]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/event-top.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static std::string top_level_prompt ();
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef SIGTSTP
72 static void async_sigtstp_handler (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef SIGTSTP
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. This must be
161 noexcept in order to avoid problems with mixing sjlj and
162 (sjlj-based) C++ exceptions. */
163
164 static struct gdb_exception
165 gdb_rl_callback_read_char_wrapper_noexcept () noexcept
166 {
167 struct gdb_exception gdb_expt = exception_none;
168
169 /* C++ exceptions can't normally be thrown across readline (unless
170 it is built with -fexceptions, but it won't by default on many
171 ABIs). So we instead wrap the readline call with a sjlj-based
172 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
173 TRY_SJLJ
174 {
175 rl_callback_read_char ();
176 if (after_char_processing_hook)
177 (*after_char_processing_hook) ();
178 }
179 CATCH_SJLJ (ex, RETURN_MASK_ALL)
180 {
181 gdb_expt = ex;
182 }
183 END_CATCH_SJLJ
184
185 return gdb_expt;
186 }
187
188 static void
189 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
190 {
191 struct gdb_exception gdb_expt
192 = gdb_rl_callback_read_char_wrapper_noexcept ();
193
194 /* Rethrow using the normal EH mechanism. */
195 if (gdb_expt.reason < 0)
196 throw_exception (gdb_expt);
197 }
198
199 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
200 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
201 across readline. See gdb_rl_callback_read_char_wrapper. This must
202 be noexcept in order to avoid problems with mixing sjlj and
203 (sjlj-based) C++ exceptions. */
204
205 static void
206 gdb_rl_callback_handler (char *rl) noexcept
207 {
208 struct gdb_exception gdb_rl_expt = exception_none;
209 struct ui *ui = current_ui;
210
211 TRY
212 {
213 ui->input_handler (rl);
214 }
215 CATCH (ex, RETURN_MASK_ALL)
216 {
217 gdb_rl_expt = ex;
218 }
219 END_CATCH
220
221 /* If we caught a GDB exception, longjmp out of the readline
222 callback. There's no other way for the callback to signal to
223 readline that an error happened. A normal return would have
224 readline potentially continue processing further input, redisplay
225 the prompt, etc. (This is what GDB historically did when it was
226 a C program.) Note that since we're long jumping, local variable
227 dtors are NOT run automatically. */
228 if (gdb_rl_expt.reason < 0)
229 throw_exception_sjlj (gdb_rl_expt);
230 }
231
232 /* Change the function to be invoked every time there is a character
233 ready on stdin. This is used when the user sets the editing off,
234 therefore bypassing readline, and letting gdb handle the input
235 itself, via gdb_readline_no_editing_callback. Also it is used in
236 the opposite case in which the user sets editing on again, by
237 restoring readline handling of the input.
238
239 NOTE: this operates on input_fd, not instream. If we are reading
240 commands from a file, instream will point to the file. However, we
241 always read commands from a file with editing off. This means that
242 the 'set editing on/off' will have effect only on the interactive
243 session. */
244
245 void
246 change_line_handler (int editing)
247 {
248 struct ui *ui = current_ui;
249
250 /* We can only have one instance of readline, so we only allow
251 editing on the main UI. */
252 if (ui != main_ui)
253 return;
254
255 /* Don't try enabling editing if the interpreter doesn't support it
256 (e.g., MI). */
257 if (!interp_supports_command_editing (top_level_interpreter ())
258 || !interp_supports_command_editing (command_interp ()))
259 return;
260
261 if (editing)
262 {
263 gdb_assert (ui == main_ui);
264
265 /* Turn on editing by using readline. */
266 ui->call_readline = gdb_rl_callback_read_char_wrapper;
