]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/elfread.c
gdb: Handle malformed ELF, symbols in non-allocatable sections
[thirdparty/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50 #include "ctfread.h"
51 #include "gdbsupport/gdb_string_view.h"
52
53 /* Forward declarations. */
54 extern const struct sym_fns elf_sym_fns_gdb_index;
55 extern const struct sym_fns elf_sym_fns_debug_names;
56 extern const struct sym_fns elf_sym_fns_lazy_psyms;
57
58 /* The struct elfinfo is available only during ELF symbol table and
59 psymtab reading. It is destroyed at the completion of psymtab-reading.
60 It's local to elf_symfile_read. */
61
62 struct elfinfo
63 {
64 asection *stabsect; /* Section pointer for .stab section */
65 asection *mdebugsect; /* Section pointer for .mdebug section */
66 asection *ctfsect; /* Section pointer for .ctf section */
67 };
68
69 /* Type for per-BFD data. */
70
71 typedef std::vector<std::unique_ptr<probe>> elfread_data;
72
73 /* Per-BFD data for probe info. */
74
75 static const struct bfd_key<elfread_data> probe_key;
76
77 /* Minimal symbols located at the GOT entries for .plt - that is the real
78 pointer where the given entry will jump to. It gets updated by the real
79 function address during lazy ld.so resolving in the inferior. These
80 minimal symbols are indexed for <tab>-completion. */
81
82 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
83
84 /* Locate the segments in ABFD. */
85
86 static struct symfile_segment_data *
87 elf_symfile_segments (bfd *abfd)
88 {
89 Elf_Internal_Phdr *phdrs, **segments;
90 long phdrs_size;
91 int num_phdrs, num_segments, num_sections, i;
92 asection *sect;
93 struct symfile_segment_data *data;
94
95 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
96 if (phdrs_size == -1)
97 return NULL;
98
99 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
100 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
101 if (num_phdrs == -1)
102 return NULL;
103
104 num_segments = 0;
105 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
106 for (i = 0; i < num_phdrs; i++)
107 if (phdrs[i].p_type == PT_LOAD)
108 segments[num_segments++] = &phdrs[i];
109
110 if (num_segments == 0)
111 return NULL;
112
113 data = XCNEW (struct symfile_segment_data);
114 data->num_segments = num_segments;
115 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
116 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
117
118 for (i = 0; i < num_segments; i++)
119 {
120 data->segment_bases[i] = segments[i]->p_vaddr;
121 data->segment_sizes[i] = segments[i]->p_memsz;
122 }
123
124 num_sections = bfd_count_sections (abfd);
125 data->segment_info = XCNEWVEC (int, num_sections);
126
127 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
128 {
129 int j;
130
131 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
132 continue;
133
134 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
135
136 for (j = 0; j < num_segments; j++)
137 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
138 {
139 data->segment_info[i] = j + 1;
140 break;
141 }
142
143 /* We should have found a segment for every non-empty section.
144 If we haven't, we will not relocate this section by any
145 offsets we apply to the segments. As an exception, do not
146 warn about SHT_NOBITS sections; in normal ELF execution
147 environments, SHT_NOBITS means zero-initialized and belongs
148 in a segment, but in no-OS environments some tools (e.g. ARM
149 RealView) use SHT_NOBITS for uninitialized data. Since it is
150 uninitialized, it doesn't need a program header. Such
151 binaries are not relocatable. */
152 if (bfd_section_size (sect) > 0 && j == num_segments
153 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
154 warning (_("Loadable section \"%s\" outside of ELF segments"),
155 bfd_section_name (sect));
156 }
157
158 return data;
159 }
160
161 /* We are called once per section from elf_symfile_read. We
162 need to examine each section we are passed, check to see
163 if it is something we are interested in processing, and
164 if so, stash away some access information for the section.
165
166 For now we recognize the dwarf debug information sections and
167 line number sections from matching their section names. The
168 ELF definition is no real help here since it has no direct
169 knowledge of DWARF (by design, so any debugging format can be
170 used).
171
172 We also recognize the ".stab" sections used by the Sun compilers
173 released with Solaris 2.
174
175 FIXME: The section names should not be hardwired strings (what
176 should they be? I don't think most object file formats have enough
177 section flags to specify what kind of debug section it is.
178 -kingdon). */
179
180 static void
181 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
182 {
183 struct elfinfo *ei;
184
185 ei = (struct elfinfo *) eip;
186 if (strcmp (sectp->name, ".stab") == 0)
187 {
188 ei->stabsect = sectp;
189 }
190 else if (strcmp (sectp->name, ".mdebug") == 0)
191 {
192 ei->mdebugsect = sectp;
193 }
194 else if (strcmp (sectp->name, ".ctf") == 0)
195 {
196 ei->ctfsect = sectp;
197 }
198 }
199
200 static struct minimal_symbol *
201 record_minimal_symbol (minimal_symbol_reader &reader,
202 gdb::string_view name, bool copy_name,
203 CORE_ADDR address,
204 enum minimal_symbol_type ms_type,
205 asection *bfd_section, struct objfile *objfile)
206 {
207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
208
209 if (ms_type == mst_text || ms_type == mst_file_text
210 || ms_type == mst_text_gnu_ifunc)
211 address = gdbarch_addr_bits_remove (gdbarch, address);
212
213 /* We only setup section information for allocatable sections. Usually
214 we'd only expect to find msymbols for allocatable sections, but if the
215 ELF is malformed then this might not be the case. In that case don't
216 create an msymbol that references an uninitialised section object. */
217 int section_index = 0;
218 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
219 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
220
221 struct minimal_symbol *result
222 = reader.record_full (name, copy_name, address, ms_type, section_index);
223 if ((objfile->flags & OBJF_MAINLINE) == 0
224 && (ms_type == mst_data || ms_type == mst_bss))
225 result->maybe_copied = 1;
226
227 return result;
228 }
229
230 /* Read the symbol table of an ELF file.
