549 is its offset in .debug_info for this objfile. */
9550
9551 static hashval_t
9552 die_hash (const void *item)
9553 {
9554 const struct die_info *die = (const struct die_info *) item;
9555
9556 return to_underlying (die->sect_off);
9557 }
9558
9559 /* Trivial comparison function for die_info structures: two DIEs
9560 are equal if they have the same offset. */
9561
9562 static int
9563 die_eq (const void *item_lhs, const void *item_rhs)
9564 {
9565 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9566 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9567
9568 return die_lhs->sect_off == die_rhs->sect_off;
9569 }
9570
9571 /* die_reader_func for load_full_comp_unit.
9572 This is identical to read_signatured_type_reader,
9573 but is kept separate for now. */
9574
9575 static void
9576 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9577 const gdb_byte *info_ptr,
9578 struct die_info *comp_unit_die,
9579 int has_children,
9580 void *data)
9581 {
9582 struct dwarf2_cu *cu = reader->cu;
9583 enum language *language_ptr = (enum language *) data;
9584
9585 gdb_assert (cu->die_hash == NULL);
9586 cu->die_hash =
9587 htab_create_alloc_ex (cu->header.length / 12,
9588 die_hash,
9589 die_eq,
9590 NULL,
9591 &cu->comp_unit_obstack,
9592 hashtab_obstack_allocate,
9593 dummy_obstack_deallocate);
9594
9595 if (has_children)
9596 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9597 &info_ptr, comp_unit_die);
9598 cu->dies = comp_unit_die;
9599 /* comp_unit_die is not stored in die_hash, no need. */
9600
9601 /* We try not to read any attributes in this function, because not
9602 all CUs needed for references have been loaded yet, and symbol
9603 table processing isn't initialized. But we have to set the CU language,
9604 or we won't be able to build types correctly.
9605 Similarly, if we do not read the producer, we can not apply
9606 producer-specific interpretation. */
9607 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9608 }
9609
9610 /* Load the DIEs associated with PER_CU into memory. */
9611
9612 static void
9613 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9614 bool skip_partial,
9615 enum language pretend_language)
9616 {
9617 gdb_assert (! this_cu->is_debug_types);
9618
9619 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9620 load_full_comp_unit_reader, &pretend_language);
9621 }
9622
9623 /* Add a DIE to the delayed physname list. */
9624
9625 static void
9626 add_to_method_list (struct type *type, int fnfield_index, int index,
9627 const char *name, struct die_info *die,
9628 struct dwarf2_cu *cu)
9629 {
9630 struct delayed_method_info mi;
9631 mi.type = type;
9632 mi.fnfield_index = fnfield_index;
9633 mi.index = index;
9634 mi.name = name;
9635 mi.die = die;
9636 cu->method_list.push_back (mi);
9637 }
9638
9639 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9640 "const" / "volatile". If so, decrements LEN by the length of the
9641 modifier and return true. Otherwise return false. */
9642
9643 template<size_t N>
9644 static bool
9645 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9646 {
9647 size_t mod_len = sizeof (mod) - 1;
9648 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9649 {
9650 len -= mod_len;
9651 return true;
9652 }
9653 return false;
9654 }
9655
9656 /* Compute the physnames of any methods on the CU's method list.
9657
9658 The computation of method physnames is delayed in order to avoid the
9659 (bad) condition that one of the method's formal parameters is of an as yet
9660 incomplete type. */
9661
9662 static void
9663 compute_delayed_physnames (struct dwarf2_cu *cu)
9664 {
9665 /* Only C++ delays computing physnames. */
9666 if (cu->method_list.empty ())
9667 return;
9668 gdb_assert (cu->language == language_cplus);
9669
9670 for (struct delayed_method_info &mi : cu->method_list)
9671 {
9672 const char *physname;
9673 struct fn_fieldlist *fn_flp
9674 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9675 physname = dwarf2_physname (mi.name, mi.die, cu);
9676 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9677 = physname ? physname : "";
9678
9679 /* Since there's no tag to indicate whether a method is a
9680 const/volatile overload, extract that information out of the
9681 demangled name. */
9682 if (physname != NULL)
9683 {
9684 size_t len = strlen (physname);
9685
9686 while (1)
9687 {
9688 if (physname[len] == ')') /* shortcut */
9689 break;
9690 else if (check_modifier (physname, len, " const"))
9691 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9692 else if (check_modifier (physname, len, " volatile"))
9693 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9694 else
9695 break;
9696 }
9697 }
9698 }
9699
9700 /* The list is no longer needed. */
9701 cu->method_list.clear ();
9702 }
9703
9704 /* Go objects should be embedded in a DW_TAG_module DIE,
9705 and it's not clear if/how imported objects will appear.
9706 To keep Go support simple until that's worked out,
9707 go back through what we've read and create something usable.
9708 We could do this while processing each DIE, and feels kinda cleaner,
9709 but that way is more invasive.
9710 This is to, for example, allow the user to type "p var" or "b main"
9711 without having to specify the package name, and allow lookups
9712 of module.object to work in contexts that use the expression
9713 parser. */
9714
9715 static void
9716 fixup_go_packaging (struct dwarf2_cu *cu)
9717 {
9718 char *package_name = NULL;
9719 struct pending *list;
9720 int i;
9721
9722 for (list = global_symbols; list != NULL; list = list->next)
9723 {
9724 for (i = 0; i < list->nsyms; ++i)
9725 {
9726 struct symbol *sym = list->symbol[i];
9727
9728 if (SYMBOL_LANGUAGE (sym) == language_go
9729 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9730 {
9731 char *this_package_name = go_symbol_package_name (sym);
9732
9733 if (this_package_name == NULL)
9734 continue;
9735 if (package_name == NULL)
9736 package_name = this_package_name;
9737 else
9738 {
9739 struct objfile *objfile
9740 = cu->per_cu->dwarf2_per_objfile->objfile;
9741 if (strcmp (package_name, this_package_name) != 0)
9742 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9743 (symbol_symtab (sym) != NULL
9744 ? symtab_to_filename_for_display
9745 (symbol_symtab (sym))
9746 : objfile_name (objfile)),
9747 this_package_name, package_name);
9748 xfree (this_package_name);
9749 }
9750 }
9751 }
9752 }
9753
9754 if (package_name != NULL)
9755 {
9756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9757 const char *saved_package_name
9758 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9759 package_name,
9760 strlen (package_name));
9761 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9762 saved_package_name);
9763 struct symbol *sym;
9764
9765 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9766
9767 sym = allocate_symbol (objfile);
9768 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9769 SYMBOL_SET_NAMES (sym, saved_package_name,
9770 strlen (saved_package_name), 0, objfile);
9771 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9772 e.g., "main" finds the "main" module and not C's main(). */
9773 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9774 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9775 SYMBOL_TYPE (sym) = type;
9776
9777 add_symbol_to_list (sym, &global_symbols);
9778
9779 xfree (package_name);
9780 }
9781 }
9782
9783 /* Allocate a fully-qualified name consisting of the two parts on the
9784 obstack. */
9785
9786 static const char *
9787 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9788 {
9789 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9790 }
9791
9792 /* A helper that allocates a struct discriminant_info to attach to a
9793 union type. */
9794
9795 static struct discriminant_info *
9796 alloc_discriminant_info (struct type *type, int discriminant_index,
9797 int default_index)
9798 {
9799 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9800 gdb_assert (discriminant_index == -1
9801 || (discriminant_index >= 0
9802 && discriminant_index < TYPE_NFIELDS (type)));
9803 gdb_assert (default_index == -1
9804 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9805
9806 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9807
9808 struct discriminant_info *disc
9809 = ((struct discriminant_info *)
9810 TYPE_ZALLOC (type,
9811 offsetof (struct discriminant_info, discriminants)
9812 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9813 disc->default_index = default_index;
9814 disc->discriminant_index = discriminant_index;
9815
9816 struct dynamic_prop prop;
9817 prop.kind = PROP_UNDEFINED;
9818 prop.data.baton = disc;
9819
9820 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9821
9822 return disc;
9823 }
9824
9825 /* Some versions of rustc emitted enums in an unusual way.
9826
9827 Ordinary enums were emitted as unions. The first element of each
9828 structure in the union was named "RUST$ENUM$DISR". This element
9829 held the discriminant.
9830
9831 These versions of Rust also implemented the "non-zero"
9832 optimization. When the enum had two values, and one is empty and
9833 the other holds a pointer that cannot be zero, the pointer is used
9834 as the discriminant, with a zero value meaning the empty variant.
9835 Here, the union's first member is of the form
9836 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9837 where the fieldnos are the indices of the fields that should be
9838 traversed in order to find the field (which may be several fields deep)
9839 and the variantname is the name of the variant of the case when the
9840 field is zero.
9841
9842 This function recognizes whether TYPE is of one of these forms,
9843 and, if so, smashes it to be a variant type. */
9844
9845 static void
9846 quirk_rust_enum (struct type *type, struct objfile *objfile)
9847 {
9848 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9849
9850 /* We don't need to deal with empty enums. */
9851 if (TYPE_NFIELDS (type) == 0)
9852 return;
9853
9854 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9855 if (TYPE_NFIELDS (type) == 1
9856 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9857 {
9858 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9859
9860 /* Decode the field name to find the offset of the
9861 discriminant. */
9862 ULONGEST bit_offset = 0;
9863 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9864 while (name[0] >= '0' && name[0] <= '9')
9865 {
9866 char *tail;
9867 unsigned long index = strtoul (name, &tail, 10);
9868 name = tail;
9869 if (*name != '$'
9870 || index >= TYPE_NFIELDS (field_type)
9871 || (TYPE_FIELD_LOC_KIND (field_type, index)
9872 != FIELD_LOC_KIND_BITPOS))
9873 {
9874 complaint (_("Could not parse Rust enum encoding string \"%s\""
9875 "[in module %s]"),
9876 TYPE_FIELD_NAME (type, 0),
9877 objfile_name (objfile));
9878 return;
9879 }
9880 ++name;
9881
9882 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9883 field_type = TYPE_FIELD_TYPE (field_type, index);
9884 }
9885
9886 /* Make a union to hold the variants. */
9887 struct type *union_type = alloc_type (objfile);
9888 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9889 TYPE_NFIELDS (union_type) = 3;
9890 TYPE_FIELDS (union_type)
9891 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9892 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9893 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9894
9895 /* Put the discriminant must at index 0. */
9896 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9897 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9898 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9899 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9900
9901 /* The order of fields doesn't really matter, so put the real
9902 field at index 1 and the data-less field at index 2. */
9903 struct discriminant_info *disc
9904 = alloc_discriminant_info (union_type, 0, 1);
9905 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9906 TYPE_FIELD_NAME (union_type, 1)
9907 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9908 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9909 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9910 TYPE_FIELD_NAME (union_type, 1));
9911
9912 const char *dataless_name
9913 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9914 name);
9915 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9916 dataless_name);
9917 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9918 /* NAME points into the original discriminant name, which
9919 already has the correct lifetime. */
9920 TYPE_FIELD_NAME (union_type, 2) = name;
9921 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9922 disc->discriminants[2] = 0;
9923
9924 /* Smash this type to be a structure type. We have to do this
9925 because the type has already been recorded. */
9926 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9927 TYPE_NFIELDS (type) = 1;
9928 TYPE_FIELDS (type)
9929 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9930
9931 /* Install the variant part. */
9932 TYPE_FIELD_TYPE (type, 0) = union_type;
9933 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9934 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9935 }
9936 else if (TYPE_NFIELDS (type) == 1)
9937 {
9938 /* We assume that a union with a single field is a univariant
9939 enum. */
9940 /* Smash this type to be a structure type. We have to do this
9941 because the type has already been recorded. */
9942 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9943
9944 /* Make a union to hold the variants. */
9945 struct type *union_type = alloc_type (objfile);
9946 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9947 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9948 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9949 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9950 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9951
9952 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9953 const char *variant_name
9954 = rust_last_path_segment (TYPE_NAME (field_type));
9955 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9956 TYPE_NAME (field_type)
9957 = rust_fully_qualify (&objfile->objfile_obstack,
9958 TYPE_NAME (type), variant_name);
9959
9960 /* Install the union in the outer struct type. */
9961 TYPE_NFIELDS (type) = 1;
9962 TYPE_FIELDS (type)
9963 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9964 TYPE_FIELD_TYPE (type, 0) = union_type;
9965 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9966 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9967
9968 alloc_discriminant_info (union_type, -1, 0);
9969 }
9970 else
9971 {
9972 struct type *disr_type = nullptr;
9973 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9974 {
9975 disr_type = TYPE_FIELD_TYPE (type, i);
9976
9977 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9978 {
9979 /* All fields of a true enum will be structs. */
9980 return;
9981 }
9982 else if (TYPE_NFIELDS (disr_type) == 0)
9983 {
9984 /* Could be data-less variant, so keep going. */
9985 disr_type = nullptr;
9986 }
9987 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9988 "RUST$ENUM$DISR") != 0)
9989 {
9990 /* Not a Rust enum. */
9991 return;
9992 }
9993 else
9994 {
9995 /* Found one. */
9996 break;
9997 }
9998 }
9999
10000 /* If we got here without a discriminant, then it's probably
10001 just a union. */
10002 if (disr_type == nullptr)
10003 return;
10004
10005 /* Smash this type to be a structure type. We have to do this
10006 because the type has already been recorded. */
10007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10008
10009 /* Make a union to hold the variants. */
10010 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10011 struct type *union_type = alloc_type (objfile);
10012 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10013 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10014 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10015 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10016 TYPE_FIELDS (union_type)
10017 = (struct field *) TYPE_ZALLOC (union_type,
10018 (TYPE_NFIELDS (union_type)
10019 * sizeof (struct field)));
10020
10021 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10022 TYPE_NFIELDS (type) * sizeof (struct field));
10023
10024 /* Install the discriminant at index 0 in the union. */
10025 TYPE_FIELD (union_type, 0) = *disr_field;
10026 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10027 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10028
10029 /* Install the union in the outer struct type. */
10030 TYPE_FIELD_TYPE (type, 0) = union_type;
10031 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10032 TYPE_NFIELDS (type) = 1;
10033
10034 /* Set the size and offset of the union type. */
10035 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10036
10037 /* We need a way to find the correct discriminant given a
10038 variant name. For convenience we build a map here. */
10039 struct type *enum_type = FIELD_TYPE (*disr_field);
10040 std::unordered_map<std::string, ULONGEST> discriminant_map;
10041 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10042 {
10043 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10044 {
10045 const char *name
10046 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10047 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10048 }
10049 }
10050
10051 int n_fields = TYPE_NFIELDS (union_type);
10052 struct discriminant_info *disc
10053 = alloc_discriminant_info (union_type, 0, -1);
10054 /* Skip the discriminant here. */
10055 for (int i = 1; i < n_fields; ++i)
10056 {
10057 /* Find the final word in the name of this variant's type.
10058 That name can be used to look up the correct
10059 discriminant. */
10060 const char *variant_name
10061 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10062 i)));
10063
10064 auto iter = discriminant_map.find (variant_name);
10065 if (iter != discriminant_map.end ())
10066 disc->discriminants[i] = iter->second;
10067
10068 /* Remove the discriminant field, if it exists. */
10069 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10070 if (TYPE_NFIELDS (sub_type) > 0)
10071 {
10072 --TYPE_NFIELDS (sub_type);
10073 ++TYPE_FIELDS (sub_type);
10074 }
10075 TYPE_FIELD_NAME (union_type, i) = variant_name;
10076 TYPE_NAME (sub_type)
10077 = rust_fully_qualify (&objfile->objfile_obstack,
10078 TYPE_NAME (type), variant_name);
10079 }
10080 }
10081 }
10082
10083 /* Rewrite some Rust unions to be structures with variants parts. */
10084
10085 static void
10086 rust_union_quirks (struct dwarf2_cu *cu)
10087 {
10088 gdb_assert (cu->language == language_rust);
10089 for (struct type *type : cu->rust_unions)
10090 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10091 /* We don't need this any more. */
10092 cu->rust_unions.clear ();
10093 }
10094
10095 /* Return the symtab for PER_CU. This works properly regardless of
10096 whether we're using the index or psymtabs. */
10097
10098 static struct compunit_symtab *
10099 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10100 {
10101 return (per_cu->dwarf2_per_objfile->using_index
10102 ? per_cu->v.quick->compunit_symtab
10103 : per_cu->v.psymtab->compunit_symtab);
10104 }
10105
10106 /* A helper function for computing the list of all symbol tables
10107 included by PER_CU. */
10108
10109 static void
10110 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10111 htab_t all_children, htab_t all_type_symtabs,
10112 struct dwarf2_per_cu_data *per_cu,
10113 struct compunit_symtab *immediate_parent)
10114 {
10115 void **slot;
10116 int ix;
10117 struct compunit_symtab *cust;
10118 struct dwarf2_per_cu_data *iter;
10119
10120 slot = htab_find_slot (all_children, per_cu, INSERT);
10121 if (*slot != NULL)
10122 {
10123 /* This inclusion and its children have been processed. */
10124 return;
10125 }
10126
10127 *slot = per_cu;
10128 /* Only add a CU if it has a symbol table. */
10129 cust = get_compunit_symtab (per_cu);
10130 if (cust != NULL)
10131 {
10132 /* If this is a type unit only add its symbol table if we haven't
10133 seen it yet (type unit per_cu's can share symtabs). */
10134 if (per_cu->is_debug_types)
10135 {
10136 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10137 if (*slot == NULL)
10138 {
10139 *slot = cust;
10140 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10141 if (cust->user == NULL)
10142 cust->user = immediate_parent;
10143 }
10144 }
10145 else
10146 {
10147 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10148 if (cust->user == NULL)
10149 cust->user = immediate_parent;
10150 }
10151 }
10152
10153 for (ix = 0;
10154 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10155 ++ix)
10156 {
10157 recursively_compute_inclusions (result, all_children,
10158 all_type_symtabs, iter, cust);
10159 }
10160 }
10161
10162 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10163 PER_CU. */
10164
10165 static void
10166 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10167 {
10168 gdb_assert (! per_cu->is_debug_types);
10169
10170 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10171 {
10172 int ix, len;
10173 struct dwarf2_per_cu_data *per_cu_iter;
10174 struct compunit_symtab *compunit_symtab_iter;
10175 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10176 htab_t all_children, all_type_symtabs;
10177 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10178
10179 /* If we don't have a symtab, we can just skip this case. */
10180 if (cust == NULL)
10181 return;
10182
10183 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10184 NULL, xcalloc, xfree);
10185 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10186 NULL, xcalloc, xfree);
10187
10188 for (ix = 0;
10189 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10190 ix, per_cu_iter);
10191 ++ix)
10192 {
10193 recursively_compute_inclusions (&result_symtabs, all_children,
10194 all_type_symtabs, per_cu_iter,
10195 cust);
10196 }
10197
10198 /* Now we have a transitive closure of all the included symtabs. */
10199 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10200 cust->includes
10201 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10202 struct compunit_symtab *, len + 1);
10203 for (ix = 0;
10204 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10205 compunit_symtab_iter);
10206 ++ix)
10207 cust->includes[ix] = compunit_symtab_iter;
10208 cust->includes[len] = NULL;
10209
10210 VEC_free (compunit_symtab_ptr, result_symtabs);
10211 htab_delete (all_children);
10212 htab_delete (all_type_symtabs);
10213 }
10214 }
10215
10216 /* Compute the 'includes' field for the symtabs of all the CUs we just
10217 read. */
10218
10219 static void
10220 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10221 {
10222 int ix;
10223 struct dwarf2_per_cu_data *iter;
10224
10225 for (ix = 0;
10226 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10227 ix, iter);
10228 ++ix)
10229 {
10230 if (! iter->is_debug_types)
10231 compute_compunit_symtab_includes (iter);
10232 }
10233
10234 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10235 }
10236
10237 /* Generate full symbol information for PER_CU, whose DIEs have
10238 already been loaded into memory. */
10239
10240 static void
10241 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10242 enum language pretend_language)
10243 {
10244 struct dwarf2_cu *cu = per_cu->cu;
10245 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10246 struct objfile *objfile = dwarf2_per_objfile->objfile;
10247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10248 CORE_ADDR lowpc, highpc;
10249 struct compunit_symtab *cust;
10250 CORE_ADDR baseaddr;
10251 struct block *static_block;
10252 CORE_ADDR addr;
10253
10254 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10255
10256 buildsym_init ();
10257 scoped_free_pendings free_pending;
10258
10259 /* Clear the list here in case something was left over. */
10260 cu->method_list.clear ();
10261
10262 cu->list_in_scope = &file_symbols;
10263
10264 cu->language = pretend_language;
10265 cu->language_defn = language_def (cu->language);
10266
10267 /* Do line number decoding in read_file_scope () */
10268 process_die (cu->dies, cu);
10269
10270 /* For now fudge the Go package. */
10271 if (cu->language == language_go)
10272 fixup_go_packaging (cu);
10273
10274 /* Now that we have processed all the DIEs in the CU, all the types
10275 should be complete, and it should now be safe to compute all of the
10276 physnames. */
10277 compute_delayed_physnames (cu);
10278
10279 if (cu->language == language_rust)
10280 rust_union_quirks (cu);
10281
10282 /* Some compilers don't define a DW_AT_high_pc attribute for the
10283 compilation unit. If the DW_AT_high_pc is missing, synthesize
10284 it, by scanning the DIE's below the compilation unit. */
10285 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10286
10287 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10288 static_block = end_symtab_get_static_block (addr, 0, 1);
10289
10290 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10291 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10292 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10293 addrmap to help ensure it has an accurate map of pc values belonging to
10294 this comp unit. */
10295 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10296
10297 cust = end_symtab_from_static_block (static_block,
10298 SECT_OFF_TEXT (objfile), 0);
10299
10300 if (cust != NULL)
10301 {
10302 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10303
10304 /* Set symtab language to language from DW_AT_language. If the
10305 compilation is from a C file generated by language preprocessors, do
10306 not set the language if it was already deduced by start_subfile. */
10307 if (!(cu->language == language_c
10308 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10309 COMPUNIT_FILETABS (cust)->language = cu->language;
10310
10311 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10312 produce DW_AT_location with location lists but it can be possibly
10313 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10314 there were bugs in prologue debug info, fixed later in GCC-4.5
10315 by "unwind info for epilogues" patch (which is not directly related).
10316
10317 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10318 needed, it would be wrong due to missing DW_AT_producer there.
10319
10320 Still one can confuse GDB by using non-standard GCC compilation
10321 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10322 */
10323 if (cu->has_loclist && gcc_4_minor >= 5)
10324 cust->locations_valid = 1;
10325
10326 if (gcc_4_minor >= 5)
10327 cust->epilogue_unwind_valid = 1;
10328
10329 cust->call_site_htab = cu->call_site_htab;
10330 }
10331
10332 if (dwarf2_per_objfile->using_index)
10333 per_cu->v.quick->compunit_symtab = cust;
10334 else
10335 {
10336 struct partial_symtab *pst = per_cu->v.psymtab;
10337 pst->compunit_symtab = cust;
10338 pst->readin = 1;
10339 }
10340
10341 /* Push it for inclusion processing later. */
10342 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10343 }
10344
10345 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10346 already been loaded into memory. */
10347
10348 static void
10349 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10350 enum language pretend_language)
10351 {
10352 struct dwarf2_cu *cu = per_cu->cu;
10353 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10354 struct objfile *objfile = dwarf2_per_objfile->objfile;
10355 struct compunit_symtab *cust;
10356 struct signatured_type *sig_type;
10357
10358 gdb_assert (per_cu->is_debug_types);
10359 sig_type = (struct signatured_type *) per_cu;
10360
10361 buildsym_init ();
10362 scoped_free_pendings free_pending;
10363
10364 /* Clear the list here in case something was left over. */
10365 cu->method_list.clear ();
10366
10367 cu->list_in_scope = &file_symbols;
10368
10369 cu->language = pretend_language;
10370 cu->language_defn = language_def (cu->language);
10371
10372 /* The symbol tables are set up in read_type_unit_scope. */
10373 process_die (cu->dies, cu);
10374
10375 /* For now fudge the Go package. */
10376 if (cu->language == language_go)
10377 fixup_go_packaging (cu);
10378
10379 /* Now that we have processed all the DIEs in the CU, all the types
10380 should be complete, and it should now be safe to compute all of the
10381 physnames. */
10382 compute_delayed_physnames (cu);
10383
10384 if (cu->language == language_rust)
10385 rust_union_quirks (cu);
10386
10387 /* TUs share symbol tables.
10388 If this is the first TU to use this symtab, complete the construction
10389 of it with end_expandable_symtab. Otherwise, complete the addition of
10390 this TU's symbols to the existing symtab. */
10391 if (sig_type->type_unit_group->compunit_symtab == NULL)
10392 {
10393 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10394 sig_type->type_unit_group->compunit_symtab = cust;
10395
10396 if (cust != NULL)
10397 {
10398 /* Set symtab language to language from DW_AT_language. If the
10399 compilation is from a C file generated by language preprocessors,
10400 do not set the language if it was already deduced by
10401 start_subfile. */
10402 if (!(cu->language == language_c
10403 && COMPUNIT_FILETABS (cust)->language != language_c))
10404 COMPUNIT_FILETABS (cust)->language = cu->language;
10405 }
10406 }
10407 else
10408 {
10409 augment_type_symtab ();
10410 cust = sig_type->type_unit_group->compunit_symtab;
10411 }
10412
10413 if (dwarf2_per_objfile->using_index)
10414 per_cu->v.quick->compunit_symtab = cust;
10415 else
10416 {
10417 struct partial_symtab *pst = per_cu->v.psymtab;
10418 pst->compunit_symtab = cust;
10419 pst->readin = 1;
10420 }
10421 }
10422
10423 /* Process an imported unit DIE. */
10424
10425 static void
10426 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10427 {
10428 struct attribute *attr;
10429
10430 /* For now we don't handle imported units in type units. */
10431 if (cu->per_cu->is_debug_types)
10432 {
10433 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10434 " supported in type units [in module %s]"),
10435 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10436 }
10437
10438 attr = dwarf2_attr (die, DW_AT_import, cu);
10439 if (attr != NULL)
10440 {
10441 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10442 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10443 dwarf2_per_cu_data *per_cu
10444 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10445 cu->per_cu->dwarf2_per_objfile);
10446
10447 /* If necessary, add it to the queue and load its DIEs. */
10448 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10449 load_full_comp_unit (per_cu, false, cu->language);
10450
10451 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10452 per_cu);
10453 }
10454 }
10455
10456 /* RAII object that represents a process_die scope: i.e.,
10457 starts/finishes processing a DIE. */
10458 class process_die_scope
10459 {
10460 public:
10461 process_die_scope (die_info *die, dwarf2_cu *cu)
10462 : m_die (die), m_cu (cu)
10463 {
10464 /* We should only be processing DIEs not already in process. */
10465 gdb_assert (!m_die->in_process);
10466 m_die->in_process = true;
10467 }
10468
10469 ~process_die_scope ()
10470 {
10471 m_die->in_process = false;
10472
10473 /* If we're done processing the DIE for the CU that owns the line
10474 header, we don't need the line header anymore. */
10475 if (m_cu->line_header_die_owner == m_die)
10476 {
10477 delete m_cu->line_header;
10478 m_cu->line_header = NULL;
10479 m_cu->line_header_die_owner = NULL;
10480 }
10481 }
10482
10483 private:
10484 die_info *m_die;
10485 dwarf2_cu *m_cu;
10486 };
10487
10488 /* Process a die and its children. */
10489
10490 static void
10491 process_die (struct die_info *die, struct dwarf2_cu *cu)
10492 {
10493 process_die_scope scope (die, cu);
10494
10495 switch (die->tag)
10496 {
10497 case DW_TAG_padding:
10498 break;
10499 case DW_TAG_compile_unit:
10500 case DW_TAG_partial_unit:
10501 read_file_scope (die, cu);
10502 break;
10503 case DW_TAG_type_unit:
10504 read_type_unit_scope (die, cu);
10505 break;
10506 case DW_TAG_subprogram:
10507 case DW_TAG_inlined_subroutine:
10508 read_func_scope (die, cu);
10509 break;
10510 case DW_TAG_lexical_block:
10511 case DW_TAG_try_block:
10512 case DW_TAG_catch_block:
10513 read_lexical_block_scope (die, cu);
10514 break;
10515 case DW_TAG_call_site:
10516 case DW_TAG_GNU_call_site:
10517 read_call_site_scope (die, cu);
10518 break;
10519 case DW_TAG_class_type:
10520 case DW_TAG_interface_type:
10521 case DW_TAG_structure_type:
10522 case DW_TAG_union_type:
10523 process_structure_scope (die, cu);
10524 break;
10525 case DW_TAG_enumeration_type:
10526 process_enumeration_scope (die, cu);
10527 break;
10528
10529 /* These dies have a type, but processing them does not create
10530 a symbol or recurse to process the children. Therefore we can
10531 read them on-demand through read_type_die. */
10532 case DW_TAG_subroutine_type:
10533 case DW_TAG_set_type:
10534 case DW_TAG_array_type:
10535 case DW_TAG_pointer_type:
10536 case DW_TAG_ptr_to_member_type:
10537 case DW_TAG_reference_type:
10538 case DW_TAG_rvalue_reference_type:
10539 case DW_TAG_string_type:
10540 break;
10541
10542 case DW_TAG_base_type:
10543 case DW_TAG_subrange_type:
10544 case DW_TAG_typedef:
10545 /* Add a typedef symbol for the type definition, if it has a
10546 DW_AT_name. */
10547 new_symbol (die, read_type_die (die, cu), cu);
10548 break;
10549 case DW_TAG_common_block:
10550 read_common_block (die, cu);
10551 break;
10552 case DW_TAG_common_inclusion:
10553 break;
10554 case DW_TAG_namespace:
10555 cu->processing_has_namespace_info = 1;
10556 read_namespace (die, cu);
10557 break;
10558 case DW_TAG_module:
10559 cu->processing_has_namespace_info = 1;
10560 read_module (die, cu);
10561 break;
10562 case DW_TAG_imported_declaration:
10563 cu->processing_has_namespace_info = 1;
10564 if (read_namespace_alias (die, cu))
10565 break;
10566 /* The declaration is not a global namespace alias. */
10567 /* Fall through. */
10568 case DW_TAG_imported_module:
10569 cu->processing_has_namespace_info = 1;
10570 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10571 || cu->language != language_fortran))
10572 complaint (_("Tag '%s' has unexpected children"),
10573 dwarf_tag_name (die->tag));
10574 read_import_statement (die, cu);
10575 break;
10576
10577 case DW_TAG_imported_unit:
10578 process_imported_unit_die (die, cu);
10579 break;
10580
10581 case DW_TAG_variable:
10582 read_variable (die, cu);
10583 break;
10584
10585 default:
10586 new_symbol (die, NULL, cu);
10587 break;
10588 }
10589 }
10590 \f
10591 /* DWARF name computation. */
10592
10593 /* A helper function for dwarf2_compute_name which determines whether DIE
10594 needs to have the name of the scope prepended to the name listed in the
10595 die. */
10596
10597 static int
10598 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10599 {
10600 struct attribute *attr;
10601
10602 switch (die->tag)
10603 {
10604 case DW_TAG_namespace:
10605 case DW_TAG_typedef:
10606 case DW_TAG_class_type:
10607 case DW_TAG_interface_type:
10608 case DW_TAG_structure_type:
10609 case DW_TAG_union_type:
10610 case DW_TAG_enumeration_type:
10611 case DW_TAG_enumerator:
10612 case DW_TAG_subprogram:
10613 case DW_TAG_inlined_subroutine:
10614 case DW_TAG_member:
10615 case DW_TAG_imported_declaration:
10616 return 1;
10617
10618 case DW_TAG_variable:
10619 case DW_TAG_constant:
10620 /* We only need to prefix "globally" visible variables. These include
10621 any variable marked with DW_AT_external or any variable that
10622 lives in a namespace. [Variables in anonymous namespaces
10623 require prefixing, but they are not DW_AT_external.] */
10624
10625 if (dwarf2_attr (die, DW_AT_specification, cu))
10626 {
10627 struct dwarf2_cu *spec_cu = cu;
10628
10629 return die_needs_namespace (die_specification (die, &spec_cu),
10630 spec_cu);
10631 }
10632
10633 attr = dwarf2_attr (die, DW_AT_external, cu);
10634 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10635 && die->parent->tag != DW_TAG_module)
10636 return 0;
10637 /* A variable in a lexical block of some kind does not need a
10638 namespace, even though in C++ such variables may be external
10639 and have a mangled name. */
10640 if (die->parent->tag == DW_TAG_lexical_block
10641 || die->parent->tag == DW_TAG_try_block
10642 || die->parent->tag == DW_TAG_catch_block
10643 || die->parent->tag == DW_TAG_subprogram)
10644 return 0;
10645 return 1;
10646
10647 default:
10648 return 0;
10649 }
10650 }
10651
10652 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10653 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10654 defined for the given DIE. */
10655
10656 static struct attribute *
10657 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10658 {
10659 struct attribute *attr;
10660
10661 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10662 if (attr == NULL)
10663 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10664
10665 return attr;
10666 }
10667
10668 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10669 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10670 defined for the given DIE. */
10671
10672 static const char *
10673 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10674 {
10675 const char *linkage_name;
10676
10677 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10678 if (linkage_name == NULL)
10679 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10680
10681 return linkage_name;
10682 }
10683
10684 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10685 compute the physname for the object, which include a method's:
10686 - formal parameters (C++),
10687 - receiver type (Go),
10688
10689 The term "physname" is a bit confusing.
10690 For C++, for example, it is the demangled name.
10691 For Go, for example, it's the mangled name.
10692
10693 For Ada, return the DIE's linkage name rather than the fully qualified
10694 name. PHYSNAME is ignored..
10695
10696 The result is allocated on the objfile_obstack and canonicalized. */
10697
10698 static const char *
10699 dwarf2_compute_name (const char *name,
10700 struct die_info *die, struct dwarf2_cu *cu,
10701 int physname)
10702 {
10703 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10704
10705 if (name == NULL)
10706 name = dwarf2_name (die, cu);
10707
10708 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10709 but otherwise compute it by typename_concat inside GDB.
10710 FIXME: Actually this is not really true, or at least not always true.
10711 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10712 Fortran names because there is no mangling standard. So new_symbol
10713 will set the demangled name to the result of dwarf2_full_name, and it is
10714 the demangled name that GDB uses if it exists. */
10715 if (cu->language == language_ada
10716 || (cu->language == language_fortran && physname))
10717 {
10718 /* For Ada unit, we prefer the linkage name over the name, as
10719 the former contains the exported name, which the user expects
10720 to be able to reference. Ideally, we want the user to be able
10721 to reference this entity using either natural or linkage name,
10722 but we haven't started looking at this enhancement yet. */
10723 const char *linkage_name = dw2_linkage_name (die, cu);
10724
10725 if (linkage_name != NULL)
10726 return linkage_name;
10727 }
10728
10729 /* These are the only languages we know how to qualify names in. */
10730 if (name != NULL
10731 && (cu->language == language_cplus
10732 || cu->language == language_fortran || cu->language == language_d
10733 || cu->language == language_rust))
10734 {
10735 if (die_needs_namespace (die, cu))
10736 {
10737 const char *prefix;
10738 const char *canonical_name = NULL;
10739
10740 string_file buf;
10741
10742 prefix = determine_prefix (die, cu);
10743 if (*prefix != '\0')
10744 {
10745 char *prefixed_name = typename_concat (NULL, prefix, name,
10746 physname, cu);
10747
10748 buf.puts (prefixed_name);
10749 xfree (prefixed_name);
10750 }
10751 else
10752 buf.puts (name);
10753
10754 /* Template parameters may be specified in the DIE's DW_AT_name, or
10755 as children with DW_TAG_template_type_param or
10756 DW_TAG_value_type_param. If the latter, add them to the name
10757 here. If the name already has template parameters, then
10758 skip this step; some versions of GCC emit both, and
10759 it is more efficient to use the pre-computed name.
10760
10761 Something to keep in mind about this process: it is very
10762 unlikely, or in some cases downright impossible, to produce
10763 something that will match the mangled name of a function.
10764 If the definition of the function has the same debug info,
10765 we should be able to match up with it anyway. But fallbacks
10766 using the minimal symbol, for instance to find a method
10767 implemented in a stripped copy of libstdc++, will not work.
10768 If we do not have debug info for the definition, we will have to
10769 match them up some other way.
10770
10771 When we do name matching there is a related problem with function
10772 templates; two instantiated function templates are allowed to
10773 differ only by their return types, which we do not add here. */
10774
10775 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10776 {
10777 struct attribute *attr;
10778 struct die_info *child;
10779 int first = 1;
10780
10781 die->building_fullname = 1;
10782
10783 for (child = die->child; child != NULL; child = child->sibling)
10784 {
10785 struct type *type;
10786 LONGEST value;
10787 const gdb_byte *bytes;
10788 struct dwarf2_locexpr_baton *baton;
10789 struct value *v;
10790
10791 if (child->tag != DW_TAG_template_type_param
10792 && child->tag != DW_TAG_template_value_param)
10793 continue;
10794
10795 if (first)
10796 {
10797 buf.puts ("<");
10798 first = 0;
10799 }
10800 else
10801 buf.puts (", ");
10802
10803 attr = dwarf2_attr (child, DW_AT_type, cu);
10804 if (attr == NULL)
10805 {
10806 complaint (_("template parameter missing DW_AT_type"));
10807 buf.puts ("UNKNOWN_TYPE");
10808 continue;
10809 }
10810 type = die_type (child, cu);
10811
10812 if (child->tag == DW_TAG_template_type_param)
10813 {
10814 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10815 continue;
10816 }
10817
10818 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10819 if (attr == NULL)
10820 {
10821 complaint (_("template parameter missing "
10822 "DW_AT_const_value"));
10823 buf.puts ("UNKNOWN_VALUE");
10824 continue;
10825 }
10826
10827 dwarf2_const_value_attr (attr, type, name,
10828 &cu->comp_unit_obstack, cu,
10829 &value, &bytes, &baton);
10830
10831 if (TYPE_NOSIGN (type))
10832 /* GDB prints characters as NUMBER 'CHAR'. If that's
10833 changed, this can use value_print instead. */
10834 c_printchar (value, type, &buf);
10835 else
10836 {
10837 struct value_print_options opts;
10838
10839 if (baton != NULL)
10840 v = dwarf2_evaluate_loc_desc (type, NULL,
10841 baton->data,
10842 baton->size,
10843 baton->per_cu);
10844 else if (bytes != NULL)
10845 {
10846 v = allocate_value (type);
10847 memcpy (value_contents_writeable (v), bytes,
10848 TYPE_LENGTH (type));
10849 }
10850 else
10851 v = value_from_longest (type, value);
10852
10853 /* Specify decimal so that we do not depend on
10854 the radix. */
10855 get_formatted_print_options (&opts, 'd');
10856 opts.raw = 1;
10857 value_print (v, &buf, &opts);
10858 release_value (v);
10859 }
10860 }
10861
10862 die->building_fullname = 0;
10863
10864 if (!first)
10865 {
10866 /* Close the argument list, with a space if necessary
10867 (nested templates). */
10868 if (!buf.empty () && buf.string ().back () == '>')
10869 buf.puts (" >");
10870 else
10871 buf.puts (">");
10872 }
10873 }
10874
10875 /* For C++ methods, append formal parameter type
10876 information, if PHYSNAME. */
10877
10878 if (physname && die->tag == DW_TAG_subprogram
10879 && cu->language == language_cplus)
10880 {
10881 struct type *type = read_type_die (die, cu);
10882
10883 c_type_print_args (type, &buf, 1, cu->language,
10884 &type_print_raw_options);
10885
10886 if (cu->language == language_cplus)
10887 {
10888 /* Assume that an artificial first parameter is
10889 "this", but do not crash if it is not. RealView
10890 marks unnamed (and thus unused) parameters as
10891 artificial; there is no way to differentiate
10892 the two cases. */
10893 if (TYPE_NFIELDS (type) > 0
10894 && TYPE_FIELD_ARTIFICIAL (type, 0)
10895 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10896 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10897 0))))
10898 buf.puts (" const");
10899 }
10900 }
10901
10902 const std::string &intermediate_name = buf.string ();
10903
10904 if (cu->language == language_cplus)
10905 canonical_name
10906 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10907 &objfile->per_bfd->storage_obstack);
10908
10909 /* If we only computed INTERMEDIATE_NAME, or if
10910 INTERMEDIATE_NAME is already canonical, then we need to
10911 copy it to the appropriate obstack. */
10912 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10913 name = ((const char *)
10914 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10915 intermediate_name.c_str (),
10916 intermediate_name.length ()));
10917 else
10918 name = canonical_name;
10919 }
10920 }
10921
10922 return name;
10923 }
10924
10925 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10926 If scope qualifiers are appropriate they will be added. The result
10927 will be allocated on the storage_obstack, or NULL if the DIE does
10928 not have a name. NAME may either be from a previous call to
10929 dwarf2_name or NULL.
10930
10931 The output string will be canonicalized (if C++). */
10932
10933 static const char *
10934 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10935 {
10936 return dwarf2_compute_name (name, die, cu, 0);
10937 }
10938
10939 /* Construct a physname for the given DIE in CU. NAME may either be
10940 from a previous call to dwarf2_name or NULL. The result will be
10941 allocated on the objfile_objstack or NULL if the DIE does not have a
10942 name.
10943
10944 The output string will be canonicalized (if C++). */
10945
10946 static const char *
10947 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10948 {
10949 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10950 const char *retval, *mangled = NULL, *canon = NULL;
10951 int need_copy = 1;
10952
10953 /* In this case dwarf2_compute_name is just a shortcut not building anything
10954 on its own. */
10955 if (!die_needs_namespace (die, cu))
10956 return dwarf2_compute_name (name, die, cu, 1);
10957
10958 mangled = dw2_linkage_name (die, cu);
10959
10960 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10961 See https://github.com/rust-lang/rust/issues/32925. */
10962 if (cu->language == language_rust && mangled != NULL
10963 && strchr (mangled, '{') != NULL)
10964 mangled = NULL;
10965
10966 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10967 has computed. */
10968 gdb::unique_xmalloc_ptr<char> demangled;
10969 if (mangled != NULL)
10970 {
10971
10972 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10973 {
10974 /* Do nothing (do not demangle the symbol name). */
10975 }
10976 else if (cu->language == language_go)
10977 {
10978 /* This is a lie, but we already lie to the caller new_symbol.
10979 new_symbol assumes we return the mangled name.
10980 This just undoes that lie until things are cleaned up. */
10981 }
10982 else
10983 {
10984 /* Use DMGL_RET_DROP for C++ template functions to suppress
10985 their return type. It is easier for GDB users to search
10986 for such functions as `name(params)' than `long name(params)'.
10987 In such case the minimal symbol names do not match the full
10988 symbol names but for template functions there is never a need
10989 to look up their definition from their declaration so
10990 the only disadvantage remains the minimal symbol variant
10991 `long name(params)' does not have the proper inferior type. */
10992 demangled.reset (gdb_demangle (mangled,
10993 (DMGL_PARAMS | DMGL_ANSI
10994 | DMGL_RET_DROP)));
10995 }
10996 if (demangled)
10997 canon = demangled.get ();
10998 else
10999 {
11000 canon = mangled;
11001 need_copy = 0;
11002 }
11003 }
11004
11005 if (canon == NULL || check_physname)
11006 {
11007 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11008
11009 if (canon != NULL && strcmp (physname, canon) != 0)
11010 {
11011 /* It may not mean a bug in GDB. The compiler could also
11012 compute DW_AT_linkage_name incorrectly. But in such case
11013 GDB would need to be bug-to-bug compatible. */
11014
11015 complaint (_("Computed physname <%s> does not match demangled <%s> "
11016 "(from linkage <%s>) - DIE at %s [in module %s]"),
11017 physname, canon, mangled, sect_offset_str (die->sect_off),
11018 objfile_name (objfile));
11019
11020 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11021 is available here - over computed PHYSNAME. It is safer
11022 against both buggy GDB and buggy compilers. */
11023
11024 retval = canon;
11025 }
11026 else
11027 {
11028 retval = physname;
11029 need_copy = 0;
11030 }
11031 }
11032 else
11033 retval = canon;
11034
11035 if (need_copy)
11036 retval = ((const char *)
11037 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11038 retval, strlen (retval)));
11039
11040 return retval;
11041 }
11042
11043 /* Inspect DIE in CU for a namespace alias. If one exists, record
11044 a new symbol for it.
11045
11046 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11047
11048 static int
11049 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11050 {
11051 struct attribute *attr;
11052
11053 /* If the die does not have a name, this is not a namespace
11054 alias. */
11055 attr = dwarf2_attr (die, DW_AT_name, cu);
11056 if (attr != NULL)
11057 {
11058 int num;
11059 struct die_info *d = die;
11060 struct dwarf2_cu *imported_cu = cu;
11061
11062 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11063 keep inspecting DIEs until we hit the underlying import. */
11064 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11065 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11066 {
11067 attr = dwarf2_attr (d, DW_AT_import, cu);
11068 if (attr == NULL)
11069 break;
11070
11071 d = follow_die_ref (d, attr, &imported_cu);
11072 if (d->tag != DW_TAG_imported_declaration)
11073 break;
11074 }
11075
11076 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11077 {
11078 complaint (_("DIE at %s has too many recursively imported "
11079 "declarations"), sect_offset_str (d->sect_off));
11080 return 0;
11081 }
11082
11083 if (attr != NULL)
11084 {
11085 struct type *type;
11086 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11087
11088 type = get_die_type_at_offset (sect_off, cu->per_cu);
11089 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11090 {
11091 /* This declaration is a global namespace alias. Add
11092 a symbol for it whose type is the aliased namespace. */
11093 new_symbol (die, type, cu);
11094 return 1;
11095 }
11096 }
11097 }
11098
11099 return 0;
11100 }
11101
11102 /* Return the using directives repository (global or local?) to use in the
11103 current context for LANGUAGE.
11104
11105 For Ada, imported declarations can materialize renamings, which *may* be
11106 global. However it is impossible (for now?) in DWARF to distinguish
11107 "external" imported declarations and "static" ones. As all imported
11108 declarations seem to be static in all other languages, make them all CU-wide
11109 global only in Ada. */
11110
11111 static struct using_direct **
11112 using_directives (enum language language)
11113 {
11114 if (language == language_ada && context_stack_depth == 0)
11115 return &global_using_directives;
11116 else
11117 return &local_using_directives;
11118 }
11119
11120 /* Read the import statement specified by the given die and record it. */
11121
11122 static void
11123 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11124 {
11125 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11126 struct attribute *import_attr;
11127 struct die_info *imported_die, *child_die;
11128 struct dwarf2_cu *imported_cu;
11129 const char *imported_name;
11130 const char *imported_name_prefix;
11131 const char *canonical_name;
11132 const char *import_alias;
11133 const char *imported_declaration = NULL;
11134 const char *import_prefix;
11135 std::vector<const char *> excludes;
11136
11137 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11138 if (import_attr == NULL)
11139 {
11140 complaint (_("Tag '%s' has no DW_AT_import"),
11141 dwarf_tag_name (die->tag));
11142 return;
11143 }
11144
11145 imported_cu = cu;
11146 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11147 imported_name = dwarf2_name (imported_die, imported_cu);
11148 if (imported_name == NULL)
11149 {
11150 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11151
11152 The import in the following code:
11153 namespace A
11154 {
11155 typedef int B;
11156 }
11157
11158 int main ()
11159 {
11160 using A::B;
11161 B b;
11162 return b;
11163 }
11164
11165 ...
11166 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11167 <52> DW_AT_decl_file : 1
11168 <53> DW_AT_decl_line : 6
11169 <54> DW_AT_import : <0x75>
11170 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11171 <59> DW_AT_name : B
11172 <5b> DW_AT_decl_file : 1
11173 <5c> DW_AT_decl_line : 2
11174 <5d> DW_AT_type : <0x6e>
11175 ...
11176 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11177 <76> DW_AT_byte_size : 4
11178 <77> DW_AT_encoding : 5 (signed)
11179
11180 imports the wrong die ( 0x75 instead of 0x58 ).
11181 This case will be ignored until the gcc bug is fixed. */
11182 return;
11183 }
11184
11185 /* Figure out the local name after import. */
11186 import_alias = dwarf2_name (die, cu);
11187
11188 /* Figure out where the statement is being imported to. */
11189 import_prefix = determine_prefix (die, cu);
11190
11191 /* Figure out what the scope of the imported die is and prepend it
11192 to the name of the imported die. */
11193 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11194
11195 if (imported_die->tag != DW_TAG_namespace
11196 && imported_die->tag != DW_TAG_module)
11197 {
11198 imported_declaration = imported_name;
11199 canonical_name = imported_name_prefix;
11200 }
11201 else if (strlen (imported_name_prefix) > 0)
11202 canonical_name = obconcat (&objfile->objfile_obstack,
11203 imported_name_prefix,
11204 (cu->language == language_d ? "." : "::"),
11205 imported_name, (char *) NULL);
11206 else
11207 canonical_name = imported_name;
11208
11209 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11210 for (child_die = die->child; child_die && child_die->tag;
11211 child_die = sibling_die (child_die))
11212 {
11213 /* DWARF-4: A Fortran use statement with a “rename list” may be
11214 represented by an imported module entry with an import attribute
11215 referring to the module and owned entries corresponding to those
11216 entities that are renamed as part of being imported. */
11217
11218 if (child_die->tag != DW_TAG_imported_declaration)
11219 {
11220 complaint (_("child DW_TAG_imported_declaration expected "
11221 "- DIE at %s [in module %s]"),
11222 sect_offset_str (child_die->sect_off),
11223 objfile_name (objfile));
11224 continue;
11225 }
11226
11227 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11228 if (import_attr == NULL)
11229 {
11230 complaint (_("Tag '%s' has no DW_AT_import"),
11231 dwarf_tag_name (child_die->tag));
11232 continue;
11233 }
11234
11235 imported_cu = cu;
11236 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11237 &imported_cu);
11238 imported_name = dwarf2_name (imported_die, imported_cu);
11239 if (imported_name == NULL)
11240 {
11241 complaint (_("child DW_TAG_imported_declaration has unknown "
11242 "imported name - DIE at %s [in module %s]"),
11243 sect_offset_str (child_die->sect_off),
11244 objfile_name (objfile));
11245 continue;
11246 }
11247
11248 excludes.push_back (imported_name);
11249
11250 process_die (child_die, cu);
11251 }
11252
11253 add_using_directive (using_directives (cu->language),
11254 import_prefix,
11255 canonical_name,
11256 import_alias,
11257 imported_declaration,
11258 excludes,
11259 0,
11260 &objfile->objfile_obstack);
11261 }
11262
11263 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11264 types, but gives them a size of zero. Starting with version 14,
11265 ICC is compatible with GCC. */
11266
11267 static int
11268 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11269 {
11270 if (!cu->checked_producer)
11271 check_producer (cu);
11272
11273 return cu->producer_is_icc_lt_14;
11274 }
11275
11276 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11277 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11278 this, it was first present in GCC release 4.3.0. */
11279
11280 static int
11281 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11282 {
11283 if (!cu->checked_producer)
11284 check_producer (cu);
11285
11286 return cu->producer_is_gcc_lt_4_3;
11287 }
11288
11289 static file_and_directory
11290 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11291 {
11292 file_and_directory res;
11293
11294 /* Find the filename. Do not use dwarf2_name here, since the filename
11295 is not a source language identifier. */
11296 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11297 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11298
11299 if (res.comp_dir == NULL
11300 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11301 && IS_ABSOLUTE_PATH (res.name))
11302 {
11303 res.comp_dir_storage = ldirname (res.name);
11304 if (!res.comp_dir_storage.empty ())
11305 res.comp_dir = res.comp_dir_storage.c_str ();
11306 }
11307 if (res.comp_dir != NULL)
11308 {
11309 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11310 directory, get rid of it. */
11311 const char *cp = strchr (res.comp_dir, ':');
11312
11313 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11314 res.comp_dir = cp + 1;
11315 }
11316
11317 if (res.name == NULL)
11318 res.name = "<unknown>";
11319
11320 return res;
11321 }
11322
11323 /* Handle DW_AT_stmt_list for a compilation unit.
11324 DIE is the DW_TAG_compile_unit die for CU.
11325 COMP_DIR is the compilation directory. LOWPC is passed to
11326 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11327
11328 static void
11329 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11330 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11331 {
11332 struct dwarf2_per_objfile *dwarf2_per_objfile
11333 = cu->per_cu->dwarf2_per_objfile;
11334 struct objfile *objfile = dwarf2_per_objfile->objfile;
11335 struct attribute *attr;
11336 struct line_header line_header_local;
11337 hashval_t line_header_local_hash;
11338 void **slot;
11339 int decode_mapping;
11340
11341 gdb_assert (! cu->per_cu->is_debug_types);
11342
11343 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11344 if (attr == NULL)
11345 return;
11346
11347 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11348
11349 /* The line header hash table is only created if needed (it exists to
11350 prevent redundant reading of the line table for partial_units).
11351 If we're given a partial_unit, we'll need it. If we're given a
11352 compile_unit, then use the line header hash table if it's already
11353 created, but don't create one just yet. */
11354
11355 if (dwarf2_per_objfile->line_header_hash == NULL
11356 && die->tag == DW_TAG_partial_unit)
11357 {
11358 dwarf2_per_objfile->line_header_hash
11359 = htab_create_alloc_ex (127, line_header_hash_voidp,
11360 line_header_eq_voidp,
11361 free_line_header_voidp,
11362 &objfile->objfile_obstack,
11363 hashtab_obstack_allocate,
11364 dummy_obstack_deallocate);
11365 }
11366
11367 line_header_local.sect_off = line_offset;
11368 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11369 line_header_local_hash = line_header_hash (&line_header_local);
11370 if (dwarf2_per_objfile->line_header_hash != NULL)
11371 {
11372 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11373 &line_header_local,
11374 line_header_local_hash, NO_INSERT);
11375
11376 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11377 is not present in *SLOT (since if there is something in *SLOT then
11378 it will be for a partial_unit). */
11379 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11380 {
11381 gdb_assert (*slot != NULL);
11382 cu->line_header = (struct line_header *) *slot;
11383 return;
11384 }
11385 }
11386
11387 /* dwarf_decode_line_header does not yet provide sufficient information.
11388 We always have to call also dwarf_decode_lines for it. */
11389 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11390 if (lh == NULL)
11391 return;
11392
11393 cu->line_header = lh.release ();
11394 cu->line_header_die_owner = die;
11395
11396 if (dwarf2_per_objfile->line_header_hash == NULL)
11397 slot = NULL;
11398 else
11399 {
11400 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11401 &line_header_local,
11402 line_header_local_hash, INSERT);
11403 gdb_assert (slot != NULL);
11404 }
11405 if (slot != NULL && *slot == NULL)
11406 {
11407 /* This newly decoded line number information unit will be owned
11408 by line_header_hash hash table. */
11409 *slot = cu->line_header;
11410 cu->line_header_die_owner = NULL;
11411 }
11412 else
11413 {
11414 /* We cannot free any current entry in (*slot) as that struct line_header
11415 may be already used by multiple CUs. Create only temporary decoded
11416 line_header for this CU - it may happen at most once for each line
11417 number information unit. And if we're not using line_header_hash
11418 then this is what we want as well. */
11419 gdb_assert (die->tag != DW_TAG_partial_unit);
11420 }
11421 decode_mapping = (die->tag != DW_TAG_partial_unit);
11422 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11423 decode_mapping);
11424
11425 }
11426
11427 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11428
11429 static void
11430 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11431 {
11432 struct dwarf2_per_objfile *dwarf2_per_objfile
11433 = cu->per_cu->dwarf2_per_objfile;
11434 struct objfile *objfile = dwarf2_per_objfile->objfile;
11435 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11436 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11437 CORE_ADDR highpc = ((CORE_ADDR) 0);
11438 struct attribute *attr;
11439 struct die_info *child_die;
11440 CORE_ADDR baseaddr;
11441
11442 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11443
11444 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11445
11446 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11447 from finish_block. */
11448 if (lowpc == ((CORE_ADDR) -1))
11449 lowpc = highpc;
11450 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11451
11452 file_and_directory fnd = find_file_and_directory (die, cu);
11453
11454 prepare_one_comp_unit (cu, die, cu->language);
11455
11456 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11457 standardised yet. As a workaround for the language detection we fall
11458 back to the DW_AT_producer string. */
11459 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11460 cu->language = language_opencl;
11461
11462 /* Similar hack for Go. */
11463 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11464 set_cu_language (DW_LANG_Go, cu);
11465
11466 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11467
11468 /* Decode line number information if present. We do this before
11469 processing child DIEs, so that the line header table is available
11470 for DW_AT_decl_file. */
11471 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11472
11473 /* Process all dies in compilation unit. */
11474 if (die->child != NULL)
11475 {
11476 child_die = die->child;
11477 while (child_die && child_die->tag)
11478 {
11479 process_die (child_die, cu);
11480 child_die = sibling_die (child_die);
11481 }
11482 }
11483
11484 /* Decode macro information, if present. Dwarf 2 macro information
11485 refers to information in the line number info statement program
11486 header, so we can only read it if we've read the header
11487 successfully. */
11488 attr = dwarf2_attr (die, DW_AT_macros, cu);
11489 if (attr == NULL)
11490 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11491 if (attr && cu->line_header)
11492 {
11493 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11494 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11495
11496 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11497 }
11498 else
11499 {
11500 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11501 if (attr && cu->line_header)
11502 {
11503 unsigned int macro_offset = DW_UNSND (attr);
11504
11505 dwarf_decode_macros (cu, macro_offset, 0);
11506 }
11507 }
11508 }
11509
11510 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11511 Create the set of symtabs used by this TU, or if this TU is sharing
11512 symtabs with another TU and the symtabs have already been created
11513 then restore those symtabs in the line header.