267 }
268 else
269 {
270 /* Turn off editing by using gdb_readline_no_editing_callback. */
271 if (ui->command_editing)
272 gdb_rl_callback_handler_remove ();
273 ui->call_readline = gdb_readline_no_editing_callback;
274 }
275 ui->command_editing = editing;
276 }
277
278 /* The functions below are wrappers for rl_callback_handler_remove and
279 rl_callback_handler_install that keep track of whether the callback
280 handler is installed in readline. This is necessary because after
281 handling a target event of a background execution command, we may
282 need to reinstall the callback handler if it was removed due to a
283 secondary prompt. See gdb_readline_wrapper_line. We don't
284 unconditionally install the handler for every target event because
285 that also clears the line buffer, thus installing it while the user
286 is typing would lose input. */
287
288 /* Whether we've registered a callback handler with readline. */
289 static int callback_handler_installed;
290
291 /* See event-top.h, and above. */
292
293 void
294 gdb_rl_callback_handler_remove (void)
295 {
296 gdb_assert (current_ui == main_ui);
297
298 rl_callback_handler_remove ();
299 callback_handler_installed = 0;
300 }
301
302 /* See event-top.h, and above. Note this wrapper doesn't have an
303 actual callback parameter because we always install
304 INPUT_HANDLER. */
305
306 void
307 gdb_rl_callback_handler_install (const char *prompt)
308 {
309 gdb_assert (current_ui == main_ui);
310
311 /* Calling rl_callback_handler_install resets readline's input
312 buffer. Calling this when we were already processing input
313 therefore loses input. */
314 gdb_assert (!callback_handler_installed);
315
316 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
317 callback_handler_installed = 1;
318 }
319
320 /* See event-top.h, and above. */
321
322 void
323 gdb_rl_callback_handler_reinstall (void)
324 {
325 gdb_assert (current_ui == main_ui);
326
327 if (!callback_handler_installed)
328 {
329 /* Passing NULL as prompt argument tells readline to not display
330 a prompt. */
331 gdb_rl_callback_handler_install (NULL);
332 }
333 }
334
335 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
336 prompt that is displayed is the current top level prompt.
337 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
338 prompt.
339
340 This is used after each gdb command has completed, and in the
341 following cases:
342
343 1. When the user enters a command line which is ended by '\'
344 indicating that the command will continue on the next line. In
345 that case the prompt that is displayed is the empty string.
346
347 2. When the user is entering 'commands' for a breakpoint, or
348 actions for a tracepoint. In this case the prompt will be '>'
349
350 3. On prompting for pagination. */
351
352 void
353 display_gdb_prompt (const char *new_prompt)
354 {
355 std::string actual_gdb_prompt;
356
357 annotate_display_prompt ();
358
359 /* Reset the nesting depth used when trace-commands is set. */
360 reset_command_nest_depth ();
361
362 /* Do not call the python hook on an explicit prompt change as
363 passed to this function, as this forms a secondary/local prompt,
364 IE, displayed but not set. */
365 if (! new_prompt)
366 {
367 struct ui *ui = current_ui;
368
369 if (ui->prompt_state == PROMPTED)
370 internal_error (__FILE__, __LINE__, _("double prompt"));
371 else if (ui->prompt_state == PROMPT_BLOCKED)
372 {
373 /* This is to trick readline into not trying to display the
374 prompt. Even though we display the prompt using this
375 function, readline still tries to do its own display if
376 we don't call rl_callback_handler_install and
377 rl_callback_handler_remove (which readline detects
378 because a global variable is not set). If readline did
379 that, it could mess up gdb signal handlers for SIGINT.
