]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-x86-low.c
Add target descriptions for AVX + MPX
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-x86-low.c
1 /* GNU/Linux/x86-64 specific low level interface, for the remote server
2 for GDB.
3 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include <signal.h>
22 #include <limits.h>
23 #include <inttypes.h>
24 #include "linux-low.h"
25 #include "i387-fp.h"
26 #include "x86-low.h"
27 #include "x86-xstate.h"
28 #include "nat/gdb_ptrace.h"
29
30 #ifdef __x86_64__
31 #include "nat/amd64-linux-siginfo.h"
32 #endif
33
34 #include "gdb_proc_service.h"
35 /* Don't include elf/common.h if linux/elf.h got included by
36 gdb_proc_service.h. */
37 #ifndef ELFMAG0
38 #include "elf/common.h"
39 #endif
40
41 #include "agent.h"
42 #include "tdesc.h"
43 #include "tracepoint.h"
44 #include "ax.h"
45 #include "nat/linux-nat.h"
46 #include "nat/x86-linux.h"
47 #include "nat/x86-linux-dregs.h"
48 #include "linux-x86-tdesc.h"
49
50 #ifdef __x86_64__
51 static struct target_desc *tdesc_amd64_linux_no_xml;
52 #endif
53 static struct target_desc *tdesc_i386_linux_no_xml;
54
55
56 static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
57 static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
58
59 /* Backward compatibility for gdb without XML support. */
60
61 static const char *xmltarget_i386_linux_no_xml = "@<target>\
62 <architecture>i386</architecture>\
63 <osabi>GNU/Linux</osabi>\
64 </target>";
65
66 #ifdef __x86_64__
67 static const char *xmltarget_amd64_linux_no_xml = "@<target>\
68 <architecture>i386:x86-64</architecture>\
69 <osabi>GNU/Linux</osabi>\
70 </target>";
71 #endif
72
73 #include <sys/reg.h>
74 #include <sys/procfs.h>
75 #include "nat/gdb_ptrace.h"
76 #include <sys/uio.h>
77
78 #ifndef PTRACE_GET_THREAD_AREA
79 #define PTRACE_GET_THREAD_AREA 25
80 #endif
81
82 /* This definition comes from prctl.h, but some kernels may not have it. */
83 #ifndef PTRACE_ARCH_PRCTL
84 #define PTRACE_ARCH_PRCTL 30
85 #endif
86
87 /* The following definitions come from prctl.h, but may be absent
88 for certain configurations. */
89 #ifndef ARCH_GET_FS
90 #define ARCH_SET_GS 0x1001
91 #define ARCH_SET_FS 0x1002
92 #define ARCH_GET_FS 0x1003
93 #define ARCH_GET_GS 0x1004
94 #endif
95
96 /* Per-process arch-specific data we want to keep. */
97
98 struct arch_process_info
99 {
100 struct x86_debug_reg_state debug_reg_state;
101 };
102
103 #ifdef __x86_64__
104
105 /* Mapping between the general-purpose registers in `struct user'
106 format and GDB's register array layout.
107 Note that the transfer layout uses 64-bit regs. */
108 static /*const*/ int i386_regmap[] =
109 {
110 RAX * 8, RCX * 8, RDX * 8, RBX * 8,
111 RSP * 8, RBP * 8, RSI * 8, RDI * 8,
112 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
113 DS * 8, ES * 8, FS * 8, GS * 8
114 };
115
116 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
117
118 /* So code below doesn't have to care, i386 or amd64. */
119 #define ORIG_EAX ORIG_RAX
120 #define REGSIZE 8
121
122 static const int x86_64_regmap[] =
123 {
124 RAX * 8, RBX * 8, RCX * 8, RDX * 8,
125 RSI * 8, RDI * 8, RBP * 8, RSP * 8,
126 R8 * 8, R9 * 8, R10 * 8, R11 * 8,
127 R12 * 8, R13 * 8, R14 * 8, R15 * 8,
128 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
129 DS * 8, ES * 8, FS * 8, GS * 8,
130 -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1,
133 -1,
134 -1, -1, -1, -1, -1, -1, -1, -1,
135 ORIG_RAX * 8,
136 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
137 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
138 -1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
139 -1, -1, -1, -1, -1, -1, -1, -1,
140 -1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
141 -1, -1, -1, -1, -1, -1, -1, -1,
142 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
143 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
144 -1, -1, -1, -1, -1, -1, -1, -1,
145 -1, -1, -1, -1, -1, -1, -1, -1,
146 -1, -1, -1, -1, -1, -1, -1, -1
147 };
148
149 #define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
150 #define X86_64_USER_REGS (GS + 1)
151
152 #else /* ! __x86_64__ */
153
154 /* Mapping between the general-purpose registers in `struct user'
155 format and GDB's register array layout. */
156 static /*const*/ int i386_regmap[] =
157 {
158 EAX * 4, ECX * 4, EDX * 4, EBX * 4,
159 UESP * 4, EBP * 4, ESI * 4, EDI * 4,
160 EIP * 4, EFL * 4, CS * 4, SS * 4,
161 DS * 4, ES * 4, FS * 4, GS * 4
162 };
163
164 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
165
166 #define REGSIZE 4
167
168 #endif
169
170 #ifdef __x86_64__
171
172 /* Returns true if the current inferior belongs to a x86-64 process,
173 per the tdesc. */
174
175 static int
176 is_64bit_tdesc (void)
177 {
178 struct regcache *regcache = get_thread_regcache (current_thread, 0);
179
180 return register_size (regcache->tdesc, 0) == 8;
181 }
182
183 #endif
184
185 \f
186 /* Called by libthread_db. */
187
188 ps_err_e
189 ps_get_thread_area (const struct ps_prochandle *ph,
190 lwpid_t lwpid, int idx, void **base)
191 {
192 #ifdef __x86_64__
193 int use_64bit = is_64bit_tdesc ();
194
195 if (use_64bit)
196 {
197 switch (idx)
198 {
199 case FS:
200 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
201 return PS_OK;
202 break;
203 case GS:
204 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
205 return PS_OK;
206 break;
207 default:
208 return PS_BADADDR;
209 }
210 return PS_ERR;
211 }
212 #endif
213
214 {
215 unsigned int desc[4];
216
217 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
218 (void *) (intptr_t) idx, (unsigned long) &desc) < 0)
219 return PS_ERR;
220
221 /* Ensure we properly extend the value to 64-bits for x86_64. */
222 *base = (void *) (uintptr_t) desc[1];
223 return PS_OK;
224 }
225 }
226
227 /* Get the thread area address. This is used to recognize which
228 thread is which when tracing with the in-process agent library. We
229 don't read anything from the address, and treat it as opaque; it's
230 the address itself that we assume is unique per-thread. */
231
232 static int
233 x86_get_thread_area (int lwpid, CORE_ADDR *addr)
234 {
235 #ifdef __x86_64__
236 int use_64bit = is_64bit_tdesc ();
237
238 if (use_64bit)
239 {
240 void *base;
241 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
242 {
243 *addr = (CORE_ADDR) (uintptr_t) base;
244 return 0;
245 }
246
247 return -1;
248 }
249 #endif
250
251 {
252 struct lwp_info *lwp = find_lwp_pid (pid_to_ptid (lwpid));
253 struct thread_info *thr = get_lwp_thread (lwp);
254 struct regcache *regcache = get_thread_regcache (thr, 1);
255 unsigned int desc[4];
256 ULONGEST gs = 0;
257 const int reg_thread_area = 3; /* bits to scale down register value. */
258 int idx;
259
260 collect_register_by_name (regcache, "gs", &gs);
261
262 idx = gs >> reg_thread_area;
263
264 if (ptrace (PTRACE_GET_THREAD_AREA,
265 lwpid_of (thr),
266 (void *) (long) idx, (unsigned long) &desc) < 0)
267 return -1;
268
269 *addr = desc[1];
270 return 0;
271 }
272 }
273
274
275 \f
276 static int
277 x86_cannot_store_register (int regno)
278 {
279 #ifdef __x86_64__
280 if (is_64bit_tdesc ())
281 return 0;
282 #endif
283
284 return regno >= I386_NUM_REGS;
285 }
286
287 static int
288 x86_cannot_fetch_register (int regno)
289 {
290 #ifdef __x86_64__
291 if (is_64bit_tdesc ())
292 return 0;
293 #endif
294
295 return regno >= I386_NUM_REGS;
296 }
297
298 static void
299 x86_fill_gregset (struct regcache *regcache, void *buf)
300 {
301 int i;
302
303 #ifdef __x86_64__
304 if (register_size (regcache->tdesc, 0) == 8)
305 {
306 for (i = 0; i < X86_64_NUM_REGS; i++)
307 if (x86_64_regmap[i] != -1)
308 collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
309 return;
310 }
311
312 /* 32-bit inferior registers need to be zero-extended.
313 Callers would read uninitialized memory otherwise. */
314 memset (buf, 0x00, X86_64_USER_REGS * 8);
315 #endif
316
317 for (i = 0; i < I386_NUM_REGS; i++)
318 collect_register (regcache, i, ((char *) buf) + i386_regmap[i]);
319
320 collect_register_by_name (regcache, "orig_eax",
321 ((char *) buf) + ORIG_EAX * REGSIZE);
322 }
323
324 static void
325 x86_store_gregset (struct regcache *regcache, const void *buf)
326 {
327 int i;
328
329 #ifdef __x86_64__
330 if (register_size (regcache->tdesc, 0) == 8)
331 {
332 for (i = 0; i < X86_64_NUM_REGS; i++)
333 if (x86_64_regmap[i] != -1)
334 supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
335 return;
336 }
337 #endif
338
339 for (i = 0; i < I386_NUM_REGS; i++)
340 supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
341
342 supply_register_by_name (regcache, "orig_eax",
343 ((char *) buf) + ORIG_EAX * REGSIZE);
344 }
345
346 static void
347 x86_fill_fpregset (struct regcache *regcache, void *buf)
348 {
349 #ifdef __x86_64__
350 i387_cache_to_fxsave (regcache, buf);
351 #else
352 i387_cache_to_fsave (regcache, buf);
353 #endif
354 }
355
356 static void
357 x86_store_fpregset (struct regcache *regcache, const void *buf)
358 {
359 #ifdef __x86_64__
360 i387_fxsave_to_cache (regcache, buf);
361 #else
362 i387_fsave_to_cache (regcache, buf);
363 #endif
364 }
365
366 #ifndef __x86_64__
367
368 static void
369 x86_fill_fpxregset (struct regcache *regcache, void *buf)
370 {
371 i387_cache_to_fxsave (regcache, buf);
372 }
373
374 static void
375 x86_store_fpxregset (struct regcache *regcache, const void *buf)
376 {
377 i387_fxsave_to_cache (regcache, buf);
378 }
379
380 #endif
381
382 static void
383 x86_fill_xstateregset (struct regcache *regcache, void *buf)
384 {
385 i387_cache_to_xsave (regcache, buf);
386 }
387
388 static void
389 x86_store_xstateregset (struct regcache *regcache, const void *buf)
390 {
391 i387_xsave_to_cache (regcache, buf);
392 }
393
394 /* ??? The non-biarch i386 case stores all the i387 regs twice.