11514 We don't need the pc/line-number mapping for type units. */
11515
11516 static void
11517 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11518 {
11519 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11520 struct type_unit_group *tu_group;
11521 int first_time;
11522 struct attribute *attr;
11523 unsigned int i;
11524 struct signatured_type *sig_type;
11525
11526 gdb_assert (per_cu->is_debug_types);
11527 sig_type = (struct signatured_type *) per_cu;
11528
11529 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11530
11531 /* If we're using .gdb_index (includes -readnow) then
11532 per_cu->type_unit_group may not have been set up yet. */
11533 if (sig_type->type_unit_group == NULL)
11534 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11535 tu_group = sig_type->type_unit_group;
11536
11537 /* If we've already processed this stmt_list there's no real need to
11538 do it again, we could fake it and just recreate the part we need
11539 (file name,index -> symtab mapping). If data shows this optimization
11540 is useful we can do it then. */
11541 first_time = tu_group->compunit_symtab == NULL;
11542
11543 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11544 debug info. */
11545 line_header_up lh;
11546 if (attr != NULL)
11547 {
11548 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11549 lh = dwarf_decode_line_header (line_offset, cu);
11550 }
11551 if (lh == NULL)
11552 {
11553 if (first_time)
11554 dwarf2_start_symtab (cu, "", NULL, 0);
11555 else
11556 {
11557 gdb_assert (tu_group->symtabs == NULL);
11558 restart_symtab (tu_group->compunit_symtab, "", 0);
11559 }
11560 return;
11561 }
11562
11563 cu->line_header = lh.release ();
11564 cu->line_header_die_owner = die;
11565
11566 if (first_time)
11567 {
11568 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11569
11570 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11571 still initializing it, and our caller (a few levels up)
11572 process_full_type_unit still needs to know if this is the first
11573 time. */
11574
11575 tu_group->num_symtabs = cu->line_header->file_names.size ();
11576 tu_group->symtabs = XNEWVEC (struct symtab *,
11577 cu->line_header->file_names.size ());
11578
11579 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11580 {
11581 file_entry &fe = cu->line_header->file_names[i];
11582
11583 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11584
11585 if (current_subfile->symtab == NULL)
11586 {
11587 /* NOTE: start_subfile will recognize when it's been
11588 passed a file it has already seen. So we can't
11589 assume there's a simple mapping from
11590 cu->line_header->file_names to subfiles, plus
11591 cu->line_header->file_names may contain dups. */
11592 current_subfile->symtab
11593 = allocate_symtab (cust, current_subfile->name);
11594 }
11595
11596 fe.symtab = current_subfile->symtab;
11597 tu_group->symtabs[i] = fe.symtab;
11598 }
11599 }
11600 else
11601 {
11602 restart_symtab (tu_group->compunit_symtab, "", 0);
11603
11604 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11605 {
11606 file_entry &fe = cu->line_header->file_names[i];
11607
11608 fe.symtab = tu_group->symtabs[i];
11609 }
11610 }
11611
11612 /* The main symtab is allocated last. Type units don't have DW_AT_name
11613 so they don't have a "real" (so to speak) symtab anyway.
11614 There is later code that will assign the main symtab to all symbols
11615 that don't have one. We need to handle the case of a symbol with a
11616 missing symtab (DW_AT_decl_file) anyway. */
11617 }
11618
11619 /* Process DW_TAG_type_unit.
11620 For TUs we want to skip the first top level sibling if it's not the
11621 actual type being defined by this TU. In this case the first top
11622 level sibling is there to provide context only. */
11623
11624 static void
11625 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11626 {
11627 struct die_info *child_die;
11628
11629 prepare_one_comp_unit (cu, die, language_minimal);
11630
11631 /* Initialize (or reinitialize) the machinery for building symtabs.
11632 We do this before processing child DIEs, so that the line header table
11633 is available for DW_AT_decl_file. */
11634 setup_type_unit_groups (die, cu);
11635
11636 if (die->child != NULL)
11637 {
11638 child_die = die->child;
11639 while (child_die && child_die->tag)
11640 {
11641 process_die (child_die, cu);
11642 child_die = sibling_die (child_die);
11643 }
11644 }
11645 }
11646 \f
11647 /* DWO/DWP files.
11648
11649 http://gcc.gnu.org/wiki/DebugFission
11650 http://gcc.gnu.org/wiki/DebugFissionDWP
11651
11652 To simplify handling of both DWO files ("object" files with the DWARF info)
11653 and DWP files (a file with the DWOs packaged up into one file), we treat
11654 DWP files as having a collection of virtual DWO files. */
11655
11656 static hashval_t
11657 hash_dwo_file (const void *item)
11658 {
11659 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11660 hashval_t hash;
11661
11662 hash = htab_hash_string (dwo_file->dwo_name);
11663 if (dwo_file->comp_dir != NULL)
11664 hash += htab_hash_string (dwo_file->comp_dir);
11665 return hash;
11666 }
11667
11668 static int
11669 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11670 {
11671 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11672 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11673
11674 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11675 return 0;
11676 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11677 return lhs->comp_dir == rhs->comp_dir;
11678 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11679 }
11680
11681 /* Allocate a hash table for DWO files. */
11682
11683 static htab_t
11684 allocate_dwo_file_hash_table (struct objfile *objfile)
11685 {
11686 return htab_create_alloc_ex (41,
11687 hash_dwo_file,
11688 eq_dwo_file,
11689 NULL,
11690 &objfile->objfile_obstack,
11691 hashtab_obstack_allocate,
11692 dummy_obstack_deallocate);
11693 }
11694
11695 /* Lookup DWO file DWO_NAME. */
11696
11697 static void **
11698 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11699 const char *dwo_name,
11700 const char *comp_dir)
11701 {
11702 struct dwo_file find_entry;
11703 void **slot;
11704
11705 if (dwarf2_per_objfile->dwo_files == NULL)
11706 dwarf2_per_objfile->dwo_files
11707 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11708
11709 memset (&find_entry, 0, sizeof (find_entry));
11710 find_entry.dwo_name = dwo_name;
11711 find_entry.comp_dir = comp_dir;
11712 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11713
11714 return slot;
11715 }
11716
11717 static hashval_t
11718 hash_dwo_unit (const void *item)
11719 {
11720 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11721
11722 /* This drops the top 32 bits of the id, but is ok for a hash. */
11723 return dwo_unit->signature;
11724 }
11725
11726 static int
11727 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11728 {
11729 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11730 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11731
11732 /* The signature is assumed to be unique within the DWO file.
11733 So while object file CU dwo_id's always have the value zero,
11734 that's OK, assuming each object file DWO file has only one CU,
11735 and that's the rule for now. */
11736 return lhs->signature == rhs->signature;
11737 }
11738
11739 /* Allocate a hash table for DWO CUs,TUs.
11740 There is one of these tables for each of CUs,TUs for each DWO file. */
11741
11742 static htab_t
11743 allocate_dwo_unit_table (struct objfile *objfile)
11744 {
11745 /* Start out with a pretty small number.
11746 Generally DWO files contain only one CU and maybe some TUs. */
11747 return htab_create_alloc_ex (3,
11748 hash_dwo_unit,
11749 eq_dwo_unit,
11750 NULL,
11751 &objfile->objfile_obstack,
11752 hashtab_obstack_allocate,
11753 dummy_obstack_deallocate);
11754 }
11755
11756 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11757
11758 struct create_dwo_cu_data
11759 {
11760 struct dwo_file *dwo_file;
11761 struct dwo_unit dwo_unit;
11762 };
11763
11764 /* die_reader_func for create_dwo_cu. */
11765
11766 static void
11767 create_dwo_cu_reader (const struct die_reader_specs *reader,
11768 const gdb_byte *info_ptr,
11769 struct die_info *comp_unit_die,
11770 int has_children,
11771 void *datap)
11772 {
11773 struct dwarf2_cu *cu = reader->cu;
11774 sect_offset sect_off = cu->per_cu->sect_off;
11775 struct dwarf2_section_info *section = cu->per_cu->section;
11776 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11777 struct dwo_file *dwo_file = data->dwo_file;
11778 struct dwo_unit *dwo_unit = &data->dwo_unit;
11779 struct attribute *attr;
11780
11781 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11782 if (attr == NULL)
11783 {
11784 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11785 " its dwo_id [in module %s]"),
11786 sect_offset_str (sect_off), dwo_file->dwo_name);
11787 return;
11788 }
11789
11790 dwo_unit->dwo_file = dwo_file;
11791 dwo_unit->signature = DW_UNSND (attr);
11792 dwo_unit->section = section;
11793 dwo_unit->sect_off = sect_off;
11794 dwo_unit->length = cu->per_cu->length;
11795
11796 if (dwarf_read_debug)
11797 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11798 sect_offset_str (sect_off),
11799 hex_string (dwo_unit->signature));
11800 }
11801
11802 /* Create the dwo_units for the CUs in a DWO_FILE.
11803 Note: This function processes DWO files only, not DWP files. */
11804
11805 static void
11806 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11807 struct dwo_file &dwo_file, dwarf2_section_info &section,
11808 htab_t &cus_htab)
11809 {
11810 struct objfile *objfile = dwarf2_per_objfile->objfile;
11811 const gdb_byte *info_ptr, *end_ptr;
11812
11813 dwarf2_read_section (objfile, &section);
11814 info_ptr = section.buffer;
11815
11816 if (info_ptr == NULL)
11817 return;
11818
11819 if (dwarf_read_debug)
11820 {
11821 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11822 get_section_name (&section),
11823 get_section_file_name (&section));
11824 }
11825
11826 end_ptr = info_ptr + section.size;
11827 while (info_ptr < end_ptr)
11828 {
11829 struct dwarf2_per_cu_data per_cu;
11830 struct create_dwo_cu_data create_dwo_cu_data;
11831 struct dwo_unit *dwo_unit;
11832 void **slot;
11833 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11834
11835 memset (&create_dwo_cu_data.dwo_unit, 0,
11836 sizeof (create_dwo_cu_data.dwo_unit));
11837 memset (&per_cu, 0, sizeof (per_cu));
11838 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11839 per_cu.is_debug_types = 0;
11840 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11841 per_cu.section = &section;
11842 create_dwo_cu_data.dwo_file = &dwo_file;
11843
11844 init_cutu_and_read_dies_no_follow (
11845 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11846 info_ptr += per_cu.length;
11847
11848 // If the unit could not be parsed, skip it.
11849 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11850 continue;
11851
11852 if (cus_htab == NULL)
11853 cus_htab = allocate_dwo_unit_table (objfile);
11854
11855 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11856 *dwo_unit = create_dwo_cu_data.dwo_unit;
11857 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11858 gdb_assert (slot != NULL);
11859 if (*slot != NULL)
11860 {
11861 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11862 sect_offset dup_sect_off = dup_cu->sect_off;
11863
11864 complaint (_("debug cu entry at offset %s is duplicate to"
11865 " the entry at offset %s, signature %s"),
11866 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11867 hex_string (dwo_unit->signature));
11868 }
11869 *slot = (void *)dwo_unit;
11870 }
11871 }
11872
11873 /* DWP file .debug_{cu,tu}_index section format:
11874 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11875
11876 DWP Version 1:
11877
11878 Both index sections have the same format, and serve to map a 64-bit
11879 signature to a set of section numbers. Each section begins with a header,
11880 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11881 indexes, and a pool of 32-bit section numbers. The index sections will be
11882 aligned at 8-byte boundaries in the file.
11883
11884 The index section header consists of:
11885
11886 V, 32 bit version number
11887 -, 32 bits unused
11888 N, 32 bit number of compilation units or type units in the index
11889 M, 32 bit number of slots in the hash table
11890
11891 Numbers are recorded using the byte order of the application binary.
11892
11893 The hash table begins at offset 16 in the section, and consists of an array
11894 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11895 order of the application binary). Unused slots in the hash table are 0.
11896 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11897
11898 The parallel table begins immediately after the hash table
11899 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11900 array of 32-bit indexes (using the byte order of the application binary),
11901 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11902 table contains a 32-bit index into the pool of section numbers. For unused
11903 hash table slots, the corresponding entry in the parallel table will be 0.
11904
11905 The pool of section numbers begins immediately following the hash table
11906 (at offset 16 + 12 * M from the beginning of the section). The pool of
11907 section numbers consists of an array of 32-bit words (using the byte order
11908 of the application binary). Each item in the array is indexed starting
11909 from 0. The hash table entry provides the index of the first section
11910 number in the set. Additional section numbers in the set follow, and the
11911 set is terminated by a 0 entry (section number 0 is not used in ELF).
11912
11913 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11914 section must be the first entry in the set, and the .debug_abbrev.dwo must
11915 be the second entry. Other members of the set may follow in any order.
11916
11917 ---
11918
11919 DWP Version 2:
11920
11921 DWP Version 2 combines all the .debug_info, etc. sections into one,
11922 and the entries in the index tables are now offsets into these sections.
11923 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11924 section.
11925
11926 Index Section Contents:
11927 Header
11928 Hash Table of Signatures dwp_hash_table.hash_table
11929 Parallel Table of Indices dwp_hash_table.unit_table
11930 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11931 Table of Section Sizes dwp_hash_table.v2.sizes
11932
11933 The index section header consists of:
11934
11935 V, 32 bit version number
11936 L, 32 bit number of columns in the table of section offsets
11937 N, 32 bit number of compilation units or type units in the index
11938 M, 32 bit number of slots in the hash table
11939
11940 Numbers are recorded using the byte order of the application binary.
11941
11942 The hash table has the same format as version 1.
11943 The parallel table of indices has the same format as version 1,
11944 except that the entries are origin-1 indices into the table of sections
11945 offsets and the table of section sizes.
11946
11947 The table of offsets begins immediately following the parallel table
11948 (at offset 16 + 12 * M from the beginning of the section). The table is
11949 a two-dimensional array of 32-bit words (using the byte order of the
11950 application binary), with L columns and N+1 rows, in row-major order.
11951 Each row in the array is indexed starting from 0. The first row provides
11952 a key to the remaining rows: each column in this row provides an identifier
11953 for a debug section, and the offsets in the same column of subsequent rows
11954 refer to that section. The section identifiers are:
11955
11956 DW_SECT_INFO 1 .debug_info.dwo
11957 DW_SECT_TYPES 2 .debug_types.dwo
11958 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11959 DW_SECT_LINE 4 .debug_line.dwo
11960 DW_SECT_LOC 5 .debug_loc.dwo
11961 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11962 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11963 DW_SECT_MACRO 8 .debug_macro.dwo
11964
11965 The offsets provided by the CU and TU index sections are the base offsets
11966 for the contributions made by each CU or TU to the corresponding section
11967 in the package file. Each CU and TU header contains an abbrev_offset
11968 field, used to find the abbreviations table for that CU or TU within the
11969 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11970 be interpreted as relative to the base offset given in the index section.
11971 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11972 should be interpreted as relative to the base offset for .debug_line.dwo,
11973 and offsets into other debug sections obtained from DWARF attributes should
11974 also be interpreted as relative to the corresponding base offset.
11975
11976 The table of sizes begins immediately following the table of offsets.
11977 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11978 with L columns and N rows, in row-major order. Each row in the array is
11979 indexed starting from 1 (row 0 is shared by the two tables).
11980
11981 ---
11982
11983 Hash table lookup is handled the same in version 1 and 2:
11984
11985 We assume that N and M will not exceed 2^32 - 1.
11986 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11987
11988 Given a 64-bit compilation unit signature or a type signature S, an entry
11989 in the hash table is located as follows:
11990
11991 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11992 the low-order k bits all set to 1.
11993
11994 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11995
11996 3) If the hash table entry at index H matches the signature, use that
11997 entry. If the hash table entry at index H is unused (all zeroes),
11998 terminate the search: the signature is not present in the table.
11999
12000 4) Let H = (H + H') modulo M. Repeat at Step 3.
12001
12002 Because M > N and H' and M are relatively prime, the search is guaranteed
12003 to stop at an unused slot or find the match. */
12004
12005 /* Create a hash table to map DWO IDs to their CU/TU entry in
12006 .debug_{info,types}.dwo in DWP_FILE.
12007 Returns NULL if there isn't one.
12008 Note: This function processes DWP files only, not DWO files. */
12009
12010 static struct dwp_hash_table *
12011 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12012 struct dwp_file *dwp_file, int is_debug_types)
12013 {
12014 struct objfile *objfile = dwarf2_per_objfile->objfile;
12015 bfd *dbfd = dwp_file->dbfd.get ();
12016 const gdb_byte *index_ptr, *index_end;
12017 struct dwarf2_section_info *index;
12018 uint32_t version, nr_columns, nr_units, nr_slots;
12019 struct dwp_hash_table *htab;
12020
12021 if (is_debug_types)
12022 index = &dwp_file->sections.tu_index;
12023 else
12024 index = &dwp_file->sections.cu_index;
12025
12026 if (dwarf2_section_empty_p (index))
12027 return NULL;
12028 dwarf2_read_section (objfile, index);
12029
12030 index_ptr = index->buffer;
12031 index_end = index_ptr + index->size;
12032
12033 version = read_4_bytes (dbfd, index_ptr);
12034 index_ptr += 4;
12035 if (version == 2)
12036 nr_columns = read_4_bytes (dbfd, index_ptr);
12037 else
12038 nr_columns = 0;
12039 index_ptr += 4;
12040 nr_units = read_4_bytes (dbfd, index_ptr);
12041 index_ptr += 4;
12042 nr_slots = read_4_bytes (dbfd, index_ptr);
12043 index_ptr += 4;
12044
12045 if (version != 1 && version != 2)
12046 {
12047 error (_("Dwarf Error: unsupported DWP file version (%s)"
12048 " [in module %s]"),
12049 pulongest (version), dwp_file->name);
12050 }
12051 if (nr_slots != (nr_slots & -nr_slots))
12052 {
12053 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12054 " is not power of 2 [in module %s]"),
12055 pulongest (nr_slots), dwp_file->name);
12056 }
12057
12058 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12059 htab->version = version;
12060 htab->nr_columns = nr_columns;
12061 htab->nr_units = nr_units;
12062 htab->nr_slots = nr_slots;
12063 htab->hash_table = index_ptr;
12064 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12065
12066 /* Exit early if the table is empty. */
12067 if (nr_slots == 0 || nr_units == 0
12068 || (version == 2 && nr_columns == 0))
12069 {
12070 /* All must be zero. */
12071 if (nr_slots != 0 || nr_units != 0
12072 || (version == 2 && nr_columns != 0))
12073 {
12074 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12075 " all zero [in modules %s]"),
12076 dwp_file->name);
12077 }
12078 return htab;
12079 }
12080
12081 if (version == 1)
12082 {
12083 htab->section_pool.v1.indices =
12084 htab->unit_table + sizeof (uint32_t) * nr_slots;
12085 /* It's harder to decide whether the section is too small in v1.
12086 V1 is deprecated anyway so we punt. */
12087 }
12088 else
12089 {
12090 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12091 int *ids = htab->section_pool.v2.section_ids;
12092 /* Reverse map for error checking. */
12093 int ids_seen[DW_SECT_MAX + 1];
12094 int i;
12095
12096 if (nr_columns < 2)
12097 {
12098 error (_("Dwarf Error: bad DWP hash table, too few columns"
12099 " in section table [in module %s]"),
12100 dwp_file->name);
12101 }
12102 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12103 {
12104 error (_("Dwarf Error: bad DWP hash table, too many columns"
12105 " in section table [in module %s]"),
12106 dwp_file->name);
12107 }
12108 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12109 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12110 for (i = 0; i < nr_columns; ++i)
12111 {
12112 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12113
12114 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12115 {
12116 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12117 " in section table [in module %s]"),
12118 id, dwp_file->name);
12119 }
12120 if (ids_seen[id] != -1)
12121 {
12122 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12123 " id %d in section table [in module %s]"),
12124 id, dwp_file->name);
12125 }
12126 ids_seen[id] = i;
12127 ids[i] = id;
12128 }
12129 /* Must have exactly one info or types section. */
12130 if (((ids_seen[DW_SECT_INFO] != -1)
12131 + (ids_seen[DW_SECT_TYPES] != -1))
12132 != 1)
12133 {
12134 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12135 " DWO info/types section [in module %s]"),
12136 dwp_file->name);
12137 }
12138 /* Must have an abbrev section. */
12139 if (ids_seen[DW_SECT_ABBREV] == -1)
12140 {
12141 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12142 " section [in module %s]"),
12143 dwp_file->name);
12144 }
12145 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12146 htab->section_pool.v2.sizes =
12147 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12148 * nr_units * nr_columns);
12149 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12150 * nr_units * nr_columns))
12151 > index_end)
12152 {
12153 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12154 " [in module %s]"),
12155 dwp_file->name);
12156 }
12157 }
12158
12159 return htab;
12160 }
12161
12162 /* Update SECTIONS with the data from SECTP.
12163
12164 This function is like the other "locate" section routines that are
12165 passed to bfd_map_over_sections, but in this context the sections to
12166 read comes from the DWP V1 hash table, not the full ELF section table.
12167
12168 The result is non-zero for success, or zero if an error was found. */
12169
12170 static int
12171 locate_v1_virtual_dwo_sections (asection *sectp,
12172 struct virtual_v1_dwo_sections *sections)
12173 {
12174 const struct dwop_section_names *names = &dwop_section_names;
12175
12176 if (section_is_p (sectp->name, &names->abbrev_dwo))
12177 {
12178 /* There can be only one. */
12179 if (sections->abbrev.s.section != NULL)
12180 return 0;
12181 sections->abbrev.s.section = sectp;
12182 sections->abbrev.size = bfd_get_section_size (sectp);
12183 }
12184 else if (section_is_p (sectp->name, &names->info_dwo)
12185 || section_is_p (sectp->name, &names->types_dwo))
12186 {
12187 /* There can be only one. */
12188 if (sections->info_or_types.s.section != NULL)
12189 return 0;
12190 sections->info_or_types.s.section = sectp;
12191 sections->info_or_types.size = bfd_get_section_size (sectp);
12192 }
12193 else if (section_is_p (sectp->name, &names->line_dwo))
12194 {
12195 /* There can be only one. */
12196 if (sections->line.s.section != NULL)
12197 return 0;
12198 sections->line.s.section = sectp;
12199 sections->line.size = bfd_get_section_size (sectp);
12200 }
12201 else if (section_is_p (sectp->name, &names->loc_dwo))
12202 {
12203 /* There can be only one. */
12204 if (sections->loc.s.section != NULL)
12205 return 0;
12206 sections->loc.s.section = sectp;
12207 sections->loc.size = bfd_get_section_size (sectp);
12208 }
12209 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12210 {
12211 /* There can be only one. */
12212 if (sections->macinfo.s.section != NULL)
12213 return 0;
12214 sections->macinfo.s.section = sectp;
12215 sections->macinfo.size = bfd_get_section_size (sectp);
12216 }
12217 else if (section_is_p (sectp->name, &names->macro_dwo))
12218 {
12219 /* There can be only one. */
12220 if (sections->macro.s.section != NULL)
12221 return 0;
12222 sections->macro.s.section = sectp;
12223 sections->macro.size = bfd_get_section_size (sectp);
12224 }
12225 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12226 {
12227 /* There can be only one. */
12228 if (sections->str_offsets.s.section != NULL)
12229 return 0;
12230 sections->str_offsets.s.section = sectp;
12231 sections->str_offsets.size = bfd_get_section_size (sectp);
12232 }
12233 else
12234 {
12235 /* No other kind of section is valid. */
12236 return 0;
12237 }
12238
12239 return 1;
12240 }
12241
12242 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12243 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12244 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12245 This is for DWP version 1 files. */
12246
12247 static struct dwo_unit *
12248 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12249 struct dwp_file *dwp_file,
12250 uint32_t unit_index,
12251 const char *comp_dir,
12252 ULONGEST signature, int is_debug_types)
12253 {
12254 struct objfile *objfile = dwarf2_per_objfile->objfile;
12255 const struct dwp_hash_table *dwp_htab =
12256 is_debug_types ? dwp_file->tus : dwp_file->cus;
12257 bfd *dbfd = dwp_file->dbfd.get ();
12258 const char *kind = is_debug_types ? "TU" : "CU";
12259 struct dwo_file *dwo_file;
12260 struct dwo_unit *dwo_unit;
12261 struct virtual_v1_dwo_sections sections;
12262 void **dwo_file_slot;
12263 int i;
12264
12265 gdb_assert (dwp_file->version == 1);
12266
12267 if (dwarf_read_debug)
12268 {
12269 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12270 kind,
12271 pulongest (unit_index), hex_string (signature),
12272 dwp_file->name);
12273 }
12274
12275 /* Fetch the sections of this DWO unit.
12276 Put a limit on the number of sections we look for so that bad data
12277 doesn't cause us to loop forever. */
12278
12279 #define MAX_NR_V1_DWO_SECTIONS \
12280 (1 /* .debug_info or .debug_types */ \
12281 + 1 /* .debug_abbrev */ \
12282 + 1 /* .debug_line */ \
12283 + 1 /* .debug_loc */ \
12284 + 1 /* .debug_str_offsets */ \
12285 + 1 /* .debug_macro or .debug_macinfo */ \
12286 + 1 /* trailing zero */)
12287
12288 memset (&sections, 0, sizeof (sections));
12289
12290 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12291 {
12292 asection *sectp;
12293 uint32_t section_nr =
12294 read_4_bytes (dbfd,
12295 dwp_htab->section_pool.v1.indices
12296 + (unit_index + i) * sizeof (uint32_t));
12297
12298 if (section_nr == 0)
12299 break;
12300 if (section_nr >= dwp_file->num_sections)
12301 {
12302 error (_("Dwarf Error: bad DWP hash table, section number too large"
12303 " [in module %s]"),
12304 dwp_file->name);
12305 }
12306
12307 sectp = dwp_file->elf_sections[section_nr];
12308 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12309 {
12310 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12311 " [in module %s]"),
12312 dwp_file->name);
12313 }
12314 }
12315
12316 if (i < 2
12317 || dwarf2_section_empty_p (&sections.info_or_types)
12318 || dwarf2_section_empty_p (&sections.abbrev))
12319 {
12320 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12321 " [in module %s]"),
12322 dwp_file->name);
12323 }
12324 if (i == MAX_NR_V1_DWO_SECTIONS)
12325 {
12326 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12327 " [in module %s]"),
12328 dwp_file->name);
12329 }
12330
12331 /* It's easier for the rest of the code if we fake a struct dwo_file and
12332 have dwo_unit "live" in that. At least for now.
12333
12334 The DWP file can be made up of a random collection of CUs and TUs.
12335 However, for each CU + set of TUs that came from the same original DWO
12336 file, we can combine them back into a virtual DWO file to save space
12337 (fewer struct dwo_file objects to allocate). Remember that for really
12338 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12339
12340 std::string virtual_dwo_name =
12341 string_printf ("virtual-dwo/%d-%d-%d-%d",
12342 get_section_id (&sections.abbrev),
12343 get_section_id (&sections.line),
12344 get_section_id (&sections.loc),
12345 get_section_id (&sections.str_offsets));
12346 /* Can we use an existing virtual DWO file? */
12347 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12348 virtual_dwo_name.c_str (),
12349 comp_dir);
12350 /* Create one if necessary. */
12351 if (*dwo_file_slot == NULL)
12352 {
12353 if (dwarf_read_debug)
12354 {
12355 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12356 virtual_dwo_name.c_str ());
12357 }
12358 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12359 dwo_file->dwo_name
12360 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12361 virtual_dwo_name.c_str (),
12362 virtual_dwo_name.size ());
12363 dwo_file->comp_dir = comp_dir;
12364 dwo_file->sections.abbrev = sections.abbrev;
12365 dwo_file->sections.line = sections.line;
12366 dwo_file->sections.loc = sections.loc;
12367 dwo_file->sections.macinfo = sections.macinfo;
12368 dwo_file->sections.macro = sections.macro;
12369 dwo_file->sections.str_offsets = sections.str_offsets;
12370 /* The "str" section is global to the entire DWP file. */
12371 dwo_file->sections.str = dwp_file->sections.str;
12372 /* The info or types section is assigned below to dwo_unit,
12373 there's no need to record it in dwo_file.
12374 Also, we can't simply record type sections in dwo_file because
12375 we record a pointer into the vector in dwo_unit. As we collect more
12376 types we'll grow the vector and eventually have to reallocate space
12377 for it, invalidating all copies of pointers into the previous
12378 contents. */
12379 *dwo_file_slot = dwo_file;
12380 }
12381 else
12382 {
12383 if (dwarf_read_debug)
12384 {
12385 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12386 virtual_dwo_name.c_str ());
12387 }
12388 dwo_file = (struct dwo_file *) *dwo_file_slot;
12389 }
12390
12391 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12392 dwo_unit->dwo_file = dwo_file;
12393 dwo_unit->signature = signature;
12394 dwo_unit->section =
12395 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12396 *dwo_unit->section = sections.info_or_types;
12397 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12398
12399 return dwo_unit;
12400 }
12401
12402 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12403 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12404 piece within that section used by a TU/CU, return a virtual section
12405 of just that piece. */
12406
12407 static struct dwarf2_section_info
12408 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12409 struct dwarf2_section_info *section,
12410 bfd_size_type offset, bfd_size_type size)
12411 {
12412 struct dwarf2_section_info result;
12413 asection *sectp;
12414
12415 gdb_assert (section != NULL);
12416 gdb_assert (!section->is_virtual);
12417
12418 memset (&result, 0, sizeof (result));
12419 result.s.containing_section = section;
12420 result.is_virtual = 1;
12421
12422 if (size == 0)
12423 return result;
12424
12425 sectp = get_section_bfd_section (section);
12426
12427 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12428 bounds of the real section. This is a pretty-rare event, so just
12429 flag an error (easier) instead of a warning and trying to cope. */
12430 if (sectp == NULL
12431 || offset + size > bfd_get_section_size (sectp))
12432 {
12433 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12434 " in section %s [in module %s]"),
12435 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12436 objfile_name (dwarf2_per_objfile->objfile));
12437 }
12438
12439 result.virtual_offset = offset;
12440 result.size = size;
12441 return result;
12442 }
12443
12444 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12445 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12446 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12447 This is for DWP version 2 files. */
12448
12449 static struct dwo_unit *
12450 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12451 struct dwp_file *dwp_file,
12452 uint32_t unit_index,
12453 const char *comp_dir,
12454 ULONGEST signature, int is_debug_types)
12455 {
12456 struct objfile *objfile = dwarf2_per_objfile->objfile;
12457 const struct dwp_hash_table *dwp_htab =
12458 is_debug_types ? dwp_file->tus : dwp_file->cus;
12459 bfd *dbfd = dwp_file->dbfd.get ();
12460 const char *kind = is_debug_types ? "TU" : "CU";
12461 struct dwo_file *dwo_file;
12462 struct dwo_unit *dwo_unit;
12463 struct virtual_v2_dwo_sections sections;
12464 void **dwo_file_slot;
12465 int i;
12466
12467 gdb_assert (dwp_file->version == 2);
12468
12469 if (dwarf_read_debug)
12470 {
12471 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12472 kind,
12473 pulongest (unit_index), hex_string (signature),
12474 dwp_file->name);
12475 }
12476
12477 /* Fetch the section offsets of this DWO unit. */
12478
12479 memset (&sections, 0, sizeof (sections));
12480
12481 for (i = 0; i < dwp_htab->nr_columns; ++i)
12482 {
12483 uint32_t offset = read_4_bytes (dbfd,
12484 dwp_htab->section_pool.v2.offsets
12485 + (((unit_index - 1) * dwp_htab->nr_columns
12486 + i)
12487 * sizeof (uint32_t)));
12488 uint32_t size = read_4_bytes (dbfd,
12489 dwp_htab->section_pool.v2.sizes
12490 + (((unit_index - 1) * dwp_htab->nr_columns
12491 + i)
12492 * sizeof (uint32_t)));
12493
12494 switch (dwp_htab->section_pool.v2.section_ids[i])
12495 {
12496 case DW_SECT_INFO:
12497 case DW_SECT_TYPES:
12498 sections.info_or_types_offset = offset;
12499 sections.info_or_types_size = size;
12500 break;
12501 case DW_SECT_ABBREV:
12502 sections.abbrev_offset = offset;
12503 sections.abbrev_size = size;
12504 break;
12505 case DW_SECT_LINE:
12506 sections.line_offset = offset;
12507 sections.line_size = size;
12508 break;
12509 case DW_SECT_LOC:
12510 sections.loc_offset = offset;
12511 sections.loc_size = size;
12512 break;
12513 case DW_SECT_STR_OFFSETS:
12514 sections.str_offsets_offset = offset;
12515 sections.str_offsets_size = size;
12516 break;
12517 case DW_SECT_MACINFO:
12518 sections.macinfo_offset = offset;
12519 sections.macinfo_size = size;
12520 break;
12521 case DW_SECT_MACRO:
12522 sections.macro_offset = offset;
12523 sections.macro_size = size;
12524 break;
12525 }
12526 }
12527
12528 /* It's easier for the rest of the code if we fake a struct dwo_file and
12529 have dwo_unit "live" in that. At least for now.
12530
12531 The DWP file can be made up of a random collection of CUs and TUs.
12532 However, for each CU + set of TUs that came from the same original DWO
12533 file, we can combine them back into a virtual DWO file to save space
12534 (fewer struct dwo_file objects to allocate). Remember that for really
12535 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12536
12537 std::string virtual_dwo_name =
12538 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12539 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12540 (long) (sections.line_size ? sections.line_offset : 0),
12541 (long) (sections.loc_size ? sections.loc_offset : 0),
12542 (long) (sections.str_offsets_size
12543 ? sections.str_offsets_offset : 0));
12544 /* Can we use an existing virtual DWO file? */
12545 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12546 virtual_dwo_name.c_str (),
12547 comp_dir);
12548 /* Create one if necessary. */
12549 if (*dwo_file_slot == NULL)
12550 {
12551 if (dwarf_read_debug)
12552 {
12553 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12554 virtual_dwo_name.c_str ());
12555 }
12556 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12557 dwo_file->dwo_name
12558 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12559 virtual_dwo_name.c_str (),
12560 virtual_dwo_name.size ());
12561 dwo_file->comp_dir = comp_dir;
12562 dwo_file->sections.abbrev =
12563 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12564 sections.abbrev_offset, sections.abbrev_size);
12565 dwo_file->sections.line =
12566 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12567 sections.line_offset, sections.line_size);
12568 dwo_file->sections.loc =
12569 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12570 sections.loc_offset, sections.loc_size);
12571 dwo_file->sections.macinfo =
12572 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12573 sections.macinfo_offset, sections.macinfo_size);
12574 dwo_file->sections.macro =
12575 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12576 sections.macro_offset, sections.macro_size);
12577 dwo_file->sections.str_offsets =
12578 create_dwp_v2_section (dwarf2_per_objfile,
12579 &dwp_file->sections.str_offsets,
12580 sections.str_offsets_offset,
12581 sections.str_offsets_size);
12582 /* The "str" section is global to the entire DWP file. */
12583 dwo_file->sections.str = dwp_file->sections.str;
12584 /* The info or types section is assigned below to dwo_unit,
12585 there's no need to record it in dwo_file.
12586 Also, we can't simply record type sections in dwo_file because
12587 we record a pointer into the vector in dwo_unit. As we collect more
12588 types we'll grow the vector and eventually have to reallocate space
12589 for it, invalidating all copies of pointers into the previous
12590 contents. */
12591 *dwo_file_slot = dwo_file;
12592 }
12593 else
12594 {
12595 if (dwarf_read_debug)
12596 {
12597 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12598 virtual_dwo_name.c_str ());
12599 }
12600 dwo_file = (struct dwo_file *) *dwo_file_slot;
12601 }
12602
12603 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12604 dwo_unit->dwo_file = dwo_file;
12605 dwo_unit->signature = signature;
12606 dwo_unit->section =
12607 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12608 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12609 is_debug_types
12610 ? &dwp_file->sections.types
12611 : &dwp_file->sections.info,
12612 sections.info_or_types_offset,
12613 sections.info_or_types_size);
12614 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12615
12616 return dwo_unit;
12617 }
12618
12619 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12620 Returns NULL if the signature isn't found. */
12621
12622 static struct dwo_unit *
12623 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12624 struct dwp_file *dwp_file, const char *comp_dir,
12625 ULONGEST signature, int is_debug_types)
12626 {
12627 const struct dwp_hash_table *dwp_htab =
12628 is_debug_types ? dwp_file->tus : dwp_file->cus;
12629 bfd *dbfd = dwp_file->dbfd.get ();
12630 uint32_t mask = dwp_htab->nr_slots - 1;
12631 uint32_t hash = signature & mask;
12632 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12633 unsigned int i;
12634 void **slot;
12635 struct dwo_unit find_dwo_cu;
12636
12637 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12638 find_dwo_cu.signature = signature;
12639 slot = htab_find_slot (is_debug_types
12640 ? dwp_file->loaded_tus
12641 : dwp_file->loaded_cus,
12642 &find_dwo_cu, INSERT);
12643
12644 if (*slot != NULL)
12645 return (struct dwo_unit *) *slot;
12646
12647 /* Use a for loop so that we don't loop forever on bad debug info. */
12648 for (i = 0; i < dwp_htab->nr_slots; ++i)
12649 {
12650 ULONGEST signature_in_table;
12651
12652 signature_in_table =
12653 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12654 if (signature_in_table == signature)
12655 {
12656 uint32_t unit_index =
12657 read_4_bytes (dbfd,
12658 dwp_htab->unit_table + hash * sizeof (uint32_t));
12659
12660 if (dwp_file->version == 1)
12661 {
12662 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12663 dwp_file, unit_index,
12664 comp_dir, signature,
12665 is_debug_types);
12666 }
12667 else
12668 {
12669 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12670 dwp_file, unit_index,
12671 comp_dir, signature,
12672 is_debug_types);
12673 }
12674 return (struct dwo_unit *) *slot;
12675 }
12676 if (signature_in_table == 0)
12677 return NULL;
12678 hash = (hash + hash2) & mask;
12679 }
12680
12681 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12682 " [in module %s]"),
12683 dwp_file->name);
12684 }
12685
12686 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12687 Open the file specified by FILE_NAME and hand it off to BFD for
12688 preliminary analysis. Return a newly initialized bfd *, which
12689 includes a canonicalized copy of FILE_NAME.
12690 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12691 SEARCH_CWD is true if the current directory is to be searched.
12692 It will be searched before debug-file-directory.
12693 If successful, the file is added to the bfd include table of the
12694 objfile's bfd (see gdb_bfd_record_inclusion).
12695 If unable to find/open the file, return NULL.
12696 NOTE: This function is derived from symfile_bfd_open. */
12697
12698 static gdb_bfd_ref_ptr
12699 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12700 const char *file_name, int is_dwp, int search_cwd)
12701 {
12702 int desc;
12703 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12704 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12705 to debug_file_directory. */
12706 const char *search_path;
12707 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12708
12709 gdb::unique_xmalloc_ptr<char> search_path_holder;
12710 if (search_cwd)
12711 {
12712 if (*debug_file_directory != '\0')
12713 {
12714 search_path_holder.reset (concat (".", dirname_separator_string,
12715 debug_file_directory,
12716 (char *) NULL));
12717 search_path = search_path_holder.get ();
12718 }
12719 else
12720 search_path = ".";
12721 }
12722 else
12723 search_path = debug_file_directory;
12724
12725 openp_flags flags = OPF_RETURN_REALPATH;
12726 if (is_dwp)
12727 flags |= OPF_SEARCH_IN_PATH;
12728
12729 gdb::unique_xmalloc_ptr<char> absolute_name;
12730 desc = openp (search_path, flags, file_name,
12731 O_RDONLY | O_BINARY, &absolute_name);
12732 if (desc < 0)
12733 return NULL;
12734
12735 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12736 gnutarget, desc));
12737 if (sym_bfd == NULL)
12738 return NULL;
12739 bfd_set_cacheable (sym_bfd.get (), 1);
12740
12741 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12742 return NULL;
12743
12744 /* Success. Record the bfd as having been included by the objfile's bfd.
12745 This is important because things like demangled_names_hash lives in the
12746 objfile's per_bfd space and may have references to things like symbol
12747 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12748 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12749
12750 return sym_bfd;
12751 }
12752
12753 /* Try to open DWO file FILE_NAME.
12754 COMP_DIR is the DW_AT_comp_dir attribute.
12755 The result is the bfd handle of the file.
12756 If there is a problem finding or opening the file, return NULL.
12757 Upon success, the canonicalized path of the file is stored in the bfd,
12758 same as symfile_bfd_open. */
12759
12760 static gdb_bfd_ref_ptr
12761 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12762 const char *file_name, const char *comp_dir)
12763 {
12764 if (IS_ABSOLUTE_PATH (file_name))
12765 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12766 0 /*is_dwp*/, 0 /*search_cwd*/);
12767
12768 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12769
12770 if (comp_dir != NULL)
12771 {
12772 char *path_to_try = concat (comp_dir, SLASH_STRING,
12773 file_name, (char *) NULL);
12774
12775 /* NOTE: If comp_dir is a relative path, this will also try the
12776 search path, which seems useful. */
12777 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12778 path_to_try,
12779 0 /*is_dwp*/,
12780 1 /*search_cwd*/));
12781 xfree (path_to_try);
12782 if (abfd != NULL)
12783 return abfd;
12784 }
12785
12786 /* That didn't work, try debug-file-directory, which, despite its name,
12787 is a list of paths. */
12788
12789 if (*debug_file_directory == '\0')
12790 return NULL;
12791
12792 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12793 0 /*is_dwp*/, 1 /*search_cwd*/);
12794 }
12795
12796 /* This function is mapped across the sections and remembers the offset and
12797 size of each of the DWO debugging sections we are interested in. */
12798
12799 static void
12800 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12801 {
12802 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12803 const struct dwop_section_names *names = &dwop_section_names;
12804
12805 if (section_is_p (sectp->name, &names->abbrev_dwo))
12806 {
12807 dwo_sections->abbrev.s.section = sectp;
12808 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12809 }
12810 else if (section_is_p (sectp->name, &names->info_dwo))
12811 {
12812 dwo_sections->info.s.section = sectp;
12813 dwo_sections->info.size = bfd_get_section_size (sectp);
12814 }
12815 else if (section_is_p (sectp->name, &names->line_dwo))
12816 {
12817 dwo_sections->line.s.section = sectp;
12818 dwo_sections->line.size = bfd_get_section_size (sectp);
12819 }
12820 else if (section_is_p (sectp->name, &names->loc_dwo))
12821 {
12822 dwo_sections->loc.s.section = sectp;
12823 dwo_sections->loc.size = bfd_get_section_size (sectp);
12824 }
12825 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12826 {
12827 dwo_sections->macinfo.s.section = sectp;
12828 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12829 }
12830 else if (section_is_p (sectp->name, &names->macro_dwo))
12831 {
12832 dwo_sections->macro.s.section = sectp;
12833 dwo_sections->macro.size = bfd_get_section_size (sectp);
12834 }
12835 else if (section_is_p (sectp->name, &names->str_dwo))
12836 {
12837 dwo_sections->str.s.section = sectp;
12838 dwo_sections->str.size = bfd_get_section_size (sectp);
12839 }
12840 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12841 {
12842 dwo_sections->str_offsets.s.section = sectp;
12843 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12844 }
12845 else if (section_is_p (sectp->name, &names->types_dwo))
12846 {
12847 struct dwarf2_section_info type_section;
12848
12849 memset (&type_section, 0, sizeof (type_section));
12850 type_section.s.section = sectp;
12851 type_section.size = bfd_get_section_size (sectp);
12852 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12853 &type_section);
12854 }
12855 }
12856
12857 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12858 by PER_CU. This is for the non-DWP case.
12859 The result is NULL if DWO_NAME can't be found. */
12860
12861 static struct dwo_file *
12862 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12863 const char *dwo_name, const char *comp_dir)
12864 {
12865 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12866 struct objfile *objfile = dwarf2_per_objfile->objfile;
12867
12868 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12869 if (dbfd == NULL)
12870 {
12871 if (dwarf_read_debug)
12872 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12873 return NULL;
12874 }
12875
12876 /* We use a unique pointer here, despite the obstack allocation,
12877 because a dwo_file needs some cleanup if it is abandoned. */
12878 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12879 struct dwo_file));
12880 dwo_file->dwo_name = dwo_name;
12881 dwo_file->comp_dir = comp_dir;
12882 dwo_file->dbfd = dbfd.release ();
12883
12884 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12885 &dwo_file->sections);
12886
12887 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12888 dwo_file->cus);
12889
12890 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12891 dwo_file->sections.types, dwo_file->tus);
12892
12893 if (dwarf_read_debug)
12894 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12895
12896 return dwo_file.release ();
12897 }
12898
12899 /* This function is mapped across the sections and remembers the offset and
12900 size of each of the DWP debugging sections common to version 1 and 2 that
12901 we are interested in. */
12902
12903 static void
12904 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12905 void *dwp_file_ptr)
12906 {
12907 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12908 const struct dwop_section_names *names = &dwop_section_names;
12909 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12910
12911 /* Record the ELF section number for later lookup: this is what the
12912 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12913 gdb_assert (elf_section_nr < dwp_file->num_sections);
12914 dwp_file->elf_sections[elf_section_nr] = sectp;
12915
12916 /* Look for specific sections that we need. */
12917 if (section_is_p (sectp->name, &names->str_dwo))
12918 {
12919 dwp_file->sections.str.s.section = sectp;
12920 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12921 }
12922 else if (section_is_p (sectp->name, &names->cu_index))
12923 {
12924 dwp_file->sections.cu_index.s.section = sectp;
12925 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12926 }
12927 else if (section_is_p (sectp->name, &names->tu_index))
12928 {
12929 dwp_file->sections.tu_index.s.section = sectp;
12930 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12931 }
12932 }
12933
12934 /* This function is mapped across the sections and remembers the offset and
12935 size of each of the DWP version 2 debugging sections that we are interested
12936 in. This is split into a separate function because we don't know if we
12937 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12938
12939 static void
12940 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12941 {
12942 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12943 const struct dwop_section_names *names = &dwop_section_names;
12944 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12945
12946 /* Record the ELF section number for later lookup: this is what the
12947 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12948 gdb_assert (elf_section_nr < dwp_file->num_sections);
12949 dwp_file->elf_sections[elf_section_nr] = sectp;
12950
12951 /* Look for specific sections that we need. */
12952 if (section_is_p (sectp->name, &names->abbrev_dwo))
12953 {
12954 dwp_file->sections.abbrev.s.section = sectp;
12955 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12956 }
12957 else if (section_is_p (sectp->name, &names->info_dwo))
12958 {
12959 dwp_file->sections.info.s.section = sectp;
12960 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12961 }
12962 else if (section_is_p (sectp->name, &names->line_dwo))
12963 {
12964 dwp_file->sections.line.s.section = sectp;
12965 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12966 }
12967 else if (section_is_p (sectp->name, &names->loc_dwo))
12968 {
12969 dwp_file->sections.loc.s.section = sectp;
12970 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12971 }
12972 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12973 {
12974 dwp_file->sections.macinfo.s.section = sectp;
12975 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12976 }
12977 else if (section_is_p (sectp->name, &names->macro_dwo))
12978 {
12979 dwp_file->sections.macro.s.section = sectp;
12980 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12981 }
12982 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12983 {
12984 dwp_file->sections.str_offsets.s.section = sectp;
12985 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12986 }
12987 else if (section_is_p (sectp->name, &names->types_dwo))
12988 {
12989 dwp_file->sections.types.s.section = sectp;
12990 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12991 }
12992 }
12993
12994 /* Hash function for dwp_file loaded CUs/TUs. */
12995
12996 static hashval_t
12997 hash_dwp_loaded_cutus (const void *item)
12998 {
12999 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13000
13001 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13002 return dwo_unit->signature;
13003 }
13004
13005 /* Equality function for dwp_file loaded CUs/TUs. */
13006
13007 static int
13008 eq_dwp_loaded_cutus (const void *a, const void *b)
13009 {
13010 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13011 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13012
13013 return dua->signature == dub->signature;
13014 }
13015
13016 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13017
13018 static htab_t
13019 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13020 {
13021 return htab_create_alloc_ex (3,
13022 hash_dwp_loaded_cutus,
13023 eq_dwp_loaded_cutus,
13024 NULL,
13025 &objfile->objfile_obstack,
13026 hashtab_obstack_allocate,
13027 dummy_obstack_deallocate);
13028 }
13029
13030 /* Try to open DWP file FILE_NAME.
13031 The result is the bfd handle of the file.
13032 If there is a problem finding or opening the file, return NULL.
13033 Upon success, the canonicalized path of the file is stored in the bfd,
13034 same as symfile_bfd_open. */
13035
13036 static gdb_bfd_ref_ptr
13037 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13038 const char *file_name)
13039 {
13040 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13041 1 /*is_dwp*/,
13042 1 /*search_cwd*/));
13043 if (abfd != NULL)
13044 return abfd;
13045
13046 /* Work around upstream bug 15652.
13047 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13048 [Whether that's a "bug" is debatable, but it is getting in our way.]
13049 We have no real idea where the dwp file is, because gdb's realpath-ing
13050 of the executable's path may have discarded the needed info.
13051 [IWBN if the dwp file name was recorded in the executable, akin to
13052 .gnu_debuglink, but that doesn't exist yet.]
13053 Strip the directory from FILE_NAME and search again. */
13054 if (*debug_file_directory != '\0')
13055 {
13056 /* Don't implicitly search the current directory here.
13057 If the user wants to search "." to handle this case,
13058 it must be added to debug-file-directory. */
13059 return try_open_dwop_file (dwarf2_per_objfile,
13060 lbasename (file_name), 1 /*is_dwp*/,
13061 0 /*search_cwd*/);
13062 }
13063
13064 return NULL;
13065 }
13066
13067 /* Initialize the use of the DWP file for the current objfile.
13068 By convention the name of the DWP file is ${objfile}.dwp.
13069 The result is NULL if it can't be found. */
13070
13071 static std::unique_ptr<struct dwp_file>
13072 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13073 {
13074 struct objfile *objfile = dwarf2_per_objfile->objfile;
13075
13076 /* Try to find first .dwp for the binary file before any symbolic links
13077 resolving. */
13078
13079 /* If the objfile is a debug file, find the name of the real binary
13080 file and get the name of dwp file from there. */
13081 std::string dwp_name;
13082 if (objfile->separate_debug_objfile_backlink != NULL)
13083 {
13084 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13085 const char *backlink_basename = lbasename (backlink->original_name);
13086
13087 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13088 }
13089 else
13090 dwp_name = objfile->original_name;
13091
13092 dwp_name += ".dwp";
13093
13094 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13095 if (dbfd == NULL
13096 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13097 {
13098 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13099 dwp_name = objfile_name (objfile);
13100 dwp_name += ".dwp";
13101 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13102 }
13103
13104 if (dbfd == NULL)
13105 {
13106 if (dwarf_read_debug)
13107 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13108 return std::unique_ptr<dwp_file> ();
13109 }
13110
13111 const char *name = bfd_get_filename (dbfd.get ());
13112 std::unique_ptr<struct dwp_file> dwp_file
13113 (new struct dwp_file (name, std::move (dbfd)));
13114
13115 /* +1: section 0 is unused */
13116 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13117 dwp_file->elf_sections =
13118 OBSTACK_CALLOC (&objfile->objfile_obstack,
13119 dwp_file->num_sections, asection *);
13120
13121 bfd_map_over_sections (dwp_file->dbfd.get (),
13122 dwarf2_locate_common_dwp_sections,
13123 dwp_file.get ());
13124
13125 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13126 0);
13127
13128 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13129 1);
13130
13131 /* The DWP file version is stored in the hash table. Oh well. */
13132 if (dwp_file->cus && dwp_file->tus
13133 && dwp_file->cus->version != dwp_file->tus->version)
13134 {
13135 /* Technically speaking, we should try to limp along, but this is
13136 pretty bizarre. We use pulongest here because that's the established
13137 portability solution (e.g, we cannot use %u for uint32_t). */
13138 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13139 " TU version %s [in DWP file %s]"),
13140 pulongest (dwp_file->cus->version),
13141 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13142 }
13143
13144 if (dwp_file->cus)
13145 dwp_file->version = dwp_file->cus->version;
13146 else if (dwp_file->tus)
13147 dwp_file->version = dwp_file->tus->version;
13148 else
13149 dwp_file->version = 2;
13150
13151 if (dwp_file->version == 2)
13152 bfd_map_over_sections (dwp_file->dbfd.get (),
13153 dwarf2_locate_v2_dwp_sections,
13154 dwp_file.get ());
13155
13156 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13157 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13158
13159 if (dwarf_read_debug)
13160 {
13161 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13162 fprintf_unfiltered (gdb_stdlog,
13163 " %s CUs, %s TUs\n",
13164 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13165 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13166 }
13167
13168 return dwp_file;
13169 }
13170
13171 /* Wrapper around open_and_init_dwp_file, only open it once. */
13172
13173 static struct dwp_file *
13174 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13175 {
13176 if (! dwarf2_per_objfile->dwp_checked)
13177 {
13178 dwarf2_per_objfile->dwp_file
13179 = open_and_init_dwp_file (dwarf2_per_objfile);
13180 dwarf2_per_objfile->dwp_checked = 1;
13181 }
13182 return dwarf2_per_objfile->dwp_file.get ();
13183 }
13184
13185 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13186 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13187 or in the DWP file for the objfile, referenced by THIS_UNIT.
13188 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13189 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13190
13191 This is called, for example, when wanting to read a variable with a
13192 complex location. Therefore we don't want to do file i/o for every call.
13193 Therefore we don't want to look for a DWO file on every call.
13194 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13195 then we check if we've already seen DWO_NAME, and only THEN do we check
13196 for a DWO file.
13197
13198 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13199 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13200
13201 static struct dwo_unit *
13202 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13203 const char *dwo_name, const char *comp_dir,
13204 ULONGEST signature, int is_debug_types)
13205 {
13206 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13207 struct objfile *objfile = dwarf2_per_objfile->objfile;
13208 const char *kind = is_debug_types ? "TU" : "CU";
13209 void **dwo_file_slot;
13210 struct dwo_file *dwo_file;
13211 struct dwp_file *dwp_file;
13212
13213 /* First see if there's a DWP file.
13214 If we have a DWP file but didn't find the DWO inside it, don't
13215 look for the original DWO file. It makes gdb behave differently
13216 depending on whether one is debugging in the build tree. */
13217
13218 dwp_file = get_dwp_file (dwarf2_per_objfile);
13219 if (dwp_file != NULL)
13220 {
13221 const struct dwp_hash_table *dwp_htab =
13222 is_debug_types ? dwp_file->tus : dwp_file->cus;
13223
13224 if (dwp_htab != NULL)
13225 {
13226 struct dwo_unit *dwo_cutu =
13227 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13228 signature, is_debug_types);
13229
13230 if (dwo_cutu != NULL)
13231 {
13232 if (dwarf_read_debug)
13233 {
13234 fprintf_unfiltered (gdb_stdlog,
13235 "Virtual DWO %s %s found: @%s\n",
13236 kind, hex_string (signature),
13237 host_address_to_string (dwo_cutu));
13238 }
13239 return dwo_cutu;
13240 }
13241 }
13242 }
13243 else
13244 {
13245 /* No DWP file, look for the DWO file. */
13246
13247 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13248 dwo_name, comp_dir);
13249 if (*dwo_file_slot == NULL)
13250 {
13251 /* Read in the file and build a table of the CUs/TUs it contains. */
13252 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13253 }
13254 /* NOTE: This will be NULL if unable to open the file. */
13255 dwo_file = (struct dwo_file *) *dwo_file_slot;
13256
13257 if (dwo_file != NULL)
13258 {
13259 struct dwo_unit *dwo_cutu = NULL;
13260
13261 if (is_debug_types && dwo_file->tus)
13262 {
13263 struct dwo_unit find_dwo_cutu;
13264
13265 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13266 find_dwo_cutu.signature = signature;
13267 dwo_cutu
13268 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13269 }
13270 else if (!is_debug_types && dwo_file->cus)
13271 {
13272 struct dwo_unit find_dwo_cutu;
13273
13274 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13275 find_dwo_cutu.signature = signature;
13276 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13277 &find_dwo_cutu);
13278 }
13279
13280 if (dwo_cutu != NULL)
13281 {
13282 if (dwarf_read_debug)
13283 {
13284 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13285 kind, dwo_name, hex_string (signature),
13286 host_address_to_string (dwo_cutu));
13287 }
13288 return dwo_cutu;
13289 }
13290 }
13291 }
13292
13293 /* We didn't find it. This could mean a dwo_id mismatch, or
13294 someone deleted the DWO/DWP file, or the search path isn't set up
13295 correctly to find the file. */
13296
13297 if (dwarf_read_debug)
13298 {
13299 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13300 kind, dwo_name, hex_string (signature));
13301 }
13302
13303 /* This is a warning and not a complaint because it can be caused by
13304 pilot error (e.g., user accidentally deleting the DWO). */
13305 {
13306 /* Print the name of the DWP file if we looked there, helps the user
13307 better diagnose the problem. */
13308 std::string dwp_text;
13309
13310 if (dwp_file != NULL)
13311 dwp_text = string_printf (" [in DWP file %s]",
13312 lbasename (dwp_file->name));
13313
13314 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13315 " [in module %s]"),
13316 kind, dwo_name, hex_string (signature),
13317 dwp_text.c_str (),
13318 this_unit->is_debug_types ? "TU" : "CU",
13319 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13320 }
13321 return NULL;
13322 }
13323
13324 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13325 See lookup_dwo_cutu_unit for details. */
13326
13327 static struct dwo_unit *
13328 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13329 const char *dwo_name, const char *comp_dir,
13330 ULONGEST signature)
13331 {
13332 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13333 }
13334
13335 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13336 See lookup_dwo_cutu_unit for details. */
13337
13338 static struct dwo_unit *
13339 lookup_dwo_type_unit (struct signatured_type *this_tu,
13340 const char *dwo_name, const char *comp_dir)
13341 {
13342 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13343 }
13344
13345 /* Traversal function for queue_and_load_all_dwo_tus. */
13346
13347 static int
13348 queue_and_load_dwo_tu (void **slot, void *info)
13349 {
13350 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13351 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13352 ULONGEST signature = dwo_unit->signature;
13353 struct signatured_type *sig_type =
13354 lookup_dwo_signatured_type (per_cu->cu, signature);
13355
13356 if (sig_type != NULL)
13357 {
13358 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13359
13360 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13361 a real dependency of PER_CU on SIG_TYPE. That is detected later
13362 while processing PER_CU. */
13363 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13364 load_full_type_unit (sig_cu);
13365 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13366 }
13367
13368 return 1;
13369 }
13370
13371 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13372 The DWO may have the only definition of the type, though it may not be
13373 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13374 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13375
13376 static void
13377 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13378 {
13379 struct dwo_unit *dwo_unit;
13380 struct dwo_file *dwo_file;
13381
13382 gdb_assert (!per_cu->is_debug_types);
13383 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13384 gdb_assert (per_cu->cu != NULL);
13385
13386 dwo_unit = per_cu->cu->dwo_unit;
13387 gdb_assert (dwo_unit != NULL);
13388
13389 dwo_file = dwo_unit->dwo_file;
13390 if (dwo_file->tus != NULL)
13391 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13392 }
13393
13394 /* Free all resources associated with DWO_FILE.