380 Readline assumes that between calls to rl_set_signals and
381 rl_clear_signals gdb doesn't do anything with the signal
382 handlers. Well, that's not the case, because when the
383 target executes we change the SIGINT signal handler. If
384 we allowed readline to display the prompt, the signal
385 handler change would happen exactly between the calls to
386 the above two functions. Calling
387 rl_callback_handler_remove(), does the job. */
388
389 if (current_ui->command_editing)
390 gdb_rl_callback_handler_remove ();
391 return;
392 }
393 else if (ui->prompt_state == PROMPT_NEEDED)
394 {
395 /* Display the top level prompt. */
396 actual_gdb_prompt = top_level_prompt ();
397 ui->prompt_state = PROMPTED;
398 }
399 }
400 else
401 actual_gdb_prompt = new_prompt;
402
403 if (current_ui->command_editing)
404 {
405 gdb_rl_callback_handler_remove ();
406 gdb_rl_callback_handler_install (actual_gdb_prompt.c_str ());
407 }
408 /* new_prompt at this point can be the top of the stack or the one
409 passed in. It can't be NULL. */
410 else
411 {
412 /* Don't use a _filtered function here. It causes the assumed
413 character position to be off, since the newline we read from
414 the user is not accounted for. */
415 fputs_unfiltered (actual_gdb_prompt.c_str (), gdb_stdout);
416 gdb_flush (gdb_stdout);
417 }
418 }
419
420 /* Return the top level prompt, as specified by "set prompt", possibly
421 overriden by the python gdb.prompt_hook hook, and then composed
422 with the prompt prefix and suffix (annotations). */
423
424 static std::string
425 top_level_prompt (void)
426 {
427 char *prompt;
428
429 /* Give observers a chance of changing the prompt. E.g., the python
430 `gdb.prompt_hook' is installed as an observer. */
431 observer_notify_before_prompt (get_prompt ());
432
433 prompt = get_prompt ();
434
435 if (annotation_level >= 2)
436 {
437 /* Prefix needs to have new line at end. */
438 const char prefix[] = "\n\032\032pre-prompt\n";
439
440 /* Suffix needs to have a new line at end and \032 \032 at
441 beginning. */
442 const char suffix[] = "\n\032\032prompt\n";
443
444 return std::string (prefix) + prompt + suffix;
445 }
446
447 return prompt;
448 }
449
450 /* See top.h. */
451
452 struct ui *main_ui;
453 struct ui *current_ui;
454 struct ui *ui_list;
455
456 /* Get a pointer to the current UI's line buffer. This is used to
457 construct a whole line of input from partial input. */
458
459 static struct buffer *
460 get_command_line_buffer (void)
461 {
462 return &current_ui->line_buffer;
463 }
464
465 /* When there is an event ready on the stdin file descriptor, instead
466 of calling readline directly throught the callback function, or
467 instead of calling gdb_readline_no_editing_callback, give gdb a
468 chance to detect errors and do something. */
469
470 void
471 stdin_event_handler (int error, gdb_client_data client_data)
472 {
473 struct ui *ui = (struct ui *) client_data;
474
475 if (error)
476 {
477 /* Switch to the main UI, so diagnostics always go there. */
478 current_ui = main_ui;
479
480 delete_file_handler (ui->input_fd);
481 if (main_ui == ui)
482 {
483 /* If stdin died, we may as well kill gdb. */
484 printf_unfiltered (_("error detected on stdin\n"));
485 quit_command ((char *) 0, 0);
486 }
487 else
488 {
489 /* Simply delete the UI. */
490 delete ui;
491 }
492 }
493 else
494 {
495 /* Switch to the UI whose input descriptor woke up the event
496 loop. */
497 current_ui = ui;
498
499 /* This makes sure a ^C immediately followed by further input is
500 always processed in that order. E.g,. with input like
501 "^Cprint 1\n", the SIGINT handler runs, marks the async
502 signal handler, and then select/poll may return with stdin
503 ready, instead of -1/EINTR. The
504 gdb.base/double-prompt-target-event-error.exp test exercises
505 this. */
506 QUIT;
507
508 do
509 {
510 call_stdin_event_handler_again_p = 0;
511 ui->call_readline (client_data);
512 }
513 while (call_stdin_event_handler_again_p != 0);
514 }
515 }
516
517 /* See top.h. */
518
519 void
520 ui_register_input_event_handler (struct ui *ui)
521 {
522 add_file_handler (ui->input_fd, stdin_event_handler, ui);
523 }
524
525 /* See top.h. */
526
527 void
528 ui_unregister_input_event_handler (struct ui *ui)
529 {
530 delete_file_handler (ui->input_fd);