231
232 Given an objfile, a symbol table, and a flag indicating whether the
233 symbol table contains regular, dynamic, or synthetic symbols, add all
234 the global function and data symbols to the minimal symbol table.
235
236 In stabs-in-ELF, as implemented by Sun, there are some local symbols
237 defined in the ELF symbol table, which can be used to locate
238 the beginnings of sections from each ".o" file that was linked to
239 form the executable objfile. We gather any such info and record it
240 in data structures hung off the objfile's private data. */
241
242 #define ST_REGULAR 0
243 #define ST_DYNAMIC 1
244 #define ST_SYNTHETIC 2
245
246 static void
247 elf_symtab_read (minimal_symbol_reader &reader,
248 struct objfile *objfile, int type,
249 long number_of_symbols, asymbol **symbol_table,
250 bool copy_names)
251 {
252 struct gdbarch *gdbarch = get_objfile_arch (objfile);
253 asymbol *sym;
254 long i;
255 CORE_ADDR symaddr;
256 enum minimal_symbol_type ms_type;
257 /* Name of the last file symbol. This is either a constant string or is
258 saved on the objfile's filename cache. */
259 const char *filesymname = "";
260 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
261 int elf_make_msymbol_special_p
262 = gdbarch_elf_make_msymbol_special_p (gdbarch);
263
264 for (i = 0; i < number_of_symbols; i++)
265 {
266 sym = symbol_table[i];
267 if (sym->name == NULL || *sym->name == '\0')
268 {
269 /* Skip names that don't exist (shouldn't happen), or names
270 that are null strings (may happen). */
271 continue;
272 }
273
274 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
275 symbols which do not correspond to objects in the symbol table,
276 but have some other target-specific meaning. */
277 if (bfd_is_target_special_symbol (objfile->obfd, sym))
278 {
279 if (gdbarch_record_special_symbol_p (gdbarch))
280 gdbarch_record_special_symbol (gdbarch, objfile, sym);
281 continue;
282 }
283
284 if (type == ST_DYNAMIC
285 && sym->section == bfd_und_section_ptr
286 && (sym->flags & BSF_FUNCTION))
287 {
288 struct minimal_symbol *msym;
289 bfd *abfd = objfile->obfd;
290 asection *sect;
291
292 /* Symbol is a reference to a function defined in
293 a shared library.
294 If its value is non zero then it is usually the address
295 of the corresponding entry in the procedure linkage table,
296 plus the desired section offset.
297 If its value is zero then the dynamic linker has to resolve
298 the symbol. We are unable to find any meaningful address
299 for this symbol in the executable file, so we skip it. */
300 symaddr = sym->value;
301 if (symaddr == 0)
302 continue;
303
304 /* sym->section is the undefined section. However, we want to
305 record the section where the PLT stub resides with the
306 minimal symbol. Search the section table for the one that
307 covers the stub's address. */
308 for (sect = abfd->sections; sect != NULL; sect = sect->next)
309 {
310 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
311 continue;
312
313 if (symaddr >= bfd_section_vma (sect)
314 && symaddr < bfd_section_vma (sect)
315 + bfd_section_size (sect))
316 break;
317 }
318 if (!sect)
319 continue;
320
321 /* On ia64-hpux, we have discovered that the system linker
322 adds undefined symbols with nonzero addresses that cannot
323 be right (their address points inside the code of another
324 function in the .text section). This creates problems
325 when trying to determine which symbol corresponds to
326 a given address.
327
328 We try to detect those buggy symbols by checking which
329 section we think they correspond to. Normally, PLT symbols
330 are stored inside their own section, and the typical name
331 for that section is ".plt". So, if there is a ".plt"
332 section, and yet the section name of our symbol does not
333 start with ".plt", we ignore that symbol. */
334 if (!startswith (sect->name, ".plt")
335 && bfd_get_section_by_name (abfd, ".plt") != NULL)
336 continue;
337
338 msym = record_minimal_symbol
339 (reader, sym->name, copy_names,
340 symaddr, mst_solib_trampoline, sect, objfile);
341 if (msym != NULL)
342 {
343 msym->filename = filesymname;
344 if (elf_make_msymbol_special_p)
345 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
346 }
347 continue;
348 }
349
350 /* If it is a nonstripped executable, do not enter dynamic
351 symbols, as the dynamic symbol table is usually a subset
352 of the main symbol table. */
353 if (type == ST_DYNAMIC && !stripped)
354 continue;
355 if (sym->flags & BSF_FILE)
356 {
357 filesymname
358 = ((const char *) objfile->per_bfd->filename_cache.insert
359 (sym->name, strlen (sym->name) + 1));
360 }
361 else if (sym->flags & BSF_SECTION_SYM)
362 continue;
363 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
364 | BSF_GNU_UNIQUE))
365 {
366 struct minimal_symbol *msym;
367
368 /* Select global/local/weak symbols. Note that bfd puts abs
369 symbols in their own section, so all symbols we are
370 interested in will have a section. */
371 /* Bfd symbols are section relative. */
372 symaddr = sym->value + sym->section->vma;
373 /* For non-absolute symbols, use the type of the section
374 they are relative to, to intuit text/data. Bfd provides
375 no way of figuring this out for absolute symbols. */
376 if (sym->section == bfd_abs_section_ptr)
377 {
378 /* This is a hack to get the minimal symbol type
379 right for Irix 5, which has absolute addresses
380 with special section indices for dynamic symbols.