13395 Close the DWO file and munmap the sections. */
13396
13397 static void
13398 free_dwo_file (struct dwo_file *dwo_file)
13399 {
13400 /* Note: dbfd is NULL for virtual DWO files. */
13401 gdb_bfd_unref (dwo_file->dbfd);
13402
13403 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13404 }
13405
13406 /* Traversal function for free_dwo_files. */
13407
13408 static int
13409 free_dwo_file_from_slot (void **slot, void *info)
13410 {
13411 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13412
13413 free_dwo_file (dwo_file);
13414
13415 return 1;
13416 }
13417
13418 /* Free all resources associated with DWO_FILES. */
13419
13420 static void
13421 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13422 {
13423 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13424 }
13425 \f
13426 /* Read in various DIEs. */
13427
13428 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13429 Inherit only the children of the DW_AT_abstract_origin DIE not being
13430 already referenced by DW_AT_abstract_origin from the children of the
13431 current DIE. */
13432
13433 static void
13434 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13435 {
13436 struct die_info *child_die;
13437 sect_offset *offsetp;
13438 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13439 struct die_info *origin_die;
13440 /* Iterator of the ORIGIN_DIE children. */
13441 struct die_info *origin_child_die;
13442 struct attribute *attr;
13443 struct dwarf2_cu *origin_cu;
13444 struct pending **origin_previous_list_in_scope;
13445
13446 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13447 if (!attr)
13448 return;
13449
13450 /* Note that following die references may follow to a die in a
13451 different cu. */
13452
13453 origin_cu = cu;
13454 origin_die = follow_die_ref (die, attr, &origin_cu);
13455
13456 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13457 symbols in. */
13458 origin_previous_list_in_scope = origin_cu->list_in_scope;
13459 origin_cu->list_in_scope = cu->list_in_scope;
13460
13461 if (die->tag != origin_die->tag
13462 && !(die->tag == DW_TAG_inlined_subroutine
13463 && origin_die->tag == DW_TAG_subprogram))
13464 complaint (_("DIE %s and its abstract origin %s have different tags"),
13465 sect_offset_str (die->sect_off),
13466 sect_offset_str (origin_die->sect_off));
13467
13468 std::vector<sect_offset> offsets;
13469
13470 for (child_die = die->child;
13471 child_die && child_die->tag;
13472 child_die = sibling_die (child_die))
13473 {
13474 struct die_info *child_origin_die;
13475 struct dwarf2_cu *child_origin_cu;
13476
13477 /* We are trying to process concrete instance entries:
13478 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13479 it's not relevant to our analysis here. i.e. detecting DIEs that are
13480 present in the abstract instance but not referenced in the concrete
13481 one. */
13482 if (child_die->tag == DW_TAG_call_site
13483 || child_die->tag == DW_TAG_GNU_call_site)
13484 continue;
13485
13486 /* For each CHILD_DIE, find the corresponding child of
13487 ORIGIN_DIE. If there is more than one layer of
13488 DW_AT_abstract_origin, follow them all; there shouldn't be,
13489 but GCC versions at least through 4.4 generate this (GCC PR
13490 40573). */
13491 child_origin_die = child_die;
13492 child_origin_cu = cu;
13493 while (1)
13494 {
13495 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13496 child_origin_cu);
13497 if (attr == NULL)
13498 break;
13499 child_origin_die = follow_die_ref (child_origin_die, attr,
13500 &child_origin_cu);
13501 }
13502
13503 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13504 counterpart may exist. */
13505 if (child_origin_die != child_die)
13506 {
13507 if (child_die->tag != child_origin_die->tag
13508 && !(child_die->tag == DW_TAG_inlined_subroutine
13509 && child_origin_die->tag == DW_TAG_subprogram))
13510 complaint (_("Child DIE %s and its abstract origin %s have "
13511 "different tags"),
13512 sect_offset_str (child_die->sect_off),
13513 sect_offset_str (child_origin_die->sect_off));
13514 if (child_origin_die->parent != origin_die)
13515 complaint (_("Child DIE %s and its abstract origin %s have "
13516 "different parents"),
13517 sect_offset_str (child_die->sect_off),
13518 sect_offset_str (child_origin_die->sect_off));
13519 else
13520 offsets.push_back (child_origin_die->sect_off);
13521 }
13522 }
13523 std::sort (offsets.begin (), offsets.end ());
13524 sect_offset *offsets_end = offsets.data () + offsets.size ();
13525 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13526 if (offsetp[-1] == *offsetp)
13527 complaint (_("Multiple children of DIE %s refer "
13528 "to DIE %s as their abstract origin"),
13529 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13530
13531 offsetp = offsets.data ();
13532 origin_child_die = origin_die->child;
13533 while (origin_child_die && origin_child_die->tag)
13534 {
13535 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13536 while (offsetp < offsets_end
13537 && *offsetp < origin_child_die->sect_off)
13538 offsetp++;
13539 if (offsetp >= offsets_end
13540 || *offsetp > origin_child_die->sect_off)
13541 {
13542 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13543 Check whether we're already processing ORIGIN_CHILD_DIE.
13544 This can happen with mutually referenced abstract_origins.
13545 PR 16581. */
13546 if (!origin_child_die->in_process)
13547 process_die (origin_child_die, origin_cu);
13548 }
13549 origin_child_die = sibling_die (origin_child_die);
13550 }
13551 origin_cu->list_in_scope = origin_previous_list_in_scope;
13552 }
13553
13554 static void
13555 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13556 {
13557 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13558 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13559 struct context_stack *newobj;
13560 CORE_ADDR lowpc;
13561 CORE_ADDR highpc;
13562 struct die_info *child_die;
13563 struct attribute *attr, *call_line, *call_file;
13564 const char *name;
13565 CORE_ADDR baseaddr;
13566 struct block *block;
13567 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13568 std::vector<struct symbol *> template_args;
13569 struct template_symbol *templ_func = NULL;
13570
13571 if (inlined_func)
13572 {
13573 /* If we do not have call site information, we can't show the
13574 caller of this inlined function. That's too confusing, so
13575 only use the scope for local variables. */
13576 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13577 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13578 if (call_line == NULL || call_file == NULL)
13579 {
13580 read_lexical_block_scope (die, cu);
13581 return;
13582 }
13583 }
13584
13585 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13586
13587 name = dwarf2_name (die, cu);
13588
13589 /* Ignore functions with missing or empty names. These are actually
13590 illegal according to the DWARF standard. */
13591 if (name == NULL)
13592 {
13593 complaint (_("missing name for subprogram DIE at %s"),
13594 sect_offset_str (die->sect_off));
13595 return;
13596 }
13597
13598 /* Ignore functions with missing or invalid low and high pc attributes. */
13599 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13600 <= PC_BOUNDS_INVALID)
13601 {
13602 attr = dwarf2_attr (die, DW_AT_external, cu);
13603 if (!attr || !DW_UNSND (attr))
13604 complaint (_("cannot get low and high bounds "
13605 "for subprogram DIE at %s"),
13606 sect_offset_str (die->sect_off));
13607 return;
13608 }
13609
13610 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13611 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13612
13613 /* If we have any template arguments, then we must allocate a
13614 different sort of symbol. */
13615 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13616 {
13617 if (child_die->tag == DW_TAG_template_type_param
13618 || child_die->tag == DW_TAG_template_value_param)
13619 {
13620 templ_func = allocate_template_symbol (objfile);
13621 templ_func->subclass = SYMBOL_TEMPLATE;
13622 break;
13623 }
13624 }
13625
13626 newobj = push_context (0, lowpc);
13627 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13628 (struct symbol *) templ_func);
13629
13630 /* If there is a location expression for DW_AT_frame_base, record
13631 it. */
13632 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13633 if (attr)
13634 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13635
13636 /* If there is a location for the static link, record it. */
13637 newobj->static_link = NULL;
13638 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13639 if (attr)
13640 {
13641 newobj->static_link
13642 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13643 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13644 }
13645
13646 cu->list_in_scope = &local_symbols;
13647
13648 if (die->child != NULL)
13649 {
13650 child_die = die->child;
13651 while (child_die && child_die->tag)
13652 {
13653 if (child_die->tag == DW_TAG_template_type_param
13654 || child_die->tag == DW_TAG_template_value_param)
13655 {
13656 struct symbol *arg = new_symbol (child_die, NULL, cu);
13657
13658 if (arg != NULL)
13659 template_args.push_back (arg);
13660 }
13661 else
13662 process_die (child_die, cu);
13663 child_die = sibling_die (child_die);
13664 }
13665 }
13666
13667 inherit_abstract_dies (die, cu);
13668
13669 /* If we have a DW_AT_specification, we might need to import using
13670 directives from the context of the specification DIE. See the
13671 comment in determine_prefix. */
13672 if (cu->language == language_cplus
13673 && dwarf2_attr (die, DW_AT_specification, cu))
13674 {
13675 struct dwarf2_cu *spec_cu = cu;
13676 struct die_info *spec_die = die_specification (die, &spec_cu);
13677
13678 while (spec_die)
13679 {
13680 child_die = spec_die->child;
13681 while (child_die && child_die->tag)
13682 {
13683 if (child_die->tag == DW_TAG_imported_module)
13684 process_die (child_die, spec_cu);
13685 child_die = sibling_die (child_die);
13686 }
13687
13688 /* In some cases, GCC generates specification DIEs that
13689 themselves contain DW_AT_specification attributes. */
13690 spec_die = die_specification (spec_die, &spec_cu);
13691 }
13692 }
13693
13694 newobj = pop_context ();
13695 /* Make a block for the local symbols within. */
13696 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13697 newobj->static_link, lowpc, highpc);
13698
13699 /* For C++, set the block's scope. */
13700 if ((cu->language == language_cplus
13701 || cu->language == language_fortran
13702 || cu->language == language_d
13703 || cu->language == language_rust)
13704 && cu->processing_has_namespace_info)
13705 block_set_scope (block, determine_prefix (die, cu),
13706 &objfile->objfile_obstack);
13707
13708 /* If we have address ranges, record them. */
13709 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13710
13711 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13712
13713 /* Attach template arguments to function. */
13714 if (!template_args.empty ())
13715 {
13716 gdb_assert (templ_func != NULL);
13717
13718 templ_func->n_template_arguments = template_args.size ();
13719 templ_func->template_arguments
13720 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13721 templ_func->n_template_arguments);
13722 memcpy (templ_func->template_arguments,
13723 template_args.data (),
13724 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13725 }
13726
13727 /* In C++, we can have functions nested inside functions (e.g., when
13728 a function declares a class that has methods). This means that
13729 when we finish processing a function scope, we may need to go
13730 back to building a containing block's symbol lists. */
13731 local_symbols = newobj->locals;
13732 local_using_directives = newobj->local_using_directives;
13733
13734 /* If we've finished processing a top-level function, subsequent
13735 symbols go in the file symbol list. */
13736 if (outermost_context_p ())
13737 cu->list_in_scope = &file_symbols;
13738 }
13739
13740 /* Process all the DIES contained within a lexical block scope. Start
13741 a new scope, process the dies, and then close the scope. */
13742
13743 static void
13744 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13745 {
13746 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13747 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13748 struct context_stack *newobj;
13749 CORE_ADDR lowpc, highpc;
13750 struct die_info *child_die;
13751 CORE_ADDR baseaddr;
13752
13753 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13754
13755 /* Ignore blocks with missing or invalid low and high pc attributes. */
13756 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13757 as multiple lexical blocks? Handling children in a sane way would
13758 be nasty. Might be easier to properly extend generic blocks to
13759 describe ranges. */
13760 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13761 {
13762 case PC_BOUNDS_NOT_PRESENT:
13763 /* DW_TAG_lexical_block has no attributes, process its children as if
13764 there was no wrapping by that DW_TAG_lexical_block.
13765 GCC does no longer produces such DWARF since GCC r224161. */
13766 for (child_die = die->child;
13767 child_die != NULL && child_die->tag;
13768 child_die = sibling_die (child_die))
13769 process_die (child_die, cu);
13770 return;
13771 case PC_BOUNDS_INVALID:
13772 return;
13773 }
13774 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13775 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13776
13777 push_context (0, lowpc);
13778 if (die->child != NULL)
13779 {
13780 child_die = die->child;
13781 while (child_die && child_die->tag)
13782 {
13783 process_die (child_die, cu);
13784 child_die = sibling_die (child_die);
13785 }
13786 }
13787 inherit_abstract_dies (die, cu);
13788 newobj = pop_context ();
13789
13790 if (local_symbols != NULL || local_using_directives != NULL)
13791 {
13792 struct block *block
13793 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13794 newobj->start_addr, highpc);
13795
13796 /* Note that recording ranges after traversing children, as we
13797 do here, means that recording a parent's ranges entails
13798 walking across all its children's ranges as they appear in
13799 the address map, which is quadratic behavior.
13800
13801 It would be nicer to record the parent's ranges before
13802 traversing its children, simply overriding whatever you find
13803 there. But since we don't even decide whether to create a
13804 block until after we've traversed its children, that's hard
13805 to do. */
13806 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13807 }
13808 local_symbols = newobj->locals;
13809 local_using_directives = newobj->local_using_directives;
13810 }
13811
13812 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13813
13814 static void
13815 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13816 {
13817 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13818 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13819 CORE_ADDR pc, baseaddr;
13820 struct attribute *attr;
13821 struct call_site *call_site, call_site_local;
13822 void **slot;
13823 int nparams;
13824 struct die_info *child_die;
13825
13826 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13827
13828 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13829 if (attr == NULL)
13830 {
13831 /* This was a pre-DWARF-5 GNU extension alias
13832 for DW_AT_call_return_pc. */
13833 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13834 }
13835 if (!attr)
13836 {
13837 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13838 "DIE %s [in module %s]"),
13839 sect_offset_str (die->sect_off), objfile_name (objfile));
13840 return;
13841 }
13842 pc = attr_value_as_address (attr) + baseaddr;
13843 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13844
13845 if (cu->call_site_htab == NULL)
13846 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13847 NULL, &objfile->objfile_obstack,
13848 hashtab_obstack_allocate, NULL);
13849 call_site_local.pc = pc;
13850 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13851 if (*slot != NULL)
13852 {
13853 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13854 "DIE %s [in module %s]"),
13855 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13856 objfile_name (objfile));
13857 return;
13858 }
13859
13860 /* Count parameters at the caller. */
13861
13862 nparams = 0;
13863 for (child_die = die->child; child_die && child_die->tag;
13864 child_die = sibling_die (child_die))
13865 {
13866 if (child_die->tag != DW_TAG_call_site_parameter
13867 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13868 {
13869 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13870 "DW_TAG_call_site child DIE %s [in module %s]"),
13871 child_die->tag, sect_offset_str (child_die->sect_off),
13872 objfile_name (objfile));
13873 continue;
13874 }
13875
13876 nparams++;
13877 }
13878
13879 call_site
13880 = ((struct call_site *)
13881 obstack_alloc (&objfile->objfile_obstack,
13882 sizeof (*call_site)
13883 + (sizeof (*call_site->parameter) * (nparams - 1))));
13884 *slot = call_site;
13885 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13886 call_site->pc = pc;
13887
13888 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13889 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13890 {
13891 struct die_info *func_die;
13892
13893 /* Skip also over DW_TAG_inlined_subroutine. */
13894 for (func_die = die->parent;
13895 func_die && func_die->tag != DW_TAG_subprogram
13896 && func_die->tag != DW_TAG_subroutine_type;
13897 func_die = func_die->parent);
13898
13899 /* DW_AT_call_all_calls is a superset
13900 of DW_AT_call_all_tail_calls. */
13901 if (func_die
13902 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13903 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13904 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13905 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13906 {
13907 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13908 not complete. But keep CALL_SITE for look ups via call_site_htab,
13909 both the initial caller containing the real return address PC and
13910 the final callee containing the current PC of a chain of tail
13911 calls do not need to have the tail call list complete. But any
13912 function candidate for a virtual tail call frame searched via
13913 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13914 determined unambiguously. */
13915 }
13916 else
13917 {
13918 struct type *func_type = NULL;
13919
13920 if (func_die)
13921 func_type = get_die_type (func_die, cu);
13922 if (func_type != NULL)
13923 {
13924 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13925
13926 /* Enlist this call site to the function. */
13927 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13928 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13929 }
13930 else
13931 complaint (_("Cannot find function owning DW_TAG_call_site "
13932 "DIE %s [in module %s]"),
13933 sect_offset_str (die->sect_off), objfile_name (objfile));
13934 }
13935 }
13936
13937 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13938 if (attr == NULL)
13939 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13940 if (attr == NULL)
13941 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13942 if (attr == NULL)
13943 {
13944 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13945 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13946 }
13947 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13948 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13949 /* Keep NULL DWARF_BLOCK. */;
13950 else if (attr_form_is_block (attr))
13951 {
13952 struct dwarf2_locexpr_baton *dlbaton;
13953
13954 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13955 dlbaton->data = DW_BLOCK (attr)->data;
13956 dlbaton->size = DW_BLOCK (attr)->size;
13957 dlbaton->per_cu = cu->per_cu;
13958
13959 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13960 }
13961 else if (attr_form_is_ref (attr))
13962 {
13963 struct dwarf2_cu *target_cu = cu;
13964 struct die_info *target_die;
13965
13966 target_die = follow_die_ref (die, attr, &target_cu);
13967 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13968 if (die_is_declaration (target_die, target_cu))
13969 {
13970 const char *target_physname;
13971
13972 /* Prefer the mangled name; otherwise compute the demangled one. */
13973 target_physname = dw2_linkage_name (target_die, target_cu);
13974 if (target_physname == NULL)
13975 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13976 if (target_physname == NULL)
13977 complaint (_("DW_AT_call_target target DIE has invalid "
13978 "physname, for referencing DIE %s [in module %s]"),
13979 sect_offset_str (die->sect_off), objfile_name (objfile));
13980 else
13981 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13982 }
13983 else
13984 {
13985 CORE_ADDR lowpc;
13986
13987 /* DW_AT_entry_pc should be preferred. */
13988 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13989 <= PC_BOUNDS_INVALID)
13990 complaint (_("DW_AT_call_target target DIE has invalid "
13991 "low pc, for referencing DIE %s [in module %s]"),
13992 sect_offset_str (die->sect_off), objfile_name (objfile));
13993 else
13994 {
13995 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13996 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13997 }
13998 }
13999 }
14000 else
14001 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14002 "block nor reference, for DIE %s [in module %s]"),
14003 sect_offset_str (die->sect_off), objfile_name (objfile));
14004
14005 call_site->per_cu = cu->per_cu;
14006
14007 for (child_die = die->child;
14008 child_die && child_die->tag;
14009 child_die = sibling_die (child_die))
14010 {
14011 struct call_site_parameter *parameter;
14012 struct attribute *loc, *origin;
14013
14014 if (child_die->tag != DW_TAG_call_site_parameter
14015 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14016 {
14017 /* Already printed the complaint above. */
14018 continue;
14019 }
14020
14021 gdb_assert (call_site->parameter_count < nparams);
14022 parameter = &call_site->parameter[call_site->parameter_count];
14023
14024 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14025 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14026 register is contained in DW_AT_call_value. */
14027
14028 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14029 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14030 if (origin == NULL)
14031 {
14032 /* This was a pre-DWARF-5 GNU extension alias
14033 for DW_AT_call_parameter. */
14034 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14035 }
14036 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14037 {
14038 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14039
14040 sect_offset sect_off
14041 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14042 if (!offset_in_cu_p (&cu->header, sect_off))
14043 {
14044 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14045 binding can be done only inside one CU. Such referenced DIE
14046 therefore cannot be even moved to DW_TAG_partial_unit. */
14047 complaint (_("DW_AT_call_parameter offset is not in CU for "
14048 "DW_TAG_call_site child DIE %s [in module %s]"),
14049 sect_offset_str (child_die->sect_off),
14050 objfile_name (objfile));
14051 continue;
14052 }
14053 parameter->u.param_cu_off
14054 = (cu_offset) (sect_off - cu->header.sect_off);
14055 }
14056 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14057 {
14058 complaint (_("No DW_FORM_block* DW_AT_location for "
14059 "DW_TAG_call_site child DIE %s [in module %s]"),
14060 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14061 continue;
14062 }
14063 else
14064 {
14065 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14066 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14067 if (parameter->u.dwarf_reg != -1)
14068 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14069 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14070 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14071 &parameter->u.fb_offset))
14072 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14073 else
14074 {
14075 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14076 "for DW_FORM_block* DW_AT_location is supported for "
14077 "DW_TAG_call_site child DIE %s "
14078 "[in module %s]"),
14079 sect_offset_str (child_die->sect_off),
14080 objfile_name (objfile));
14081 continue;
14082 }
14083 }
14084
14085 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14086 if (attr == NULL)
14087 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14088 if (!attr_form_is_block (attr))
14089 {
14090 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14091 "DW_TAG_call_site child DIE %s [in module %s]"),
14092 sect_offset_str (child_die->sect_off),
14093 objfile_name (objfile));
14094 continue;
14095 }
14096 parameter->value = DW_BLOCK (attr)->data;
14097 parameter->value_size = DW_BLOCK (attr)->size;
14098
14099 /* Parameters are not pre-cleared by memset above. */
14100 parameter->data_value = NULL;
14101 parameter->data_value_size = 0;
14102 call_site->parameter_count++;
14103
14104 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14105 if (attr == NULL)
14106 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14107 if (attr)
14108 {
14109 if (!attr_form_is_block (attr))
14110 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14111 "DW_TAG_call_site child DIE %s [in module %s]"),
14112 sect_offset_str (child_die->sect_off),
14113 objfile_name (objfile));
14114 else
14115 {
14116 parameter->data_value = DW_BLOCK (attr)->data;
14117 parameter->data_value_size = DW_BLOCK (attr)->size;
14118 }
14119 }
14120 }
14121 }
14122
14123 /* Helper function for read_variable. If DIE represents a virtual
14124 table, then return the type of the concrete object that is
14125 associated with the virtual table. Otherwise, return NULL. */
14126
14127 static struct type *
14128 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14129 {
14130 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14131 if (attr == NULL)
14132 return NULL;
14133
14134 /* Find the type DIE. */
14135 struct die_info *type_die = NULL;
14136 struct dwarf2_cu *type_cu = cu;
14137
14138 if (attr_form_is_ref (attr))
14139 type_die = follow_die_ref (die, attr, &type_cu);
14140 if (type_die == NULL)
14141 return NULL;
14142
14143 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14144 return NULL;
14145 return die_containing_type (type_die, type_cu);
14146 }
14147
14148 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14149
14150 static void
14151 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14152 {
14153 struct rust_vtable_symbol *storage = NULL;
14154
14155 if (cu->language == language_rust)
14156 {
14157 struct type *containing_type = rust_containing_type (die, cu);
14158
14159 if (containing_type != NULL)
14160 {
14161 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14162
14163 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14164 struct rust_vtable_symbol);
14165 initialize_objfile_symbol (storage);
14166 storage->concrete_type = containing_type;
14167 storage->subclass = SYMBOL_RUST_VTABLE;
14168 }
14169 }
14170
14171 new_symbol (die, NULL, cu, storage);
14172 }
14173
14174 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14175 reading .debug_rnglists.
14176 Callback's type should be:
14177 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14178 Return true if the attributes are present and valid, otherwise,
14179 return false. */
14180
14181 template <typename Callback>
14182 static bool
14183 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14184 Callback &&callback)
14185 {
14186 struct dwarf2_per_objfile *dwarf2_per_objfile
14187 = cu->per_cu->dwarf2_per_objfile;
14188 struct objfile *objfile = dwarf2_per_objfile->objfile;
14189 bfd *obfd = objfile->obfd;
14190 /* Base address selection entry. */
14191 CORE_ADDR base;
14192 int found_base;
14193 const gdb_byte *buffer;
14194 CORE_ADDR baseaddr;
14195 bool overflow = false;
14196
14197 found_base = cu->base_known;
14198 base = cu->base_address;
14199
14200 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14201 if (offset >= dwarf2_per_objfile->rnglists.size)
14202 {
14203 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14204 offset);
14205 return false;
14206 }
14207 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14208
14209 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14210
14211 while (1)
14212 {
14213 /* Initialize it due to a false compiler warning. */
14214 CORE_ADDR range_beginning = 0, range_end = 0;
14215 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14216 + dwarf2_per_objfile->rnglists.size);
14217 unsigned int bytes_read;
14218
14219 if (buffer == buf_end)
14220 {
14221 overflow = true;
14222 break;
14223 }
14224 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14225 switch (rlet)
14226 {
14227 case DW_RLE_end_of_list:
14228 break;
14229 case DW_RLE_base_address:
14230 if (buffer + cu->header.addr_size > buf_end)
14231 {
14232 overflow = true;
14233 break;
14234 }
14235 base = read_address (obfd, buffer, cu, &bytes_read);
14236 found_base = 1;
14237 buffer += bytes_read;
14238 break;
14239 case DW_RLE_start_length:
14240 if (buffer + cu->header.addr_size > buf_end)
14241 {
14242 overflow = true;
14243 break;
14244 }
14245 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14246 buffer += bytes_read;
14247 range_end = (range_beginning
14248 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14249 buffer += bytes_read;
14250 if (buffer > buf_end)
14251 {
14252 overflow = true;
14253 break;
14254 }
14255 break;
14256 case DW_RLE_offset_pair:
14257 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14258 buffer += bytes_read;
14259 if (buffer > buf_end)
14260 {
14261 overflow = true;
14262 break;
14263 }
14264 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14265 buffer += bytes_read;
14266 if (buffer > buf_end)
14267 {
14268 overflow = true;
14269 break;
14270 }
14271 break;
14272 case DW_RLE_start_end:
14273 if (buffer + 2 * cu->header.addr_size > buf_end)
14274 {
14275 overflow = true;
14276 break;
14277 }
14278 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14279 buffer += bytes_read;
14280 range_end = read_address (obfd, buffer, cu, &bytes_read);
14281 buffer += bytes_read;
14282 break;
14283 default:
14284 complaint (_("Invalid .debug_rnglists data (no base address)"));
14285 return false;
14286 }
14287 if (rlet == DW_RLE_end_of_list || overflow)
14288 break;
14289 if (rlet == DW_RLE_base_address)
14290 continue;
14291
14292 if (!found_base)
14293 {
14294 /* We have no valid base address for the ranges
14295 data. */
14296 complaint (_("Invalid .debug_rnglists data (no base address)"));
14297 return false;
14298 }
14299
14300 if (range_beginning > range_end)
14301 {
14302 /* Inverted range entries are invalid. */
14303 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14304 return false;
14305 }
14306
14307 /* Empty range entries have no effect. */
14308 if (range_beginning == range_end)
14309 continue;
14310
14311 range_beginning += base;
14312 range_end += base;
14313
14314 /* A not-uncommon case of bad debug info.
14315 Don't pollute the addrmap with bad data. */
14316 if (range_beginning + baseaddr == 0
14317 && !dwarf2_per_objfile->has_section_at_zero)
14318 {
14319 complaint (_(".debug_rnglists entry has start address of zero"
14320 " [in module %s]"), objfile_name (objfile));
14321 continue;
14322 }
14323
14324 callback (range_beginning, range_end);
14325 }
14326
14327 if (overflow)
14328 {
14329 complaint (_("Offset %d is not terminated "
14330 "for DW_AT_ranges attribute"),
14331 offset);
14332 return false;
14333 }
14334
14335 return true;
14336 }
14337
14338 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14339 Callback's type should be:
14340 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14341 Return 1 if the attributes are present and valid, otherwise, return 0. */
14342
14343 template <typename Callback>
14344 static int
14345 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14346 Callback &&callback)
14347 {
14348 struct dwarf2_per_objfile *dwarf2_per_objfile
14349 = cu->per_cu->dwarf2_per_objfile;
14350 struct objfile *objfile = dwarf2_per_objfile->objfile;
14351 struct comp_unit_head *cu_header = &cu->header;
14352 bfd *obfd = objfile->obfd;
14353 unsigned int addr_size = cu_header->addr_size;
14354 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14355 /* Base address selection entry. */
14356 CORE_ADDR base;
14357 int found_base;
14358 unsigned int dummy;
14359 const gdb_byte *buffer;
14360 CORE_ADDR baseaddr;
14361
14362 if (cu_header->version >= 5)
14363 return dwarf2_rnglists_process (offset, cu, callback);
14364
14365 found_base = cu->base_known;
14366 base = cu->base_address;
14367
14368 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14369 if (offset >= dwarf2_per_objfile->ranges.size)
14370 {
14371 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14372 offset);
14373 return 0;
14374 }
14375 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14376
14377 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14378
14379 while (1)
14380 {
14381 CORE_ADDR range_beginning, range_end;
14382
14383 range_beginning = read_address (obfd, buffer, cu, &dummy);
14384 buffer += addr_size;
14385 range_end = read_address (obfd, buffer, cu, &dummy);
14386 buffer += addr_size;
14387 offset += 2 * addr_size;
14388
14389 /* An end of list marker is a pair of zero addresses. */
14390 if (range_beginning == 0 && range_end == 0)
14391 /* Found the end of list entry. */
14392 break;
14393
14394 /* Each base address selection entry is a pair of 2 values.
14395 The first is the largest possible address, the second is
14396 the base address. Check for a base address here. */
14397 if ((range_beginning & mask) == mask)
14398 {
14399 /* If we found the largest possible address, then we already
14400 have the base address in range_end. */
14401 base = range_end;
14402 found_base = 1;
14403 continue;
14404 }
14405
14406 if (!found_base)
14407 {
14408 /* We have no valid base address for the ranges
14409 data. */
14410 complaint (_("Invalid .debug_ranges data (no base address)"));
14411 return 0;
14412 }
14413
14414 if (range_beginning > range_end)
14415 {
14416 /* Inverted range entries are invalid. */
14417 complaint (_("Invalid .debug_ranges data (inverted range)"));
14418 return 0;
14419 }
14420
14421 /* Empty range entries have no effect. */
14422 if (range_beginning == range_end)
14423 continue;
14424
14425 range_beginning += base;
14426 range_end += base;
14427
14428 /* A not-uncommon case of bad debug info.
14429 Don't pollute the addrmap with bad data. */
14430 if (range_beginning + baseaddr == 0
14431 && !dwarf2_per_objfile->has_section_at_zero)
14432 {
14433 complaint (_(".debug_ranges entry has start address of zero"
14434 " [in module %s]"), objfile_name (objfile));
14435 continue;
14436 }
14437
14438 callback (range_beginning, range_end);
14439 }
14440
14441 return 1;
14442 }
14443
14444 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14445 Return 1 if the attributes are present and valid, otherwise, return 0.
14446 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14447
14448 static int
14449 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14450 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14451 struct partial_symtab *ranges_pst)
14452 {
14453 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14454 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14455 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14456 SECT_OFF_TEXT (objfile));
14457 int low_set = 0;
14458 CORE_ADDR low = 0;
14459 CORE_ADDR high = 0;
14460 int retval;
14461
14462 retval = dwarf2_ranges_process (offset, cu,
14463 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14464 {
14465 if (ranges_pst != NULL)
14466 {
14467 CORE_ADDR lowpc;
14468 CORE_ADDR highpc;
14469
14470 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14471 range_beginning + baseaddr);
14472 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14473 range_end + baseaddr);
14474 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14475 ranges_pst);
14476 }
14477
14478 /* FIXME: This is recording everything as a low-high
14479 segment of consecutive addresses. We should have a
14480 data structure for discontiguous block ranges
14481 instead. */
14482 if (! low_set)
14483 {
14484 low = range_beginning;
14485 high = range_end;
14486 low_set = 1;
14487 }
14488 else
14489 {
14490 if (range_beginning < low)
14491 low = range_beginning;
14492 if (range_end > high)
14493 high = range_end;
14494 }
14495 });
14496 if (!retval)
14497 return 0;
14498
14499 if (! low_set)
14500 /* If the first entry is an end-of-list marker, the range
14501 describes an empty scope, i.e. no instructions. */
14502 return 0;
14503
14504 if (low_return)
14505 *low_return = low;
14506 if (high_return)
14507 *high_return = high;
14508 return 1;
14509 }
14510
14511 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14512 definition for the return value. *LOWPC and *HIGHPC are set iff
14513 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14514
14515 static enum pc_bounds_kind
14516 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14517 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14518 struct partial_symtab *pst)
14519 {
14520 struct dwarf2_per_objfile *dwarf2_per_objfile
14521 = cu->per_cu->dwarf2_per_objfile;
14522 struct attribute *attr;
14523 struct attribute *attr_high;
14524 CORE_ADDR low = 0;
14525 CORE_ADDR high = 0;
14526 enum pc_bounds_kind ret;
14527
14528 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14529 if (attr_high)
14530 {
14531 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14532 if (attr)
14533 {
14534 low = attr_value_as_address (attr);
14535 high = attr_value_as_address (attr_high);
14536 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14537 high += low;
14538 }
14539 else
14540 /* Found high w/o low attribute. */
14541 return PC_BOUNDS_INVALID;
14542
14543 /* Found consecutive range of addresses. */
14544 ret = PC_BOUNDS_HIGH_LOW;
14545 }
14546 else
14547 {
14548 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14549 if (attr != NULL)
14550 {
14551 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14552 We take advantage of the fact that DW_AT_ranges does not appear
14553 in DW_TAG_compile_unit of DWO files. */
14554 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14555 unsigned int ranges_offset = (DW_UNSND (attr)
14556 + (need_ranges_base
14557 ? cu->ranges_base
14558 : 0));
14559
14560 /* Value of the DW_AT_ranges attribute is the offset in the
14561 .debug_ranges section. */
14562 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14563 return PC_BOUNDS_INVALID;
14564 /* Found discontinuous range of addresses. */
14565 ret = PC_BOUNDS_RANGES;
14566 }
14567 else
14568 return PC_BOUNDS_NOT_PRESENT;
14569 }
14570
14571 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14572 if (high <= low)
14573 return PC_BOUNDS_INVALID;
14574
14575 /* When using the GNU linker, .gnu.linkonce. sections are used to
14576 eliminate duplicate copies of functions and vtables and such.
14577 The linker will arbitrarily choose one and discard the others.
14578 The AT_*_pc values for such functions refer to local labels in
14579 these sections. If the section from that file was discarded, the
14580 labels are not in the output, so the relocs get a value of 0.
14581 If this is a discarded function, mark the pc bounds as invalid,
14582 so that GDB will ignore it. */
14583 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14584 return PC_BOUNDS_INVALID;
14585
14586 *lowpc = low;
14587 if (highpc)
14588 *highpc = high;
14589 return ret;
14590 }
14591
14592 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14593 its low and high PC addresses. Do nothing if these addresses could not
14594 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14595 and HIGHPC to the high address if greater than HIGHPC. */
14596
14597 static void
14598 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14599 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14600 struct dwarf2_cu *cu)
14601 {
14602 CORE_ADDR low, high;
14603 struct die_info *child = die->child;
14604
14605 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14606 {
14607 *lowpc = std::min (*lowpc, low);
14608 *highpc = std::max (*highpc, high);
14609 }
14610
14611 /* If the language does not allow nested subprograms (either inside
14612 subprograms or lexical blocks), we're done. */
14613 if (cu->language != language_ada)
14614 return;
14615
14616 /* Check all the children of the given DIE. If it contains nested
14617 subprograms, then check their pc bounds. Likewise, we need to
14618 check lexical blocks as well, as they may also contain subprogram
14619 definitions. */
14620 while (child && child->tag)
14621 {
14622 if (child->tag == DW_TAG_subprogram
14623 || child->tag == DW_TAG_lexical_block)
14624 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14625 child = sibling_die (child);
14626 }
14627 }
14628
14629 /* Get the low and high pc's represented by the scope DIE, and store
14630 them in *LOWPC and *HIGHPC. If the correct values can't be
14631 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14632
14633 static void
14634 get_scope_pc_bounds (struct die_info *die,
14635 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14636 struct dwarf2_cu *cu)
14637 {
14638 CORE_ADDR best_low = (CORE_ADDR) -1;
14639 CORE_ADDR best_high = (CORE_ADDR) 0;
14640 CORE_ADDR current_low, current_high;
14641
14642 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14643 >= PC_BOUNDS_RANGES)
14644 {
14645 best_low = current_low;
14646 best_high = current_high;
14647 }
14648 else
14649 {
14650 struct die_info *child = die->child;
14651
14652 while (child && child->tag)
14653 {
14654 switch (child->tag) {
14655 case DW_TAG_subprogram:
14656 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14657 break;
14658 case DW_TAG_namespace:
14659 case DW_TAG_module:
14660 /* FIXME: carlton/2004-01-16: Should we do this for
14661 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14662 that current GCC's always emit the DIEs corresponding
14663 to definitions of methods of classes as children of a
14664 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14665 the DIEs giving the declarations, which could be
14666 anywhere). But I don't see any reason why the
14667 standards says that they have to be there. */
14668 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14669
14670 if (current_low != ((CORE_ADDR) -1))
14671 {
14672 best_low = std::min (best_low, current_low);
14673 best_high = std::max (best_high, current_high);
14674 }
14675 break;
14676 default:
14677 /* Ignore. */
14678 break;
14679 }
14680
14681 child = sibling_die (child);
14682 }
14683 }
14684
14685 *lowpc = best_low;
14686 *highpc = best_high;
14687 }
14688
14689 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14690 in DIE. */
14691
14692 static void
14693 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14694 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14695 {
14696 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14697 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14698 struct attribute *attr;
14699 struct attribute *attr_high;
14700
14701 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14702 if (attr_high)
14703 {
14704 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14705 if (attr)
14706 {
14707 CORE_ADDR low = attr_value_as_address (attr);
14708 CORE_ADDR high = attr_value_as_address (attr_high);
14709
14710 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14711 high += low;
14712
14713 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14714 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14715 record_block_range (block, low, high - 1);
14716 }
14717 }
14718
14719 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14720 if (attr)
14721 {
14722 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14723 We take advantage of the fact that DW_AT_ranges does not appear
14724 in DW_TAG_compile_unit of DWO files. */
14725 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14726
14727 /* The value of the DW_AT_ranges attribute is the offset of the
14728 address range list in the .debug_ranges section. */
14729 unsigned long offset = (DW_UNSND (attr)
14730 + (need_ranges_base ? cu->ranges_base : 0));
14731
14732 dwarf2_ranges_process (offset, cu,
14733 [&] (CORE_ADDR start, CORE_ADDR end)
14734 {
14735 start += baseaddr;
14736 end += baseaddr;
14737 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14738 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14739 record_block_range (block, start, end - 1);
14740 });
14741 }
14742 }
14743
14744 /* Check whether the producer field indicates either of GCC < 4.6, or the
14745 Intel C/C++ compiler, and cache the result in CU. */
14746
14747 static void
14748 check_producer (struct dwarf2_cu *cu)
14749 {
14750 int major, minor;
14751
14752 if (cu->producer == NULL)
14753 {
14754 /* For unknown compilers expect their behavior is DWARF version
14755 compliant.
14756
14757 GCC started to support .debug_types sections by -gdwarf-4 since
14758 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14759 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14760 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14761 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14762 }
14763 else if (producer_is_gcc (cu->producer, &major, &minor))
14764 {
14765 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14766 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14767 }
14768 else if (producer_is_icc (cu->producer, &major, &minor))
14769 cu->producer_is_icc_lt_14 = major < 14;
14770 else
14771 {
14772 /* For other non-GCC compilers, expect their behavior is DWARF version
14773 compliant. */
14774 }
14775
14776 cu->checked_producer = 1;
14777 }
14778
14779 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14780 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14781 during 4.6.0 experimental. */
14782
14783 static int
14784 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14785 {
14786 if (!cu->checked_producer)
14787 check_producer (cu);
14788
14789 return cu->producer_is_gxx_lt_4_6;
14790 }
14791
14792 /* Return the default accessibility type if it is not overriden by
14793 DW_AT_accessibility. */
14794
14795 static enum dwarf_access_attribute
14796 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14797 {
14798 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14799 {
14800 /* The default DWARF 2 accessibility for members is public, the default
14801 accessibility for inheritance is private. */
14802
14803 if (die->tag != DW_TAG_inheritance)
14804 return DW_ACCESS_public;
14805 else
14806 return DW_ACCESS_private;
14807 }
14808 else
14809 {
14810 /* DWARF 3+ defines the default accessibility a different way. The same
14811 rules apply now for DW_TAG_inheritance as for the members and it only
14812 depends on the container kind. */
14813
14814 if (die->parent->tag == DW_TAG_class_type)
14815 return DW_ACCESS_private;
14816 else
14817 return DW_ACCESS_public;
14818 }
14819 }
14820
14821 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14822 offset. If the attribute was not found return 0, otherwise return
14823 1. If it was found but could not properly be handled, set *OFFSET
14824 to 0. */
14825
14826 static int
14827 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14828 LONGEST *offset)
14829 {
14830 struct attribute *attr;
14831
14832 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14833 if (attr != NULL)
14834 {
14835 *offset = 0;
14836
14837 /* Note that we do not check for a section offset first here.
14838 This is because DW_AT_data_member_location is new in DWARF 4,
14839 so if we see it, we can assume that a constant form is really
14840 a constant and not a section offset. */
14841 if (attr_form_is_constant (attr))
14842 *offset = dwarf2_get_attr_constant_value (attr, 0);
14843 else if (attr_form_is_section_offset (attr))
14844 dwarf2_complex_location_expr_complaint ();
14845 else if (attr_form_is_block (attr))
14846 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14847 else
14848 dwarf2_complex_location_expr_complaint ();
14849
14850 return 1;
14851 }
14852
14853 return 0;
14854 }
14855
14856 /* Add an aggregate field to the field list. */
14857
14858 static void
14859 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14860 struct dwarf2_cu *cu)
14861 {
14862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14863 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14864 struct nextfield *new_field;
14865 struct attribute *attr;
14866 struct field *fp;
14867 const char *fieldname = "";
14868
14869 if (die->tag == DW_TAG_inheritance)
14870 {
14871 fip->baseclasses.emplace_back ();
14872 new_field = &fip->baseclasses.back ();
14873 }
14874 else
14875 {
14876 fip->fields.emplace_back ();
14877 new_field = &fip->fields.back ();
14878 }
14879
14880 fip->nfields++;
14881
14882 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14883 if (attr)
14884 new_field->accessibility = DW_UNSND (attr);
14885 else
14886 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14887 if (new_field->accessibility != DW_ACCESS_public)
14888 fip->non_public_fields = 1;
14889
14890 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14891 if (attr)
14892 new_field->virtuality = DW_UNSND (attr);
14893 else
14894 new_field->virtuality = DW_VIRTUALITY_none;
14895
14896 fp = &new_field->field;
14897
14898 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14899 {
14900 LONGEST offset;
14901
14902 /* Data member other than a C++ static data member. */
14903
14904 /* Get type of field. */
14905 fp->type = die_type (die, cu);
14906
14907 SET_FIELD_BITPOS (*fp, 0);
14908
14909 /* Get bit size of field (zero if none). */
14910 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14911 if (attr)
14912 {
14913 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14914 }
14915 else
14916 {
14917 FIELD_BITSIZE (*fp) = 0;
14918 }
14919
14920 /* Get bit offset of field. */
14921 if (handle_data_member_location (die, cu, &offset))
14922 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14923 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14924 if (attr)
14925 {
14926 if (gdbarch_bits_big_endian (gdbarch))
14927 {
14928 /* For big endian bits, the DW_AT_bit_offset gives the
14929 additional bit offset from the MSB of the containing
14930 anonymous object to the MSB of the field. We don't
14931 have to do anything special since we don't need to
14932 know the size of the anonymous object. */
14933 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14934 }
14935 else
14936 {
14937 /* For little endian bits, compute the bit offset to the
14938 MSB of the anonymous object, subtract off the number of
14939 bits from the MSB of the field to the MSB of the
14940 object, and then subtract off the number of bits of
14941 the field itself. The result is the bit offset of
14942 the LSB of the field. */
14943 int anonymous_size;
14944 int bit_offset = DW_UNSND (attr);
14945
14946 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14947 if (attr)
14948 {
14949 /* The size of the anonymous object containing
14950 the bit field is explicit, so use the
14951 indicated size (in bytes). */
14952 anonymous_size = DW_UNSND (attr);
14953 }
14954 else
14955 {
14956 /* The size of the anonymous object containing
14957 the bit field must be inferred from the type
14958 attribute of the data member containing the
14959 bit field. */
14960 anonymous_size = TYPE_LENGTH (fp->type);
14961 }
14962 SET_FIELD_BITPOS (*fp,
14963 (FIELD_BITPOS (*fp)
14964 + anonymous_size * bits_per_byte
14965 - bit_offset - FIELD_BITSIZE (*fp)));
14966 }
14967 }
14968 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14969 if (attr != NULL)
14970 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14971 + dwarf2_get_attr_constant_value (attr, 0)));
14972
14973 /* Get name of field. */
14974 fieldname = dwarf2_name (die, cu);
14975 if (fieldname == NULL)
14976 fieldname = "";
14977
14978 /* The name is already allocated along with this objfile, so we don't
14979 need to duplicate it for the type. */
14980 fp->name = fieldname;
14981
14982 /* Change accessibility for artificial fields (e.g. virtual table
14983 pointer or virtual base class pointer) to private. */
14984 if (dwarf2_attr (die, DW_AT_artificial, cu))
14985 {
14986 FIELD_ARTIFICIAL (*fp) = 1;
14987 new_field->accessibility = DW_ACCESS_private;
14988 fip->non_public_fields = 1;
14989 }
14990 }
14991 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14992 {
14993 /* C++ static member. */
14994
14995 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14996 is a declaration, but all versions of G++ as of this writing
14997 (so through at least 3.2.1) incorrectly generate
14998 DW_TAG_variable tags. */
14999
15000 const char *physname;
15001
15002 /* Get name of field. */
15003 fieldname = dwarf2_name (die, cu);
15004 if (fieldname == NULL)
15005 return;
15006
15007 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15008 if (attr
15009 /* Only create a symbol if this is an external value.
15010 new_symbol checks this and puts the value in the global symbol
15011 table, which we want. If it is not external, new_symbol
15012 will try to put the value in cu->list_in_scope which is wrong. */
15013 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15014 {
15015 /* A static const member, not much different than an enum as far as
15016 we're concerned, except that we can support more types. */
15017 new_symbol (die, NULL, cu);
15018 }
15019
15020 /* Get physical name. */
15021 physname = dwarf2_physname (fieldname, die, cu);
15022
15023 /* The name is already allocated along with this objfile, so we don't
15024 need to duplicate it for the type. */
15025 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15026 FIELD_TYPE (*fp) = die_type (die, cu);
15027 FIELD_NAME (*fp) = fieldname;
15028 }
15029 else if (die->tag == DW_TAG_inheritance)
15030 {
15031 LONGEST offset;
15032
15033 /* C++ base class field. */
15034 if (handle_data_member_location (die, cu, &offset))
15035 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15036 FIELD_BITSIZE (*fp) = 0;
15037 FIELD_TYPE (*fp) = die_type (die, cu);
15038 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15039 }
15040 else if (die->tag == DW_TAG_variant_part)
15041 {
15042 /* process_structure_scope will treat this DIE as a union. */
15043 process_structure_scope (die, cu);
15044
15045 /* The variant part is relative to the start of the enclosing
15046 structure. */
15047 SET_FIELD_BITPOS (*fp, 0);
15048 fp->type = get_die_type (die, cu);
15049 fp->artificial = 1;
15050 fp->name = "<<variant>>";
15051 }
15052 else
15053 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15054 }
15055
15056 /* Can the type given by DIE define another type? */
15057
15058 static bool
15059 type_can_define_types (const struct die_info *die)
15060 {
15061 switch (die->tag)
15062 {
15063 case DW_TAG_typedef:
15064 case DW_TAG_class_type:
15065 case DW_TAG_structure_type:
15066 case DW_TAG_union_type:
15067 case DW_TAG_enumeration_type:
15068 return true;
15069
15070 default:
15071 return false;
15072 }
15073 }
15074
15075 /* Add a type definition defined in the scope of the FIP's class. */
15076
15077 static void
15078 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15079 struct dwarf2_cu *cu)
15080 {
15081 struct decl_field fp;
15082 memset (&fp, 0, sizeof (fp));
15083
15084 gdb_assert (type_can_define_types (die));
15085
15086 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15087 fp.name = dwarf2_name (die, cu);
15088 fp.type = read_type_die (die, cu);
15089
15090 /* Save accessibility. */
15091 enum dwarf_access_attribute accessibility;
15092 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15093 if (attr != NULL)
15094 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15095 else
15096 accessibility = dwarf2_default_access_attribute (die, cu);
15097 switch (accessibility)
15098 {
15099 case DW_ACCESS_public:
15100 /* The assumed value if neither private nor protected. */
15101 break;
15102 case DW_ACCESS_private:
15103 fp.is_private = 1;
15104 break;
15105 case DW_ACCESS_protected:
15106 fp.is_protected = 1;
15107 break;
15108 default:
15109 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15110 }
15111
15112 if (die->tag == DW_TAG_typedef)
15113 fip->typedef_field_list.push_back (fp);
15114 else
15115 fip->nested_types_list.push_back (fp);
15116 }
15117
15118 /* Create the vector of fields, and attach it to the type. */
15119
15120 static void
15121 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15122 struct dwarf2_cu *cu)
15123 {
15124 int nfields = fip->nfields;
15125
15126 /* Record the field count, allocate space for the array of fields,
15127 and create blank accessibility bitfields if necessary. */
15128 TYPE_NFIELDS (type) = nfields;
15129 TYPE_FIELDS (type) = (struct field *)
15130 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15131
15132 if (fip->non_public_fields && cu->language != language_ada)
15133 {
15134 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15135
15136 TYPE_FIELD_PRIVATE_BITS (type) =
15137 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15138 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15139
15140 TYPE_FIELD_PROTECTED_BITS (type) =
15141 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15142 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15143
15144 TYPE_FIELD_IGNORE_BITS (type) =
15145 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15146 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15147 }
15148
15149 /* If the type has baseclasses, allocate and clear a bit vector for
15150 TYPE_FIELD_VIRTUAL_BITS. */
15151 if (!fip->baseclasses.empty () && cu->language != language_ada)
15152 {
15153 int num_bytes = B_BYTES (fip->baseclasses.size ());
15154 unsigned char *pointer;
15155
15156 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15157 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15158 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15159 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15160 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15161 }
15162
15163 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15164 {
15165 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15166
15167 for (int index = 0; index < nfields; ++index)
15168 {
15169 struct nextfield &field = fip->fields[index];
15170
15171 if (field.variant.is_discriminant)
15172 di->discriminant_index = index;
15173 else if (field.variant.default_branch)
15174 di->default_index = index;
15175 else
15176 di->discriminants[index] = field.variant.discriminant_value;
15177 }
15178 }
15179
15180 /* Copy the saved-up fields into the field vector. */
15181 for (int i = 0; i < nfields; ++i)
15182 {
15183 struct nextfield &field
15184 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15185 : fip->fields[i - fip->baseclasses.size ()]);
15186
15187 TYPE_FIELD (type, i) = field.field;
15188 switch (field.accessibility)
15189 {
15190 case DW_ACCESS_private:
15191 if (cu->language != language_ada)
15192 SET_TYPE_FIELD_PRIVATE (type, i);
15193 break;
15194
15195 case DW_ACCESS_protected:
15196 if (cu->language != language_ada)
15197 SET_TYPE_FIELD_PROTECTED (type, i);
15198 break;
15199
15200 case DW_ACCESS_public:
15201 break;
15202
15203 default:
15204 /* Unknown accessibility. Complain and treat it as public. */
15205 {
15206 complaint (_("unsupported accessibility %d"),
15207 field.accessibility);
15208 }
15209 break;
15210 }
15211 if (i < fip->baseclasses.size ())
15212 {
15213 switch (field.virtuality)
15214 {
15215 case DW_VIRTUALITY_virtual:
15216 case DW_VIRTUALITY_pure_virtual:
15217 if (cu->language == language_ada)
15218 error (_("unexpected virtuality in component of Ada type"));
15219 SET_TYPE_FIELD_VIRTUAL (type, i);
15220 break;
15221 }
15222 }
15223 }
15224 }
15225
15226 /* Return true if this member function is a constructor, false
15227 otherwise. */
15228
15229 static int
15230 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15231 {
15232 const char *fieldname;
15233 const char *type_name;
15234 int len;
15235
15236 if (die->parent == NULL)
15237 return 0;
15238
15239 if (die->parent->tag != DW_TAG_structure_type
15240 && die->parent->tag != DW_TAG_union_type
15241 && die->parent->tag != DW_TAG_class_type)
15242 return 0;
15243
15244 fieldname = dwarf2_name (die, cu);
15245 type_name = dwarf2_name (die->parent, cu);
15246 if (fieldname == NULL || type_name == NULL)
15247 return 0;
15248
15249 len = strlen (fieldname);
15250 return (strncmp (fieldname, type_name, len) == 0
15251 && (type_name[len] == '\0' || type_name[len] == '<'));
15252 }
15253
15254 /* Add a member function to the proper fieldlist. */
15255
15256 static void
15257 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15258 struct type *type, struct dwarf2_cu *cu)
15259 {
15260 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15261 struct attribute *attr;
15262 int i;
15263 struct fnfieldlist *flp = nullptr;
15264 struct fn_field *fnp;
15265 const char *fieldname;
15266 struct type *this_type;
15267 enum dwarf_access_attribute accessibility;
15268
15269 if (cu->language == language_ada)
15270 error (_("unexpected member function in Ada type"));
15271
15272 /* Get name of member function. */
15273 fieldname = dwarf2_name (die, cu);
15274 if (fieldname == NULL)
15275 return;
15276
15277 /* Look up member function name in fieldlist. */
15278 for (i = 0; i < fip->fnfieldlists.size (); i++)
15279 {
15280 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15281 {
15282 flp = &fip->fnfieldlists[i];
15283 break;
15284 }
15285 }
15286
15287 /* Create a new fnfieldlist if necessary. */
15288 if (flp == nullptr)
15289 {
15290 fip->fnfieldlists.emplace_back ();
15291 flp = &fip->fnfieldlists.back ();
15292 flp->name = fieldname;
15293 i = fip->fnfieldlists.size () - 1;
15294 }
15295
15296 /* Create a new member function field and add it to the vector of
15297 fnfieldlists. */
15298 flp->fnfields.emplace_back ();
15299 fnp = &flp->fnfields.back ();
15300
15301 /* Delay processing of the physname until later. */
15302 if (cu->language == language_cplus)
15303 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15304 die, cu);
15305 else
15306 {
15307 const char *physname = dwarf2_physname (fieldname, die, cu);
15308 fnp->physname = physname ? physname : "";
15309 }
15310
15311 fnp->type = alloc_type (objfile);
15312 this_type = read_type_die (die, cu);
15313 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15314 {
15315 int nparams = TYPE_NFIELDS (this_type);
15316
15317 /* TYPE is the domain of this method, and THIS_TYPE is the type
15318 of the method itself (TYPE_CODE_METHOD). */
15319 smash_to_method_type (fnp->type, type,
15320 TYPE_TARGET_TYPE (this_type),
15321 TYPE_FIELDS (this_type),
15322 TYPE_NFIELDS (this_type),
15323 TYPE_VARARGS (this_type));
15324
15325 /* Handle static member functions.
15326 Dwarf2 has no clean way to discern C++ static and non-static
15327 member functions. G++ helps GDB by marking the first
15328 parameter for non-static member functions (which is the this
15329 pointer) as artificial. We obtain this information from
15330 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15331 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15332 fnp->voffset = VOFFSET_STATIC;
15333 }
15334 else
15335 complaint (_("member function type missing for '%s'"),
15336 dwarf2_full_name (fieldname, die, cu));
15337
15338 /* Get fcontext from DW_AT_containing_type if present. */
15339 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15340 fnp->fcontext = die_containing_type (die, cu);
15341
15342 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15343 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15344
15345 /* Get accessibility. */
15346 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15347 if (attr)
15348 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15349 else
15350 accessibility = dwarf2_default_access_attribute (die, cu);
15351 switch (accessibility)
15352 {
15353 case DW_ACCESS_private:
15354 fnp->is_private = 1;
15355 break;
15356 case DW_ACCESS_protected:
15357 fnp->is_protected = 1;
15358 break;
15359 }
15360
15361 /* Check for artificial methods. */
15362 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15363 if (attr && DW_UNSND (attr) != 0)
15364 fnp->is_artificial = 1;
15365
15366 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15367
15368 /* Get index in virtual function table if it is a virtual member
15369 function. For older versions of GCC, this is an offset in the
15370 appropriate virtual table, as specified by DW_AT_containing_type.
15371 For everyone else, it is an expression to be evaluated relative
15372 to the object address. */
15373
15374 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15375 if (attr)
15376 {
15377 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15378 {
15379 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15380 {
15381 /* Old-style GCC. */
15382 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15383 }
15384 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15385 || (DW_BLOCK (attr)->size > 1
15386 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15387 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15388 {
15389 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15390 if ((fnp->voffset % cu->header.addr_size) != 0)
15391 dwarf2_complex_location_expr_complaint ();
15392 else
15393 fnp->voffset /= cu->header.addr_size;
15394 fnp->voffset += 2;
15395 }
15396 else
15397 dwarf2_complex_location_expr_complaint ();
15398
15399 if (!fnp->fcontext)
15400 {
15401 /* If there is no `this' field and no DW_AT_containing_type,
15402 we cannot actually find a base class context for the
15403 vtable! */
15404 if (TYPE_NFIELDS (this_type) == 0
15405 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15406 {
15407 complaint (_("cannot determine context for virtual member "
15408 "function \"%s\" (offset %s)"),
15409 fieldname, sect_offset_str (die->sect_off));
15410 }
15411 else
15412 {
15413 fnp->fcontext
15414 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15415 }
15416 }
15417 }
15418 else if (attr_form_is_section_offset (attr))
15419 {
15420 dwarf2_complex_location_expr_complaint ();
15421 }
15422 else
15423 {
15424 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15425 fieldname);
15426 }
15427 }
15428 else
15429 {
15430 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15431 if (attr && DW_UNSND (attr))
15432 {
15433 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15434 complaint (_("Member function \"%s\" (offset %s) is virtual "
15435 "but the vtable offset is not specified"),
15436 fieldname, sect_offset_str (die->sect_off));
15437 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15438 TYPE_CPLUS_DYNAMIC (type) = 1;
15439 }
15440 }
15441 }
15442
15443 /* Create the vector of member function fields, and attach it to the type. */
15444
15445 static void
15446 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15447 struct dwarf2_cu *cu)
15448 {
15449 if (cu->language == language_ada)
15450 error (_("unexpected member functions in Ada type"));
15451
15452 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15453 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15454 TYPE_ALLOC (type,
15455 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15456
15457 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15458 {
15459 struct fnfieldlist &nf = fip->fnfieldlists[i];
15460 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15461
15462 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15463 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15464 fn_flp->fn_fields = (struct fn_field *)
15465 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15466
15467 for (int k = 0; k < nf.fnfields.size (); ++k)
15468 fn_flp->fn_fields[k] = nf.fnfields[k];
15469 }
15470
15471 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15472 }
15473
15474 /* Returns non-zero if NAME is the name of a vtable member in CU's
15475 language, zero otherwise. */
15476 static int
15477 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15478 {
15479 static const char vptr[] = "_vptr";
15480
15481 /* Look for the C++ form of the vtable. */
15482 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15483 return 1;
15484
15485 return 0;
15486 }
15487
15488 /* GCC outputs unnamed structures that are really pointers to member
15489 functions, with the ABI-specified layout. If TYPE describes
15490 such a structure, smash it into a member function type.