531 }
532
533 /* Re-enable stdin after the end of an execution command in
534 synchronous mode, or after an error from the target, and we aborted
535 the exec operation. */
536
537 void
538 async_enable_stdin (void)
539 {
540 struct ui *ui = current_ui;
541
542 if (ui->prompt_state == PROMPT_BLOCKED)
543 {
544 target_terminal::ours ();
545 ui_register_input_event_handler (ui);
546 ui->prompt_state = PROMPT_NEEDED;
547 }
548 }
549
550 /* Disable reads from stdin (the console) marking the command as
551 synchronous. */
552
553 void
554 async_disable_stdin (void)
555 {
556 struct ui *ui = current_ui;
557
558 ui->prompt_state = PROMPT_BLOCKED;
559 delete_file_handler (ui->input_fd);
560 }
561 \f
562
563 /* Handle a gdb command line. This function is called when
564 handle_line_of_input has concatenated one or more input lines into
565 a whole command. */
566
567 void
568 command_handler (const char *command)
569 {
570 struct ui *ui = current_ui;
571 const char *c;
572
573 if (ui->instream == ui->stdin_stream)
574 reinitialize_more_filter ();
575
576 scoped_command_stats stat_reporter (true);
577
578 /* Do not execute commented lines. */
579 for (c = command; *c == ' ' || *c == '\t'; c++)
580 ;
581 if (c[0] != '#')
582 {
583 execute_command (command, ui->instream == ui->stdin_stream);
584
585 /* Do any commands attached to breakpoint we stopped at. */
586 bpstat_do_actions ();
587 }
588 }
589
590 /* Append RL, an input line returned by readline or one of its
591 emulations, to CMD_LINE_BUFFER. Returns the command line if we
592 have a whole command line ready to be processed by the command
593 interpreter or NULL if the command line isn't complete yet (input
594 line ends in a backslash). Takes ownership of RL. */
595
596 static char *
597 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
598 {
599 char *cmd;
600 size_t len;
601
602 len = strlen (rl);
603
604 if (len > 0 && rl[len - 1] == '\\')
605 {
606 /* Don't copy the backslash and wait for more. */
607 buffer_grow (cmd_line_buffer, rl, len - 1);
608 cmd = NULL;
609 }
610 else
611 {
612 /* Copy whole line including terminating null, and we're
613 done. */
614 buffer_grow (cmd_line_buffer, rl, len + 1);
615 cmd = cmd_line_buffer->buffer;
616 }
617
618 /* Allocated in readline. */
619 xfree (rl);
620
621 return cmd;
622 }
623
624 /* Handle a line of input coming from readline.
625
626 If the read line ends with a continuation character (backslash),
627 save the partial input in CMD_LINE_BUFFER (except the backslash),
628 and return NULL. Otherwise, save the partial input and return a
629 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
630 whole command line is ready to be executed.
631
632 Returns EOF on end of file.
633
634 If REPEAT, handle command repetitions:
635
636 - If the input command line is NOT empty, the command returned is
637 copied into the global 'saved_command_line' var so that it can
638 be repeated later.
639
640 - OTOH, if the input command line IS empty, return the previously
641 saved command instead of the empty input line.
642 */
643
644 char *
645 handle_line_of_input (struct buffer *cmd_line_buffer,
646 char *rl, int repeat, const char *annotation_suffix)
647 {
648 struct ui *ui = current_ui;
649 int from_tty = ui->instream == ui->stdin_stream;
650 char *p1;
651 char *cmd;
652
653 if (rl == NULL)
654 return (char *) EOF;
655
656 cmd = command_line_append_input_line (cmd_line_buffer, rl);
657 if (cmd == NULL)
658 return NULL;
659
660 /* We have a complete command line now. Prepare for the next
661 command, but leave ownership of memory to the buffer . */
662 cmd_line_buffer->used_size = 0;
663
664 if (from_tty && annotation_level > 1)
665 {
666 printf_unfiltered (("\n\032\032post-"));
667 puts_unfiltered (annotation_suffix);
668 printf_unfiltered (("\n"));
669 }
670
671 #define SERVER_COMMAND_PREFIX "server "
672 server_command = startswith (cmd, SERVER_COMMAND_PREFIX);
673 if (server_command)
674 {
675 /* Note that we don't set `saved_command_line'. Between this
676 and the check in dont_repeat, this insures that repeating
677 will still do the right thing. */
678 return cmd + strlen (SERVER_COMMAND_PREFIX);
679 }
680
681 /* Do history expansion if that is wished. */
682 if (history_expansion_p && from_tty && input_interactive_p (current_ui))