381
382 NOTE: uweigand-20071112: Synthetic symbols do not
383 have an ELF-private part, so do not touch those. */
384 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
385 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
386
387 switch (shndx)
388 {
389 case SHN_MIPS_TEXT:
390 ms_type = mst_text;
391 break;
392 case SHN_MIPS_DATA:
393 ms_type = mst_data;
394 break;
395 case SHN_MIPS_ACOMMON:
396 ms_type = mst_bss;
397 break;
398 default:
399 ms_type = mst_abs;
400 }
401
402 /* If it is an Irix dynamic symbol, skip section name
403 symbols, relocate all others by section offset. */
404 if (ms_type != mst_abs)
405 {
406 if (sym->name[0] == '.')
407 continue;
408 }
409 }
410 else if (sym->section->flags & SEC_CODE)
411 {
412 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
413 {
414 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
415 ms_type = mst_text_gnu_ifunc;
416 else
417 ms_type = mst_text;
418 }
419 /* The BSF_SYNTHETIC check is there to omit ppc64 function
420 descriptors mistaken for static functions starting with 'L'.
421 */
422 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
423 && (sym->flags & BSF_SYNTHETIC) == 0)
424 || ((sym->flags & BSF_LOCAL)
425 && sym->name[0] == '$'
426 && sym->name[1] == 'L'))
427 /* Looks like a compiler-generated label. Skip
428 it. The assembler should be skipping these (to
429 keep executables small), but apparently with
430 gcc on the (deleted) delta m88k SVR4, it loses.
431 So to have us check too should be harmless (but
432 I encourage people to fix this in the assembler
433 instead of adding checks here). */
434 continue;
435 else
436 {
437 ms_type = mst_file_text;
438 }
439 }
440 else if (sym->section->flags & SEC_ALLOC)
441 {
442 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
443 {
444 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
445 {
446 ms_type = mst_data_gnu_ifunc;
447 }
448 else if (sym->section->flags & SEC_LOAD)
449 {
450 ms_type = mst_data;
451 }
452 else
453 {
454 ms_type = mst_bss;
455 }
456 }
457 else if (sym->flags & BSF_LOCAL)
458 {
459 if (sym->section->flags & SEC_LOAD)
460 {
461 ms_type = mst_file_data;
462 }
463 else
464 {
465 ms_type = mst_file_bss;
466 }
467 }
468 else
469 {
470 ms_type = mst_unknown;
471 }
472 }
473 else
474 {
475 /* FIXME: Solaris2 shared libraries include lots of
476 odd "absolute" and "undefined" symbols, that play
477 hob with actions like finding what function the PC
478 is in. Ignore them if they aren't text, data, or bss. */
479 /* ms_type = mst_unknown; */
480 continue; /* Skip this symbol. */
481 }
482 msym = record_minimal_symbol
483 (reader, sym->name, copy_names, symaddr,
484 ms_type, sym->section, objfile);
485
486 if (msym)
487 {
488 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
489 ELF-private part. */
490 if (type != ST_SYNTHETIC)
491 {
492 /* Pass symbol size field in via BFD. FIXME!!! */
493 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
494 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
495 }
496
497 msym->filename = filesymname;
498 if (elf_make_msymbol_special_p)
499 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
500 }
501
502 /* If we see a default versioned symbol, install it under
503 its version-less name. */
504 if (msym != NULL)
505 {
506 const char *atsign = strchr (sym->name, '@');
507
508 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
509 {
510 int len = atsign - sym->name;
511
512 record_minimal_symbol (reader,
513 gdb::string_view (sym->name, len),
514 true, symaddr, ms_type, sym->section,
515 objfile);
516 }
517 }
518
519 /* For @plt symbols, also record a trampoline to the
520 destination symbol. The @plt symbol will be used in
521 disassembly, and the trampoline will be used when we are
522 trying to find the target. */
523 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
524 {
525 int len = strlen (sym->name);
526
527 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
528 {
529 struct minimal_symbol *mtramp;
530
531 mtramp = record_minimal_symbol
532 (reader, gdb::string_view (sym->name, len - 4), true,
533 symaddr, mst_solib_trampoline, sym->section, objfile);
534 if (mtramp)
535 {
536 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
537 mtramp->created_by_gdb = 1;
538 mtramp->filename = filesymname;
539 if (elf_make_msymbol_special_p)
540 gdbarch_elf_make_msymbol_special (gdbarch,
541 sym, mtramp);
542 }
543 }
544 }
545 }
546 }
547 }
548
549 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
550 for later look ups of which function to call when user requests
551 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
552 library defining `function' we cannot yet know while reading OBJFILE which
553 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
554 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
555
556 static void
557 elf_rel_plt_read (minimal_symbol_reader &reader,
558 struct objfile *objfile, asymbol **dyn_symbol_table)
559 {
560 bfd *obfd = objfile->obfd;
561 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
562 asection *relplt, *got_plt;
563 bfd_size_type reloc_count, reloc;
564 struct gdbarch *gdbarch = get_objfile_arch (objfile);
565 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
566 size_t ptr_size = TYPE_LENGTH (ptr_type);
567
568 if (objfile->separate_debug_objfile_backlink)
569 return;
570
571 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
572 if (got_plt == NULL)
573 {
574 /* For platforms where there is no separate .got.plt. */
575 got_plt = bfd_get_section_by_name (obfd, ".got");
576 if (got_plt == NULL)
577 return;
578 }
579
580 /* Depending on system, we may find jump slots in a relocation
581 section for either .got.plt or .plt. */
582 asection *plt = bfd_get_section_by_name (obfd, ".plt");
583 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
