]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-x86-low.c
Straightforward fatal to internal_error conversions
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-x86-low.c
1 /* GNU/Linux/x86-64 specific low level interface, for the remote server
2 for GDB.
3 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include <signal.h>
22 #include <limits.h>
23 #include <inttypes.h>
24 #include "linux-low.h"
25 #include "i387-fp.h"
26 #include "i386-low.h"
27 #include "i386-xstate.h"
28
29 #include "gdb_proc_service.h"
30 /* Don't include elf/common.h if linux/elf.h got included by
31 gdb_proc_service.h. */
32 #ifndef ELFMAG0
33 #include "elf/common.h"
34 #endif
35
36 #include "agent.h"
37 #include "tdesc.h"
38 #include "tracepoint.h"
39 #include "ax.h"
40
41 #ifdef __x86_64__
42 /* Defined in auto-generated file amd64-linux.c. */
43 void init_registers_amd64_linux (void);
44 extern const struct target_desc *tdesc_amd64_linux;
45
46 /* Defined in auto-generated file amd64-avx-linux.c. */
47 void init_registers_amd64_avx_linux (void);
48 extern const struct target_desc *tdesc_amd64_avx_linux;
49
50 /* Defined in auto-generated file amd64-avx512-linux.c. */
51 void init_registers_amd64_avx512_linux (void);
52 extern const struct target_desc *tdesc_amd64_avx512_linux;
53
54 /* Defined in auto-generated file amd64-mpx-linux.c. */
55 void init_registers_amd64_mpx_linux (void);
56 extern const struct target_desc *tdesc_amd64_mpx_linux;
57
58 /* Defined in auto-generated file x32-linux.c. */
59 void init_registers_x32_linux (void);
60 extern const struct target_desc *tdesc_x32_linux;
61
62 /* Defined in auto-generated file x32-avx-linux.c. */
63 void init_registers_x32_avx_linux (void);
64 extern const struct target_desc *tdesc_x32_avx_linux;
65
66 /* Defined in auto-generated file x32-avx512-linux.c. */
67 void init_registers_x32_avx512_linux (void);
68 extern const struct target_desc *tdesc_x32_avx512_linux;
69
70 #endif
71
72 /* Defined in auto-generated file i386-linux.c. */
73 void init_registers_i386_linux (void);
74 extern const struct target_desc *tdesc_i386_linux;
75
76 /* Defined in auto-generated file i386-mmx-linux.c. */
77 void init_registers_i386_mmx_linux (void);
78 extern const struct target_desc *tdesc_i386_mmx_linux;
79
80 /* Defined in auto-generated file i386-avx-linux.c. */
81 void init_registers_i386_avx_linux (void);
82 extern const struct target_desc *tdesc_i386_avx_linux;
83
84 /* Defined in auto-generated file i386-avx512-linux.c. */
85 void init_registers_i386_avx512_linux (void);
86 extern const struct target_desc *tdesc_i386_avx512_linux;
87
88 /* Defined in auto-generated file i386-mpx-linux.c. */
89 void init_registers_i386_mpx_linux (void);
90 extern const struct target_desc *tdesc_i386_mpx_linux;
91
92 #ifdef __x86_64__
93 static struct target_desc *tdesc_amd64_linux_no_xml;
94 #endif
95 static struct target_desc *tdesc_i386_linux_no_xml;
96
97
98 static unsigned char jump_insn[] = { 0xe9, 0, 0, 0, 0 };
99 static unsigned char small_jump_insn[] = { 0x66, 0xe9, 0, 0 };
100
101 /* Backward compatibility for gdb without XML support. */
102
103 static const char *xmltarget_i386_linux_no_xml = "@<target>\
104 <architecture>i386</architecture>\
105 <osabi>GNU/Linux</osabi>\
106 </target>";
107
108 #ifdef __x86_64__
109 static const char *xmltarget_amd64_linux_no_xml = "@<target>\
110 <architecture>i386:x86-64</architecture>\
111 <osabi>GNU/Linux</osabi>\
112 </target>";
113 #endif
114
115 #include <sys/reg.h>
116 #include <sys/procfs.h>
117 #include <sys/ptrace.h>
118 #include <sys/uio.h>
119
120 #ifndef PTRACE_GETREGSET
121 #define PTRACE_GETREGSET 0x4204
122 #endif
123
124 #ifndef PTRACE_SETREGSET
125 #define PTRACE_SETREGSET 0x4205
126 #endif
127
128
129 #ifndef PTRACE_GET_THREAD_AREA
130 #define PTRACE_GET_THREAD_AREA 25
131 #endif
132
133 /* This definition comes from prctl.h, but some kernels may not have it. */
134 #ifndef PTRACE_ARCH_PRCTL
135 #define PTRACE_ARCH_PRCTL 30
136 #endif
137
138 /* The following definitions come from prctl.h, but may be absent
139 for certain configurations. */
140 #ifndef ARCH_GET_FS
141 #define ARCH_SET_GS 0x1001
142 #define ARCH_SET_FS 0x1002
143 #define ARCH_GET_FS 0x1003
144 #define ARCH_GET_GS 0x1004
145 #endif
146
147 /* Per-process arch-specific data we want to keep. */
148
149 struct arch_process_info
150 {
151 struct i386_debug_reg_state debug_reg_state;
152 };
153
154 /* Per-thread arch-specific data we want to keep. */
155
156 struct arch_lwp_info
157 {
158 /* Non-zero if our copy differs from what's recorded in the thread. */
159 int debug_registers_changed;
160 };
161
162 #ifdef __x86_64__
163
164 /* Mapping between the general-purpose registers in `struct user'
165 format and GDB's register array layout.
166 Note that the transfer layout uses 64-bit regs. */
167 static /*const*/ int i386_regmap[] =
168 {
169 RAX * 8, RCX * 8, RDX * 8, RBX * 8,
170 RSP * 8, RBP * 8, RSI * 8, RDI * 8,
171 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
172 DS * 8, ES * 8, FS * 8, GS * 8
173 };
174
175 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
176
177 /* So code below doesn't have to care, i386 or amd64. */
178 #define ORIG_EAX ORIG_RAX
179
180 static const int x86_64_regmap[] =
181 {
182 RAX * 8, RBX * 8, RCX * 8, RDX * 8,
183 RSI * 8, RDI * 8, RBP * 8, RSP * 8,
184 R8 * 8, R9 * 8, R10 * 8, R11 * 8,
185 R12 * 8, R13 * 8, R14 * 8, R15 * 8,
186 RIP * 8, EFLAGS * 8, CS * 8, SS * 8,
187 DS * 8, ES * 8, FS * 8, GS * 8,
188 -1, -1, -1, -1, -1, -1, -1, -1,
189 -1, -1, -1, -1, -1, -1, -1, -1,
190 -1, -1, -1, -1, -1, -1, -1, -1,
191 -1,
192 -1, -1, -1, -1, -1, -1, -1, -1,
193 ORIG_RAX * 8,
194 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
195 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
196 -1, -1, -1, -1, -1, -1, -1, -1, /* xmm16 ... xmm31 (AVX512) */
197 -1, -1, -1, -1, -1, -1, -1, -1,
198 -1, -1, -1, -1, -1, -1, -1, -1, /* ymm16 ... ymm31 (AVX512) */
199 -1, -1, -1, -1, -1, -1, -1, -1,
200 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
201 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm31 (AVX512) */
202 -1, -1, -1, -1, -1, -1, -1, -1,
203 -1, -1, -1, -1, -1, -1, -1, -1,
204 -1, -1, -1, -1, -1, -1, -1, -1
205 };
206
207 #define X86_64_NUM_REGS (sizeof (x86_64_regmap) / sizeof (x86_64_regmap[0]))
208 #define X86_64_USER_REGS (GS + 1)
209
210 #else /* ! __x86_64__ */
211
212 /* Mapping between the general-purpose registers in `struct user'
213 format and GDB's register array layout. */
214 static /*const*/ int i386_regmap[] =
215 {
216 EAX * 4, ECX * 4, EDX * 4, EBX * 4,
217 UESP * 4, EBP * 4, ESI * 4, EDI * 4,
218 EIP * 4, EFL * 4, CS * 4, SS * 4,
219 DS * 4, ES * 4, FS * 4, GS * 4
220 };
221
222 #define I386_NUM_REGS (sizeof (i386_regmap) / sizeof (i386_regmap[0]))
223
224 #endif
225
226 #ifdef __x86_64__
227
228 /* Returns true if the current inferior belongs to a x86-64 process,
229 per the tdesc. */
230
231 static int
232 is_64bit_tdesc (void)
233 {
234 struct regcache *regcache = get_thread_regcache (current_inferior, 0);
235
236 return register_size (regcache->tdesc, 0) == 8;
237 }
238
239 #endif
240
241 \f
242 /* Called by libthread_db. */
243
244 ps_err_e
245 ps_get_thread_area (const struct ps_prochandle *ph,
246 lwpid_t lwpid, int idx, void **base)
247 {
248 #ifdef __x86_64__
249 int use_64bit = is_64bit_tdesc ();
250
251 if (use_64bit)
252 {
253 switch (idx)
254 {
255 case FS:
256 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_FS) == 0)
257 return PS_OK;
258 break;
259 case GS:
260 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, base, ARCH_GET_GS) == 0)
261 return PS_OK;
262 break;
263 default:
264 return PS_BADADDR;
265 }
266 return PS_ERR;
267 }
268 #endif
269
270 {
271 unsigned int desc[4];
272
273 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid,
274 (void *) (intptr_t) idx, (unsigned long) &desc) < 0)
275 return PS_ERR;
276
277 /* Ensure we properly extend the value to 64-bits for x86_64. */
278 *base = (void *) (uintptr_t) desc[1];
279 return PS_OK;
280 }
281 }
282
283 /* Get the thread area address. This is used to recognize which
284 thread is which when tracing with the in-process agent library. We
285 don't read anything from the address, and treat it as opaque; it's
286 the address itself that we assume is unique per-thread. */
287
288 static int
289 x86_get_thread_area (int lwpid, CORE_ADDR *addr)
290 {
291 #ifdef __x86_64__
292 int use_64bit = is_64bit_tdesc ();
293
294 if (use_64bit)
295 {
296 void *base;
297 if (ptrace (PTRACE_ARCH_PRCTL, lwpid, &base, ARCH_GET_FS) == 0)
298 {
299 *addr = (CORE_ADDR) (uintptr_t) base;
300 return 0;
301 }
302
303 return -1;
304 }
305 #endif
306
307 {
308 struct lwp_info *lwp = find_lwp_pid (pid_to_ptid (lwpid));
309 struct thread_info *thr = get_lwp_thread (lwp);
310 struct regcache *regcache = get_thread_regcache (thr, 1);
311 unsigned int desc[4];
312 ULONGEST gs = 0;
313 const int reg_thread_area = 3; /* bits to scale down register value. */
314 int idx;
315
316 collect_register_by_name (regcache, "gs", &gs);
317
318 idx = gs >> reg_thread_area;
319
320 if (ptrace (PTRACE_GET_THREAD_AREA,
321 lwpid_of (thr),
322 (void *) (long) idx, (unsigned long) &desc) < 0)
323 return -1;
324
325 *addr = desc[1];
326 return 0;
327 }
328 }
329
330
331 \f
332 static int
333 x86_cannot_store_register (int regno)
334 {
335 #ifdef __x86_64__
336 if (is_64bit_tdesc ())
337 return 0;
338 #endif
339
340 return regno >= I386_NUM_REGS;
341 }
342
343 static int
344 x86_cannot_fetch_register (int regno)
345 {
346 #ifdef __x86_64__
347 if (is_64bit_tdesc ())
348 return 0;
349 #endif
350
351 return regno >= I386_NUM_REGS;
352 }
353
354 static void
355 x86_fill_gregset (struct regcache *regcache, void *buf)
356 {
357 int i;
358
359 #ifdef __x86_64__
360 if (register_size (regcache->tdesc, 0) == 8)
361 {
362 for (i = 0; i < X86_64_NUM_REGS; i++)
363 if (x86_64_regmap[i] != -1)
364 collect_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
365 return;
366 }
367
368 /* 32-bit inferior registers need to be zero-extended.
369 Callers would read uninitialized memory otherwise. */
370 memset (buf, 0x00, X86_64_USER_REGS * 8);
371 #endif
372
373 for (i = 0; i < I386_NUM_REGS; i++)
374 collect_register (regcache, i, ((char *) buf) + i386_regmap[i]);
375
376 collect_register_by_name (regcache, "orig_eax",
377 ((char *) buf) + ORIG_EAX * 4);
378 }
379
380 static void
381 x86_store_gregset (struct regcache *regcache, const void *buf)
382 {
383 int i;
384
385 #ifdef __x86_64__
386 if (register_size (regcache->tdesc, 0) == 8)
387 {
388 for (i = 0; i < X86_64_NUM_REGS; i++)
389 if (x86_64_regmap[i] != -1)
390 supply_register (regcache, i, ((char *) buf) + x86_64_regmap[i]);
391 return;
392 }
393 #endif
394
395 for (i = 0; i < I386_NUM_REGS; i++)
396 supply_register (regcache, i, ((char *) buf) + i386_regmap[i]);
397
398 supply_register_by_name (regcache, "orig_eax",
399 ((char *) buf) + ORIG_EAX * 4);
400 }
401
402 static void
403 x86_fill_fpregset (struct regcache *regcache, void *buf)
404 {
405 #ifdef __x86_64__
406 i387_cache_to_fxsave (regcache, buf);
407 #else
408 i387_cache_to_fsave (regcache, buf);
409 #endif
410 }
411
412 static void
413 x86_store_fpregset (struct regcache *regcache, const void *buf)
414 {
415 #ifdef __x86_64__
416 i387_fxsave_to_cache (regcache, buf);
417 #else
418 i387_fsave_to_cache (regcache, buf);
419 #endif
420 }
421
422 #ifndef __x86_64__
423
424 static void
425 x86_fill_fpxregset (struct regcache *regcache, void *buf)
426 {
427 i387_cache_to_fxsave (regcache, buf);
428 }
429
430 static void
431 x86_store_fpxregset (struct regcache *regcache, const void *buf)
432 {
433 i387_fxsave_to_cache (regcache, buf);
434 }
435
436 #endif
437
438 static void
439 x86_fill_xstateregset (struct regcache *regcache, void *buf)
440 {
441 i387_cache_to_xsave (regcache, buf);
442 }
443
444 static void
445 x86_store_xstateregset (struct regcache *regcache, const void *buf)
446 {
447 i387_xsave_to_cache (regcache, buf);
448 }
449
450 /* ??? The non-biarch i386 case stores all the i387 regs twice.