683 {
684 char *history_value;
685 int expanded;
686
687 expanded = history_expand (cmd, &history_value);
688 if (expanded)
689 {
690 size_t len;
691
692 /* Print the changes. */
693 printf_unfiltered ("%s\n", history_value);
694
695 /* If there was an error, call this function again. */
696 if (expanded < 0)
697 {
698 xfree (history_value);
699 return cmd;
700 }
701
702 /* history_expand returns an allocated string. Just replace
703 our buffer with it. */
704 len = strlen (history_value);
705 xfree (buffer_finish (cmd_line_buffer));
706 cmd_line_buffer->buffer = history_value;
707 cmd_line_buffer->buffer_size = len + 1;
708 cmd = history_value;
709 }
710 }
711
712 /* If we just got an empty line, and that is supposed to repeat the
713 previous command, return the previously saved command. */
714 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
715 ;
716 if (repeat && *p1 == '\0')
717 return saved_command_line;
718
719 /* Add command to history if appropriate. Note: lines consisting
720 solely of comments are also added to the command history. This
721 is useful when you type a command, and then realize you don't
722 want to execute it quite yet. You can comment out the command
723 and then later fetch it from the value history and remove the
724 '#'. The kill ring is probably better, but some people are in
725 the habit of commenting things out. */
726 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui))
727 gdb_add_history (cmd);
728
729 /* Save into global buffer if appropriate. */
730 if (repeat)
731 {
732 xfree (saved_command_line);
733 saved_command_line = xstrdup (cmd);
734 return saved_command_line;
735 }
736 else
737 return cmd;
738 }
739
740 /* Handle a complete line of input. This is called by the callback
741 mechanism within the readline library. Deal with incomplete
742 commands as well, by saving the partial input in a global
743 buffer.
744
745 NOTE: This is the asynchronous version of the command_line_input
746 function. */
747
748 void
749 command_line_handler (char *rl)
750 {
751 struct buffer *line_buffer = get_command_line_buffer ();
752 struct ui *ui = current_ui;
753 char *cmd;
754
755 cmd = handle_line_of_input (line_buffer, rl, 1, "prompt");
756 if (cmd == (char *) EOF)
757 {
758 /* stdin closed. The connection with the terminal is gone.
759 This happens at the end of a testsuite run, after Expect has
760 hung up but GDB is still alive. In such a case, we just quit
761 gdb killing the inferior program too. */
762 printf_unfiltered ("quit\n");
763 execute_command ("quit", 1);
764 }
765 else if (cmd == NULL)
766 {
767 /* We don't have a full line yet. Print an empty prompt. */
768 display_gdb_prompt ("");
769 }
770 else
771 {
772 ui->prompt_state = PROMPT_NEEDED;
773
774 command_handler (cmd);
775
776 if (ui->prompt_state != PROMPTED)
777 display_gdb_prompt (0);
778 }
779 }
780
781 /* Does reading of input from terminal w/o the editing features
782 provided by the readline library. Calls the line input handler
783 once we have a whole input line. */
784
785 void
786 gdb_readline_no_editing_callback (gdb_client_data client_data)
787 {
788 int c;
789 char *result;
790 struct buffer line_buffer;
791 static int done_once = 0;
792 struct ui *ui = current_ui;
793
794 buffer_init (&line_buffer);
795
796 /* Unbuffer the input stream, so that, later on, the calls to fgetc
797 fetch only one char at the time from the stream. The fgetc's will
798 get up to the first newline, but there may be more chars in the
799 stream after '\n'. If we buffer the input and fgetc drains the
800 stream, getting stuff beyond the newline as well, a select, done
801 afterwards will not trigger. */
802 if (!done_once && !ISATTY (ui->instream))
803 {
804 setbuf (ui->instream, NULL);
805 done_once = 1;
806 }
807
808 /* We still need the while loop here, even though it would seem
809 obvious to invoke gdb_readline_no_editing_callback at every
810 character entered. If not using the readline library, the
811 terminal is in cooked mode, which sends the characters all at
812 once. Poll will notice that the input fd has changed state only
813 after enter is pressed. At this point we still need to fetch all
814 the chars entered. */
815
816 while (1)
817 {
818 /* Read from stdin if we are executing a user defined command.