584
585 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
586
587 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
588 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
589 {
590 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
591
592 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
593 {
594 if (this_hdr.sh_info == plt_elf_idx
595 || this_hdr.sh_info == got_plt_elf_idx)
596 break;
597 }
598 }
599 if (relplt == NULL)
600 return;
601
602 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
603 return;
604
605 std::string string_buffer;
606
607 /* Does ADDRESS reside in SECTION of OBFD? */
608 auto within_section = [obfd] (asection *section, CORE_ADDR address)
609 {
610 if (section == NULL)
611 return false;
612
613 return (bfd_section_vma (section) <= address
614 && (address < bfd_section_vma (section)
615 + bfd_section_size (section)));
616 };
617
618 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
619 for (reloc = 0; reloc < reloc_count; reloc++)
620 {
621 const char *name;
622 struct minimal_symbol *msym;
623 CORE_ADDR address;
624 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
625 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
626
627 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
628 address = relplt->relocation[reloc].address;
629
630 asection *msym_section;
631
632 /* Does the pointer reside in either the .got.plt or .plt
633 sections? */
634 if (within_section (got_plt, address))
635 msym_section = got_plt;
636 else if (within_section (plt, address))
637 msym_section = plt;
638 else
639 continue;
640
641 /* We cannot check if NAME is a reference to
642 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
643 symbol is undefined and the objfile having NAME defined may
644 not yet have been loaded. */
645
646 string_buffer.assign (name);
647 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
648
649 msym = record_minimal_symbol (reader, string_buffer,
650 true, address, mst_slot_got_plt,
651 msym_section, objfile);
652 if (msym)
653 SET_MSYMBOL_SIZE (msym, ptr_size);
654 }
655 }
656
657 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
658
659 static const struct objfile_key<htab, htab_deleter>
660 elf_objfile_gnu_ifunc_cache_data;
661
662 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
663
664 struct elf_gnu_ifunc_cache
665 {
666 /* This is always a function entry address, not a function descriptor. */
667 CORE_ADDR addr;
668
669 char name[1];
670 };
671
672 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
673
674 static hashval_t
675 elf_gnu_ifunc_cache_hash (const void *a_voidp)
676 {
677 const struct elf_gnu_ifunc_cache *a
678 = (const struct elf_gnu_ifunc_cache *) a_voidp;
679
680 return htab_hash_string (a->name);
681 }
682
683 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
684
685 static int
686 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
687 {
688 const struct elf_gnu_ifunc_cache *a
689 = (const struct elf_gnu_ifunc_cache *) a_voidp;
690 const struct elf_gnu_ifunc_cache *b
691 = (const struct elf_gnu_ifunc_cache *) b_voidp;
692
693 return strcmp (a->name, b->name) == 0;
694 }
695
696 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
697 function entry address ADDR. Return 1 if NAME and ADDR are considered as
698 valid and therefore they were successfully recorded, return 0 otherwise.
699
700 Function does not expect a duplicate entry. Use
701 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
702 exists. */
703
704 static int
705 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
706 {
707 struct bound_minimal_symbol msym;
708 struct objfile *objfile;
709 htab_t htab;
710 struct elf_gnu_ifunc_cache entry_local, *entry_p;
711 void **slot;
712
713 msym = lookup_minimal_symbol_by_pc (addr);
714 if (msym.minsym == NULL)
715 return 0;
716 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
717 return 0;
718 objfile = msym.objfile;
719
720 /* If .plt jumps back to .plt the symbol is still deferred for later
721 resolution and it has no use for GDB. */
722 const char *target_name = msym.minsym->linkage_name ();
723 size_t len = strlen (target_name);
724
725 /* Note we check the symbol's name instead of checking whether the
726 symbol is in the .plt section because some systems have @plt
727 symbols in the .text section. */
728 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
729 return 0;
730
731 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
732 if (htab == NULL)
733 {
734 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
735 elf_gnu_ifunc_cache_eq,
736 NULL, xcalloc, xfree);
737 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
738 }
739
740 entry_local.addr = addr;
741 obstack_grow (&objfile->objfile_obstack, &entry_local,
742 offsetof (struct elf_gnu_ifunc_cache, name));
743 obstack_grow_str0 (&objfile->objfile_obstack, name);
744 entry_p
745 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
746
747 slot = htab_find_slot (htab, entry_p, INSERT);
748 if (*slot != NULL)
749 {
750 struct elf_gnu_ifunc_cache *entry_found_p
751 = (struct elf_gnu_ifunc_cache *) *slot;
752 struct gdbarch *gdbarch = get_objfile_arch (objfile);
753
754 if (entry_found_p->addr != addr)
755 {
756 /* This case indicates buggy inferior program, the resolved address
757 should never change. */
758
759 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
760 "function_address from %s to %s"),
761 name, paddress (gdbarch, entry_found_p->addr),
762 paddress (gdbarch, addr));
763 }
764
765 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
766 }
767 *slot = entry_p;
768
769 return 1;
770 }
771
772 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
773 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
774 is not NULL) and the function returns 1. It returns 0 otherwise.