15491
15492 GCC shouldn't do this; it should just output pointer to member DIEs.
15493 This is GCC PR debug/28767. */
15494
15495 static void
15496 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15497 {
15498 struct type *pfn_type, *self_type, *new_type;
15499
15500 /* Check for a structure with no name and two children. */
15501 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15502 return;
15503
15504 /* Check for __pfn and __delta members. */
15505 if (TYPE_FIELD_NAME (type, 0) == NULL
15506 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15507 || TYPE_FIELD_NAME (type, 1) == NULL
15508 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15509 return;
15510
15511 /* Find the type of the method. */
15512 pfn_type = TYPE_FIELD_TYPE (type, 0);
15513 if (pfn_type == NULL
15514 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15515 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15516 return;
15517
15518 /* Look for the "this" argument. */
15519 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15520 if (TYPE_NFIELDS (pfn_type) == 0
15521 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15522 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15523 return;
15524
15525 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15526 new_type = alloc_type (objfile);
15527 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15528 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15529 TYPE_VARARGS (pfn_type));
15530 smash_to_methodptr_type (type, new_type);
15531 }
15532
15533 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15534 appropriate error checking and issuing complaints if there is a
15535 problem. */
15536
15537 static ULONGEST
15538 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15539 {
15540 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15541
15542 if (attr == nullptr)
15543 return 0;
15544
15545 if (!attr_form_is_constant (attr))
15546 {
15547 complaint (_("DW_AT_alignment must have constant form"
15548 " - DIE at %s [in module %s]"),
15549 sect_offset_str (die->sect_off),
15550 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15551 return 0;
15552 }
15553
15554 ULONGEST align;
15555 if (attr->form == DW_FORM_sdata)
15556 {
15557 LONGEST val = DW_SND (attr);
15558 if (val < 0)
15559 {
15560 complaint (_("DW_AT_alignment value must not be negative"
15561 " - DIE at %s [in module %s]"),
15562 sect_offset_str (die->sect_off),
15563 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15564 return 0;
15565 }
15566 align = val;
15567 }
15568 else
15569 align = DW_UNSND (attr);
15570
15571 if (align == 0)
15572 {
15573 complaint (_("DW_AT_alignment value must not be zero"
15574 " - DIE at %s [in module %s]"),
15575 sect_offset_str (die->sect_off),
15576 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15577 return 0;
15578 }
15579 if ((align & (align - 1)) != 0)
15580 {
15581 complaint (_("DW_AT_alignment value must be a power of 2"
15582 " - DIE at %s [in module %s]"),
15583 sect_offset_str (die->sect_off),
15584 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15585 return 0;
15586 }
15587
15588 return align;
15589 }
15590
15591 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15592 the alignment for TYPE. */
15593
15594 static void
15595 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15596 struct type *type)
15597 {
15598 if (!set_type_align (type, get_alignment (cu, die)))
15599 complaint (_("DW_AT_alignment value too large"
15600 " - DIE at %s [in module %s]"),
15601 sect_offset_str (die->sect_off),
15602 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15603 }
15604
15605 /* Called when we find the DIE that starts a structure or union scope
15606 (definition) to create a type for the structure or union. Fill in
15607 the type's name and general properties; the members will not be
15608 processed until process_structure_scope. A symbol table entry for
15609 the type will also not be done until process_structure_scope (assuming
15610 the type has a name).
15611
15612 NOTE: we need to call these functions regardless of whether or not the
15613 DIE has a DW_AT_name attribute, since it might be an anonymous
15614 structure or union. This gets the type entered into our set of
15615 user defined types. */
15616
15617 static struct type *
15618 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15619 {
15620 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15621 struct type *type;
15622 struct attribute *attr;
15623 const char *name;
15624
15625 /* If the definition of this type lives in .debug_types, read that type.
15626 Don't follow DW_AT_specification though, that will take us back up
15627 the chain and we want to go down. */
15628 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15629 if (attr)
15630 {
15631 type = get_DW_AT_signature_type (die, attr, cu);
15632
15633 /* The type's CU may not be the same as CU.
15634 Ensure TYPE is recorded with CU in die_type_hash. */
15635 return set_die_type (die, type, cu);
15636 }
15637
15638 type = alloc_type (objfile);
15639 INIT_CPLUS_SPECIFIC (type);
15640
15641 name = dwarf2_name (die, cu);
15642 if (name != NULL)
15643 {
15644 if (cu->language == language_cplus
15645 || cu->language == language_d
15646 || cu->language == language_rust)
15647 {
15648 const char *full_name = dwarf2_full_name (name, die, cu);
15649
15650 /* dwarf2_full_name might have already finished building the DIE's
15651 type. If so, there is no need to continue. */
15652 if (get_die_type (die, cu) != NULL)
15653 return get_die_type (die, cu);
15654
15655 TYPE_TAG_NAME (type) = full_name;
15656 if (die->tag == DW_TAG_structure_type
15657 || die->tag == DW_TAG_class_type)
15658 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15659 }
15660 else
15661 {
15662 /* The name is already allocated along with this objfile, so
15663 we don't need to duplicate it for the type. */
15664 TYPE_TAG_NAME (type) = name;
15665 if (die->tag == DW_TAG_class_type)
15666 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15667 }
15668 }
15669
15670 if (die->tag == DW_TAG_structure_type)
15671 {
15672 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15673 }
15674 else if (die->tag == DW_TAG_union_type)
15675 {
15676 TYPE_CODE (type) = TYPE_CODE_UNION;
15677 }
15678 else if (die->tag == DW_TAG_variant_part)
15679 {
15680 TYPE_CODE (type) = TYPE_CODE_UNION;
15681 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15682 }
15683 else
15684 {
15685 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15686 }
15687
15688 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15689 TYPE_DECLARED_CLASS (type) = 1;
15690
15691 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15692 if (attr)
15693 {
15694 if (attr_form_is_constant (attr))
15695 TYPE_LENGTH (type) = DW_UNSND (attr);
15696 else
15697 {
15698 /* For the moment, dynamic type sizes are not supported
15699 by GDB's struct type. The actual size is determined
15700 on-demand when resolving the type of a given object,
15701 so set the type's length to zero for now. Otherwise,
15702 we record an expression as the length, and that expression
15703 could lead to a very large value, which could eventually
15704 lead to us trying to allocate that much memory when creating
15705 a value of that type. */
15706 TYPE_LENGTH (type) = 0;
15707 }
15708 }
15709 else
15710 {
15711 TYPE_LENGTH (type) = 0;
15712 }
15713
15714 maybe_set_alignment (cu, die, type);
15715
15716 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15717 {
15718 /* ICC<14 does not output the required DW_AT_declaration on
15719 incomplete types, but gives them a size of zero. */
15720 TYPE_STUB (type) = 1;
15721 }
15722 else
15723 TYPE_STUB_SUPPORTED (type) = 1;
15724
15725 if (die_is_declaration (die, cu))
15726 TYPE_STUB (type) = 1;
15727 else if (attr == NULL && die->child == NULL
15728 && producer_is_realview (cu->producer))
15729 /* RealView does not output the required DW_AT_declaration
15730 on incomplete types. */
15731 TYPE_STUB (type) = 1;
15732
15733 /* We need to add the type field to the die immediately so we don't
15734 infinitely recurse when dealing with pointers to the structure
15735 type within the structure itself. */
15736 set_die_type (die, type, cu);
15737
15738 /* set_die_type should be already done. */
15739 set_descriptive_type (type, die, cu);
15740
15741 return type;
15742 }
15743
15744 /* A helper for process_structure_scope that handles a single member
15745 DIE. */
15746
15747 static void
15748 handle_struct_member_die (struct die_info *child_die, struct type *type,
15749 struct field_info *fi,
15750 std::vector<struct symbol *> *template_args,
15751 struct dwarf2_cu *cu)
15752 {
15753 if (child_die->tag == DW_TAG_member
15754 || child_die->tag == DW_TAG_variable
15755 || child_die->tag == DW_TAG_variant_part)
15756 {
15757 /* NOTE: carlton/2002-11-05: A C++ static data member
15758 should be a DW_TAG_member that is a declaration, but
15759 all versions of G++ as of this writing (so through at
15760 least 3.2.1) incorrectly generate DW_TAG_variable
15761 tags for them instead. */
15762 dwarf2_add_field (fi, child_die, cu);
15763 }
15764 else if (child_die->tag == DW_TAG_subprogram)
15765 {
15766 /* Rust doesn't have member functions in the C++ sense.
15767 However, it does emit ordinary functions as children
15768 of a struct DIE. */
15769 if (cu->language == language_rust)
15770 read_func_scope (child_die, cu);
15771 else
15772 {
15773 /* C++ member function. */
15774 dwarf2_add_member_fn (fi, child_die, type, cu);
15775 }
15776 }
15777 else if (child_die->tag == DW_TAG_inheritance)
15778 {
15779 /* C++ base class field. */
15780 dwarf2_add_field (fi, child_die, cu);
15781 }
15782 else if (type_can_define_types (child_die))
15783 dwarf2_add_type_defn (fi, child_die, cu);
15784 else if (child_die->tag == DW_TAG_template_type_param
15785 || child_die->tag == DW_TAG_template_value_param)
15786 {
15787 struct symbol *arg = new_symbol (child_die, NULL, cu);
15788
15789 if (arg != NULL)
15790 template_args->push_back (arg);
15791 }
15792 else if (child_die->tag == DW_TAG_variant)
15793 {
15794 /* In a variant we want to get the discriminant and also add a
15795 field for our sole member child. */
15796 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15797
15798 for (struct die_info *variant_child = child_die->child;
15799 variant_child != NULL;
15800 variant_child = sibling_die (variant_child))
15801 {
15802 if (variant_child->tag == DW_TAG_member)
15803 {
15804 handle_struct_member_die (variant_child, type, fi,
15805 template_args, cu);
15806 /* Only handle the one. */
15807 break;
15808 }
15809 }
15810
15811 /* We don't handle this but we might as well report it if we see
15812 it. */
15813 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15814 complaint (_("DW_AT_discr_list is not supported yet"
15815 " - DIE at %s [in module %s]"),
15816 sect_offset_str (child_die->sect_off),
15817 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15818
15819 /* The first field was just added, so we can stash the
15820 discriminant there. */
15821 gdb_assert (!fi->fields.empty ());
15822 if (discr == NULL)
15823 fi->fields.back ().variant.default_branch = true;
15824 else
15825 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15826 }
15827 }
15828
15829 /* Finish creating a structure or union type, including filling in
15830 its members and creating a symbol for it. */
15831
15832 static void
15833 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15834 {
15835 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15836 struct die_info *child_die;
15837 struct type *type;
15838
15839 type = get_die_type (die, cu);
15840 if (type == NULL)
15841 type = read_structure_type (die, cu);
15842
15843 /* When reading a DW_TAG_variant_part, we need to notice when we
15844 read the discriminant member, so we can record it later in the
15845 discriminant_info. */
15846 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15847 sect_offset discr_offset;
15848
15849 if (is_variant_part)
15850 {
15851 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15852 if (discr == NULL)
15853 {
15854 /* Maybe it's a univariant form, an extension we support.
15855 In this case arrange not to check the offset. */
15856 is_variant_part = false;
15857 }
15858 else if (attr_form_is_ref (discr))
15859 {
15860 struct dwarf2_cu *target_cu = cu;
15861 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15862
15863 discr_offset = target_die->sect_off;
15864 }
15865 else
15866 {
15867 complaint (_("DW_AT_discr does not have DIE reference form"
15868 " - DIE at %s [in module %s]"),
15869 sect_offset_str (die->sect_off),
15870 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15871 is_variant_part = false;
15872 }
15873 }
15874
15875 if (die->child != NULL && ! die_is_declaration (die, cu))
15876 {
15877 struct field_info fi;
15878 std::vector<struct symbol *> template_args;
15879
15880 child_die = die->child;
15881
15882 while (child_die && child_die->tag)
15883 {
15884 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15885
15886 if (is_variant_part && discr_offset == child_die->sect_off)
15887 fi.fields.back ().variant.is_discriminant = true;
15888
15889 child_die = sibling_die (child_die);
15890 }
15891
15892 /* Attach template arguments to type. */
15893 if (!template_args.empty ())
15894 {
15895 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15896 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15897 TYPE_TEMPLATE_ARGUMENTS (type)
15898 = XOBNEWVEC (&objfile->objfile_obstack,
15899 struct symbol *,
15900 TYPE_N_TEMPLATE_ARGUMENTS (type));
15901 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15902 template_args.data (),
15903 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15904 * sizeof (struct symbol *)));
15905 }
15906
15907 /* Attach fields and member functions to the type. */
15908 if (fi.nfields)
15909 dwarf2_attach_fields_to_type (&fi, type, cu);
15910 if (!fi.fnfieldlists.empty ())
15911 {
15912 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15913
15914 /* Get the type which refers to the base class (possibly this
15915 class itself) which contains the vtable pointer for the current
15916 class from the DW_AT_containing_type attribute. This use of
15917 DW_AT_containing_type is a GNU extension. */
15918
15919 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15920 {
15921 struct type *t = die_containing_type (die, cu);
15922
15923 set_type_vptr_basetype (type, t);
15924 if (type == t)
15925 {
15926 int i;
15927
15928 /* Our own class provides vtbl ptr. */
15929 for (i = TYPE_NFIELDS (t) - 1;
15930 i >= TYPE_N_BASECLASSES (t);
15931 --i)
15932 {
15933 const char *fieldname = TYPE_FIELD_NAME (t, i);
15934
15935 if (is_vtable_name (fieldname, cu))
15936 {
15937 set_type_vptr_fieldno (type, i);
15938 break;
15939 }
15940 }
15941
15942 /* Complain if virtual function table field not found. */
15943 if (i < TYPE_N_BASECLASSES (t))
15944 complaint (_("virtual function table pointer "
15945 "not found when defining class '%s'"),
15946 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
15947 "");
15948 }
15949 else
15950 {
15951 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15952 }
15953 }
15954 else if (cu->producer
15955 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15956 {
15957 /* The IBM XLC compiler does not provide direct indication
15958 of the containing type, but the vtable pointer is
15959 always named __vfp. */
15960
15961 int i;
15962
15963 for (i = TYPE_NFIELDS (type) - 1;
15964 i >= TYPE_N_BASECLASSES (type);
15965 --i)
15966 {
15967 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15968 {
15969 set_type_vptr_fieldno (type, i);
15970 set_type_vptr_basetype (type, type);
15971 break;
15972 }
15973 }
15974 }
15975 }
15976
15977 /* Copy fi.typedef_field_list linked list elements content into the
15978 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15979 if (!fi.typedef_field_list.empty ())
15980 {
15981 int count = fi.typedef_field_list.size ();
15982
15983 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15984 TYPE_TYPEDEF_FIELD_ARRAY (type)
15985 = ((struct decl_field *)
15986 TYPE_ALLOC (type,
15987 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15988 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15989
15990 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15991 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15992 }
15993
15994 /* Copy fi.nested_types_list linked list elements content into the
15995 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15996 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15997 {
15998 int count = fi.nested_types_list.size ();
15999
16000 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16001 TYPE_NESTED_TYPES_ARRAY (type)
16002 = ((struct decl_field *)
16003 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16004 TYPE_NESTED_TYPES_COUNT (type) = count;
16005
16006 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16007 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16008 }
16009 }
16010
16011 quirk_gcc_member_function_pointer (type, objfile);
16012 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16013 cu->rust_unions.push_back (type);
16014
16015 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16016 snapshots) has been known to create a die giving a declaration
16017 for a class that has, as a child, a die giving a definition for a
16018 nested class. So we have to process our children even if the
16019 current die is a declaration. Normally, of course, a declaration
16020 won't have any children at all. */
16021
16022 child_die = die->child;
16023
16024 while (child_die != NULL && child_die->tag)
16025 {
16026 if (child_die->tag == DW_TAG_member
16027 || child_die->tag == DW_TAG_variable
16028 || child_die->tag == DW_TAG_inheritance
16029 || child_die->tag == DW_TAG_template_value_param
16030 || child_die->tag == DW_TAG_template_type_param)
16031 {
16032 /* Do nothing. */
16033 }
16034 else
16035 process_die (child_die, cu);
16036
16037 child_die = sibling_die (child_die);
16038 }
16039
16040 /* Do not consider external references. According to the DWARF standard,
16041 these DIEs are identified by the fact that they have no byte_size
16042 attribute, and a declaration attribute. */
16043 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16044 || !die_is_declaration (die, cu))
16045 new_symbol (die, type, cu);
16046 }
16047
16048 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16049 update TYPE using some information only available in DIE's children. */
16050
16051 static void
16052 update_enumeration_type_from_children (struct die_info *die,
16053 struct type *type,
16054 struct dwarf2_cu *cu)
16055 {
16056 struct die_info *child_die;
16057 int unsigned_enum = 1;
16058 int flag_enum = 1;
16059 ULONGEST mask = 0;
16060
16061 auto_obstack obstack;
16062
16063 for (child_die = die->child;
16064 child_die != NULL && child_die->tag;
16065 child_die = sibling_die (child_die))
16066 {
16067 struct attribute *attr;
16068 LONGEST value;
16069 const gdb_byte *bytes;
16070 struct dwarf2_locexpr_baton *baton;
16071 const char *name;
16072
16073 if (child_die->tag != DW_TAG_enumerator)
16074 continue;
16075
16076 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16077 if (attr == NULL)
16078 continue;
16079
16080 name = dwarf2_name (child_die, cu);
16081 if (name == NULL)
16082 name = "<anonymous enumerator>";
16083
16084 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16085 &value, &bytes, &baton);
16086 if (value < 0)
16087 {
16088 unsigned_enum = 0;
16089 flag_enum = 0;
16090 }
16091 else if ((mask & value) != 0)
16092 flag_enum = 0;
16093 else
16094 mask |= value;
16095
16096 /* If we already know that the enum type is neither unsigned, nor
16097 a flag type, no need to look at the rest of the enumerates. */
16098 if (!unsigned_enum && !flag_enum)
16099 break;
16100 }
16101
16102 if (unsigned_enum)
16103 TYPE_UNSIGNED (type) = 1;
16104 if (flag_enum)
16105 TYPE_FLAG_ENUM (type) = 1;
16106 }
16107
16108 /* Given a DW_AT_enumeration_type die, set its type. We do not
16109 complete the type's fields yet, or create any symbols. */
16110
16111 static struct type *
16112 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16113 {
16114 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16115 struct type *type;
16116 struct attribute *attr;
16117 const char *name;
16118
16119 /* If the definition of this type lives in .debug_types, read that type.
16120 Don't follow DW_AT_specification though, that will take us back up
16121 the chain and we want to go down. */
16122 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16123 if (attr)
16124 {
16125 type = get_DW_AT_signature_type (die, attr, cu);
16126
16127 /* The type's CU may not be the same as CU.
16128 Ensure TYPE is recorded with CU in die_type_hash. */
16129 return set_die_type (die, type, cu);
16130 }
16131
16132 type = alloc_type (objfile);
16133
16134 TYPE_CODE (type) = TYPE_CODE_ENUM;
16135 name = dwarf2_full_name (NULL, die, cu);
16136 if (name != NULL)
16137 TYPE_TAG_NAME (type) = name;
16138
16139 attr = dwarf2_attr (die, DW_AT_type, cu);
16140 if (attr != NULL)
16141 {
16142 struct type *underlying_type = die_type (die, cu);
16143
16144 TYPE_TARGET_TYPE (type) = underlying_type;
16145 }
16146
16147 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16148 if (attr)
16149 {
16150 TYPE_LENGTH (type) = DW_UNSND (attr);
16151 }
16152 else
16153 {
16154 TYPE_LENGTH (type) = 0;
16155 }
16156
16157 maybe_set_alignment (cu, die, type);
16158
16159 /* The enumeration DIE can be incomplete. In Ada, any type can be
16160 declared as private in the package spec, and then defined only
16161 inside the package body. Such types are known as Taft Amendment
16162 Types. When another package uses such a type, an incomplete DIE
16163 may be generated by the compiler. */
16164 if (die_is_declaration (die, cu))
16165 TYPE_STUB (type) = 1;
16166
16167 /* Finish the creation of this type by using the enum's children.
16168 We must call this even when the underlying type has been provided
16169 so that we can determine if we're looking at a "flag" enum. */
16170 update_enumeration_type_from_children (die, type, cu);
16171
16172 /* If this type has an underlying type that is not a stub, then we
16173 may use its attributes. We always use the "unsigned" attribute
16174 in this situation, because ordinarily we guess whether the type
16175 is unsigned -- but the guess can be wrong and the underlying type
16176 can tell us the reality. However, we defer to a local size
16177 attribute if one exists, because this lets the compiler override
16178 the underlying type if needed. */
16179 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16180 {
16181 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16182 if (TYPE_LENGTH (type) == 0)
16183 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16184 if (TYPE_RAW_ALIGN (type) == 0
16185 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16186 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16187 }
16188
16189 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16190
16191 return set_die_type (die, type, cu);
16192 }
16193
16194 /* Given a pointer to a die which begins an enumeration, process all
16195 the dies that define the members of the enumeration, and create the
16196 symbol for the enumeration type.
16197
16198 NOTE: We reverse the order of the element list. */
16199
16200 static void
16201 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16202 {
16203 struct type *this_type;
16204
16205 this_type = get_die_type (die, cu);
16206 if (this_type == NULL)
16207 this_type = read_enumeration_type (die, cu);
16208
16209 if (die->child != NULL)
16210 {
16211 struct die_info *child_die;
16212 struct symbol *sym;
16213 struct field *fields = NULL;
16214 int num_fields = 0;
16215 const char *name;
16216
16217 child_die = die->child;
16218 while (child_die && child_die->tag)
16219 {
16220 if (child_die->tag != DW_TAG_enumerator)
16221 {
16222 process_die (child_die, cu);
16223 }
16224 else
16225 {
16226 name = dwarf2_name (child_die, cu);
16227 if (name)
16228 {
16229 sym = new_symbol (child_die, this_type, cu);
16230
16231 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16232 {
16233 fields = (struct field *)
16234 xrealloc (fields,
16235 (num_fields + DW_FIELD_ALLOC_CHUNK)
16236 * sizeof (struct field));
16237 }
16238
16239 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16240 FIELD_TYPE (fields[num_fields]) = NULL;
16241 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16242 FIELD_BITSIZE (fields[num_fields]) = 0;
16243
16244 num_fields++;
16245 }
16246 }
16247
16248 child_die = sibling_die (child_die);
16249 }
16250
16251 if (num_fields)
16252 {
16253 TYPE_NFIELDS (this_type) = num_fields;
16254 TYPE_FIELDS (this_type) = (struct field *)
16255 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16256 memcpy (TYPE_FIELDS (this_type), fields,
16257 sizeof (struct field) * num_fields);
16258 xfree (fields);
16259 }
16260 }
16261
16262 /* If we are reading an enum from a .debug_types unit, and the enum
16263 is a declaration, and the enum is not the signatured type in the
16264 unit, then we do not want to add a symbol for it. Adding a
16265 symbol would in some cases obscure the true definition of the
16266 enum, giving users an incomplete type when the definition is
16267 actually available. Note that we do not want to do this for all
16268 enums which are just declarations, because C++0x allows forward
16269 enum declarations. */
16270 if (cu->per_cu->is_debug_types
16271 && die_is_declaration (die, cu))
16272 {
16273 struct signatured_type *sig_type;
16274
16275 sig_type = (struct signatured_type *) cu->per_cu;
16276 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16277 if (sig_type->type_offset_in_section != die->sect_off)
16278 return;
16279 }
16280
16281 new_symbol (die, this_type, cu);
16282 }
16283
16284 /* Extract all information from a DW_TAG_array_type DIE and put it in
16285 the DIE's type field. For now, this only handles one dimensional
16286 arrays. */
16287
16288 static struct type *
16289 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16290 {
16291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16292 struct die_info *child_die;
16293 struct type *type;
16294 struct type *element_type, *range_type, *index_type;
16295 struct attribute *attr;
16296 const char *name;
16297 struct dynamic_prop *byte_stride_prop = NULL;
16298 unsigned int bit_stride = 0;
16299
16300 element_type = die_type (die, cu);
16301
16302 /* The die_type call above may have already set the type for this DIE. */
16303 type = get_die_type (die, cu);
16304 if (type)
16305 return type;
16306
16307 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16308 if (attr != NULL)
16309 {
16310 int stride_ok;
16311
16312 byte_stride_prop
16313 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16314 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16315 if (!stride_ok)
16316 {
16317 complaint (_("unable to read array DW_AT_byte_stride "
16318 " - DIE at %s [in module %s]"),
16319 sect_offset_str (die->sect_off),
16320 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16321 /* Ignore this attribute. We will likely not be able to print
16322 arrays of this type correctly, but there is little we can do
16323 to help if we cannot read the attribute's value. */
16324 byte_stride_prop = NULL;
16325 }
16326 }
16327
16328 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16329 if (attr != NULL)
16330 bit_stride = DW_UNSND (attr);
16331
16332 /* Irix 6.2 native cc creates array types without children for
16333 arrays with unspecified length. */
16334 if (die->child == NULL)
16335 {
16336 index_type = objfile_type (objfile)->builtin_int;
16337 range_type = create_static_range_type (NULL, index_type, 0, -1);
16338 type = create_array_type_with_stride (NULL, element_type, range_type,
16339 byte_stride_prop, bit_stride);
16340 return set_die_type (die, type, cu);
16341 }
16342
16343 std::vector<struct type *> range_types;
16344 child_die = die->child;
16345 while (child_die && child_die->tag)
16346 {
16347 if (child_die->tag == DW_TAG_subrange_type)
16348 {
16349 struct type *child_type = read_type_die (child_die, cu);
16350
16351 if (child_type != NULL)
16352 {
16353 /* The range type was succesfully read. Save it for the
16354 array type creation. */
16355 range_types.push_back (child_type);
16356 }
16357 }
16358 child_die = sibling_die (child_die);
16359 }
16360
16361 /* Dwarf2 dimensions are output from left to right, create the
16362 necessary array types in backwards order. */
16363
16364 type = element_type;
16365
16366 if (read_array_order (die, cu) == DW_ORD_col_major)
16367 {
16368 int i = 0;
16369
16370 while (i < range_types.size ())
16371 type = create_array_type_with_stride (NULL, type, range_types[i++],
16372 byte_stride_prop, bit_stride);
16373 }
16374 else
16375 {
16376 size_t ndim = range_types.size ();
16377 while (ndim-- > 0)
16378 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16379 byte_stride_prop, bit_stride);
16380 }
16381
16382 /* Understand Dwarf2 support for vector types (like they occur on
16383 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16384 array type. This is not part of the Dwarf2/3 standard yet, but a
16385 custom vendor extension. The main difference between a regular
16386 array and the vector variant is that vectors are passed by value
16387 to functions. */
16388 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16389 if (attr)
16390 make_vector_type (type);
16391
16392 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16393 implementation may choose to implement triple vectors using this
16394 attribute. */
16395 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16396 if (attr)
16397 {
16398 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16399 TYPE_LENGTH (type) = DW_UNSND (attr);
16400 else
16401 complaint (_("DW_AT_byte_size for array type smaller "
16402 "than the total size of elements"));
16403 }
16404
16405 name = dwarf2_name (die, cu);
16406 if (name)
16407 TYPE_NAME (type) = name;
16408
16409 maybe_set_alignment (cu, die, type);
16410
16411 /* Install the type in the die. */
16412 set_die_type (die, type, cu);
16413
16414 /* set_die_type should be already done. */
16415 set_descriptive_type (type, die, cu);
16416
16417 return type;
16418 }
16419
16420 static enum dwarf_array_dim_ordering
16421 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16422 {
16423 struct attribute *attr;
16424
16425 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16426
16427 if (attr)
16428 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16429
16430 /* GNU F77 is a special case, as at 08/2004 array type info is the
16431 opposite order to the dwarf2 specification, but data is still
16432 laid out as per normal fortran.
16433
16434 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16435 version checking. */
16436
16437 if (cu->language == language_fortran
16438 && cu->producer && strstr (cu->producer, "GNU F77"))
16439 {
16440 return DW_ORD_row_major;
16441 }
16442
16443 switch (cu->language_defn->la_array_ordering)
16444 {
16445 case array_column_major:
16446 return DW_ORD_col_major;
16447 case array_row_major:
16448 default:
16449 return DW_ORD_row_major;
16450 };
16451 }
16452
16453 /* Extract all information from a DW_TAG_set_type DIE and put it in
16454 the DIE's type field. */
16455
16456 static struct type *
16457 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16458 {
16459 struct type *domain_type, *set_type;
16460 struct attribute *attr;
16461
16462 domain_type = die_type (die, cu);
16463
16464 /* The die_type call above may have already set the type for this DIE. */
16465 set_type = get_die_type (die, cu);
16466 if (set_type)
16467 return set_type;
16468
16469 set_type = create_set_type (NULL, domain_type);
16470
16471 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16472 if (attr)
16473 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16474
16475 maybe_set_alignment (cu, die, set_type);
16476
16477 return set_die_type (die, set_type, cu);
16478 }
16479
16480 /* A helper for read_common_block that creates a locexpr baton.
16481 SYM is the symbol which we are marking as computed.
16482 COMMON_DIE is the DIE for the common block.
16483 COMMON_LOC is the location expression attribute for the common
16484 block itself.
16485 MEMBER_LOC is the location expression attribute for the particular
16486 member of the common block that we are processing.
16487 CU is the CU from which the above come. */
16488
16489 static void
16490 mark_common_block_symbol_computed (struct symbol *sym,
16491 struct die_info *common_die,
16492 struct attribute *common_loc,
16493 struct attribute *member_loc,
16494 struct dwarf2_cu *cu)
16495 {
16496 struct dwarf2_per_objfile *dwarf2_per_objfile
16497 = cu->per_cu->dwarf2_per_objfile;
16498 struct objfile *objfile = dwarf2_per_objfile->objfile;
16499 struct dwarf2_locexpr_baton *baton;
16500 gdb_byte *ptr;
16501 unsigned int cu_off;
16502 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16503 LONGEST offset = 0;
16504
16505 gdb_assert (common_loc && member_loc);
16506 gdb_assert (attr_form_is_block (common_loc));
16507 gdb_assert (attr_form_is_block (member_loc)
16508 || attr_form_is_constant (member_loc));
16509
16510 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16511 baton->per_cu = cu->per_cu;
16512 gdb_assert (baton->per_cu);
16513
16514 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16515
16516 if (attr_form_is_constant (member_loc))
16517 {
16518 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16519 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16520 }
16521 else
16522 baton->size += DW_BLOCK (member_loc)->size;
16523
16524 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16525 baton->data = ptr;
16526
16527 *ptr++ = DW_OP_call4;
16528 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16529 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16530 ptr += 4;
16531
16532 if (attr_form_is_constant (member_loc))
16533 {
16534 *ptr++ = DW_OP_addr;
16535 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16536 ptr += cu->header.addr_size;
16537 }
16538 else
16539 {
16540 /* We have to copy the data here, because DW_OP_call4 will only
16541 use a DW_AT_location attribute. */
16542 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16543 ptr += DW_BLOCK (member_loc)->size;
16544 }
16545
16546 *ptr++ = DW_OP_plus;
16547 gdb_assert (ptr - baton->data == baton->size);
16548
16549 SYMBOL_LOCATION_BATON (sym) = baton;
16550 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16551 }
16552
16553 /* Create appropriate locally-scoped variables for all the
16554 DW_TAG_common_block entries. Also create a struct common_block
16555 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16556 is used to sepate the common blocks name namespace from regular
16557 variable names. */
16558
16559 static void
16560 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16561 {
16562 struct attribute *attr;
16563
16564 attr = dwarf2_attr (die, DW_AT_location, cu);
16565 if (attr)
16566 {
16567 /* Support the .debug_loc offsets. */
16568 if (attr_form_is_block (attr))
16569 {
16570 /* Ok. */
16571 }
16572 else if (attr_form_is_section_offset (attr))
16573 {
16574 dwarf2_complex_location_expr_complaint ();
16575 attr = NULL;
16576 }
16577 else
16578 {
16579 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16580 "common block member");
16581 attr = NULL;
16582 }
16583 }
16584
16585 if (die->child != NULL)
16586 {
16587 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16588 struct die_info *child_die;
16589 size_t n_entries = 0, size;
16590 struct common_block *common_block;
16591 struct symbol *sym;
16592
16593 for (child_die = die->child;
16594 child_die && child_die->tag;
16595 child_die = sibling_die (child_die))
16596 ++n_entries;
16597
16598 size = (sizeof (struct common_block)
16599 + (n_entries - 1) * sizeof (struct symbol *));
16600 common_block
16601 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16602 size);
16603 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16604 common_block->n_entries = 0;
16605
16606 for (child_die = die->child;
16607 child_die && child_die->tag;
16608 child_die = sibling_die (child_die))
16609 {
16610 /* Create the symbol in the DW_TAG_common_block block in the current
16611 symbol scope. */
16612 sym = new_symbol (child_die, NULL, cu);
16613 if (sym != NULL)
16614 {
16615 struct attribute *member_loc;
16616
16617 common_block->contents[common_block->n_entries++] = sym;
16618
16619 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16620 cu);
16621 if (member_loc)
16622 {
16623 /* GDB has handled this for a long time, but it is
16624 not specified by DWARF. It seems to have been
16625 emitted by gfortran at least as recently as:
16626 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16627 complaint (_("Variable in common block has "
16628 "DW_AT_data_member_location "
16629 "- DIE at %s [in module %s]"),
16630 sect_offset_str (child_die->sect_off),
16631 objfile_name (objfile));
16632
16633 if (attr_form_is_section_offset (member_loc))
16634 dwarf2_complex_location_expr_complaint ();
16635 else if (attr_form_is_constant (member_loc)
16636 || attr_form_is_block (member_loc))
16637 {
16638 if (attr)
16639 mark_common_block_symbol_computed (sym, die, attr,
16640 member_loc, cu);
16641 }
16642 else
16643 dwarf2_complex_location_expr_complaint ();
16644 }
16645 }
16646 }
16647
16648 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16649 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16650 }
16651 }
16652
16653 /* Create a type for a C++ namespace. */
16654
16655 static struct type *
16656 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16657 {
16658 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16659 const char *previous_prefix, *name;
16660 int is_anonymous;
16661 struct type *type;
16662
16663 /* For extensions, reuse the type of the original namespace. */
16664 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16665 {
16666 struct die_info *ext_die;
16667 struct dwarf2_cu *ext_cu = cu;
16668
16669 ext_die = dwarf2_extension (die, &ext_cu);
16670 type = read_type_die (ext_die, ext_cu);
16671
16672 /* EXT_CU may not be the same as CU.
16673 Ensure TYPE is recorded with CU in die_type_hash. */
16674 return set_die_type (die, type, cu);
16675 }
16676
16677 name = namespace_name (die, &is_anonymous, cu);
16678
16679 /* Now build the name of the current namespace. */
16680
16681 previous_prefix = determine_prefix (die, cu);
16682 if (previous_prefix[0] != '\0')
16683 name = typename_concat (&objfile->objfile_obstack,
16684 previous_prefix, name, 0, cu);
16685
16686 /* Create the type. */
16687 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16688 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16689
16690 return set_die_type (die, type, cu);
16691 }
16692
16693 /* Read a namespace scope. */
16694
16695 static void
16696 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16697 {
16698 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16699 int is_anonymous;
16700
16701 /* Add a symbol associated to this if we haven't seen the namespace
16702 before. Also, add a using directive if it's an anonymous
16703 namespace. */
16704
16705 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16706 {
16707 struct type *type;
16708
16709 type = read_type_die (die, cu);
16710 new_symbol (die, type, cu);
16711
16712 namespace_name (die, &is_anonymous, cu);
16713 if (is_anonymous)
16714 {
16715 const char *previous_prefix = determine_prefix (die, cu);
16716
16717 std::vector<const char *> excludes;
16718 add_using_directive (using_directives (cu->language),
16719 previous_prefix, TYPE_NAME (type), NULL,
16720 NULL, excludes, 0, &objfile->objfile_obstack);
16721 }
16722 }
16723
16724 if (die->child != NULL)
16725 {
16726 struct die_info *child_die = die->child;
16727
16728 while (child_die && child_die->tag)
16729 {
16730 process_die (child_die, cu);
16731 child_die = sibling_die (child_die);
16732 }
16733 }
16734 }
16735
16736 /* Read a Fortran module as type. This DIE can be only a declaration used for
16737 imported module. Still we need that type as local Fortran "use ... only"
16738 declaration imports depend on the created type in determine_prefix. */
16739
16740 static struct type *
16741 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16742 {
16743 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16744 const char *module_name;
16745 struct type *type;
16746
16747 module_name = dwarf2_name (die, cu);
16748 if (!module_name)
16749 complaint (_("DW_TAG_module has no name, offset %s"),
16750 sect_offset_str (die->sect_off));
16751 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16752
16753 /* determine_prefix uses TYPE_TAG_NAME. */
16754 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16755
16756 return set_die_type (die, type, cu);
16757 }
16758
16759 /* Read a Fortran module. */
16760
16761 static void
16762 read_module (struct die_info *die, struct dwarf2_cu *cu)
16763 {
16764 struct die_info *child_die = die->child;
16765 struct type *type;
16766
16767 type = read_type_die (die, cu);
16768 new_symbol (die, type, cu);
16769
16770 while (child_die && child_die->tag)
16771 {
16772 process_die (child_die, cu);
16773 child_die = sibling_die (child_die);
16774 }
16775 }
16776
16777 /* Return the name of the namespace represented by DIE. Set
16778 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16779 namespace. */
16780
16781 static const char *
16782 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16783 {
16784 struct die_info *current_die;
16785 const char *name = NULL;
16786
16787 /* Loop through the extensions until we find a name. */
16788
16789 for (current_die = die;
16790 current_die != NULL;
16791 current_die = dwarf2_extension (die, &cu))
16792 {
16793 /* We don't use dwarf2_name here so that we can detect the absence
16794 of a name -> anonymous namespace. */
16795 name = dwarf2_string_attr (die, DW_AT_name, cu);
16796
16797 if (name != NULL)
16798 break;
16799 }
16800
16801 /* Is it an anonymous namespace? */
16802
16803 *is_anonymous = (name == NULL);
16804 if (*is_anonymous)
16805 name = CP_ANONYMOUS_NAMESPACE_STR;
16806
16807 return name;
16808 }
16809
16810 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16811 the user defined type vector. */
16812
16813 static struct type *
16814 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16815 {
16816 struct gdbarch *gdbarch
16817 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16818 struct comp_unit_head *cu_header = &cu->header;
16819 struct type *type;
16820 struct attribute *attr_byte_size;
16821 struct attribute *attr_address_class;
16822 int byte_size, addr_class;
16823 struct type *target_type;
16824
16825 target_type = die_type (die, cu);
16826
16827 /* The die_type call above may have already set the type for this DIE. */
16828 type = get_die_type (die, cu);
16829 if (type)
16830 return type;
16831
16832 type = lookup_pointer_type (target_type);
16833
16834 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16835 if (attr_byte_size)
16836 byte_size = DW_UNSND (attr_byte_size);
16837 else
16838 byte_size = cu_header->addr_size;
16839
16840 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16841 if (attr_address_class)
16842 addr_class = DW_UNSND (attr_address_class);
16843 else
16844 addr_class = DW_ADDR_none;
16845
16846 ULONGEST alignment = get_alignment (cu, die);
16847
16848 /* If the pointer size, alignment, or address class is different
16849 than the default, create a type variant marked as such and set
16850 the length accordingly. */
16851 if (TYPE_LENGTH (type) != byte_size
16852 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16853 && alignment != TYPE_RAW_ALIGN (type))
16854 || addr_class != DW_ADDR_none)
16855 {
16856 if (gdbarch_address_class_type_flags_p (gdbarch))
16857 {
16858 int type_flags;
16859
16860 type_flags = gdbarch_address_class_type_flags
16861 (gdbarch, byte_size, addr_class);
16862 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16863 == 0);
16864 type = make_type_with_address_space (type, type_flags);
16865 }
16866 else if (TYPE_LENGTH (type) != byte_size)
16867 {
16868 complaint (_("invalid pointer size %d"), byte_size);
16869 }
16870 else if (TYPE_RAW_ALIGN (type) != alignment)
16871 {
16872 complaint (_("Invalid DW_AT_alignment"
16873 " - DIE at %s [in module %s]"),
16874 sect_offset_str (die->sect_off),
16875 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16876 }
16877 else
16878 {
16879 /* Should we also complain about unhandled address classes? */
16880 }
16881 }
16882
16883 TYPE_LENGTH (type) = byte_size;
16884 set_type_align (type, alignment);
16885 return set_die_type (die, type, cu);
16886 }
16887
16888 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16889 the user defined type vector. */
16890
16891 static struct type *
16892 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16893 {
16894 struct type *type;
16895 struct type *to_type;
16896 struct type *domain;
16897
16898 to_type = die_type (die, cu);
16899 domain = die_containing_type (die, cu);
16900
16901 /* The calls above may have already set the type for this DIE. */
16902 type = get_die_type (die, cu);
16903 if (type)
16904 return type;
16905
16906 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16907 type = lookup_methodptr_type (to_type);
16908 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16909 {
16910 struct type *new_type
16911 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16912
16913 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16914 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16915 TYPE_VARARGS (to_type));
16916 type = lookup_methodptr_type (new_type);
16917 }
16918 else
16919 type = lookup_memberptr_type (to_type, domain);
16920
16921 return set_die_type (die, type, cu);
16922 }
16923
16924 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16925 the user defined type vector. */
16926
16927 static struct type *
16928 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16929 enum type_code refcode)
16930 {
16931 struct comp_unit_head *cu_header = &cu->header;
16932 struct type *type, *target_type;
16933 struct attribute *attr;
16934
16935 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16936
16937 target_type = die_type (die, cu);
16938
16939 /* The die_type call above may have already set the type for this DIE. */
16940 type = get_die_type (die, cu);
16941 if (type)
16942 return type;
16943
16944 type = lookup_reference_type (target_type, refcode);
16945 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16946 if (attr)
16947 {
16948 TYPE_LENGTH (type) = DW_UNSND (attr);
16949 }
16950 else
16951 {
16952 TYPE_LENGTH (type) = cu_header->addr_size;
16953 }
16954 maybe_set_alignment (cu, die, type);
16955 return set_die_type (die, type, cu);
16956 }
16957
16958 /* Add the given cv-qualifiers to the element type of the array. GCC
16959 outputs DWARF type qualifiers that apply to an array, not the
16960 element type. But GDB relies on the array element type to carry
16961 the cv-qualifiers. This mimics section 6.7.3 of the C99
16962 specification. */
16963
16964 static struct type *
16965 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16966 struct type *base_type, int cnst, int voltl)
16967 {
16968 struct type *el_type, *inner_array;
16969
16970 base_type = copy_type (base_type);
16971 inner_array = base_type;
16972
16973 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16974 {
16975 TYPE_TARGET_TYPE (inner_array) =
16976 copy_type (TYPE_TARGET_TYPE (inner_array));
16977 inner_array = TYPE_TARGET_TYPE (inner_array);
16978 }
16979
16980 el_type = TYPE_TARGET_TYPE (inner_array);
16981 cnst |= TYPE_CONST (el_type);
16982 voltl |= TYPE_VOLATILE (el_type);
16983 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16984
16985 return set_die_type (die, base_type, cu);
16986 }
16987
16988 static struct type *
16989 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16990 {
16991 struct type *base_type, *cv_type;
16992
16993 base_type = die_type (die, cu);
16994
16995 /* The die_type call above may have already set the type for this DIE. */
16996 cv_type = get_die_type (die, cu);
16997 if (cv_type)
16998 return cv_type;
16999
17000 /* In case the const qualifier is applied to an array type, the element type
17001 is so qualified, not the array type (section 6.7.3 of C99). */
17002 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17003 return add_array_cv_type (die, cu, base_type, 1, 0);
17004
17005 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17006 return set_die_type (die, cv_type, cu);
17007 }
17008
17009 static struct type *
17010 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17011 {
17012 struct type *base_type, *cv_type;
17013
17014 base_type = die_type (die, cu);
17015
17016 /* The die_type call above may have already set the type for this DIE. */
17017 cv_type = get_die_type (die, cu);
17018 if (cv_type)
17019 return cv_type;
17020
17021 /* In case the volatile qualifier is applied to an array type, the
17022 element type is so qualified, not the array type (section 6.7.3
17023 of C99). */
17024 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17025 return add_array_cv_type (die, cu, base_type, 0, 1);
17026
17027 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17028 return set_die_type (die, cv_type, cu);
17029 }
17030
17031 /* Handle DW_TAG_restrict_type. */
17032
17033 static struct type *
17034 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17035 {
17036 struct type *base_type, *cv_type;
17037
17038 base_type = die_type (die, cu);
17039
17040 /* The die_type call above may have already set the type for this DIE. */
17041 cv_type = get_die_type (die, cu);
17042 if (cv_type)
17043 return cv_type;
17044
17045 cv_type = make_restrict_type (base_type);
17046 return set_die_type (die, cv_type, cu);
17047 }
17048
17049 /* Handle DW_TAG_atomic_type. */
17050
17051 static struct type *
17052 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17053 {
17054 struct type *base_type, *cv_type;
17055
17056 base_type = die_type (die, cu);
17057
17058 /* The die_type call above may have already set the type for this DIE. */
17059 cv_type = get_die_type (die, cu);
17060 if (cv_type)
17061 return cv_type;
17062
17063 cv_type = make_atomic_type (base_type);
17064 return set_die_type (die, cv_type, cu);
17065 }
17066
17067 /* Extract all information from a DW_TAG_string_type DIE and add to
17068 the user defined type vector. It isn't really a user defined type,
17069 but it behaves like one, with other DIE's using an AT_user_def_type
17070 attribute to reference it. */
17071
17072 static struct type *
17073 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17074 {
17075 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17076 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17077 struct type *type, *range_type, *index_type, *char_type;
17078 struct attribute *attr;
17079 unsigned int length;
17080
17081 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17082 if (attr)
17083 {
17084 length = DW_UNSND (attr);
17085 }
17086 else
17087 {
17088 /* Check for the DW_AT_byte_size attribute. */
17089 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17090 if (attr)
17091 {
17092 length = DW_UNSND (attr);
17093 }
17094 else
17095 {
17096 length = 1;
17097 }
17098 }
17099
17100 index_type = objfile_type (objfile)->builtin_int;
17101 range_type = create_static_range_type (NULL, index_type, 1, length);
17102 char_type = language_string_char_type (cu->language_defn, gdbarch);
17103 type = create_string_type (NULL, char_type, range_type);
17104
17105 return set_die_type (die, type, cu);
17106 }
17107
17108 /* Assuming that DIE corresponds to a function, returns nonzero
17109 if the function is prototyped. */
17110
17111 static int
17112 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17113 {
17114 struct attribute *attr;
17115
17116 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17117 if (attr && (DW_UNSND (attr) != 0))
17118 return 1;
17119
17120 /* The DWARF standard implies that the DW_AT_prototyped attribute
17121 is only meaninful for C, but the concept also extends to other
17122 languages that allow unprototyped functions (Eg: Objective C).
17123 For all other languages, assume that functions are always
17124 prototyped. */
17125 if (cu->language != language_c
17126 && cu->language != language_objc
17127 && cu->language != language_opencl)
17128 return 1;
17129
17130 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17131 prototyped and unprototyped functions; default to prototyped,
17132 since that is more common in modern code (and RealView warns
17133 about unprototyped functions). */
17134 if (producer_is_realview (cu->producer))
17135 return 1;
17136
17137 return 0;
17138 }
17139
17140 /* Handle DIES due to C code like:
17141
17142 struct foo
17143 {
17144 int (*funcp)(int a, long l);
17145 int b;
17146 };
17147
17148 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17149
17150 static struct type *
17151 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17152 {
17153 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17154 struct type *type; /* Type that this function returns. */
17155 struct type *ftype; /* Function that returns above type. */
17156 struct attribute *attr;
17157
17158 type = die_type (die, cu);
17159
17160 /* The die_type call above may have already set the type for this DIE. */
17161 ftype = get_die_type (die, cu);
17162 if (ftype)
17163 return ftype;
17164
17165 ftype = lookup_function_type (type);
17166
17167 if (prototyped_function_p (die, cu))
17168 TYPE_PROTOTYPED (ftype) = 1;
17169
17170 /* Store the calling convention in the type if it's available in
17171 the subroutine die. Otherwise set the calling convention to
17172 the default value DW_CC_normal. */
17173 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17174 if (attr)
17175 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17176 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17177 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17178 else
17179 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17180
17181 /* Record whether the function returns normally to its caller or not
17182 if the DWARF producer set that information. */
17183 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17184 if (attr && (DW_UNSND (attr) != 0))
17185 TYPE_NO_RETURN (ftype) = 1;
17186
17187 /* We need to add the subroutine type to the die immediately so
17188 we don't infinitely recurse when dealing with parameters
17189 declared as the same subroutine type. */
17190 set_die_type (die, ftype, cu);
17191
17192 if (die->child != NULL)
17193 {
17194 struct type *void_type = objfile_type (objfile)->builtin_void;
17195 struct die_info *child_die;
17196 int nparams, iparams;
17197
17198 /* Count the number of parameters.
17199 FIXME: GDB currently ignores vararg functions, but knows about
17200 vararg member functions. */
17201 nparams = 0;
17202 child_die = die->child;
17203 while (child_die && child_die->tag)
17204 {
17205 if (child_die->tag == DW_TAG_formal_parameter)
17206 nparams++;
17207 else if (child_die->tag == DW_TAG_unspecified_parameters)
17208 TYPE_VARARGS (ftype) = 1;
17209 child_die = sibling_die (child_die);
17210 }
17211
17212 /* Allocate storage for parameters and fill them in. */
17213 TYPE_NFIELDS (ftype) = nparams;
17214 TYPE_FIELDS (ftype) = (struct field *)
17215 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17216
17217 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17218 even if we error out during the parameters reading below. */
17219 for (iparams = 0; iparams < nparams; iparams++)
17220 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17221
17222 iparams = 0;
17223 child_die = die->child;
17224 while (child_die && child_die->tag)
17225 {
17226 if (child_die->tag == DW_TAG_formal_parameter)
17227 {
17228 struct type *arg_type;
17229
17230 /* DWARF version 2 has no clean way to discern C++
17231 static and non-static member functions. G++ helps
17232 GDB by marking the first parameter for non-static
17233 member functions (which is the this pointer) as
17234 artificial. We pass this information to
17235 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17236
17237 DWARF version 3 added DW_AT_object_pointer, which GCC
17238 4.5 does not yet generate. */
17239 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17240 if (attr)
17241 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17242 else
17243 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17244 arg_type = die_type (child_die, cu);
17245
17246 /* RealView does not mark THIS as const, which the testsuite
17247 expects. GCC marks THIS as const in method definitions,
17248 but not in the class specifications (GCC PR 43053). */
17249 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17250 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17251 {
17252 int is_this = 0;
17253 struct dwarf2_cu *arg_cu = cu;
17254 const char *name = dwarf2_name (child_die, cu);
17255
17256 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17257 if (attr)
17258 {
17259 /* If the compiler emits this, use it. */
17260 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17261 is_this = 1;
17262 }
17263 else if (name && strcmp (name, "this") == 0)
17264 /* Function definitions will have the argument names. */
17265 is_this = 1;
17266 else if (name == NULL && iparams == 0)
17267 /* Declarations may not have the names, so like
17268 elsewhere in GDB, assume an artificial first
17269 argument is "this". */
17270 is_this = 1;
17271
17272 if (is_this)
17273 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17274 arg_type, 0);
17275 }
17276
17277 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17278 iparams++;
17279 }
17280 child_die = sibling_die (child_die);
17281 }
17282 }
17283
17284 return ftype;
17285 }
17286
17287 static struct type *
17288 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17289 {
17290 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17291 const char *name = NULL;
17292 struct type *this_type, *target_type;
17293
17294 name = dwarf2_full_name (NULL, die, cu);
17295 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17296 TYPE_TARGET_STUB (this_type) = 1;
17297 set_die_type (die, this_type, cu);
17298 target_type = die_type (die, cu);
17299 if (target_type != this_type)
17300 TYPE_TARGET_TYPE (this_type) = target_type;
17301 else
17302 {
17303 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17304 spec and cause infinite loops in GDB. */
17305 complaint (_("Self-referential DW_TAG_typedef "
17306 "- DIE at %s [in module %s]"),
17307 sect_offset_str (die->sect_off), objfile_name (objfile));
17308 TYPE_TARGET_TYPE (this_type) = NULL;
17309 }
17310 return this_type;
17311 }
17312
17313 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17314 (which may be different from NAME) to the architecture back-end to allow
17315 it to guess the correct format if necessary. */
17316
17317 static struct type *
17318 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17319 const char *name_hint)
17320 {
17321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17322 const struct floatformat **format;
17323 struct type *type;
17324
17325 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17326 if (format)
17327 type = init_float_type (objfile, bits, name, format);
17328 else
17329 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17330
17331 return type;
17332 }
17333
17334 /* Find a representation of a given base type and install
17335 it in the TYPE field of the die. */
17336
17337 static struct type *
17338 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17339 {
17340 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17341 struct type *type;
17342 struct attribute *attr;
17343 int encoding = 0, bits = 0;
17344 const char *name;
17345
17346 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17347 if (attr)
17348 {
17349 encoding = DW_UNSND (attr);
17350 }
17351 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17352 if (attr)
17353 {
17354 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17355 }
17356 name = dwarf2_name (die, cu);
17357 if (!name)
17358 {
17359 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17360 }
17361
17362 switch (encoding)
17363 {
17364 case DW_ATE_address:
17365 /* Turn DW_ATE_address into a void * pointer. */
17366 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17367 type = init_pointer_type (objfile, bits, name, type);
17368 break;
17369 case DW_ATE_boolean:
17370 type = init_boolean_type (objfile, bits, 1, name);
17371 break;
17372 case DW_ATE_complex_float:
17373 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17374 type = init_complex_type (objfile, name, type);
17375 break;
17376 case DW_ATE_decimal_float:
17377 type = init_decfloat_type (objfile, bits, name);
17378 break;
17379 case DW_ATE_float:
17380 type = dwarf2_init_float_type (objfile, bits, name, name);
17381 break;
17382 case DW_ATE_signed:
17383 type = init_integer_type (objfile, bits, 0, name);
17384 break;
17385 case DW_ATE_unsigned:
17386 if (cu->language == language_fortran
17387 && name
17388 && startswith (name, "character("))
17389 type = init_character_type (objfile, bits, 1, name);
17390 else
17391 type = init_integer_type (objfile, bits, 1, name);
17392 break;
17393 case DW_ATE_signed_char:
17394 if (cu->language == language_ada || cu->language == language_m2
17395 || cu->language == language_pascal
17396 || cu->language == language_fortran)
17397 type = init_character_type (objfile, bits, 0, name);
17398 else
17399 type = init_integer_type (objfile, bits, 0, name);
17400 break;
17401 case DW_ATE_unsigned_char:
17402 if (cu->language == language_ada || cu->language == language_m2
17403 || cu->language == language_pascal
17404 || cu->language == language_fortran
17405 || cu->language == language_rust)
17406 type = init_character_type (objfile, bits, 1, name);
17407 else
17408 type = init_integer_type (objfile, bits, 1, name);
17409 break;
17410 case DW_ATE_UTF:
17411 {
17412 gdbarch *arch = get_objfile_arch (objfile);
17413
17414 if (bits == 16)
17415 type = builtin_type (arch)->builtin_char16;
17416 else if (bits == 32)
17417 type = builtin_type (arch)->builtin_char32;
17418 else
17419 {
17420 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17421 bits);
17422 type = init_integer_type (objfile, bits, 1, name);
17423 }
17424 return set_die_type (die, type, cu);
17425 }
17426 break;
17427
17428 default:
17429 complaint (_("unsupported DW_AT_encoding: '%s'"),
17430 dwarf_type_encoding_name (encoding));
17431 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17432 break;
17433 }
17434
17435 if (name && strcmp (name, "char") == 0)
17436 TYPE_NOSIGN (type) = 1;
17437
17438 maybe_set_alignment (cu, die, type);
17439
17440 return set_die_type (die, type, cu);
17441 }
17442
17443 /* Parse dwarf attribute if it's a block, reference or constant and put the
17444 resulting value of the attribute into struct bound_prop.
17445 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17446
17447 static int
17448 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17449 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17450 {
17451 struct dwarf2_property_baton *baton;
17452 struct obstack *obstack
17453 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17454
17455 if (attr == NULL || prop == NULL)
17456 return 0;
17457
17458 if (attr_form_is_block (attr))
17459 {
17460 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17461 baton->referenced_type = NULL;
17462 baton->locexpr.per_cu = cu->per_cu;
17463 baton->locexpr.size = DW_BLOCK (attr)->size;
17464 baton->locexpr.data = DW_BLOCK (attr)->data;
17465 prop->data.baton = baton;
17466 prop->kind = PROP_LOCEXPR;
17467 gdb_assert (prop->data.baton != NULL);
17468 }
17469 else if (attr_form_is_ref (attr))
17470 {
17471 struct dwarf2_cu *target_cu = cu;
17472 struct die_info *target_die;
17473 struct attribute *target_attr;
17474
17475 target_die = follow_die_ref (die, attr, &target_cu);
17476 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17477 if (target_attr == NULL)
17478 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17479 target_cu);
17480 if (target_attr == NULL)
17481 return 0;
17482
17483 switch (target_attr->name)
17484 {
17485 case DW_AT_location:
17486 if (attr_form_is_section_offset (target_attr))
17487 {
17488 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17489 baton->referenced_type = die_type (target_die, target_cu);
17490 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17491 prop->data.baton = baton;
17492 prop->kind = PROP_LOCLIST;
17493 gdb_assert (prop->data.baton != NULL);
17494 }
17495 else if (attr_form_is_block (target_attr))
17496 {
17497 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17498 baton->referenced_type = die_type (target_die, target_cu);
17499 baton->locexpr.per_cu = cu->per_cu;
17500 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17501 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17502 prop->data.baton = baton;
17503 prop->kind = PROP_LOCEXPR;
17504 gdb_assert (prop->data.baton != NULL);
17505 }
17506 else
17507 {
17508 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17509 "dynamic property");
17510 return 0;
17511 }
17512 break;
17513 case DW_AT_data_member_location:
17514 {
17515 LONGEST offset;
17516
17517 if (!handle_data_member_location (target_die, target_cu,
17518 &offset))
17519 return 0;
17520
17521 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17522 baton->referenced_type = read_type_die (target_die->parent,
17523 target_cu);
17524 baton->offset_info.offset = offset;
17525 baton->offset_info.type = die_type (target_die, target_cu);
17526 prop->data.baton = baton;
17527 prop->kind = PROP_ADDR_OFFSET;
17528 break;
17529 }
17530 }
17531 }
17532 else if (attr_form_is_constant (attr))
17533 {
17534 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17535 prop->kind = PROP_CONST;
17536 }
17537 else
17538 {
17539 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17540 dwarf2_name (die, cu));
17541 return 0;
17542 }
17543
17544 return 1;
17545 }
17546
17547 /* Read the given DW_AT_subrange DIE. */
17548
17549 static struct type *
17550 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17551 {
17552 struct type *base_type, *orig_base_type;
17553 struct type *range_type;
17554 struct attribute *attr;
17555 struct dynamic_prop low, high;
17556 int low_default_is_valid;
17557 int high_bound_is_count = 0;
17558 const char *name;
17559 LONGEST negative_mask;
17560
17561 orig_base_type = die_type (die, cu);
17562 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17563 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17564 creating the range type, but we use the result of check_typedef
17565 when examining properties of the type. */
17566 base_type = check_typedef (orig_base_type);
17567
17568 /* The die_type call above may have already set the type for this DIE. */
17569 range_type = get_die_type (die, cu);
17570 if (range_type)
17571 return range_type;
17572
17573 low.kind = PROP_CONST;
17574 high.kind = PROP_CONST;
17575 high.data.const_val = 0;
17576
17577 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17578 omitting DW_AT_lower_bound. */
17579 switch (cu->language)
17580 {
17581 case language_c:
17582 case language_cplus:
17583 low.data.const_val = 0;
17584 low_default_is_valid = 1;
17585 break;
17586 case language_fortran:
17587 low.data.const_val = 1;
17588 low_default_is_valid = 1;
17589 break;
17590 case language_d:
17591 case language_objc:
17592 case language_rust:
17593 low.data.const_val = 0;
17594 low_default_is_valid = (cu->header.version >= 4);
17595 break;
17596 case language_ada:
17597 case language_m2:
17598 case language_pascal:
17599 low.data.const_val = 1;
17600 low_default_is_valid = (cu->header.version >= 4);
17601 break;
17602 default:
17603 low.data.const_val = 0;
17604 low_default_is_valid = 0;
17605 break;
17606 }
17607
17608 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17609 if (attr)
17610 attr_to_dynamic_prop (attr, die, cu, &low);
17611 else if (!low_default_is_valid)
17612 complaint (_("Missing DW_AT_lower_bound "
17613 "- DIE at %s [in module %s]"),
17614 sect_offset_str (die->sect_off),
17615 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17616
17617 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17618 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17619 {
17620 attr = dwarf2_attr (die, DW_AT_count, cu);
17621 if (attr_to_dynamic_prop (attr, die, cu, &high))
17622 {
17623 /* If bounds are constant do the final calculation here. */
17624 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17625 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17626 else
17627 high_bound_is_count = 1;
17628 }
17629 }
17630
17631 /* Dwarf-2 specifications explicitly allows to create subrange types
17632 without specifying a base type.