451 Once in i387_.*fsave.* and once in i387_.*fxsave.*.
452 This is, presumably, to handle the case where PTRACE_[GS]ETFPXREGS
453 doesn't work. IWBN to avoid the duplication in the case where it
454 does work. Maybe the arch_setup routine could check whether it works
455 and update the supported regsets accordingly. */
456
457 static struct regset_info x86_regsets[] =
458 {
459 #ifdef HAVE_PTRACE_GETREGS
460 { PTRACE_GETREGS, PTRACE_SETREGS, 0, sizeof (elf_gregset_t),
461 GENERAL_REGS,
462 x86_fill_gregset, x86_store_gregset },
463 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_X86_XSTATE, 0,
464 EXTENDED_REGS, x86_fill_xstateregset, x86_store_xstateregset },
465 # ifndef __x86_64__
466 # ifdef HAVE_PTRACE_GETFPXREGS
467 { PTRACE_GETFPXREGS, PTRACE_SETFPXREGS, 0, sizeof (elf_fpxregset_t),
468 EXTENDED_REGS,
469 x86_fill_fpxregset, x86_store_fpxregset },
470 # endif
471 # endif
472 { PTRACE_GETFPREGS, PTRACE_SETFPREGS, 0, sizeof (elf_fpregset_t),
473 FP_REGS,
474 x86_fill_fpregset, x86_store_fpregset },
475 #endif /* HAVE_PTRACE_GETREGS */
476 { 0, 0, 0, -1, -1, NULL, NULL }
477 };
478
479 static CORE_ADDR
480 x86_get_pc (struct regcache *regcache)
481 {
482 int use_64bit = register_size (regcache->tdesc, 0) == 8;
483
484 if (use_64bit)
485 {
486 unsigned long pc;
487 collect_register_by_name (regcache, "rip", &pc);
488 return (CORE_ADDR) pc;
489 }
490 else
491 {
492 unsigned int pc;
493 collect_register_by_name (regcache, "eip", &pc);
494 return (CORE_ADDR) pc;
495 }
496 }
497
498 static void
499 x86_set_pc (struct regcache *regcache, CORE_ADDR pc)
500 {
501 int use_64bit = register_size (regcache->tdesc, 0) == 8;
502
503 if (use_64bit)
504 {
505 unsigned long newpc = pc;
506 supply_register_by_name (regcache, "rip", &newpc);
507 }
508 else
509 {
510 unsigned int newpc = pc;
511 supply_register_by_name (regcache, "eip", &newpc);
512 }
513 }
514 \f
515 static const unsigned char x86_breakpoint[] = { 0xCC };
516 #define x86_breakpoint_len 1
517
518 static int
519 x86_breakpoint_at (CORE_ADDR pc)
520 {
521 unsigned char c;
522
523 (*the_target->read_memory) (pc, &c, 1);
524 if (c == 0xCC)
525 return 1;
526
527 return 0;
528 }
529 \f
530 /* Support for debug registers. */
531
532 static unsigned long
533 x86_linux_dr_get (ptid_t ptid, int regnum)
534 {
535 int tid;
536 unsigned long value;
537
538 tid = ptid_get_lwp (ptid);
539
540 errno = 0;
541 value = ptrace (PTRACE_PEEKUSER, tid,
542 offsetof (struct user, u_debugreg[regnum]), 0);
543 if (errno != 0)
544 error ("Couldn't read debug register");
545
546 return value;
547 }
548
549 static void
550 x86_linux_dr_set (ptid_t ptid, int regnum, unsigned long value)
551 {
552 int tid;
553
554 tid = ptid_get_lwp (ptid);
555
556 errno = 0;
557 ptrace (PTRACE_POKEUSER, tid,
558 offsetof (struct user, u_debugreg[regnum]), value);
559 if (errno != 0)
560 error ("Couldn't write debug register");
561 }
562
563 static int
564 update_debug_registers_callback (struct inferior_list_entry *entry,
565 void *pid_p)
566 {
567 struct thread_info *thr = (struct thread_info *) entry;
568 struct lwp_info *lwp = get_thread_lwp (thr);
569 int pid = *(int *) pid_p;
570
571 /* Only update the threads of this process. */
572 if (pid_of (thr) == pid)
573 {
574 /* The actual update is done later just before resuming the lwp,
575 we just mark that the registers need updating. */
576 lwp->arch_private->debug_registers_changed = 1;
577
578 /* If the lwp isn't stopped, force it to momentarily pause, so
579 we can update its debug registers. */
580 if (!lwp->stopped)
581 linux_stop_lwp (lwp);
582 }
583
584 return 0;
585 }
586
587 /* Update the inferior's debug register REGNUM from STATE. */
588
589 static void
590 i386_dr_low_set_addr (int regnum, CORE_ADDR addr)
591 {
592 /* Only update the threads of this process. */
593 int pid = pid_of (current_inferior);
594
595 if (! (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR))
596 fatal ("Invalid debug register %d", regnum);
597
598 find_inferior (&all_threads, update_debug_registers_callback, &pid);
599 }
600
601 /* Return the inferior's debug register REGNUM. */
602
603 static CORE_ADDR
604 i386_dr_low_get_addr (int regnum)
605 {
606 ptid_t ptid = ptid_of (current_inferior);
607
608 /* DR6 and DR7 are retrieved with some other way. */
609 gdb_assert (DR_FIRSTADDR <= regnum && regnum <= DR_LASTADDR);
610
611 return x86_linux_dr_get (ptid, regnum);
612 }
613
614 /* Update the inferior's DR7 debug control register from STATE. */
615
616 static void
617 i386_dr_low_set_control (unsigned long control)
618 {
619 /* Only update the threads of this process. */
620 int pid = pid_of (current_inferior);
621
622 find_inferior (&all_threads, update_debug_registers_callback, &pid);
623 }
624
625 /* Return the inferior's DR7 debug control register. */
626
627 static unsigned long
628 i386_dr_low_get_control (void)
629 {
630 ptid_t ptid = ptid_of (current_inferior);
631
632 return x86_linux_dr_get (ptid, DR_CONTROL);
633 }
634
635 /* Get the value of the DR6 debug status register from the inferior
636 and record it in STATE. */
637
638 static unsigned long
639 i386_dr_low_get_status (void)
640 {
641 ptid_t ptid = ptid_of (current_inferior);
642
643 return x86_linux_dr_get (ptid, DR_STATUS);
644 }
645
646 /* Low-level function vector. */
647 struct i386_dr_low_type i386_dr_low =
648 {
649 i386_dr_low_set_control,
650 i386_dr_low_set_addr,
651 i386_dr_low_get_addr,
652 i386_dr_low_get_status,
653 i386_dr_low_get_control,
654 sizeof (void *),
655 };
656 \f
657 /* Breakpoint/Watchpoint support. */
658
659 static int
660 x86_supports_z_point_type (char z_type)
661 {
662 switch (z_type)
663 {
664 case Z_PACKET_SW_BP:
665 case Z_PACKET_HW_BP:
666 case Z_PACKET_WRITE_WP:
667 case Z_PACKET_ACCESS_WP:
668 return 1;
669 default:
670 return 0;
671 }
672 }
673
674 static int
675 x86_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
676 int size, struct raw_breakpoint *bp)
677 {
678 struct process_info *proc = current_process ();
679
680 switch (type)
681 {
682 case raw_bkpt_type_sw:
683 return insert_memory_breakpoint (bp);
684
685 case raw_bkpt_type_hw:
686 case raw_bkpt_type_write_wp:
687 case raw_bkpt_type_access_wp:
688 {
689 enum target_hw_bp_type hw_type
690 = raw_bkpt_type_to_target_hw_bp_type (type);
691 struct i386_debug_reg_state *state
692 = &proc->private->arch_private->debug_reg_state;
693
694 return i386_dr_insert_watchpoint (state, hw_type, addr, size);
695 }
696
697 default:
698 /* Unsupported. */
699 return 1;
700 }
701 }
702
703 static int
704 x86_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
705 int size, struct raw_breakpoint *bp)
706 {
707 struct process_info *proc = current_process ();
708
709 switch (type)
710 {
711 case raw_bkpt_type_sw:
712 return remove_memory_breakpoint (bp);
713
714 case raw_bkpt_type_hw:
715 case raw_bkpt_type_write_wp:
716 case raw_bkpt_type_access_wp:
717 {
718 enum target_hw_bp_type hw_type
719 = raw_bkpt_type_to_target_hw_bp_type (type);
720 struct i386_debug_reg_state *state
721 = &proc->private->arch_private->debug_reg_state;
722
723 return i386_dr_remove_watchpoint (state, hw_type, addr, size);
724 }
725 default:
726 /* Unsupported. */
727 return 1;
728 }
729 }
730
731 static int
732 x86_stopped_by_watchpoint (void)
733 {
734 struct process_info *proc = current_process ();
735 return i386_dr_stopped_by_watchpoint (&proc->private->arch_private->debug_reg_state);
736 }
737
738 static CORE_ADDR
739 x86_stopped_data_address (void)
740 {
741 struct process_info *proc = current_process ();
742 CORE_ADDR addr;
743 if (i386_dr_stopped_data_address (&proc->private->arch_private->debug_reg_state,
744 &addr))
745 return addr;
746 return 0;
747 }
748 \f
749 /* Called when a new process is created. */
750
751 static struct arch_process_info *
752 x86_linux_new_process (void)
753 {
754 struct arch_process_info *info = xcalloc (1, sizeof (*info));
755
756 i386_low_init_dregs (&info->debug_reg_state);
757
758 return info;
759 }
760
761 /* Called when a new thread is detected. */
762
763 static struct arch_lwp_info *
764 x86_linux_new_thread (void)
765 {
766 struct arch_lwp_info *info = xcalloc (1, sizeof (*info));
767
768 info->debug_registers_changed = 1;
769
770 return info;
771 }
772
773 /* Called when resuming a thread.
774 If the debug regs have changed, update the thread's copies. */
775
776 static void
777 x86_linux_prepare_to_resume (struct lwp_info *lwp)
778 {
779 ptid_t ptid = ptid_of (get_lwp_thread (lwp));
780 int clear_status = 0;
781
782 if (lwp->arch_private->debug_registers_changed)
783 {
784 int i;
785 int pid = ptid_get_pid (ptid);
786 struct process_info *proc = find_process_pid (pid);
787 struct i386_debug_reg_state *state
788 = &proc->private->arch_private->debug_reg_state;
789
790 x86_linux_dr_set (ptid, DR_CONTROL, 0);
791
792 for (i = DR_FIRSTADDR; i <= DR_LASTADDR; i++)
793 if (state->dr_ref_count[i] > 0)
794 {
795 x86_linux_dr_set (ptid, i, state->dr_mirror[i]);
796
797 /* If we're setting a watchpoint, any change the inferior
798 had done itself to the debug registers needs to be
799 discarded, otherwise, i386_dr_stopped_data_address can
800 get confused. */
801 clear_status = 1;
802 }
803
804 if (state->dr_control_mirror != 0)
805 x86_linux_dr_set (ptid, DR_CONTROL, state->dr_control_mirror);
806
807 lwp->arch_private->debug_registers_changed = 0;
808 }
809
810 if (clear_status || lwp->stopped_by_watchpoint)
811 x86_linux_dr_set (ptid, DR_STATUS, 0);
812 }
813 \f
814 /* When GDBSERVER is built as a 64-bit application on linux, the
815 PTRACE_GETSIGINFO data is always presented in 64-bit layout. Since
816 debugging a 32-bit inferior with a 64-bit GDBSERVER should look the same
817 as debugging it with a 32-bit GDBSERVER, we do the 32-bit <-> 64-bit
818 conversion in-place ourselves. */
819
820 /* These types below (compat_*) define a siginfo type that is layout
821 compatible with the siginfo type exported by the 32-bit userspace
822 support. */
823
824 #ifdef __x86_64__
825
826 typedef int compat_int_t;
827 typedef unsigned int compat_uptr_t;
828
829 typedef int compat_time_t;
830 typedef int compat_timer_t;
831 typedef int compat_clock_t;
832
833 struct compat_timeval
834 {
835 compat_time_t tv_sec;
836 int tv_usec;
837 };
838
839 typedef union compat_sigval
840 {
841 compat_int_t sival_int;
842 compat_uptr_t sival_ptr;
843 } compat_sigval_t;
844
845 typedef struct compat_siginfo
846 {
847 int si_signo;
848 int si_errno;
849 int si_code;
850
851 union
852 {
853 int _pad[((128 / sizeof (int)) - 3)];
854
855 /* kill() */
856 struct
857 {
858 unsigned int _pid;
859 unsigned int _uid;
860 } _kill;
861
862 /* POSIX.1b timers */
863 struct
864 {
865 compat_timer_t _tid;
866 int _overrun;
867 compat_sigval_t _sigval;
868 } _timer;
869
870 /* POSIX.1b signals */
871 struct
872 {
873 unsigned int _pid;
874 unsigned int _uid;
875 compat_sigval_t _sigval;
876 } _rt;
877
878 /* SIGCHLD */
879 struct
880 {
881 unsigned int _pid;
882 unsigned int _uid;
883 int _status;
884 compat_clock_t _utime;
885 compat_clock_t _stime;
886 } _sigchld;
887
888 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
889 struct
890 {
891 unsigned int _addr;
892 } _sigfault;
893
894 /* SIGPOLL */
895 struct
896 {
897 int _band;
898 int _fd;
899 } _sigpoll;
900 } _sifields;
901 } compat_siginfo_t;
902
903 /* For x32, clock_t in _sigchld is 64bit aligned at 4 bytes. */
904 typedef long __attribute__ ((__aligned__ (4))) compat_x32_clock_t;
905
906 typedef struct compat_x32_siginfo
907 {
908 int si_signo;
909 int si_errno;
910 int si_code;
911
912 union
913 {
914 int _pad[((128 / sizeof (int)) - 3)];
915
916 /* kill() */
917 struct
918 {
919 unsigned int _pid;
920 unsigned int _uid;
921 } _kill;
922
923 /* POSIX.1b timers */
924 struct
925 {
926 compat_timer_t _tid;
927 int _overrun;
928 compat_sigval_t _sigval;
929 } _timer;
930
931 /* POSIX.1b signals */
932 struct
933 {
934 unsigned int _pid;
935 unsigned int _uid;
936 compat_sigval_t _sigval;
937 } _rt;
938
939 /* SIGCHLD */
940 struct
941 {
942 unsigned int _pid;
943 unsigned int _uid;
944 int _status;
945 compat_x32_clock_t _utime;
946 compat_x32_clock_t _stime;
947 } _sigchld;
948
949 /* SIGILL, SIGFPE, SIGSEGV, SIGBUS */
950 struct
951 {
952 unsigned int _addr;
953 } _sigfault;
954
955 /* SIGPOLL */
956 struct
957 {
958 int _band;
959 int _fd;
960 } _sigpoll;
961 } _sifields;
962 } compat_x32_siginfo_t __attribute__ ((__aligned__ (8)));
963
964 #define cpt_si_pid _sifields._kill._pid
965 #define cpt_si_uid _sifields._kill._uid
966 #define cpt_si_timerid _sifields._timer._tid
967 #define cpt_si_overrun _sifields._timer._overrun
968 #define cpt_si_status _sifields._sigchld._status
969 #define cpt_si_utime _sifields._sigchld._utime
970 #define cpt_si_stime _sifields._sigchld._stime
971 #define cpt_si_ptr _sifields._rt._sigval.sival_ptr
972 #define cpt_si_addr _sifields._sigfault._addr
973 #define cpt_si_band _sifields._sigpoll._band
974 #define cpt_si_fd _sifields._sigpoll._fd
975
976 /* glibc at least up to 2.3.2 doesn't have si_timerid, si_overrun.