775
776 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
777 function. */
778
779 static int
780 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
781 {
782 for (objfile *objfile : current_program_space->objfiles ())
783 {
784 htab_t htab;
785 struct elf_gnu_ifunc_cache *entry_p;
786 void **slot;
787
788 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
789 if (htab == NULL)
790 continue;
791
792 entry_p = ((struct elf_gnu_ifunc_cache *)
793 alloca (sizeof (*entry_p) + strlen (name)));
794 strcpy (entry_p->name, name);
795
796 slot = htab_find_slot (htab, entry_p, NO_INSERT);
797 if (slot == NULL)
798 continue;
799 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
800 gdb_assert (entry_p != NULL);
801
802 if (addr_p)
803 *addr_p = entry_p->addr;
804 return 1;
805 }
806
807 return 0;
808 }
809
810 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
811 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
812 is not NULL) and the function returns 1. It returns 0 otherwise.
813
814 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
815 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
816 prevent cache entries duplicates. */
817
818 static int
819 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
820 {
821 char *name_got_plt;
822 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
823
824 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
825 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
826
827 for (objfile *objfile : current_program_space->objfiles ())
828 {
829 bfd *obfd = objfile->obfd;
830 struct gdbarch *gdbarch = get_objfile_arch (objfile);
831 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
832 size_t ptr_size = TYPE_LENGTH (ptr_type);
833 CORE_ADDR pointer_address, addr;
834 asection *plt;
835 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
836 struct bound_minimal_symbol msym;
837
838 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
839 if (msym.minsym == NULL)
840 continue;
841 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
842 continue;
843 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
844
845 plt = bfd_get_section_by_name (obfd, ".plt");
846 if (plt == NULL)
847 continue;
848
849 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
850 continue;
851 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
852 continue;
853 addr = extract_typed_address (buf, ptr_type);
854 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
855 current_top_target ());
856 addr = gdbarch_addr_bits_remove (gdbarch, addr);
857
858 if (elf_gnu_ifunc_record_cache (name, addr))
859 {
860 if (addr_p != NULL)
861 *addr_p = addr;
862 return 1;
863 }
864 }
865
866 return 0;
867 }
868
869 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
870 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
871 is not NULL) and the function returns true. It returns false otherwise.
872
873 Both the elf_objfile_gnu_ifunc_cache_data hash table and
874 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
875
876 static bool
877 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
878 {
879 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
880 return true;
881
882 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
883 return true;
884
885 return false;
886 }
887
888 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
889 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
890 is the entry point of the resolved STT_GNU_IFUNC target function to call.
891 */
892
893 static CORE_ADDR
894 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
895 {
896 const char *name_at_pc;
897 CORE_ADDR start_at_pc, address;
898 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
899 struct value *function, *address_val;
900 CORE_ADDR hwcap = 0;
901 struct value *hwcap_val;
902
903 /* Try first any non-intrusive methods without an inferior call. */
904
905 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
906 && start_at_pc == pc)
907 {
908 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
909 return address;
910 }
911 else
912 name_at_pc = NULL;
913
914 function = allocate_value (func_func_type);
915 VALUE_LVAL (function) = lval_memory;
916 set_value_address (function, pc);
917
918 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
919 parameter. FUNCTION is the function entry address. ADDRESS may be a
920 function descriptor. */
921
922 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
923 hwcap_val = value_from_longest (builtin_type (gdbarch)
924 ->builtin_unsigned_long, hwcap);
925 address_val = call_function_by_hand (function, NULL, hwcap_val);
926 address = value_as_address (address_val);
927 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
928 address = gdbarch_addr_bits_remove (gdbarch, address);
929
930 if (name_at_pc)
931 elf_gnu_ifunc_record_cache (name_at_pc, address);
932
933 return address;
934 }
935
936 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
937
938 static void
939 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
940 {
941 struct breakpoint *b_return;
942 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
943 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
944 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
945 int thread_id = inferior_thread ()->global_num;
946
947 gdb_assert (b->type == bp_gnu_ifunc_resolver);
948
949 for (b_return = b->related_breakpoint; b_return != b;
950 b_return = b_return->related_breakpoint)
951 {
952 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
953 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
954 gdb_assert (frame_id_p (b_return->frame_id));
955
956 if (b_return->thread == thread_id
957 && b_return->loc->requested_address == prev_pc
958 && frame_id_eq (b_return->frame_id, prev_frame_id))
959 break;
960 }
961
962 if (b_return == b)
963 {
964 /* No need to call find_pc_line for symbols resolving as this is only
965 a helper breakpointer never shown to the user. */
966
967 symtab_and_line sal;
968 sal.pspace = current_inferior ()->pspace;
969 sal.pc = prev_pc;
970 sal.section = find_pc_overlay (sal.pc);
971 sal.explicit_pc = 1;
972 b_return
973 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
974 prev_frame_id,
975 bp_gnu_ifunc_resolver_return).release ();
976
977 /* set_momentary_breakpoint invalidates PREV_FRAME. */
978 prev_frame = NULL;
979
980 /* Add new b_return to the ring list b->related_breakpoint. */
981 gdb_assert (b_return->related_breakpoint == b_return);
982 b_return->related_breakpoint = b->related_breakpoint;
983 b->related_breakpoint = b_return;
984 }
985 }
986
987 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
988
989 static void