17633 In that case, the base type must be set to the type of
17634 the lower bound, upper bound or count, in that order, if any of these
17635 three attributes references an object that has a type.
17636 If no base type is found, the Dwarf-2 specifications say that
17637 a signed integer type of size equal to the size of an address should
17638 be used.
17639 For the following C code: `extern char gdb_int [];'
17640 GCC produces an empty range DIE.
17641 FIXME: muller/2010-05-28: Possible references to object for low bound,
17642 high bound or count are not yet handled by this code. */
17643 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17644 {
17645 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17647 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17648 struct type *int_type = objfile_type (objfile)->builtin_int;
17649
17650 /* Test "int", "long int", and "long long int" objfile types,
17651 and select the first one having a size above or equal to the
17652 architecture address size. */
17653 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17654 base_type = int_type;
17655 else
17656 {
17657 int_type = objfile_type (objfile)->builtin_long;
17658 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17659 base_type = int_type;
17660 else
17661 {
17662 int_type = objfile_type (objfile)->builtin_long_long;
17663 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17664 base_type = int_type;
17665 }
17666 }
17667 }
17668
17669 /* Normally, the DWARF producers are expected to use a signed
17670 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17671 But this is unfortunately not always the case, as witnessed
17672 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17673 is used instead. To work around that ambiguity, we treat
17674 the bounds as signed, and thus sign-extend their values, when
17675 the base type is signed. */
17676 negative_mask =
17677 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17678 if (low.kind == PROP_CONST
17679 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17680 low.data.const_val |= negative_mask;
17681 if (high.kind == PROP_CONST
17682 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17683 high.data.const_val |= negative_mask;
17684
17685 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17686
17687 if (high_bound_is_count)
17688 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17689
17690 /* Ada expects an empty array on no boundary attributes. */
17691 if (attr == NULL && cu->language != language_ada)
17692 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17693
17694 name = dwarf2_name (die, cu);
17695 if (name)
17696 TYPE_NAME (range_type) = name;
17697
17698 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17699 if (attr)
17700 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17701
17702 maybe_set_alignment (cu, die, range_type);
17703
17704 set_die_type (die, range_type, cu);
17705
17706 /* set_die_type should be already done. */
17707 set_descriptive_type (range_type, die, cu);
17708
17709 return range_type;
17710 }
17711
17712 static struct type *
17713 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17714 {
17715 struct type *type;
17716
17717 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17718 NULL);
17719 TYPE_NAME (type) = dwarf2_name (die, cu);
17720
17721 /* In Ada, an unspecified type is typically used when the description
17722 of the type is defered to a different unit. When encountering
17723 such a type, we treat it as a stub, and try to resolve it later on,
17724 when needed. */
17725 if (cu->language == language_ada)
17726 TYPE_STUB (type) = 1;
17727
17728 return set_die_type (die, type, cu);
17729 }
17730
17731 /* Read a single die and all its descendents. Set the die's sibling
17732 field to NULL; set other fields in the die correctly, and set all
17733 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17734 location of the info_ptr after reading all of those dies. PARENT
17735 is the parent of the die in question. */
17736
17737 static struct die_info *
17738 read_die_and_children (const struct die_reader_specs *reader,
17739 const gdb_byte *info_ptr,
17740 const gdb_byte **new_info_ptr,
17741 struct die_info *parent)
17742 {
17743 struct die_info *die;
17744 const gdb_byte *cur_ptr;
17745 int has_children;
17746
17747 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17748 if (die == NULL)
17749 {
17750 *new_info_ptr = cur_ptr;
17751 return NULL;
17752 }
17753 store_in_ref_table (die, reader->cu);
17754
17755 if (has_children)
17756 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17757 else
17758 {
17759 die->child = NULL;
17760 *new_info_ptr = cur_ptr;
17761 }
17762
17763 die->sibling = NULL;
17764 die->parent = parent;
17765 return die;
17766 }
17767
17768 /* Read a die, all of its descendents, and all of its siblings; set
17769 all of the fields of all of the dies correctly. Arguments are as
17770 in read_die_and_children. */
17771
17772 static struct die_info *
17773 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17774 const gdb_byte *info_ptr,
17775 const gdb_byte **new_info_ptr,
17776 struct die_info *parent)
17777 {
17778 struct die_info *first_die, *last_sibling;
17779 const gdb_byte *cur_ptr;
17780
17781 cur_ptr = info_ptr;
17782 first_die = last_sibling = NULL;
17783
17784 while (1)
17785 {
17786 struct die_info *die
17787 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17788
17789 if (die == NULL)
17790 {
17791 *new_info_ptr = cur_ptr;
17792 return first_die;
17793 }
17794
17795 if (!first_die)
17796 first_die = die;
17797 else
17798 last_sibling->sibling = die;
17799
17800 last_sibling = die;
17801 }
17802 }
17803
17804 /* Read a die, all of its descendents, and all of its siblings; set
17805 all of the fields of all of the dies correctly. Arguments are as
17806 in read_die_and_children.
17807 This the main entry point for reading a DIE and all its children. */
17808
17809 static struct die_info *
17810 read_die_and_siblings (const struct die_reader_specs *reader,
17811 const gdb_byte *info_ptr,
17812 const gdb_byte **new_info_ptr,
17813 struct die_info *parent)
17814 {
17815 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17816 new_info_ptr, parent);
17817
17818 if (dwarf_die_debug)
17819 {
17820 fprintf_unfiltered (gdb_stdlog,
17821 "Read die from %s@0x%x of %s:\n",
17822 get_section_name (reader->die_section),
17823 (unsigned) (info_ptr - reader->die_section->buffer),
17824 bfd_get_filename (reader->abfd));
17825 dump_die (die, dwarf_die_debug);
17826 }
17827
17828 return die;
17829 }
17830
17831 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17832 attributes.
17833 The caller is responsible for filling in the extra attributes
17834 and updating (*DIEP)->num_attrs.
17835 Set DIEP to point to a newly allocated die with its information,
17836 except for its child, sibling, and parent fields.
17837 Set HAS_CHILDREN to tell whether the die has children or not. */
17838
17839 static const gdb_byte *
17840 read_full_die_1 (const struct die_reader_specs *reader,
17841 struct die_info **diep, const gdb_byte *info_ptr,
17842 int *has_children, int num_extra_attrs)
17843 {
17844 unsigned int abbrev_number, bytes_read, i;
17845 struct abbrev_info *abbrev;
17846 struct die_info *die;
17847 struct dwarf2_cu *cu = reader->cu;
17848 bfd *abfd = reader->abfd;
17849
17850 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17851 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17852 info_ptr += bytes_read;
17853 if (!abbrev_number)
17854 {
17855 *diep = NULL;
17856 *has_children = 0;
17857 return info_ptr;
17858 }
17859
17860 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17861 if (!abbrev)
17862 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17863 abbrev_number,
17864 bfd_get_filename (abfd));
17865
17866 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17867 die->sect_off = sect_off;
17868 die->tag = abbrev->tag;
17869 die->abbrev = abbrev_number;
17870
17871 /* Make the result usable.
17872 The caller needs to update num_attrs after adding the extra
17873 attributes. */
17874 die->num_attrs = abbrev->num_attrs;
17875
17876 for (i = 0; i < abbrev->num_attrs; ++i)
17877 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17878 info_ptr);
17879
17880 *diep = die;
17881 *has_children = abbrev->has_children;
17882 return info_ptr;
17883 }
17884
17885 /* Read a die and all its attributes.
17886 Set DIEP to point to a newly allocated die with its information,
17887 except for its child, sibling, and parent fields.
17888 Set HAS_CHILDREN to tell whether the die has children or not. */
17889
17890 static const gdb_byte *
17891 read_full_die (const struct die_reader_specs *reader,
17892 struct die_info **diep, const gdb_byte *info_ptr,
17893 int *has_children)
17894 {
17895 const gdb_byte *result;
17896
17897 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17898
17899 if (dwarf_die_debug)
17900 {
17901 fprintf_unfiltered (gdb_stdlog,
17902 "Read die from %s@0x%x of %s:\n",
17903 get_section_name (reader->die_section),
17904 (unsigned) (info_ptr - reader->die_section->buffer),
17905 bfd_get_filename (reader->abfd));
17906 dump_die (*diep, dwarf_die_debug);
17907 }
17908
17909 return result;
17910 }
17911 \f
17912 /* Abbreviation tables.
17913
17914 In DWARF version 2, the description of the debugging information is
17915 stored in a separate .debug_abbrev section. Before we read any
17916 dies from a section we read in all abbreviations and install them
17917 in a hash table. */
17918
17919 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17920
17921 struct abbrev_info *
17922 abbrev_table::alloc_abbrev ()
17923 {
17924 struct abbrev_info *abbrev;
17925
17926 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17927 memset (abbrev, 0, sizeof (struct abbrev_info));
17928
17929 return abbrev;
17930 }
17931
17932 /* Add an abbreviation to the table. */
17933
17934 void
17935 abbrev_table::add_abbrev (unsigned int abbrev_number,
17936 struct abbrev_info *abbrev)
17937 {
17938 unsigned int hash_number;
17939
17940 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17941 abbrev->next = m_abbrevs[hash_number];
17942 m_abbrevs[hash_number] = abbrev;
17943 }
17944
17945 /* Look up an abbrev in the table.
17946 Returns NULL if the abbrev is not found. */
17947
17948 struct abbrev_info *
17949 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17950 {
17951 unsigned int hash_number;
17952 struct abbrev_info *abbrev;
17953
17954 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17955 abbrev = m_abbrevs[hash_number];
17956
17957 while (abbrev)
17958 {
17959 if (abbrev->number == abbrev_number)
17960 return abbrev;
17961 abbrev = abbrev->next;
17962 }
17963 return NULL;
17964 }
17965
17966 /* Read in an abbrev table. */
17967
17968 static abbrev_table_up
17969 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17970 struct dwarf2_section_info *section,
17971 sect_offset sect_off)
17972 {
17973 struct objfile *objfile = dwarf2_per_objfile->objfile;
17974 bfd *abfd = get_section_bfd_owner (section);
17975 const gdb_byte *abbrev_ptr;
17976 struct abbrev_info *cur_abbrev;
17977 unsigned int abbrev_number, bytes_read, abbrev_name;
17978 unsigned int abbrev_form;
17979 struct attr_abbrev *cur_attrs;
17980 unsigned int allocated_attrs;
17981
17982 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17983
17984 dwarf2_read_section (objfile, section);
17985 abbrev_ptr = section->buffer + to_underlying (sect_off);
17986 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17987 abbrev_ptr += bytes_read;
17988
17989 allocated_attrs = ATTR_ALLOC_CHUNK;
17990 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17991
17992 /* Loop until we reach an abbrev number of 0. */
17993 while (abbrev_number)
17994 {
17995 cur_abbrev = abbrev_table->alloc_abbrev ();
17996
17997 /* read in abbrev header */
17998 cur_abbrev->number = abbrev_number;
17999 cur_abbrev->tag
18000 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18001 abbrev_ptr += bytes_read;
18002 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18003 abbrev_ptr += 1;
18004
18005 /* now read in declarations */
18006 for (;;)
18007 {
18008 LONGEST implicit_const;
18009
18010 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18011 abbrev_ptr += bytes_read;
18012 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18013 abbrev_ptr += bytes_read;
18014 if (abbrev_form == DW_FORM_implicit_const)
18015 {
18016 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18017 &bytes_read);
18018 abbrev_ptr += bytes_read;
18019 }
18020 else
18021 {
18022 /* Initialize it due to a false compiler warning. */
18023 implicit_const = -1;
18024 }
18025
18026 if (abbrev_name == 0)
18027 break;
18028
18029 if (cur_abbrev->num_attrs == allocated_attrs)
18030 {
18031 allocated_attrs += ATTR_ALLOC_CHUNK;
18032 cur_attrs
18033 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18034 }
18035
18036 cur_attrs[cur_abbrev->num_attrs].name
18037 = (enum dwarf_attribute) abbrev_name;
18038 cur_attrs[cur_abbrev->num_attrs].form
18039 = (enum dwarf_form) abbrev_form;
18040 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18041 ++cur_abbrev->num_attrs;
18042 }
18043
18044 cur_abbrev->attrs =
18045 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18046 cur_abbrev->num_attrs);
18047 memcpy (cur_abbrev->attrs, cur_attrs,
18048 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18049
18050 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18051
18052 /* Get next abbreviation.
18053 Under Irix6 the abbreviations for a compilation unit are not
18054 always properly terminated with an abbrev number of 0.
18055 Exit loop if we encounter an abbreviation which we have
18056 already read (which means we are about to read the abbreviations
18057 for the next compile unit) or if the end of the abbreviation
18058 table is reached. */
18059 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18060 break;
18061 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18062 abbrev_ptr += bytes_read;
18063 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18064 break;
18065 }
18066
18067 xfree (cur_attrs);
18068 return abbrev_table;
18069 }
18070
18071 /* Returns nonzero if TAG represents a type that we might generate a partial
18072 symbol for. */
18073
18074 static int
18075 is_type_tag_for_partial (int tag)
18076 {
18077 switch (tag)
18078 {
18079 #if 0
18080 /* Some types that would be reasonable to generate partial symbols for,
18081 that we don't at present. */
18082 case DW_TAG_array_type:
18083 case DW_TAG_file_type:
18084 case DW_TAG_ptr_to_member_type:
18085 case DW_TAG_set_type:
18086 case DW_TAG_string_type:
18087 case DW_TAG_subroutine_type:
18088 #endif
18089 case DW_TAG_base_type:
18090 case DW_TAG_class_type:
18091 case DW_TAG_interface_type:
18092 case DW_TAG_enumeration_type:
18093 case DW_TAG_structure_type:
18094 case DW_TAG_subrange_type:
18095 case DW_TAG_typedef:
18096 case DW_TAG_union_type:
18097 return 1;
18098 default:
18099 return 0;
18100 }
18101 }
18102
18103 /* Load all DIEs that are interesting for partial symbols into memory. */
18104
18105 static struct partial_die_info *
18106 load_partial_dies (const struct die_reader_specs *reader,
18107 const gdb_byte *info_ptr, int building_psymtab)
18108 {
18109 struct dwarf2_cu *cu = reader->cu;
18110 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18111 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18112 unsigned int bytes_read;
18113 unsigned int load_all = 0;
18114 int nesting_level = 1;
18115
18116 parent_die = NULL;
18117 last_die = NULL;
18118
18119 gdb_assert (cu->per_cu != NULL);
18120 if (cu->per_cu->load_all_dies)
18121 load_all = 1;
18122
18123 cu->partial_dies
18124 = htab_create_alloc_ex (cu->header.length / 12,
18125 partial_die_hash,
18126 partial_die_eq,
18127 NULL,
18128 &cu->comp_unit_obstack,
18129 hashtab_obstack_allocate,
18130 dummy_obstack_deallocate);
18131
18132 while (1)
18133 {
18134 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18135
18136 /* A NULL abbrev means the end of a series of children. */
18137 if (abbrev == NULL)
18138 {
18139 if (--nesting_level == 0)
18140 return first_die;
18141
18142 info_ptr += bytes_read;
18143 last_die = parent_die;
18144 parent_die = parent_die->die_parent;
18145 continue;
18146 }
18147
18148 /* Check for template arguments. We never save these; if
18149 they're seen, we just mark the parent, and go on our way. */
18150 if (parent_die != NULL
18151 && cu->language == language_cplus
18152 && (abbrev->tag == DW_TAG_template_type_param
18153 || abbrev->tag == DW_TAG_template_value_param))
18154 {
18155 parent_die->has_template_arguments = 1;
18156
18157 if (!load_all)
18158 {
18159 /* We don't need a partial DIE for the template argument. */
18160 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18161 continue;
18162 }
18163 }
18164
18165 /* We only recurse into c++ subprograms looking for template arguments.
18166 Skip their other children. */
18167 if (!load_all
18168 && cu->language == language_cplus
18169 && parent_die != NULL
18170 && parent_die->tag == DW_TAG_subprogram)
18171 {
18172 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18173 continue;
18174 }
18175
18176 /* Check whether this DIE is interesting enough to save. Normally
18177 we would not be interested in members here, but there may be
18178 later variables referencing them via DW_AT_specification (for
18179 static members). */
18180 if (!load_all
18181 && !is_type_tag_for_partial (abbrev->tag)
18182 && abbrev->tag != DW_TAG_constant
18183 && abbrev->tag != DW_TAG_enumerator
18184 && abbrev->tag != DW_TAG_subprogram
18185 && abbrev->tag != DW_TAG_inlined_subroutine
18186 && abbrev->tag != DW_TAG_lexical_block
18187 && abbrev->tag != DW_TAG_variable
18188 && abbrev->tag != DW_TAG_namespace
18189 && abbrev->tag != DW_TAG_module
18190 && abbrev->tag != DW_TAG_member
18191 && abbrev->tag != DW_TAG_imported_unit
18192 && abbrev->tag != DW_TAG_imported_declaration)
18193 {
18194 /* Otherwise we skip to the next sibling, if any. */
18195 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18196 continue;
18197 }
18198
18199 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18200 abbrev);
18201
18202 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18203
18204 /* This two-pass algorithm for processing partial symbols has a
18205 high cost in cache pressure. Thus, handle some simple cases
18206 here which cover the majority of C partial symbols. DIEs
18207 which neither have specification tags in them, nor could have
18208 specification tags elsewhere pointing at them, can simply be
18209 processed and discarded.
18210
18211 This segment is also optional; scan_partial_symbols and
18212 add_partial_symbol will handle these DIEs if we chain
18213 them in normally. When compilers which do not emit large
18214 quantities of duplicate debug information are more common,
18215 this code can probably be removed. */
18216
18217 /* Any complete simple types at the top level (pretty much all
18218 of them, for a language without namespaces), can be processed
18219 directly. */
18220 if (parent_die == NULL
18221 && pdi.has_specification == 0
18222 && pdi.is_declaration == 0
18223 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18224 || pdi.tag == DW_TAG_base_type
18225 || pdi.tag == DW_TAG_subrange_type))
18226 {
18227 if (building_psymtab && pdi.name != NULL)
18228 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18229 VAR_DOMAIN, LOC_TYPEDEF,
18230 &objfile->static_psymbols,
18231 0, cu->language, objfile);
18232 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18233 continue;
18234 }
18235
18236 /* The exception for DW_TAG_typedef with has_children above is
18237 a workaround of GCC PR debug/47510. In the case of this complaint
18238 type_name_no_tag_or_error will error on such types later.
18239
18240 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18241 it could not find the child DIEs referenced later, this is checked
18242 above. In correct DWARF DW_TAG_typedef should have no children. */
18243
18244 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18245 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18246 "- DIE at %s [in module %s]"),
18247 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18248
18249 /* If we're at the second level, and we're an enumerator, and
18250 our parent has no specification (meaning possibly lives in a
18251 namespace elsewhere), then we can add the partial symbol now
18252 instead of queueing it. */
18253 if (pdi.tag == DW_TAG_enumerator
18254 && parent_die != NULL
18255 && parent_die->die_parent == NULL
18256 && parent_die->tag == DW_TAG_enumeration_type
18257 && parent_die->has_specification == 0)
18258 {
18259 if (pdi.name == NULL)
18260 complaint (_("malformed enumerator DIE ignored"));
18261 else if (building_psymtab)
18262 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18263 VAR_DOMAIN, LOC_CONST,
18264 cu->language == language_cplus
18265 ? &objfile->global_psymbols
18266 : &objfile->static_psymbols,
18267 0, cu->language, objfile);
18268
18269 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18270 continue;
18271 }
18272
18273 struct partial_die_info *part_die
18274 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18275
18276 /* We'll save this DIE so link it in. */
18277 part_die->die_parent = parent_die;
18278 part_die->die_sibling = NULL;
18279 part_die->die_child = NULL;
18280
18281 if (last_die && last_die == parent_die)
18282 last_die->die_child = part_die;
18283 else if (last_die)
18284 last_die->die_sibling = part_die;
18285
18286 last_die = part_die;
18287
18288 if (first_die == NULL)
18289 first_die = part_die;
18290
18291 /* Maybe add the DIE to the hash table. Not all DIEs that we
18292 find interesting need to be in the hash table, because we
18293 also have the parent/sibling/child chains; only those that we
18294 might refer to by offset later during partial symbol reading.
18295
18296 For now this means things that might have be the target of a
18297 DW_AT_specification, DW_AT_abstract_origin, or
18298 DW_AT_extension. DW_AT_extension will refer only to
18299 namespaces; DW_AT_abstract_origin refers to functions (and
18300 many things under the function DIE, but we do not recurse
18301 into function DIEs during partial symbol reading) and
18302 possibly variables as well; DW_AT_specification refers to
18303 declarations. Declarations ought to have the DW_AT_declaration
18304 flag. It happens that GCC forgets to put it in sometimes, but
18305 only for functions, not for types.
18306
18307 Adding more things than necessary to the hash table is harmless
18308 except for the performance cost. Adding too few will result in
18309 wasted time in find_partial_die, when we reread the compilation
18310 unit with load_all_dies set. */
18311
18312 if (load_all
18313 || abbrev->tag == DW_TAG_constant
18314 || abbrev->tag == DW_TAG_subprogram
18315 || abbrev->tag == DW_TAG_variable
18316 || abbrev->tag == DW_TAG_namespace
18317 || part_die->is_declaration)
18318 {
18319 void **slot;
18320
18321 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18322 to_underlying (part_die->sect_off),
18323 INSERT);
18324 *slot = part_die;
18325 }
18326
18327 /* For some DIEs we want to follow their children (if any). For C
18328 we have no reason to follow the children of structures; for other
18329 languages we have to, so that we can get at method physnames
18330 to infer fully qualified class names, for DW_AT_specification,
18331 and for C++ template arguments. For C++, we also look one level
18332 inside functions to find template arguments (if the name of the
18333 function does not already contain the template arguments).
18334
18335 For Ada, we need to scan the children of subprograms and lexical
18336 blocks as well because Ada allows the definition of nested
18337 entities that could be interesting for the debugger, such as
18338 nested subprograms for instance. */
18339 if (last_die->has_children
18340 && (load_all
18341 || last_die->tag == DW_TAG_namespace
18342 || last_die->tag == DW_TAG_module
18343 || last_die->tag == DW_TAG_enumeration_type
18344 || (cu->language == language_cplus
18345 && last_die->tag == DW_TAG_subprogram
18346 && (last_die->name == NULL
18347 || strchr (last_die->name, '<') == NULL))
18348 || (cu->language != language_c
18349 && (last_die->tag == DW_TAG_class_type
18350 || last_die->tag == DW_TAG_interface_type
18351 || last_die->tag == DW_TAG_structure_type
18352 || last_die->tag == DW_TAG_union_type))
18353 || (cu->language == language_ada
18354 && (last_die->tag == DW_TAG_subprogram
18355 || last_die->tag == DW_TAG_lexical_block))))
18356 {
18357 nesting_level++;
18358 parent_die = last_die;
18359 continue;
18360 }
18361
18362 /* Otherwise we skip to the next sibling, if any. */
18363 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18364
18365 /* Back to the top, do it again. */
18366 }
18367 }
18368
18369 partial_die_info::partial_die_info (sect_offset sect_off_,
18370 struct abbrev_info *abbrev)
18371 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18372 {
18373 }
18374
18375 /* Read a minimal amount of information into the minimal die structure.
18376 INFO_PTR should point just after the initial uleb128 of a DIE. */
18377
18378 const gdb_byte *
18379 partial_die_info::read (const struct die_reader_specs *reader,
18380 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18381 {
18382 struct dwarf2_cu *cu = reader->cu;
18383 struct dwarf2_per_objfile *dwarf2_per_objfile
18384 = cu->per_cu->dwarf2_per_objfile;
18385 unsigned int i;
18386 int has_low_pc_attr = 0;
18387 int has_high_pc_attr = 0;
18388 int high_pc_relative = 0;
18389
18390 for (i = 0; i < abbrev.num_attrs; ++i)
18391 {
18392 struct attribute attr;
18393
18394 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18395
18396 /* Store the data if it is of an attribute we want to keep in a
18397 partial symbol table. */
18398 switch (attr.name)
18399 {
18400 case DW_AT_name:
18401 switch (tag)
18402 {
18403 case DW_TAG_compile_unit:
18404 case DW_TAG_partial_unit:
18405 case DW_TAG_type_unit:
18406 /* Compilation units have a DW_AT_name that is a filename, not
18407 a source language identifier. */
18408 case DW_TAG_enumeration_type:
18409 case DW_TAG_enumerator:
18410 /* These tags always have simple identifiers already; no need
18411 to canonicalize them. */
18412 name = DW_STRING (&attr);
18413 break;
18414 default:
18415 {
18416 struct objfile *objfile = dwarf2_per_objfile->objfile;
18417
18418 name
18419 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18420 &objfile->per_bfd->storage_obstack);
18421 }
18422 break;
18423 }
18424 break;
18425 case DW_AT_linkage_name:
18426 case DW_AT_MIPS_linkage_name:
18427 /* Note that both forms of linkage name might appear. We
18428 assume they will be the same, and we only store the last
18429 one we see. */
18430 if (cu->language == language_ada)
18431 name = DW_STRING (&attr);
18432 linkage_name = DW_STRING (&attr);
18433 break;
18434 case DW_AT_low_pc:
18435 has_low_pc_attr = 1;
18436 lowpc = attr_value_as_address (&attr);
18437 break;
18438 case DW_AT_high_pc:
18439 has_high_pc_attr = 1;
18440 highpc = attr_value_as_address (&attr);
18441 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18442 high_pc_relative = 1;
18443 break;
18444 case DW_AT_location:
18445 /* Support the .debug_loc offsets. */
18446 if (attr_form_is_block (&attr))
18447 {
18448 d.locdesc = DW_BLOCK (&attr);
18449 }
18450 else if (attr_form_is_section_offset (&attr))
18451 {
18452 dwarf2_complex_location_expr_complaint ();
18453 }
18454 else
18455 {
18456 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18457 "partial symbol information");
18458 }
18459 break;
18460 case DW_AT_external:
18461 is_external = DW_UNSND (&attr);
18462 break;
18463 case DW_AT_declaration:
18464 is_declaration = DW_UNSND (&attr);
18465 break;
18466 case DW_AT_type:
18467 has_type = 1;
18468 break;
18469 case DW_AT_abstract_origin:
18470 case DW_AT_specification:
18471 case DW_AT_extension:
18472 has_specification = 1;
18473 spec_offset = dwarf2_get_ref_die_offset (&attr);
18474 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18475 || cu->per_cu->is_dwz);
18476 break;
18477 case DW_AT_sibling:
18478 /* Ignore absolute siblings, they might point outside of
18479 the current compile unit. */
18480 if (attr.form == DW_FORM_ref_addr)
18481 complaint (_("ignoring absolute DW_AT_sibling"));
18482 else
18483 {
18484 const gdb_byte *buffer = reader->buffer;
18485 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18486 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18487
18488 if (sibling_ptr < info_ptr)
18489 complaint (_("DW_AT_sibling points backwards"));
18490 else if (sibling_ptr > reader->buffer_end)
18491 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18492 else
18493 sibling = sibling_ptr;
18494 }
18495 break;
18496 case DW_AT_byte_size:
18497 has_byte_size = 1;
18498 break;
18499 case DW_AT_const_value:
18500 has_const_value = 1;
18501 break;
18502 case DW_AT_calling_convention:
18503 /* DWARF doesn't provide a way to identify a program's source-level
18504 entry point. DW_AT_calling_convention attributes are only meant
18505 to describe functions' calling conventions.
18506
18507 However, because it's a necessary piece of information in
18508 Fortran, and before DWARF 4 DW_CC_program was the only
18509 piece of debugging information whose definition refers to
18510 a 'main program' at all, several compilers marked Fortran
18511 main programs with DW_CC_program --- even when those
18512 functions use the standard calling conventions.
18513
18514 Although DWARF now specifies a way to provide this
18515 information, we support this practice for backward
18516 compatibility. */
18517 if (DW_UNSND (&attr) == DW_CC_program
18518 && cu->language == language_fortran)
18519 main_subprogram = 1;
18520 break;
18521 case DW_AT_inline:
18522 if (DW_UNSND (&attr) == DW_INL_inlined
18523 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18524 may_be_inlined = 1;
18525 break;
18526
18527 case DW_AT_import:
18528 if (tag == DW_TAG_imported_unit)
18529 {
18530 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18531 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18532 || cu->per_cu->is_dwz);
18533 }
18534 break;
18535
18536 case DW_AT_main_subprogram:
18537 main_subprogram = DW_UNSND (&attr);
18538 break;
18539
18540 default:
18541 break;
18542 }
18543 }
18544
18545 if (high_pc_relative)
18546 highpc += lowpc;
18547
18548 if (has_low_pc_attr && has_high_pc_attr)
18549 {
18550 /* When using the GNU linker, .gnu.linkonce. sections are used to
18551 eliminate duplicate copies of functions and vtables and such.
18552 The linker will arbitrarily choose one and discard the others.
18553 The AT_*_pc values for such functions refer to local labels in
18554 these sections. If the section from that file was discarded, the
18555 labels are not in the output, so the relocs get a value of 0.
18556 If this is a discarded function, mark the pc bounds as invalid,
18557 so that GDB will ignore it. */
18558 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18559 {
18560 struct objfile *objfile = dwarf2_per_objfile->objfile;
18561 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18562
18563 complaint (_("DW_AT_low_pc %s is zero "
18564 "for DIE at %s [in module %s]"),
18565 paddress (gdbarch, lowpc),
18566 sect_offset_str (sect_off),
18567 objfile_name (objfile));
18568 }
18569 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18570 else if (lowpc >= highpc)
18571 {
18572 struct objfile *objfile = dwarf2_per_objfile->objfile;
18573 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18574
18575 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18576 "for DIE at %s [in module %s]"),
18577 paddress (gdbarch, lowpc),
18578 paddress (gdbarch, highpc),
18579 sect_offset_str (sect_off),
18580 objfile_name (objfile));
18581 }
18582 else
18583 has_pc_info = 1;
18584 }
18585
18586 return info_ptr;
18587 }
18588
18589 /* Find a cached partial DIE at OFFSET in CU. */
18590
18591 struct partial_die_info *
18592 dwarf2_cu::find_partial_die (sect_offset sect_off)
18593 {
18594 struct partial_die_info *lookup_die = NULL;
18595 struct partial_die_info part_die (sect_off);
18596
18597 lookup_die = ((struct partial_die_info *)
18598 htab_find_with_hash (partial_dies, &part_die,
18599 to_underlying (sect_off)));
18600
18601 return lookup_die;
18602 }
18603
18604 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18605 except in the case of .debug_types DIEs which do not reference
18606 outside their CU (they do however referencing other types via
18607 DW_FORM_ref_sig8). */
18608
18609 static struct partial_die_info *
18610 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18611 {
18612 struct dwarf2_per_objfile *dwarf2_per_objfile
18613 = cu->per_cu->dwarf2_per_objfile;
18614 struct objfile *objfile = dwarf2_per_objfile->objfile;
18615 struct dwarf2_per_cu_data *per_cu = NULL;
18616 struct partial_die_info *pd = NULL;
18617
18618 if (offset_in_dwz == cu->per_cu->is_dwz
18619 && offset_in_cu_p (&cu->header, sect_off))
18620 {
18621 pd = cu->find_partial_die (sect_off);
18622 if (pd != NULL)
18623 return pd;
18624 /* We missed recording what we needed.
18625 Load all dies and try again. */
18626 per_cu = cu->per_cu;
18627 }
18628 else
18629 {
18630 /* TUs don't reference other CUs/TUs (except via type signatures). */
18631 if (cu->per_cu->is_debug_types)
18632 {
18633 error (_("Dwarf Error: Type Unit at offset %s contains"
18634 " external reference to offset %s [in module %s].\n"),
18635 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18636 bfd_get_filename (objfile->obfd));
18637 }
18638 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18639 dwarf2_per_objfile);
18640
18641 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18642 load_partial_comp_unit (per_cu);
18643
18644 per_cu->cu->last_used = 0;
18645 pd = per_cu->cu->find_partial_die (sect_off);
18646 }
18647
18648 /* If we didn't find it, and not all dies have been loaded,
18649 load them all and try again. */
18650
18651 if (pd == NULL && per_cu->load_all_dies == 0)
18652 {
18653 per_cu->load_all_dies = 1;
18654
18655 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18656 THIS_CU->cu may already be in use. So we can't just free it and
18657 replace its DIEs with the ones we read in. Instead, we leave those
18658 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18659 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18660 set. */
18661 load_partial_comp_unit (per_cu);
18662
18663 pd = per_cu->cu->find_partial_die (sect_off);
18664 }
18665
18666 if (pd == NULL)
18667 internal_error (__FILE__, __LINE__,
18668 _("could not find partial DIE %s "
18669 "in cache [from module %s]\n"),
18670 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18671 return pd;
18672 }
18673
18674 /* See if we can figure out if the class lives in a namespace. We do
18675 this by looking for a member function; its demangled name will
18676 contain namespace info, if there is any. */
18677
18678 static void
18679 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18680 struct dwarf2_cu *cu)
18681 {
18682 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18683 what template types look like, because the demangler
18684 frequently doesn't give the same name as the debug info. We
18685 could fix this by only using the demangled name to get the
18686 prefix (but see comment in read_structure_type). */
18687
18688 struct partial_die_info *real_pdi;
18689 struct partial_die_info *child_pdi;
18690
18691 /* If this DIE (this DIE's specification, if any) has a parent, then
18692 we should not do this. We'll prepend the parent's fully qualified
18693 name when we create the partial symbol. */
18694
18695 real_pdi = struct_pdi;
18696 while (real_pdi->has_specification)
18697 real_pdi = find_partial_die (real_pdi->spec_offset,
18698 real_pdi->spec_is_dwz, cu);
18699
18700 if (real_pdi->die_parent != NULL)
18701 return;
18702
18703 for (child_pdi = struct_pdi->die_child;
18704 child_pdi != NULL;
18705 child_pdi = child_pdi->die_sibling)
18706 {
18707 if (child_pdi->tag == DW_TAG_subprogram
18708 && child_pdi->linkage_name != NULL)
18709 {
18710 char *actual_class_name
18711 = language_class_name_from_physname (cu->language_defn,
18712 child_pdi->linkage_name);
18713 if (actual_class_name != NULL)
18714 {
18715 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18716 struct_pdi->name
18717 = ((const char *)
18718 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18719 actual_class_name,
18720 strlen (actual_class_name)));
18721 xfree (actual_class_name);
18722 }
18723 break;
18724 }
18725 }
18726 }
18727
18728 void
18729 partial_die_info::fixup (struct dwarf2_cu *cu)
18730 {
18731 /* Once we've fixed up a die, there's no point in doing so again.
18732 This also avoids a memory leak if we were to call
18733 guess_partial_die_structure_name multiple times. */
18734 if (fixup_called)
18735 return;
18736
18737 /* If we found a reference attribute and the DIE has no name, try
18738 to find a name in the referred to DIE. */
18739
18740 if (name == NULL && has_specification)
18741 {
18742 struct partial_die_info *spec_die;
18743
18744 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18745
18746 spec_die->fixup (cu);
18747
18748 if (spec_die->name)
18749 {
18750 name = spec_die->name;
18751
18752 /* Copy DW_AT_external attribute if it is set. */
18753 if (spec_die->is_external)
18754 is_external = spec_die->is_external;
18755 }
18756 }
18757
18758 /* Set default names for some unnamed DIEs. */
18759
18760 if (name == NULL && tag == DW_TAG_namespace)
18761 name = CP_ANONYMOUS_NAMESPACE_STR;
18762
18763 /* If there is no parent die to provide a namespace, and there are
18764 children, see if we can determine the namespace from their linkage
18765 name. */
18766 if (cu->language == language_cplus
18767 && !VEC_empty (dwarf2_section_info_def,
18768 cu->per_cu->dwarf2_per_objfile->types)
18769 && die_parent == NULL
18770 && has_children
18771 && (tag == DW_TAG_class_type
18772 || tag == DW_TAG_structure_type
18773 || tag == DW_TAG_union_type))
18774 guess_partial_die_structure_name (this, cu);
18775
18776 /* GCC might emit a nameless struct or union that has a linkage
18777 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18778 if (name == NULL
18779 && (tag == DW_TAG_class_type
18780 || tag == DW_TAG_interface_type
18781 || tag == DW_TAG_structure_type
18782 || tag == DW_TAG_union_type)
18783 && linkage_name != NULL)
18784 {
18785 char *demangled;
18786
18787 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18788 if (demangled)
18789 {
18790 const char *base;
18791
18792 /* Strip any leading namespaces/classes, keep only the base name.
18793 DW_AT_name for named DIEs does not contain the prefixes. */
18794 base = strrchr (demangled, ':');
18795 if (base && base > demangled && base[-1] == ':')
18796 base++;
18797 else
18798 base = demangled;
18799
18800 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18801 name
18802 = ((const char *)
18803 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18804 base, strlen (base)));
18805 xfree (demangled);
18806 }
18807 }
18808
18809 fixup_called = 1;
18810 }
18811
18812 /* Read an attribute value described by an attribute form. */
18813
18814 static const gdb_byte *
18815 read_attribute_value (const struct die_reader_specs *reader,
18816 struct attribute *attr, unsigned form,
18817 LONGEST implicit_const, const gdb_byte *info_ptr)
18818 {
18819 struct dwarf2_cu *cu = reader->cu;
18820 struct dwarf2_per_objfile *dwarf2_per_objfile
18821 = cu->per_cu->dwarf2_per_objfile;
18822 struct objfile *objfile = dwarf2_per_objfile->objfile;
18823 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18824 bfd *abfd = reader->abfd;
18825 struct comp_unit_head *cu_header = &cu->header;
18826 unsigned int bytes_read;
18827 struct dwarf_block *blk;
18828
18829 attr->form = (enum dwarf_form) form;
18830 switch (form)
18831 {
18832 case DW_FORM_ref_addr:
18833 if (cu->header.version == 2)
18834 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18835 else
18836 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18837 &cu->header, &bytes_read);
18838 info_ptr += bytes_read;
18839 break;
18840 case DW_FORM_GNU_ref_alt:
18841 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18842 info_ptr += bytes_read;
18843 break;
18844 case DW_FORM_addr:
18845 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18846 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18847 info_ptr += bytes_read;
18848 break;
18849 case DW_FORM_block2:
18850 blk = dwarf_alloc_block (cu);
18851 blk->size = read_2_bytes (abfd, info_ptr);
18852 info_ptr += 2;
18853 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18854 info_ptr += blk->size;
18855 DW_BLOCK (attr) = blk;
18856 break;
18857 case DW_FORM_block4:
18858 blk = dwarf_alloc_block (cu);
18859 blk->size = read_4_bytes (abfd, info_ptr);
18860 info_ptr += 4;
18861 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18862 info_ptr += blk->size;
18863 DW_BLOCK (attr) = blk;
18864 break;
18865 case DW_FORM_data2:
18866 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18867 info_ptr += 2;
18868 break;
18869 case DW_FORM_data4:
18870 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18871 info_ptr += 4;
18872 break;
18873 case DW_FORM_data8:
18874 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18875 info_ptr += 8;
18876 break;
18877 case DW_FORM_data16:
18878 blk = dwarf_alloc_block (cu);
18879 blk->size = 16;
18880 blk->data = read_n_bytes (abfd, info_ptr, 16);
18881 info_ptr += 16;
18882 DW_BLOCK (attr) = blk;
18883 break;
18884 case DW_FORM_sec_offset:
18885 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18886 info_ptr += bytes_read;
18887 break;
18888 case DW_FORM_string:
18889 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18890 DW_STRING_IS_CANONICAL (attr) = 0;
18891 info_ptr += bytes_read;
18892 break;
18893 case DW_FORM_strp:
18894 if (!cu->per_cu->is_dwz)
18895 {
18896 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18897 abfd, info_ptr, cu_header,
18898 &bytes_read);
18899 DW_STRING_IS_CANONICAL (attr) = 0;
18900 info_ptr += bytes_read;
18901 break;
18902 }
18903 /* FALLTHROUGH */
18904 case DW_FORM_line_strp:
18905 if (!cu->per_cu->is_dwz)
18906 {
18907 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18908 abfd, info_ptr,
18909 cu_header, &bytes_read);
18910 DW_STRING_IS_CANONICAL (attr) = 0;
18911 info_ptr += bytes_read;
18912 break;
18913 }
18914 /* FALLTHROUGH */
18915 case DW_FORM_GNU_strp_alt:
18916 {
18917 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18918 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18919 &bytes_read);
18920
18921 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18922 dwz, str_offset);
18923 DW_STRING_IS_CANONICAL (attr) = 0;
18924 info_ptr += bytes_read;
18925 }
18926 break;
18927 case DW_FORM_exprloc:
18928 case DW_FORM_block:
18929 blk = dwarf_alloc_block (cu);
18930 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18931 info_ptr += bytes_read;
18932 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18933 info_ptr += blk->size;
18934 DW_BLOCK (attr) = blk;
18935 break;
18936 case DW_FORM_block1:
18937 blk = dwarf_alloc_block (cu);
18938 blk->size = read_1_byte (abfd, info_ptr);
18939 info_ptr += 1;
18940 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18941 info_ptr += blk->size;
18942 DW_BLOCK (attr) = blk;
18943 break;
18944 case DW_FORM_data1:
18945 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18946 info_ptr += 1;
18947 break;
18948 case DW_FORM_flag:
18949 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18950 info_ptr += 1;
18951 break;
18952 case DW_FORM_flag_present:
18953 DW_UNSND (attr) = 1;
18954 break;
18955 case DW_FORM_sdata:
18956 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18957 info_ptr += bytes_read;
18958 break;
18959 case DW_FORM_udata:
18960 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18961 info_ptr += bytes_read;
18962 break;
18963 case DW_FORM_ref1:
18964 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18965 + read_1_byte (abfd, info_ptr));
18966 info_ptr += 1;
18967 break;
18968 case DW_FORM_ref2:
18969 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18970 + read_2_bytes (abfd, info_ptr));
18971 info_ptr += 2;
18972 break;
18973 case DW_FORM_ref4:
18974 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18975 + read_4_bytes (abfd, info_ptr));
18976 info_ptr += 4;
18977 break;
18978 case DW_FORM_ref8:
18979 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18980 + read_8_bytes (abfd, info_ptr));
18981 info_ptr += 8;
18982 break;
18983 case DW_FORM_ref_sig8:
18984 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18985 info_ptr += 8;
18986 break;
18987 case DW_FORM_ref_udata:
18988 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18989 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18990 info_ptr += bytes_read;
18991 break;
18992 case DW_FORM_indirect:
18993 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18994 info_ptr += bytes_read;
18995 if (form == DW_FORM_implicit_const)
18996 {
18997 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18998 info_ptr += bytes_read;
18999 }
19000 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19001 info_ptr);
19002 break;
19003 case DW_FORM_implicit_const:
19004 DW_SND (attr) = implicit_const;
19005 break;
19006 case DW_FORM_GNU_addr_index:
19007 if (reader->dwo_file == NULL)
19008 {
19009 /* For now flag a hard error.
19010 Later we can turn this into a complaint. */
19011 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19012 dwarf_form_name (form),
19013 bfd_get_filename (abfd));
19014 }
19015 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19016 info_ptr += bytes_read;
19017 break;
19018 case DW_FORM_GNU_str_index:
19019 if (reader->dwo_file == NULL)
19020 {
19021 /* For now flag a hard error.
19022 Later we can turn this into a complaint if warranted. */
19023 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19024 dwarf_form_name (form),
19025 bfd_get_filename (abfd));
19026 }
19027 {
19028 ULONGEST str_index =
19029 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19030
19031 DW_STRING (attr) = read_str_index (reader, str_index);
19032 DW_STRING_IS_CANONICAL (attr) = 0;
19033 info_ptr += bytes_read;
19034 }
19035 break;
19036 default:
19037 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19038 dwarf_form_name (form),
19039 bfd_get_filename (abfd));
19040 }
19041
19042 /* Super hack. */
19043 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19044 attr->form = DW_FORM_GNU_ref_alt;
19045
19046 /* We have seen instances where the compiler tried to emit a byte
19047 size attribute of -1 which ended up being encoded as an unsigned
19048 0xffffffff. Although 0xffffffff is technically a valid size value,
19049 an object of this size seems pretty unlikely so we can relatively
19050 safely treat these cases as if the size attribute was invalid and
19051 treat them as zero by default. */
19052 if (attr->name == DW_AT_byte_size
19053 && form == DW_FORM_data4
19054 && DW_UNSND (attr) >= 0xffffffff)
19055 {
19056 complaint
19057 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19058 hex_string (DW_UNSND (attr)));
19059 DW_UNSND (attr) = 0;
19060 }
19061
19062 return info_ptr;
19063 }
19064
19065 /* Read an attribute described by an abbreviated attribute. */
19066
19067 static const gdb_byte *
19068 read_attribute (const struct die_reader_specs *reader,
19069 struct attribute *attr, struct attr_abbrev *abbrev,
19070 const gdb_byte *info_ptr)
19071 {
19072 attr->name = abbrev->name;
19073 return read_attribute_value (reader, attr, abbrev->form,
19074 abbrev->implicit_const, info_ptr);
19075 }
19076
19077 /* Read dwarf information from a buffer. */
19078
19079 static unsigned int
19080 read_1_byte (bfd *abfd, const gdb_byte *buf)
19081 {
19082 return bfd_get_8 (abfd, buf);
19083 }
19084
19085 static int
19086 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19087 {
19088 return bfd_get_signed_8 (abfd, buf);
19089 }
19090
19091 static unsigned int
19092 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19093 {
19094 return bfd_get_16 (abfd, buf);
19095 }
19096
19097 static int
19098 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19099 {
19100 return bfd_get_signed_16 (abfd, buf);
19101 }
19102
19103 static unsigned int
19104 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19105 {
19106 return bfd_get_32 (abfd, buf);
19107 }
19108
19109 static int
19110 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19111 {
19112 return bfd_get_signed_32 (abfd, buf);
19113 }
19114
19115 static ULONGEST
19116 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19117 {
19118 return bfd_get_64 (abfd, buf);
19119 }
19120
19121 static CORE_ADDR
19122 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19123 unsigned int *bytes_read)
19124 {
19125 struct comp_unit_head *cu_header = &cu->header;
19126 CORE_ADDR retval = 0;
19127
19128 if (cu_header->signed_addr_p)
19129 {
19130 switch (cu_header->addr_size)
19131 {
19132 case 2:
19133 retval = bfd_get_signed_16 (abfd, buf);
19134 break;
19135 case 4:
19136 retval = bfd_get_signed_32 (abfd, buf);
19137 break;
19138 case 8:
19139 retval = bfd_get_signed_64 (abfd, buf);
19140 break;
19141 default:
19142 internal_error (__FILE__, __LINE__,
19143 _("read_address: bad switch, signed [in module %s]"),
19144 bfd_get_filename (abfd));
19145 }
19146 }
19147 else
19148 {
19149 switch (cu_header->addr_size)
19150 {
19151 case 2:
19152 retval = bfd_get_16 (abfd, buf);
19153 break;
19154 case 4:
19155 retval = bfd_get_32 (abfd, buf);
19156 break;
19157 case 8:
19158 retval = bfd_get_64 (abfd, buf);
19159 break;
19160 default:
19161 internal_error (__FILE__, __LINE__,
19162 _("read_address: bad switch, "
19163 "unsigned [in module %s]"),
19164 bfd_get_filename (abfd));
19165 }
19166 }
19167
19168 *bytes_read = cu_header->addr_size;
19169 return retval;
19170 }
19171
19172 /* Read the initial length from a section. The (draft) DWARF 3
19173 specification allows the initial length to take up either 4 bytes
19174 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19175 bytes describe the length and all offsets will be 8 bytes in length
19176 instead of 4.
19177
19178 An older, non-standard 64-bit format is also handled by this
19179 function. The older format in question stores the initial length
19180 as an 8-byte quantity without an escape value. Lengths greater
19181 than 2^32 aren't very common which means that the initial 4 bytes
19182 is almost always zero. Since a length value of zero doesn't make
19183 sense for the 32-bit format, this initial zero can be considered to
19184 be an escape value which indicates the presence of the older 64-bit
19185 format. As written, the code can't detect (old format) lengths
19186 greater than 4GB. If it becomes necessary to handle lengths
19187 somewhat larger than 4GB, we could allow other small values (such
19188 as the non-sensical values of 1, 2, and 3) to also be used as
19189 escape values indicating the presence of the old format.
19190
19191 The value returned via bytes_read should be used to increment the
19192 relevant pointer after calling read_initial_length().
19193
19194 [ Note: read_initial_length() and read_offset() are based on the
19195 document entitled "DWARF Debugging Information Format", revision
19196 3, draft 8, dated November 19, 2001. This document was obtained
19197 from:
19198
19199 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19200
19201 This document is only a draft and is subject to change. (So beware.)
19202
19203 Details regarding the older, non-standard 64-bit format were
19204 determined empirically by examining 64-bit ELF files produced by
19205 the SGI toolchain on an IRIX 6.5 machine.
19206
19207 - Kevin, July 16, 2002
19208 ] */
19209
19210 static LONGEST
19211 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19212 {
19213 LONGEST length = bfd_get_32 (abfd, buf);
19214
19215 if (length == 0xffffffff)
19216 {
19217 length = bfd_get_64 (abfd, buf + 4);
19218 *bytes_read = 12;
19219 }
19220 else if (length == 0)
19221 {
19222 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19223 length = bfd_get_64 (abfd, buf);
19224 *bytes_read = 8;
19225 }
19226 else
19227 {
19228 *bytes_read = 4;
19229 }
19230
19231 return length;
19232 }
19233
19234 /* Cover function for read_initial_length.
19235 Returns the length of the object at BUF, and stores the size of the
19236 initial length in *BYTES_READ and stores the size that offsets will be in
19237 *OFFSET_SIZE.
19238 If the initial length size is not equivalent to that specified in
19239 CU_HEADER then issue a complaint.
19240 This is useful when reading non-comp-unit headers. */
19241
19242 static LONGEST
19243 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19244 const struct comp_unit_head *cu_header,
19245 unsigned int *bytes_read,
19246 unsigned int *offset_size)
19247 {
19248 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19249
19250 gdb_assert (cu_header->initial_length_size == 4
19251 || cu_header->initial_length_size == 8
19252 || cu_header->initial_length_size == 12);
19253
19254 if (cu_header->initial_length_size != *bytes_read)
19255 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19256
19257 *offset_size = (*bytes_read == 4) ? 4 : 8;
19258 return length;
19259 }
19260
19261 /* Read an offset from the data stream. The size of the offset is
19262 given by cu_header->offset_size. */
19263
19264 static LONGEST
19265 read_offset (bfd *abfd, const gdb_byte *buf,
19266 const struct comp_unit_head *cu_header,
19267 unsigned int *bytes_read)
19268 {
19269 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19270
19271 *bytes_read = cu_header->offset_size;
19272 return offset;
19273 }
19274
19275 /* Read an offset from the data stream. */
19276
19277 static LONGEST
19278 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19279 {
19280 LONGEST retval = 0;
19281
19282 switch (offset_size)
19283 {
19284 case 4:
19285 retval = bfd_get_32 (abfd, buf);
19286 break;
19287 case 8:
19288 retval = bfd_get_64 (abfd, buf);
19289 break;
19290 default:
19291 internal_error (__FILE__, __LINE__,
19292 _("read_offset_1: bad switch [in module %s]"),
19293 bfd_get_filename (abfd));
19294 }
19295
19296 return retval;
19297 }
19298
19299 static const gdb_byte *
19300 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19301 {
19302 /* If the size of a host char is 8 bits, we can return a pointer
19303 to the buffer, otherwise we have to copy the data to a buffer
19304 allocated on the temporary obstack. */
19305 gdb_assert (HOST_CHAR_BIT == 8);
19306 return buf;
19307 }
19308
19309 static const char *
19310 read_direct_string (bfd *abfd, const gdb_byte *buf,
19311 unsigned int *bytes_read_ptr)
19312 {
19313 /* If the size of a host char is 8 bits, we can return a pointer
19314 to the string, otherwise we have to copy the string to a buffer
19315 allocated on the temporary obstack. */
19316 gdb_assert (HOST_CHAR_BIT == 8);
19317 if (*buf == '\0')
19318 {
19319 *bytes_read_ptr = 1;
19320 return NULL;
19321 }
19322 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19323 return (const char *) buf;
19324 }
19325
19326 /* Return pointer to string at section SECT offset STR_OFFSET with error
19327 reporting strings FORM_NAME and SECT_NAME. */
19328
19329 static const char *
19330 read_indirect_string_at_offset_from (struct objfile *objfile,
19331 bfd *abfd, LONGEST str_offset,
19332 struct dwarf2_section_info *sect,
19333 const char *form_name,
19334 const char *sect_name)
19335 {
19336 dwarf2_read_section (objfile, sect);
19337 if (sect->buffer == NULL)
19338 error (_("%s used without %s section [in module %s]"),
19339 form_name, sect_name, bfd_get_filename (abfd));
19340 if (str_offset >= sect->size)
19341 error (_("%s pointing outside of %s section [in module %s]"),
19342 form_name, sect_name, bfd_get_filename (abfd));
19343 gdb_assert (HOST_CHAR_BIT == 8);
19344 if (sect->buffer[str_offset] == '\0')
19345 return NULL;
19346 return (const char *) (sect->buffer + str_offset);
19347 }
19348
19349 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19350
19351 static const char *
19352 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19353 bfd *abfd, LONGEST str_offset)
19354 {
19355 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19356 abfd, str_offset,
19357 &dwarf2_per_objfile->str,
19358 "DW_FORM_strp", ".debug_str");
19359 }
19360
19361 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19362
19363 static const char *
19364 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19365 bfd *abfd, LONGEST str_offset)
19366 {
19367 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19368 abfd, str_offset,
19369 &dwarf2_per_objfile->line_str,
19370 "DW_FORM_line_strp",
19371 ".debug_line_str");
19372 }
19373
19374 /* Read a string at offset STR_OFFSET in the .debug_str section from
19375 the .dwz file DWZ. Throw an error if the offset is too large. If
19376 the string consists of a single NUL byte, return NULL; otherwise
19377 return a pointer to the string. */
19378
19379 static const char *
19380 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19381 LONGEST str_offset)
19382 {
19383 dwarf2_read_section (objfile, &dwz->str);
19384
19385 if (dwz->str.buffer == NULL)
19386 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19387 "section [in module %s]"),
19388 bfd_get_filename (dwz->dwz_bfd));
19389 if (str_offset >= dwz->str.size)
19390 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19391 ".debug_str section [in module %s]"),
19392 bfd_get_filename (dwz->dwz_bfd));
19393 gdb_assert (HOST_CHAR_BIT == 8);
19394 if (dwz->str.buffer[str_offset] == '\0')
19395 return NULL;
19396 return (const char *) (dwz->str.buffer + str_offset);
19397 }
19398
19399 /* Return pointer to string at .debug_str offset as read from BUF.
19400 BUF is assumed to be in a compilation unit described by CU_HEADER.
19401 Return *BYTES_READ_PTR count of bytes read from BUF. */
19402
19403 static const char *
19404 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19405 const gdb_byte *buf,
19406 const struct comp_unit_head *cu_header,
19407 unsigned int *bytes_read_ptr)
19408 {
19409 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19410
19411 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19412 }
19413
19414 /* Return pointer to string at .debug_line_str offset as read from BUF.
19415 BUF is assumed to be in a compilation unit described by CU_HEADER.
19416 Return *BYTES_READ_PTR count of bytes read from BUF. */
19417
19418 static const char *
19419 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19420 bfd *abfd, const gdb_byte *buf,
19421 const struct comp_unit_head *cu_header,
19422 unsigned int *bytes_read_ptr)
19423 {
19424 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19425
19426 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19427 str_offset);
19428 }
19429
19430 ULONGEST
19431 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19432 unsigned int *bytes_read_ptr)
19433 {
19434 ULONGEST result;
19435 unsigned int num_read;
19436 int shift;
19437 unsigned char byte;
19438
19439 result = 0;
19440 shift = 0;
19441 num_read = 0;
19442 while (1)
19443 {
19444 byte = bfd_get_8 (abfd, buf);
19445 buf++;
19446 num_read++;
19447 result |= ((ULONGEST) (byte & 127) << shift);
19448 if ((byte & 128) == 0)
19449 {
19450 break;
19451 }
19452 shift += 7;
19453 }
19454 *bytes_read_ptr = num_read;
19455 return result;
19456 }
19457
19458 static LONGEST
19459 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19460 unsigned int *bytes_read_ptr)
19461 {
19462 LONGEST result;
19463 int shift, num_read;
19464 unsigned char byte;
19465
19466 result = 0;
19467 shift = 0;
19468 num_read = 0;
19469 while (1)
19470 {
19471 byte = bfd_get_8 (abfd, buf);
19472 buf++;
19473 num_read++;
19474 result |= ((LONGEST) (byte & 127) << shift);
19475 shift += 7;
19476 if ((byte & 128) == 0)
19477 {
19478 break;
19479 }
19480 }
19481 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19482 result |= -(((LONGEST) 1) << shift);
19483 *bytes_read_ptr = num_read;
19484 return result;
19485 }
19486
19487 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19488 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19489 ADDR_SIZE is the size of addresses from the CU header. */
19490
19491 static CORE_ADDR
19492 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19493 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19494 {
19495 struct objfile *objfile = dwarf2_per_objfile->objfile;
19496 bfd *abfd = objfile->obfd;
19497 const gdb_byte *info_ptr;
19498
19499 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19500 if (dwarf2_per_objfile->addr.buffer == NULL)
19501 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19502 objfile_name (objfile));
19503 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19504 error (_("DW_FORM_addr_index pointing outside of "
19505 ".debug_addr section [in module %s]"),
19506 objfile_name (objfile));
19507 info_ptr = (dwarf2_per_objfile->addr.buffer
19508 + addr_base + addr_index * addr_size);
19509 if (addr_size == 4)
19510 return bfd_get_32 (abfd, info_ptr);
19511 else
19512 return bfd_get_64 (abfd, info_ptr);
19513 }
19514
19515 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19516
19517 static CORE_ADDR
19518 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19519 {
19520 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19521 cu->addr_base, cu->header.addr_size);
19522 }
19523
19524 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19525
19526 static CORE_ADDR
19527 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19528 unsigned int *bytes_read)
19529 {
19530 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19531 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19532
19533 return read_addr_index (cu, addr_index);
19534 }
19535
19536 /* Data structure to pass results from dwarf2_read_addr_index_reader
19537 back to dwarf2_read_addr_index. */
19538
19539 struct dwarf2_read_addr_index_data
19540 {
19541 ULONGEST addr_base;
19542 int addr_size;
19543 };
19544
19545 /* die_reader_func for dwarf2_read_addr_index. */
19546
19547 static void
19548 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19549 const gdb_byte *info_ptr,
19550 struct die_info *comp_unit_die,
19551 int has_children,
19552 void *data)
19553 {
19554 struct dwarf2_cu *cu = reader->cu;
19555 struct dwarf2_read_addr_index_data *aidata =
19556 (struct dwarf2_read_addr_index_data *) data;
19557
19558 aidata->addr_base = cu->addr_base;
19559 aidata->addr_size = cu->header.addr_size;
19560 }
19561
19562 /* Given an index in .debug_addr, fetch the value.