395 Once in i387_.*fsave.* and once in i387_.*fxsave.*.
396 This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
397 doesn't work. IWBN to avoid the duplication in the case where it
398 does work. Maybe the arch_setup routine could check whether it works
399 and update the supported regsets accordingly. */
400
401 static struct regset_info x86_regsets[] =
402 {
403 #ifdef HAVE_PTRACE_GETREGS
404 { PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
405 GENERAL_REGS,
406 x86_fill_gregset, x86_store_gregset },
407 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
408 EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
409 # ifndef __x86_64__
410 # ifdef HAVE_PTRACE_GETFPXREGS
411 { PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
412 EXTENDED_REGS,
413 x86_fill_fpxregset, x86_store_fpxregset },
414 # endif
415 # endif
416 { PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
417 FP_REGS,
418 x86_fill_fpregset, x86_store_fpregset },
419 #endif /* HAVE_PTRACE_GETREGS */
420 NULL_REGSET
421 };
422
423 static CORE_ADDR
424 x86_get_pc (struct regcache *regcache)
425 {
426 int use_64bit = register_size (regcache->tdesc, 0) == 8;
427
428 if (use_64bit)
429 {
430 unsigned long pc;
431 collect_register_by_name (regcache, "rip", &pc);
432 return (CORE_ADDR) pc;
433 }
434 else
435 {
436 unsigned int pc;
437 collect_register_by_name (regcache, "eip", &pc);
438 return (CORE_ADDR) pc;
439 }
440 }
441
442 static void
443 x86_set_pc (struct regcache *regcache, CORE_ADDR pc)
444 {
445 int use_64bit = register_size (regcache->tdesc, 0) == 8;
446
447 if (use_64bit)
448 {
449 unsigned long newpc = pc;
450 supply_register_by_name (regcache, "rip", &newpc);
451 }
452 else
453 {
454 unsigned int newpc = pc;
455 supply_register_by_name (regcache, "eip", &newpc);
456 }
457 }
458 \f
459 static const gdb_byte x86_breakpoint[] = { 0xCC };
460 #define x86_breakpoint_len 1
461
462 static int
463 x86_breakpoint_at (CORE_ADDR pc)
464 {
465 unsigned char c;
466
467 (*the_target->read_memory) (pc, &c, 1);
468 if (c == 0xCC)
469 return 1;
470
471 return 0;
472 }
473 \f
474 /* Low-level function vector. */
475 struct x86_dr_low_type x86_dr_low =
476 {
477 x86_linux_dr_set_control,
478 x86_linux_dr_set_addr,
479 x86_linux_dr_get_addr,
480 x86_linux_dr_get_status,
481 x86_linux_dr_get_control,
482 sizeof (void *),
483 };
484 \f
485 /* Breakpoint/Watchpoint support. */
486
487 static int
488 x86_supports_z_point_type (char z_type)
489 {
490 switch (z_type)
491 {
492 case Z_PACKET_SW_BP:
493 case Z_PACKET_HW_BP:
494 case Z_PACKET_WRITE_WP:
495 case Z_PACKET_ACCESS_WP:
496 return 1;
497 default:
498 return 0;
499 }
500 }
501
502 static int
503 x86_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
504 int size, struct raw_breakpoint *bp)
505 {
506 struct process_info *proc = current_process ();
507
508 switch (type)
509 {
510 case raw_bkpt_type_hw:
511 case raw_bkpt_type_write_wp:
512 case raw_bkpt_type_access_wp:
513 {
514 enum target_hw_bp_type hw_type
515 = raw_bkpt_type_to_target_hw_bp_type (type);
516 struct x86_debug_reg_state *state
517 = &proc->priv->arch_private->debug_reg_state;
518
519 return x86_dr_insert_watchpoint (state, hw_type, addr, size);
520 }
521
522 default:
523 /* Unsupported. */
524 return 1;
525 }
526 }
527
528 static int
529 x86_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
530 int size, struct raw_breakpoint *bp)
531 {
532 struct process_info *proc = current_process ();
533
534 switch (type)
535 {
536 case raw_bkpt_type_hw:
537 case raw_bkpt_type_write_wp:
538 case raw_bkpt_type_access_wp:
539 {
540 enum target_hw_bp_type hw_type
541 = raw_bkpt_type_to_target_hw_bp_type (type);
542 struct x86_debug_reg_state *state
543 = &proc->priv->arch_private->debug_reg_state;
544
545 return x86_dr_remove_watchpoint (state, hw_type, addr, size);
546 }
547 default:
548 /* Unsupported. */
549 return 1;
550 }
551 }
552
553 static int
554 x86_stopped_by_watchpoint (void)
555 {
556 struct process_info *proc = current_process ();
557 return x86_dr_stopped_by_watchpoint (&proc->priv->arch_private->debug_reg_state);
558 }
559
560 static CORE_ADDR
561 x86_stopped_data_address (void)
562 {
563 struct process_info *proc = current_process ();
564 CORE_ADDR addr;
565 if (x86_dr_stopped_data_address (&proc->priv->arch_private->debug_reg_state,
566 &addr))
567 return addr;
568 return 0;
569 }
570 \f
571 /* Called when a new process is created. */
572
573 static struct arch_process_info *
574 x86_linux_new_process (void)
575 {
576 struct arch_process_info *info = XCNEW (struct arch_process_info);
577
578 x86_low_init_dregs (&info->debug_reg_state);
579
580 return info;
581 }
582
583 /* Target routine for linux_new_fork. */
584
585 static void
586 x86_linux_new_fork (struct process_info *parent, struct process_info *child)
587 {
588 /* These are allocated by linux_add_process. */
589 gdb_assert (parent->priv != NULL
590 && parent->priv->arch_private != NULL);
591 gdb_assert (child->priv != NULL
592 && child->priv->arch_private != NULL);
593
594 /* Linux kernel before 2.6.33 commit
595 72f674d203cd230426437cdcf7dd6f681dad8b0d
596 will inherit hardware debug registers from parent
597 on fork/vfork/clone. Newer Linux kernels create such tasks with
598 zeroed debug registers.
599
600 GDB core assumes the child inherits the watchpoints/hw
601 breakpoints of the parent, and will remove them all from the
602 forked off process. Copy the debug registers mirrors into the
603 new process so that all breakpoints and watchpoints can be
604 removed together. The debug registers mirror will become zeroed
605 in the end before detaching the forked off process, thus making
606 this compatible with older Linux kernels too. */
607
608 *child->priv->arch_private = *parent->priv->arch_private;
609 }
610
611 /* See nat/x86-dregs.h. */
612
613 struct x86_debug_reg_state *
614 x86_debug_reg_state (pid_t pid)
615 {
616 struct process_info *proc = find_process_pid (pid);
617
618 return &proc->priv->arch_private->debug_reg_state;
619 }
620 \f
621 /* When GDBSERVER is built as a 64-bit application on linux, the
622 PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
623 debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
624 as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
625 conversion in-place ourselves. */
626
627 /* Convert a native/host siginfo object, into/from the siginfo in the
628 layout of the inferiors' architecture. Returns true if any
629 conversion was done; false otherwise. If DIRECTION is 1, then copy
630 from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
631 INF. */
632
633 static int
634 x86_siginfo_fixup (siginfo_t *native, gdb_byte *inf, int direction)
635 {
636 #ifdef __x86_64__
637 unsigned int machine;
638 int tid = lwpid_of (current_thread);
639 int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
640
641 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
642 if (!is_64bit_tdesc ())
643 return amd64_linux_siginfo_fixup_common (native, inf, direction,
644 FIXUP_32);
645 /* No fixup for native x32 GDB. */
646 else if (!is_elf64 && sizeof (void *) == 8)
647 return amd64_linux_siginfo_fixup_common (native, inf, direction,
648 FIXUP_X32);
649 #endif
650
651 return 0;
652 }
653 \f
654 static int use_xml;
655
656 /* Format of XSAVE extended state is:
657 struct
658 {
659 fxsave_bytes[0..463]
660 sw_usable_bytes[464..511]
661 xstate_hdr_bytes[512..575]
662 avx_bytes[576..831]
663 future_state etc
664 };
665
666 Same memory layout will be used for the coredump NT_X86_XSTATE
667 representing the XSAVE extended state registers.
668
669 The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
670 extended state mask, which is the same as the extended control register
671 0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
672 together with the mask saved in the xstate_hdr_bytes to determine what
673 states the processor/OS supports and what state, used or initialized,
674 the process/thread is in. */
675 #define I386_LINUX_XSAVE_XCR0_OFFSET 464
676
677 /* Does the current host support the GETFPXREGS request? The header
678 file may or may not define it, and even if it is defined, the
679 kernel will return EIO if it's running on a pre-SSE processor. */
680 int have_ptrace_getfpxregs =
681 #ifdef HAVE_PTRACE_GETFPXREGS
682 -1
683 #else
684 0
685 #endif
686 ;
687
688 /* Get Linux/x86 target description from running target. */
689
690 static const struct target_desc *
691 x86_linux_read_description (void)
692 {
693 unsigned int machine;
694 int is_elf64;
695 int xcr0_features;
696 int tid;
697 static uint64_t xcr0;
698 struct regset_info *regset;
699
700 tid = lwpid_of (current_thread);
701
702 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
703
704 if (sizeof (void *) == 4)
705 {
706 if (is_elf64 > 0)
707 error (_("Can't debug 64-bit process with 32-bit GDBserver"));
708 #ifndef __x86_64__
709 else if (machine == EM_X86_64)
710 error (_("Can't debug x86-64 process with 32-bit GDBserver"));
711 #endif
712 }
713
714 #if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
715 if (machine == EM_386 && have_ptrace_getfpxregs == -1)
716 {
717 elf_fpxregset_t fpxregs;
718
719 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
720 {
721 have_ptrace_getfpxregs = 0;
722 have_ptrace_getregset = 0;
723 return tdesc_i386_mmx_linux;
724 }
725 else
726 have_ptrace_getfpxregs = 1;
727 }
728 #endif
729
730 if (!use_xml)
731 {
732 x86_xcr0 = X86_XSTATE_SSE_MASK;
733
734 /* Don't use XML. */
735 #ifdef __x86_64__
736 if (machine == EM_X86_64)
737 return tdesc_amd64_linux_no_xml;
738 else