819 This is the right thing for prompt_for_continue, at least. */
820 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream);
821
822 if (c == EOF)
823 {
824 if (line_buffer.used_size > 0)
825 {
826 /* The last line does not end with a newline. Return it, and
827 if we are called again fgetc will still return EOF and
828 we'll return NULL then. */
829 break;
830 }
831 xfree (buffer_finish (&line_buffer));
832 ui->input_handler (NULL);
833 return;
834 }
835
836 if (c == '\n')
837 {
838 if (line_buffer.used_size > 0
839 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
840 line_buffer.used_size--;
841 break;
842 }
843
844 buffer_grow_char (&line_buffer, c);
845 }
846
847 buffer_grow_char (&line_buffer, '\0');
848 result = buffer_finish (&line_buffer);
849 ui->input_handler (result);
850 }
851 \f
852
853 /* The serial event associated with the QUIT flag. set_quit_flag sets
854 this, and check_quit_flag clears it. Used by interruptible_select
855 to be able to do interruptible I/O with no race with the SIGINT
856 handler. */
857 static struct serial_event *quit_serial_event;
858
859 /* Initialization of signal handlers and tokens. There is a function
860 handle_sig* for each of the signals GDB cares about. Specifically:
861 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
862 functions are the actual signal handlers associated to the signals
863 via calls to signal(). The only job for these functions is to
864 enqueue the appropriate event/procedure with the event loop. Such
865 procedures are the old signal handlers. The event loop will take
866 care of invoking the queued procedures to perform the usual tasks
867 associated with the reception of the signal. */
868 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
869 init_signals will become obsolete as we move to have to event loop
870 as the default for gdb. */
871 void
872 async_init_signals (void)
873 {
874 initialize_async_signal_handlers ();
875
876 quit_serial_event = make_serial_event ();
877
878 signal (SIGINT, handle_sigint);
879 sigint_token =
880 create_async_signal_handler (async_request_quit, NULL);
881 signal (SIGTERM, handle_sigterm);
882 async_sigterm_token
883 = create_async_signal_handler (async_sigterm_handler, NULL);
884
885 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
886 to the inferior and breakpoints will be ignored. */
887 #ifdef SIGTRAP
888 signal (SIGTRAP, SIG_DFL);
889 #endif
890
891 #ifdef SIGQUIT
892 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
893 passed to the inferior, which we don't want. It would be
894 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
895 on BSD4.3 systems using vfork, that can affect the
896 GDB process as well as the inferior (the signal handling tables
897 might be in memory, shared between the two). Since we establish
898 a handler for SIGQUIT, when we call exec it will set the signal
899 to SIG_DFL for us. */
900 signal (SIGQUIT, handle_sigquit);
901 sigquit_token =
902 create_async_signal_handler (async_do_nothing, NULL);
903 #endif
904 #ifdef SIGHUP
905 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
906 sighup_token =
907 create_async_signal_handler (async_disconnect, NULL);
908 else
909 sighup_token =
910 create_async_signal_handler (async_do_nothing, NULL);
911 #endif
912 signal (SIGFPE, handle_sigfpe);
913 sigfpe_token =
914 create_async_signal_handler (async_float_handler, NULL);
915
916 #ifdef SIGTSTP
917 sigtstp_token =
918 create_async_signal_handler (async_sigtstp_handler, NULL);
919 #endif
920 }
921
922 /* See defs.h. */
923
924 void
925 quit_serial_event_set (void)
926 {
927 serial_event_set (quit_serial_event);
928 }
929
930 /* See defs.h. */
931
932 void
933 quit_serial_event_clear (void)
934 {
935 serial_event_clear (quit_serial_event);
936 }
937
938 /* Return the selectable file descriptor of the serial event
939 associated with the quit flag. */
940
941 static int
942 quit_serial_event_fd (void)
943 {
944 return serial_event_fd (quit_serial_event);
945 }
946
947 /* See defs.h. */
948
949 void
950 default_quit_handler (void)
951 {
952 if (check_quit_flag ())
953 {
954 if (target_terminal::is_ours ())
955 quit ();
956 else
957 target_pass_ctrlc ();
958 }
959 }
960
961 /* See defs.h. */
962 quit_handler_ftype *quit_handler = default_quit_handler;
963
964 /* Handle a SIGINT. */
965
966 void
967 handle_sigint (int sig)
968 {
969 signal (sig, handle_sigint);
970
971 /* We could be running in a loop reading in symfiles or something so
972 it may be quite a while before we get back to the event loop. So
973 set quit_flag to 1 here. Then if QUIT is called before we get to
974 the event loop, we will unwind as expected. */
975 set_quit_flag ();
976
977 /* In case nothing calls QUIT before the event loop is reached, the
978 event loop handles it. */
979 mark_async_signal_handler (sigint_token);
980 }
981
982 /* See gdb_select.h. */
983
984 int
985 interruptible_select (int n,
986 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
987 struct timeval *timeout)
988 {
989 fd_set my_readfds;
990 int fd;
991 int res;
992
993 if (readfds == NULL)
994 {
995 readfds = &my_readfds;
996 FD_ZERO (&my_readfds);
997 }
998
999 fd = quit_serial_event_fd ();
1000 FD_SET (fd, readfds);
1001 if (n <= fd)
1002 n = fd + 1;
1003
1004 do
1005 {
1006 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1007 }
1008 while (res == -1 && errno == EINTR);
1009
1010 if (res == 1 && FD_ISSET (fd, readfds))
1011 {
1012 errno = EINTR;
1013 return -1;
1014 }
1015 return res;
1016 }
1017
1018 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1019
1020 static void
1021 async_sigterm_handler (gdb_client_data arg)
1022 {
1023 quit_force (NULL, 0);
1024 }
1025
1026 /* See defs.h. */
1027 volatile int sync_quit_force_run;
1028
1029 /* Quit GDB if SIGTERM is received.