990 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
991 {
992 thread_info *thread = inferior_thread ();
993 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
994 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
995 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
996 struct regcache *regcache = get_thread_regcache (thread);
997 struct value *func_func;
998 struct value *value;
999 CORE_ADDR resolved_address, resolved_pc;
1000
1001 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1002
1003 while (b->related_breakpoint != b)
1004 {
1005 struct breakpoint *b_next = b->related_breakpoint;
1006
1007 switch (b->type)
1008 {
1009 case bp_gnu_ifunc_resolver:
1010 break;
1011 case bp_gnu_ifunc_resolver_return:
1012 delete_breakpoint (b);
1013 break;
1014 default:
1015 internal_error (__FILE__, __LINE__,
1016 _("handle_inferior_event: Invalid "
1017 "gnu-indirect-function breakpoint type %d"),
1018 (int) b->type);
1019 }
1020 b = b_next;
1021 }
1022 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1023 gdb_assert (b->loc->next == NULL);
1024
1025 func_func = allocate_value (func_func_type);
1026 VALUE_LVAL (func_func) = lval_memory;
1027 set_value_address (func_func, b->loc->related_address);
1028
1029 value = allocate_value (value_type);
1030 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1031 value_contents_raw (value), NULL);
1032 resolved_address = value_as_address (value);
1033 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1034 resolved_address,
1035 current_top_target ());
1036 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1037
1038 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1039 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1040 resolved_pc);
1041
1042 b->type = bp_breakpoint;
1043 update_breakpoint_locations (b, current_program_space,
1044 find_function_start_sal (resolved_pc, NULL, true),
1045 {});
1046 }
1047
1048 /* A helper function for elf_symfile_read that reads the minimal
1049 symbols. */
1050
1051 static void
1052 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1053 const struct elfinfo *ei)
1054 {
1055 bfd *synth_abfd, *abfd = objfile->obfd;
1056 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1057 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1058 asymbol *synthsyms;
1059
1060 if (symtab_create_debug)
1061 {
1062 fprintf_unfiltered (gdb_stdlog,
1063 "Reading minimal symbols of objfile %s ...\n",
1064 objfile_name (objfile));
1065 }
1066
1067 /* If we already have minsyms, then we can skip some work here.
1068 However, if there were stabs or mdebug sections, we go ahead and
1069 redo all the work anyway, because the psym readers for those
1070 kinds of debuginfo need extra information found here. This can
1071 go away once all types of symbols are in the per-BFD object. */
1072 if (objfile->per_bfd->minsyms_read
1073 && ei->stabsect == NULL
1074 && ei->mdebugsect == NULL
1075 && ei->ctfsect == NULL)
1076 {
1077 if (symtab_create_debug)
1078 fprintf_unfiltered (gdb_stdlog,
1079 "... minimal symbols previously read\n");
1080 return;
1081 }
1082
1083 minimal_symbol_reader reader (objfile);
1084
1085 /* Process the normal ELF symbol table first. */
1086
1087 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1088 if (storage_needed < 0)
1089 error (_("Can't read symbols from %s: %s"),
1090 bfd_get_filename (objfile->obfd),
1091 bfd_errmsg (bfd_get_error ()));
1092
1093 if (storage_needed > 0)
1094 {
1095 /* Memory gets permanently referenced from ABFD after
1096 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1097
1098 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1099 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1100
1101 if (symcount < 0)
1102 error (_("Can't read symbols from %s: %s"),
1103 bfd_get_filename (objfile->obfd),
1104 bfd_errmsg (bfd_get_error ()));
1105
1106 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1107 false);
1108 }
1109
1110 /* Add the dynamic symbols. */
1111
1112 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1113
1114 if (storage_needed > 0)
1115 {
1116 /* Memory gets permanently referenced from ABFD after
1117 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1118 It happens only in the case when elf_slurp_reloc_table sees
1119 asection->relocation NULL. Determining which section is asection is
1120 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1121 implementation detail, though. */
1122
1123 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1124 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1125 dyn_symbol_table);
1126
1127 if (dynsymcount < 0)
1128 error (_("Can't read symbols from %s: %s"),
1129 bfd_get_filename (objfile->obfd),
1130 bfd_errmsg (bfd_get_error ()));
1131
1132 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1133 dyn_symbol_table, false);
1134
1135 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1136 }
1137
1138 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1139 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1140
1141 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1142 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1143 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1144 read the code address from .opd while it reads the .symtab section from
1145 a separate debug info file as the .opd section is SHT_NOBITS there.
1146
1147 With SYNTH_ABFD the .opd section will be read from the original
1148 backlinked binary where it is valid. */
1149
1150 if (objfile->separate_debug_objfile_backlink)
1151 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1152 else
1153 synth_abfd = abfd;
1154
1155 /* Add synthetic symbols - for instance, names for any PLT entries. */
1156
1157 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1158 dynsymcount, dyn_symbol_table,
1159 &synthsyms);
1160 if (synthcount > 0)
1161 {
1162 long i;
1163
1164 std::unique_ptr<asymbol *[]>
1165 synth_symbol_table (new asymbol *[synthcount]);
1166 for (i = 0; i < synthcount; i++)
1167 synth_symbol_table[i] = synthsyms + i;
1168 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1169 synth_symbol_table.get (), true);
1170
1171 xfree (synthsyms);
1172 synthsyms = NULL;
1173 }
1174
1175 /* Install any minimal symbols that have been collected as the current
1176 minimal symbols for this objfile. The debug readers below this point
1177 should not generate new minimal symbols; if they do it's their
1178 responsibility to install them. "mdebug" appears to be the only one
1179 which will do this. */
1180
1181 reader.install ();
1182
1183 if (symtab_create_debug)
1184 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1185 }
1186
1187 /* Scan and build partial symbols for a symbol file.