739 #endif
740 return tdesc_i386_linux_no_xml;
741 }
742
743 if (have_ptrace_getregset == -1)
744 {
745 uint64_t xstateregs[(X86_XSTATE_SSE_SIZE / sizeof (uint64_t))];
746 struct iovec iov;
747
748 iov.iov_base = xstateregs;
749 iov.iov_len = sizeof (xstateregs);
750
751 /* Check if PTRACE_GETREGSET works. */
752 if (ptrace (PTRACE_GETREGSET, tid,
753 (unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
754 have_ptrace_getregset = 0;
755 else
756 {
757 have_ptrace_getregset = 1;
758
759 /* Get XCR0 from XSAVE extended state. */
760 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
761 / sizeof (uint64_t))];
762
763 /* Use PTRACE_GETREGSET if it is available. */
764 for (regset = x86_regsets;
765 regset->fill_function != NULL; regset++)
766 if (regset->get_request == PTRACE_GETREGSET)
767 regset->size = X86_XSTATE_SIZE (xcr0);
768 else if (regset->type != GENERAL_REGS)
769 regset->size = 0;
770 }
771 }
772
773 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
774 xcr0_features = (have_ptrace_getregset
775 && (xcr0 & X86_XSTATE_ALL_MASK));
776
777 if (xcr0_features)
778 x86_xcr0 = xcr0;
779
780 if (machine == EM_X86_64)
781 {
782 #ifdef __x86_64__
783 if (is_elf64)
784 {
785 if (xcr0_features)
786 {
787 switch (xcr0 & X86_XSTATE_ALL_MASK)
788 {
789 case X86_XSTATE_AVX512_MASK:
790 return tdesc_amd64_avx512_linux;
791
792 case X86_XSTATE_AVX_MPX_MASK:
793 return tdesc_amd64_avx_mpx_linux;
794
795 case X86_XSTATE_MPX_MASK:
796 return tdesc_amd64_mpx_linux;
797
798 case X86_XSTATE_AVX_MASK:
799 return tdesc_amd64_avx_linux;
800
801 default:
802 return tdesc_amd64_linux;
803 }
804 }
805 else
806 return tdesc_amd64_linux;
807 }
808 else
809 {
810 if (xcr0_features)
811 {
812 switch (xcr0 & X86_XSTATE_ALL_MASK)
813 {
814 case X86_XSTATE_AVX512_MASK:
815 return tdesc_x32_avx512_linux;
816
817 case X86_XSTATE_MPX_MASK: /* No MPX on x32. */
818 case X86_XSTATE_AVX_MASK:
819 return tdesc_x32_avx_linux;
820
821 default:
822 return tdesc_x32_linux;
823 }
824 }
825 else
826 return tdesc_x32_linux;
827 }
828 #endif
829 }
830 else
831 {
832 if (xcr0_features)
833 {
834 switch (xcr0 & X86_XSTATE_ALL_MASK)
835 {
836 case (X86_XSTATE_AVX512_MASK):
837 return tdesc_i386_avx512_linux;
838
839 case (X86_XSTATE_MPX_MASK):
840 return tdesc_i386_mpx_linux;
841
842 case (X86_XSTATE_AVX_MPX_MASK):
843 return tdesc_i386_avx_mpx_linux;
844
845 case (X86_XSTATE_AVX_MASK):
846 return tdesc_i386_avx_linux;
847
848 default:
849 return tdesc_i386_linux;
850 }
851 }
852 else
853 return tdesc_i386_linux;
854 }
855
856 gdb_assert_not_reached ("failed to return tdesc");
857 }
858
859 /* Callback for find_inferior. Stops iteration when a thread with a
860 given PID is found. */
861
862 static int
863 same_process_callback (struct inferior_list_entry *entry, void *data)
864 {
865 int pid = *(int *) data;
866
867 return (ptid_get_pid (entry->id) == pid);
868 }
869
870 /* Callback for for_each_inferior. Calls the arch_setup routine for
871 each process. */
872
873 static void
874 x86_arch_setup_process_callback (struct inferior_list_entry *entry)
875 {
876 int pid = ptid_get_pid (entry->id);
877
878 /* Look up any thread of this processes. */
879 current_thread
880 = (struct thread_info *) find_inferior (&all_threads,
881 same_process_callback, &pid);
882
883 the_low_target.arch_setup ();
884 }
885
886 /* Update all the target description of all processes; a new GDB
887 connected, and it may or not support xml target descriptions. */
888
889 static void
890 x86_linux_update_xmltarget (void)
891 {
892 struct thread_info *saved_thread = current_thread;
893
894 /* Before changing the register cache's internal layout, flush the
895 contents of the current valid caches back to the threads, and
896 release the current regcache objects. */
897 regcache_release ();
898
899 for_each_inferior (&all_processes, x86_arch_setup_process_callback);
900
901 current_thread = saved_thread;
902 }
903
904 /* Process qSupported query, "xmlRegisters=". Update the buffer size for
905 PTRACE_GETREGSET. */
906
907 static void
908 x86_linux_process_qsupported (char **features, int count)
909 {
910 int i;
911
912 /* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
913 with "i386" in qSupported query, it supports x86 XML target
914 descriptions. */
915 use_xml = 0;
916 for (i = 0; i < count; i++)
917 {
918 const char *feature = features[i];
919
920 if (startswith (feature, "xmlRegisters="))
921 {
922 char *copy = xstrdup (feature + 13);
923 char *p;
924
925 for (p = strtok (copy, ","); p != NULL; p = strtok (NULL, ","))
926 {
927 if (strcmp (p, "i386") == 0)
928 {
929 use_xml = 1;
930 break;
931 }
932 }
933
934 free (copy);
935 }
936 }
937 x86_linux_update_xmltarget ();
938 }
939
940 /* Common for x86/x86-64. */
941
942 static struct regsets_info x86_regsets_info =
943 {
944 x86_regsets, /* regsets */
945 0, /* num_regsets */
946 NULL, /* disabled_regsets */
947 };
948
949 #ifdef __x86_64__
950 static struct regs_info amd64_linux_regs_info =
951 {
952 NULL, /* regset_bitmap */
953 NULL, /* usrregs_info */
954 &x86_regsets_info
955 };
956 #endif
957 static struct usrregs_info i386_linux_usrregs_info =
958 {
959 I386_NUM_REGS,
960 i386_regmap,
961 };
962
963 static struct regs_info i386_linux_regs_info =
964 {
965 NULL, /* regset_bitmap */
966 &i386_linux_usrregs_info,
967 &x86_regsets_info
968 };
969
970 const struct regs_info *
971 x86_linux_regs_info (void)
972 {
973 #ifdef __x86_64__
974 if (is_64bit_tdesc ())
975 return &amd64_linux_regs_info;
976 else
977 #endif
978 return &i386_linux_regs_info;
979 }
980
981 /* Initialize the target description for the architecture of the
982 inferior. */
983
984 static void
985 x86_arch_setup (void)
986 {
987 current_process ()->tdesc = x86_linux_read_description ();
988 }
989
990 /* Fill *SYSNO and *SYSRET with the syscall nr trapped and the syscall return
991 code. This should only be called if LWP got a SYSCALL_SIGTRAP. */
992
993 static void
994 x86_get_syscall_trapinfo (struct regcache *regcache, int *sysno, int *sysret)
995 {
996 int use_64bit = register_size (regcache->tdesc, 0) == 8;
997
998 if (use_64bit)
999 {
1000 long l_sysno;
1001 long l_sysret;
1002
1003 collect_register_by_name (regcache, "orig_rax", &l_sysno);
1004 collect_register_by_name (regcache, "rax", &l_sysret);
1005 *sysno = (int) l_sysno;
1006 *sysret = (int) l_sysret;
1007 }
1008 else
1009 {
1010 collect_register_by_name (regcache, "orig_eax", sysno);
1011 collect_register_by_name (regcache, "eax", sysret);
1012 }
1013 }
1014
1015 static int
1016 x86_supports_tracepoints (void)
1017 {
1018 return 1;
1019 }
1020
1021 static void
1022 append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
1023 {
1024 write_inferior_memory (*to, buf, len);
1025 *to += len;
1026 }
1027
1028 static int
1029 push_opcode (unsigned char *buf, char *op)
1030 {
1031 unsigned char *buf_org = buf;
1032
1033 while (1)
1034 {
1035 char *endptr;
1036 unsigned long ul = strtoul (op, &endptr, 16);
1037
1038 if (endptr == op)
1039 break;
1040
1041 *buf++ = ul;
1042 op = endptr;
1043 }
1044
1045 return buf - buf_org;
1046 }
1047
1048 #ifdef __x86_64__
1049
1050 /* Build a jump pad that saves registers and calls a collection
1051 function. Writes a jump instruction to the jump pad to
1052 JJUMPAD_INSN. The caller is responsible to write it in at the
1053 tracepoint address. */
1054
1055 static int
1056 amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1057 CORE_ADDR collector,
1058 CORE_ADDR lockaddr,
1059 ULONGEST orig_size,
1060 CORE_ADDR *jump_entry,
1061 CORE_ADDR *trampoline,
1062 ULONGEST *trampoline_size,
1063 unsigned char *jjump_pad_insn,
1064 ULONGEST *jjump_pad_insn_size,
1065 CORE_ADDR *adjusted_insn_addr,
1066 CORE_ADDR *adjusted_insn_addr_end,
1067 char *err)
1068 {
1069 unsigned char buf[40];
1070 int i, offset;
1071 int64_t loffset;
1072
1073 CORE_ADDR buildaddr = *jump_entry;
1074
1075 /* Build the jump pad. */
1076
1077 /* First, do tracepoint data collection. Save registers. */
1078 i = 0;
1079 /* Need to ensure stack pointer saved first. */
1080 buf[i++] = 0x54; /* push %rsp */
1081 buf[i++] = 0x55; /* push %rbp */
1082 buf[i++] = 0x57; /* push %rdi */
1083 buf[i++] = 0x56; /* push %rsi */
1084 buf[i++] = 0x52; /* push %rdx */
1085 buf[i++] = 0x51; /* push %rcx */
1086 buf[i++] = 0x53; /* push %rbx */
1087 buf[i++] = 0x50; /* push %rax */
1088 buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
1089 buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
1090 buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
1091 buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
1092 buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
1093 buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
1094 buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
1095 buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
1096 buf[i++] = 0x9c; /* pushfq */
1097 buf[i++] = 0x48; /* movl <addr>,%rdi */
1098 buf[i++] = 0xbf;
1099 *((unsigned long *)(buf + i)) = (unsigned long) tpaddr;
1100 i += sizeof (unsigned long);
1101 buf[i++] = 0x57; /* push %rdi */
1102 append_insns (&buildaddr, i, buf);
1103
1104 /* Stack space for the collecting_t object. */
1105 i = 0;
1106 i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
1107 i += push_opcode (&buf[i], "48 b8"); /* mov <tpoint>,%rax */
1108 memcpy (buf + i, &tpoint, 8);
1109 i += 8;
1110 i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
1111 i += push_opcode (&buf[i],
1112 "64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
1113 i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