1030 GDB would quit anyway, but this way it will clean up properly. */
1031 void
1032 handle_sigterm (int sig)
1033 {
1034 signal (sig, handle_sigterm);
1035
1036 sync_quit_force_run = 1;
1037 set_quit_flag ();
1038
1039 mark_async_signal_handler (async_sigterm_token);
1040 }
1041
1042 /* Do the quit. All the checks have been done by the caller. */
1043 void
1044 async_request_quit (gdb_client_data arg)
1045 {
1046 /* If the quit_flag has gotten reset back to 0 by the time we get
1047 back here, that means that an exception was thrown to unwind the
1048 current command before we got back to the event loop. So there
1049 is no reason to call quit again here. */
1050 QUIT;
1051 }
1052
1053 #ifdef SIGQUIT
1054 /* Tell the event loop what to do if SIGQUIT is received.
1055 See event-signal.c. */
1056 static void
1057 handle_sigquit (int sig)
1058 {
1059 mark_async_signal_handler (sigquit_token);
1060 signal (sig, handle_sigquit);
1061 }
1062 #endif
1063
1064 #if defined (SIGQUIT) || defined (SIGHUP)
1065 /* Called by the event loop in response to a SIGQUIT or an
1066 ignored SIGHUP. */
1067 static void
1068 async_do_nothing (gdb_client_data arg)
1069 {
1070 /* Empty function body. */
1071 }
1072 #endif
1073
1074 #ifdef SIGHUP
1075 /* Tell the event loop what to do if SIGHUP is received.
1076 See event-signal.c. */
1077 static void
1078 handle_sighup (int sig)
1079 {
1080 mark_async_signal_handler (sighup_token);
1081 signal (sig, handle_sighup);
1082 }
1083
1084 /* Called by the event loop to process a SIGHUP. */
1085 static void
1086 async_disconnect (gdb_client_data arg)
1087 {
1088
1089 TRY
1090 {
1091 quit_cover ();
1092 }
1093
1094 CATCH (exception, RETURN_MASK_ALL)
1095 {
1096 fputs_filtered ("Could not kill the program being debugged",
1097 gdb_stderr);
1098 exception_print (gdb_stderr, exception);
1099 }
1100 END_CATCH
1101
1102 TRY
1103 {
1104 pop_all_targets ();
1105 }
1106 CATCH (exception, RETURN_MASK_ALL)
1107 {
1108 }
1109 END_CATCH
1110
1111 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1112 raise (SIGHUP);
1113 }
1114 #endif
1115
1116 #ifdef SIGTSTP
1117 void
1118 handle_sigtstp (int sig)
1119 {
1120 mark_async_signal_handler (sigtstp_token);
1121 signal (sig, handle_sigtstp);
1122 }
1123
1124 static void
1125 async_sigtstp_handler (gdb_client_data arg)
1126 {
1127 char *prompt = get_prompt ();
1128
1129 signal (SIGTSTP, SIG_DFL);
1130 #if HAVE_SIGPROCMASK
1131 {
1132 sigset_t zero;
1133
1134 sigemptyset (&zero);
1135 sigprocmask (SIG_SETMASK, &zero, 0);
1136 }
1137 #elif HAVE_SIGSETMASK
1138 sigsetmask (0);
1139 #endif
1140 raise (SIGTSTP);
1141 signal (SIGTSTP, handle_sigtstp);
1142 printf_unfiltered ("%s", prompt);
1143 gdb_flush (gdb_stdout);
1144
1145 /* Forget about any previous command -- null line now will do
1146 nothing. */
1147 dont_repeat ();
1148 }
1149 #endif /* SIGTSTP */
1150
1151 /* Tell the event loop what to do if SIGFPE is received.