977 In their place is si_timer1,si_timer2. */
978 #ifndef si_timerid
979 #define si_timerid si_timer1
980 #endif
981 #ifndef si_overrun
982 #define si_overrun si_timer2
983 #endif
984
985 static void
986 compat_siginfo_from_siginfo (compat_siginfo_t *to, siginfo_t *from)
987 {
988 memset (to, 0, sizeof (*to));
989
990 to->si_signo = from->si_signo;
991 to->si_errno = from->si_errno;
992 to->si_code = from->si_code;
993
994 if (to->si_code == SI_TIMER)
995 {
996 to->cpt_si_timerid = from->si_timerid;
997 to->cpt_si_overrun = from->si_overrun;
998 to->cpt_si_ptr = (intptr_t) from->si_ptr;
999 }
1000 else if (to->si_code == SI_USER)
1001 {
1002 to->cpt_si_pid = from->si_pid;
1003 to->cpt_si_uid = from->si_uid;
1004 }
1005 else if (to->si_code < 0)
1006 {
1007 to->cpt_si_pid = from->si_pid;
1008 to->cpt_si_uid = from->si_uid;
1009 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1010 }
1011 else
1012 {
1013 switch (to->si_signo)
1014 {
1015 case SIGCHLD:
1016 to->cpt_si_pid = from->si_pid;
1017 to->cpt_si_uid = from->si_uid;
1018 to->cpt_si_status = from->si_status;
1019 to->cpt_si_utime = from->si_utime;
1020 to->cpt_si_stime = from->si_stime;
1021 break;
1022 case SIGILL:
1023 case SIGFPE:
1024 case SIGSEGV:
1025 case SIGBUS:
1026 to->cpt_si_addr = (intptr_t) from->si_addr;
1027 break;
1028 case SIGPOLL:
1029 to->cpt_si_band = from->si_band;
1030 to->cpt_si_fd = from->si_fd;
1031 break;
1032 default:
1033 to->cpt_si_pid = from->si_pid;
1034 to->cpt_si_uid = from->si_uid;
1035 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1036 break;
1037 }
1038 }
1039 }
1040
1041 static void
1042 siginfo_from_compat_siginfo (siginfo_t *to, compat_siginfo_t *from)
1043 {
1044 memset (to, 0, sizeof (*to));
1045
1046 to->si_signo = from->si_signo;
1047 to->si_errno = from->si_errno;
1048 to->si_code = from->si_code;
1049
1050 if (to->si_code == SI_TIMER)
1051 {
1052 to->si_timerid = from->cpt_si_timerid;
1053 to->si_overrun = from->cpt_si_overrun;
1054 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1055 }
1056 else if (to->si_code == SI_USER)
1057 {
1058 to->si_pid = from->cpt_si_pid;
1059 to->si_uid = from->cpt_si_uid;
1060 }
1061 else if (to->si_code < 0)
1062 {
1063 to->si_pid = from->cpt_si_pid;
1064 to->si_uid = from->cpt_si_uid;
1065 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1066 }
1067 else
1068 {
1069 switch (to->si_signo)
1070 {
1071 case SIGCHLD:
1072 to->si_pid = from->cpt_si_pid;
1073 to->si_uid = from->cpt_si_uid;
1074 to->si_status = from->cpt_si_status;
1075 to->si_utime = from->cpt_si_utime;
1076 to->si_stime = from->cpt_si_stime;
1077 break;
1078 case SIGILL:
1079 case SIGFPE:
1080 case SIGSEGV:
1081 case SIGBUS:
1082 to->si_addr = (void *) (intptr_t) from->cpt_si_addr;
1083 break;
1084 case SIGPOLL:
1085 to->si_band = from->cpt_si_band;
1086 to->si_fd = from->cpt_si_fd;
1087 break;
1088 default:
1089 to->si_pid = from->cpt_si_pid;
1090 to->si_uid = from->cpt_si_uid;
1091 to->si_ptr = (void* ) (intptr_t) from->cpt_si_ptr;
1092 break;
1093 }
1094 }
1095 }
1096
1097 static void
1098 compat_x32_siginfo_from_siginfo (compat_x32_siginfo_t *to,
1099 siginfo_t *from)
1100 {
1101 memset (to, 0, sizeof (*to));
1102
1103 to->si_signo = from->si_signo;
1104 to->si_errno = from->si_errno;
1105 to->si_code = from->si_code;
1106
1107 if (to->si_code == SI_TIMER)
1108 {
1109 to->cpt_si_timerid = from->si_timerid;
1110 to->cpt_si_overrun = from->si_overrun;
1111 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1112 }
1113 else if (to->si_code == SI_USER)
1114 {
1115 to->cpt_si_pid = from->si_pid;
1116 to->cpt_si_uid = from->si_uid;
1117 }
1118 else if (to->si_code < 0)
1119 {
1120 to->cpt_si_pid = from->si_pid;
1121 to->cpt_si_uid = from->si_uid;
1122 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1123 }
1124 else
1125 {
1126 switch (to->si_signo)
1127 {
1128 case SIGCHLD:
1129 to->cpt_si_pid = from->si_pid;
1130 to->cpt_si_uid = from->si_uid;
1131 to->cpt_si_status = from->si_status;
1132 to->cpt_si_utime = from->si_utime;
1133 to->cpt_si_stime = from->si_stime;
1134 break;
1135 case SIGILL:
1136 case SIGFPE:
1137 case SIGSEGV:
1138 case SIGBUS:
1139 to->cpt_si_addr = (intptr_t) from->si_addr;
1140 break;
1141 case SIGPOLL:
1142 to->cpt_si_band = from->si_band;
1143 to->cpt_si_fd = from->si_fd;
1144 break;
1145 default:
1146 to->cpt_si_pid = from->si_pid;
1147 to->cpt_si_uid = from->si_uid;
1148 to->cpt_si_ptr = (intptr_t) from->si_ptr;
1149 break;
1150 }
1151 }
1152 }
1153
1154 static void
1155 siginfo_from_compat_x32_siginfo (siginfo_t *to,
1156 compat_x32_siginfo_t *from)
1157 {
1158 memset (to, 0, sizeof (*to));
1159
1160 to->si_signo = from->si_signo;
1161 to->si_errno = from->si_errno;
1162 to->si_code = from->si_code;
1163
1164 if (to->si_code == SI_TIMER)
1165 {
1166 to->si_timerid = from->cpt_si_timerid;
1167 to->si_overrun = from->cpt_si_overrun;
1168 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1169 }
1170 else if (to->si_code == SI_USER)
1171 {
1172 to->si_pid = from->cpt_si_pid;
1173 to->si_uid = from->cpt_si_uid;
1174 }
1175 else if (to->si_code < 0)
1176 {
1177 to->si_pid = from->cpt_si_pid;
1178 to->si_uid = from->cpt_si_uid;
1179 to->si_ptr = (void *) (intptr_t) from->cpt_si_ptr;
1180 }
1181 else
1182 {
1183 switch (to->si_signo)
1184 {
1185 case SIGCHLD:
1186 to->si_pid = from->cpt_si_pid;
1187 to->si_uid = from->cpt_si_uid;
1188 to->si_status = from->cpt_si_status;
1189 to->si_utime = from->cpt_si_utime;
1190 to->si_stime = from->cpt_si_stime;
1191 break;
1192 case SIGILL:
1193 case SIGFPE:
1194 case SIGSEGV:
1195 case SIGBUS:
1196 to->si_addr = (void *) (intptr_t) from->cpt_si_addr;
1197 break;
1198 case SIGPOLL:
1199 to->si_band = from->cpt_si_band;
1200 to->si_fd = from->cpt_si_fd;
1201 break;
1202 default:
1203 to->si_pid = from->cpt_si_pid;
1204 to->si_uid = from->cpt_si_uid;
1205 to->si_ptr = (void* ) (intptr_t) from->cpt_si_ptr;
1206 break;
1207 }
1208 }
1209 }
1210
1211 #endif /* __x86_64__ */
1212
1213 /* Convert a native/host siginfo object, into/from the siginfo in the
1214 layout of the inferiors' architecture. Returns true if any
1215 conversion was done; false otherwise. If DIRECTION is 1, then copy
1216 from INF to NATIVE. If DIRECTION is 0, copy from NATIVE to
1217 INF. */
1218
1219 static int
1220 x86_siginfo_fixup (siginfo_t *native, void *inf, int direction)
1221 {
1222 #ifdef __x86_64__
1223 unsigned int machine;
1224 int tid = lwpid_of (current_inferior);
1225 int is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
1226
1227 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
1228 if (!is_64bit_tdesc ())
1229 {
1230 gdb_assert (sizeof (siginfo_t) == sizeof (compat_siginfo_t));
1231
1232 if (direction == 0)
1233 compat_siginfo_from_siginfo ((struct compat_siginfo *) inf, native);
1234 else
1235 siginfo_from_compat_siginfo (native, (struct compat_siginfo *) inf);
1236
1237 return 1;
1238 }
1239 /* No fixup for native x32 GDB. */
1240 else if (!is_elf64 && sizeof (void *) == 8)
1241 {
1242 gdb_assert (sizeof (siginfo_t) == sizeof (compat_x32_siginfo_t));
1243
1244 if (direction == 0)
1245 compat_x32_siginfo_from_siginfo ((struct compat_x32_siginfo *) inf,
1246 native);
1247 else
1248 siginfo_from_compat_x32_siginfo (native,
1249 (struct compat_x32_siginfo *) inf);
1250
1251 return 1;
1252 }
1253 #endif
1254
1255 return 0;
1256 }
1257 \f
1258 static int use_xml;
1259
1260 /* Format of XSAVE extended state is:
1261 struct
1262 {
1263 fxsave_bytes[0..463]
1264 sw_usable_bytes[464..511]
1265 xstate_hdr_bytes[512..575]
1266 avx_bytes[576..831]
1267 future_state etc
1268 };
1269
1270 Same memory layout will be used for the coredump NT_X86_XSTATE
1271 representing the XSAVE extended state registers.
1272
1273 The first 8 bytes of the sw_usable_bytes[464..467] is the OS enabled
1274 extended state mask, which is the same as the extended control register
1275 0 (the XFEATURE_ENABLED_MASK register), XCR0. We can use this mask
1276 together with the mask saved in the xstate_hdr_bytes to determine what
1277 states the processor/OS supports and what state, used or initialized,
1278 the process/thread is in. */
1279 #define I386_LINUX_XSAVE_XCR0_OFFSET 464
1280
1281 /* Does the current host support the GETFPXREGS request? The header
1282 file may or may not define it, and even if it is defined, the
1283 kernel will return EIO if it's running on a pre-SSE processor. */
1284 int have_ptrace_getfpxregs =
1285 #ifdef HAVE_PTRACE_GETFPXREGS
1286 -1
1287 #else
1288 0
1289 #endif
1290 ;
1291
1292 /* Does the current host support PTRACE_GETREGSET? */
1293 static int have_ptrace_getregset = -1;
1294
1295 /* Get Linux/x86 target description from running target. */
1296
1297 static const struct target_desc *
1298 x86_linux_read_description (void)
1299 {
1300 unsigned int machine;
1301 int is_elf64;
1302 int xcr0_features;
1303 int tid;
1304 static uint64_t xcr0;
1305 struct regset_info *regset;
1306
1307 tid = lwpid_of (current_inferior);
1308
1309 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
1310
1311 if (sizeof (void *) == 4)
1312 {
1313 if (is_elf64 > 0)
1314 error (_("Can't debug 64-bit process with 32-bit GDBserver"));
1315 #ifndef __x86_64__
1316 else if (machine == EM_X86_64)
1317 error (_("Can't debug x86-64 process with 32-bit GDBserver"));
1318 #endif
1319 }
1320
1321 #if !defined __x86_64__ && defined HAVE_PTRACE_GETFPXREGS
1322 if (machine == EM_386 && have_ptrace_getfpxregs == -1)
1323 {
1324 elf_fpxregset_t fpxregs;
1325
1326 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (long) &fpxregs) < 0)
1327 {
1328 have_ptrace_getfpxregs = 0;
1329 have_ptrace_getregset = 0;
1330 return tdesc_i386_mmx_linux;
1331 }
1332 else
1333 have_ptrace_getfpxregs = 1;
1334 }
1335 #endif
1336
1337 if (!use_xml)
1338 {
1339 x86_xcr0 = I386_XSTATE_SSE_MASK;
1340
1341 /* Don't use XML. */
1342 #ifdef __x86_64__
1343 if (machine == EM_X86_64)
1344 return tdesc_amd64_linux_no_xml;
1345 else
1346 #endif
1347 return tdesc_i386_linux_no_xml;
1348 }
1349
1350 if (have_ptrace_getregset == -1)
1351 {
1352 uint64_t xstateregs[(I386_XSTATE_SSE_SIZE / sizeof (uint64_t))];
1353 struct iovec iov;
1354
1355 iov.iov_base = xstateregs;
1356 iov.iov_len = sizeof (xstateregs);
1357
1358 /* Check if PTRACE_GETREGSET works. */
1359 if (ptrace (PTRACE_GETREGSET, tid,
1360 (unsigned int) NT_X86_XSTATE, (long) &iov) < 0)
1361 have_ptrace_getregset = 0;
1362 else
1363 {
1364 have_ptrace_getregset = 1;
1365
1366 /* Get XCR0 from XSAVE extended state. */
1367 xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET
1368 / sizeof (uint64_t))];
1369
1370 /* Use PTRACE_GETREGSET if it is available. */
1371 for (regset = x86_regsets;
1372 regset->fill_function != NULL; regset++)
1373 if (regset->get_request == PTRACE_GETREGSET)
1374 regset->size = I386_XSTATE_SIZE (xcr0);
1375 else if (regset->type != GENERAL_REGS)
1376 regset->size = 0;
1377 }
1378 }
1379
1380 /* Check the native XCR0 only if PTRACE_GETREGSET is available. */
1381 xcr0_features = (have_ptrace_getregset
1382 && (xcr0 & I386_XSTATE_ALL_MASK));
1383
1384 if (xcr0_features)
1385 x86_xcr0 = xcr0;
1386
1387 if (machine == EM_X86_64)
1388 {
1389 #ifdef __x86_64__
1390 if (is_elf64)
1391 {
1392 if (xcr0_features)
1393 {
1394 switch (xcr0 & I386_XSTATE_ALL_MASK)
1395 {
1396 case I386_XSTATE_AVX512_MASK:
1397 return tdesc_amd64_avx512_linux;
1398
1399 case I386_XSTATE_MPX_MASK:
1400 return tdesc_amd64_mpx_linux;
1401
1402 case I386_XSTATE_AVX_MASK:
1403 return tdesc_amd64_avx_linux;
1404
1405 default:
1406 return tdesc_amd64_linux;
1407 }
1408 }
1409 else
1410 return tdesc_amd64_linux;
1411 }
1412 else
1413 {
1414 if (xcr0_features)
1415 {
1416 switch (xcr0 & I386_XSTATE_ALL_MASK)
1417 {
1418 case I386_XSTATE_AVX512_MASK:
1419 return tdesc_x32_avx512_linux;
1420
1421 case I386_XSTATE_MPX_MASK: /* No MPX on x32. */
1422 case I386_XSTATE_AVX_MASK:
1423 return tdesc_x32_avx_linux;
1424
1425 default:
1426 return tdesc_x32_linux;
1427 }
1428 }
1429 else
1430 return tdesc_x32_linux;
1431 }
1432 #endif
1433 }
1434 else
1435 {
1436 if (xcr0_features)
1437 {
1438 switch (xcr0 & I386_XSTATE_ALL_MASK)
1439 {
1440 case (I386_XSTATE_AVX512_MASK):
1441 return tdesc_i386_avx512_linux;
1442
1443 case (I386_XSTATE_MPX_MASK):
1444 return tdesc_i386_mpx_linux;
1445
1446 case (I386_XSTATE_AVX_MASK):
1447 return tdesc_i386_avx_linux;
1448
1449 default:
1450 return tdesc_i386_linux;
1451 }
1452 }
1453 else
1454 return tdesc_i386_linux;
1455 }
1456
1457 gdb_assert_not_reached ("failed to return tdesc");
1458 }
1459
1460 /* Callback for find_inferior. Stops iteration when a thread with a