1114 append_insns (&buildaddr, i, buf);
1115
1116 /* spin-lock. */
1117 i = 0;
1118 i += push_opcode (&buf[i], "48 be"); /* movl <lockaddr>,%rsi */
1119 memcpy (&buf[i], (void *) &lockaddr, 8);
1120 i += 8;
1121 i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
1122 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1123 i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
1124 i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
1125 i += push_opcode (&buf[i], "75 f4"); /* jne <again> */
1126 append_insns (&buildaddr, i, buf);
1127
1128 /* Set up the gdb_collect call. */
1129 /* At this point, (stack pointer + 0x18) is the base of our saved
1130 register block. */
1131
1132 i = 0;
1133 i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
1134 i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
1135
1136 /* tpoint address may be 64-bit wide. */
1137 i += push_opcode (&buf[i], "48 bf"); /* movl <addr>,%rdi */
1138 memcpy (buf + i, &tpoint, 8);
1139 i += 8;
1140 append_insns (&buildaddr, i, buf);
1141
1142 /* The collector function being in the shared library, may be
1143 >31-bits away off the jump pad. */
1144 i = 0;
1145 i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
1146 memcpy (buf + i, &collector, 8);
1147 i += 8;
1148 i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
1149 append_insns (&buildaddr, i, buf);
1150
1151 /* Clear the spin-lock. */
1152 i = 0;
1153 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1154 i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
1155 memcpy (buf + i, &lockaddr, 8);
1156 i += 8;
1157 append_insns (&buildaddr, i, buf);
1158
1159 /* Remove stack that had been used for the collect_t object. */
1160 i = 0;
1161 i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
1162 append_insns (&buildaddr, i, buf);
1163
1164 /* Restore register state. */
1165 i = 0;
1166 buf[i++] = 0x48; /* add $0x8,%rsp */
1167 buf[i++] = 0x83;
1168 buf[i++] = 0xc4;
1169 buf[i++] = 0x08;
1170 buf[i++] = 0x9d; /* popfq */
1171 buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
1172 buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
1173 buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
1174 buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
1175 buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
1176 buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
1177 buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
1178 buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
1179 buf[i++] = 0x58; /* pop %rax */
1180 buf[i++] = 0x5b; /* pop %rbx */
1181 buf[i++] = 0x59; /* pop %rcx */
1182 buf[i++] = 0x5a; /* pop %rdx */
1183 buf[i++] = 0x5e; /* pop %rsi */
1184 buf[i++] = 0x5f; /* pop %rdi */
1185 buf[i++] = 0x5d; /* pop %rbp */
1186 buf[i++] = 0x5c; /* pop %rsp */
1187 append_insns (&buildaddr, i, buf);
1188
1189 /* Now, adjust the original instruction to execute in the jump
1190 pad. */
1191 *adjusted_insn_addr = buildaddr;
1192 relocate_instruction (&buildaddr, tpaddr);
1193 *adjusted_insn_addr_end = buildaddr;
1194
1195 /* Finally, write a jump back to the program. */
1196
1197 loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1198 if (loffset > INT_MAX || loffset < INT_MIN)
1199 {
1200 sprintf (err,
1201 "E.Jump back from jump pad too far from tracepoint "
1202 "(offset 0x%" PRIx64 " > int32).", loffset);
1203 return 1;
1204 }
1205
1206 offset = (int) loffset;
1207 memcpy (buf, jump_insn, sizeof (jump_insn));
1208 memcpy (buf + 1, &offset, 4);
1209 append_insns (&buildaddr, sizeof (jump_insn), buf);
1210
1211 /* The jump pad is now built. Wire in a jump to our jump pad. This
1212 is always done last (by our caller actually), so that we can
1213 install fast tracepoints with threads running. This relies on
1214 the agent's atomic write support. */
1215 loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
1216 if (loffset > INT_MAX || loffset < INT_MIN)
1217 {
1218 sprintf (err,
1219 "E.Jump pad too far from tracepoint "
1220 "(offset 0x%" PRIx64 " > int32).", loffset);
1221 return 1;
1222 }
1223
1224 offset = (int) loffset;
1225
1226 memcpy (buf, jump_insn, sizeof (jump_insn));
1227 memcpy (buf + 1, &offset, 4);
1228 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1229 *jjump_pad_insn_size = sizeof (jump_insn);
1230
1231 /* Return the end address of our pad. */
1232 *jump_entry = buildaddr;
1233
1234 return 0;
1235 }
1236
1237 #endif /* __x86_64__ */
1238
1239 /* Build a jump pad that saves registers and calls a collection
1240 function. Writes a jump instruction to the jump pad to
1241 JJUMPAD_INSN. The caller is responsible to write it in at the
1242 tracepoint address. */
1243
1244 static int
1245 i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1246 CORE_ADDR collector,
1247 CORE_ADDR lockaddr,
1248 ULONGEST orig_size,
1249 CORE_ADDR *jump_entry,
1250 CORE_ADDR *trampoline,
1251 ULONGEST *trampoline_size,
1252 unsigned char *jjump_pad_insn,
1253 ULONGEST *jjump_pad_insn_size,
1254 CORE_ADDR *adjusted_insn_addr,
1255 CORE_ADDR *adjusted_insn_addr_end,
1256 char *err)
1257 {
1258 unsigned char buf[0x100];
1259 int i, offset;
1260 CORE_ADDR buildaddr = *jump_entry;
1261
1262 /* Build the jump pad. */
1263
1264 /* First, do tracepoint data collection. Save registers. */
1265 i = 0;
1266 buf[i++] = 0x60; /* pushad */
1267 buf[i++] = 0x68; /* push tpaddr aka $pc */
1268 *((int *)(buf + i)) = (int) tpaddr;
1269 i += 4;
1270 buf[i++] = 0x9c; /* pushf */
1271 buf[i++] = 0x1e; /* push %ds */
1272 buf[i++] = 0x06; /* push %es */
1273 buf[i++] = 0x0f; /* push %fs */
1274 buf[i++] = 0xa0;
1275 buf[i++] = 0x0f; /* push %gs */
1276 buf[i++] = 0xa8;
1277 buf[i++] = 0x16; /* push %ss */
1278 buf[i++] = 0x0e; /* push %cs */
1279 append_insns (&buildaddr, i, buf);
1280
1281 /* Stack space for the collecting_t object. */
1282 i = 0;
1283 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1284
1285 /* Build the object. */
1286 i += push_opcode (&buf[i], "b8"); /* mov <tpoint>,%eax */
1287 memcpy (buf + i, &tpoint, 4);
1288 i += 4;
1289 i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
1290
1291 i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
1292 i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
1293 append_insns (&buildaddr, i, buf);
1294
1295 /* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
1296 If we cared for it, this could be using xchg alternatively. */
1297
1298 i = 0;
1299 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1300 i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
1301 %esp,<lockaddr> */
1302 memcpy (&buf[i], (void *) &lockaddr, 4);
1303 i += 4;
1304 i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
1305 i += push_opcode (&buf[i], "75 f2"); /* jne <again> */
1306 append_insns (&buildaddr, i, buf);
1307
1308
1309 /* Set up arguments to the gdb_collect call. */
1310 i = 0;
1311 i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
1312 i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
1313 i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
1314 append_insns (&buildaddr, i, buf);
1315
1316 i = 0;
1317 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1318 append_insns (&buildaddr, i, buf);
1319
1320 i = 0;
1321 i += push_opcode (&buf[i], "c7 04 24"); /* movl <addr>,(%esp) */
1322 memcpy (&buf[i], (void *) &tpoint, 4);
1323 i += 4;
1324 append_insns (&buildaddr, i, buf);
1325
1326 buf[0] = 0xe8; /* call <reladdr> */
1327 offset = collector - (buildaddr + sizeof (jump_insn));
1328 memcpy (buf + 1, &offset, 4);
1329 append_insns (&buildaddr, 5, buf);
1330 /* Clean up after the call. */
1331 buf[0] = 0x83; /* add $0x8,%esp */
1332 buf[1] = 0xc4;
1333 buf[2] = 0x08;
1334 append_insns (&buildaddr, 3, buf);
1335
1336
1337 /* Clear the spin-lock. This would need the LOCK prefix on older
1338 broken archs. */
1339 i = 0;
1340 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1341 i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
1342 memcpy (buf + i, &lockaddr, 4);
1343 i += 4;
1344 append_insns (&buildaddr, i, buf);
1345
1346
1347 /* Remove stack that had been used for the collect_t object. */
1348 i = 0;
1349 i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
1350 append_insns (&buildaddr, i, buf);
1351
1352 i = 0;
1353 buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
1354 buf[i++] = 0xc4;
1355 buf[i++] = 0x04;
1356 buf[i++] = 0x17; /* pop %ss */
1357 buf[i++] = 0x0f; /* pop %gs */
1358 buf[i++] = 0xa9;
1359 buf[i++] = 0x0f; /* pop %fs */
1360 buf[i++] = 0xa1;
1361 buf[i++] = 0x07; /* pop %es */
1362 buf[i++] = 0x1f; /* pop %ds */
1363 buf[i++] = 0x9d; /* popf */
1364 buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
1365 buf[i++] = 0xc4;
1366 buf[i++] = 0x04;
1367 buf[i++] = 0x61; /* popad */
1368 append_insns (&buildaddr, i, buf);
1369
1370 /* Now, adjust the original instruction to execute in the jump
1371 pad. */
1372 *adjusted_insn_addr = buildaddr;
1373 relocate_instruction (&buildaddr, tpaddr);
1374 *adjusted_insn_addr_end = buildaddr;
1375
1376 /* Write the jump back to the program. */
1377 offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1378 memcpy (buf, jump_insn, sizeof (jump_insn));
1379 memcpy (buf + 1, &offset, 4);
1380 append_insns (&buildaddr, sizeof (jump_insn), buf);
1381
1382 /* The jump pad is now built. Wire in a jump to our jump pad. This
1383 is always done last (by our caller actually), so that we can
1384 install fast tracepoints with threads running. This relies on
1385 the agent's atomic write support. */
1386 if (orig_size == 4)
1387 {
1388 /* Create a trampoline. */