1188 We have been initialized by a call to elf_symfile_init, which
1189 currently does nothing.
1190
1191 This function only does the minimum work necessary for letting the
1192 user "name" things symbolically; it does not read the entire symtab.
1193 Instead, it reads the external and static symbols and puts them in partial
1194 symbol tables. When more extensive information is requested of a
1195 file, the corresponding partial symbol table is mutated into a full
1196 fledged symbol table by going back and reading the symbols
1197 for real.
1198
1199 We look for sections with specific names, to tell us what debug
1200 format to look for: FIXME!!!
1201
1202 elfstab_build_psymtabs() handles STABS symbols;
1203 mdebug_build_psymtabs() handles ECOFF debugging information.
1204
1205 Note that ELF files have a "minimal" symbol table, which looks a lot
1206 like a COFF symbol table, but has only the minimal information necessary
1207 for linking. We process this also, and use the information to
1208 build gdb's minimal symbol table. This gives us some minimal debugging
1209 capability even for files compiled without -g. */
1210
1211 static void
1212 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1213 {
1214 bfd *abfd = objfile->obfd;
1215 struct elfinfo ei;
1216 bool has_dwarf2 = true;
1217
1218 memset ((char *) &ei, 0, sizeof (ei));
1219 if (!(objfile->flags & OBJF_READNEVER))
1220 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1221
1222 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1223
1224 /* ELF debugging information is inserted into the psymtab in the
1225 order of least informative first - most informative last. Since
1226 the psymtab table is searched `most recent insertion first' this
1227 increases the probability that more detailed debug information
1228 for a section is found.
1229
1230 For instance, an object file might contain both .mdebug (XCOFF)
1231 and .debug_info (DWARF2) sections then .mdebug is inserted first
1232 (searched last) and DWARF2 is inserted last (searched first). If
1233 we don't do this then the XCOFF info is found first - for code in
1234 an included file XCOFF info is useless. */
1235
1236 if (ei.mdebugsect)
1237 {
1238 const struct ecoff_debug_swap *swap;
1239
1240 /* .mdebug section, presumably holding ECOFF debugging
1241 information. */
1242 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1243 if (swap)
1244 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1245 }
1246 if (ei.stabsect)
1247 {
1248 asection *str_sect;
1249
1250 /* Stab sections have an associated string table that looks like
1251 a separate section. */
1252 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1253
1254 /* FIXME should probably warn about a stab section without a stabstr. */
1255 if (str_sect)
1256 elfstab_build_psymtabs (objfile,
1257 ei.stabsect,
1258 str_sect->filepos,
1259 bfd_section_size (str_sect));
1260 }
1261
1262 if (dwarf2_has_info (objfile, NULL, true))
1263 {
1264 dw_index_kind index_kind;
1265
1266 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1267 debug information present in OBJFILE. If there is such debug
1268 info present never use an index. */
1269 if (!objfile_has_partial_symbols (objfile)
1270 && dwarf2_initialize_objfile (objfile, &index_kind))
1271 {
1272 switch (index_kind)
1273 {
1274 case dw_index_kind::GDB_INDEX:
1275 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1276 break;
1277 case dw_index_kind::DEBUG_NAMES:
1278 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1279 break;
1280 }
1281 }
1282 else
1283 {
1284 /* It is ok to do this even if the stabs reader made some
1285 partial symbols, because OBJF_PSYMTABS_READ has not been
1286 set, and so our lazy reader function will still be called
1287 when needed. */
1288 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1289 }
1290 }
1291 /* If the file has its own symbol tables it has no separate debug
1292 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1293 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1294 `.note.gnu.build-id'.