1461 given PID is found. */
1462
1463 static int
1464 same_process_callback (struct inferior_list_entry *entry, void *data)
1465 {
1466 int pid = *(int *) data;
1467
1468 return (ptid_get_pid (entry->id) == pid);
1469 }
1470
1471 /* Callback for for_each_inferior. Calls the arch_setup routine for
1472 each process. */
1473
1474 static void
1475 x86_arch_setup_process_callback (struct inferior_list_entry *entry)
1476 {
1477 int pid = ptid_get_pid (entry->id);
1478
1479 /* Look up any thread of this processes. */
1480 current_inferior
1481 = (struct thread_info *) find_inferior (&all_threads,
1482 same_process_callback, &pid);
1483
1484 the_low_target.arch_setup ();
1485 }
1486
1487 /* Update all the target description of all processes; a new GDB
1488 connected, and it may or not support xml target descriptions. */
1489
1490 static void
1491 x86_linux_update_xmltarget (void)
1492 {
1493 struct thread_info *save_inferior = current_inferior;
1494
1495 /* Before changing the register cache's internal layout, flush the
1496 contents of the current valid caches back to the threads, and
1497 release the current regcache objects. */
1498 regcache_release ();
1499
1500 for_each_inferior (&all_processes, x86_arch_setup_process_callback);
1501
1502 current_inferior = save_inferior;
1503 }
1504
1505 /* Process qSupported query, "xmlRegisters=". Update the buffer size for
1506 PTRACE_GETREGSET. */
1507
1508 static void
1509 x86_linux_process_qsupported (const char *query)
1510 {
1511 /* Return if gdb doesn't support XML. If gdb sends "xmlRegisters="
1512 with "i386" in qSupported query, it supports x86 XML target
1513 descriptions. */
1514 use_xml = 0;
1515 if (query != NULL && strncmp (query, "xmlRegisters=", 13) == 0)
1516 {
1517 char *copy = xstrdup (query + 13);
1518 char *p;
1519
1520 for (p = strtok (copy, ","); p != NULL; p = strtok (NULL, ","))
1521 {
1522 if (strcmp (p, "i386") == 0)
1523 {
1524 use_xml = 1;
1525 break;
1526 }
1527 }
1528
1529 free (copy);
1530 }
1531
1532 x86_linux_update_xmltarget ();
1533 }
1534
1535 /* Common for x86/x86-64. */
1536
1537 static struct regsets_info x86_regsets_info =
1538 {
1539 x86_regsets, /* regsets */
1540 0, /* num_regsets */
1541 NULL, /* disabled_regsets */
1542 };
1543
1544 #ifdef __x86_64__
1545 static struct regs_info amd64_linux_regs_info =
1546 {
1547 NULL, /* regset_bitmap */
1548 NULL, /* usrregs_info */
1549 &x86_regsets_info
1550 };
1551 #endif
1552 static struct usrregs_info i386_linux_usrregs_info =
1553 {
1554 I386_NUM_REGS,
1555 i386_regmap,
1556 };
1557
1558 static struct regs_info i386_linux_regs_info =
1559 {
1560 NULL, /* regset_bitmap */
1561 &i386_linux_usrregs_info,
1562 &x86_regsets_info
1563 };
1564
1565 const struct regs_info *
1566 x86_linux_regs_info (void)
1567 {
1568 #ifdef __x86_64__
1569 if (is_64bit_tdesc ())
1570 return &amd64_linux_regs_info;
1571 else
1572 #endif
1573 return &i386_linux_regs_info;
1574 }
1575
1576 /* Initialize the target description for the architecture of the
1577 inferior. */
1578
1579 static void
1580 x86_arch_setup (void)
1581 {
1582 current_process ()->tdesc = x86_linux_read_description ();
1583 }
1584
1585 static int
1586 x86_supports_tracepoints (void)
1587 {
1588 return 1;
1589 }
1590
1591 static void
1592 append_insns (CORE_ADDR *to, size_t len, const unsigned char *buf)
1593 {
1594 write_inferior_memory (*to, buf, len);
1595 *to += len;
1596 }
1597
1598 static int
1599 push_opcode (unsigned char *buf, char *op)
1600 {
1601 unsigned char *buf_org = buf;
1602
1603 while (1)
1604 {
1605 char *endptr;
1606 unsigned long ul = strtoul (op, &endptr, 16);
1607
1608 if (endptr == op)
1609 break;
1610
1611 *buf++ = ul;
1612 op = endptr;
1613 }
1614
1615 return buf - buf_org;
1616 }
1617
1618 #ifdef __x86_64__
1619
1620 /* Build a jump pad that saves registers and calls a collection
1621 function. Writes a jump instruction to the jump pad to
1622 JJUMPAD_INSN. The caller is responsible to write it in at the
1623 tracepoint address. */
1624
1625 static int
1626 amd64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1627 CORE_ADDR collector,
1628 CORE_ADDR lockaddr,
1629 ULONGEST orig_size,
1630 CORE_ADDR *jump_entry,
1631 CORE_ADDR *trampoline,
1632 ULONGEST *trampoline_size,
1633 unsigned char *jjump_pad_insn,
1634 ULONGEST *jjump_pad_insn_size,
1635 CORE_ADDR *adjusted_insn_addr,
1636 CORE_ADDR *adjusted_insn_addr_end,
1637 char *err)
1638 {
1639 unsigned char buf[40];
1640 int i, offset;
1641 int64_t loffset;
1642
1643 CORE_ADDR buildaddr = *jump_entry;
1644
1645 /* Build the jump pad. */
1646
1647 /* First, do tracepoint data collection. Save registers. */
1648 i = 0;
1649 /* Need to ensure stack pointer saved first. */
1650 buf[i++] = 0x54; /* push %rsp */
1651 buf[i++] = 0x55; /* push %rbp */
1652 buf[i++] = 0x57; /* push %rdi */
1653 buf[i++] = 0x56; /* push %rsi */
1654 buf[i++] = 0x52; /* push %rdx */
1655 buf[i++] = 0x51; /* push %rcx */
1656 buf[i++] = 0x53; /* push %rbx */
1657 buf[i++] = 0x50; /* push %rax */
1658 buf[i++] = 0x41; buf[i++] = 0x57; /* push %r15 */
1659 buf[i++] = 0x41; buf[i++] = 0x56; /* push %r14 */
1660 buf[i++] = 0x41; buf[i++] = 0x55; /* push %r13 */
1661 buf[i++] = 0x41; buf[i++] = 0x54; /* push %r12 */
1662 buf[i++] = 0x41; buf[i++] = 0x53; /* push %r11 */
1663 buf[i++] = 0x41; buf[i++] = 0x52; /* push %r10 */
1664 buf[i++] = 0x41; buf[i++] = 0x51; /* push %r9 */
1665 buf[i++] = 0x41; buf[i++] = 0x50; /* push %r8 */
1666 buf[i++] = 0x9c; /* pushfq */
1667 buf[i++] = 0x48; /* movl <addr>,%rdi */
1668 buf[i++] = 0xbf;
1669 *((unsigned long *)(buf + i)) = (unsigned long) tpaddr;
1670 i += sizeof (unsigned long);
1671 buf[i++] = 0x57; /* push %rdi */
1672 append_insns (&buildaddr, i, buf);
1673
1674 /* Stack space for the collecting_t object. */
1675 i = 0;
1676 i += push_opcode (&buf[i], "48 83 ec 18"); /* sub $0x18,%rsp */
1677 i += push_opcode (&buf[i], "48 b8"); /* mov <tpoint>,%rax */
1678 memcpy (buf + i, &tpoint, 8);
1679 i += 8;
1680 i += push_opcode (&buf[i], "48 89 04 24"); /* mov %rax,(%rsp) */
1681 i += push_opcode (&buf[i],
1682 "64 48 8b 04 25 00 00 00 00"); /* mov %fs:0x0,%rax */
1683 i += push_opcode (&buf[i], "48 89 44 24 08"); /* mov %rax,0x8(%rsp) */
1684 append_insns (&buildaddr, i, buf);
1685
1686 /* spin-lock. */
1687 i = 0;
1688 i += push_opcode (&buf[i], "48 be"); /* movl <lockaddr>,%rsi */
1689 memcpy (&buf[i], (void *) &lockaddr, 8);
1690 i += 8;
1691 i += push_opcode (&buf[i], "48 89 e1"); /* mov %rsp,%rcx */
1692 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1693 i += push_opcode (&buf[i], "f0 48 0f b1 0e"); /* lock cmpxchg %rcx,(%rsi) */
1694 i += push_opcode (&buf[i], "48 85 c0"); /* test %rax,%rax */
1695 i += push_opcode (&buf[i], "75 f4"); /* jne <again> */
1696 append_insns (&buildaddr, i, buf);
1697
1698 /* Set up the gdb_collect call. */
1699 /* At this point, (stack pointer + 0x18) is the base of our saved
1700 register block. */
1701
1702 i = 0;
1703 i += push_opcode (&buf[i], "48 89 e6"); /* mov %rsp,%rsi */
1704 i += push_opcode (&buf[i], "48 83 c6 18"); /* add $0x18,%rsi */
1705
1706 /* tpoint address may be 64-bit wide. */
1707 i += push_opcode (&buf[i], "48 bf"); /* movl <addr>,%rdi */
1708 memcpy (buf + i, &tpoint, 8);
1709 i += 8;
1710 append_insns (&buildaddr, i, buf);
1711
1712 /* The collector function being in the shared library, may be
1713 >31-bits away off the jump pad. */
1714 i = 0;
1715 i += push_opcode (&buf[i], "48 b8"); /* mov $collector,%rax */
1716 memcpy (buf + i, &collector, 8);
1717 i += 8;
1718 i += push_opcode (&buf[i], "ff d0"); /* callq *%rax */
1719 append_insns (&buildaddr, i, buf);
1720
1721 /* Clear the spin-lock. */
1722 i = 0;
1723 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1724 i += push_opcode (&buf[i], "48 a3"); /* mov %rax, lockaddr */
1725 memcpy (buf + i, &lockaddr, 8);
1726 i += 8;
1727 append_insns (&buildaddr, i, buf);
1728
1729 /* Remove stack that had been used for the collect_t object. */
1730 i = 0;
1731 i += push_opcode (&buf[i], "48 83 c4 18"); /* add $0x18,%rsp */
1732 append_insns (&buildaddr, i, buf);
1733
1734 /* Restore register state. */
1735 i = 0;
1736 buf[i++] = 0x48; /* add $0x8,%rsp */
1737 buf[i++] = 0x83;
1738 buf[i++] = 0xc4;
1739 buf[i++] = 0x08;
1740 buf[i++] = 0x9d; /* popfq */
1741 buf[i++] = 0x41; buf[i++] = 0x58; /* pop %r8 */
1742 buf[i++] = 0x41; buf[i++] = 0x59; /* pop %r9 */
1743 buf[i++] = 0x41; buf[i++] = 0x5a; /* pop %r10 */
1744 buf[i++] = 0x41; buf[i++] = 0x5b; /* pop %r11 */
1745 buf[i++] = 0x41; buf[i++] = 0x5c; /* pop %r12 */
1746 buf[i++] = 0x41; buf[i++] = 0x5d; /* pop %r13 */
1747 buf[i++] = 0x41; buf[i++] = 0x5e; /* pop %r14 */
1748 buf[i++] = 0x41; buf[i++] = 0x5f; /* pop %r15 */
1749 buf[i++] = 0x58; /* pop %rax */
1750 buf[i++] = 0x5b; /* pop %rbx */
1751 buf[i++] = 0x59; /* pop %rcx */
1752 buf[i++] = 0x5a; /* pop %rdx */
1753 buf[i++] = 0x5e; /* pop %rsi */
1754 buf[i++] = 0x5f; /* pop %rdi */
1755 buf[i++] = 0x5d; /* pop %rbp */
1756 buf[i++] = 0x5c; /* pop %rsp */
1757 append_insns (&buildaddr, i, buf);
1758
1759 /* Now, adjust the original instruction to execute in the jump
1760 pad. */
1761 *adjusted_insn_addr = buildaddr;
1762 relocate_instruction (&buildaddr, tpaddr);
1763 *adjusted_insn_addr_end = buildaddr;
1764
1765 /* Finally, write a jump back to the program. */
1766
1767 loffset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1768 if (loffset > INT_MAX || loffset < INT_MIN)
1769 {
1770 sprintf (err,
1771 "E.Jump back from jump pad too far from tracepoint "
1772 "(offset 0x%" PRIx64 " > int32).", loffset);
1773 return 1;
1774 }
1775
1776 offset = (int) loffset;
1777 memcpy (buf, jump_insn, sizeof (jump_insn));
1778 memcpy (buf + 1, &offset, 4);
1779 append_insns (&buildaddr, sizeof (jump_insn), buf);
1780
1781 /* The jump pad is now built. Wire in a jump to our jump pad. This
1782 is always done last (by our caller actually), so that we can
1783 install fast tracepoints with threads running. This relies on
1784 the agent's atomic write support. */
1785 loffset = *jump_entry - (tpaddr + sizeof (jump_insn));
1786 if (loffset > INT_MAX || loffset < INT_MIN)
1787 {
1788 sprintf (err,
1789 "E.Jump pad too far from tracepoint "
1790 "(offset 0x%" PRIx64 " > int32).", loffset);
1791 return 1;
1792 }
1793
1794 offset = (int) loffset;
1795
1796 memcpy (buf, jump_insn, sizeof (jump_insn));
1797 memcpy (buf + 1, &offset, 4);
1798 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1799 *jjump_pad_insn_size = sizeof (jump_insn);
1800
1801 /* Return the end address of our pad. */
1802 *jump_entry = buildaddr;
1803
1804 return 0;
1805 }
1806
1807 #endif /* __x86_64__ */
1808
1809 /* Build a jump pad that saves registers and calls a collection
1810 function. Writes a jump instruction to the jump pad to
1811 JJUMPAD_INSN. The caller is responsible to write it in at the
1812 tracepoint address. */
1813
1814 static int
1815 i386_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1816 CORE_ADDR collector,
1817 CORE_ADDR lockaddr,
1818 ULONGEST orig_size,
1819 CORE_ADDR *jump_entry,
1820 CORE_ADDR *trampoline,
1821 ULONGEST *trampoline_size,
1822 unsigned char *jjump_pad_insn,
1823 ULONGEST *jjump_pad_insn_size,
1824 CORE_ADDR *adjusted_insn_addr,
1825 CORE_ADDR *adjusted_insn_addr_end,
1826 char *err)
1827 {
1828 unsigned char buf[0x100];
1829 int i, offset;
1830 CORE_ADDR buildaddr = *jump_entry;
1831
1832 /* Build the jump pad. */
1833
1834 /* First, do tracepoint data collection. Save registers. */
1835 i = 0;
1836 buf[i++] = 0x60; /* pushad */
1837 buf[i++] = 0x68; /* push tpaddr aka $pc */
1838 *((int *)(buf + i)) = (int) tpaddr;
1839 i += 4;
1840 buf[i++] = 0x9c; /* pushf */
1841 buf[i++] = 0x1e; /* push %ds */
1842 buf[i++] = 0x06; /* push %es */
1843 buf[i++] = 0x0f; /* push %fs */
1844 buf[i++] = 0xa0;
1845 buf[i++] = 0x0f; /* push %gs */
1846 buf[i++] = 0xa8;
1847 buf[i++] = 0x16; /* push %ss */
1848 buf[i++] = 0x0e; /* push %cs */
1849 append_insns (&buildaddr, i, buf);
1850
1851 /* Stack space for the collecting_t object. */
1852 i = 0;
1853 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1854
1855 /* Build the object. */
1856 i += push_opcode (&buf[i], "b8"); /* mov <tpoint>,%eax */
1857 memcpy (buf + i, &tpoint, 4);
1858 i += 4;
1859 i += push_opcode (&buf[i], "89 04 24"); /* mov %eax,(%esp) */
1860
1861 i += push_opcode (&buf[i], "65 a1 00 00 00 00"); /* mov %gs:0x0,%eax */
1862 i += push_opcode (&buf[i], "89 44 24 04"); /* mov %eax,0x4(%esp) */
1863 append_insns (&buildaddr, i, buf);
1864
1865 /* spin-lock. Note this is using cmpxchg, which leaves i386 behind.