19563 NOTE: This can be called during dwarf expression evaluation,
19564 long after the debug information has been read, and thus per_cu->cu
19565 may no longer exist. */
19566
19567 CORE_ADDR
19568 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19569 unsigned int addr_index)
19570 {
19571 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19572 struct dwarf2_cu *cu = per_cu->cu;
19573 ULONGEST addr_base;
19574 int addr_size;
19575
19576 /* We need addr_base and addr_size.
19577 If we don't have PER_CU->cu, we have to get it.
19578 Nasty, but the alternative is storing the needed info in PER_CU,
19579 which at this point doesn't seem justified: it's not clear how frequently
19580 it would get used and it would increase the size of every PER_CU.
19581 Entry points like dwarf2_per_cu_addr_size do a similar thing
19582 so we're not in uncharted territory here.
19583 Alas we need to be a bit more complicated as addr_base is contained
19584 in the DIE.
19585
19586 We don't need to read the entire CU(/TU).
19587 We just need the header and top level die.
19588
19589 IWBN to use the aging mechanism to let us lazily later discard the CU.
19590 For now we skip this optimization. */
19591
19592 if (cu != NULL)
19593 {
19594 addr_base = cu->addr_base;
19595 addr_size = cu->header.addr_size;
19596 }
19597 else
19598 {
19599 struct dwarf2_read_addr_index_data aidata;
19600
19601 /* Note: We can't use init_cutu_and_read_dies_simple here,
19602 we need addr_base. */
19603 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19604 dwarf2_read_addr_index_reader, &aidata);
19605 addr_base = aidata.addr_base;
19606 addr_size = aidata.addr_size;
19607 }
19608
19609 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19610 addr_size);
19611 }
19612
19613 /* Given a DW_FORM_GNU_str_index, fetch the string.
19614 This is only used by the Fission support. */
19615
19616 static const char *
19617 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19618 {
19619 struct dwarf2_cu *cu = reader->cu;
19620 struct dwarf2_per_objfile *dwarf2_per_objfile
19621 = cu->per_cu->dwarf2_per_objfile;
19622 struct objfile *objfile = dwarf2_per_objfile->objfile;
19623 const char *objf_name = objfile_name (objfile);
19624 bfd *abfd = objfile->obfd;
19625 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19626 struct dwarf2_section_info *str_offsets_section =
19627 &reader->dwo_file->sections.str_offsets;
19628 const gdb_byte *info_ptr;
19629 ULONGEST str_offset;
19630 static const char form_name[] = "DW_FORM_GNU_str_index";
19631
19632 dwarf2_read_section (objfile, str_section);
19633 dwarf2_read_section (objfile, str_offsets_section);
19634 if (str_section->buffer == NULL)
19635 error (_("%s used without .debug_str.dwo section"
19636 " in CU at offset %s [in module %s]"),
19637 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19638 if (str_offsets_section->buffer == NULL)
19639 error (_("%s used without .debug_str_offsets.dwo section"
19640 " in CU at offset %s [in module %s]"),
19641 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19642 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19643 error (_("%s pointing outside of .debug_str_offsets.dwo"
19644 " section in CU at offset %s [in module %s]"),
19645 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19646 info_ptr = (str_offsets_section->buffer
19647 + str_index * cu->header.offset_size);
19648 if (cu->header.offset_size == 4)
19649 str_offset = bfd_get_32 (abfd, info_ptr);
19650 else
19651 str_offset = bfd_get_64 (abfd, info_ptr);
19652 if (str_offset >= str_section->size)
19653 error (_("Offset from %s pointing outside of"
19654 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19655 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19656 return (const char *) (str_section->buffer + str_offset);
19657 }
19658
19659 /* Return the length of an LEB128 number in BUF. */
19660
19661 static int
19662 leb128_size (const gdb_byte *buf)
19663 {
19664 const gdb_byte *begin = buf;
19665 gdb_byte byte;
19666
19667 while (1)
19668 {
19669 byte = *buf++;
19670 if ((byte & 128) == 0)
19671 return buf - begin;
19672 }
19673 }
19674
19675 static void
19676 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19677 {
19678 switch (lang)
19679 {
19680 case DW_LANG_C89:
19681 case DW_LANG_C99:
19682 case DW_LANG_C11:
19683 case DW_LANG_C:
19684 case DW_LANG_UPC:
19685 cu->language = language_c;
19686 break;
19687 case DW_LANG_Java:
19688 case DW_LANG_C_plus_plus:
19689 case DW_LANG_C_plus_plus_11:
19690 case DW_LANG_C_plus_plus_14:
19691 cu->language = language_cplus;
19692 break;
19693 case DW_LANG_D:
19694 cu->language = language_d;
19695 break;
19696 case DW_LANG_Fortran77:
19697 case DW_LANG_Fortran90:
19698 case DW_LANG_Fortran95:
19699 case DW_LANG_Fortran03:
19700 case DW_LANG_Fortran08:
19701 cu->language = language_fortran;
19702 break;
19703 case DW_LANG_Go:
19704 cu->language = language_go;
19705 break;
19706 case DW_LANG_Mips_Assembler:
19707 cu->language = language_asm;
19708 break;
19709 case DW_LANG_Ada83:
19710 case DW_LANG_Ada95:
19711 cu->language = language_ada;
19712 break;
19713 case DW_LANG_Modula2:
19714 cu->language = language_m2;
19715 break;
19716 case DW_LANG_Pascal83:
19717 cu->language = language_pascal;
19718 break;
19719 case DW_LANG_ObjC:
19720 cu->language = language_objc;
19721 break;
19722 case DW_LANG_Rust:
19723 case DW_LANG_Rust_old:
19724 cu->language = language_rust;
19725 break;
19726 case DW_LANG_Cobol74:
19727 case DW_LANG_Cobol85:
19728 default:
19729 cu->language = language_minimal;
19730 break;
19731 }
19732 cu->language_defn = language_def (cu->language);
19733 }
19734
19735 /* Return the named attribute or NULL if not there. */
19736
19737 static struct attribute *
19738 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19739 {
19740 for (;;)
19741 {
19742 unsigned int i;
19743 struct attribute *spec = NULL;
19744
19745 for (i = 0; i < die->num_attrs; ++i)
19746 {
19747 if (die->attrs[i].name == name)
19748 return &die->attrs[i];
19749 if (die->attrs[i].name == DW_AT_specification
19750 || die->attrs[i].name == DW_AT_abstract_origin)
19751 spec = &die->attrs[i];
19752 }
19753
19754 if (!spec)
19755 break;
19756
19757 die = follow_die_ref (die, spec, &cu);
19758 }
19759
19760 return NULL;
19761 }
19762
19763 /* Return the named attribute or NULL if not there,
19764 but do not follow DW_AT_specification, etc.
19765 This is for use in contexts where we're reading .debug_types dies.
19766 Following DW_AT_specification, DW_AT_abstract_origin will take us
19767 back up the chain, and we want to go down. */
19768
19769 static struct attribute *
19770 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19771 {
19772 unsigned int i;
19773
19774 for (i = 0; i < die->num_attrs; ++i)
19775 if (die->attrs[i].name == name)
19776 return &die->attrs[i];
19777
19778 return NULL;
19779 }
19780
19781 /* Return the string associated with a string-typed attribute, or NULL if it
19782 is either not found or is of an incorrect type. */
19783
19784 static const char *
19785 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19786 {
19787 struct attribute *attr;
19788 const char *str = NULL;
19789
19790 attr = dwarf2_attr (die, name, cu);
19791
19792 if (attr != NULL)
19793 {
19794 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19795 || attr->form == DW_FORM_string
19796 || attr->form == DW_FORM_GNU_str_index
19797 || attr->form == DW_FORM_GNU_strp_alt)
19798 str = DW_STRING (attr);
19799 else
19800 complaint (_("string type expected for attribute %s for "
19801 "DIE at %s in module %s"),
19802 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19803 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19804 }
19805
19806 return str;
19807 }
19808
19809 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19810 and holds a non-zero value. This function should only be used for
19811 DW_FORM_flag or DW_FORM_flag_present attributes. */
19812
19813 static int
19814 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19815 {
19816 struct attribute *attr = dwarf2_attr (die, name, cu);
19817
19818 return (attr && DW_UNSND (attr));
19819 }
19820
19821 static int
19822 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19823 {
19824 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19825 which value is non-zero. However, we have to be careful with
19826 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19827 (via dwarf2_flag_true_p) follows this attribute. So we may
19828 end up accidently finding a declaration attribute that belongs
19829 to a different DIE referenced by the specification attribute,
19830 even though the given DIE does not have a declaration attribute. */
19831 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19832 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19833 }
19834
19835 /* Return the die giving the specification for DIE, if there is
19836 one. *SPEC_CU is the CU containing DIE on input, and the CU
19837 containing the return value on output. If there is no
19838 specification, but there is an abstract origin, that is
19839 returned. */
19840
19841 static struct die_info *
19842 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19843 {
19844 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19845 *spec_cu);
19846
19847 if (spec_attr == NULL)
19848 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19849
19850 if (spec_attr == NULL)
19851 return NULL;
19852 else
19853 return follow_die_ref (die, spec_attr, spec_cu);
19854 }
19855
19856 /* Stub for free_line_header to match void * callback types. */
19857
19858 static void
19859 free_line_header_voidp (void *arg)
19860 {
19861 struct line_header *lh = (struct line_header *) arg;
19862
19863 delete lh;
19864 }
19865
19866 void
19867 line_header::add_include_dir (const char *include_dir)
19868 {
19869 if (dwarf_line_debug >= 2)
19870 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19871 include_dirs.size () + 1, include_dir);
19872
19873 include_dirs.push_back (include_dir);
19874 }
19875
19876 void
19877 line_header::add_file_name (const char *name,
19878 dir_index d_index,
19879 unsigned int mod_time,
19880 unsigned int length)
19881 {
19882 if (dwarf_line_debug >= 2)
19883 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19884 (unsigned) file_names.size () + 1, name);
19885
19886 file_names.emplace_back (name, d_index, mod_time, length);
19887 }
19888
19889 /* A convenience function to find the proper .debug_line section for a CU. */
19890
19891 static struct dwarf2_section_info *
19892 get_debug_line_section (struct dwarf2_cu *cu)
19893 {
19894 struct dwarf2_section_info *section;
19895 struct dwarf2_per_objfile *dwarf2_per_objfile
19896 = cu->per_cu->dwarf2_per_objfile;
19897
19898 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19899 DWO file. */
19900 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19901 section = &cu->dwo_unit->dwo_file->sections.line;
19902 else if (cu->per_cu->is_dwz)
19903 {
19904 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19905
19906 section = &dwz->line;
19907 }
19908 else
19909 section = &dwarf2_per_objfile->line;
19910
19911 return section;
19912 }
19913
19914 /* Read directory or file name entry format, starting with byte of
19915 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19916 entries count and the entries themselves in the described entry
19917 format. */
19918
19919 static void
19920 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19921 bfd *abfd, const gdb_byte **bufp,
19922 struct line_header *lh,
19923 const struct comp_unit_head *cu_header,
19924 void (*callback) (struct line_header *lh,
19925 const char *name,
19926 dir_index d_index,
19927 unsigned int mod_time,
19928 unsigned int length))
19929 {
19930 gdb_byte format_count, formati;
19931 ULONGEST data_count, datai;
19932 const gdb_byte *buf = *bufp;
19933 const gdb_byte *format_header_data;
19934 unsigned int bytes_read;
19935
19936 format_count = read_1_byte (abfd, buf);
19937 buf += 1;
19938 format_header_data = buf;
19939 for (formati = 0; formati < format_count; formati++)
19940 {
19941 read_unsigned_leb128 (abfd, buf, &bytes_read);
19942 buf += bytes_read;
19943 read_unsigned_leb128 (abfd, buf, &bytes_read);
19944 buf += bytes_read;
19945 }
19946
19947 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19948 buf += bytes_read;
19949 for (datai = 0; datai < data_count; datai++)
19950 {
19951 const gdb_byte *format = format_header_data;
19952 struct file_entry fe;
19953
19954 for (formati = 0; formati < format_count; formati++)
19955 {
19956 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19957 format += bytes_read;
19958
19959 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19960 format += bytes_read;
19961
19962 gdb::optional<const char *> string;
19963 gdb::optional<unsigned int> uint;
19964
19965 switch (form)
19966 {
19967 case DW_FORM_string:
19968 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19969 buf += bytes_read;
19970 break;
19971
19972 case DW_FORM_line_strp:
19973 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19974 abfd, buf,
19975 cu_header,
19976 &bytes_read));
19977 buf += bytes_read;
19978 break;
19979
19980 case DW_FORM_data1:
19981 uint.emplace (read_1_byte (abfd, buf));
19982 buf += 1;
19983 break;
19984
19985 case DW_FORM_data2:
19986 uint.emplace (read_2_bytes (abfd, buf));
19987 buf += 2;
19988 break;
19989
19990 case DW_FORM_data4:
19991 uint.emplace (read_4_bytes (abfd, buf));
19992 buf += 4;
19993 break;
19994
19995 case DW_FORM_data8:
19996 uint.emplace (read_8_bytes (abfd, buf));
19997 buf += 8;
19998 break;
19999
20000 case DW_FORM_udata:
20001 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20002 buf += bytes_read;
20003 break;
20004
20005 case DW_FORM_block:
20006 /* It is valid only for DW_LNCT_timestamp which is ignored by
20007 current GDB. */
20008 break;
20009 }
20010
20011 switch (content_type)
20012 {
20013 case DW_LNCT_path:
20014 if (string.has_value ())
20015 fe.name = *string;
20016 break;
20017 case DW_LNCT_directory_index:
20018 if (uint.has_value ())
20019 fe.d_index = (dir_index) *uint;
20020 break;
20021 case DW_LNCT_timestamp:
20022 if (uint.has_value ())
20023 fe.mod_time = *uint;
20024 break;
20025 case DW_LNCT_size:
20026 if (uint.has_value ())
20027 fe.length = *uint;
20028 break;
20029 case DW_LNCT_MD5:
20030 break;
20031 default:
20032 complaint (_("Unknown format content type %s"),
20033 pulongest (content_type));
20034 }
20035 }
20036
20037 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20038 }
20039
20040 *bufp = buf;
20041 }
20042
20043 /* Read the statement program header starting at OFFSET in
20044 .debug_line, or .debug_line.dwo. Return a pointer
20045 to a struct line_header, allocated using xmalloc.
20046 Returns NULL if there is a problem reading the header, e.g., if it
20047 has a version we don't understand.
20048
20049 NOTE: the strings in the include directory and file name tables of
20050 the returned object point into the dwarf line section buffer,
20051 and must not be freed. */
20052
20053 static line_header_up
20054 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20055 {
20056 const gdb_byte *line_ptr;
20057 unsigned int bytes_read, offset_size;
20058 int i;
20059 const char *cur_dir, *cur_file;
20060 struct dwarf2_section_info *section;
20061 bfd *abfd;
20062 struct dwarf2_per_objfile *dwarf2_per_objfile
20063 = cu->per_cu->dwarf2_per_objfile;
20064
20065 section = get_debug_line_section (cu);
20066 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20067 if (section->buffer == NULL)
20068 {
20069 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20070 complaint (_("missing .debug_line.dwo section"));
20071 else
20072 complaint (_("missing .debug_line section"));
20073 return 0;
20074 }
20075
20076 /* We can't do this until we know the section is non-empty.
20077 Only then do we know we have such a section. */
20078 abfd = get_section_bfd_owner (section);
20079
20080 /* Make sure that at least there's room for the total_length field.
20081 That could be 12 bytes long, but we're just going to fudge that. */
20082 if (to_underlying (sect_off) + 4 >= section->size)
20083 {
20084 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20085 return 0;
20086 }
20087
20088 line_header_up lh (new line_header ());
20089
20090 lh->sect_off = sect_off;
20091 lh->offset_in_dwz = cu->per_cu->is_dwz;
20092
20093 line_ptr = section->buffer + to_underlying (sect_off);
20094
20095 /* Read in the header. */
20096 lh->total_length =
20097 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20098 &bytes_read, &offset_size);
20099 line_ptr += bytes_read;
20100 if (line_ptr + lh->total_length > (section->buffer + section->size))
20101 {
20102 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20103 return 0;
20104 }
20105 lh->statement_program_end = line_ptr + lh->total_length;
20106 lh->version = read_2_bytes (abfd, line_ptr);
20107 line_ptr += 2;
20108 if (lh->version > 5)
20109 {
20110 /* This is a version we don't understand. The format could have
20111 changed in ways we don't handle properly so just punt. */
20112 complaint (_("unsupported version in .debug_line section"));
20113 return NULL;
20114 }
20115 if (lh->version >= 5)
20116 {
20117 gdb_byte segment_selector_size;
20118
20119 /* Skip address size. */
20120 read_1_byte (abfd, line_ptr);
20121 line_ptr += 1;
20122
20123 segment_selector_size = read_1_byte (abfd, line_ptr);
20124 line_ptr += 1;
20125 if (segment_selector_size != 0)
20126 {
20127 complaint (_("unsupported segment selector size %u "
20128 "in .debug_line section"),
20129 segment_selector_size);
20130 return NULL;
20131 }
20132 }
20133 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20134 line_ptr += offset_size;
20135 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20136 line_ptr += 1;
20137 if (lh->version >= 4)
20138 {
20139 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20140 line_ptr += 1;
20141 }
20142 else
20143 lh->maximum_ops_per_instruction = 1;
20144
20145 if (lh->maximum_ops_per_instruction == 0)
20146 {
20147 lh->maximum_ops_per_instruction = 1;
20148 complaint (_("invalid maximum_ops_per_instruction "
20149 "in `.debug_line' section"));
20150 }
20151
20152 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20153 line_ptr += 1;
20154 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20155 line_ptr += 1;
20156 lh->line_range = read_1_byte (abfd, line_ptr);
20157 line_ptr += 1;
20158 lh->opcode_base = read_1_byte (abfd, line_ptr);
20159 line_ptr += 1;
20160 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20161
20162 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20163 for (i = 1; i < lh->opcode_base; ++i)
20164 {
20165 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20166 line_ptr += 1;
20167 }
20168
20169 if (lh->version >= 5)
20170 {
20171 /* Read directory table. */
20172 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20173 &cu->header,
20174 [] (struct line_header *lh, const char *name,
20175 dir_index d_index, unsigned int mod_time,
20176 unsigned int length)
20177 {
20178 lh->add_include_dir (name);
20179 });
20180
20181 /* Read file name table. */
20182 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20183 &cu->header,
20184 [] (struct line_header *lh, const char *name,
20185 dir_index d_index, unsigned int mod_time,
20186 unsigned int length)
20187 {
20188 lh->add_file_name (name, d_index, mod_time, length);
20189 });
20190 }
20191 else
20192 {
20193 /* Read directory table. */
20194 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20195 {
20196 line_ptr += bytes_read;
20197 lh->add_include_dir (cur_dir);
20198 }
20199 line_ptr += bytes_read;
20200
20201 /* Read file name table. */
20202 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20203 {
20204 unsigned int mod_time, length;
20205 dir_index d_index;
20206
20207 line_ptr += bytes_read;
20208 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20209 line_ptr += bytes_read;
20210 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20211 line_ptr += bytes_read;
20212 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20213 line_ptr += bytes_read;
20214
20215 lh->add_file_name (cur_file, d_index, mod_time, length);
20216 }
20217 line_ptr += bytes_read;
20218 }
20219 lh->statement_program_start = line_ptr;
20220
20221 if (line_ptr > (section->buffer + section->size))
20222 complaint (_("line number info header doesn't "
20223 "fit in `.debug_line' section"));
20224
20225 return lh;
20226 }
20227
20228 /* Subroutine of dwarf_decode_lines to simplify it.
20229 Return the file name of the psymtab for included file FILE_INDEX
20230 in line header LH of PST.
20231 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20232 If space for the result is malloc'd, *NAME_HOLDER will be set.
20233 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20234
20235 static const char *
20236 psymtab_include_file_name (const struct line_header *lh, int file_index,
20237 const struct partial_symtab *pst,
20238 const char *comp_dir,
20239 gdb::unique_xmalloc_ptr<char> *name_holder)
20240 {
20241 const file_entry &fe = lh->file_names[file_index];
20242 const char *include_name = fe.name;
20243 const char *include_name_to_compare = include_name;
20244 const char *pst_filename;
20245 int file_is_pst;
20246
20247 const char *dir_name = fe.include_dir (lh);
20248
20249 gdb::unique_xmalloc_ptr<char> hold_compare;
20250 if (!IS_ABSOLUTE_PATH (include_name)
20251 && (dir_name != NULL || comp_dir != NULL))
20252 {
20253 /* Avoid creating a duplicate psymtab for PST.
20254 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20255 Before we do the comparison, however, we need to account
20256 for DIR_NAME and COMP_DIR.
20257 First prepend dir_name (if non-NULL). If we still don't
20258 have an absolute path prepend comp_dir (if non-NULL).
20259 However, the directory we record in the include-file's
20260 psymtab does not contain COMP_DIR (to match the
20261 corresponding symtab(s)).
20262
20263 Example:
20264
20265 bash$ cd /tmp
20266 bash$ gcc -g ./hello.c
20267 include_name = "hello.c"
20268 dir_name = "."
20269 DW_AT_comp_dir = comp_dir = "/tmp"
20270 DW_AT_name = "./hello.c"
20271
20272 */
20273
20274 if (dir_name != NULL)
20275 {
20276 name_holder->reset (concat (dir_name, SLASH_STRING,
20277 include_name, (char *) NULL));
20278 include_name = name_holder->get ();
20279 include_name_to_compare = include_name;
20280 }
20281 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20282 {
20283 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20284 include_name, (char *) NULL));
20285 include_name_to_compare = hold_compare.get ();
20286 }
20287 }
20288
20289 pst_filename = pst->filename;
20290 gdb::unique_xmalloc_ptr<char> copied_name;
20291 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20292 {
20293 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20294 pst_filename, (char *) NULL));
20295 pst_filename = copied_name.get ();
20296 }
20297
20298 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20299
20300 if (file_is_pst)
20301 return NULL;
20302 return include_name;
20303 }
20304
20305 /* State machine to track the state of the line number program. */
20306
20307 class lnp_state_machine
20308 {
20309 public:
20310 /* Initialize a machine state for the start of a line number
20311 program. */
20312 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20313
20314 file_entry *current_file ()
20315 {
20316 /* lh->file_names is 0-based, but the file name numbers in the
20317 statement program are 1-based. */
20318 return m_line_header->file_name_at (m_file);
20319 }
20320
20321 /* Record the line in the state machine. END_SEQUENCE is true if
20322 we're processing the end of a sequence. */
20323 void record_line (bool end_sequence);
20324
20325 /* Check address and if invalid nop-out the rest of the lines in this
20326 sequence. */
20327 void check_line_address (struct dwarf2_cu *cu,
20328 const gdb_byte *line_ptr,
20329 CORE_ADDR lowpc, CORE_ADDR address);
20330
20331 void handle_set_discriminator (unsigned int discriminator)
20332 {
20333 m_discriminator = discriminator;
20334 m_line_has_non_zero_discriminator |= discriminator != 0;
20335 }
20336
20337 /* Handle DW_LNE_set_address. */
20338 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20339 {
20340 m_op_index = 0;
20341 address += baseaddr;
20342 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20343 }
20344
20345 /* Handle DW_LNS_advance_pc. */
20346 void handle_advance_pc (CORE_ADDR adjust);
20347
20348 /* Handle a special opcode. */
20349 void handle_special_opcode (unsigned char op_code);
20350
20351 /* Handle DW_LNS_advance_line. */
20352 void handle_advance_line (int line_delta)
20353 {
20354 advance_line (line_delta);
20355 }
20356
20357 /* Handle DW_LNS_set_file. */
20358 void handle_set_file (file_name_index file);
20359
20360 /* Handle DW_LNS_negate_stmt. */
20361 void handle_negate_stmt ()
20362 {
20363 m_is_stmt = !m_is_stmt;
20364 }
20365
20366 /* Handle DW_LNS_const_add_pc. */
20367 void handle_const_add_pc ();
20368
20369 /* Handle DW_LNS_fixed_advance_pc. */
20370 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20371 {
20372 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20373 m_op_index = 0;
20374 }
20375
20376 /* Handle DW_LNS_copy. */
20377 void handle_copy ()
20378 {
20379 record_line (false);
20380 m_discriminator = 0;
20381 }
20382
20383 /* Handle DW_LNE_end_sequence. */
20384 void handle_end_sequence ()
20385 {
20386 m_record_line_callback = ::record_line;
20387 }
20388
20389 private:
20390 /* Advance the line by LINE_DELTA. */
20391 void advance_line (int line_delta)
20392 {
20393 m_line += line_delta;
20394
20395 if (line_delta != 0)
20396 m_line_has_non_zero_discriminator = m_discriminator != 0;
20397 }
20398
20399 gdbarch *m_gdbarch;
20400
20401 /* True if we're recording lines.
20402 Otherwise we're building partial symtabs and are just interested in
20403 finding include files mentioned by the line number program. */
20404 bool m_record_lines_p;
20405
20406 /* The line number header. */
20407 line_header *m_line_header;
20408
20409 /* These are part of the standard DWARF line number state machine,
20410 and initialized according to the DWARF spec. */
20411
20412 unsigned char m_op_index = 0;
20413 /* The line table index (1-based) of the current file. */
20414 file_name_index m_file = (file_name_index) 1;
20415 unsigned int m_line = 1;
20416
20417 /* These are initialized in the constructor. */
20418
20419 CORE_ADDR m_address;
20420 bool m_is_stmt;
20421 unsigned int m_discriminator;
20422
20423 /* Additional bits of state we need to track. */
20424
20425 /* The last file that we called dwarf2_start_subfile for.
20426 This is only used for TLLs. */
20427 unsigned int m_last_file = 0;
20428 /* The last file a line number was recorded for. */
20429 struct subfile *m_last_subfile = NULL;
20430
20431 /* The function to call to record a line. */
20432 record_line_ftype *m_record_line_callback = NULL;
20433
20434 /* The last line number that was recorded, used to coalesce
20435 consecutive entries for the same line. This can happen, for
20436 example, when discriminators are present. PR 17276. */
20437 unsigned int m_last_line = 0;
20438 bool m_line_has_non_zero_discriminator = false;
20439 };
20440
20441 void
20442 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20443 {
20444 CORE_ADDR addr_adj = (((m_op_index + adjust)
20445 / m_line_header->maximum_ops_per_instruction)
20446 * m_line_header->minimum_instruction_length);
20447 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20448 m_op_index = ((m_op_index + adjust)
20449 % m_line_header->maximum_ops_per_instruction);
20450 }
20451
20452 void
20453 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20454 {
20455 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20456 CORE_ADDR addr_adj = (((m_op_index
20457 + (adj_opcode / m_line_header->line_range))
20458 / m_line_header->maximum_ops_per_instruction)
20459 * m_line_header->minimum_instruction_length);
20460 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20461 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20462 % m_line_header->maximum_ops_per_instruction);
20463
20464 int line_delta = (m_line_header->line_base
20465 + (adj_opcode % m_line_header->line_range));
20466 advance_line (line_delta);
20467 record_line (false);
20468 m_discriminator = 0;
20469 }
20470
20471 void
20472 lnp_state_machine::handle_set_file (file_name_index file)
20473 {
20474 m_file = file;
20475
20476 const file_entry *fe = current_file ();
20477 if (fe == NULL)
20478 dwarf2_debug_line_missing_file_complaint ();
20479 else if (m_record_lines_p)
20480 {
20481 const char *dir = fe->include_dir (m_line_header);
20482
20483 m_last_subfile = current_subfile;
20484 m_line_has_non_zero_discriminator = m_discriminator != 0;
20485 dwarf2_start_subfile (fe->name, dir);
20486 }
20487 }
20488
20489 void
20490 lnp_state_machine::handle_const_add_pc ()
20491 {
20492 CORE_ADDR adjust
20493 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20494
20495 CORE_ADDR addr_adj
20496 = (((m_op_index + adjust)
20497 / m_line_header->maximum_ops_per_instruction)
20498 * m_line_header->minimum_instruction_length);
20499
20500 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20501 m_op_index = ((m_op_index + adjust)
20502 % m_line_header->maximum_ops_per_instruction);
20503 }
20504
20505 /* Ignore this record_line request. */
20506
20507 static void
20508 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20509 {
20510 return;
20511 }
20512
20513 /* Return non-zero if we should add LINE to the line number table.
20514 LINE is the line to add, LAST_LINE is the last line that was added,
20515 LAST_SUBFILE is the subfile for LAST_LINE.
20516 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20517 had a non-zero discriminator.
20518
20519 We have to be careful in the presence of discriminators.
20520 E.g., for this line:
20521
20522 for (i = 0; i < 100000; i++);
20523
20524 clang can emit four line number entries for that one line,
20525 each with a different discriminator.
20526 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20527
20528 However, we want gdb to coalesce all four entries into one.
20529 Otherwise the user could stepi into the middle of the line and
20530 gdb would get confused about whether the pc really was in the
20531 middle of the line.
20532
20533 Things are further complicated by the fact that two consecutive
20534 line number entries for the same line is a heuristic used by gcc
20535 to denote the end of the prologue. So we can't just discard duplicate
20536 entries, we have to be selective about it. The heuristic we use is
20537 that we only collapse consecutive entries for the same line if at least
20538 one of those entries has a non-zero discriminator. PR 17276.
20539
20540 Note: Addresses in the line number state machine can never go backwards
20541 within one sequence, thus this coalescing is ok. */
20542
20543 static int
20544 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20545 int line_has_non_zero_discriminator,
20546 struct subfile *last_subfile)
20547 {
20548 if (current_subfile != last_subfile)
20549 return 1;
20550 if (line != last_line)
20551 return 1;
20552 /* Same line for the same file that we've seen already.
20553 As a last check, for pr 17276, only record the line if the line
20554 has never had a non-zero discriminator. */
20555 if (!line_has_non_zero_discriminator)
20556 return 1;
20557 return 0;
20558 }
20559
20560 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20561 in the line table of subfile SUBFILE. */
20562
20563 static void
20564 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20565 unsigned int line, CORE_ADDR address,
20566 record_line_ftype p_record_line)
20567 {
20568 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20569
20570 if (dwarf_line_debug)
20571 {
20572 fprintf_unfiltered (gdb_stdlog,
20573 "Recording line %u, file %s, address %s\n",
20574 line, lbasename (subfile->name),
20575 paddress (gdbarch, address));
20576 }
20577
20578 (*p_record_line) (subfile, line, addr);
20579 }
20580
20581 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20582 Mark the end of a set of line number records.
20583 The arguments are the same as for dwarf_record_line_1.
20584 If SUBFILE is NULL the request is ignored. */
20585
20586 static void
20587 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20588 CORE_ADDR address, record_line_ftype p_record_line)
20589 {
20590 if (subfile == NULL)
20591 return;
20592
20593 if (dwarf_line_debug)
20594 {
20595 fprintf_unfiltered (gdb_stdlog,
20596 "Finishing current line, file %s, address %s\n",
20597 lbasename (subfile->name),
20598 paddress (gdbarch, address));
20599 }
20600
20601 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20602 }
20603
20604 void
20605 lnp_state_machine::record_line (bool end_sequence)
20606 {
20607 if (dwarf_line_debug)
20608 {
20609 fprintf_unfiltered (gdb_stdlog,
20610 "Processing actual line %u: file %u,"
20611 " address %s, is_stmt %u, discrim %u\n",
20612 m_line, to_underlying (m_file),
20613 paddress (m_gdbarch, m_address),
20614 m_is_stmt, m_discriminator);
20615 }
20616
20617 file_entry *fe = current_file ();
20618
20619 if (fe == NULL)
20620 dwarf2_debug_line_missing_file_complaint ();
20621 /* For now we ignore lines not starting on an instruction boundary.
20622 But not when processing end_sequence for compatibility with the
20623 previous version of the code. */
20624 else if (m_op_index == 0 || end_sequence)
20625 {
20626 fe->included_p = 1;
20627 if (m_record_lines_p && m_is_stmt)
20628 {
20629 if (m_last_subfile != current_subfile || end_sequence)
20630 {
20631 dwarf_finish_line (m_gdbarch, m_last_subfile,
20632 m_address, m_record_line_callback);
20633 }
20634
20635 if (!end_sequence)
20636 {
20637 if (dwarf_record_line_p (m_line, m_last_line,
20638 m_line_has_non_zero_discriminator,
20639 m_last_subfile))
20640 {
20641 dwarf_record_line_1 (m_gdbarch, current_subfile,
20642 m_line, m_address,
20643 m_record_line_callback);
20644 }
20645 m_last_subfile = current_subfile;
20646 m_last_line = m_line;
20647 }
20648 }
20649 }
20650 }
20651
20652 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20653 bool record_lines_p)
20654 {
20655 m_gdbarch = arch;
20656 m_record_lines_p = record_lines_p;
20657 m_line_header = lh;
20658
20659 m_record_line_callback = ::record_line;
20660
20661 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20662 was a line entry for it so that the backend has a chance to adjust it
20663 and also record it in case it needs it. This is currently used by MIPS
20664 code, cf. `mips_adjust_dwarf2_line'. */
20665 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20666 m_is_stmt = lh->default_is_stmt;
20667 m_discriminator = 0;
20668 }
20669
20670 void
20671 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20672 const gdb_byte *line_ptr,
20673 CORE_ADDR lowpc, CORE_ADDR address)
20674 {
20675 /* If address < lowpc then it's not a usable value, it's outside the
20676 pc range of the CU. However, we restrict the test to only address
20677 values of zero to preserve GDB's previous behaviour which is to
20678 handle the specific case of a function being GC'd by the linker. */
20679
20680 if (address == 0 && address < lowpc)
20681 {
20682 /* This line table is for a function which has been
20683 GCd by the linker. Ignore it. PR gdb/12528 */
20684
20685 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20686 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20687
20688 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20689 line_offset, objfile_name (objfile));
20690 m_record_line_callback = noop_record_line;
20691 /* Note: record_line_callback is left as noop_record_line until
20692 we see DW_LNE_end_sequence. */
20693 }
20694 }
20695
20696 /* Subroutine of dwarf_decode_lines to simplify it.
20697 Process the line number information in LH.
20698 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20699 program in order to set included_p for every referenced header. */
20700
20701 static void
20702 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20703 const int decode_for_pst_p, CORE_ADDR lowpc)
20704 {
20705 const gdb_byte *line_ptr, *extended_end;
20706 const gdb_byte *line_end;
20707 unsigned int bytes_read, extended_len;
20708 unsigned char op_code, extended_op;
20709 CORE_ADDR baseaddr;
20710 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20711 bfd *abfd = objfile->obfd;
20712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20713 /* True if we're recording line info (as opposed to building partial
20714 symtabs and just interested in finding include files mentioned by
20715 the line number program). */
20716 bool record_lines_p = !decode_for_pst_p;
20717
20718 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20719
20720 line_ptr = lh->statement_program_start;
20721 line_end = lh->statement_program_end;
20722
20723 /* Read the statement sequences until there's nothing left. */
20724 while (line_ptr < line_end)
20725 {
20726 /* The DWARF line number program state machine. Reset the state
20727 machine at the start of each sequence. */
20728 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20729 bool end_sequence = false;
20730
20731 if (record_lines_p)
20732 {
20733 /* Start a subfile for the current file of the state
20734 machine. */
20735 const file_entry *fe = state_machine.current_file ();
20736
20737 if (fe != NULL)
20738 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20739 }
20740
20741 /* Decode the table. */
20742 while (line_ptr < line_end && !end_sequence)
20743 {
20744 op_code = read_1_byte (abfd, line_ptr);
20745 line_ptr += 1;
20746
20747 if (op_code >= lh->opcode_base)
20748 {
20749 /* Special opcode. */
20750 state_machine.handle_special_opcode (op_code);
20751 }
20752 else switch (op_code)
20753 {
20754 case DW_LNS_extended_op:
20755 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20756 &bytes_read);
20757 line_ptr += bytes_read;
20758 extended_end = line_ptr + extended_len;
20759 extended_op = read_1_byte (abfd, line_ptr);
20760 line_ptr += 1;
20761 switch (extended_op)
20762 {
20763 case DW_LNE_end_sequence:
20764 state_machine.handle_end_sequence ();
20765 end_sequence = true;
20766 break;
20767 case DW_LNE_set_address:
20768 {
20769 CORE_ADDR address
20770 = read_address (abfd, line_ptr, cu, &bytes_read);
20771 line_ptr += bytes_read;
20772
20773 state_machine.check_line_address (cu, line_ptr,
20774 lowpc, address);
20775 state_machine.handle_set_address (baseaddr, address);
20776 }
20777 break;
20778 case DW_LNE_define_file:
20779 {
20780 const char *cur_file;
20781 unsigned int mod_time, length;
20782 dir_index dindex;
20783
20784 cur_file = read_direct_string (abfd, line_ptr,
20785 &bytes_read);
20786 line_ptr += bytes_read;
20787 dindex = (dir_index)
20788 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20789 line_ptr += bytes_read;
20790 mod_time =
20791 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20792 line_ptr += bytes_read;
20793 length =
20794 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20795 line_ptr += bytes_read;
20796 lh->add_file_name (cur_file, dindex, mod_time, length);
20797 }
20798 break;
20799 case DW_LNE_set_discriminator:
20800 {
20801 /* The discriminator is not interesting to the
20802 debugger; just ignore it. We still need to
20803 check its value though:
20804 if there are consecutive entries for the same
20805 (non-prologue) line we want to coalesce them.
20806 PR 17276. */
20807 unsigned int discr
20808 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20809 line_ptr += bytes_read;
20810
20811 state_machine.handle_set_discriminator (discr);
20812 }
20813 break;
20814 default:
20815 complaint (_("mangled .debug_line section"));
20816 return;
20817 }
20818 /* Make sure that we parsed the extended op correctly. If e.g.
20819 we expected a different address size than the producer used,
20820 we may have read the wrong number of bytes. */
20821 if (line_ptr != extended_end)
20822 {
20823 complaint (_("mangled .debug_line section"));
20824 return;
20825 }
20826 break;
20827 case DW_LNS_copy:
20828 state_machine.handle_copy ();
20829 break;
20830 case DW_LNS_advance_pc:
20831 {
20832 CORE_ADDR adjust
20833 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20834 line_ptr += bytes_read;
20835
20836 state_machine.handle_advance_pc (adjust);
20837 }
20838 break;
20839 case DW_LNS_advance_line:
20840 {
20841 int line_delta
20842 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20843 line_ptr += bytes_read;
20844
20845 state_machine.handle_advance_line (line_delta);
20846 }
20847 break;
20848 case DW_LNS_set_file:
20849 {
20850 file_name_index file
20851 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20852 &bytes_read);
20853 line_ptr += bytes_read;
20854
20855 state_machine.handle_set_file (file);
20856 }
20857 break;
20858 case DW_LNS_set_column:
20859 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20860 line_ptr += bytes_read;
20861 break;
20862 case DW_LNS_negate_stmt:
20863 state_machine.handle_negate_stmt ();
20864 break;
20865 case DW_LNS_set_basic_block:
20866 break;
20867 /* Add to the address register of the state machine the
20868 address increment value corresponding to special opcode
20869 255. I.e., this value is scaled by the minimum
20870 instruction length since special opcode 255 would have
20871 scaled the increment. */
20872 case DW_LNS_const_add_pc:
20873 state_machine.handle_const_add_pc ();
20874 break;
20875 case DW_LNS_fixed_advance_pc:
20876 {
20877 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20878 line_ptr += 2;
20879
20880 state_machine.handle_fixed_advance_pc (addr_adj);
20881 }
20882 break;
20883 default:
20884 {
20885 /* Unknown standard opcode, ignore it. */
20886 int i;
20887
20888 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20889 {
20890 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20891 line_ptr += bytes_read;
20892 }
20893 }
20894 }
20895 }
20896
20897 if (!end_sequence)
20898 dwarf2_debug_line_missing_end_sequence_complaint ();
20899
20900 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20901 in which case we still finish recording the last line). */
20902 state_machine.record_line (true);
20903 }
20904 }
20905
20906 /* Decode the Line Number Program (LNP) for the given line_header
20907 structure and CU. The actual information extracted and the type
20908 of structures created from the LNP depends on the value of PST.
20909
20910 1. If PST is NULL, then this procedure uses the data from the program
20911 to create all necessary symbol tables, and their linetables.
20912
20913 2. If PST is not NULL, this procedure reads the program to determine
20914 the list of files included by the unit represented by PST, and
20915 builds all the associated partial symbol tables.
20916
20917 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20918 It is used for relative paths in the line table.
20919 NOTE: When processing partial symtabs (pst != NULL),
20920 comp_dir == pst->dirname.
20921
20922 NOTE: It is important that psymtabs have the same file name (via strcmp)
20923 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20924 symtab we don't use it in the name of the psymtabs we create.
20925 E.g. expand_line_sal requires this when finding psymtabs to expand.
20926 A good testcase for this is mb-inline.exp.
20927
20928 LOWPC is the lowest address in CU (or 0 if not known).
20929
20930 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20931 for its PC<->lines mapping information. Otherwise only the filename
20932 table is read in. */
20933
20934 static void
20935 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20936 struct dwarf2_cu *cu, struct partial_symtab *pst,
20937 CORE_ADDR lowpc, int decode_mapping)
20938 {
20939 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20940 const int decode_for_pst_p = (pst != NULL);
20941
20942 if (decode_mapping)
20943 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20944
20945 if (decode_for_pst_p)
20946 {
20947 int file_index;
20948
20949 /* Now that we're done scanning the Line Header Program, we can
20950 create the psymtab of each included file. */
20951 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20952 if (lh->file_names[file_index].included_p == 1)
20953 {
20954 gdb::unique_xmalloc_ptr<char> name_holder;
20955 const char *include_name =
20956 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20957 &name_holder);
20958 if (include_name != NULL)
20959 dwarf2_create_include_psymtab (include_name, pst, objfile);
20960 }
20961 }
20962 else
20963 {
20964 /* Make sure a symtab is created for every file, even files
20965 which contain only variables (i.e. no code with associated
20966 line numbers). */
20967 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20968 int i;
20969
20970 for (i = 0; i < lh->file_names.size (); i++)
20971 {
20972 file_entry &fe = lh->file_names[i];
20973
20974 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20975
20976 if (current_subfile->symtab == NULL)
20977 {
20978 current_subfile->symtab
20979 = allocate_symtab (cust, current_subfile->name);
20980 }
20981 fe.symtab = current_subfile->symtab;
20982 }
20983 }
20984 }
20985
20986 /* Start a subfile for DWARF. FILENAME is the name of the file and
20987 DIRNAME the name of the source directory which contains FILENAME
20988 or NULL if not known.
20989 This routine tries to keep line numbers from identical absolute and
20990 relative file names in a common subfile.
20991
20992 Using the `list' example from the GDB testsuite, which resides in
20993 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20994 of /srcdir/list0.c yields the following debugging information for list0.c:
20995
20996 DW_AT_name: /srcdir/list0.c
20997 DW_AT_comp_dir: /compdir
20998 files.files[0].name: list0.h
20999 files.files[0].dir: /srcdir
21000 files.files[1].name: list0.c
21001 files.files[1].dir: /srcdir
21002
21003 The line number information for list0.c has to end up in a single
21004 subfile, so that `break /srcdir/list0.c:1' works as expected.
21005 start_subfile will ensure that this happens provided that we pass the
21006 concatenation of files.files[1].dir and files.files[1].name as the
21007 subfile's name. */
21008
21009 static void
21010 dwarf2_start_subfile (const char *filename, const char *dirname)
21011 {
21012 char *copy = NULL;
21013
21014 /* In order not to lose the line information directory,
21015 we concatenate it to the filename when it makes sense.
21016 Note that the Dwarf3 standard says (speaking of filenames in line
21017 information): ``The directory index is ignored for file names
21018 that represent full path names''. Thus ignoring dirname in the
21019 `else' branch below isn't an issue. */
21020
21021 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21022 {
21023 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21024 filename = copy;
21025 }
21026
21027 start_subfile (filename);
21028
21029 if (copy != NULL)
21030 xfree (copy);
21031 }
21032
21033 /* Start a symtab for DWARF.
21034 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21035
21036 static struct compunit_symtab *
21037 dwarf2_start_symtab (struct dwarf2_cu *cu,
21038 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21039 {
21040 struct compunit_symtab *cust
21041 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21042 low_pc, cu->language);
21043
21044 record_debugformat ("DWARF 2");
21045 record_producer (cu->producer);
21046
21047 /* We assume that we're processing GCC output. */
21048 processing_gcc_compilation = 2;
21049
21050 cu->processing_has_namespace_info = 0;
21051
21052 return cust;
21053 }
21054
21055 static void
21056 var_decode_location (struct attribute *attr, struct symbol *sym,
21057 struct dwarf2_cu *cu)
21058 {
21059 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21060 struct comp_unit_head *cu_header = &cu->header;
21061
21062 /* NOTE drow/2003-01-30: There used to be a comment and some special
21063 code here to turn a symbol with DW_AT_external and a
21064 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21065 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21066 with some versions of binutils) where shared libraries could have
21067 relocations against symbols in their debug information - the
21068 minimal symbol would have the right address, but the debug info
21069 would not. It's no longer necessary, because we will explicitly
21070 apply relocations when we read in the debug information now. */
21071
21072 /* A DW_AT_location attribute with no contents indicates that a
21073 variable has been optimized away. */
21074 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21075 {
21076 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21077 return;
21078 }
21079
21080 /* Handle one degenerate form of location expression specially, to
21081 preserve GDB's previous behavior when section offsets are
21082 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21083 then mark this symbol as LOC_STATIC. */
21084
21085 if (attr_form_is_block (attr)
21086 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21087 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21088 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21089 && (DW_BLOCK (attr)->size
21090 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21091 {
21092 unsigned int dummy;
21093
21094 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21095 SYMBOL_VALUE_ADDRESS (sym) =
21096 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21097 else
21098 SYMBOL_VALUE_ADDRESS (sym) =
21099 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21100 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21101 fixup_symbol_section (sym, objfile);
21102 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21103 SYMBOL_SECTION (sym));
21104 return;
21105 }
21106
21107 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21108 expression evaluator, and use LOC_COMPUTED only when necessary
21109 (i.e. when the value of a register or memory location is
21110 referenced, or a thread-local block, etc.). Then again, it might
21111 not be worthwhile. I'm assuming that it isn't unless performance
21112 or memory numbers show me otherwise. */
21113
21114 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21115
21116 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21117 cu->has_loclist = 1;
21118 }
21119
21120 /* Given a pointer to a DWARF information entry, figure out if we need
21121 to make a symbol table entry for it, and if so, create a new entry
21122 and return a pointer to it.
21123 If TYPE is NULL, determine symbol type from the die, otherwise
21124 used the passed type.
21125 If SPACE is not NULL, use it to hold the new symbol. If it is
21126 NULL, allocate a new symbol on the objfile's obstack. */
21127
21128 static struct symbol *
21129 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21130 struct symbol *space)
21131 {
21132 struct dwarf2_per_objfile *dwarf2_per_objfile
21133 = cu->per_cu->dwarf2_per_objfile;
21134 struct objfile *objfile = dwarf2_per_objfile->objfile;
21135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21136 struct symbol *sym = NULL;
21137 const char *name;
21138 struct attribute *attr = NULL;
21139 struct attribute *attr2 = NULL;
21140 CORE_ADDR baseaddr;
21141 struct pending **list_to_add = NULL;
21142
21143 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21144
21145 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21146
21147 name = dwarf2_name (die, cu);
21148 if (name)
21149 {
21150 const char *linkagename;
21151 int suppress_add = 0;
21152
21153 if (space)
21154 sym = space;
21155 else
21156 sym = allocate_symbol (objfile);
21157 OBJSTAT (objfile, n_syms++);
21158
21159 /* Cache this symbol's name and the name's demangled form (if any). */
21160 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21161 linkagename = dwarf2_physname (name, die, cu);
21162 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21163
21164 /* Fortran does not have mangling standard and the mangling does differ
21165 between gfortran, iFort etc. */
21166 if (cu->language == language_fortran
21167 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21168 symbol_set_demangled_name (&(sym->ginfo),
21169 dwarf2_full_name (name, die, cu),
21170 NULL);
21171
21172 /* Default assumptions.
21173 Use the passed type or decode it from the die. */
21174 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21175 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21176 if (type != NULL)
21177 SYMBOL_TYPE (sym) = type;
21178 else
21179 SYMBOL_TYPE (sym) = die_type (die, cu);
21180 attr = dwarf2_attr (die,
21181 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21182 cu);
21183 if (attr)
21184 {
21185 SYMBOL_LINE (sym) = DW_UNSND (attr);
21186 }
21187
21188 attr = dwarf2_attr (die,
21189 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21190 cu);
21191 if (attr)
21192 {
21193 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21194 struct file_entry *fe;
21195
21196 if (cu->line_header != NULL)
21197 fe = cu->line_header->file_name_at (file_index);
21198 else
21199 fe = NULL;
21200
21201 if (fe == NULL)
21202 complaint (_("file index out of range"));
21203 else
21204 symbol_set_symtab (sym, fe->symtab);
21205 }
21206
21207 switch (die->tag)
21208 {
21209 case DW_TAG_label:
21210 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21211 if (attr)
21212 {
21213 CORE_ADDR addr;
21214
21215 addr = attr_value_as_address (attr);
21216 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21217 SYMBOL_VALUE_ADDRESS (sym) = addr;
21218 }
21219 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21220 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21221 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21222 add_symbol_to_list (sym, cu->list_in_scope);
21223 break;
21224 case DW_TAG_subprogram:
21225 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21226 finish_block. */
21227 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21228 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21229 if ((attr2 && (DW_UNSND (attr2) != 0))
21230 || cu->language == language_ada)
21231 {
21232 /* Subprograms marked external are stored as a global symbol.
21233 Ada subprograms, whether marked external or not, are always
21234 stored as a global symbol, because we want to be able to
21235 access them globally. For instance, we want to be able
21236 to break on a nested subprogram without having to
21237 specify the context. */
21238 list_to_add = &global_symbols;
21239 }
21240 else
21241 {
21242 list_to_add = cu->list_in_scope;
21243 }
21244 break;
21245 case DW_TAG_inlined_subroutine:
21246 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21247 finish_block. */
21248 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21249 SYMBOL_INLINED (sym) = 1;
21250 list_to_add = cu->list_in_scope;
21251 break;
21252 case DW_TAG_template_value_param:
21253 suppress_add = 1;
21254 /* Fall through. */
21255 case DW_TAG_constant:
21256 case DW_TAG_variable:
21257 case DW_TAG_member:
21258 /* Compilation with minimal debug info may result in
21259 variables with missing type entries. Change the
21260 misleading `void' type to something sensible. */
21261 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21262 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21263
21264 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21265 /* In the case of DW_TAG_member, we should only be called for
21266 static const members. */
21267 if (die->tag == DW_TAG_member)
21268 {
21269 /* dwarf2_add_field uses die_is_declaration,
21270 so we do the same. */
21271 gdb_assert (die_is_declaration (die, cu));
21272 gdb_assert (attr);
21273 }
21274 if (attr)
21275 {
21276 dwarf2_const_value (attr, sym, cu);
21277 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21278 if (!suppress_add)
21279 {
21280 if (attr2 && (DW_UNSND (attr2) != 0))
21281 list_to_add = &global_symbols;
21282 else
21283 list_to_add = cu->list_in_scope;
21284 }
21285 break;
21286 }
21287 attr = dwarf2_attr (die, DW_AT_location, cu);
21288 if (attr)
21289 {
21290 var_decode_location (attr, sym, cu);
21291 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21292
21293 /* Fortran explicitly imports any global symbols to the local
21294 scope by DW_TAG_common_block. */
21295 if (cu->language == language_fortran && die->parent
21296 && die->parent->tag == DW_TAG_common_block)
21297 attr2 = NULL;
21298
21299 if (SYMBOL_CLASS (sym) == LOC_STATIC
21300 && SYMBOL_VALUE_ADDRESS (sym) == 0
21301 && !dwarf2_per_objfile->has_section_at_zero)
21302 {
21303 /* When a static variable is eliminated by the linker,
21304 the corresponding debug information is not stripped
21305 out, but the variable address is set to null;
21306 do not add such variables into symbol table. */
21307 }
21308 else if (attr2 && (DW_UNSND (attr2) != 0))
21309 {
21310 /* Workaround gfortran PR debug/40040 - it uses
21311 DW_AT_location for variables in -fPIC libraries which may
21312 get overriden by other libraries/executable and get
21313 a different address. Resolve it by the minimal symbol
21314 which may come from inferior's executable using copy
21315 relocation. Make this workaround only for gfortran as for
21316 other compilers GDB cannot guess the minimal symbol
21317 Fortran mangling kind. */
21318 if (cu->language == language_fortran && die->parent
21319 && die->parent->tag == DW_TAG_module
21320 && cu->producer
21321 && startswith (cu->producer, "GNU Fortran"))
21322 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21323
21324 /* A variable with DW_AT_external is never static,
21325 but it may be block-scoped. */
21326 list_to_add = (cu->list_in_scope == &file_symbols
21327 ? &global_symbols : cu->list_in_scope);
21328 }
21329 else
21330 list_to_add = cu->list_in_scope;
21331 }
21332 else
21333 {
21334 /* We do not know the address of this symbol.
21335 If it is an external symbol and we have type information
21336 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21337 The address of the variable will then be determined from
21338 the minimal symbol table whenever the variable is
21339 referenced. */
21340 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21341
21342 /* Fortran explicitly imports any global symbols to the local
21343 scope by DW_TAG_common_block. */
21344 if (cu->language == language_fortran && die->parent
21345 && die->parent->tag == DW_TAG_common_block)
21346 {
21347 /* SYMBOL_CLASS doesn't matter here because
21348 read_common_block is going to reset it. */
21349 if (!suppress_add)
21350 list_to_add = cu->list_in_scope;
21351 }
21352 else if (attr2 && (DW_UNSND (attr2) != 0)
21353 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21354 {
21355 /* A variable with DW_AT_external is never static, but it
21356 may be block-scoped. */
21357 list_to_add = (cu->list_in_scope == &file_symbols
21358 ? &global_symbols : cu->list_in_scope);
21359
21360 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21361 }
21362 else if (!die_is_declaration (die, cu))
21363 {
21364 /* Use the default LOC_OPTIMIZED_OUT class. */
21365 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21366 if (!suppress_add)
21367 list_to_add = cu->list_in_scope;
21368 }
21369 }
21370 break;
21371 case DW_TAG_formal_parameter:
21372 /* If we are inside a function, mark this as an argument. If
21373 not, we might be looking at an argument to an inlined function
21374 when we do not have enough information to show inlined frames;
21375 pretend it's a local variable in that case so that the user can
21376 still see it. */
21377 if (context_stack_depth > 0
21378 && context_stack[context_stack_depth - 1].name != NULL)
21379 SYMBOL_IS_ARGUMENT (sym) = 1;
21380 attr = dwarf2_attr (die, DW_AT_location, cu);
21381 if (attr)
21382 {
21383 var_decode_location (attr, sym, cu);
21384 }
21385 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21386 if (attr)
21387 {
21388 dwarf2_const_value (attr, sym, cu);
21389 }
21390
21391 list_to_add = cu->list_in_scope;
21392 break;
21393 case DW_TAG_unspecified_parameters:
21394 /* From varargs functions; gdb doesn't seem to have any
21395 interest in this information, so just ignore it for now.