1389 *trampoline_size = sizeof (jump_insn);
1390 if (!claim_trampoline_space (*trampoline_size, trampoline))
1391 {
1392 /* No trampoline space available. */
1393 strcpy (err,
1394 "E.Cannot allocate trampoline space needed for fast "
1395 "tracepoints on 4-byte instructions.");
1396 return 1;
1397 }
1398
1399 offset = *jump_entry - (*trampoline + sizeof (jump_insn));
1400 memcpy (buf, jump_insn, sizeof (jump_insn));
1401 memcpy (buf + 1, &offset, 4);
1402 write_inferior_memory (*trampoline, buf, sizeof (jump_insn));
1403
1404 /* Use a 16-bit relative jump instruction to jump to the trampoline. */
1405 offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
1406 memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
1407 memcpy (buf + 2, &offset, 2);
1408 memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
1409 *jjump_pad_insn_size = sizeof (small_jump_insn);
1410 }
1411 else
1412 {
1413 /* Else use a 32-bit relative jump instruction. */
1414 offset = *jump_entry - (tpaddr + sizeof (jump_insn));
1415 memcpy (buf, jump_insn, sizeof (jump_insn));
1416 memcpy (buf + 1, &offset, 4);
1417 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1418 *jjump_pad_insn_size = sizeof (jump_insn);
1419 }
1420
1421 /* Return the end address of our pad. */
1422 *jump_entry = buildaddr;
1423
1424 return 0;
1425 }
1426
1427 static int
1428 x86_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1429 CORE_ADDR collector,
1430 CORE_ADDR lockaddr,
1431 ULONGEST orig_size,
1432 CORE_ADDR *jump_entry,
1433 CORE_ADDR *trampoline,
1434 ULONGEST *trampoline_size,
1435 unsigned char *jjump_pad_insn,
1436 ULONGEST *jjump_pad_insn_size,
1437 CORE_ADDR *adjusted_insn_addr,
1438 CORE_ADDR *adjusted_insn_addr_end,
1439 char *err)
1440 {
1441 #ifdef __x86_64__
1442 if (is_64bit_tdesc ())
1443 return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1444 collector, lockaddr,
1445 orig_size, jump_entry,
1446 trampoline, trampoline_size,
1447 jjump_pad_insn,
1448 jjump_pad_insn_size,
1449 adjusted_insn_addr,
1450 adjusted_insn_addr_end,
1451 err);
1452 #endif
1453
1454 return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
1455 collector, lockaddr,
1456 orig_size, jump_entry,
1457 trampoline, trampoline_size,
1458 jjump_pad_insn,
1459 jjump_pad_insn_size,
1460 adjusted_insn_addr,
1461 adjusted_insn_addr_end,
1462 err);
1463 }
1464
1465 /* Return the minimum instruction length for fast tracepoints on x86/x86-64
1466 architectures. */
1467
1468 static int
1469 x86_get_min_fast_tracepoint_insn_len (void)
1470 {
1471 static int warned_about_fast_tracepoints = 0;
1472
1473 #ifdef __x86_64__
1474 /* On x86-64, 5-byte jump instructions with a 4-byte offset are always
1475 used for fast tracepoints. */
1476 if (is_64bit_tdesc ())
1477 return 5;
1478 #endif
1479
1480 if (agent_loaded_p ())
1481 {
1482 char errbuf[IPA_BUFSIZ];
1483
1484 errbuf[0] = '\0';
1485
1486 /* On x86, if trampolines are available, then 4-byte jump instructions
1487 with a 2-byte offset may be used, otherwise 5-byte jump instructions
1488 with a 4-byte offset are used instead. */
1489 if (have_fast_tracepoint_trampoline_buffer (errbuf))
1490 return 4;
1491 else
1492 {
1493 /* GDB has no channel to explain to user why a shorter fast
1494 tracepoint is not possible, but at least make GDBserver
1495 mention that something has gone awry. */
1496 if (!warned_about_fast_tracepoints)
1497 {
1498 warning ("4-byte fast tracepoints not available; %s\n", errbuf);
1499 warned_about_fast_tracepoints = 1;
1500 }
1501 return 5;
1502 }
1503 }
1504 else
1505 {
1506 /* Indicate that the minimum length is currently unknown since the IPA
1507 has not loaded yet. */
1508 return 0;
1509 }
1510 }
1511
1512 static void
1513 add_insns (unsigned char *start, int len)
1514 {
1515 CORE_ADDR buildaddr = current_insn_ptr;
1516
1517 if (debug_threads)
1518 debug_printf ("Adding %d bytes of insn at %s\n",
1519 len, paddress (buildaddr));
1520
1521 append_insns (&buildaddr, len, start);
1522 current_insn_ptr = buildaddr;
1523 }
1524
1525 /* Our general strategy for emitting code is to avoid specifying raw
1526 bytes whenever possible, and instead copy a block of inline asm
1527 that is embedded in the function. This is a little messy, because
1528 we need to keep the compiler from discarding what looks like dead
1529 code, plus suppress various warnings. */
1530
1531 #define EMIT_ASM(NAME, INSNS) \
1532 do \
1533 { \
1534 extern unsigned char start_ ## NAME, end_ ## NAME; \
1535 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1536 __asm__ ("jmp end_" #NAME "\n" \
1537 "\t" "start_" #NAME ":" \
1538 "\t" INSNS "\n" \
1539 "\t" "end_" #NAME ":"); \
1540 } while (0)
1541
1542 #ifdef __x86_64__
1543
1544 #define EMIT_ASM32(NAME,INSNS) \
1545 do \
1546 { \
1547 extern unsigned char start_ ## NAME, end_ ## NAME; \
1548 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
1549 __asm__ (".code32\n" \
1550 "\t" "jmp end_" #NAME "\n" \
1551 "\t" "start_" #NAME ":\n" \
1552 "\t" INSNS "\n" \
1553 "\t" "end_" #NAME ":\n" \
1554 ".code64\n"); \
1555 } while (0)
1556
1557 #else
1558
1559 #define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
1560
1561 #endif
1562
1563 #ifdef __x86_64__
1564
1565 static void
1566 amd64_emit_prologue (void)
1567 {
1568 EMIT_ASM (amd64_prologue,
1569 "pushq %rbp\n\t"
1570 "movq %rsp,%rbp\n\t"
1571 "sub $0x20,%rsp\n\t"
1572 "movq %rdi,-8(%rbp)\n\t"
1573 "movq %rsi,-16(%rbp)");
1574 }
1575
1576
1577 static void
1578 amd64_emit_epilogue (void)
1579 {
1580 EMIT_ASM (amd64_epilogue,
1581 "movq -16(%rbp),%rdi\n\t"
1582 "movq %rax,(%rdi)\n\t"
1583 "xor %rax,%rax\n\t"
1584 "leave\n\t"
1585 "ret");
1586 }
1587
1588 static void
1589 amd64_emit_add (void)
1590 {
1591 EMIT_ASM (amd64_add,
1592 "add (%rsp),%rax\n\t"
1593 "lea 0x8(%rsp),%rsp");
1594 }
1595
1596 static void
1597 amd64_emit_sub (void)
1598 {
1599 EMIT_ASM (amd64_sub,
1600 "sub %rax,(%rsp)\n\t"
1601 "pop %rax");
1602 }
1603
1604 static void
1605 amd64_emit_mul (void)
1606 {
1607 emit_error = 1;
1608 }
1609
1610 static void
1611 amd64_emit_lsh (void)
1612 {
1613 emit_error = 1;
1614 }
1615
1616 static void
1617 amd64_emit_rsh_signed (void)
1618 {
1619 emit_error = 1;
1620 }
1621
1622 static void
1623 amd64_emit_rsh_unsigned (void)
1624 {
1625 emit_error = 1;
1626 }
1627
1628 static void
1629 amd64_emit_ext (int arg)
1630 {
1631 switch (arg)
1632 {
1633 case 8:
1634 EMIT_ASM (amd64_ext_8,
1635 "cbtw\n\t"
1636 "cwtl\n\t"
1637 "cltq");
1638 break;
1639 case 16:
1640 EMIT_ASM (amd64_ext_16,
1641 "cwtl\n\t"
1642 "cltq");
1643 break;
1644 case 32:
1645 EMIT_ASM (amd64_ext_32,
1646 "cltq");
1647 break;
1648 default:
1649 emit_error = 1;
1650 }
1651 }
1652
1653 static void
1654 amd64_emit_log_not (void)
1655 {
1656 EMIT_ASM (amd64_log_not,
1657 "test %rax,%rax\n\t"
1658 "sete %cl\n\t"
1659 "movzbq %cl,%rax");
1660 }
1661
1662 static void
1663 amd64_emit_bit_and (void)
1664 {
1665 EMIT_ASM (amd64_and,
1666 "and (%rsp),%rax\n\t"
1667 "lea 0x8(%rsp),%rsp");
1668 }
1669
1670 static void
1671 amd64_emit_bit_or (void)
1672 {
1673 EMIT_ASM (amd64_or,
1674 "or (%rsp),%rax\n\t"
1675 "lea 0x8(%rsp),%rsp");
1676 }
1677
1678 static void
1679 amd64_emit_bit_xor (void)
1680 {
1681 EMIT_ASM (amd64_xor,
1682 "xor (%rsp),%rax\n\t"
1683 "lea 0x8(%rsp),%rsp");
1684 }
1685
1686 static void
1687 amd64_emit_bit_not (void)
1688 {
1689 EMIT_ASM (amd64_bit_not,
1690 "xorq $0xffffffffffffffff,%rax");
1691 }
1692
1693 static void
1694 amd64_emit_equal (void)
1695 {
1696 EMIT_ASM (amd64_equal,
1697 "cmp %rax,(%rsp)\n\t"
1698 "je .Lamd64_equal_true\n\t"
1699 "xor %rax,%rax\n\t"
1700 "jmp .Lamd64_equal_end\n\t"
1701 ".Lamd64_equal_true:\n\t"
1702 "mov $0x1,%rax\n\t"
1703 ".Lamd64_equal_end:\n\t"
1704 "lea 0x8(%rsp),%rsp");
1705 }
1706
1707 static void
1708 amd64_emit_less_signed (void)
1709 {
1710 EMIT_ASM (amd64_less_signed,
1711 "cmp %rax,(%rsp)\n\t"
1712 "jl .Lamd64_less_signed_true\n\t"
1713 "xor %rax,%rax\n\t"
1714 "jmp .Lamd64_less_signed_end\n\t"
1715 ".Lamd64_less_signed_true:\n\t"
1716 "mov $1,%rax\n\t"
1717 ".Lamd64_less_signed_end:\n\t"
1718 "lea 0x8(%rsp),%rsp");
1719 }
1720
1721 static void
1722 amd64_emit_less_unsigned (void)
1723 {
1724 EMIT_ASM (amd64_less_unsigned,
1725 "cmp %rax,(%rsp)\n\t"
1726 "jb .Lamd64_less_unsigned_true\n\t"
1727 "xor %rax,%rax\n\t"
1728 "jmp .Lamd64_less_unsigned_end\n\t"
1729 ".Lamd64_less_unsigned_true:\n\t"
1730 "mov $1,%rax\n\t"
1731 ".Lamd64_less_unsigned_end:\n\t"
1732 "lea 0x8(%rsp),%rsp");
1733 }
1734
1735 static void
1736 amd64_emit_ref (int size)
1737 {
1738 switch (size)
1739 {
1740 case 1:
1741 EMIT_ASM (amd64_ref1,
1742 "movb (%rax),%al");
1743 break;
1744 case 2:
1745 EMIT_ASM (amd64_ref2,
1746 "movw (%rax),%ax");
1747 break;
1748 case 4:
1749 EMIT_ASM (amd64_ref4,
1750 "movl (%rax),%eax");
1751 break;
1752 case 8:
1753 EMIT_ASM (amd64_ref8,
1754 "movq (%rax),%rax");
1755 break;
1756 }
1757 }
1758
1759 static void
1760 amd64_emit_if_goto (int *offset_p, int *size_p)
1761 {
1762 EMIT_ASM (amd64_if_goto,
1763 "mov %rax,%rcx\n\t"
1764 "pop %rax\n\t"
1765 "cmp $0,%rcx\n\t"
1766 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
1767 if (offset_p)
1768 *offset_p = 10;
1769 if (size_p)
1770 *size_p = 4;
1771 }
1772
1773 static void
1774 amd64_emit_goto (int *offset_p, int *size_p)
1775 {
1776 EMIT_ASM (amd64_goto,
1777 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
1778 if (offset_p)
1779 *offset_p = 1;
1780 if (size_p)
1781 *size_p = 4;
1782 }
1783
1784 static void
1785 amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
1786 {
1787 int diff = (to - (from + size));
1788 unsigned char buf[sizeof (int)];