1866 If we cared for it, this could be using xchg alternatively. */
1867
1868 i = 0;
1869 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1870 i += push_opcode (&buf[i], "f0 0f b1 25"); /* lock cmpxchg
1871 %esp,<lockaddr> */
1872 memcpy (&buf[i], (void *) &lockaddr, 4);
1873 i += 4;
1874 i += push_opcode (&buf[i], "85 c0"); /* test %eax,%eax */
1875 i += push_opcode (&buf[i], "75 f2"); /* jne <again> */
1876 append_insns (&buildaddr, i, buf);
1877
1878
1879 /* Set up arguments to the gdb_collect call. */
1880 i = 0;
1881 i += push_opcode (&buf[i], "89 e0"); /* mov %esp,%eax */
1882 i += push_opcode (&buf[i], "83 c0 08"); /* add $0x08,%eax */
1883 i += push_opcode (&buf[i], "89 44 24 fc"); /* mov %eax,-0x4(%esp) */
1884 append_insns (&buildaddr, i, buf);
1885
1886 i = 0;
1887 i += push_opcode (&buf[i], "83 ec 08"); /* sub $0x8,%esp */
1888 append_insns (&buildaddr, i, buf);
1889
1890 i = 0;
1891 i += push_opcode (&buf[i], "c7 04 24"); /* movl <addr>,(%esp) */
1892 memcpy (&buf[i], (void *) &tpoint, 4);
1893 i += 4;
1894 append_insns (&buildaddr, i, buf);
1895
1896 buf[0] = 0xe8; /* call <reladdr> */
1897 offset = collector - (buildaddr + sizeof (jump_insn));
1898 memcpy (buf + 1, &offset, 4);
1899 append_insns (&buildaddr, 5, buf);
1900 /* Clean up after the call. */
1901 buf[0] = 0x83; /* add $0x8,%esp */
1902 buf[1] = 0xc4;
1903 buf[2] = 0x08;
1904 append_insns (&buildaddr, 3, buf);
1905
1906
1907 /* Clear the spin-lock. This would need the LOCK prefix on older
1908 broken archs. */
1909 i = 0;
1910 i += push_opcode (&buf[i], "31 c0"); /* xor %eax,%eax */
1911 i += push_opcode (&buf[i], "a3"); /* mov %eax, lockaddr */
1912 memcpy (buf + i, &lockaddr, 4);
1913 i += 4;
1914 append_insns (&buildaddr, i, buf);
1915
1916
1917 /* Remove stack that had been used for the collect_t object. */
1918 i = 0;
1919 i += push_opcode (&buf[i], "83 c4 08"); /* add $0x08,%esp */
1920 append_insns (&buildaddr, i, buf);
1921
1922 i = 0;
1923 buf[i++] = 0x83; /* add $0x4,%esp (no pop of %cs, assume unchanged) */
1924 buf[i++] = 0xc4;
1925 buf[i++] = 0x04;
1926 buf[i++] = 0x17; /* pop %ss */
1927 buf[i++] = 0x0f; /* pop %gs */
1928 buf[i++] = 0xa9;
1929 buf[i++] = 0x0f; /* pop %fs */
1930 buf[i++] = 0xa1;
1931 buf[i++] = 0x07; /* pop %es */
1932 buf[i++] = 0x1f; /* pop %ds */
1933 buf[i++] = 0x9d; /* popf */
1934 buf[i++] = 0x83; /* add $0x4,%esp (pop of tpaddr aka $pc) */
1935 buf[i++] = 0xc4;
1936 buf[i++] = 0x04;
1937 buf[i++] = 0x61; /* popad */
1938 append_insns (&buildaddr, i, buf);
1939
1940 /* Now, adjust the original instruction to execute in the jump
1941 pad. */
1942 *adjusted_insn_addr = buildaddr;
1943 relocate_instruction (&buildaddr, tpaddr);
1944 *adjusted_insn_addr_end = buildaddr;
1945
1946 /* Write the jump back to the program. */
1947 offset = (tpaddr + orig_size) - (buildaddr + sizeof (jump_insn));
1948 memcpy (buf, jump_insn, sizeof (jump_insn));
1949 memcpy (buf + 1, &offset, 4);
1950 append_insns (&buildaddr, sizeof (jump_insn), buf);
1951
1952 /* The jump pad is now built. Wire in a jump to our jump pad. This
1953 is always done last (by our caller actually), so that we can
1954 install fast tracepoints with threads running. This relies on
1955 the agent's atomic write support. */
1956 if (orig_size == 4)
1957 {
1958 /* Create a trampoline. */
1959 *trampoline_size = sizeof (jump_insn);
1960 if (!claim_trampoline_space (*trampoline_size, trampoline))
1961 {
1962 /* No trampoline space available. */
1963 strcpy (err,
1964 "E.Cannot allocate trampoline space needed for fast "
1965 "tracepoints on 4-byte instructions.");
1966 return 1;
1967 }
1968
1969 offset = *jump_entry - (*trampoline + sizeof (jump_insn));
1970 memcpy (buf, jump_insn, sizeof (jump_insn));
1971 memcpy (buf + 1, &offset, 4);
1972 write_inferior_memory (*trampoline, buf, sizeof (jump_insn));
1973
1974 /* Use a 16-bit relative jump instruction to jump to the trampoline. */
1975 offset = (*trampoline - (tpaddr + sizeof (small_jump_insn))) & 0xffff;
1976 memcpy (buf, small_jump_insn, sizeof (small_jump_insn));
1977 memcpy (buf + 2, &offset, 2);
1978 memcpy (jjump_pad_insn, buf, sizeof (small_jump_insn));
1979 *jjump_pad_insn_size = sizeof (small_jump_insn);
1980 }
1981 else
1982 {
1983 /* Else use a 32-bit relative jump instruction. */
1984 offset = *jump_entry - (tpaddr + sizeof (jump_insn));
1985 memcpy (buf, jump_insn, sizeof (jump_insn));
1986 memcpy (buf + 1, &offset, 4);
1987 memcpy (jjump_pad_insn, buf, sizeof (jump_insn));
1988 *jjump_pad_insn_size = sizeof (jump_insn);
1989 }
1990
1991 /* Return the end address of our pad. */
1992 *jump_entry = buildaddr;
1993
1994 return 0;
1995 }
1996
1997 static int
1998 x86_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
1999 CORE_ADDR collector,
2000 CORE_ADDR lockaddr,
2001 ULONGEST orig_size,
2002 CORE_ADDR *jump_entry,
2003 CORE_ADDR *trampoline,
2004 ULONGEST *trampoline_size,
2005 unsigned char *jjump_pad_insn,
2006 ULONGEST *jjump_pad_insn_size,
2007 CORE_ADDR *adjusted_insn_addr,
2008 CORE_ADDR *adjusted_insn_addr_end,
2009 char *err)
2010 {
2011 #ifdef __x86_64__
2012 if (is_64bit_tdesc ())
2013 return amd64_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
2014 collector, lockaddr,
2015 orig_size, jump_entry,
2016 trampoline, trampoline_size,
2017 jjump_pad_insn,
2018 jjump_pad_insn_size,
2019 adjusted_insn_addr,
2020 adjusted_insn_addr_end,
2021 err);
2022 #endif
2023
2024 return i386_install_fast_tracepoint_jump_pad (tpoint, tpaddr,
2025 collector, lockaddr,
2026 orig_size, jump_entry,
2027 trampoline, trampoline_size,
2028 jjump_pad_insn,
2029 jjump_pad_insn_size,
2030 adjusted_insn_addr,
2031 adjusted_insn_addr_end,
2032 err);
2033 }
2034
2035 /* Return the minimum instruction length for fast tracepoints on x86/x86-64
2036 architectures. */
2037
2038 static int
2039 x86_get_min_fast_tracepoint_insn_len (void)
2040 {
2041 static int warned_about_fast_tracepoints = 0;
2042
2043 #ifdef __x86_64__
2044 /* On x86-64, 5-byte jump instructions with a 4-byte offset are always
2045 used for fast tracepoints. */
2046 if (is_64bit_tdesc ())
2047 return 5;
2048 #endif
2049
2050 if (agent_loaded_p ())
2051 {
2052 char errbuf[IPA_BUFSIZ];
2053
2054 errbuf[0] = '\0';
2055
2056 /* On x86, if trampolines are available, then 4-byte jump instructions
2057 with a 2-byte offset may be used, otherwise 5-byte jump instructions
2058 with a 4-byte offset are used instead. */
2059 if (have_fast_tracepoint_trampoline_buffer (errbuf))
2060 return 4;
2061 else
2062 {
2063 /* GDB has no channel to explain to user why a shorter fast
2064 tracepoint is not possible, but at least make GDBserver
2065 mention that something has gone awry. */
2066 if (!warned_about_fast_tracepoints)
2067 {
2068 warning ("4-byte fast tracepoints not available; %s\n", errbuf);
2069 warned_about_fast_tracepoints = 1;
2070 }
2071 return 5;
2072 }
2073 }
2074 else
2075 {
2076 /* Indicate that the minimum length is currently unknown since the IPA
2077 has not loaded yet. */
2078 return 0;
2079 }
2080 }
2081
2082 static void
2083 add_insns (unsigned char *start, int len)
2084 {
2085 CORE_ADDR buildaddr = current_insn_ptr;
2086
2087 if (debug_threads)
2088 debug_printf ("Adding %d bytes of insn at %s\n",
2089 len, paddress (buildaddr));
2090
2091 append_insns (&buildaddr, len, start);
2092 current_insn_ptr = buildaddr;
2093 }
2094
2095 /* Our general strategy for emitting code is to avoid specifying raw
2096 bytes whenever possible, and instead copy a block of inline asm
2097 that is embedded in the function. This is a little messy, because
2098 we need to keep the compiler from discarding what looks like dead
2099 code, plus suppress various warnings. */
2100
2101 #define EMIT_ASM(NAME, INSNS) \
2102 do \
2103 { \
2104 extern unsigned char start_ ## NAME, end_ ## NAME; \
2105 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
2106 __asm__ ("jmp end_" #NAME "\n" \
2107 "\t" "start_" #NAME ":" \
2108 "\t" INSNS "\n" \
2109 "\t" "end_" #NAME ":"); \
2110 } while (0)
2111
2112 #ifdef __x86_64__
2113
2114 #define EMIT_ASM32(NAME,INSNS) \
2115 do \
2116 { \
2117 extern unsigned char start_ ## NAME, end_ ## NAME; \
2118 add_insns (&start_ ## NAME, &end_ ## NAME - &start_ ## NAME); \
2119 __asm__ (".code32\n" \
2120 "\t" "jmp end_" #NAME "\n" \
2121 "\t" "start_" #NAME ":\n" \
2122 "\t" INSNS "\n" \
2123 "\t" "end_" #NAME ":\n" \
2124 ".code64\n"); \
2125 } while (0)
2126
2127 #else
2128
2129 #define EMIT_ASM32(NAME,INSNS) EMIT_ASM(NAME,INSNS)
2130
2131 #endif
2132
2133 #ifdef __x86_64__
2134
2135 static void
2136 amd64_emit_prologue (void)
2137 {
2138 EMIT_ASM (amd64_prologue,
2139 "pushq %rbp\n\t"
2140 "movq %rsp,%rbp\n\t"
2141 "sub $0x20,%rsp\n\t"
2142 "movq %rdi,-8(%rbp)\n\t"
2143 "movq %rsi,-16(%rbp)");
2144 }
2145
2146
2147 static void
2148 amd64_emit_epilogue (void)
2149 {
2150 EMIT_ASM (amd64_epilogue,
2151 "movq -16(%rbp),%rdi\n\t"
2152 "movq %rax,(%rdi)\n\t"
2153 "xor %rax,%rax\n\t"
2154 "leave\n\t"
2155 "ret");
2156 }
2157
2158 static void
2159 amd64_emit_add (void)
2160 {
2161 EMIT_ASM (amd64_add,
2162 "add (%rsp),%rax\n\t"
2163 "lea 0x8(%rsp),%rsp");
2164 }
2165
2166 static void
2167 amd64_emit_sub (void)
2168 {
2169 EMIT_ASM (amd64_sub,
2170 "sub %rax,(%rsp)\n\t"
2171 "pop %rax");
2172 }
2173
2174 static void
2175 amd64_emit_mul (void)
2176 {
2177 emit_error = 1;
2178 }
2179
2180 static void
2181 amd64_emit_lsh (void)
2182 {
2183 emit_error = 1;
2184 }
2185
2186 static void
2187 amd64_emit_rsh_signed (void)
2188 {
2189 emit_error = 1;
2190 }
2191
2192 static void
2193 amd64_emit_rsh_unsigned (void)
2194 {
2195 emit_error = 1;
2196 }
2197
2198 static void
2199 amd64_emit_ext (int arg)
2200 {
2201 switch (arg)
2202 {
2203 case 8:
2204 EMIT_ASM (amd64_ext_8,
2205 "cbtw\n\t"
2206 "cwtl\n\t"
2207 "cltq");
2208 break;
2209 case 16:
2210 EMIT_ASM (amd64_ext_16,
2211 "cwtl\n\t"
2212 "cltq");
2213 break;
2214 case 32:
2215 EMIT_ASM (amd64_ext_32,