21396 (FIXME?) */
21397 break;
21398 case DW_TAG_template_type_param:
21399 suppress_add = 1;
21400 /* Fall through. */
21401 case DW_TAG_class_type:
21402 case DW_TAG_interface_type:
21403 case DW_TAG_structure_type:
21404 case DW_TAG_union_type:
21405 case DW_TAG_set_type:
21406 case DW_TAG_enumeration_type:
21407 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21408 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21409
21410 {
21411 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21412 really ever be static objects: otherwise, if you try
21413 to, say, break of a class's method and you're in a file
21414 which doesn't mention that class, it won't work unless
21415 the check for all static symbols in lookup_symbol_aux
21416 saves you. See the OtherFileClass tests in
21417 gdb.c++/namespace.exp. */
21418
21419 if (!suppress_add)
21420 {
21421 list_to_add = (cu->list_in_scope == &file_symbols
21422 && cu->language == language_cplus
21423 ? &global_symbols : cu->list_in_scope);
21424
21425 /* The semantics of C++ state that "struct foo {
21426 ... }" also defines a typedef for "foo". */
21427 if (cu->language == language_cplus
21428 || cu->language == language_ada
21429 || cu->language == language_d
21430 || cu->language == language_rust)
21431 {
21432 /* The symbol's name is already allocated along
21433 with this objfile, so we don't need to
21434 duplicate it for the type. */
21435 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21436 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21437 }
21438 }
21439 }
21440 break;
21441 case DW_TAG_typedef:
21442 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21443 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21444 list_to_add = cu->list_in_scope;
21445 break;
21446 case DW_TAG_base_type:
21447 case DW_TAG_subrange_type:
21448 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21449 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21450 list_to_add = cu->list_in_scope;
21451 break;
21452 case DW_TAG_enumerator:
21453 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21454 if (attr)
21455 {
21456 dwarf2_const_value (attr, sym, cu);
21457 }
21458 {
21459 /* NOTE: carlton/2003-11-10: See comment above in the
21460 DW_TAG_class_type, etc. block. */
21461
21462 list_to_add = (cu->list_in_scope == &file_symbols
21463 && cu->language == language_cplus
21464 ? &global_symbols : cu->list_in_scope);
21465 }
21466 break;
21467 case DW_TAG_imported_declaration:
21468 case DW_TAG_namespace:
21469 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21470 list_to_add = &global_symbols;
21471 break;
21472 case DW_TAG_module:
21473 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21474 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21475 list_to_add = &global_symbols;
21476 break;
21477 case DW_TAG_common_block:
21478 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21479 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21480 add_symbol_to_list (sym, cu->list_in_scope);
21481 break;
21482 default:
21483 /* Not a tag we recognize. Hopefully we aren't processing
21484 trash data, but since we must specifically ignore things
21485 we don't recognize, there is nothing else we should do at
21486 this point. */
21487 complaint (_("unsupported tag: '%s'"),
21488 dwarf_tag_name (die->tag));
21489 break;
21490 }
21491
21492 if (suppress_add)
21493 {
21494 sym->hash_next = objfile->template_symbols;
21495 objfile->template_symbols = sym;
21496 list_to_add = NULL;
21497 }
21498
21499 if (list_to_add != NULL)
21500 add_symbol_to_list (sym, list_to_add);
21501
21502 /* For the benefit of old versions of GCC, check for anonymous
21503 namespaces based on the demangled name. */
21504 if (!cu->processing_has_namespace_info
21505 && cu->language == language_cplus)
21506 cp_scan_for_anonymous_namespaces (sym, objfile);
21507 }
21508 return (sym);
21509 }
21510
21511 /* Given an attr with a DW_FORM_dataN value in host byte order,
21512 zero-extend it as appropriate for the symbol's type. The DWARF
21513 standard (v4) is not entirely clear about the meaning of using
21514 DW_FORM_dataN for a constant with a signed type, where the type is
21515 wider than the data. The conclusion of a discussion on the DWARF
21516 list was that this is unspecified. We choose to always zero-extend
21517 because that is the interpretation long in use by GCC. */
21518
21519 static gdb_byte *
21520 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21521 struct dwarf2_cu *cu, LONGEST *value, int bits)
21522 {
21523 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21524 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21525 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21526 LONGEST l = DW_UNSND (attr);
21527
21528 if (bits < sizeof (*value) * 8)
21529 {
21530 l &= ((LONGEST) 1 << bits) - 1;
21531 *value = l;
21532 }
21533 else if (bits == sizeof (*value) * 8)
21534 *value = l;
21535 else
21536 {
21537 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21538 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21539 return bytes;
21540 }
21541
21542 return NULL;
21543 }
21544
21545 /* Read a constant value from an attribute. Either set *VALUE, or if
21546 the value does not fit in *VALUE, set *BYTES - either already
21547 allocated on the objfile obstack, or newly allocated on OBSTACK,
21548 or, set *BATON, if we translated the constant to a location
21549 expression. */
21550
21551 static void
21552 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21553 const char *name, struct obstack *obstack,
21554 struct dwarf2_cu *cu,
21555 LONGEST *value, const gdb_byte **bytes,
21556 struct dwarf2_locexpr_baton **baton)
21557 {
21558 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21559 struct comp_unit_head *cu_header = &cu->header;
21560 struct dwarf_block *blk;
21561 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21562 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21563
21564 *value = 0;
21565 *bytes = NULL;
21566 *baton = NULL;
21567
21568 switch (attr->form)
21569 {
21570 case DW_FORM_addr:
21571 case DW_FORM_GNU_addr_index:
21572 {
21573 gdb_byte *data;
21574
21575 if (TYPE_LENGTH (type) != cu_header->addr_size)
21576 dwarf2_const_value_length_mismatch_complaint (name,
21577 cu_header->addr_size,
21578 TYPE_LENGTH (type));
21579 /* Symbols of this form are reasonably rare, so we just
21580 piggyback on the existing location code rather than writing
21581 a new implementation of symbol_computed_ops. */
21582 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21583 (*baton)->per_cu = cu->per_cu;
21584 gdb_assert ((*baton)->per_cu);
21585
21586 (*baton)->size = 2 + cu_header->addr_size;
21587 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21588 (*baton)->data = data;
21589
21590 data[0] = DW_OP_addr;
21591 store_unsigned_integer (&data[1], cu_header->addr_size,
21592 byte_order, DW_ADDR (attr));
21593 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21594 }
21595 break;
21596 case DW_FORM_string:
21597 case DW_FORM_strp:
21598 case DW_FORM_GNU_str_index:
21599 case DW_FORM_GNU_strp_alt:
21600 /* DW_STRING is already allocated on the objfile obstack, point
21601 directly to it. */
21602 *bytes = (const gdb_byte *) DW_STRING (attr);
21603 break;
21604 case DW_FORM_block1:
21605 case DW_FORM_block2:
21606 case DW_FORM_block4:
21607 case DW_FORM_block:
21608 case DW_FORM_exprloc:
21609 case DW_FORM_data16:
21610 blk = DW_BLOCK (attr);
21611 if (TYPE_LENGTH (type) != blk->size)
21612 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21613 TYPE_LENGTH (type));
21614 *bytes = blk->data;
21615 break;
21616
21617 /* The DW_AT_const_value attributes are supposed to carry the
21618 symbol's value "represented as it would be on the target
21619 architecture." By the time we get here, it's already been
21620 converted to host endianness, so we just need to sign- or
21621 zero-extend it as appropriate. */
21622 case DW_FORM_data1:
21623 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21624 break;
21625 case DW_FORM_data2:
21626 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21627 break;
21628 case DW_FORM_data4:
21629 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21630 break;
21631 case DW_FORM_data8:
21632 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21633 break;
21634
21635 case DW_FORM_sdata:
21636 case DW_FORM_implicit_const:
21637 *value = DW_SND (attr);
21638 break;
21639
21640 case DW_FORM_udata:
21641 *value = DW_UNSND (attr);
21642 break;
21643
21644 default:
21645 complaint (_("unsupported const value attribute form: '%s'"),
21646 dwarf_form_name (attr->form));
21647 *value = 0;
21648 break;
21649 }
21650 }
21651
21652
21653 /* Copy constant value from an attribute to a symbol. */
21654
21655 static void
21656 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21657 struct dwarf2_cu *cu)
21658 {
21659 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21660 LONGEST value;
21661 const gdb_byte *bytes;
21662 struct dwarf2_locexpr_baton *baton;
21663
21664 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21665 SYMBOL_PRINT_NAME (sym),
21666 &objfile->objfile_obstack, cu,
21667 &value, &bytes, &baton);
21668
21669 if (baton != NULL)
21670 {
21671 SYMBOL_LOCATION_BATON (sym) = baton;
21672 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21673 }
21674 else if (bytes != NULL)
21675 {
21676 SYMBOL_VALUE_BYTES (sym) = bytes;
21677 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21678 }
21679 else
21680 {
21681 SYMBOL_VALUE (sym) = value;
21682 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21683 }
21684 }
21685
21686 /* Return the type of the die in question using its DW_AT_type attribute. */
21687
21688 static struct type *
21689 die_type (struct die_info *die, struct dwarf2_cu *cu)
21690 {
21691 struct attribute *type_attr;
21692
21693 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21694 if (!type_attr)
21695 {
21696 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21697 /* A missing DW_AT_type represents a void type. */
21698 return objfile_type (objfile)->builtin_void;
21699 }
21700
21701 return lookup_die_type (die, type_attr, cu);
21702 }
21703
21704 /* True iff CU's producer generates GNAT Ada auxiliary information
21705 that allows to find parallel types through that information instead
21706 of having to do expensive parallel lookups by type name. */
21707
21708 static int
21709 need_gnat_info (struct dwarf2_cu *cu)
21710 {
21711 /* Assume that the Ada compiler was GNAT, which always produces
21712 the auxiliary information. */
21713 return (cu->language == language_ada);
21714 }
21715
21716 /* Return the auxiliary type of the die in question using its
21717 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21718 attribute is not present. */
21719
21720 static struct type *
21721 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21722 {
21723 struct attribute *type_attr;
21724
21725 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21726 if (!type_attr)
21727 return NULL;
21728
21729 return lookup_die_type (die, type_attr, cu);
21730 }
21731
21732 /* If DIE has a descriptive_type attribute, then set the TYPE's
21733 descriptive type accordingly. */
21734
21735 static void
21736 set_descriptive_type (struct type *type, struct die_info *die,
21737 struct dwarf2_cu *cu)
21738 {
21739 struct type *descriptive_type = die_descriptive_type (die, cu);
21740
21741 if (descriptive_type)
21742 {
21743 ALLOCATE_GNAT_AUX_TYPE (type);
21744 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21745 }
21746 }
21747
21748 /* Return the containing type of the die in question using its
21749 DW_AT_containing_type attribute. */
21750
21751 static struct type *
21752 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21753 {
21754 struct attribute *type_attr;
21755 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21756
21757 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21758 if (!type_attr)
21759 error (_("Dwarf Error: Problem turning containing type into gdb type "
21760 "[in module %s]"), objfile_name (objfile));
21761
21762 return lookup_die_type (die, type_attr, cu);
21763 }
21764
21765 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21766
21767 static struct type *
21768 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21769 {
21770 struct dwarf2_per_objfile *dwarf2_per_objfile
21771 = cu->per_cu->dwarf2_per_objfile;
21772 struct objfile *objfile = dwarf2_per_objfile->objfile;
21773 char *message, *saved;
21774
21775 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21776 objfile_name (objfile),
21777 sect_offset_str (cu->header.sect_off),
21778 sect_offset_str (die->sect_off));
21779 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21780 message, strlen (message));
21781 xfree (message);
21782
21783 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21784 }
21785
21786 /* Look up the type of DIE in CU using its type attribute ATTR.
21787 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21788 DW_AT_containing_type.
21789 If there is no type substitute an error marker. */
21790
21791 static struct type *
21792 lookup_die_type (struct die_info *die, const struct attribute *attr,
21793 struct dwarf2_cu *cu)
21794 {
21795 struct dwarf2_per_objfile *dwarf2_per_objfile
21796 = cu->per_cu->dwarf2_per_objfile;
21797 struct objfile *objfile = dwarf2_per_objfile->objfile;
21798 struct type *this_type;
21799
21800 gdb_assert (attr->name == DW_AT_type
21801 || attr->name == DW_AT_GNAT_descriptive_type
21802 || attr->name == DW_AT_containing_type);
21803
21804 /* First see if we have it cached. */
21805
21806 if (attr->form == DW_FORM_GNU_ref_alt)
21807 {
21808 struct dwarf2_per_cu_data *per_cu;
21809 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21810
21811 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21812 dwarf2_per_objfile);
21813 this_type = get_die_type_at_offset (sect_off, per_cu);
21814 }
21815 else if (attr_form_is_ref (attr))
21816 {
21817 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21818
21819 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21820 }
21821 else if (attr->form == DW_FORM_ref_sig8)
21822 {
21823 ULONGEST signature = DW_SIGNATURE (attr);
21824
21825 return get_signatured_type (die, signature, cu);
21826 }
21827 else
21828 {
21829 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21830 " at %s [in module %s]"),
21831 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21832 objfile_name (objfile));
21833 return build_error_marker_type (cu, die);
21834 }
21835
21836 /* If not cached we need to read it in. */
21837
21838 if (this_type == NULL)
21839 {
21840 struct die_info *type_die = NULL;
21841 struct dwarf2_cu *type_cu = cu;
21842
21843 if (attr_form_is_ref (attr))
21844 type_die = follow_die_ref (die, attr, &type_cu);
21845 if (type_die == NULL)
21846 return build_error_marker_type (cu, die);
21847 /* If we find the type now, it's probably because the type came
21848 from an inter-CU reference and the type's CU got expanded before
21849 ours. */
21850 this_type = read_type_die (type_die, type_cu);
21851 }
21852
21853 /* If we still don't have a type use an error marker. */
21854
21855 if (this_type == NULL)
21856 return build_error_marker_type (cu, die);
21857
21858 return this_type;
21859 }
21860
21861 /* Return the type in DIE, CU.
21862 Returns NULL for invalid types.
21863
21864 This first does a lookup in die_type_hash,
21865 and only reads the die in if necessary.
21866
21867 NOTE: This can be called when reading in partial or full symbols. */
21868
21869 static struct type *
21870 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21871 {
21872 struct type *this_type;
21873
21874 this_type = get_die_type (die, cu);
21875 if (this_type)
21876 return this_type;
21877
21878 return read_type_die_1 (die, cu);
21879 }
21880
21881 /* Read the type in DIE, CU.
21882 Returns NULL for invalid types. */
21883
21884 static struct type *
21885 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21886 {
21887 struct type *this_type = NULL;
21888
21889 switch (die->tag)
21890 {
21891 case DW_TAG_class_type:
21892 case DW_TAG_interface_type:
21893 case DW_TAG_structure_type:
21894 case DW_TAG_union_type:
21895 this_type = read_structure_type (die, cu);
21896 break;
21897 case DW_TAG_enumeration_type:
21898 this_type = read_enumeration_type (die, cu);
21899 break;
21900 case DW_TAG_subprogram:
21901 case DW_TAG_subroutine_type:
21902 case DW_TAG_inlined_subroutine:
21903 this_type = read_subroutine_type (die, cu);
21904 break;
21905 case DW_TAG_array_type:
21906 this_type = read_array_type (die, cu);
21907 break;
21908 case DW_TAG_set_type:
21909 this_type = read_set_type (die, cu);
21910 break;
21911 case DW_TAG_pointer_type:
21912 this_type = read_tag_pointer_type (die, cu);
21913 break;
21914 case DW_TAG_ptr_to_member_type:
21915 this_type = read_tag_ptr_to_member_type (die, cu);
21916 break;
21917 case DW_TAG_reference_type:
21918 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21919 break;
21920 case DW_TAG_rvalue_reference_type:
21921 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21922 break;
21923 case DW_TAG_const_type:
21924 this_type = read_tag_const_type (die, cu);
21925 break;
21926 case DW_TAG_volatile_type:
21927 this_type = read_tag_volatile_type (die, cu);
21928 break;
21929 case DW_TAG_restrict_type:
21930 this_type = read_tag_restrict_type (die, cu);
21931 break;
21932 case DW_TAG_string_type:
21933 this_type = read_tag_string_type (die, cu);
21934 break;
21935 case DW_TAG_typedef:
21936 this_type = read_typedef (die, cu);
21937 break;
21938 case DW_TAG_subrange_type:
21939 this_type = read_subrange_type (die, cu);
21940 break;
21941 case DW_TAG_base_type:
21942 this_type = read_base_type (die, cu);
21943 break;
21944 case DW_TAG_unspecified_type:
21945 this_type = read_unspecified_type (die, cu);
21946 break;
21947 case DW_TAG_namespace:
21948 this_type = read_namespace_type (die, cu);
21949 break;
21950 case DW_TAG_module:
21951 this_type = read_module_type (die, cu);
21952 break;
21953 case DW_TAG_atomic_type:
21954 this_type = read_tag_atomic_type (die, cu);
21955 break;
21956 default:
21957 complaint (_("unexpected tag in read_type_die: '%s'"),
21958 dwarf_tag_name (die->tag));
21959 break;
21960 }
21961
21962 return this_type;
21963 }
21964
21965 /* See if we can figure out if the class lives in a namespace. We do
21966 this by looking for a member function; its demangled name will
21967 contain namespace info, if there is any.
21968 Return the computed name or NULL.
21969 Space for the result is allocated on the objfile's obstack.
21970 This is the full-die version of guess_partial_die_structure_name.
21971 In this case we know DIE has no useful parent. */
21972
21973 static char *
21974 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21975 {
21976 struct die_info *spec_die;
21977 struct dwarf2_cu *spec_cu;
21978 struct die_info *child;
21979 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21980
21981 spec_cu = cu;
21982 spec_die = die_specification (die, &spec_cu);
21983 if (spec_die != NULL)
21984 {
21985 die = spec_die;
21986 cu = spec_cu;
21987 }
21988
21989 for (child = die->child;
21990 child != NULL;
21991 child = child->sibling)
21992 {
21993 if (child->tag == DW_TAG_subprogram)
21994 {
21995 const char *linkage_name = dw2_linkage_name (child, cu);
21996
21997 if (linkage_name != NULL)
21998 {
21999 char *actual_name
22000 = language_class_name_from_physname (cu->language_defn,
22001 linkage_name);
22002 char *name = NULL;
22003
22004 if (actual_name != NULL)
22005 {
22006 const char *die_name = dwarf2_name (die, cu);
22007
22008 if (die_name != NULL
22009 && strcmp (die_name, actual_name) != 0)
22010 {
22011 /* Strip off the class name from the full name.
22012 We want the prefix. */
22013 int die_name_len = strlen (die_name);
22014 int actual_name_len = strlen (actual_name);
22015
22016 /* Test for '::' as a sanity check. */
22017 if (actual_name_len > die_name_len + 2
22018 && actual_name[actual_name_len
22019 - die_name_len - 1] == ':')
22020 name = (char *) obstack_copy0 (
22021 &objfile->per_bfd->storage_obstack,
22022 actual_name, actual_name_len - die_name_len - 2);
22023 }
22024 }
22025 xfree (actual_name);
22026 return name;
22027 }
22028 }
22029 }
22030
22031 return NULL;
22032 }
22033
22034 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22035 prefix part in such case. See
22036 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22037
22038 static const char *
22039 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22040 {
22041 struct attribute *attr;
22042 const char *base;
22043
22044 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22045 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22046 return NULL;
22047
22048 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22049 return NULL;
22050
22051 attr = dw2_linkage_name_attr (die, cu);
22052 if (attr == NULL || DW_STRING (attr) == NULL)
22053 return NULL;
22054
22055 /* dwarf2_name had to be already called. */
22056 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22057
22058 /* Strip the base name, keep any leading namespaces/classes. */
22059 base = strrchr (DW_STRING (attr), ':');
22060 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22061 return "";
22062
22063 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22064 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22065 DW_STRING (attr),
22066 &base[-1] - DW_STRING (attr));
22067 }
22068
22069 /* Return the name of the namespace/class that DIE is defined within,
22070 or "" if we can't tell. The caller should not xfree the result.
22071
22072 For example, if we're within the method foo() in the following
22073 code:
22074
22075 namespace N {
22076 class C {
22077 void foo () {
22078 }
22079 };
22080 }
22081
22082 then determine_prefix on foo's die will return "N::C". */
22083
22084 static const char *
22085 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22086 {
22087 struct dwarf2_per_objfile *dwarf2_per_objfile
22088 = cu->per_cu->dwarf2_per_objfile;
22089 struct die_info *parent, *spec_die;
22090 struct dwarf2_cu *spec_cu;
22091 struct type *parent_type;
22092 const char *retval;
22093
22094 if (cu->language != language_cplus
22095 && cu->language != language_fortran && cu->language != language_d
22096 && cu->language != language_rust)
22097 return "";
22098
22099 retval = anonymous_struct_prefix (die, cu);
22100 if (retval)
22101 return retval;
22102
22103 /* We have to be careful in the presence of DW_AT_specification.
22104 For example, with GCC 3.4, given the code
22105
22106 namespace N {
22107 void foo() {
22108 // Definition of N::foo.
22109 }
22110 }
22111
22112 then we'll have a tree of DIEs like this:
22113
22114 1: DW_TAG_compile_unit
22115 2: DW_TAG_namespace // N
22116 3: DW_TAG_subprogram // declaration of N::foo
22117 4: DW_TAG_subprogram // definition of N::foo
22118 DW_AT_specification // refers to die #3
22119
22120 Thus, when processing die #4, we have to pretend that we're in
22121 the context of its DW_AT_specification, namely the contex of die
22122 #3. */
22123 spec_cu = cu;
22124 spec_die = die_specification (die, &spec_cu);
22125 if (spec_die == NULL)
22126 parent = die->parent;
22127 else
22128 {
22129 parent = spec_die->parent;
22130 cu = spec_cu;
22131 }
22132
22133 if (parent == NULL)
22134 return "";
22135 else if (parent->building_fullname)
22136 {
22137 const char *name;
22138 const char *parent_name;
22139
22140 /* It has been seen on RealView 2.2 built binaries,
22141 DW_TAG_template_type_param types actually _defined_ as
22142 children of the parent class:
22143
22144 enum E {};
22145 template class <class Enum> Class{};
22146 Class<enum E> class_e;
22147
22148 1: DW_TAG_class_type (Class)
22149 2: DW_TAG_enumeration_type (E)
22150 3: DW_TAG_enumerator (enum1:0)
22151 3: DW_TAG_enumerator (enum2:1)
22152 ...
22153 2: DW_TAG_template_type_param
22154 DW_AT_type DW_FORM_ref_udata (E)
22155
22156 Besides being broken debug info, it can put GDB into an
22157 infinite loop. Consider:
22158
22159 When we're building the full name for Class<E>, we'll start
22160 at Class, and go look over its template type parameters,
22161 finding E. We'll then try to build the full name of E, and
22162 reach here. We're now trying to build the full name of E,
22163 and look over the parent DIE for containing scope. In the
22164 broken case, if we followed the parent DIE of E, we'd again
22165 find Class, and once again go look at its template type
22166 arguments, etc., etc. Simply don't consider such parent die
22167 as source-level parent of this die (it can't be, the language
22168 doesn't allow it), and break the loop here. */
22169 name = dwarf2_name (die, cu);
22170 parent_name = dwarf2_name (parent, cu);
22171 complaint (_("template param type '%s' defined within parent '%s'"),
22172 name ? name : "<unknown>",
22173 parent_name ? parent_name : "<unknown>");
22174 return "";
22175 }
22176 else
22177 switch (parent->tag)
22178 {
22179 case DW_TAG_namespace:
22180 parent_type = read_type_die (parent, cu);
22181 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22182 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22183 Work around this problem here. */
22184 if (cu->language == language_cplus
22185 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22186 return "";
22187 /* We give a name to even anonymous namespaces. */
22188 return TYPE_TAG_NAME (parent_type);
22189 case DW_TAG_class_type:
22190 case DW_TAG_interface_type:
22191 case DW_TAG_structure_type:
22192 case DW_TAG_union_type:
22193 case DW_TAG_module:
22194 parent_type = read_type_die (parent, cu);
22195 if (TYPE_TAG_NAME (parent_type) != NULL)
22196 return TYPE_TAG_NAME (parent_type);
22197 else
22198 /* An anonymous structure is only allowed non-static data
22199 members; no typedefs, no member functions, et cetera.
22200 So it does not need a prefix. */
22201 return "";
22202 case DW_TAG_compile_unit:
22203 case DW_TAG_partial_unit:
22204 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22205 if (cu->language == language_cplus
22206 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22207 && die->child != NULL
22208 && (die->tag == DW_TAG_class_type
22209 || die->tag == DW_TAG_structure_type
22210 || die->tag == DW_TAG_union_type))
22211 {
22212 char *name = guess_full_die_structure_name (die, cu);
22213 if (name != NULL)
22214 return name;
22215 }
22216 return "";
22217 case DW_TAG_enumeration_type:
22218 parent_type = read_type_die (parent, cu);
22219 if (TYPE_DECLARED_CLASS (parent_type))
22220 {
22221 if (TYPE_TAG_NAME (parent_type) != NULL)
22222 return TYPE_TAG_NAME (parent_type);
22223 return "";
22224 }
22225 /* Fall through. */
22226 default:
22227 return determine_prefix (parent, cu);
22228 }
22229 }
22230
22231 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22232 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22233 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22234 an obconcat, otherwise allocate storage for the result. The CU argument is
22235 used to determine the language and hence, the appropriate separator. */
22236
22237 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22238
22239 static char *
22240 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22241 int physname, struct dwarf2_cu *cu)
22242 {
22243 const char *lead = "";
22244 const char *sep;
22245
22246 if (suffix == NULL || suffix[0] == '\0'
22247 || prefix == NULL || prefix[0] == '\0')
22248 sep = "";
22249 else if (cu->language == language_d)
22250 {
22251 /* For D, the 'main' function could be defined in any module, but it
22252 should never be prefixed. */
22253 if (strcmp (suffix, "D main") == 0)
22254 {
22255 prefix = "";
22256 sep = "";
22257 }
22258 else
22259 sep = ".";
22260 }
22261 else if (cu->language == language_fortran && physname)
22262 {
22263 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22264 DW_AT_MIPS_linkage_name is preferred and used instead. */
22265
22266 lead = "__";
22267 sep = "_MOD_";
22268 }
22269 else
22270 sep = "::";
22271
22272 if (prefix == NULL)
22273 prefix = "";
22274 if (suffix == NULL)
22275 suffix = "";
22276
22277 if (obs == NULL)
22278 {
22279 char *retval
22280 = ((char *)
22281 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22282
22283 strcpy (retval, lead);
22284 strcat (retval, prefix);
22285 strcat (retval, sep);
22286 strcat (retval, suffix);
22287 return retval;
22288 }
22289 else
22290 {
22291 /* We have an obstack. */
22292 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22293 }
22294 }
22295
22296 /* Return sibling of die, NULL if no sibling. */
22297
22298 static struct die_info *
22299 sibling_die (struct die_info *die)
22300 {
22301 return die->sibling;
22302 }
22303
22304 /* Get name of a die, return NULL if not found. */
22305
22306 static const char *
22307 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22308 struct obstack *obstack)
22309 {
22310 if (name && cu->language == language_cplus)
22311 {
22312 std::string canon_name = cp_canonicalize_string (name);
22313
22314 if (!canon_name.empty ())
22315 {
22316 if (canon_name != name)
22317 name = (const char *) obstack_copy0 (obstack,
22318 canon_name.c_str (),
22319 canon_name.length ());
22320 }
22321 }
22322
22323 return name;
22324 }
22325
22326 /* Get name of a die, return NULL if not found.
22327 Anonymous namespaces are converted to their magic string. */
22328
22329 static const char *
22330 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22331 {
22332 struct attribute *attr;
22333 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22334
22335 attr = dwarf2_attr (die, DW_AT_name, cu);
22336 if ((!attr || !DW_STRING (attr))
22337 && die->tag != DW_TAG_namespace
22338 && die->tag != DW_TAG_class_type
22339 && die->tag != DW_TAG_interface_type
22340 && die->tag != DW_TAG_structure_type
22341 && die->tag != DW_TAG_union_type)
22342 return NULL;
22343
22344 switch (die->tag)
22345 {
22346 case DW_TAG_compile_unit:
22347 case DW_TAG_partial_unit:
22348 /* Compilation units have a DW_AT_name that is a filename, not
22349 a source language identifier. */
22350 case DW_TAG_enumeration_type:
22351 case DW_TAG_enumerator:
22352 /* These tags always have simple identifiers already; no need
22353 to canonicalize them. */
22354 return DW_STRING (attr);
22355
22356 case DW_TAG_namespace:
22357 if (attr != NULL && DW_STRING (attr) != NULL)
22358 return DW_STRING (attr);
22359 return CP_ANONYMOUS_NAMESPACE_STR;
22360
22361 case DW_TAG_class_type:
22362 case DW_TAG_interface_type:
22363 case DW_TAG_structure_type:
22364 case DW_TAG_union_type:
22365 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22366 structures or unions. These were of the form "._%d" in GCC 4.1,
22367 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22368 and GCC 4.4. We work around this problem by ignoring these. */
22369 if (attr && DW_STRING (attr)
22370 && (startswith (DW_STRING (attr), "._")
22371 || startswith (DW_STRING (attr), "<anonymous")))
22372 return NULL;
22373
22374 /* GCC might emit a nameless typedef that has a linkage name. See
22375 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22376 if (!attr || DW_STRING (attr) == NULL)
22377 {
22378 char *demangled = NULL;
22379
22380 attr = dw2_linkage_name_attr (die, cu);
22381 if (attr == NULL || DW_STRING (attr) == NULL)
22382 return NULL;
22383
22384 /* Avoid demangling DW_STRING (attr) the second time on a second
22385 call for the same DIE. */
22386 if (!DW_STRING_IS_CANONICAL (attr))
22387 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22388
22389 if (demangled)
22390 {
22391 const char *base;
22392
22393 /* FIXME: we already did this for the partial symbol... */
22394 DW_STRING (attr)
22395 = ((const char *)
22396 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22397 demangled, strlen (demangled)));
22398 DW_STRING_IS_CANONICAL (attr) = 1;
22399 xfree (demangled);
22400
22401 /* Strip any leading namespaces/classes, keep only the base name.
22402 DW_AT_name for named DIEs does not contain the prefixes. */
22403 base = strrchr (DW_STRING (attr), ':');
22404 if (base && base > DW_STRING (attr) && base[-1] == ':')
22405 return &base[1];
22406 else
22407 return DW_STRING (attr);
22408 }
22409 }
22410 break;
22411
22412 default:
22413 break;
22414 }
22415
22416 if (!DW_STRING_IS_CANONICAL (attr))
22417 {
22418 DW_STRING (attr)
22419 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22420 &objfile->per_bfd->storage_obstack);
22421 DW_STRING_IS_CANONICAL (attr) = 1;
22422 }
22423 return DW_STRING (attr);
22424 }
22425
22426 /* Return the die that this die in an extension of, or NULL if there
22427 is none. *EXT_CU is the CU containing DIE on input, and the CU
22428 containing the return value on output. */
22429
22430 static struct die_info *
22431 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22432 {
22433 struct attribute *attr;
22434
22435 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22436 if (attr == NULL)
22437 return NULL;
22438
22439 return follow_die_ref (die, attr, ext_cu);
22440 }
22441
22442 /* Convert a DIE tag into its string name. */
22443
22444 static const char *
22445 dwarf_tag_name (unsigned tag)
22446 {
22447 const char *name = get_DW_TAG_name (tag);
22448
22449 if (name == NULL)
22450 return "DW_TAG_<unknown>";
22451
22452 return name;
22453 }
22454
22455 /* Convert a DWARF attribute code into its string name. */
22456
22457 static const char *
22458 dwarf_attr_name (unsigned attr)
22459 {
22460 const char *name;
22461
22462 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22463 if (attr == DW_AT_MIPS_fde)
22464 return "DW_AT_MIPS_fde";
22465 #else
22466 if (attr == DW_AT_HP_block_index)
22467 return "DW_AT_HP_block_index";
22468 #endif
22469
22470 name = get_DW_AT_name (attr);
22471
22472 if (name == NULL)
22473 return "DW_AT_<unknown>";
22474
22475 return name;
22476 }
22477
22478 /* Convert a DWARF value form code into its string name. */
22479
22480 static const char *
22481 dwarf_form_name (unsigned form)
22482 {
22483 const char *name = get_DW_FORM_name (form);
22484
22485 if (name == NULL)
22486 return "DW_FORM_<unknown>";
22487
22488 return name;
22489 }
22490
22491 static const char *
22492 dwarf_bool_name (unsigned mybool)
22493 {
22494 if (mybool)
22495 return "TRUE";
22496 else
22497 return "FALSE";
22498 }
22499
22500 /* Convert a DWARF type code into its string name. */
22501
22502 static const char *
22503 dwarf_type_encoding_name (unsigned enc)
22504 {
22505 const char *name = get_DW_ATE_name (enc);
22506
22507 if (name == NULL)
22508 return "DW_ATE_<unknown>";
22509
22510 return name;
22511 }
22512
22513 static void
22514 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22515 {
22516 unsigned int i;
22517
22518 print_spaces (indent, f);
22519 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22520 dwarf_tag_name (die->tag), die->abbrev,
22521 sect_offset_str (die->sect_off));
22522
22523 if (die->parent != NULL)
22524 {
22525 print_spaces (indent, f);
22526 fprintf_unfiltered (f, " parent at offset: %s\n",
22527 sect_offset_str (die->parent->sect_off));
22528 }
22529
22530 print_spaces (indent, f);
22531 fprintf_unfiltered (f, " has children: %s\n",
22532 dwarf_bool_name (die->child != NULL));
22533
22534 print_spaces (indent, f);
22535 fprintf_unfiltered (f, " attributes:\n");
22536
22537 for (i = 0; i < die->num_attrs; ++i)
22538 {
22539 print_spaces (indent, f);
22540 fprintf_unfiltered (f, " %s (%s) ",
22541 dwarf_attr_name (die->attrs[i].name),
22542 dwarf_form_name (die->attrs[i].form));
22543
22544 switch (die->attrs[i].form)
22545 {
22546 case DW_FORM_addr:
22547 case DW_FORM_GNU_addr_index:
22548 fprintf_unfiltered (f, "address: ");
22549 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22550 break;
22551 case DW_FORM_block2:
22552 case DW_FORM_block4:
22553 case DW_FORM_block:
22554 case DW_FORM_block1:
22555 fprintf_unfiltered (f, "block: size %s",
22556 pulongest (DW_BLOCK (&die->attrs[i])->size));
22557 break;
22558 case DW_FORM_exprloc:
22559 fprintf_unfiltered (f, "expression: size %s",
22560 pulongest (DW_BLOCK (&die->attrs[i])->size));
22561 break;
22562 case DW_FORM_data16:
22563 fprintf_unfiltered (f, "constant of 16 bytes");
22564 break;
22565 case DW_FORM_ref_addr:
22566 fprintf_unfiltered (f, "ref address: ");
22567 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22568 break;
22569 case DW_FORM_GNU_ref_alt:
22570 fprintf_unfiltered (f, "alt ref address: ");
22571 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22572 break;
22573 case DW_FORM_ref1:
22574 case DW_FORM_ref2:
22575 case DW_FORM_ref4:
22576 case DW_FORM_ref8:
22577 case DW_FORM_ref_udata:
22578 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22579 (long) (DW_UNSND (&die->attrs[i])));
22580 break;
22581 case DW_FORM_data1:
22582 case DW_FORM_data2:
22583 case DW_FORM_data4:
22584 case DW_FORM_data8:
22585 case DW_FORM_udata:
22586 case DW_FORM_sdata:
22587 fprintf_unfiltered (f, "constant: %s",
22588 pulongest (DW_UNSND (&die->attrs[i])));
22589 break;
22590 case DW_FORM_sec_offset:
22591 fprintf_unfiltered (f, "section offset: %s",
22592 pulongest (DW_UNSND (&die->attrs[i])));
22593 break;
22594 case DW_FORM_ref_sig8:
22595 fprintf_unfiltered (f, "signature: %s",
22596 hex_string (DW_SIGNATURE (&die->attrs[i])));
22597 break;
22598 case DW_FORM_string:
22599 case DW_FORM_strp:
22600 case DW_FORM_line_strp:
22601 case DW_FORM_GNU_str_index:
22602 case DW_FORM_GNU_strp_alt:
22603 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22604 DW_STRING (&die->attrs[i])
22605 ? DW_STRING (&die->attrs[i]) : "",
22606 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22607 break;
22608 case DW_FORM_flag:
22609 if (DW_UNSND (&die->attrs[i]))
22610 fprintf_unfiltered (f, "flag: TRUE");
22611 else
22612 fprintf_unfiltered (f, "flag: FALSE");
22613 break;
22614 case DW_FORM_flag_present:
22615 fprintf_unfiltered (f, "flag: TRUE");
22616 break;
22617 case DW_FORM_indirect:
22618 /* The reader will have reduced the indirect form to
22619 the "base form" so this form should not occur. */
22620 fprintf_unfiltered (f,
22621 "unexpected attribute form: DW_FORM_indirect");
22622 break;
22623 case DW_FORM_implicit_const:
22624 fprintf_unfiltered (f, "constant: %s",
22625 plongest (DW_SND (&die->attrs[i])));
22626 break;
22627 default:
22628 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22629 die->attrs[i].form);
22630 break;
22631 }
22632 fprintf_unfiltered (f, "\n");
22633 }
22634 }
22635
22636 static void
22637 dump_die_for_error (struct die_info *die)
22638 {
22639 dump_die_shallow (gdb_stderr, 0, die);
22640 }
22641
22642 static void
22643 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22644 {
22645 int indent = level * 4;
22646
22647 gdb_assert (die != NULL);
22648
22649 if (level >= max_level)
22650 return;
22651
22652 dump_die_shallow (f, indent, die);
22653
22654 if (die->child != NULL)
22655 {
22656 print_spaces (indent, f);
22657 fprintf_unfiltered (f, " Children:");
22658 if (level + 1 < max_level)
22659 {
22660 fprintf_unfiltered (f, "\n");
22661 dump_die_1 (f, level + 1, max_level, die->child);
22662 }
22663 else
22664 {
22665 fprintf_unfiltered (f,
22666 " [not printed, max nesting level reached]\n");
22667 }
22668 }
22669
22670 if (die->sibling != NULL && level > 0)
22671 {
22672 dump_die_1 (f, level, max_level, die->sibling);
22673 }
22674 }
22675
22676 /* This is called from the pdie macro in gdbinit.in.
22677 It's not static so gcc will keep a copy callable from gdb. */
22678
22679 void
22680 dump_die (struct die_info *die, int max_level)
22681 {
22682 dump_die_1 (gdb_stdlog, 0, max_level, die);
22683 }
22684
22685 static void
22686 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22687 {
22688 void **slot;
22689
22690 slot = htab_find_slot_with_hash (cu->die_hash, die,
22691 to_underlying (die->sect_off),
22692 INSERT);
22693
22694 *slot = die;
22695 }
22696
22697 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22698 required kind. */
22699
22700 static sect_offset
22701 dwarf2_get_ref_die_offset (const struct attribute *attr)
22702 {
22703 if (attr_form_is_ref (attr))
22704 return (sect_offset) DW_UNSND (attr);
22705
22706 complaint (_("unsupported die ref attribute form: '%s'"),
22707 dwarf_form_name (attr->form));
22708 return {};
22709 }
22710
22711 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22712 * the value held by the attribute is not constant. */
22713
22714 static LONGEST
22715 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22716 {
22717 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22718 return DW_SND (attr);
22719 else if (attr->form == DW_FORM_udata
22720 || attr->form == DW_FORM_data1
22721 || attr->form == DW_FORM_data2
22722 || attr->form == DW_FORM_data4
22723 || attr->form == DW_FORM_data8)
22724 return DW_UNSND (attr);
22725 else
22726 {
22727 /* For DW_FORM_data16 see attr_form_is_constant. */
22728 complaint (_("Attribute value is not a constant (%s)"),
22729 dwarf_form_name (attr->form));
22730 return default_value;
22731 }
22732 }
22733
22734 /* Follow reference or signature attribute ATTR of SRC_DIE.
22735 On entry *REF_CU is the CU of SRC_DIE.
22736 On exit *REF_CU is the CU of the result. */
22737
22738 static struct die_info *
22739 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22740 struct dwarf2_cu **ref_cu)
22741 {
22742 struct die_info *die;
22743
22744 if (attr_form_is_ref (attr))
22745 die = follow_die_ref (src_die, attr, ref_cu);
22746 else if (attr->form == DW_FORM_ref_sig8)
22747 die = follow_die_sig (src_die, attr, ref_cu);
22748 else
22749 {
22750 dump_die_for_error (src_die);
22751 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22752 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22753 }
22754
22755 return die;
22756 }
22757
22758 /* Follow reference OFFSET.
22759 On entry *REF_CU is the CU of the source die referencing OFFSET.
22760 On exit *REF_CU is the CU of the result.
22761 Returns NULL if OFFSET is invalid. */
22762
22763 static struct die_info *
22764 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22765 struct dwarf2_cu **ref_cu)
22766 {
22767 struct die_info temp_die;
22768 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22769 struct dwarf2_per_objfile *dwarf2_per_objfile
22770 = cu->per_cu->dwarf2_per_objfile;
22771
22772 gdb_assert (cu->per_cu != NULL);
22773
22774 target_cu = cu;
22775
22776 if (cu->per_cu->is_debug_types)
22777 {
22778 /* .debug_types CUs cannot reference anything outside their CU.
22779 If they need to, they have to reference a signatured type via
22780 DW_FORM_ref_sig8. */
22781 if (!offset_in_cu_p (&cu->header, sect_off))
22782 return NULL;
22783 }
22784 else if (offset_in_dwz != cu->per_cu->is_dwz
22785 || !offset_in_cu_p (&cu->header, sect_off))
22786 {
22787 struct dwarf2_per_cu_data *per_cu;
22788
22789 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22790 dwarf2_per_objfile);
22791
22792 /* If necessary, add it to the queue and load its DIEs. */
22793 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22794 load_full_comp_unit (per_cu, false, cu->language);
22795
22796 target_cu = per_cu->cu;
22797 }
22798 else if (cu->dies == NULL)
22799 {
22800 /* We're loading full DIEs during partial symbol reading. */
22801 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22802 load_full_comp_unit (cu->per_cu, false, language_minimal);
22803 }
22804
22805 *ref_cu = target_cu;
22806 temp_die.sect_off = sect_off;
22807 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22808 &temp_die,
22809 to_underlying (sect_off));
22810 }
22811
22812 /* Follow reference attribute ATTR of SRC_DIE.
22813 On entry *REF_CU is the CU of SRC_DIE.
22814 On exit *REF_CU is the CU of the result. */
22815
22816 static struct die_info *
22817 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22818 struct dwarf2_cu **ref_cu)
22819 {
22820 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22821 struct dwarf2_cu *cu = *ref_cu;
22822 struct die_info *die;
22823
22824 die = follow_die_offset (sect_off,
22825 (attr->form == DW_FORM_GNU_ref_alt
22826 || cu->per_cu->is_dwz),
22827 ref_cu);
22828 if (!die)
22829 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22830 "at %s [in module %s]"),
22831 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22832 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22833
22834 return die;
22835 }
22836
22837 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22838 Returned value is intended for DW_OP_call*. Returned
22839 dwarf2_locexpr_baton->data has lifetime of
22840 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22841
22842 struct dwarf2_locexpr_baton
22843 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22844 struct dwarf2_per_cu_data *per_cu,
22845 CORE_ADDR (*get_frame_pc) (void *baton),
22846 void *baton)
22847 {
22848 struct dwarf2_cu *cu;
22849 struct die_info *die;
22850 struct attribute *attr;
22851 struct dwarf2_locexpr_baton retval;
22852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22853 struct objfile *objfile = dwarf2_per_objfile->objfile;
22854
22855 if (per_cu->cu == NULL)
22856 load_cu (per_cu, false);
22857 cu = per_cu->cu;
22858 if (cu == NULL)
22859 {
22860 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22861 Instead just throw an error, not much else we can do. */
22862 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22863 sect_offset_str (sect_off), objfile_name (objfile));
22864 }
22865
22866 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22867 if (!die)
22868 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22869 sect_offset_str (sect_off), objfile_name (objfile));
22870
22871 attr = dwarf2_attr (die, DW_AT_location, cu);
22872 if (!attr)
22873 {
22874 /* DWARF: "If there is no such attribute, then there is no effect.".
22875 DATA is ignored if SIZE is 0. */
22876
22877 retval.data = NULL;
22878 retval.size = 0;
22879 }
22880 else if (attr_form_is_section_offset (attr))
22881 {
22882 struct dwarf2_loclist_baton loclist_baton;
22883 CORE_ADDR pc = (*get_frame_pc) (baton);
22884 size_t size;
22885
22886 fill_in_loclist_baton (cu, &loclist_baton, attr);
22887
22888 retval.data = dwarf2_find_location_expression (&loclist_baton,
22889 &size, pc);
22890 retval.size = size;
22891 }
22892 else
22893 {
22894 if (!attr_form_is_block (attr))
22895 error (_("Dwarf Error: DIE at %s referenced in module %s "
22896 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22897 sect_offset_str (sect_off), objfile_name (objfile));
22898
22899 retval.data = DW_BLOCK (attr)->data;
22900 retval.size = DW_BLOCK (attr)->size;
22901 }
22902 retval.per_cu = cu->per_cu;
22903
22904 age_cached_comp_units (dwarf2_per_objfile);
22905
22906 return retval;
22907 }
22908
22909 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22910 offset. */
22911
22912 struct dwarf2_locexpr_baton
22913 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22914 struct dwarf2_per_cu_data *per_cu,
22915 CORE_ADDR (*get_frame_pc) (void *baton),
22916 void *baton)
22917 {
22918 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22919
22920 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22921 }
22922
22923 /* Write a constant of a given type as target-ordered bytes into
22924 OBSTACK. */
22925
22926 static const gdb_byte *
22927 write_constant_as_bytes (struct obstack *obstack,
22928 enum bfd_endian byte_order,
22929 struct type *type,
22930 ULONGEST value,
22931 LONGEST *len)
22932 {
22933 gdb_byte *result;
22934
22935 *len = TYPE_LENGTH (type);
22936 result = (gdb_byte *) obstack_alloc (obstack, *len);
22937 store_unsigned_integer (result, *len, byte_order, value);
22938
22939 return result;
22940 }
22941
22942 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22943 pointer to the constant bytes and set LEN to the length of the
22944 data. If memory is needed, allocate it on OBSTACK. If the DIE
22945 does not have a DW_AT_const_value, return NULL. */
22946
22947 const gdb_byte *
22948 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22949 struct dwarf2_per_cu_data *per_cu,
22950 struct obstack *obstack,
22951 LONGEST *len)
22952 {
22953 struct dwarf2_cu *cu;
22954 struct die_info *die;
22955 struct attribute *attr;
22956 const gdb_byte *result = NULL;
22957 struct type *type;
22958 LONGEST value;
22959 enum bfd_endian byte_order;
22960 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22961
22962 if (per_cu->cu == NULL)
22963 load_cu (per_cu, false);
22964 cu = per_cu->cu;
22965 if (cu == NULL)
22966 {
22967 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22968 Instead just throw an error, not much else we can do. */
22969 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22970 sect_offset_str (sect_off), objfile_name (objfile));
22971 }
22972
22973 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22974 if (!die)
22975 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22976 sect_offset_str (sect_off), objfile_name (objfile));
22977
22978 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22979 if (attr == NULL)
22980 return NULL;
22981
22982 byte_order = (bfd_big_endian (objfile->obfd)
22983 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22984
22985 switch (attr->form)
22986 {
22987 case DW_FORM_addr:
22988 case DW_FORM_GNU_addr_index:
22989 {
22990 gdb_byte *tem;
22991
22992 *len = cu->header.addr_size;
22993 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22994 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22995 result = tem;
22996 }
22997 break;
22998 case DW_FORM_string:
22999 case DW_FORM_strp:
23000 case DW_FORM_GNU_str_index:
23001 case DW_FORM_GNU_strp_alt:
23002 /* DW_STRING is already allocated on the objfile obstack, point
23003 directly to it. */
23004 result = (const gdb_byte *) DW_STRING (attr);
23005 *len = strlen (DW_STRING (attr));
23006 break;
23007 case DW_FORM_block1:
23008 case DW_FORM_block2:
23009 case DW_FORM_block4:
23010 case DW_FORM_block:
23011 case DW_FORM_exprloc:
23012 case DW_FORM_data16:
23013 result = DW_BLOCK (attr)->data;
23014 *len = DW_BLOCK (attr)->size;
23015 break;
23016
23017 /* The DW_AT_const_value attributes are supposed to carry the
23018 symbol's value "represented as it would be on the target
23019 architecture." By the time we get here, it's already been
23020 converted to host endianness, so we just need to sign- or
23021 zero-extend it as appropriate. */
23022 case DW_FORM_data1:
23023 type = die_type (die, cu);
23024 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23025 if (result == NULL)
23026 result = write_constant_as_bytes (obstack, byte_order,
23027 type, value, len);
23028 break;
23029 case DW_FORM_data2:
23030 type = die_type (die, cu);
23031 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23032 if (result == NULL)
23033 result = write_constant_as_bytes (obstack, byte_order,
23034 type, value, len);
23035 break;
23036 case DW_FORM_data4:
23037 type = die_type (die, cu);
23038 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23039 if (result == NULL)
23040 result = write_constant_as_bytes (obstack, byte_order,
23041 type, value, len);
23042 break;
23043 case DW_FORM_data8:
23044 type = die_type (die, cu);
23045 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23046 if (result == NULL)
23047 result = write_constant_as_bytes (obstack, byte_order,
23048 type, value, len);
23049 break;
23050
23051 case DW_FORM_sdata:
23052 case DW_FORM_implicit_const:
23053 type = die_type (die, cu);
23054 result = write_constant_as_bytes (obstack, byte_order,
23055 type, DW_SND (attr), len);
23056 break;
23057
23058 case DW_FORM_udata:
23059 type = die_type (die, cu);
23060 result = write_constant_as_bytes (obstack, byte_order,
23061 type, DW_UNSND (attr), len);
23062 break;
23063
23064 default:
23065 complaint (_("unsupported const value attribute form: '%s'"),
23066 dwarf_form_name (attr->form));
23067 break;
23068 }
23069
23070 return result;
23071 }
23072
23073 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23074 valid type for this die is found. */
23075
23076 struct type *
23077 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23078 struct dwarf2_per_cu_data *per_cu)
23079 {
23080 struct dwarf2_cu *cu;
23081 struct die_info *die;
23082
23083 if (per_cu->cu == NULL)
23084 load_cu (per_cu, false);
23085 cu = per_cu->cu;
23086 if (!cu)
23087 return NULL;
23088
23089 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23090 if (!die)
23091 return NULL;
23092
23093 return die_type (die, cu);
23094 }
23095
23096 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23097 PER_CU. */
23098
23099 struct type *
23100 dwarf2_get_die_type (cu_offset die_offset,
23101 struct dwarf2_per_cu_data *per_cu)
23102 {
23103 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23104 return get_die_type_at_offset (die_offset_sect, per_cu);
23105 }
23106
23107 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23108 On entry *REF_CU is the CU of SRC_DIE.
23109 On exit *REF_CU is the CU of the result.
23110 Returns NULL if the referenced DIE isn't found. */
23111
23112 static struct die_info *
23113 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23114 struct dwarf2_cu **ref_cu)
23115 {
23116 struct die_info temp_die;
23117 struct dwarf2_cu *sig_cu;
23118 struct die_info *die;
23119
23120 /* While it might be nice to assert sig_type->type == NULL here,
23121 we can get here for DW_AT_imported_declaration where we need
23122 the DIE not the type. */
23123
23124 /* If necessary, add it to the queue and load its DIEs. */
23125
23126 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23127 read_signatured_type (sig_type);
23128
23129 sig_cu = sig_type->per_cu.cu;
23130 gdb_assert (sig_cu != NULL);
23131 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23132 temp_die.sect_off = sig_type->type_offset_in_section;
23133 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23134 to_underlying (temp_die.sect_off));
23135 if (die)
23136 {
23137 struct dwarf2_per_objfile *dwarf2_per_objfile
23138 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23139
23140 /* For .gdb_index version 7 keep track of included TUs.
23141 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23142 if (dwarf2_per_objfile->index_table != NULL
23143 && dwarf2_per_objfile->index_table->version <= 7)
23144 {
23145 VEC_safe_push (dwarf2_per_cu_ptr,
23146 (*ref_cu)->per_cu->imported_symtabs,
23147 sig_cu->per_cu);
23148 }
23149
23150 *ref_cu = sig_cu;
23151 return die;
23152 }
23153
23154 return NULL;
23155 }
23156
23157 /* Follow signatured type referenced by ATTR in SRC_DIE.
23158 On entry *REF_CU is the CU of SRC_DIE.
23159 On exit *REF_CU is the CU of the result.
23160 The result is the DIE of the type.
23161 If the referenced type cannot be found an error is thrown. */
23162
23163 static struct die_info *
23164 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23165 struct dwarf2_cu **ref_cu)
23166 {
23167 ULONGEST signature = DW_SIGNATURE (attr);
23168 struct signatured_type *sig_type;
23169 struct die_info *die;
23170
23171 gdb_assert (attr->form == DW_FORM_ref_sig8);
23172
23173 sig_type = lookup_signatured_type (*ref_cu, signature);
23174 /* sig_type will be NULL if the signatured type is missing from
23175 the debug info. */
23176 if (sig_type == NULL)
23177 {
23178 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23179 " from DIE at %s [in module %s]"),
23180 hex_string (signature), sect_offset_str (src_die->sect_off),
23181 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23182 }
23183
23184 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23185 if (die == NULL)
23186 {
23187 dump_die_for_error (src_die);
23188 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23189 " from DIE at %s [in module %s]"),
23190 hex_string (signature), sect_offset_str (src_die->sect_off),
23191 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23192 }
23193
23194 return die;
23195 }
23196
23197 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23198 reading in and processing the type unit if necessary. */
23199
23200 static struct type *
23201 get_signatured_type (struct die_info *die, ULONGEST signature,
23202 struct dwarf2_cu *cu)
23203 {
23204 struct dwarf2_per_objfile *dwarf2_per_objfile
23205 = cu->per_cu->dwarf2_per_objfile;
23206 struct signatured_type *sig_type;
23207 struct dwarf2_cu *type_cu;
23208 struct die_info *type_die;
23209 struct type *type;
23210
23211 sig_type = lookup_signatured_type (cu, signature);
23212 /* sig_type will be NULL if the signatured type is missing from
23213 the debug info. */
23214 if (sig_type == NULL)
23215 {
23216 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23217 " from DIE at %s [in module %s]"),
23218 hex_string (signature), sect_offset_str (die->sect_off),
23219 objfile_name (dwarf2_per_objfile->objfile));
23220 return build_error_marker_type (cu, die);
23221 }
23222
23223 /* If we already know the type we're done. */
23224 if (sig_type->type != NULL)
23225 return sig_type->type;
23226
23227 type_cu = cu;
23228 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23229 if (type_die != NULL)
23230 {
23231 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23232 is created. This is important, for example, because for c++ classes
23233 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23234 type = read_type_die (type_die, type_cu);
23235 if (type == NULL)
23236 {
23237 complaint (_("Dwarf Error: Cannot build signatured type %s"
23238 " referenced from DIE at %s [in module %s]"),
23239 hex_string (signature), sect_offset_str (die->sect_off),
23240 objfile_name (dwarf2_per_objfile->objfile));
23241 type = build_error_marker_type (cu, die);
23242 }
23243 }
23244 else
23245 {
23246 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23247 " from DIE at %s [in module %s]"),
23248 hex_string (signature), sect_offset_str (die->sect_off),
23249 objfile_name (dwarf2_per_objfile->objfile));
23250 type = build_error_marker_type (cu, die);
23251 }
23252 sig_type->type = type;
23253
23254 return type;
23255 }
23256
23257 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23258 reading in and processing the type unit if necessary. */
23259
23260 static struct type *
23261 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23262 struct dwarf2_cu *cu) /* ARI: editCase function */
23263 {
23264 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23265 if (attr_form_is_ref (attr))
23266 {
23267 struct dwarf2_cu *type_cu = cu;
23268 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23269
23270 return read_type_die (type_die, type_cu);
23271 }
23272 else if (attr->form == DW_FORM_ref_sig8)
23273 {
23274 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23275 }
23276 else
23277 {
23278 struct dwarf2_per_objfile *dwarf2_per_objfile
23279 = cu->per_cu->dwarf2_per_objfile;
23280
23281 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23282 " at %s [in module %s]"),
23283 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23284 objfile_name (dwarf2_per_objfile->objfile));
23285 return build_error_marker_type (cu, die);
23286 }
23287 }
23288
23289 /* Load the DIEs associated with type unit PER_CU into memory. */
23290
23291 static void
23292 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23293 {
23294 struct signatured_type *sig_type;
23295
23296 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23297 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23298
23299 /* We have the per_cu, but we need the signatured_type.
23300 Fortunately this is an easy translation. */
23301 gdb_assert (per_cu->is_debug_types);
23302 sig_type = (struct signatured_type *) per_cu;
23303
23304 gdb_assert (per_cu->cu == NULL);
23305
23306 read_signatured_type (sig_type);
23307
23308 gdb_assert (per_cu->cu != NULL);
23309 }
23310
23311 /* die_reader_func for read_signatured_type.
23312 This is identical to load_full_comp_unit_reader,
23313 but is kept separate for now. */
23314
23315 static void
23316 read_signatured_type_reader (const struct die_reader_specs *reader,
23317 const gdb_byte *info_ptr,
23318 struct die_info *comp_unit_die,
23319 int has_children,
23320 void *data)
23321 {
23322 struct dwarf2_cu *cu = reader->cu;
23323
23324 gdb_assert (cu->die_hash == NULL);
23325 cu->die_hash =
23326 htab_create_alloc_ex (cu->header.length / 12,
23327 die_hash,
23328 die_eq,
23329 NULL,
23330 &cu->comp_unit_obstack,
23331 hashtab_obstack_allocate,
23332 dummy_obstack_deallocate);
23333
23334 if (has_children)
23335 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23336 &info_ptr, comp_unit_die);
23337 cu->dies = comp_unit_die;
23338 /* comp_unit_die is not stored in die_hash, no need. */
23339
23340 /* We try not to read any attributes in this function, because not
23341 all CUs needed for references have been loaded yet, and symbol
23342 table processing isn't initialized. But we have to set the CU language,
23343 or we won't be able to build types correctly.
23344 Similarly, if we do not read the producer, we can not apply
23345 producer-specific interpretation. */
23346 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23347 }
23348
23349 /* Read in a signatured type and build its CU and DIEs.
23350 If the type is a stub for the real type in a DWO file,
23351 read in the real type from the DWO file as well. */
23352
23353 static void
23354 read_signatured_type (struct signatured_type *sig_type)
23355 {
23356 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23357
23358 gdb_assert (per_cu->is_debug_types);
23359 gdb_assert (per_cu->cu == NULL);
23360
23361 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23362 read_signatured_type_reader, NULL);
23363 sig_type->per_cu.tu_read = 1;
23364 }
23365
23366 /* Decode simple location descriptions.
23367 Given a pointer to a dwarf block that defines a location, compute
23368 the location and return the value.
23369
23370 NOTE drow/2003-11-18: This function is called in two situations
23371 now: for the address of static or global variables (partial symbols
23372 only) and for offsets into structures which are expected to be
23373 (more or less) constant. The partial symbol case should go away,
23374 and only the constant case should remain. That will let this
23375 function complain more accurately. A few special modes are allowed
23376 without complaint for global variables (for instance, global
23377 register values and thread-local values).
23378
23379 A location description containing no operations indicates that the
23380 object is optimized out. The return value is 0 for that case.
23381 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23382 callers will only want a very basic result and this can become a
23383 complaint.