1789
1790 if (size != 4)
1791 {
1792 emit_error = 1;
1793 return;
1794 }
1795
1796 memcpy (buf, &diff, sizeof (int));
1797 write_inferior_memory (from, buf, sizeof (int));
1798 }
1799
1800 static void
1801 amd64_emit_const (LONGEST num)
1802 {
1803 unsigned char buf[16];
1804 int i;
1805 CORE_ADDR buildaddr = current_insn_ptr;
1806
1807 i = 0;
1808 buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $<n>,%rax */
1809 memcpy (&buf[i], &num, sizeof (num));
1810 i += 8;
1811 append_insns (&buildaddr, i, buf);
1812 current_insn_ptr = buildaddr;
1813 }
1814
1815 static void
1816 amd64_emit_call (CORE_ADDR fn)
1817 {
1818 unsigned char buf[16];
1819 int i;
1820 CORE_ADDR buildaddr;
1821 LONGEST offset64;
1822
1823 /* The destination function being in the shared library, may be
1824 >31-bits away off the compiled code pad. */
1825
1826 buildaddr = current_insn_ptr;
1827
1828 offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
1829
1830 i = 0;
1831
1832 if (offset64 > INT_MAX || offset64 < INT_MIN)
1833 {
1834 /* Offset is too large for a call. Use callq, but that requires
1835 a register, so avoid it if possible. Use r10, since it is
1836 call-clobbered, we don't have to push/pop it. */
1837 buf[i++] = 0x48; /* mov $fn,%r10 */
1838 buf[i++] = 0xba;
1839 memcpy (buf + i, &fn, 8);
1840 i += 8;
1841 buf[i++] = 0xff; /* callq *%r10 */
1842 buf[i++] = 0xd2;
1843 }
1844 else
1845 {
1846 int offset32 = offset64; /* we know we can't overflow here. */
1847 memcpy (buf + i, &offset32, 4);
1848 i += 4;
1849 }
1850
1851 append_insns (&buildaddr, i, buf);
1852 current_insn_ptr = buildaddr;
1853 }
1854
1855 static void
1856 amd64_emit_reg (int reg)
1857 {
1858 unsigned char buf[16];
1859 int i;
1860 CORE_ADDR buildaddr;
1861
1862 /* Assume raw_regs is still in %rdi. */
1863 buildaddr = current_insn_ptr;
1864 i = 0;
1865 buf[i++] = 0xbe; /* mov $<n>,%esi */
1866 memcpy (&buf[i], &reg, sizeof (reg));
1867 i += 4;
1868 append_insns (&buildaddr, i, buf);
1869 current_insn_ptr = buildaddr;
1870 amd64_emit_call (get_raw_reg_func_addr ());
1871 }
1872
1873 static void
1874 amd64_emit_pop (void)
1875 {
1876 EMIT_ASM (amd64_pop,
1877 "pop %rax");
1878 }
1879
1880 static void
1881 amd64_emit_stack_flush (void)
1882 {
1883 EMIT_ASM (amd64_stack_flush,
1884 "push %rax");
1885 }
1886
1887 static void
1888 amd64_emit_zero_ext (int arg)
1889 {
1890 switch (arg)
1891 {
1892 case 8:
1893 EMIT_ASM (amd64_zero_ext_8,
1894 "and $0xff,%rax");
1895 break;
1896 case 16:
1897 EMIT_ASM (amd64_zero_ext_16,
1898 "and $0xffff,%rax");
1899 break;
1900 case 32:
1901 EMIT_ASM (amd64_zero_ext_32,
1902 "mov $0xffffffff,%rcx\n\t"
1903 "and %rcx,%rax");
1904 break;
1905 default:
1906 emit_error = 1;
1907 }
1908 }
1909
1910 static void
1911 amd64_emit_swap (void)
1912 {
1913 EMIT_ASM (amd64_swap,
1914 "mov %rax,%rcx\n\t"
1915 "pop %rax\n\t"
1916 "push %rcx");
1917 }
1918
1919 static void
1920 amd64_emit_stack_adjust (int n)
1921 {
1922 unsigned char buf[16];
1923 int i;
1924 CORE_ADDR buildaddr = current_insn_ptr;
1925
1926 i = 0;
1927 buf[i++] = 0x48; /* lea $<n>(%rsp),%rsp */
1928 buf[i++] = 0x8d;
1929 buf[i++] = 0x64;
1930 buf[i++] = 0x24;
1931 /* This only handles adjustments up to 16, but we don't expect any more. */
1932 buf[i++] = n * 8;
1933 append_insns (&buildaddr, i, buf);
1934 current_insn_ptr = buildaddr;
1935 }
1936
1937 /* FN's prototype is `LONGEST(*fn)(int)'. */
1938
1939 static void
1940 amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
1941 {
1942 unsigned char buf[16];
1943 int i;
1944 CORE_ADDR buildaddr;
1945
1946 buildaddr = current_insn_ptr;
1947 i = 0;
1948 buf[i++] = 0xbf; /* movl $<n>,%edi */
1949 memcpy (&buf[i], &arg1, sizeof (arg1));
1950 i += 4;
1951 append_insns (&buildaddr, i, buf);
1952 current_insn_ptr = buildaddr;
1953 amd64_emit_call (fn);
1954 }
1955
1956 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
1957
1958 static void
1959 amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
1960 {
1961 unsigned char buf[16];
1962 int i;
1963 CORE_ADDR buildaddr;
1964
1965 buildaddr = current_insn_ptr;
1966 i = 0;
1967 buf[i++] = 0xbf; /* movl $<n>,%edi */
1968 memcpy (&buf[i], &arg1, sizeof (arg1));
1969 i += 4;
1970 append_insns (&buildaddr, i, buf);
1971 current_insn_ptr = buildaddr;
1972 EMIT_ASM (amd64_void_call_2_a,
1973 /* Save away a copy of the stack top. */
1974 "push %rax\n\t"
1975 /* Also pass top as the second argument. */
1976 "mov %rax,%rsi");
1977 amd64_emit_call (fn);
1978 EMIT_ASM (amd64_void_call_2_b,
1979 /* Restore the stack top, %rax may have been trashed. */
1980 "pop %rax");
1981 }
1982
1983 void
1984 amd64_emit_eq_goto (int *offset_p, int *size_p)
1985 {
1986 EMIT_ASM (amd64_eq,
1987 "cmp %rax,(%rsp)\n\t"
1988 "jne .Lamd64_eq_fallthru\n\t"
1989 "lea 0x8(%rsp),%rsp\n\t"
1990 "pop %rax\n\t"
1991 /* jmp, but don't trust the assembler to choose the right jump */
1992 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
1993 ".Lamd64_eq_fallthru:\n\t"
1994 "lea 0x8(%rsp),%rsp\n\t"
1995 "pop %rax");
1996
1997 if (offset_p)
1998 *offset_p = 13;
1999 if (size_p)
2000 *size_p = 4;
2001 }
2002
2003 void
2004 amd64_emit_ne_goto (int *offset_p, int *size_p)
2005 {
2006 EMIT_ASM (amd64_ne,
2007 "cmp %rax,(%rsp)\n\t"
2008 "je .Lamd64_ne_fallthru\n\t"
2009 "lea 0x8(%rsp),%rsp\n\t"
2010 "pop %rax\n\t"
2011 /* jmp, but don't trust the assembler to choose the right jump */
2012 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2013 ".Lamd64_ne_fallthru:\n\t"
2014 "lea 0x8(%rsp),%rsp\n\t"
2015 "pop %rax");
2016
2017 if (offset_p)
2018 *offset_p = 13;
2019 if (size_p)
2020 *size_p = 4;
2021 }
2022
2023 void
2024 amd64_emit_lt_goto (int *offset_p, int *size_p)
2025 {
2026 EMIT_ASM (amd64_lt,
2027 "cmp %rax,(%rsp)\n\t"
2028 "jnl .Lamd64_lt_fallthru\n\t"
2029 "lea 0x8(%rsp),%rsp\n\t"
2030 "pop %rax\n\t"
2031 /* jmp, but don't trust the assembler to choose the right jump */
2032 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2033 ".Lamd64_lt_fallthru:\n\t"
2034 "lea 0x8(%rsp),%rsp\n\t"
2035 "pop %rax");
2036
2037 if (offset_p)
2038 *offset_p = 13;
2039 if (size_p)
2040 *size_p = 4;
2041 }
2042
2043 void
2044 amd64_emit_le_goto (int *offset_p, int *size_p)
2045 {
2046 EMIT_ASM (amd64_le,
2047 "cmp %rax,(%rsp)\n\t"
2048 "jnle .Lamd64_le_fallthru\n\t"
2049 "lea 0x8(%rsp),%rsp\n\t"
2050 "pop %rax\n\t"
2051 /* jmp, but don't trust the assembler to choose the right jump */
2052 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2053 ".Lamd64_le_fallthru:\n\t"
2054 "lea 0x8(%rsp),%rsp\n\t"
2055 "pop %rax");
2056
2057 if (offset_p)
2058 *offset_p = 13;
2059 if (size_p)
2060 *size_p = 4;
2061 }
2062
2063 void
2064 amd64_emit_gt_goto (int *offset_p, int *size_p)
2065 {
2066 EMIT_ASM (amd64_gt,
2067 "cmp %rax,(%rsp)\n\t"
2068 "jng .Lamd64_gt_fallthru\n\t"
2069 "lea 0x8(%rsp),%rsp\n\t"
2070 "pop %rax\n\t"
2071 /* jmp, but don't trust the assembler to choose the right jump */
2072 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2073 ".Lamd64_gt_fallthru:\n\t"
2074 "lea 0x8(%rsp),%rsp\n\t"
2075 "pop %rax");
2076
2077 if (offset_p)
2078 *offset_p = 13;
2079 if (size_p)
2080 *size_p = 4;
2081 }
2082
2083 void
2084 amd64_emit_ge_goto (int *offset_p, int *size_p)
2085 {
2086 EMIT_ASM (amd64_ge,
2087 "cmp %rax,(%rsp)\n\t"
2088 "jnge .Lamd64_ge_fallthru\n\t"
2089 ".Lamd64_ge_jump:\n\t"
2090 "lea 0x8(%rsp),%rsp\n\t"
2091 "pop %rax\n\t"
2092 /* jmp, but don't trust the assembler to choose the right jump */
2093 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2094 ".Lamd64_ge_fallthru:\n\t"
2095 "lea 0x8(%rsp),%rsp\n\t"
2096 "pop %rax");
2097
2098 if (offset_p)
2099 *offset_p = 13;
2100 if (size_p)
2101 *size_p = 4;
2102 }
2103
2104 struct emit_ops amd64_emit_ops =
2105 {
2106 amd64_emit_prologue,
2107 amd64_emit_epilogue,
2108 amd64_emit_add,
2109 amd64_emit_sub,
2110 amd64_emit_mul,
2111 amd64_emit_lsh,
2112 amd64_emit_rsh_signed,
2113 amd64_emit_rsh_unsigned,
2114 amd64_emit_ext,
2115 amd64_emit_log_not,
2116 amd64_emit_bit_and,
2117 amd64_emit_bit_or,
2118 amd64_emit_bit_xor,
2119 amd64_emit_bit_not,
2120 amd64_emit_equal,
2121 amd64_emit_less_signed,
2122 amd64_emit_less_unsigned,
2123 amd64_emit_ref,
2124 amd64_emit_if_goto,
2125 amd64_emit_goto,
2126 amd64_write_goto_address,
2127 amd64_emit_const,
2128 amd64_emit_call,
2129 amd64_emit_reg,
2130 amd64_emit_pop,
2131 amd64_emit_stack_flush,
2132 amd64_emit_zero_ext,
2133 amd64_emit_swap,
2134 amd64_emit_stack_adjust,
2135 amd64_emit_int_call_1,
2136 amd64_emit_void_call_2,
2137 amd64_emit_eq_goto,
2138 amd64_emit_ne_goto,
2139 amd64_emit_lt_goto,
2140 amd64_emit_le_goto,
2141 amd64_emit_gt_goto,
2142 amd64_emit_ge_goto
2143 };
2144
2145 #endif /* __x86_64__ */
2146
2147 static void
2148 i386_emit_prologue (void)
2149 {
2150 EMIT_ASM32 (i386_prologue,
2151 "push %ebp\n\t"
2152 "mov %esp,%ebp\n\t"
2153 "push %ebx");
2154 /* At this point, the raw regs base address is at 8(%ebp), and the
2155 value pointer is at 12(%ebp). */
2156 }
2157
2158 static void
2159 i386_emit_epilogue (void)
2160 {
2161 EMIT_ASM32 (i386_epilogue,
2162 "mov 12(%ebp),%ecx\n\t"
2163 "mov %eax,(%ecx)\n\t"
2164 "mov %ebx,0x4(%ecx)\n\t"
2165 "xor %eax,%eax\n\t"
2166 "pop %ebx\n\t"
2167 "pop %ebp\n\t"
2168 "ret");
2169 }
2170
2171 static void
2172 i386_emit_add (void)
2173 {
2174 EMIT_ASM32 (i386_add,
2175 "add (%esp),%eax\n\t"
2176 "adc 0x4(%esp),%ebx\n\t"
2177 "lea 0x8(%esp),%esp");
2178 }
2179
2180 static void
2181 i386_emit_sub (void)
2182 {
2183 EMIT_ASM32 (i386_sub,
2184 "subl %eax,(%esp)\n\t"
2185 "sbbl %ebx,4(%esp)\n\t"
2186 "pop %eax\n\t"