2216 "cltq");
2217 break;
2218 default:
2219 emit_error = 1;
2220 }
2221 }
2222
2223 static void
2224 amd64_emit_log_not (void)
2225 {
2226 EMIT_ASM (amd64_log_not,
2227 "test %rax,%rax\n\t"
2228 "sete %cl\n\t"
2229 "movzbq %cl,%rax");
2230 }
2231
2232 static void
2233 amd64_emit_bit_and (void)
2234 {
2235 EMIT_ASM (amd64_and,
2236 "and (%rsp),%rax\n\t"
2237 "lea 0x8(%rsp),%rsp");
2238 }
2239
2240 static void
2241 amd64_emit_bit_or (void)
2242 {
2243 EMIT_ASM (amd64_or,
2244 "or (%rsp),%rax\n\t"
2245 "lea 0x8(%rsp),%rsp");
2246 }
2247
2248 static void
2249 amd64_emit_bit_xor (void)
2250 {
2251 EMIT_ASM (amd64_xor,
2252 "xor (%rsp),%rax\n\t"
2253 "lea 0x8(%rsp),%rsp");
2254 }
2255
2256 static void
2257 amd64_emit_bit_not (void)
2258 {
2259 EMIT_ASM (amd64_bit_not,
2260 "xorq $0xffffffffffffffff,%rax");
2261 }
2262
2263 static void
2264 amd64_emit_equal (void)
2265 {
2266 EMIT_ASM (amd64_equal,
2267 "cmp %rax,(%rsp)\n\t"
2268 "je .Lamd64_equal_true\n\t"
2269 "xor %rax,%rax\n\t"
2270 "jmp .Lamd64_equal_end\n\t"
2271 ".Lamd64_equal_true:\n\t"
2272 "mov $0x1,%rax\n\t"
2273 ".Lamd64_equal_end:\n\t"
2274 "lea 0x8(%rsp),%rsp");
2275 }
2276
2277 static void
2278 amd64_emit_less_signed (void)
2279 {
2280 EMIT_ASM (amd64_less_signed,
2281 "cmp %rax,(%rsp)\n\t"
2282 "jl .Lamd64_less_signed_true\n\t"
2283 "xor %rax,%rax\n\t"
2284 "jmp .Lamd64_less_signed_end\n\t"
2285 ".Lamd64_less_signed_true:\n\t"
2286 "mov $1,%rax\n\t"
2287 ".Lamd64_less_signed_end:\n\t"
2288 "lea 0x8(%rsp),%rsp");
2289 }
2290
2291 static void
2292 amd64_emit_less_unsigned (void)
2293 {
2294 EMIT_ASM (amd64_less_unsigned,
2295 "cmp %rax,(%rsp)\n\t"
2296 "jb .Lamd64_less_unsigned_true\n\t"
2297 "xor %rax,%rax\n\t"
2298 "jmp .Lamd64_less_unsigned_end\n\t"
2299 ".Lamd64_less_unsigned_true:\n\t"
2300 "mov $1,%rax\n\t"
2301 ".Lamd64_less_unsigned_end:\n\t"
2302 "lea 0x8(%rsp),%rsp");
2303 }
2304
2305 static void
2306 amd64_emit_ref (int size)
2307 {
2308 switch (size)
2309 {
2310 case 1:
2311 EMIT_ASM (amd64_ref1,
2312 "movb (%rax),%al");
2313 break;
2314 case 2:
2315 EMIT_ASM (amd64_ref2,
2316 "movw (%rax),%ax");
2317 break;
2318 case 4:
2319 EMIT_ASM (amd64_ref4,
2320 "movl (%rax),%eax");
2321 break;
2322 case 8:
2323 EMIT_ASM (amd64_ref8,
2324 "movq (%rax),%rax");
2325 break;
2326 }
2327 }
2328
2329 static void
2330 amd64_emit_if_goto (int *offset_p, int *size_p)
2331 {
2332 EMIT_ASM (amd64_if_goto,
2333 "mov %rax,%rcx\n\t"
2334 "pop %rax\n\t"
2335 "cmp $0,%rcx\n\t"
2336 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2337 if (offset_p)
2338 *offset_p = 10;
2339 if (size_p)
2340 *size_p = 4;
2341 }
2342
2343 static void
2344 amd64_emit_goto (int *offset_p, int *size_p)
2345 {
2346 EMIT_ASM (amd64_goto,
2347 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2348 if (offset_p)
2349 *offset_p = 1;
2350 if (size_p)
2351 *size_p = 4;
2352 }
2353
2354 static void
2355 amd64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2356 {
2357 int diff = (to - (from + size));
2358 unsigned char buf[sizeof (int)];
2359
2360 if (size != 4)
2361 {
2362 emit_error = 1;
2363 return;
2364 }
2365
2366 memcpy (buf, &diff, sizeof (int));
2367 write_inferior_memory (from, buf, sizeof (int));
2368 }
2369
2370 static void
2371 amd64_emit_const (LONGEST num)
2372 {
2373 unsigned char buf[16];
2374 int i;
2375 CORE_ADDR buildaddr = current_insn_ptr;
2376
2377 i = 0;
2378 buf[i++] = 0x48; buf[i++] = 0xb8; /* mov $<n>,%rax */
2379 memcpy (&buf[i], &num, sizeof (num));
2380 i += 8;
2381 append_insns (&buildaddr, i, buf);
2382 current_insn_ptr = buildaddr;
2383 }
2384
2385 static void
2386 amd64_emit_call (CORE_ADDR fn)
2387 {
2388 unsigned char buf[16];
2389 int i;
2390 CORE_ADDR buildaddr;
2391 LONGEST offset64;
2392
2393 /* The destination function being in the shared library, may be
2394 >31-bits away off the compiled code pad. */
2395
2396 buildaddr = current_insn_ptr;
2397
2398 offset64 = fn - (buildaddr + 1 /* call op */ + 4 /* 32-bit offset */);
2399
2400 i = 0;
2401
2402 if (offset64 > INT_MAX || offset64 < INT_MIN)
2403 {
2404 /* Offset is too large for a call. Use callq, but that requires
2405 a register, so avoid it if possible. Use r10, since it is
2406 call-clobbered, we don't have to push/pop it. */
2407 buf[i++] = 0x48; /* mov $fn,%r10 */
2408 buf[i++] = 0xba;
2409 memcpy (buf + i, &fn, 8);
2410 i += 8;
2411 buf[i++] = 0xff; /* callq *%r10 */
2412 buf[i++] = 0xd2;
2413 }
2414 else
2415 {
2416 int offset32 = offset64; /* we know we can't overflow here. */
2417 memcpy (buf + i, &offset32, 4);
2418 i += 4;
2419 }
2420
2421 append_insns (&buildaddr, i, buf);
2422 current_insn_ptr = buildaddr;
2423 }
2424
2425 static void
2426 amd64_emit_reg (int reg)
2427 {
2428 unsigned char buf[16];
2429 int i;
2430 CORE_ADDR buildaddr;
2431
2432 /* Assume raw_regs is still in %rdi. */
2433 buildaddr = current_insn_ptr;
2434 i = 0;
2435 buf[i++] = 0xbe; /* mov $<n>,%esi */
2436 memcpy (&buf[i], &reg, sizeof (reg));
2437 i += 4;
2438 append_insns (&buildaddr, i, buf);
2439 current_insn_ptr = buildaddr;
2440 amd64_emit_call (get_raw_reg_func_addr ());
2441 }
2442
2443 static void
2444 amd64_emit_pop (void)
2445 {
2446 EMIT_ASM (amd64_pop,
2447 "pop %rax");
2448 }
2449
2450 static void
2451 amd64_emit_stack_flush (void)
2452 {
2453 EMIT_ASM (amd64_stack_flush,
2454 "push %rax");
2455 }
2456
2457 static void
2458 amd64_emit_zero_ext (int arg)
2459 {
2460 switch (arg)
2461 {
2462 case 8:
2463 EMIT_ASM (amd64_zero_ext_8,
2464 "and $0xff,%rax");
2465 break;
2466 case 16:
2467 EMIT_ASM (amd64_zero_ext_16,
2468 "and $0xffff,%rax");
2469 break;
2470 case 32:
2471 EMIT_ASM (amd64_zero_ext_32,
2472 "mov $0xffffffff,%rcx\n\t"
2473 "and %rcx,%rax");
2474 break;
2475 default:
2476 emit_error = 1;
2477 }
2478 }
2479
2480 static void
2481 amd64_emit_swap (void)
2482 {
2483 EMIT_ASM (amd64_swap,
2484 "mov %rax,%rcx\n\t"
2485 "pop %rax\n\t"
2486 "push %rcx");
2487 }
2488
2489 static void
2490 amd64_emit_stack_adjust (int n)
2491 {
2492 unsigned char buf[16];
2493 int i;
2494 CORE_ADDR buildaddr = current_insn_ptr;
2495
2496 i = 0;
2497 buf[i++] = 0x48; /* lea $<n>(%rsp),%rsp */
2498 buf[i++] = 0x8d;
2499 buf[i++] = 0x64;
2500 buf[i++] = 0x24;
2501 /* This only handles adjustments up to 16, but we don't expect any more. */
2502 buf[i++] = n * 8;
2503 append_insns (&buildaddr, i, buf);
2504 current_insn_ptr = buildaddr;
2505 }
2506
2507 /* FN's prototype is `LONGEST(*fn)(int)'. */
2508
2509 static void
2510 amd64_emit_int_call_1 (CORE_ADDR fn, int arg1)
2511 {
2512 unsigned char buf[16];
2513 int i;
2514 CORE_ADDR buildaddr;
2515
2516 buildaddr = current_insn_ptr;
2517 i = 0;
2518 buf[i++] = 0xbf; /* movl $<n>,%edi */
2519 memcpy (&buf[i], &arg1, sizeof (arg1));
2520 i += 4;
2521 append_insns (&buildaddr, i, buf);
2522 current_insn_ptr = buildaddr;
2523 amd64_emit_call (fn);
2524 }
2525
2526 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
2527
2528 static void
2529 amd64_emit_void_call_2 (CORE_ADDR fn, int arg1)
2530 {
2531 unsigned char buf[16];
2532 int i;
2533 CORE_ADDR buildaddr;
2534
2535 buildaddr = current_insn_ptr;
2536 i = 0;
2537 buf[i++] = 0xbf; /* movl $<n>,%edi */
2538 memcpy (&buf[i], &arg1, sizeof (arg1));
2539 i += 4;
2540 append_insns (&buildaddr, i, buf);
2541 current_insn_ptr = buildaddr;
2542 EMIT_ASM (amd64_void_call_2_a,
2543 /* Save away a copy of the stack top. */
2544 "push %rax\n\t"
2545 /* Also pass top as the second argument. */
2546 "mov %rax,%rsi");
2547 amd64_emit_call (fn);
2548 EMIT_ASM (amd64_void_call_2_b,
2549 /* Restore the stack top, %rax may have been trashed. */
2550 "pop %rax");
2551 }
2552
2553 void
2554 amd64_emit_eq_goto (int *offset_p, int *size_p)
2555 {
2556 EMIT_ASM (amd64_eq,
2557 "cmp %rax,(%rsp)\n\t"
2558 "jne .Lamd64_eq_fallthru\n\t"
2559 "lea 0x8(%rsp),%rsp\n\t"
2560 "pop %rax\n\t"
2561 /* jmp, but don't trust the assembler to choose the right jump */
2562 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2563 ".Lamd64_eq_fallthru:\n\t"
2564 "lea 0x8(%rsp),%rsp\n\t"
2565 "pop %rax");
2566
2567 if (offset_p)
2568 *offset_p = 13;
2569 if (size_p)
2570 *size_p = 4;
2571 }
2572
2573 void
2574 amd64_emit_ne_goto (int *offset_p, int *size_p)
2575 {
2576 EMIT_ASM (amd64_ne,
2577 "cmp %rax,(%rsp)\n\t"
2578 "je .Lamd64_ne_fallthru\n\t"
2579 "lea 0x8(%rsp),%rsp\n\t"
2580 "pop %rax\n\t"
2581 /* jmp, but don't trust the assembler to choose the right jump */
2582 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2583 ".Lamd64_ne_fallthru:\n\t"
2584 "lea 0x8(%rsp),%rsp\n\t"
2585 "pop %rax");
2586
2587 if (offset_p)
2588 *offset_p = 13;
2589 if (size_p)
2590 *size_p = 4;
2591 }
2592
2593 void
2594 amd64_emit_lt_goto (int *offset_p, int *size_p)
2595 {
2596 EMIT_ASM (amd64_lt,
2597 "cmp %rax,(%rsp)\n\t"
2598 "jnl .Lamd64_lt_fallthru\n\t"
2599 "lea 0x8(%rsp),%rsp\n\t"
2600 "pop %rax\n\t"
2601 /* jmp, but don't trust the assembler to choose the right jump */
2602 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2603 ".Lamd64_lt_fallthru:\n\t"
2604 "lea 0x8(%rsp),%rsp\n\t"
2605 "pop %rax");
2606
2607 if (offset_p)
2608 *offset_p = 13;
2609 if (size_p)
2610 *size_p = 4;
2611 }
2612
2613 void
2614 amd64_emit_le_goto (int *offset_p, int *size_p)
2615 {
2616 EMIT_ASM (amd64_le,
2617 "cmp %rax,(%rsp)\n\t"
2618 "jnle .Lamd64_le_fallthru\n\t"
2619 "lea 0x8(%rsp),%rsp\n\t"
2620 "pop %rax\n\t"
2621 /* jmp, but don't trust the assembler to choose the right jump */
2622 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2623 ".Lamd64_le_fallthru:\n\t"
2624 "lea 0x8(%rsp),%rsp\n\t"
2625 "pop %rax");
2626
2627 if (offset_p)
2628 *offset_p = 13;
2629 if (size_p)
2630 *size_p = 4;
2631 }
2632
2633 void
2634 amd64_emit_gt_goto (int *offset_p, int *size_p)
2635 {
2636 EMIT_ASM (amd64_gt,
2637 "cmp %rax,(%rsp)\n\t"
2638 "jng .Lamd64_gt_fallthru\n\t"
2639 "lea 0x8(%rsp),%rsp\n\t"
2640 "pop %rax\n\t"
2641 /* jmp, but don't trust the assembler to choose the right jump */