1152 See event-signal.c. */
1153 static void
1154 handle_sigfpe (int sig)
1155 {
1156 mark_async_signal_handler (sigfpe_token);
1157 signal (sig, handle_sigfpe);
1158 }
1159
1160 /* Event loop will call this functin to process a SIGFPE. */
1161 static void
1162 async_float_handler (gdb_client_data arg)
1163 {
1164 /* This message is based on ANSI C, section 4.7. Note that integer
1165 divide by zero causes this, so "float" is a misnomer. */
1166 error (_("Erroneous arithmetic operation."));
1167 }
1168 \f
1169
1170 /* Set things up for readline to be invoked via the alternate
1171 interface, i.e. via a callback function
1172 (gdb_rl_callback_read_char), and hook up instream to the event
1173 loop. */
1174
1175 void
1176 gdb_setup_readline (int editing)
1177 {
1178 struct ui *ui = current_ui;
1179
1180 /* This function is a noop for the sync case. The assumption is
1181 that the sync setup is ALL done in gdb_init, and we would only
1182 mess it up here. The sync stuff should really go away over
1183 time. */
1184 if (!batch_silent)
1185 gdb_stdout = new stdio_file (ui->outstream);
1186 gdb_stderr = new stderr_file (ui->errstream);
1187 gdb_stdlog = gdb_stderr; /* for moment */
1188 gdb_stdtarg = gdb_stderr; /* for moment */
1189 gdb_stdtargerr = gdb_stderr; /* for moment */
1190
1191 /* If the input stream is connected to a terminal, turn on editing.
1192 However, that is only allowed on the main UI, as we can only have
1193 one instance of readline. */
1194 if (ISATTY (ui->instream) && editing && ui == main_ui)
1195 {
1196 /* Tell gdb that we will be using the readline library. This
1197 could be overwritten by a command in .gdbinit like 'set
1198 editing on' or 'off'. */
1199 ui->command_editing = 1;
1200
1201 /* When a character is detected on instream by select or poll,
1202 readline will be invoked via this callback function. */
1203 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1204
1205 /* Tell readline to use the same input stream that gdb uses. */
1206 rl_instream = ui->instream;
1207 }
1208 else
1209 {
1210 ui->command_editing = 0;
1211 ui->call_readline = gdb_readline_no_editing_callback;
1212 }
1213
1214 /* Now create the event source for this UI's input file descriptor.
1215 Another source is going to be the target program (inferior), but
1216 that must be registered only when it actually exists (I.e. after
1217 we say 'run' or after we connect to a remote target. */
1218 ui_register_input_event_handler (ui);
1219 }
1220
1221 /* Disable command input through the standard CLI channels. Used in
1222 the suspend proc for interpreters that use the standard gdb readline
1223 interface, like the cli & the mi. */
1224
1225 void
1226 gdb_disable_readline (void)
1227 {
1228 struct ui *ui = current_ui;
1229
1230 /* FIXME - It is too heavyweight to delete and remake these every
1231 time you run an interpreter that needs readline. It is probably
1232 better to have the interpreters cache these, which in turn means
1233 that this needs to be moved into interpreter specific code. */
1234
1235 #if 0
1236 ui_file_delete (gdb_stdout);
1237 ui_file_delete (gdb_stderr);
1238 gdb_stdlog = NULL;
1239 gdb_stdtarg = NULL;
1240 gdb_stdtargerr = NULL;
1241 #endif
1242
1243 if (ui->command_editing)
1244 gdb_rl_callback_handler_remove ();
1245 delete_file_handler (ui->input_fd);
1246 }