2187 "pop %ebx\n\t");
2188 }
2189
2190 static void
2191 i386_emit_mul (void)
2192 {
2193 emit_error = 1;
2194 }
2195
2196 static void
2197 i386_emit_lsh (void)
2198 {
2199 emit_error = 1;
2200 }
2201
2202 static void
2203 i386_emit_rsh_signed (void)
2204 {
2205 emit_error = 1;
2206 }
2207
2208 static void
2209 i386_emit_rsh_unsigned (void)
2210 {
2211 emit_error = 1;
2212 }
2213
2214 static void
2215 i386_emit_ext (int arg)
2216 {
2217 switch (arg)
2218 {
2219 case 8:
2220 EMIT_ASM32 (i386_ext_8,
2221 "cbtw\n\t"
2222 "cwtl\n\t"
2223 "movl %eax,%ebx\n\t"
2224 "sarl $31,%ebx");
2225 break;
2226 case 16:
2227 EMIT_ASM32 (i386_ext_16,
2228 "cwtl\n\t"
2229 "movl %eax,%ebx\n\t"
2230 "sarl $31,%ebx");
2231 break;
2232 case 32:
2233 EMIT_ASM32 (i386_ext_32,
2234 "movl %eax,%ebx\n\t"
2235 "sarl $31,%ebx");
2236 break;
2237 default:
2238 emit_error = 1;
2239 }
2240 }
2241
2242 static void
2243 i386_emit_log_not (void)
2244 {
2245 EMIT_ASM32 (i386_log_not,
2246 "or %ebx,%eax\n\t"
2247 "test %eax,%eax\n\t"
2248 "sete %cl\n\t"
2249 "xor %ebx,%ebx\n\t"
2250 "movzbl %cl,%eax");
2251 }
2252
2253 static void
2254 i386_emit_bit_and (void)
2255 {
2256 EMIT_ASM32 (i386_and,
2257 "and (%esp),%eax\n\t"
2258 "and 0x4(%esp),%ebx\n\t"
2259 "lea 0x8(%esp),%esp");
2260 }
2261
2262 static void
2263 i386_emit_bit_or (void)
2264 {
2265 EMIT_ASM32 (i386_or,
2266 "or (%esp),%eax\n\t"
2267 "or 0x4(%esp),%ebx\n\t"
2268 "lea 0x8(%esp),%esp");
2269 }
2270
2271 static void
2272 i386_emit_bit_xor (void)
2273 {
2274 EMIT_ASM32 (i386_xor,
2275 "xor (%esp),%eax\n\t"
2276 "xor 0x4(%esp),%ebx\n\t"
2277 "lea 0x8(%esp),%esp");
2278 }
2279
2280 static void
2281 i386_emit_bit_not (void)
2282 {
2283 EMIT_ASM32 (i386_bit_not,
2284 "xor $0xffffffff,%eax\n\t"
2285 "xor $0xffffffff,%ebx\n\t");
2286 }
2287
2288 static void
2289 i386_emit_equal (void)
2290 {
2291 EMIT_ASM32 (i386_equal,
2292 "cmpl %ebx,4(%esp)\n\t"
2293 "jne .Li386_equal_false\n\t"
2294 "cmpl %eax,(%esp)\n\t"
2295 "je .Li386_equal_true\n\t"
2296 ".Li386_equal_false:\n\t"
2297 "xor %eax,%eax\n\t"
2298 "jmp .Li386_equal_end\n\t"
2299 ".Li386_equal_true:\n\t"
2300 "mov $1,%eax\n\t"
2301 ".Li386_equal_end:\n\t"
2302 "xor %ebx,%ebx\n\t"
2303 "lea 0x8(%esp),%esp");
2304 }
2305
2306 static void
2307 i386_emit_less_signed (void)
2308 {
2309 EMIT_ASM32 (i386_less_signed,
2310 "cmpl %ebx,4(%esp)\n\t"
2311 "jl .Li386_less_signed_true\n\t"
2312 "jne .Li386_less_signed_false\n\t"
2313 "cmpl %eax,(%esp)\n\t"
2314 "jl .Li386_less_signed_true\n\t"
2315 ".Li386_less_signed_false:\n\t"
2316 "xor %eax,%eax\n\t"
2317 "jmp .Li386_less_signed_end\n\t"
2318 ".Li386_less_signed_true:\n\t"
2319 "mov $1,%eax\n\t"
2320 ".Li386_less_signed_end:\n\t"
2321 "xor %ebx,%ebx\n\t"
2322 "lea 0x8(%esp),%esp");
2323 }
2324
2325 static void
2326 i386_emit_less_unsigned (void)
2327 {
2328 EMIT_ASM32 (i386_less_unsigned,
2329 "cmpl %ebx,4(%esp)\n\t"
2330 "jb .Li386_less_unsigned_true\n\t"
2331 "jne .Li386_less_unsigned_false\n\t"
2332 "cmpl %eax,(%esp)\n\t"
2333 "jb .Li386_less_unsigned_true\n\t"
2334 ".Li386_less_unsigned_false:\n\t"
2335 "xor %eax,%eax\n\t"
2336 "jmp .Li386_less_unsigned_end\n\t"
2337 ".Li386_less_unsigned_true:\n\t"
2338 "mov $1,%eax\n\t"
2339 ".Li386_less_unsigned_end:\n\t"
2340 "xor %ebx,%ebx\n\t"
2341 "lea 0x8(%esp),%esp");
2342 }
2343
2344 static void
2345 i386_emit_ref (int size)
2346 {
2347 switch (size)
2348 {
2349 case 1:
2350 EMIT_ASM32 (i386_ref1,
2351 "movb (%eax),%al");
2352 break;
2353 case 2:
2354 EMIT_ASM32 (i386_ref2,
2355 "movw (%eax),%ax");
2356 break;
2357 case 4:
2358 EMIT_ASM32 (i386_ref4,
2359 "movl (%eax),%eax");
2360 break;
2361 case 8:
2362 EMIT_ASM32 (i386_ref8,
2363 "movl 4(%eax),%ebx\n\t"
2364 "movl (%eax),%eax");
2365 break;
2366 }
2367 }
2368
2369 static void
2370 i386_emit_if_goto (int *offset_p, int *size_p)
2371 {
2372 EMIT_ASM32 (i386_if_goto,
2373 "mov %eax,%ecx\n\t"
2374 "or %ebx,%ecx\n\t"
2375 "pop %eax\n\t"
2376 "pop %ebx\n\t"
2377 "cmpl $0,%ecx\n\t"
2378 /* Don't trust the assembler to choose the right jump */
2379 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2380
2381 if (offset_p)
2382 *offset_p = 11; /* be sure that this matches the sequence above */
2383 if (size_p)
2384 *size_p = 4;
2385 }
2386
2387 static void
2388 i386_emit_goto (int *offset_p, int *size_p)
2389 {
2390 EMIT_ASM32 (i386_goto,
2391 /* Don't trust the assembler to choose the right jump */
2392 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2393 if (offset_p)
2394 *offset_p = 1;
2395 if (size_p)
2396 *size_p = 4;
2397 }
2398
2399 static void
2400 i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2401 {
2402 int diff = (to - (from + size));
2403 unsigned char buf[sizeof (int)];
2404
2405 /* We're only doing 4-byte sizes at the moment. */
2406 if (size != 4)
2407 {
2408 emit_error = 1;
2409 return;
2410 }
2411
2412 memcpy (buf, &diff, sizeof (int));
2413 write_inferior_memory (from, buf, sizeof (int));
2414 }
2415
2416 static void
2417 i386_emit_const (LONGEST num)
2418 {
2419 unsigned char buf[16];
2420 int i, hi, lo;
2421 CORE_ADDR buildaddr = current_insn_ptr;
2422
2423 i = 0;
2424 buf[i++] = 0xb8; /* mov $<n>,%eax */
2425 lo = num & 0xffffffff;
2426 memcpy (&buf[i], &lo, sizeof (lo));
2427 i += 4;
2428 hi = ((num >> 32) & 0xffffffff);
2429 if (hi)
2430 {
2431 buf[i++] = 0xbb; /* mov $<n>,%ebx */
2432 memcpy (&buf[i], &hi, sizeof (hi));
2433 i += 4;
2434 }
2435 else
2436 {
2437 buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
2438 }
2439 append_insns (&buildaddr, i, buf);
2440 current_insn_ptr = buildaddr;
2441 }
2442
2443 static void
2444 i386_emit_call (CORE_ADDR fn)
2445 {
2446 unsigned char buf[16];
2447 int i, offset;
2448 CORE_ADDR buildaddr;
2449
2450 buildaddr = current_insn_ptr;
2451 i = 0;
2452 buf[i++] = 0xe8; /* call <reladdr> */
2453 offset = ((int) fn) - (buildaddr + 5);
2454 memcpy (buf + 1, &offset, 4);
2455 append_insns (&buildaddr, 5, buf);
2456 current_insn_ptr = buildaddr;
2457 }
2458
2459 static void
2460 i386_emit_reg (int reg)
2461 {
2462 unsigned char buf[16];
2463 int i;
2464 CORE_ADDR buildaddr;
2465
2466 EMIT_ASM32 (i386_reg_a,
2467 "sub $0x8,%esp");
2468 buildaddr = current_insn_ptr;
2469 i = 0;
2470 buf[i++] = 0xb8; /* mov $<n>,%eax */
2471 memcpy (&buf[i], &reg, sizeof (reg));
2472 i += 4;
2473 append_insns (&buildaddr, i, buf);
2474 current_insn_ptr = buildaddr;
2475 EMIT_ASM32 (i386_reg_b,
2476 "mov %eax,4(%esp)\n\t"
2477 "mov 8(%ebp),%eax\n\t"
2478 "mov %eax,(%esp)");
2479 i386_emit_call (get_raw_reg_func_addr ());
2480 EMIT_ASM32 (i386_reg_c,
2481 "xor %ebx,%ebx\n\t"
2482 "lea 0x8(%esp),%esp");
2483 }
2484
2485 static void
2486 i386_emit_pop (void)
2487 {
2488 EMIT_ASM32 (i386_pop,
2489 "pop %eax\n\t"
2490 "pop %ebx");
2491 }
2492
2493 static void
2494 i386_emit_stack_flush (void)
2495 {
2496 EMIT_ASM32 (i386_stack_flush,
2497 "push %ebx\n\t"
2498 "push %eax");
2499 }
2500
2501 static void
2502 i386_emit_zero_ext (int arg)
2503 {
2504 switch (arg)
2505 {
2506 case 8:
2507 EMIT_ASM32 (i386_zero_ext_8,
2508 "and $0xff,%eax\n\t"
2509 "xor %ebx,%ebx");
2510 break;
2511 case 16:
2512 EMIT_ASM32 (i386_zero_ext_16,
2513 "and $0xffff,%eax\n\t"
2514 "xor %ebx,%ebx");
2515 break;
2516 case 32:
2517 EMIT_ASM32 (i386_zero_ext_32,
2518 "xor %ebx,%ebx");
2519 break;
2520 default:
2521 emit_error = 1;
2522 }
2523 }
2524
2525 static void
2526 i386_emit_swap (void)
2527 {
2528 EMIT_ASM32 (i386_swap,
2529 "mov %eax,%ecx\n\t"
2530 "mov %ebx,%edx\n\t"
2531 "pop %eax\n\t"
2532 "pop %ebx\n\t"
2533 "push %edx\n\t"
2534 "push %ecx");
2535 }
2536
2537 static void
2538 i386_emit_stack_adjust (int n)
2539 {
2540 unsigned char buf[16];
2541 int i;
2542 CORE_ADDR buildaddr = current_insn_ptr;
2543
2544 i = 0;
2545 buf[i++] = 0x8d; /* lea $<n>(%esp),%esp */
2546 buf[i++] = 0x64;
2547 buf[i++] = 0x24;
2548 buf[i++] = n * 8;
2549 append_insns (&buildaddr, i, buf);
2550 current_insn_ptr = buildaddr;
2551 }
2552
2553 /* FN's prototype is `LONGEST(*fn)(int)'. */
2554
2555 static void
2556 i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
2557 {
2558 unsigned char buf[16];
2559 int i;
2560 CORE_ADDR buildaddr;
2561
2562 EMIT_ASM32 (i386_int_call_1_a,
2563 /* Reserve a bit of stack space. */
2564 "sub $0x8,%esp");
2565 /* Put the one argument on the stack. */
2566 buildaddr = current_insn_ptr;
2567 i = 0;
2568 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2569 buf[i++] = 0x04;
2570 buf[i++] = 0x24;
2571 memcpy (&buf[i], &arg1, sizeof (arg1));
2572 i += 4;
2573 append_insns (&buildaddr, i, buf);
2574 current_insn_ptr = buildaddr;
2575 i386_emit_call (fn);
2576 EMIT_ASM32 (i386_int_call_1_c,
2577 "mov %edx,%ebx\n\t"
2578 "lea 0x8(%esp),%esp");
2579 }
2580
2581 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2582
2583 static void
2584 i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
2585 {
2586 unsigned char buf[16];
2587 int i;
2588 CORE_ADDR buildaddr;
2589
2590 EMIT_ASM32 (i386_void_call_2_a,
2591 /* Preserve %eax only; we don't have to worry about %ebx. */
2592 "push %eax\n\t"
2593 /* Reserve a bit of stack space for arguments. */
2594 "sub $0x10,%esp\n\t"
2595 /* Copy "top" to the second argument position. (Note that
2596 we can't assume function won't scribble on its
2597 arguments, so don't try to restore from this.) */
2598 "mov %eax,4(%esp)\n\t"
2599 "mov %ebx,8(%esp)");
2600 /* Put the first argument on the stack. */
2601 buildaddr = current_insn_ptr;
2602 i = 0;
2603 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
2604 buf[i++] = 0x04;
2605 buf[i++] = 0x24;
2606 memcpy (&buf[i], &arg1, sizeof (arg1));
2607 i += 4;