1295
1296 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1297 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1298 an objfile via find_separate_debug_file_in_section there was no separate
1299 debug info available. Therefore do not attempt to search for another one,
1300 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1301 be NULL and we would possibly violate it. */
1302
1303 else if (!objfile_has_partial_symbols (objfile)
1304 && objfile->separate_debug_objfile == NULL
1305 && objfile->separate_debug_objfile_backlink == NULL)
1306 {
1307 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1308
1309 if (debugfile.empty ())
1310 debugfile = find_separate_debug_file_by_debuglink (objfile);
1311
1312 if (!debugfile.empty ())
1313 {
1314 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1315
1316 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1317 symfile_flags, objfile);
1318 }
1319 else
1320 has_dwarf2 = false;
1321 }
1322
1323 /* Read the CTF section only if there is no DWARF info. */
1324 if (!has_dwarf2 && ei.ctfsect)
1325 {
1326 elfctf_build_psymtabs (objfile);
1327 }
1328 }
1329
1330 /* Callback to lazily read psymtabs. */
1331
1332 static void
1333 read_psyms (struct objfile *objfile)
1334 {
1335 if (dwarf2_has_info (objfile, NULL))
1336 dwarf2_build_psymtabs (objfile);
1337 }
1338
1339 /* Initialize anything that needs initializing when a completely new symbol
1340 file is specified (not just adding some symbols from another file, e.g. a
1341 shared library). */
1342
1343 static void
1344 elf_new_init (struct objfile *ignore)
1345 {
1346 }
1347
1348 /* Perform any local cleanups required when we are done with a particular
1349 objfile. I.E, we are in the process of discarding all symbol information
1350 for an objfile, freeing up all memory held for it, and unlinking the
1351 objfile struct from the global list of known objfiles. */
1352
1353 static void
1354 elf_symfile_finish (struct objfile *objfile)
1355 {
1356 }
1357
1358 /* ELF specific initialization routine for reading symbols. */
1359
1360 static void
1361 elf_symfile_init (struct objfile *objfile)
1362 {
1363 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1364 find this causes a significant slowdown in gdb then we could
1365 set it in the debug symbol readers only when necessary. */
1366 objfile->flags |= OBJF_REORDERED;
1367 }
1368
1369 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1370
1371 static const elfread_data &
1372 elf_get_probes (struct objfile *objfile)
1373 {
1374 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1375
1376 if (probes_per_bfd == NULL)
1377 {
1378 probes_per_bfd = probe_key.emplace (objfile->obfd);
1379
1380 /* Here we try to gather information about all types of probes from the
1381 objfile. */
1382 for (const static_probe_ops *ops : all_static_probe_ops)
1383 ops->get_probes (probes_per_bfd, objfile);
1384 }
1385
1386 return *probes_per_bfd;
1387 }
1388
1389 \f
1390
1391 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1392
1393 static const struct sym_probe_fns elf_probe_fns =
1394 {
1395 elf_get_probes, /* sym_get_probes */
1396 };
1397
1398 /* Register that we are able to handle ELF object file formats. */
1399
1400 static const struct sym_fns elf_sym_fns =
1401 {
1402 elf_new_init, /* init anything gbl to entire symtab */
1403 elf_symfile_init, /* read initial info, setup for sym_read() */
1404 elf_symfile_read, /* read a symbol file into symtab */
1405 NULL, /* sym_read_psymbols */
1406 elf_symfile_finish, /* finished with file, cleanup */
1407 default_symfile_offsets, /* Translate ext. to int. relocation */
1408 elf_symfile_segments, /* Get segment information from a file. */
1409 NULL,
1410 default_symfile_relocate, /* Relocate a debug section. */
1411 &elf_probe_fns, /* sym_probe_fns */
1412 &psym_functions
1413 };
1414
1415 /* The same as elf_sym_fns, but not registered and lazily reads
1416 psymbols. */
1417
1418 const struct sym_fns elf_sym_fns_lazy_psyms =
1419 {
1420 elf_new_init, /* init anything gbl to entire symtab */
1421 elf_symfile_init, /* read initial info, setup for sym_read() */
1422 elf_symfile_read, /* read a symbol file into symtab */
1423 read_psyms, /* sym_read_psymbols */
1424 elf_symfile_finish, /* finished with file, cleanup */
1425 default_symfile_offsets, /* Translate ext. to int. relocation */
1426 elf_symfile_segments, /* Get segment information from a file. */
1427 NULL,
1428 default_symfile_relocate, /* Relocate a debug section. */
1429 &elf_probe_fns, /* sym_probe_fns */
1430 &psym_functions
1431 };
1432
1433 /* The same as elf_sym_fns, but not registered and uses the
1434 DWARF-specific GNU index rather than psymtab. */
1435 const struct sym_fns elf_sym_fns_gdb_index =
1436 {
1437 elf_new_init, /* init anything gbl to entire symab */
1438 elf_symfile_init, /* read initial info, setup for sym_red() */
1439 elf_symfile_read, /* read a symbol file into symtab */
1440 NULL, /* sym_read_psymbols */
1441 elf_symfile_finish, /* finished with file, cleanup */
1442 default_symfile_offsets, /* Translate ext. to int. relocation */
1443 elf_symfile_segments, /* Get segment information from a file. */
1444 NULL,
1445 default_symfile_relocate, /* Relocate a debug section. */
1446 &elf_probe_fns, /* sym_probe_fns */
1447 &dwarf2_gdb_index_functions
1448 };
1449
1450 /* The same as elf_sym_fns, but not registered and uses the
1451 DWARF-specific .debug_names index rather than psymtab. */
1452 const struct sym_fns elf_sym_fns_debug_names =
1453 {
1454 elf_new_init, /* init anything gbl to entire symab */
1455 elf_symfile_init, /* read initial info, setup for sym_red() */
1456 elf_symfile_read, /* read a symbol file into symtab */
1457 NULL, /* sym_read_psymbols */
1458 elf_symfile_finish, /* finished with file, cleanup */
1459 default_symfile_offsets, /* Translate ext. to int. relocation */
1460 elf_symfile_segments, /* Get segment information from a file. */
1461 NULL,
1462 default_symfile_relocate, /* Relocate a debug section. */
1463 &elf_probe_fns, /* sym_probe_fns */
1464 &dwarf2_debug_names_functions
1465 };
1466
1467 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1468
1469 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1470 {
1471 elf_gnu_ifunc_resolve_addr,
1472 elf_gnu_ifunc_resolve_name,
1473 elf_gnu_ifunc_resolver_stop,
1474 elf_gnu_ifunc_resolver_return_stop
1475 };
1476
1477 void _initialize_elfread ();
1478 void
1479 _initialize_elfread ()
1480 {
1481 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1482
1483 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1484 }