2642 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2643 ".Lamd64_gt_fallthru:\n\t"
2644 "lea 0x8(%rsp),%rsp\n\t"
2645 "pop %rax");
2646
2647 if (offset_p)
2648 *offset_p = 13;
2649 if (size_p)
2650 *size_p = 4;
2651 }
2652
2653 void
2654 amd64_emit_ge_goto (int *offset_p, int *size_p)
2655 {
2656 EMIT_ASM (amd64_ge,
2657 "cmp %rax,(%rsp)\n\t"
2658 "jnge .Lamd64_ge_fallthru\n\t"
2659 ".Lamd64_ge_jump:\n\t"
2660 "lea 0x8(%rsp),%rsp\n\t"
2661 "pop %rax\n\t"
2662 /* jmp, but don't trust the assembler to choose the right jump */
2663 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
2664 ".Lamd64_ge_fallthru:\n\t"
2665 "lea 0x8(%rsp),%rsp\n\t"
2666 "pop %rax");
2667
2668 if (offset_p)
2669 *offset_p = 13;
2670 if (size_p)
2671 *size_p = 4;
2672 }
2673
2674 struct emit_ops amd64_emit_ops =
2675 {
2676 amd64_emit_prologue,
2677 amd64_emit_epilogue,
2678 amd64_emit_add,
2679 amd64_emit_sub,
2680 amd64_emit_mul,
2681 amd64_emit_lsh,
2682 amd64_emit_rsh_signed,
2683 amd64_emit_rsh_unsigned,
2684 amd64_emit_ext,
2685 amd64_emit_log_not,
2686 amd64_emit_bit_and,
2687 amd64_emit_bit_or,
2688 amd64_emit_bit_xor,
2689 amd64_emit_bit_not,
2690 amd64_emit_equal,
2691 amd64_emit_less_signed,
2692 amd64_emit_less_unsigned,
2693 amd64_emit_ref,
2694 amd64_emit_if_goto,
2695 amd64_emit_goto,
2696 amd64_write_goto_address,
2697 amd64_emit_const,
2698 amd64_emit_call,
2699 amd64_emit_reg,
2700 amd64_emit_pop,
2701 amd64_emit_stack_flush,
2702 amd64_emit_zero_ext,
2703 amd64_emit_swap,
2704 amd64_emit_stack_adjust,
2705 amd64_emit_int_call_1,
2706 amd64_emit_void_call_2,
2707 amd64_emit_eq_goto,
2708 amd64_emit_ne_goto,
2709 amd64_emit_lt_goto,
2710 amd64_emit_le_goto,
2711 amd64_emit_gt_goto,
2712 amd64_emit_ge_goto
2713 };
2714
2715 #endif /* __x86_64__ */
2716
2717 static void
2718 i386_emit_prologue (void)
2719 {
2720 EMIT_ASM32 (i386_prologue,
2721 "push %ebp\n\t"
2722 "mov %esp,%ebp\n\t"
2723 "push %ebx");
2724 /* At this point, the raw regs base address is at 8(%ebp), and the
2725 value pointer is at 12(%ebp). */
2726 }
2727
2728 static void
2729 i386_emit_epilogue (void)
2730 {
2731 EMIT_ASM32 (i386_epilogue,
2732 "mov 12(%ebp),%ecx\n\t"
2733 "mov %eax,(%ecx)\n\t"
2734 "mov %ebx,0x4(%ecx)\n\t"
2735 "xor %eax,%eax\n\t"
2736 "pop %ebx\n\t"
2737 "pop %ebp\n\t"
2738 "ret");
2739 }
2740
2741 static void
2742 i386_emit_add (void)
2743 {
2744 EMIT_ASM32 (i386_add,
2745 "add (%esp),%eax\n\t"
2746 "adc 0x4(%esp),%ebx\n\t"
2747 "lea 0x8(%esp),%esp");
2748 }
2749
2750 static void
2751 i386_emit_sub (void)
2752 {
2753 EMIT_ASM32 (i386_sub,
2754 "subl %eax,(%esp)\n\t"
2755 "sbbl %ebx,4(%esp)\n\t"
2756 "pop %eax\n\t"
2757 "pop %ebx\n\t");
2758 }
2759
2760 static void
2761 i386_emit_mul (void)
2762 {
2763 emit_error = 1;
2764 }
2765
2766 static void
2767 i386_emit_lsh (void)
2768 {
2769 emit_error = 1;
2770 }
2771
2772 static void
2773 i386_emit_rsh_signed (void)
2774 {
2775 emit_error = 1;
2776 }
2777
2778 static void
2779 i386_emit_rsh_unsigned (void)
2780 {
2781 emit_error = 1;
2782 }
2783
2784 static void
2785 i386_emit_ext (int arg)
2786 {
2787 switch (arg)
2788 {
2789 case 8:
2790 EMIT_ASM32 (i386_ext_8,
2791 "cbtw\n\t"
2792 "cwtl\n\t"
2793 "movl %eax,%ebx\n\t"
2794 "sarl $31,%ebx");
2795 break;
2796 case 16:
2797 EMIT_ASM32 (i386_ext_16,
2798 "cwtl\n\t"
2799 "movl %eax,%ebx\n\t"
2800 "sarl $31,%ebx");
2801 break;
2802 case 32:
2803 EMIT_ASM32 (i386_ext_32,
2804 "movl %eax,%ebx\n\t"
2805 "sarl $31,%ebx");
2806 break;
2807 default:
2808 emit_error = 1;
2809 }
2810 }
2811
2812 static void
2813 i386_emit_log_not (void)
2814 {
2815 EMIT_ASM32 (i386_log_not,
2816 "or %ebx,%eax\n\t"
2817 "test %eax,%eax\n\t"
2818 "sete %cl\n\t"
2819 "xor %ebx,%ebx\n\t"
2820 "movzbl %cl,%eax");
2821 }
2822
2823 static void
2824 i386_emit_bit_and (void)
2825 {
2826 EMIT_ASM32 (i386_and,
2827 "and (%esp),%eax\n\t"
2828 "and 0x4(%esp),%ebx\n\t"
2829 "lea 0x8(%esp),%esp");
2830 }
2831
2832 static void
2833 i386_emit_bit_or (void)
2834 {
2835 EMIT_ASM32 (i386_or,
2836 "or (%esp),%eax\n\t"
2837 "or 0x4(%esp),%ebx\n\t"
2838 "lea 0x8(%esp),%esp");
2839 }
2840
2841 static void
2842 i386_emit_bit_xor (void)
2843 {
2844 EMIT_ASM32 (i386_xor,
2845 "xor (%esp),%eax\n\t"
2846 "xor 0x4(%esp),%ebx\n\t"
2847 "lea 0x8(%esp),%esp");
2848 }
2849
2850 static void
2851 i386_emit_bit_not (void)
2852 {
2853 EMIT_ASM32 (i386_bit_not,
2854 "xor $0xffffffff,%eax\n\t"
2855 "xor $0xffffffff,%ebx\n\t");
2856 }
2857
2858 static void
2859 i386_emit_equal (void)
2860 {
2861 EMIT_ASM32 (i386_equal,
2862 "cmpl %ebx,4(%esp)\n\t"
2863 "jne .Li386_equal_false\n\t"
2864 "cmpl %eax,(%esp)\n\t"
2865 "je .Li386_equal_true\n\t"
2866 ".Li386_equal_false:\n\t"
2867 "xor %eax,%eax\n\t"
2868 "jmp .Li386_equal_end\n\t"
2869 ".Li386_equal_true:\n\t"
2870 "mov $1,%eax\n\t"
2871 ".Li386_equal_end:\n\t"
2872 "xor %ebx,%ebx\n\t"
2873 "lea 0x8(%esp),%esp");
2874 }
2875
2876 static void
2877 i386_emit_less_signed (void)
2878 {
2879 EMIT_ASM32 (i386_less_signed,
2880 "cmpl %ebx,4(%esp)\n\t"
2881 "jl .Li386_less_signed_true\n\t"
2882 "jne .Li386_less_signed_false\n\t"
2883 "cmpl %eax,(%esp)\n\t"
2884 "jl .Li386_less_signed_true\n\t"
2885 ".Li386_less_signed_false:\n\t"
2886 "xor %eax,%eax\n\t"
2887 "jmp .Li386_less_signed_end\n\t"
2888 ".Li386_less_signed_true:\n\t"
2889 "mov $1,%eax\n\t"
2890 ".Li386_less_signed_end:\n\t"
2891 "xor %ebx,%ebx\n\t"
2892 "lea 0x8(%esp),%esp");
2893 }
2894
2895 static void
2896 i386_emit_less_unsigned (void)
2897 {
2898 EMIT_ASM32 (i386_less_unsigned,
2899 "cmpl %ebx,4(%esp)\n\t"
2900 "jb .Li386_less_unsigned_true\n\t"
2901 "jne .Li386_less_unsigned_false\n\t"
2902 "cmpl %eax,(%esp)\n\t"
2903 "jb .Li386_less_unsigned_true\n\t"
2904 ".Li386_less_unsigned_false:\n\t"
2905 "xor %eax,%eax\n\t"
2906 "jmp .Li386_less_unsigned_end\n\t"
2907 ".Li386_less_unsigned_true:\n\t"
2908 "mov $1,%eax\n\t"
2909 ".Li386_less_unsigned_end:\n\t"
2910 "xor %ebx,%ebx\n\t"
2911 "lea 0x8(%esp),%esp");
2912 }
2913
2914 static void
2915 i386_emit_ref (int size)
2916 {
2917 switch (size)
2918 {
2919 case 1:
2920 EMIT_ASM32 (i386_ref1,
2921 "movb (%eax),%al");
2922 break;
2923 case 2:
2924 EMIT_ASM32 (i386_ref2,
2925 "movw (%eax),%ax");
2926 break;
2927 case 4:
2928 EMIT_ASM32 (i386_ref4,
2929 "movl (%eax),%eax");
2930 break;
2931 case 8:
2932 EMIT_ASM32 (i386_ref8,
2933 "movl 4(%eax),%ebx\n\t"
2934 "movl (%eax),%eax");
2935 break;
2936 }
2937 }
2938
2939 static void
2940 i386_emit_if_goto (int *offset_p, int *size_p)
2941 {
2942 EMIT_ASM32 (i386_if_goto,
2943 "mov %eax,%ecx\n\t"
2944 "or %ebx,%ecx\n\t"
2945 "pop %eax\n\t"
2946 "pop %ebx\n\t"
2947 "cmpl $0,%ecx\n\t"
2948 /* Don't trust the assembler to choose the right jump */
2949 ".byte 0x0f, 0x85, 0x0, 0x0, 0x0, 0x0");
2950
2951 if (offset_p)
2952 *offset_p = 11; /* be sure that this matches the sequence above */
2953 if (size_p)
2954 *size_p = 4;
2955 }
2956
2957 static void
2958 i386_emit_goto (int *offset_p, int *size_p)
2959 {
2960 EMIT_ASM32 (i386_goto,
2961 /* Don't trust the assembler to choose the right jump */
2962 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0");
2963 if (offset_p)
2964 *offset_p = 1;
2965 if (size_p)
2966 *size_p = 4;
2967 }
2968
2969 static void
2970 i386_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2971 {
2972 int diff = (to - (from + size));
2973 unsigned char buf[sizeof (int)];
2974
2975 /* We're only doing 4-byte sizes at the moment. */
2976 if (size != 4)
2977 {
2978 emit_error = 1;
2979 return;
2980 }
2981
2982 memcpy (buf, &diff, sizeof (int));
2983 write_inferior_memory (from, buf, sizeof (int));
2984 }
2985
2986 static void
2987 i386_emit_const (LONGEST num)
2988 {
2989 unsigned char buf[16];
2990 int i, hi, lo;
2991 CORE_ADDR buildaddr = current_insn_ptr;
2992
2993 i = 0;
2994 buf[i++] = 0xb8; /* mov $<n>,%eax */
2995 lo = num & 0xffffffff;
2996 memcpy (&buf[i], &lo, sizeof (lo));
2997 i += 4;
2998 hi = ((num >> 32) & 0xffffffff);
2999 if (hi)
3000 {
3001 buf[i++] = 0xbb; /* mov $<n>,%ebx */
3002 memcpy (&buf[i], &hi, sizeof (hi));
3003 i += 4;
3004 }
3005 else
3006 {
3007 buf[i++] = 0x31; buf[i++] = 0xdb; /* xor %ebx,%ebx */
3008 }
3009 append_insns (&buildaddr, i, buf);
3010 current_insn_ptr = buildaddr;
3011 }
3012
3013 static void
3014 i386_emit_call (CORE_ADDR fn)
3015 {
3016 unsigned char buf[16];
3017 int i, offset;
3018 CORE_ADDR buildaddr;
3019
3020 buildaddr = current_insn_ptr;
3021 i = 0;
3022 buf[i++] = 0xe8; /* call <reladdr> */
3023 offset = ((int) fn) - (buildaddr + 5);
3024 memcpy (buf + 1, &offset, 4);
3025 append_insns (&buildaddr, 5, buf);
3026 current_insn_ptr = buildaddr;
3027 }
3028
3029 static void
3030 i386_emit_reg (int reg)
3031 {
3032 unsigned char buf[16];
3033 int i;
3034 CORE_ADDR buildaddr;
3035
3036 EMIT_ASM32 (i386_reg_a,
3037 "sub $0x8,%esp");
3038 buildaddr = current_insn_ptr;
3039 i = 0;
3040 buf[i++] = 0xb8; /* mov $<n>,%eax */
3041 memcpy (&buf[i], &reg, sizeof (reg));
3042 i += 4;
3043 append_insns (&buildaddr, i, buf);
3044 current_insn_ptr = buildaddr;
3045 EMIT_ASM32 (i386_reg_b,
3046 "mov %eax,4(%esp)\n\t"
3047 "mov 8(%ebp),%eax\n\t"
3048 "mov %eax,(%esp)");
3049 i386_emit_call (get_raw_reg_func_addr ());
3050 EMIT_ASM32 (i386_reg_c,
3051 "xor %ebx,%ebx\n\t"
3052 "lea 0x8(%esp),%esp");
3053 }
3054
3055 static void
3056 i386_emit_pop (void)
3057 {
3058 EMIT_ASM32 (i386_pop,
3059 "pop %eax\n\t"
3060 "pop %ebx");
3061 }
3062
3063 static void
3064 i386_emit_stack_flush (void)
3065 {
3066 EMIT_ASM32 (i386_stack_flush,
3067 "push %ebx\n\t"
3068 "push %eax");
3069 }
3070
3071 static void
3072 i386_emit_zero_ext (int arg)
3073 {
3074 switch (arg)
3075 {
3076 case 8:
3077 EMIT_ASM32 (i386_zero_ext_8,
3078 "and $0xff,%eax\n\t"
3079 "xor %ebx,%ebx");
3080 break;
3081 case 16:
3082 EMIT_ASM32 (i386_zero_ext_16,
3083 "and $0xffff,%eax\n\t"
3084 "xor %ebx,%ebx");
3085 break;
3086 case 32:
3087 EMIT_ASM32 (i386_zero_ext_32,
3088 "xor %ebx,%ebx");
3089 break;
3090 default:
3091 emit_error = 1;
3092 }