2608 append_insns (&buildaddr, i, buf);
2609 current_insn_ptr = buildaddr;
2610 i386_emit_call (fn);
2611 EMIT_ASM32 (i386_void_call_2_b,
2612 "lea 0x10(%esp),%esp\n\t"
2613 /* Restore original stack top. */
2614 "pop %eax");
2615 }
2616
2617
2618 void
2619 i386_emit_eq_goto (int *offset_p, int *size_p)
2620 {
2621 EMIT_ASM32 (eq,
2622 /* Check low half first, more likely to be decider */
2623 "cmpl %eax,(%esp)\n\t"
2624 "jne .Leq_fallthru\n\t"
2625 "cmpl %ebx,4(%esp)\n\t"
2626 "jne .Leq_fallthru\n\t"
2627 "lea 0x8(%esp),%esp\n\t"
2628 "pop %eax\n\t"
2629 "pop %ebx\n\t"
2630 /* jmp, but don't trust the assembler to choose the right jump */
2631 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2632 ".Leq_fallthru:\n\t"
2633 "lea 0x8(%esp),%esp\n\t"
2634 "pop %eax\n\t"
2635 "pop %ebx");
2636
2637 if (offset_p)
2638 *offset_p = 18;
2639 if (size_p)
2640 *size_p = 4;
2641 }
2642
2643 void
2644 i386_emit_ne_goto (int *offset_p, int *size_p)
2645 {
2646 EMIT_ASM32 (ne,
2647 /* Check low half first, more likely to be decider */
2648 "cmpl %eax,(%esp)\n\t"
2649 "jne .Lne_jump\n\t"
2650 "cmpl %ebx,4(%esp)\n\t"
2651 "je .Lne_fallthru\n\t"
2652 ".Lne_jump:\n\t"
2653 "lea 0x8(%esp),%esp\n\t"
2654 "pop %eax\n\t"
2655 "pop %ebx\n\t"
2656 /* jmp, but don't trust the assembler to choose the right jump */
2657 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2658 ".Lne_fallthru:\n\t"
2659 "lea 0x8(%esp),%esp\n\t"
2660 "pop %eax\n\t"
2661 "pop %ebx");
2662
2663 if (offset_p)
2664 *offset_p = 18;
2665 if (size_p)
2666 *size_p = 4;
2667 }
2668
2669 void
2670 i386_emit_lt_goto (int *offset_p, int *size_p)
2671 {
2672 EMIT_ASM32 (lt,
2673 "cmpl %ebx,4(%esp)\n\t"
2674 "jl .Llt_jump\n\t"
2675 "jne .Llt_fallthru\n\t"
2676 "cmpl %eax,(%esp)\n\t"
2677 "jnl .Llt_fallthru\n\t"
2678 ".Llt_jump:\n\t"
2679 "lea 0x8(%esp),%esp\n\t"
2680 "pop %eax\n\t"
2681 "pop %ebx\n\t"
2682 /* jmp, but don't trust the assembler to choose the right jump */
2683 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2684 ".Llt_fallthru:\n\t"
2685 "lea 0x8(%esp),%esp\n\t"
2686 "pop %eax\n\t"
2687 "pop %ebx");
2688
2689 if (offset_p)
2690 *offset_p = 20;
2691 if (size_p)
2692 *size_p = 4;
2693 }
2694
2695 void
2696 i386_emit_le_goto (int *offset_p, int *size_p)
2697 {
2698 EMIT_ASM32 (le,
2699 "cmpl %ebx,4(%esp)\n\t"
2700 "jle .Lle_jump\n\t"
2701 "jne .Lle_fallthru\n\t"
2702 "cmpl %eax,(%esp)\n\t"
2703 "jnle .Lle_fallthru\n\t"
2704 ".Lle_jump:\n\t"
2705 "lea 0x8(%esp),%esp\n\t"
2706 "pop %eax\n\t"
2707 "pop %ebx\n\t"
2708 /* jmp, but don't trust the assembler to choose the right jump */
2709 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2710 ".Lle_fallthru:\n\t"
2711 "lea 0x8(%esp),%esp\n\t"
2712 "pop %eax\n\t"
2713 "pop %ebx");
2714
2715 if (offset_p)
2716 *offset_p = 20;
2717 if (size_p)
2718 *size_p = 4;
2719 }
2720
2721 void
2722 i386_emit_gt_goto (int *offset_p, int *size_p)
2723 {
2724 EMIT_ASM32 (gt,
2725 "cmpl %ebx,4(%esp)\n\t"
2726 "jg .Lgt_jump\n\t"
2727 "jne .Lgt_fallthru\n\t"
2728 "cmpl %eax,(%esp)\n\t"
2729 "jng .Lgt_fallthru\n\t"
2730 ".Lgt_jump:\n\t"
2731 "lea 0x8(%esp),%esp\n\t"
2732 "pop %eax\n\t"
2733 "pop %ebx\n\t"
2734 /* jmp, but don't trust the assembler to choose the right jump */
2735 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2736 ".Lgt_fallthru:\n\t"
2737 "lea 0x8(%esp),%esp\n\t"
2738 "pop %eax\n\t"
2739 "pop %ebx");
2740
2741 if (offset_p)
2742 *offset_p = 20;
2743 if (size_p)
2744 *size_p = 4;
2745 }
2746
2747 void
2748 i386_emit_ge_goto (int *offset_p, int *size_p)
2749 {
2750 EMIT_ASM32 (ge,
2751 "cmpl %ebx,4(%esp)\n\t"
2752 "jge .Lge_jump\n\t"
2753 "jne .Lge_fallthru\n\t"
2754 "cmpl %eax,(%esp)\n\t"
2755 "jnge .Lge_fallthru\n\t"
2756 ".Lge_jump:\n\t"
2757 "lea 0x8(%esp),%esp\n\t"
2758 "pop %eax\n\t"
2759 "pop %ebx\n\t"
2760 /* jmp, but don't trust the assembler to choose the right jump */
2761 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2762 ".Lge_fallthru:\n\t"
2763 "lea 0x8(%esp),%esp\n\t"
2764 "pop %eax\n\t"
2765 "pop %ebx");
2766
2767 if (offset_p)
2768 *offset_p = 20;
2769 if (size_p)
2770 *size_p = 4;
2771 }
2772
2773 struct emit_ops i386_emit_ops =
2774 {
2775 i386_emit_prologue,
2776 i386_emit_epilogue,
2777 i386_emit_add,
2778 i386_emit_sub,
2779 i386_emit_mul,
2780 i386_emit_lsh,
2781 i386_emit_rsh_signed,
2782 i386_emit_rsh_unsigned,
2783 i386_emit_ext,
2784 i386_emit_log_not,
2785 i386_emit_bit_and,
2786 i386_emit_bit_or,
2787 i386_emit_bit_xor,
2788 i386_emit_bit_not,
2789 i386_emit_equal,
2790 i386_emit_less_signed,
2791 i386_emit_less_unsigned,
2792 i386_emit_ref,
2793 i386_emit_if_goto,
2794 i386_emit_goto,
2795 i386_write_goto_address,
2796 i386_emit_const,
2797 i386_emit_call,
2798 i386_emit_reg,
2799 i386_emit_pop,
2800 i386_emit_stack_flush,
2801 i386_emit_zero_ext,
2802 i386_emit_swap,
2803 i386_emit_stack_adjust,
2804 i386_emit_int_call_1,
2805 i386_emit_void_call_2,
2806 i386_emit_eq_goto,
2807 i386_emit_ne_goto,
2808 i386_emit_lt_goto,
2809 i386_emit_le_goto,
2810 i386_emit_gt_goto,
2811 i386_emit_ge_goto
2812 };
2813
2814
2815 static struct emit_ops *
2816 x86_emit_ops (void)
2817 {
2818 #ifdef __x86_64__
2819 if (is_64bit_tdesc ())
2820 return &amd64_emit_ops;
2821 else
2822 #endif
2823 return &i386_emit_ops;
2824 }
2825
2826 /* Implementation of linux_target_ops method "sw_breakpoint_from_kind". */
2827
2828 static const gdb_byte *
2829 x86_sw_breakpoint_from_kind (int kind, int *size)
2830 {
2831 *size = x86_breakpoint_len;
2832 return x86_breakpoint;
2833 }
2834
2835 static int
2836 x86_supports_range_stepping (void)
2837 {
2838 return 1;
2839 }
2840
2841 /* Implementation of linux_target_ops method "supports_hardware_single_step".
2842 */
2843
2844 static int
2845 x86_supports_hardware_single_step (void)
2846 {
2847 return 1;
2848 }
2849
2850 static int
2851 x86_get_ipa_tdesc_idx (void)
2852 {
2853 struct regcache *regcache = get_thread_regcache (current_thread, 0);
2854 const struct target_desc *tdesc = regcache->tdesc;
2855
2856 #ifdef __x86_64__
2857 if (tdesc == tdesc_amd64_linux || tdesc == tdesc_amd64_linux_no_xml
2858 || tdesc == tdesc_x32_linux)
2859 return X86_TDESC_SSE;
2860 if (tdesc == tdesc_amd64_avx_linux || tdesc == tdesc_x32_avx_linux)
2861 return X86_TDESC_AVX;
2862 if (tdesc == tdesc_amd64_mpx_linux)
2863 return X86_TDESC_MPX;
2864 if (tdesc == tdesc_amd64_avx_mpx_linux)
2865 return X86_TDESC_AVX_MPX;
2866 if (tdesc == tdesc_amd64_avx512_linux || tdesc == tdesc_x32_avx512_linux)
2867 return X86_TDESC_AVX512;
2868 #endif
2869
2870 if (tdesc == tdesc_i386_mmx_linux)
2871 return X86_TDESC_MMX;
2872 if (tdesc == tdesc_i386_linux || tdesc == tdesc_i386_linux_no_xml)
2873 return X86_TDESC_SSE;
2874 if (tdesc == tdesc_i386_avx_linux)
2875 return X86_TDESC_AVX;
2876 if (tdesc == tdesc_i386_mpx_linux)
2877 return X86_TDESC_MPX;
2878 if (tdesc == tdesc_i386_avx_mpx_linux)
2879 return X86_TDESC_AVX_MPX;
2880 if (tdesc == tdesc_i386_avx512_linux)
2881 return X86_TDESC_AVX512;
2882
2883 return 0;
2884 }
2885
2886 /* This is initialized assuming an amd64 target.
2887 x86_arch_setup will correct it for i386 or amd64 targets. */
2888
2889 struct linux_target_ops the_low_target =
2890 {
2891 x86_arch_setup,
2892 x86_linux_regs_info,
2893 x86_cannot_fetch_register,
2894 x86_cannot_store_register,
2895 NULL, /* fetch_register */
2896 x86_get_pc,
2897 x86_set_pc,
2898 NULL, /* breakpoint_kind_from_pc */
2899 x86_sw_breakpoint_from_kind,
2900 NULL,
2901 1,
2902 x86_breakpoint_at,
2903 x86_supports_z_point_type,
2904 x86_insert_point,
2905 x86_remove_point,
2906 x86_stopped_by_watchpoint,
2907 x86_stopped_data_address,
2908 /* collect_ptrace_register/supply_ptrace_register are not needed in the
2909 native i386 case (no registers smaller than an xfer unit), and are not
2910 used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
2911 NULL,
2912 NULL,
2913 /* need to fix up i386 siginfo if host is amd64 */
2914 x86_siginfo_fixup,
2915 x86_linux_new_process,
2916 x86_linux_new_thread,
2917 x86_linux_new_fork,
2918 x86_linux_prepare_to_resume,
2919 x86_linux_process_qsupported,
2920 x86_supports_tracepoints,
2921 x86_get_thread_area,
2922 x86_install_fast_tracepoint_jump_pad,
2923 x86_emit_ops,
2924 x86_get_min_fast_tracepoint_insn_len,
2925 x86_supports_range_stepping,
2926 NULL, /* breakpoint_kind_from_current_state */
2927 x86_supports_hardware_single_step,
2928 x86_get_syscall_trapinfo,
2929 x86_get_ipa_tdesc_idx,
2930 };
2931
2932 void
2933 initialize_low_arch (void)
2934 {
2935 /* Initialize the Linux target descriptions. */
2936 #ifdef __x86_64__
2937 init_registers_amd64_linux ();
2938 init_registers_amd64_avx_linux ();
2939 init_registers_amd64_avx512_linux ();
2940 init_registers_amd64_mpx_linux ();
2941 init_registers_amd64_avx_mpx_linux ();
2942
2943 init_registers_x32_linux ();
2944 init_registers_x32_avx_linux ();
2945 init_registers_x32_avx512_linux ();
2946
2947 tdesc_amd64_linux_no_xml = XNEW (struct target_desc);
2948 copy_target_description (tdesc_amd64_linux_no_xml, tdesc_amd64_linux);
2949 tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
2950 #endif
2951 init_registers_i386_linux ();
2952 init_registers_i386_mmx_linux ();
2953 init_registers_i386_avx_linux ();
2954 init_registers_i386_avx512_linux ();
2955 init_registers_i386_mpx_linux ();
2956 init_registers_i386_avx_mpx_linux ();
2957
2958 tdesc_i386_linux_no_xml = XNEW (struct target_desc);
2959 copy_target_description (tdesc_i386_linux_no_xml, tdesc_i386_linux);
2960 tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
2961
2962 initialize_regsets_info (&x86_regsets_info);
2963 }