23384
23385 Note that stack[0] is unused except as a default error return. */
23386
23387 static CORE_ADDR
23388 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23389 {
23390 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23391 size_t i;
23392 size_t size = blk->size;
23393 const gdb_byte *data = blk->data;
23394 CORE_ADDR stack[64];
23395 int stacki;
23396 unsigned int bytes_read, unsnd;
23397 gdb_byte op;
23398
23399 i = 0;
23400 stacki = 0;
23401 stack[stacki] = 0;
23402 stack[++stacki] = 0;
23403
23404 while (i < size)
23405 {
23406 op = data[i++];
23407 switch (op)
23408 {
23409 case DW_OP_lit0:
23410 case DW_OP_lit1:
23411 case DW_OP_lit2:
23412 case DW_OP_lit3:
23413 case DW_OP_lit4:
23414 case DW_OP_lit5:
23415 case DW_OP_lit6:
23416 case DW_OP_lit7:
23417 case DW_OP_lit8:
23418 case DW_OP_lit9:
23419 case DW_OP_lit10:
23420 case DW_OP_lit11:
23421 case DW_OP_lit12:
23422 case DW_OP_lit13:
23423 case DW_OP_lit14:
23424 case DW_OP_lit15:
23425 case DW_OP_lit16:
23426 case DW_OP_lit17:
23427 case DW_OP_lit18:
23428 case DW_OP_lit19:
23429 case DW_OP_lit20:
23430 case DW_OP_lit21:
23431 case DW_OP_lit22:
23432 case DW_OP_lit23:
23433 case DW_OP_lit24:
23434 case DW_OP_lit25:
23435 case DW_OP_lit26:
23436 case DW_OP_lit27:
23437 case DW_OP_lit28:
23438 case DW_OP_lit29:
23439 case DW_OP_lit30:
23440 case DW_OP_lit31:
23441 stack[++stacki] = op - DW_OP_lit0;
23442 break;
23443
23444 case DW_OP_reg0:
23445 case DW_OP_reg1:
23446 case DW_OP_reg2:
23447 case DW_OP_reg3:
23448 case DW_OP_reg4:
23449 case DW_OP_reg5:
23450 case DW_OP_reg6:
23451 case DW_OP_reg7:
23452 case DW_OP_reg8:
23453 case DW_OP_reg9:
23454 case DW_OP_reg10:
23455 case DW_OP_reg11:
23456 case DW_OP_reg12:
23457 case DW_OP_reg13:
23458 case DW_OP_reg14:
23459 case DW_OP_reg15:
23460 case DW_OP_reg16:
23461 case DW_OP_reg17:
23462 case DW_OP_reg18:
23463 case DW_OP_reg19:
23464 case DW_OP_reg20:
23465 case DW_OP_reg21:
23466 case DW_OP_reg22:
23467 case DW_OP_reg23:
23468 case DW_OP_reg24:
23469 case DW_OP_reg25:
23470 case DW_OP_reg26:
23471 case DW_OP_reg27:
23472 case DW_OP_reg28:
23473 case DW_OP_reg29:
23474 case DW_OP_reg30:
23475 case DW_OP_reg31:
23476 stack[++stacki] = op - DW_OP_reg0;
23477 if (i < size)
23478 dwarf2_complex_location_expr_complaint ();
23479 break;
23480
23481 case DW_OP_regx:
23482 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23483 i += bytes_read;
23484 stack[++stacki] = unsnd;
23485 if (i < size)
23486 dwarf2_complex_location_expr_complaint ();
23487 break;
23488
23489 case DW_OP_addr:
23490 stack[++stacki] = read_address (objfile->obfd, &data[i],
23491 cu, &bytes_read);
23492 i += bytes_read;
23493 break;
23494
23495 case DW_OP_const1u:
23496 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23497 i += 1;
23498 break;
23499
23500 case DW_OP_const1s:
23501 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23502 i += 1;
23503 break;
23504
23505 case DW_OP_const2u:
23506 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23507 i += 2;
23508 break;
23509
23510 case DW_OP_const2s:
23511 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23512 i += 2;
23513 break;
23514
23515 case DW_OP_const4u:
23516 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23517 i += 4;
23518 break;
23519
23520 case DW_OP_const4s:
23521 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23522 i += 4;
23523 break;
23524
23525 case DW_OP_const8u:
23526 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23527 i += 8;
23528 break;
23529
23530 case DW_OP_constu:
23531 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23532 &bytes_read);
23533 i += bytes_read;
23534 break;
23535
23536 case DW_OP_consts:
23537 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23538 i += bytes_read;
23539 break;
23540
23541 case DW_OP_dup:
23542 stack[stacki + 1] = stack[stacki];
23543 stacki++;
23544 break;
23545
23546 case DW_OP_plus:
23547 stack[stacki - 1] += stack[stacki];
23548 stacki--;
23549 break;
23550
23551 case DW_OP_plus_uconst:
23552 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23553 &bytes_read);
23554 i += bytes_read;
23555 break;
23556
23557 case DW_OP_minus:
23558 stack[stacki - 1] -= stack[stacki];
23559 stacki--;
23560 break;
23561
23562 case DW_OP_deref:
23563 /* If we're not the last op, then we definitely can't encode
23564 this using GDB's address_class enum. This is valid for partial
23565 global symbols, although the variable's address will be bogus
23566 in the psymtab. */
23567 if (i < size)
23568 dwarf2_complex_location_expr_complaint ();
23569 break;
23570
23571 case DW_OP_GNU_push_tls_address:
23572 case DW_OP_form_tls_address:
23573 /* The top of the stack has the offset from the beginning
23574 of the thread control block at which the variable is located. */
23575 /* Nothing should follow this operator, so the top of stack would
23576 be returned. */
23577 /* This is valid for partial global symbols, but the variable's
23578 address will be bogus in the psymtab. Make it always at least
23579 non-zero to not look as a variable garbage collected by linker
23580 which have DW_OP_addr 0. */
23581 if (i < size)
23582 dwarf2_complex_location_expr_complaint ();
23583 stack[stacki]++;
23584 break;
23585
23586 case DW_OP_GNU_uninit:
23587 break;
23588
23589 case DW_OP_GNU_addr_index:
23590 case DW_OP_GNU_const_index:
23591 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23592 &bytes_read);
23593 i += bytes_read;
23594 break;
23595
23596 default:
23597 {
23598 const char *name = get_DW_OP_name (op);
23599
23600 if (name)
23601 complaint (_("unsupported stack op: '%s'"),
23602 name);
23603 else
23604 complaint (_("unsupported stack op: '%02x'"),
23605 op);
23606 }
23607
23608 return (stack[stacki]);
23609 }
23610
23611 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23612 outside of the allocated space. Also enforce minimum>0. */
23613 if (stacki >= ARRAY_SIZE (stack) - 1)
23614 {
23615 complaint (_("location description stack overflow"));
23616 return 0;
23617 }
23618
23619 if (stacki <= 0)
23620 {
23621 complaint (_("location description stack underflow"));
23622 return 0;
23623 }
23624 }
23625 return (stack[stacki]);
23626 }
23627
23628 /* memory allocation interface */
23629
23630 static struct dwarf_block *
23631 dwarf_alloc_block (struct dwarf2_cu *cu)
23632 {
23633 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23634 }
23635
23636 static struct die_info *
23637 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23638 {
23639 struct die_info *die;
23640 size_t size = sizeof (struct die_info);
23641
23642 if (num_attrs > 1)
23643 size += (num_attrs - 1) * sizeof (struct attribute);
23644
23645 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23646 memset (die, 0, sizeof (struct die_info));
23647 return (die);
23648 }
23649
23650 \f
23651 /* Macro support. */
23652
23653 /* Return file name relative to the compilation directory of file number I in
23654 *LH's file name table. The result is allocated using xmalloc; the caller is
23655 responsible for freeing it. */
23656
23657 static char *
23658 file_file_name (int file, struct line_header *lh)
23659 {
23660 /* Is the file number a valid index into the line header's file name
23661 table? Remember that file numbers start with one, not zero. */
23662 if (1 <= file && file <= lh->file_names.size ())
23663 {
23664 const file_entry &fe = lh->file_names[file - 1];
23665
23666 if (!IS_ABSOLUTE_PATH (fe.name))
23667 {
23668 const char *dir = fe.include_dir (lh);
23669 if (dir != NULL)
23670 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23671 }
23672 return xstrdup (fe.name);
23673 }
23674 else
23675 {
23676 /* The compiler produced a bogus file number. We can at least
23677 record the macro definitions made in the file, even if we
23678 won't be able to find the file by name. */
23679 char fake_name[80];
23680
23681 xsnprintf (fake_name, sizeof (fake_name),
23682 "<bad macro file number %d>", file);
23683
23684 complaint (_("bad file number in macro information (%d)"),
23685 file);
23686
23687 return xstrdup (fake_name);
23688 }
23689 }
23690
23691 /* Return the full name of file number I in *LH's file name table.
23692 Use COMP_DIR as the name of the current directory of the
23693 compilation. The result is allocated using xmalloc; the caller is
23694 responsible for freeing it. */
23695 static char *
23696 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23697 {
23698 /* Is the file number a valid index into the line header's file name
23699 table? Remember that file numbers start with one, not zero. */
23700 if (1 <= file && file <= lh->file_names.size ())
23701 {
23702 char *relative = file_file_name (file, lh);
23703
23704 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23705 return relative;
23706 return reconcat (relative, comp_dir, SLASH_STRING,
23707 relative, (char *) NULL);
23708 }
23709 else
23710 return file_file_name (file, lh);
23711 }
23712
23713
23714 static struct macro_source_file *
23715 macro_start_file (int file, int line,
23716 struct macro_source_file *current_file,
23717 struct line_header *lh)
23718 {
23719 /* File name relative to the compilation directory of this source file. */
23720 char *file_name = file_file_name (file, lh);
23721
23722 if (! current_file)
23723 {
23724 /* Note: We don't create a macro table for this compilation unit
23725 at all until we actually get a filename. */
23726 struct macro_table *macro_table = get_macro_table ();
23727
23728 /* If we have no current file, then this must be the start_file
23729 directive for the compilation unit's main source file. */
23730 current_file = macro_set_main (macro_table, file_name);
23731 macro_define_special (macro_table);
23732 }
23733 else
23734 current_file = macro_include (current_file, line, file_name);
23735
23736 xfree (file_name);
23737
23738 return current_file;
23739 }
23740
23741 static const char *
23742 consume_improper_spaces (const char *p, const char *body)
23743 {
23744 if (*p == ' ')
23745 {
23746 complaint (_("macro definition contains spaces "
23747 "in formal argument list:\n`%s'"),
23748 body);
23749
23750 while (*p == ' ')
23751 p++;
23752 }
23753
23754 return p;
23755 }
23756
23757
23758 static void
23759 parse_macro_definition (struct macro_source_file *file, int line,
23760 const char *body)
23761 {
23762 const char *p;
23763
23764 /* The body string takes one of two forms. For object-like macro
23765 definitions, it should be:
23766
23767 <macro name> " " <definition>
23768
23769 For function-like macro definitions, it should be:
23770
23771 <macro name> "() " <definition>
23772 or
23773 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23774
23775 Spaces may appear only where explicitly indicated, and in the
23776 <definition>.
23777
23778 The Dwarf 2 spec says that an object-like macro's name is always
23779 followed by a space, but versions of GCC around March 2002 omit
23780 the space when the macro's definition is the empty string.
23781
23782 The Dwarf 2 spec says that there should be no spaces between the
23783 formal arguments in a function-like macro's formal argument list,
23784 but versions of GCC around March 2002 include spaces after the
23785 commas. */
23786
23787
23788 /* Find the extent of the macro name. The macro name is terminated
23789 by either a space or null character (for an object-like macro) or
23790 an opening paren (for a function-like macro). */
23791 for (p = body; *p; p++)
23792 if (*p == ' ' || *p == '(')
23793 break;
23794
23795 if (*p == ' ' || *p == '\0')
23796 {
23797 /* It's an object-like macro. */
23798 int name_len = p - body;
23799 char *name = savestring (body, name_len);
23800 const char *replacement;
23801
23802 if (*p == ' ')
23803 replacement = body + name_len + 1;
23804 else
23805 {
23806 dwarf2_macro_malformed_definition_complaint (body);
23807 replacement = body + name_len;
23808 }
23809
23810 macro_define_object (file, line, name, replacement);
23811
23812 xfree (name);
23813 }
23814 else if (*p == '(')
23815 {
23816 /* It's a function-like macro. */
23817 char *name = savestring (body, p - body);
23818 int argc = 0;
23819 int argv_size = 1;
23820 char **argv = XNEWVEC (char *, argv_size);
23821
23822 p++;
23823
23824 p = consume_improper_spaces (p, body);
23825
23826 /* Parse the formal argument list. */
23827 while (*p && *p != ')')
23828 {
23829 /* Find the extent of the current argument name. */
23830 const char *arg_start = p;
23831
23832 while (*p && *p != ',' && *p != ')' && *p != ' ')
23833 p++;
23834
23835 if (! *p || p == arg_start)
23836 dwarf2_macro_malformed_definition_complaint (body);
23837 else
23838 {
23839 /* Make sure argv has room for the new argument. */
23840 if (argc >= argv_size)
23841 {
23842 argv_size *= 2;
23843 argv = XRESIZEVEC (char *, argv, argv_size);
23844 }
23845
23846 argv[argc++] = savestring (arg_start, p - arg_start);
23847 }
23848
23849 p = consume_improper_spaces (p, body);
23850
23851 /* Consume the comma, if present. */
23852 if (*p == ',')
23853 {
23854 p++;
23855
23856 p = consume_improper_spaces (p, body);
23857 }
23858 }
23859
23860 if (*p == ')')
23861 {
23862 p++;
23863
23864 if (*p == ' ')
23865 /* Perfectly formed definition, no complaints. */
23866 macro_define_function (file, line, name,
23867 argc, (const char **) argv,
23868 p + 1);
23869 else if (*p == '\0')
23870 {
23871 /* Complain, but do define it. */
23872 dwarf2_macro_malformed_definition_complaint (body);
23873 macro_define_function (file, line, name,
23874 argc, (const char **) argv,
23875 p);
23876 }
23877 else
23878 /* Just complain. */
23879 dwarf2_macro_malformed_definition_complaint (body);
23880 }
23881 else
23882 /* Just complain. */
23883 dwarf2_macro_malformed_definition_complaint (body);
23884
23885 xfree (name);
23886 {
23887 int i;
23888
23889 for (i = 0; i < argc; i++)
23890 xfree (argv[i]);
23891 }
23892 xfree (argv);
23893 }
23894 else
23895 dwarf2_macro_malformed_definition_complaint (body);
23896 }
23897
23898 /* Skip some bytes from BYTES according to the form given in FORM.
23899 Returns the new pointer. */
23900
23901 static const gdb_byte *
23902 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23903 enum dwarf_form form,
23904 unsigned int offset_size,
23905 struct dwarf2_section_info *section)
23906 {
23907 unsigned int bytes_read;
23908
23909 switch (form)
23910 {
23911 case DW_FORM_data1:
23912 case DW_FORM_flag:
23913 ++bytes;
23914 break;
23915
23916 case DW_FORM_data2:
23917 bytes += 2;
23918 break;
23919
23920 case DW_FORM_data4:
23921 bytes += 4;
23922 break;
23923
23924 case DW_FORM_data8:
23925 bytes += 8;
23926 break;
23927
23928 case DW_FORM_data16:
23929 bytes += 16;
23930 break;
23931
23932 case DW_FORM_string:
23933 read_direct_string (abfd, bytes, &bytes_read);
23934 bytes += bytes_read;
23935 break;
23936
23937 case DW_FORM_sec_offset:
23938 case DW_FORM_strp:
23939 case DW_FORM_GNU_strp_alt:
23940 bytes += offset_size;
23941 break;
23942
23943 case DW_FORM_block:
23944 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23945 bytes += bytes_read;
23946 break;
23947
23948 case DW_FORM_block1:
23949 bytes += 1 + read_1_byte (abfd, bytes);
23950 break;
23951 case DW_FORM_block2:
23952 bytes += 2 + read_2_bytes (abfd, bytes);
23953 break;
23954 case DW_FORM_block4:
23955 bytes += 4 + read_4_bytes (abfd, bytes);
23956 break;
23957
23958 case DW_FORM_sdata:
23959 case DW_FORM_udata:
23960 case DW_FORM_GNU_addr_index:
23961 case DW_FORM_GNU_str_index:
23962 bytes = gdb_skip_leb128 (bytes, buffer_end);
23963 if (bytes == NULL)
23964 {
23965 dwarf2_section_buffer_overflow_complaint (section);
23966 return NULL;
23967 }
23968 break;
23969
23970 case DW_FORM_implicit_const:
23971 break;
23972
23973 default:
23974 {
23975 complaint (_("invalid form 0x%x in `%s'"),
23976 form, get_section_name (section));
23977 return NULL;
23978 }
23979 }
23980
23981 return bytes;
23982 }
23983
23984 /* A helper for dwarf_decode_macros that handles skipping an unknown
23985 opcode. Returns an updated pointer to the macro data buffer; or,
23986 on error, issues a complaint and returns NULL. */
23987
23988 static const gdb_byte *
23989 skip_unknown_opcode (unsigned int opcode,
23990 const gdb_byte **opcode_definitions,
23991 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23992 bfd *abfd,
23993 unsigned int offset_size,
23994 struct dwarf2_section_info *section)
23995 {
23996 unsigned int bytes_read, i;
23997 unsigned long arg;
23998 const gdb_byte *defn;
23999
24000 if (opcode_definitions[opcode] == NULL)
24001 {
24002 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24003 opcode);
24004 return NULL;
24005 }
24006
24007 defn = opcode_definitions[opcode];
24008 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24009 defn += bytes_read;
24010
24011 for (i = 0; i < arg; ++i)
24012 {
24013 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24014 (enum dwarf_form) defn[i], offset_size,
24015 section);
24016 if (mac_ptr == NULL)
24017 {
24018 /* skip_form_bytes already issued the complaint. */
24019 return NULL;
24020 }
24021 }
24022
24023 return mac_ptr;
24024 }
24025
24026 /* A helper function which parses the header of a macro section.
24027 If the macro section is the extended (for now called "GNU") type,
24028 then this updates *OFFSET_SIZE. Returns a pointer to just after
24029 the header, or issues a complaint and returns NULL on error. */
24030
24031 static const gdb_byte *
24032 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24033 bfd *abfd,
24034 const gdb_byte *mac_ptr,
24035 unsigned int *offset_size,
24036 int section_is_gnu)
24037 {
24038 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24039
24040 if (section_is_gnu)
24041 {
24042 unsigned int version, flags;
24043
24044 version = read_2_bytes (abfd, mac_ptr);
24045 if (version != 4 && version != 5)
24046 {
24047 complaint (_("unrecognized version `%d' in .debug_macro section"),
24048 version);
24049 return NULL;
24050 }
24051 mac_ptr += 2;
24052
24053 flags = read_1_byte (abfd, mac_ptr);
24054 ++mac_ptr;
24055 *offset_size = (flags & 1) ? 8 : 4;
24056
24057 if ((flags & 2) != 0)
24058 /* We don't need the line table offset. */
24059 mac_ptr += *offset_size;
24060
24061 /* Vendor opcode descriptions. */
24062 if ((flags & 4) != 0)
24063 {
24064 unsigned int i, count;
24065
24066 count = read_1_byte (abfd, mac_ptr);
24067 ++mac_ptr;
24068 for (i = 0; i < count; ++i)
24069 {
24070 unsigned int opcode, bytes_read;
24071 unsigned long arg;
24072
24073 opcode = read_1_byte (abfd, mac_ptr);
24074 ++mac_ptr;
24075 opcode_definitions[opcode] = mac_ptr;
24076 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24077 mac_ptr += bytes_read;
24078 mac_ptr += arg;
24079 }
24080 }
24081 }
24082
24083 return mac_ptr;
24084 }
24085
24086 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24087 including DW_MACRO_import. */
24088
24089 static void
24090 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24091 bfd *abfd,
24092 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24093 struct macro_source_file *current_file,
24094 struct line_header *lh,
24095 struct dwarf2_section_info *section,
24096 int section_is_gnu, int section_is_dwz,
24097 unsigned int offset_size,
24098 htab_t include_hash)
24099 {
24100 struct objfile *objfile = dwarf2_per_objfile->objfile;
24101 enum dwarf_macro_record_type macinfo_type;
24102 int at_commandline;
24103 const gdb_byte *opcode_definitions[256];
24104
24105 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24106 &offset_size, section_is_gnu);
24107 if (mac_ptr == NULL)
24108 {
24109 /* We already issued a complaint. */
24110 return;
24111 }
24112
24113 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24114 GDB is still reading the definitions from command line. First
24115 DW_MACINFO_start_file will need to be ignored as it was already executed
24116 to create CURRENT_FILE for the main source holding also the command line
24117 definitions. On first met DW_MACINFO_start_file this flag is reset to
24118 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24119
24120 at_commandline = 1;
24121
24122 do
24123 {
24124 /* Do we at least have room for a macinfo type byte? */
24125 if (mac_ptr >= mac_end)
24126 {
24127 dwarf2_section_buffer_overflow_complaint (section);
24128 break;
24129 }
24130
24131 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24132 mac_ptr++;
24133
24134 /* Note that we rely on the fact that the corresponding GNU and
24135 DWARF constants are the same. */
24136 DIAGNOSTIC_PUSH
24137 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24138 switch (macinfo_type)
24139 {
24140 /* A zero macinfo type indicates the end of the macro
24141 information. */
24142 case 0:
24143 break;
24144
24145 case DW_MACRO_define:
24146 case DW_MACRO_undef:
24147 case DW_MACRO_define_strp:
24148 case DW_MACRO_undef_strp:
24149 case DW_MACRO_define_sup:
24150 case DW_MACRO_undef_sup:
24151 {
24152 unsigned int bytes_read;
24153 int line;
24154 const char *body;
24155 int is_define;
24156
24157 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24158 mac_ptr += bytes_read;
24159
24160 if (macinfo_type == DW_MACRO_define
24161 || macinfo_type == DW_MACRO_undef)
24162 {
24163 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24164 mac_ptr += bytes_read;
24165 }
24166 else
24167 {
24168 LONGEST str_offset;
24169
24170 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24171 mac_ptr += offset_size;
24172
24173 if (macinfo_type == DW_MACRO_define_sup
24174 || macinfo_type == DW_MACRO_undef_sup
24175 || section_is_dwz)
24176 {
24177 struct dwz_file *dwz
24178 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24179
24180 body = read_indirect_string_from_dwz (objfile,
24181 dwz, str_offset);
24182 }
24183 else
24184 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24185 abfd, str_offset);
24186 }
24187
24188 is_define = (macinfo_type == DW_MACRO_define
24189 || macinfo_type == DW_MACRO_define_strp
24190 || macinfo_type == DW_MACRO_define_sup);
24191 if (! current_file)
24192 {
24193 /* DWARF violation as no main source is present. */
24194 complaint (_("debug info with no main source gives macro %s "
24195 "on line %d: %s"),
24196 is_define ? _("definition") : _("undefinition"),
24197 line, body);
24198 break;
24199 }
24200 if ((line == 0 && !at_commandline)
24201 || (line != 0 && at_commandline))
24202 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24203 at_commandline ? _("command-line") : _("in-file"),
24204 is_define ? _("definition") : _("undefinition"),
24205 line == 0 ? _("zero") : _("non-zero"), line, body);
24206
24207 if (is_define)
24208 parse_macro_definition (current_file, line, body);
24209 else
24210 {
24211 gdb_assert (macinfo_type == DW_MACRO_undef
24212 || macinfo_type == DW_MACRO_undef_strp
24213 || macinfo_type == DW_MACRO_undef_sup);
24214 macro_undef (current_file, line, body);
24215 }
24216 }
24217 break;
24218
24219 case DW_MACRO_start_file:
24220 {
24221 unsigned int bytes_read;
24222 int line, file;
24223
24224 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24225 mac_ptr += bytes_read;
24226 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24227 mac_ptr += bytes_read;
24228
24229 if ((line == 0 && !at_commandline)
24230 || (line != 0 && at_commandline))
24231 complaint (_("debug info gives source %d included "
24232 "from %s at %s line %d"),
24233 file, at_commandline ? _("command-line") : _("file"),
24234 line == 0 ? _("zero") : _("non-zero"), line);
24235
24236 if (at_commandline)
24237 {
24238 /* This DW_MACRO_start_file was executed in the
24239 pass one. */
24240 at_commandline = 0;
24241 }
24242 else
24243 current_file = macro_start_file (file, line, current_file, lh);
24244 }
24245 break;
24246
24247 case DW_MACRO_end_file:
24248 if (! current_file)
24249 complaint (_("macro debug info has an unmatched "
24250 "`close_file' directive"));
24251 else
24252 {
24253 current_file = current_file->included_by;
24254 if (! current_file)
24255 {
24256 enum dwarf_macro_record_type next_type;
24257
24258 /* GCC circa March 2002 doesn't produce the zero
24259 type byte marking the end of the compilation
24260 unit. Complain if it's not there, but exit no
24261 matter what. */
24262
24263 /* Do we at least have room for a macinfo type byte? */
24264 if (mac_ptr >= mac_end)
24265 {
24266 dwarf2_section_buffer_overflow_complaint (section);
24267 return;
24268 }
24269
24270 /* We don't increment mac_ptr here, so this is just
24271 a look-ahead. */
24272 next_type
24273 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24274 mac_ptr);
24275 if (next_type != 0)
24276 complaint (_("no terminating 0-type entry for "
24277 "macros in `.debug_macinfo' section"));
24278
24279 return;
24280 }
24281 }
24282 break;
24283
24284 case DW_MACRO_import:
24285 case DW_MACRO_import_sup:
24286 {
24287 LONGEST offset;
24288 void **slot;
24289 bfd *include_bfd = abfd;
24290 struct dwarf2_section_info *include_section = section;
24291 const gdb_byte *include_mac_end = mac_end;
24292 int is_dwz = section_is_dwz;
24293 const gdb_byte *new_mac_ptr;
24294
24295 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24296 mac_ptr += offset_size;
24297
24298 if (macinfo_type == DW_MACRO_import_sup)
24299 {
24300 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24301
24302 dwarf2_read_section (objfile, &dwz->macro);
24303
24304 include_section = &dwz->macro;
24305 include_bfd = get_section_bfd_owner (include_section);
24306 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24307 is_dwz = 1;
24308 }
24309
24310 new_mac_ptr = include_section->buffer + offset;
24311 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24312
24313 if (*slot != NULL)
24314 {
24315 /* This has actually happened; see
24316 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24317 complaint (_("recursive DW_MACRO_import in "
24318 ".debug_macro section"));
24319 }
24320 else
24321 {
24322 *slot = (void *) new_mac_ptr;
24323
24324 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24325 include_bfd, new_mac_ptr,
24326 include_mac_end, current_file, lh,
24327 section, section_is_gnu, is_dwz,
24328 offset_size, include_hash);
24329
24330 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24331 }
24332 }
24333 break;
24334
24335 case DW_MACINFO_vendor_ext:
24336 if (!section_is_gnu)
24337 {
24338 unsigned int bytes_read;
24339
24340 /* This reads the constant, but since we don't recognize
24341 any vendor extensions, we ignore it. */
24342 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24343 mac_ptr += bytes_read;
24344 read_direct_string (abfd, mac_ptr, &bytes_read);
24345 mac_ptr += bytes_read;
24346
24347 /* We don't recognize any vendor extensions. */
24348 break;
24349 }
24350 /* FALLTHROUGH */
24351
24352 default:
24353 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24354 mac_ptr, mac_end, abfd, offset_size,
24355 section);
24356 if (mac_ptr == NULL)
24357 return;
24358 break;
24359 }
24360 DIAGNOSTIC_POP
24361 } while (macinfo_type != 0);
24362 }
24363
24364 static void
24365 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24366 int section_is_gnu)
24367 {
24368 struct dwarf2_per_objfile *dwarf2_per_objfile
24369 = cu->per_cu->dwarf2_per_objfile;
24370 struct objfile *objfile = dwarf2_per_objfile->objfile;
24371 struct line_header *lh = cu->line_header;
24372 bfd *abfd;
24373 const gdb_byte *mac_ptr, *mac_end;
24374 struct macro_source_file *current_file = 0;
24375 enum dwarf_macro_record_type macinfo_type;
24376 unsigned int offset_size = cu->header.offset_size;
24377 const gdb_byte *opcode_definitions[256];
24378 void **slot;
24379 struct dwarf2_section_info *section;
24380 const char *section_name;
24381
24382 if (cu->dwo_unit != NULL)
24383 {
24384 if (section_is_gnu)
24385 {
24386 section = &cu->dwo_unit->dwo_file->sections.macro;
24387 section_name = ".debug_macro.dwo";
24388 }
24389 else
24390 {
24391 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24392 section_name = ".debug_macinfo.dwo";
24393 }
24394 }
24395 else
24396 {
24397 if (section_is_gnu)
24398 {
24399 section = &dwarf2_per_objfile->macro;
24400 section_name = ".debug_macro";
24401 }
24402 else
24403 {
24404 section = &dwarf2_per_objfile->macinfo;
24405 section_name = ".debug_macinfo";
24406 }
24407 }
24408
24409 dwarf2_read_section (objfile, section);
24410 if (section->buffer == NULL)
24411 {
24412 complaint (_("missing %s section"), section_name);
24413 return;
24414 }
24415 abfd = get_section_bfd_owner (section);
24416
24417 /* First pass: Find the name of the base filename.
24418 This filename is needed in order to process all macros whose definition
24419 (or undefinition) comes from the command line. These macros are defined
24420 before the first DW_MACINFO_start_file entry, and yet still need to be
24421 associated to the base file.
24422
24423 To determine the base file name, we scan the macro definitions until we
24424 reach the first DW_MACINFO_start_file entry. We then initialize
24425 CURRENT_FILE accordingly so that any macro definition found before the
24426 first DW_MACINFO_start_file can still be associated to the base file. */
24427
24428 mac_ptr = section->buffer + offset;
24429 mac_end = section->buffer + section->size;
24430
24431 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24432 &offset_size, section_is_gnu);
24433 if (mac_ptr == NULL)
24434 {
24435 /* We already issued a complaint. */
24436 return;
24437 }
24438
24439 do
24440 {
24441 /* Do we at least have room for a macinfo type byte? */
24442 if (mac_ptr >= mac_end)
24443 {
24444 /* Complaint is printed during the second pass as GDB will probably
24445 stop the first pass earlier upon finding
24446 DW_MACINFO_start_file. */
24447 break;
24448 }
24449
24450 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24451 mac_ptr++;
24452
24453 /* Note that we rely on the fact that the corresponding GNU and
24454 DWARF constants are the same. */
24455 DIAGNOSTIC_PUSH
24456 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24457 switch (macinfo_type)
24458 {
24459 /* A zero macinfo type indicates the end of the macro
24460 information. */
24461 case 0:
24462 break;
24463
24464 case DW_MACRO_define:
24465 case DW_MACRO_undef:
24466 /* Only skip the data by MAC_PTR. */
24467 {
24468 unsigned int bytes_read;
24469
24470 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24471 mac_ptr += bytes_read;
24472 read_direct_string (abfd, mac_ptr, &bytes_read);
24473 mac_ptr += bytes_read;
24474 }
24475 break;
24476
24477 case DW_MACRO_start_file:
24478 {
24479 unsigned int bytes_read;
24480 int line, file;
24481
24482 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24483 mac_ptr += bytes_read;
24484 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24485 mac_ptr += bytes_read;
24486
24487 current_file = macro_start_file (file, line, current_file, lh);
24488 }
24489 break;
24490
24491 case DW_MACRO_end_file:
24492 /* No data to skip by MAC_PTR. */
24493 break;
24494
24495 case DW_MACRO_define_strp:
24496 case DW_MACRO_undef_strp:
24497 case DW_MACRO_define_sup:
24498 case DW_MACRO_undef_sup:
24499 {
24500 unsigned int bytes_read;
24501
24502 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24503 mac_ptr += bytes_read;
24504 mac_ptr += offset_size;
24505 }
24506 break;
24507
24508 case DW_MACRO_import:
24509 case DW_MACRO_import_sup:
24510 /* Note that, according to the spec, a transparent include
24511 chain cannot call DW_MACRO_start_file. So, we can just
24512 skip this opcode. */
24513 mac_ptr += offset_size;
24514 break;
24515
24516 case DW_MACINFO_vendor_ext:
24517 /* Only skip the data by MAC_PTR. */
24518 if (!section_is_gnu)
24519 {
24520 unsigned int bytes_read;
24521
24522 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24523 mac_ptr += bytes_read;
24524 read_direct_string (abfd, mac_ptr, &bytes_read);
24525 mac_ptr += bytes_read;
24526 }
24527 /* FALLTHROUGH */
24528
24529 default:
24530 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24531 mac_ptr, mac_end, abfd, offset_size,
24532 section);
24533 if (mac_ptr == NULL)
24534 return;
24535 break;
24536 }
24537 DIAGNOSTIC_POP
24538 } while (macinfo_type != 0 && current_file == NULL);
24539
24540 /* Second pass: Process all entries.
24541
24542 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24543 command-line macro definitions/undefinitions. This flag is unset when we
24544 reach the first DW_MACINFO_start_file entry. */
24545
24546 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24547 htab_eq_pointer,
24548 NULL, xcalloc, xfree));
24549 mac_ptr = section->buffer + offset;
24550 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24551 *slot = (void *) mac_ptr;
24552 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24553 abfd, mac_ptr, mac_end,
24554 current_file, lh, section,
24555 section_is_gnu, 0, offset_size,
24556 include_hash.get ());
24557 }
24558
24559 /* Check if the attribute's form is a DW_FORM_block*
24560 if so return true else false. */
24561
24562 static int
24563 attr_form_is_block (const struct attribute *attr)
24564 {
24565 return (attr == NULL ? 0 :
24566 attr->form == DW_FORM_block1
24567 || attr->form == DW_FORM_block2
24568 || attr->form == DW_FORM_block4
24569 || attr->form == DW_FORM_block
24570 || attr->form == DW_FORM_exprloc);
24571 }
24572
24573 /* Return non-zero if ATTR's value is a section offset --- classes
24574 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24575 You may use DW_UNSND (attr) to retrieve such offsets.
24576
24577 Section 7.5.4, "Attribute Encodings", explains that no attribute
24578 may have a value that belongs to more than one of these classes; it
24579 would be ambiguous if we did, because we use the same forms for all
24580 of them. */
24581
24582 static int
24583 attr_form_is_section_offset (const struct attribute *attr)
24584 {
24585 return (attr->form == DW_FORM_data4
24586 || attr->form == DW_FORM_data8
24587 || attr->form == DW_FORM_sec_offset);
24588 }
24589
24590 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24591 zero otherwise. When this function returns true, you can apply
24592 dwarf2_get_attr_constant_value to it.
24593
24594 However, note that for some attributes you must check
24595 attr_form_is_section_offset before using this test. DW_FORM_data4
24596 and DW_FORM_data8 are members of both the constant class, and of
24597 the classes that contain offsets into other debug sections
24598 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24599 that, if an attribute's can be either a constant or one of the
24600 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24601 taken as section offsets, not constants.
24602
24603 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24604 cannot handle that. */
24605
24606 static int
24607 attr_form_is_constant (const struct attribute *attr)
24608 {
24609 switch (attr->form)
24610 {
24611 case DW_FORM_sdata:
24612 case DW_FORM_udata:
24613 case DW_FORM_data1:
24614 case DW_FORM_data2:
24615 case DW_FORM_data4:
24616 case DW_FORM_data8:
24617 case DW_FORM_implicit_const:
24618 return 1;
24619 default:
24620 return 0;
24621 }
24622 }
24623
24624
24625 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24626 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24627
24628 static int
24629 attr_form_is_ref (const struct attribute *attr)
24630 {
24631 switch (attr->form)
24632 {
24633 case DW_FORM_ref_addr:
24634 case DW_FORM_ref1:
24635 case DW_FORM_ref2:
24636 case DW_FORM_ref4:
24637 case DW_FORM_ref8:
24638 case DW_FORM_ref_udata:
24639 case DW_FORM_GNU_ref_alt:
24640 return 1;
24641 default:
24642 return 0;
24643 }
24644 }
24645
24646 /* Return the .debug_loc section to use for CU.
24647 For DWO files use .debug_loc.dwo. */
24648
24649 static struct dwarf2_section_info *
24650 cu_debug_loc_section (struct dwarf2_cu *cu)
24651 {
24652 struct dwarf2_per_objfile *dwarf2_per_objfile
24653 = cu->per_cu->dwarf2_per_objfile;
24654
24655 if (cu->dwo_unit)
24656 {
24657 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24658
24659 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24660 }
24661 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24662 : &dwarf2_per_objfile->loc);
24663 }
24664
24665 /* A helper function that fills in a dwarf2_loclist_baton. */
24666
24667 static void
24668 fill_in_loclist_baton (struct dwarf2_cu *cu,
24669 struct dwarf2_loclist_baton *baton,
24670 const struct attribute *attr)
24671 {
24672 struct dwarf2_per_objfile *dwarf2_per_objfile
24673 = cu->per_cu->dwarf2_per_objfile;
24674 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24675
24676 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24677
24678 baton->per_cu = cu->per_cu;
24679 gdb_assert (baton->per_cu);
24680 /* We don't know how long the location list is, but make sure we
24681 don't run off the edge of the section. */
24682 baton->size = section->size - DW_UNSND (attr);
24683 baton->data = section->buffer + DW_UNSND (attr);
24684 baton->base_address = cu->base_address;
24685 baton->from_dwo = cu->dwo_unit != NULL;
24686 }
24687
24688 static void
24689 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24690 struct dwarf2_cu *cu, int is_block)
24691 {
24692 struct dwarf2_per_objfile *dwarf2_per_objfile
24693 = cu->per_cu->dwarf2_per_objfile;
24694 struct objfile *objfile = dwarf2_per_objfile->objfile;
24695 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24696
24697 if (attr_form_is_section_offset (attr)
24698 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24699 the section. If so, fall through to the complaint in the
24700 other branch. */
24701 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24702 {
24703 struct dwarf2_loclist_baton *baton;
24704
24705 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24706
24707 fill_in_loclist_baton (cu, baton, attr);
24708
24709 if (cu->base_known == 0)
24710 complaint (_("Location list used without "
24711 "specifying the CU base address."));
24712
24713 SYMBOL_ACLASS_INDEX (sym) = (is_block
24714 ? dwarf2_loclist_block_index
24715 : dwarf2_loclist_index);
24716 SYMBOL_LOCATION_BATON (sym) = baton;
24717 }
24718 else
24719 {
24720 struct dwarf2_locexpr_baton *baton;
24721
24722 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24723 baton->per_cu = cu->per_cu;
24724 gdb_assert (baton->per_cu);
24725
24726 if (attr_form_is_block (attr))
24727 {
24728 /* Note that we're just copying the block's data pointer
24729 here, not the actual data. We're still pointing into the
24730 info_buffer for SYM's objfile; right now we never release
24731 that buffer, but when we do clean up properly this may
24732 need to change. */
24733 baton->size = DW_BLOCK (attr)->size;
24734 baton->data = DW_BLOCK (attr)->data;
24735 }
24736 else
24737 {
24738 dwarf2_invalid_attrib_class_complaint ("location description",
24739 SYMBOL_NATURAL_NAME (sym));
24740 baton->size = 0;
24741 }
24742
24743 SYMBOL_ACLASS_INDEX (sym) = (is_block
24744 ? dwarf2_locexpr_block_index
24745 : dwarf2_locexpr_index);
24746 SYMBOL_LOCATION_BATON (sym) = baton;
24747 }
24748 }
24749
24750 /* Return the OBJFILE associated with the compilation unit CU. If CU
24751 came from a separate debuginfo file, then the master objfile is
24752 returned. */
24753
24754 struct objfile *
24755 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24756 {
24757 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24758
24759 /* Return the master objfile, so that we can report and look up the
24760 correct file containing this variable. */
24761 if (objfile->separate_debug_objfile_backlink)
24762 objfile = objfile->separate_debug_objfile_backlink;
24763
24764 return objfile;
24765 }
24766
24767 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24768 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24769 CU_HEADERP first. */
24770
24771 static const struct comp_unit_head *
24772 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24773 struct dwarf2_per_cu_data *per_cu)
24774 {
24775 const gdb_byte *info_ptr;
24776
24777 if (per_cu->cu)
24778 return &per_cu->cu->header;
24779
24780 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24781
24782 memset (cu_headerp, 0, sizeof (*cu_headerp));
24783 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24784 rcuh_kind::COMPILE);
24785
24786 return cu_headerp;
24787 }
24788
24789 /* Return the address size given in the compilation unit header for CU. */
24790
24791 int
24792 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24793 {
24794 struct comp_unit_head cu_header_local;
24795 const struct comp_unit_head *cu_headerp;
24796
24797 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24798
24799 return cu_headerp->addr_size;
24800 }
24801
24802 /* Return the offset size given in the compilation unit header for CU. */
24803
24804 int
24805 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24806 {
24807 struct comp_unit_head cu_header_local;
24808 const struct comp_unit_head *cu_headerp;
24809
24810 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24811
24812 return cu_headerp->offset_size;
24813 }
24814
24815 /* See its dwarf2loc.h declaration. */
24816
24817 int
24818 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24819 {
24820 struct comp_unit_head cu_header_local;
24821 const struct comp_unit_head *cu_headerp;
24822
24823 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24824
24825 if (cu_headerp->version == 2)
24826 return cu_headerp->addr_size;
24827 else
24828 return cu_headerp->offset_size;
24829 }
24830
24831 /* Return the text offset of the CU. The returned offset comes from
24832 this CU's objfile. If this objfile came from a separate debuginfo
24833 file, then the offset may be different from the corresponding
24834 offset in the parent objfile. */
24835
24836 CORE_ADDR
24837 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24838 {
24839 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24840
24841 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24842 }
24843
24844 /* Return DWARF version number of PER_CU. */
24845
24846 short
24847 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24848 {
24849 return per_cu->dwarf_version;
24850 }
24851
24852 /* Locate the .debug_info compilation unit from CU's objfile which contains
24853 the DIE at OFFSET. Raises an error on failure. */
24854
24855 static struct dwarf2_per_cu_data *
24856 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24857 unsigned int offset_in_dwz,
24858 struct dwarf2_per_objfile *dwarf2_per_objfile)
24859 {
24860 struct dwarf2_per_cu_data *this_cu;
24861 int low, high;
24862 const sect_offset *cu_off;
24863
24864 low = 0;
24865 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24866 while (high > low)
24867 {
24868 struct dwarf2_per_cu_data *mid_cu;
24869 int mid = low + (high - low) / 2;
24870
24871 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24872 cu_off = &mid_cu->sect_off;
24873 if (mid_cu->is_dwz > offset_in_dwz
24874 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24875 high = mid;
24876 else
24877 low = mid + 1;
24878 }
24879 gdb_assert (low == high);
24880 this_cu = dwarf2_per_objfile->all_comp_units[low];
24881 cu_off = &this_cu->sect_off;
24882 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24883 {
24884 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24885 error (_("Dwarf Error: could not find partial DIE containing "
24886 "offset %s [in module %s]"),
24887 sect_offset_str (sect_off),
24888 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24889
24890 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24891 <= sect_off);
24892 return dwarf2_per_objfile->all_comp_units[low-1];
24893 }
24894 else
24895 {
24896 this_cu = dwarf2_per_objfile->all_comp_units[low];
24897 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24898 && sect_off >= this_cu->sect_off + this_cu->length)
24899 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24900 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24901 return this_cu;
24902 }
24903 }
24904
24905 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24906
24907 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24908 : per_cu (per_cu_),
24909 mark (0),
24910 has_loclist (0),
24911 checked_producer (0),
24912 producer_is_gxx_lt_4_6 (0),
24913 producer_is_gcc_lt_4_3 (0),
24914 producer_is_icc_lt_14 (0),
24915 processing_has_namespace_info (0)
24916 {
24917 per_cu->cu = this;
24918 }
24919
24920 /* Destroy a dwarf2_cu. */
24921
24922 dwarf2_cu::~dwarf2_cu ()
24923 {
24924 per_cu->cu = NULL;
24925 }
24926
24927 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24928
24929 static void
24930 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24931 enum language pretend_language)
24932 {
24933 struct attribute *attr;
24934
24935 /* Set the language we're debugging. */
24936 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24937 if (attr)
24938 set_cu_language (DW_UNSND (attr), cu);
24939 else
24940 {
24941 cu->language = pretend_language;
24942 cu->language_defn = language_def (cu->language);
24943 }
24944
24945 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24946 }
24947
24948 /* Increase the age counter on each cached compilation unit, and free
24949 any that are too old. */
24950
24951 static void
24952 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24953 {
24954 struct dwarf2_per_cu_data *per_cu, **last_chain;
24955
24956 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24957 per_cu = dwarf2_per_objfile->read_in_chain;
24958 while (per_cu != NULL)
24959 {
24960 per_cu->cu->last_used ++;
24961 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24962 dwarf2_mark (per_cu->cu);
24963 per_cu = per_cu->cu->read_in_chain;
24964 }
24965
24966 per_cu = dwarf2_per_objfile->read_in_chain;
24967 last_chain = &dwarf2_per_objfile->read_in_chain;
24968 while (per_cu != NULL)
24969 {
24970 struct dwarf2_per_cu_data *next_cu;
24971
24972 next_cu = per_cu->cu->read_in_chain;
24973
24974 if (!per_cu->cu->mark)
24975 {
24976 delete per_cu->cu;
24977 *last_chain = next_cu;
24978 }
24979 else
24980 last_chain = &per_cu->cu->read_in_chain;
24981
24982 per_cu = next_cu;
24983 }
24984 }
24985
24986 /* Remove a single compilation unit from the cache. */
24987
24988 static void
24989 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24990 {
24991 struct dwarf2_per_cu_data *per_cu, **last_chain;
24992 struct dwarf2_per_objfile *dwarf2_per_objfile
24993 = target_per_cu->dwarf2_per_objfile;
24994
24995 per_cu = dwarf2_per_objfile->read_in_chain;
24996 last_chain = &dwarf2_per_objfile->read_in_chain;
24997 while (per_cu != NULL)
24998 {
24999 struct dwarf2_per_cu_data *next_cu;
25000
25001 next_cu = per_cu->cu->read_in_chain;
25002
25003 if (per_cu == target_per_cu)
25004 {
25005 delete per_cu->cu;
25006 per_cu->cu = NULL;
25007 *last_chain = next_cu;
25008 break;
25009 }
25010 else
25011 last_chain = &per_cu->cu->read_in_chain;
25012
25013 per_cu = next_cu;
25014 }
25015 }
25016
25017 /* Release all extra memory associated with OBJFILE. */
25018
25019 void
25020 dwarf2_free_objfile (struct objfile *objfile)
25021 {
25022 struct dwarf2_per_objfile *dwarf2_per_objfile
25023 = get_dwarf2_per_objfile (objfile);
25024
25025 delete dwarf2_per_objfile;
25026 }
25027
25028 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25029 We store these in a hash table separate from the DIEs, and preserve them
25030 when the DIEs are flushed out of cache.
25031
25032 The CU "per_cu" pointer is needed because offset alone is not enough to
25033 uniquely identify the type. A file may have multiple .debug_types sections,
25034 or the type may come from a DWO file. Furthermore, while it's more logical
25035 to use per_cu->section+offset, with Fission the section with the data is in
25036 the DWO file but we don't know that section at the point we need it.
25037 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25038 because we can enter the lookup routine, get_die_type_at_offset, from
25039 outside this file, and thus won't necessarily have PER_CU->cu.
25040 Fortunately, PER_CU is stable for the life of the objfile. */
25041
25042 struct dwarf2_per_cu_offset_and_type
25043 {
25044 const struct dwarf2_per_cu_data *per_cu;
25045 sect_offset sect_off;
25046 struct type *type;
25047 };
25048
25049 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25050
25051 static hashval_t
25052 per_cu_offset_and_type_hash (const void *item)
25053 {
25054 const struct dwarf2_per_cu_offset_and_type *ofs
25055 = (const struct dwarf2_per_cu_offset_and_type *) item;
25056
25057 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25058 }
25059
25060 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25061
25062 static int
25063 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25064 {
25065 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25066 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25067 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25068 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25069
25070 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25071 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25072 }
25073
25074 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25075 table if necessary. For convenience, return TYPE.
25076
25077 The DIEs reading must have careful ordering to:
25078 * Not cause infite loops trying to read in DIEs as a prerequisite for
25079 reading current DIE.
25080 * Not trying to dereference contents of still incompletely read in types
25081 while reading in other DIEs.
25082 * Enable referencing still incompletely read in types just by a pointer to
25083 the type without accessing its fields.
25084
25085 Therefore caller should follow these rules:
25086 * Try to fetch any prerequisite types we may need to build this DIE type
25087 before building the type and calling set_die_type.
25088 * After building type call set_die_type for current DIE as soon as
25089 possible before fetching more types to complete the current type.
25090 * Make the type as complete as possible before fetching more types. */
25091
25092 static struct type *
25093 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25094 {
25095 struct dwarf2_per_objfile *dwarf2_per_objfile
25096 = cu->per_cu->dwarf2_per_objfile;
25097 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25098 struct objfile *objfile = dwarf2_per_objfile->objfile;
25099 struct attribute *attr;
25100 struct dynamic_prop prop;
25101
25102 /* For Ada types, make sure that the gnat-specific data is always
25103 initialized (if not already set). There are a few types where
25104 we should not be doing so, because the type-specific area is
25105 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25106 where the type-specific area is used to store the floatformat).
25107 But this is not a problem, because the gnat-specific information
25108 is actually not needed for these types. */
25109 if (need_gnat_info (cu)
25110 && TYPE_CODE (type) != TYPE_CODE_FUNC
25111 && TYPE_CODE (type) != TYPE_CODE_FLT
25112 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25113 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25114 && TYPE_CODE (type) != TYPE_CODE_METHOD
25115 && !HAVE_GNAT_AUX_INFO (type))
25116 INIT_GNAT_SPECIFIC (type);
25117
25118 /* Read DW_AT_allocated and set in type. */
25119 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25120 if (attr_form_is_block (attr))
25121 {
25122 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25123 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25124 }
25125 else if (attr != NULL)
25126 {
25127 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25128 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25129 sect_offset_str (die->sect_off));
25130 }
25131
25132 /* Read DW_AT_associated and set in type. */
25133 attr = dwarf2_attr (die, DW_AT_associated, cu);
25134 if (attr_form_is_block (attr))
25135 {
25136 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25137 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25138 }
25139 else if (attr != NULL)
25140 {
25141 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25142 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25143 sect_offset_str (die->sect_off));
25144 }
25145
25146 /* Read DW_AT_data_location and set in type. */
25147 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25148 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25149 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25150
25151 if (dwarf2_per_objfile->die_type_hash == NULL)
25152 {
25153 dwarf2_per_objfile->die_type_hash =
25154 htab_create_alloc_ex (127,
25155 per_cu_offset_and_type_hash,
25156 per_cu_offset_and_type_eq,
25157 NULL,
25158 &objfile->objfile_obstack,
25159 hashtab_obstack_allocate,
25160 dummy_obstack_deallocate);
25161 }
25162
25163 ofs.per_cu = cu->per_cu;
25164 ofs.sect_off = die->sect_off;
25165 ofs.type = type;
25166 slot = (struct dwarf2_per_cu_offset_and_type **)
25167 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25168 if (*slot)
25169 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25170 sect_offset_str (die->sect_off));
25171 *slot = XOBNEW (&objfile->objfile_obstack,
25172 struct dwarf2_per_cu_offset_and_type);
25173 **slot = ofs;
25174 return type;
25175 }
25176
25177 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25178 or return NULL if the die does not have a saved type. */
25179
25180 static struct type *
25181 get_die_type_at_offset (sect_offset sect_off,
25182 struct dwarf2_per_cu_data *per_cu)
25183 {
25184 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25185 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25186
25187 if (dwarf2_per_objfile->die_type_hash == NULL)
25188 return NULL;
25189
25190 ofs.per_cu = per_cu;
25191 ofs.sect_off = sect_off;
25192 slot = ((struct dwarf2_per_cu_offset_and_type *)
25193 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25194 if (slot)
25195 return slot->type;
25196 else
25197 return NULL;
25198 }
25199
25200 /* Look up the type for DIE in CU in die_type_hash,
25201 or return NULL if DIE does not have a saved type. */
25202
25203 static struct type *
25204 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25205 {
25206 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25207 }
25208
25209 /* Add a dependence relationship from CU to REF_PER_CU. */
25210
25211 static void
25212 dwarf2_add_dependence (struct dwarf2_cu *cu,
25213 struct dwarf2_per_cu_data *ref_per_cu)
25214 {
25215 void **slot;
25216
25217 if (cu->dependencies == NULL)
25218 cu->dependencies
25219 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25220 NULL, &cu->comp_unit_obstack,
25221 hashtab_obstack_allocate,
25222 dummy_obstack_deallocate);
25223
25224 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25225 if (*slot == NULL)
25226 *slot = ref_per_cu;
25227 }
25228
25229 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25230 Set the mark field in every compilation unit in the
25231 cache that we must keep because we are keeping CU. */
25232
25233 static int
25234 dwarf2_mark_helper (void **slot, void *data)
25235 {
25236 struct dwarf2_per_cu_data *per_cu;
25237
25238 per_cu = (struct dwarf2_per_cu_data *) *slot;
25239
25240 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25241 reading of the chain. As such dependencies remain valid it is not much
25242 useful to track and undo them during QUIT cleanups. */
25243 if (per_cu->cu == NULL)
25244 return 1;
25245
25246 if (per_cu->cu->mark)
25247 return 1;
25248 per_cu->cu->mark = 1;
25249
25250 if (per_cu->cu->dependencies != NULL)
25251 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25252
25253 return 1;
25254 }
25255
25256 /* Set the mark field in CU and in every other compilation unit in the
25257 cache that we must keep because we are keeping CU. */
25258
25259 static void
25260 dwarf2_mark (struct dwarf2_cu *cu)
25261 {
25262 if (cu->mark)
25263 return;
25264 cu->mark = 1;
25265 if (cu->dependencies != NULL)
25266 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25267 }
25268
25269 static void
25270 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25271 {
25272 while (per_cu)
25273 {
25274 per_cu->cu->mark = 0;
25275 per_cu = per_cu->cu->read_in_chain;
25276 }
25277 }
25278
25279 /* Trivial hash function for partial_die_info: the hash value of a DIE
25280 is its offset in .debug_info for this objfile. */
25281
25282 static hashval_t
25283 partial_die_hash (const void *item)
25284 {
25285 const struct partial_die_info *part_die
25286 = (const struct partial_die_info *) item;
25287
25288 return to_underlying (part_die->sect_off);
25289 }
25290
25291 /* Trivial comparison function for partial_die_info structures: two DIEs
25292 are equal if they have the same offset. */
25293
25294 static int
25295 partial_die_eq (const void *item_lhs, const void *item_rhs)
25296 {
25297 const struct partial_die_info *part_die_lhs
25298 = (const struct partial_die_info *) item_lhs;
25299 const struct partial_die_info *part_die_rhs
25300 = (const struct partial_die_info *) item_rhs;
25301
25302 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25303 }
25304
25305 static struct cmd_list_element *set_dwarf_cmdlist;
25306 static struct cmd_list_element *show_dwarf_cmdlist;
25307
25308 static void
25309 set_dwarf_cmd (const char *args, int from_tty)
25310 {
25311 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25312 gdb_stdout);
25313 }
25314
25315 static void
25316 show_dwarf_cmd (const char *args, int from_tty)
25317 {
25318 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25319 }
25320
25321 int dwarf_always_disassemble;
25322
25323 static void
25324 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25325 struct cmd_list_element *c, const char *value)
25326 {
25327 fprintf_filtered (file,
25328 _("Whether to always disassemble "
25329 "DWARF expressions is %s.\n"),
25330 value);
25331 }
25332
25333 static void
25334 show_check_physname (struct ui_file *file, int from_tty,
25335 struct cmd_list_element *c, const char *value)
25336 {
25337 fprintf_filtered (file,
25338 _("Whether to check \"physname\" is %s.\n"),
25339 value);
25340 }
25341
25342 void
25343 _initialize_dwarf2_read (void)
25344 {
25345
25346 dwarf2_objfile_data_key = register_objfile_data ();
25347
25348 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25349 Set DWARF specific variables.\n\
25350 Configure DWARF variables such as the cache size"),
25351 &set_dwarf_cmdlist, "maintenance set dwarf ",
25352 0/*allow-unknown*/, &maintenance_set_cmdlist);
25353
25354 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25355 Show DWARF specific variables\n\
25356 Show DWARF variables such as the cache size"),
25357 &show_dwarf_cmdlist, "maintenance show dwarf ",
25358 0/*allow-unknown*/, &maintenance_show_cmdlist);
25359
25360 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25361 &dwarf_max_cache_age, _("\
25362 Set the upper bound on the age of cached DWARF compilation units."), _("\
25363 Show the upper bound on the age of cached DWARF compilation units."), _("\
25364 A higher limit means that cached compilation units will be stored\n\
25365 in memory longer, and more total memory will be used. Zero disables\n\
25366 caching, which can slow down startup."),
25367 NULL,
25368 show_dwarf_max_cache_age,
25369 &set_dwarf_cmdlist,
25370 &show_dwarf_cmdlist);
25371
25372 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25373 &dwarf_always_disassemble, _("\
25374 Set whether `info address' always disassembles DWARF expressions."), _("\
25375 Show whether `info address' always disassembles DWARF expressions."), _("\
25376 When enabled, DWARF expressions are always printed in an assembly-like\n\
25377 syntax. When disabled, expressions will be printed in a more\n\
25378 conversational style, when possible."),
25379 NULL,
25380 show_dwarf_always_disassemble,
25381 &set_dwarf_cmdlist,
25382 &show_dwarf_cmdlist);
25383
25384 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25385 Set debugging of the DWARF reader."), _("\
25386 Show debugging of the DWARF reader."), _("\
25387 When enabled (non-zero), debugging messages are printed during DWARF\n\
25388 reading and symtab expansion. A value of 1 (one) provides basic\n\
25389 information. A value greater than 1 provides more verbose information."),
25390 NULL,
25391 NULL,
25392 &setdebuglist, &showdebuglist);
25393
25394 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25395 Set debugging of the DWARF DIE reader."), _("\
25396 Show debugging of the DWARF DIE reader."), _("\
25397 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25398 The value is the maximum depth to print."),
25399 NULL,
25400 NULL,
25401 &setdebuglist, &showdebuglist);
25402
25403 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25404 Set debugging of the dwarf line reader."), _("\
25405 Show debugging of the dwarf line reader."), _("\
25406 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25407 A value of 1 (one) provides basic information.\n\
25408 A value greater than 1 provides more verbose information."),
25409 NULL,
25410 NULL,
25411 &setdebuglist, &showdebuglist);
25412
25413 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25414 Set cross-checking of \"physname\" code against demangler."), _("\
25415 Show cross-checking of \"physname\" code against demangler."), _("\
25416 When enabled, GDB's internal \"physname\" code is checked against\n\
25417 the demangler."),
25418 NULL, show_check_physname,
25419 &setdebuglist, &showdebuglist);
25420
25421 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25422 no_class, &use_deprecated_index_sections, _("\
25423 Set whether to use deprecated gdb_index sections."), _("\
25424 Show whether to use deprecated gdb_index sections."), _("\
25425 When enabled, deprecated .gdb_index sections are used anyway.\n\
25426 Normally they are ignored either because of a missing feature or\n\
25427 performance issue.\n\
25428 Warning: This option must be enabled before gdb reads the file."),
25429 NULL,
25430 NULL,
25431 &setlist, &showlist);
25432
25433 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25434 &dwarf2_locexpr_funcs);
25435 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25436 &dwarf2_loclist_funcs);
25437
25438 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25439 &dwarf2_block_frame_base_locexpr_funcs);
25440 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25441 &dwarf2_block_frame_base_loclist_funcs);
25442
25443 #if GDB_SELF_TEST
25444 selftests::register_test ("dw2_expand_symtabs_matching",
25445 selftests::dw2_expand_symtabs_matching::run_test);
25446 #endif
25447 }