3093 }
3094
3095 static void
3096 i386_emit_swap (void)
3097 {
3098 EMIT_ASM32 (i386_swap,
3099 "mov %eax,%ecx\n\t"
3100 "mov %ebx,%edx\n\t"
3101 "pop %eax\n\t"
3102 "pop %ebx\n\t"
3103 "push %edx\n\t"
3104 "push %ecx");
3105 }
3106
3107 static void
3108 i386_emit_stack_adjust (int n)
3109 {
3110 unsigned char buf[16];
3111 int i;
3112 CORE_ADDR buildaddr = current_insn_ptr;
3113
3114 i = 0;
3115 buf[i++] = 0x8d; /* lea $<n>(%esp),%esp */
3116 buf[i++] = 0x64;
3117 buf[i++] = 0x24;
3118 buf[i++] = n * 8;
3119 append_insns (&buildaddr, i, buf);
3120 current_insn_ptr = buildaddr;
3121 }
3122
3123 /* FN's prototype is `LONGEST(*fn)(int)'. */
3124
3125 static void
3126 i386_emit_int_call_1 (CORE_ADDR fn, int arg1)
3127 {
3128 unsigned char buf[16];
3129 int i;
3130 CORE_ADDR buildaddr;
3131
3132 EMIT_ASM32 (i386_int_call_1_a,
3133 /* Reserve a bit of stack space. */
3134 "sub $0x8,%esp");
3135 /* Put the one argument on the stack. */
3136 buildaddr = current_insn_ptr;
3137 i = 0;
3138 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
3139 buf[i++] = 0x04;
3140 buf[i++] = 0x24;
3141 memcpy (&buf[i], &arg1, sizeof (arg1));
3142 i += 4;
3143 append_insns (&buildaddr, i, buf);
3144 current_insn_ptr = buildaddr;
3145 i386_emit_call (fn);
3146 EMIT_ASM32 (i386_int_call_1_c,
3147 "mov %edx,%ebx\n\t"
3148 "lea 0x8(%esp),%esp");
3149 }
3150
3151 /* FN's prototype is `void(*fn)(int,LONGEST)'. */
3152
3153 static void
3154 i386_emit_void_call_2 (CORE_ADDR fn, int arg1)
3155 {
3156 unsigned char buf[16];
3157 int i;
3158 CORE_ADDR buildaddr;
3159
3160 EMIT_ASM32 (i386_void_call_2_a,
3161 /* Preserve %eax only; we don't have to worry about %ebx. */
3162 "push %eax\n\t"
3163 /* Reserve a bit of stack space for arguments. */
3164 "sub $0x10,%esp\n\t"
3165 /* Copy "top" to the second argument position. (Note that
3166 we can't assume function won't scribble on its
3167 arguments, so don't try to restore from this.) */
3168 "mov %eax,4(%esp)\n\t"
3169 "mov %ebx,8(%esp)");
3170 /* Put the first argument on the stack. */
3171 buildaddr = current_insn_ptr;
3172 i = 0;
3173 buf[i++] = 0xc7; /* movl $<arg1>,(%esp) */
3174 buf[i++] = 0x04;
3175 buf[i++] = 0x24;
3176 memcpy (&buf[i], &arg1, sizeof (arg1));
3177 i += 4;
3178 append_insns (&buildaddr, i, buf);
3179 current_insn_ptr = buildaddr;
3180 i386_emit_call (fn);
3181 EMIT_ASM32 (i386_void_call_2_b,
3182 "lea 0x10(%esp),%esp\n\t"
3183 /* Restore original stack top. */
3184 "pop %eax");
3185 }
3186
3187
3188 void
3189 i386_emit_eq_goto (int *offset_p, int *size_p)
3190 {
3191 EMIT_ASM32 (eq,
3192 /* Check low half first, more likely to be decider */
3193 "cmpl %eax,(%esp)\n\t"
3194 "jne .Leq_fallthru\n\t"
3195 "cmpl %ebx,4(%esp)\n\t"
3196 "jne .Leq_fallthru\n\t"
3197 "lea 0x8(%esp),%esp\n\t"
3198 "pop %eax\n\t"
3199 "pop %ebx\n\t"
3200 /* jmp, but don't trust the assembler to choose the right jump */
3201 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3202 ".Leq_fallthru:\n\t"
3203 "lea 0x8(%esp),%esp\n\t"
3204 "pop %eax\n\t"
3205 "pop %ebx");
3206
3207 if (offset_p)
3208 *offset_p = 18;
3209 if (size_p)
3210 *size_p = 4;
3211 }
3212
3213 void
3214 i386_emit_ne_goto (int *offset_p, int *size_p)
3215 {
3216 EMIT_ASM32 (ne,
3217 /* Check low half first, more likely to be decider */
3218 "cmpl %eax,(%esp)\n\t"
3219 "jne .Lne_jump\n\t"
3220 "cmpl %ebx,4(%esp)\n\t"
3221 "je .Lne_fallthru\n\t"
3222 ".Lne_jump:\n\t"
3223 "lea 0x8(%esp),%esp\n\t"
3224 "pop %eax\n\t"
3225 "pop %ebx\n\t"
3226 /* jmp, but don't trust the assembler to choose the right jump */
3227 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3228 ".Lne_fallthru:\n\t"
3229 "lea 0x8(%esp),%esp\n\t"
3230 "pop %eax\n\t"
3231 "pop %ebx");
3232
3233 if (offset_p)
3234 *offset_p = 18;
3235 if (size_p)
3236 *size_p = 4;
3237 }
3238
3239 void
3240 i386_emit_lt_goto (int *offset_p, int *size_p)
3241 {
3242 EMIT_ASM32 (lt,
3243 "cmpl %ebx,4(%esp)\n\t"
3244 "jl .Llt_jump\n\t"
3245 "jne .Llt_fallthru\n\t"
3246 "cmpl %eax,(%esp)\n\t"
3247 "jnl .Llt_fallthru\n\t"
3248 ".Llt_jump:\n\t"
3249 "lea 0x8(%esp),%esp\n\t"
3250 "pop %eax\n\t"
3251 "pop %ebx\n\t"
3252 /* jmp, but don't trust the assembler to choose the right jump */
3253 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3254 ".Llt_fallthru:\n\t"
3255 "lea 0x8(%esp),%esp\n\t"
3256 "pop %eax\n\t"
3257 "pop %ebx");
3258
3259 if (offset_p)
3260 *offset_p = 20;
3261 if (size_p)
3262 *size_p = 4;
3263 }
3264
3265 void
3266 i386_emit_le_goto (int *offset_p, int *size_p)
3267 {
3268 EMIT_ASM32 (le,
3269 "cmpl %ebx,4(%esp)\n\t"
3270 "jle .Lle_jump\n\t"
3271 "jne .Lle_fallthru\n\t"
3272 "cmpl %eax,(%esp)\n\t"
3273 "jnle .Lle_fallthru\n\t"
3274 ".Lle_jump:\n\t"
3275 "lea 0x8(%esp),%esp\n\t"
3276 "pop %eax\n\t"
3277 "pop %ebx\n\t"
3278 /* jmp, but don't trust the assembler to choose the right jump */
3279 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3280 ".Lle_fallthru:\n\t"
3281 "lea 0x8(%esp),%esp\n\t"
3282 "pop %eax\n\t"
3283 "pop %ebx");
3284
3285 if (offset_p)
3286 *offset_p = 20;
3287 if (size_p)
3288 *size_p = 4;
3289 }
3290
3291 void
3292 i386_emit_gt_goto (int *offset_p, int *size_p)
3293 {
3294 EMIT_ASM32 (gt,
3295 "cmpl %ebx,4(%esp)\n\t"
3296 "jg .Lgt_jump\n\t"
3297 "jne .Lgt_fallthru\n\t"
3298 "cmpl %eax,(%esp)\n\t"
3299 "jng .Lgt_fallthru\n\t"
3300 ".Lgt_jump:\n\t"
3301 "lea 0x8(%esp),%esp\n\t"
3302 "pop %eax\n\t"
3303 "pop %ebx\n\t"
3304 /* jmp, but don't trust the assembler to choose the right jump */
3305 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3306 ".Lgt_fallthru:\n\t"
3307 "lea 0x8(%esp),%esp\n\t"
3308 "pop %eax\n\t"
3309 "pop %ebx");
3310
3311 if (offset_p)
3312 *offset_p = 20;
3313 if (size_p)
3314 *size_p = 4;
3315 }
3316
3317 void
3318 i386_emit_ge_goto (int *offset_p, int *size_p)
3319 {
3320 EMIT_ASM32 (ge,
3321 "cmpl %ebx,4(%esp)\n\t"
3322 "jge .Lge_jump\n\t"
3323 "jne .Lge_fallthru\n\t"
3324 "cmpl %eax,(%esp)\n\t"
3325 "jnge .Lge_fallthru\n\t"
3326 ".Lge_jump:\n\t"
3327 "lea 0x8(%esp),%esp\n\t"
3328 "pop %eax\n\t"
3329 "pop %ebx\n\t"
3330 /* jmp, but don't trust the assembler to choose the right jump */
3331 ".byte 0xe9, 0x0, 0x0, 0x0, 0x0\n\t"
3332 ".Lge_fallthru:\n\t"
3333 "lea 0x8(%esp),%esp\n\t"
3334 "pop %eax\n\t"
3335 "pop %ebx");
3336
3337 if (offset_p)
3338 *offset_p = 20;
3339 if (size_p)
3340 *size_p = 4;
3341 }
3342
3343 struct emit_ops i386_emit_ops =
3344 {
3345 i386_emit_prologue,
3346 i386_emit_epilogue,
3347 i386_emit_add,
3348 i386_emit_sub,
3349 i386_emit_mul,
3350 i386_emit_lsh,
3351 i386_emit_rsh_signed,
3352 i386_emit_rsh_unsigned,
3353 i386_emit_ext,
3354 i386_emit_log_not,
3355 i386_emit_bit_and,
3356 i386_emit_bit_or,
3357 i386_emit_bit_xor,
3358 i386_emit_bit_not,
3359 i386_emit_equal,
3360 i386_emit_less_signed,
3361 i386_emit_less_unsigned,
3362 i386_emit_ref,
3363 i386_emit_if_goto,
3364 i386_emit_goto,
3365 i386_write_goto_address,
3366 i386_emit_const,
3367 i386_emit_call,
3368 i386_emit_reg,
3369 i386_emit_pop,
3370 i386_emit_stack_flush,
3371 i386_emit_zero_ext,
3372 i386_emit_swap,
3373 i386_emit_stack_adjust,
3374 i386_emit_int_call_1,
3375 i386_emit_void_call_2,
3376 i386_emit_eq_goto,
3377 i386_emit_ne_goto,
3378 i386_emit_lt_goto,
3379 i386_emit_le_goto,
3380 i386_emit_gt_goto,
3381 i386_emit_ge_goto
3382 };
3383
3384
3385 static struct emit_ops *
3386 x86_emit_ops (void)
3387 {
3388 #ifdef __x86_64__
3389 if (is_64bit_tdesc ())
3390 return &amd64_emit_ops;
3391 else
3392 #endif
3393 return &i386_emit_ops;
3394 }
3395
3396 static int
3397 x86_supports_range_stepping (void)
3398 {
3399 return 1;
3400 }
3401
3402 /* This is initialized assuming an amd64 target.
3403 x86_arch_setup will correct it for i386 or amd64 targets. */
3404
3405 struct linux_target_ops the_low_target =
3406 {
3407 x86_arch_setup,
3408 x86_linux_regs_info,
3409 x86_cannot_fetch_register,
3410 x86_cannot_store_register,
3411 NULL, /* fetch_register */
3412 x86_get_pc,
3413 x86_set_pc,
3414 x86_breakpoint,
3415 x86_breakpoint_len,
3416 NULL,
3417 1,
3418 x86_breakpoint_at,
3419 x86_supports_z_point_type,
3420 x86_insert_point,
3421 x86_remove_point,
3422 x86_stopped_by_watchpoint,
3423 x86_stopped_data_address,
3424 /* collect_ptrace_register/supply_ptrace_register are not needed in the
3425 native i386 case (no registers smaller than an xfer unit), and are not
3426 used in the biarch case (HAVE_LINUX_USRREGS is not defined). */
3427 NULL,
3428 NULL,
3429 /* need to fix up i386 siginfo if host is amd64 */
3430 x86_siginfo_fixup,
3431 x86_linux_new_process,
3432 x86_linux_new_thread,
3433 x86_linux_prepare_to_resume,
3434 x86_linux_process_qsupported,
3435 x86_supports_tracepoints,
3436 x86_get_thread_area,
3437 x86_install_fast_tracepoint_jump_pad,
3438 x86_emit_ops,
3439 x86_get_min_fast_tracepoint_insn_len,
3440 x86_supports_range_stepping,
3441 };
3442
3443 void
3444 initialize_low_arch (void)
3445 {
3446 /* Initialize the Linux target descriptions. */
3447 #ifdef __x86_64__
3448 init_registers_amd64_linux ();
3449 init_registers_amd64_avx_linux ();
3450 init_registers_amd64_avx512_linux ();
3451 init_registers_amd64_mpx_linux ();
3452
3453 init_registers_x32_linux ();
3454 init_registers_x32_avx_linux ();
3455 init_registers_x32_avx512_linux ();
3456
3457 tdesc_amd64_linux_no_xml = xmalloc (sizeof (struct target_desc));
3458 copy_target_description (tdesc_amd64_linux_no_xml, tdesc_amd64_linux);
3459 tdesc_amd64_linux_no_xml->xmltarget = xmltarget_amd64_linux_no_xml;
3460 #endif
3461 init_registers_i386_linux ();
3462 init_registers_i386_mmx_linux ();
3463 init_registers_i386_avx_linux ();
3464 init_registers_i386_avx512_linux ();
3465 init_registers_i386_mpx_linux ();
3466
3467 tdesc_i386_linux_no_xml = xmalloc (sizeof (struct target_desc));
3468 copy_target_description (tdesc_i386_linux_no_xml, tdesc_i386_linux);
3469 tdesc_i386_linux_no_xml->xmltarget = xmltarget_i386_linux_no_xml;
3470
3471 initialize_regsets_info (&x86_regsets_info);
3472 }