]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/mem-break.c
gdbserver:prepare_access_memory: pick another thread
[thirdparty/binutils-gdb.git] / gdb / gdbserver / mem-break.c
1 /* Memory breakpoint operations for the remote server for GDB.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3
4 Contributed by MontaVista Software.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "server.h"
22 #include "regcache.h"
23 #include "ax.h"
24
25 #define MAX_BREAKPOINT_LEN 8
26
27 /* Helper macro used in loops that append multiple items to a singly-linked
28 list instead of inserting items at the head of the list, as, say, in the
29 breakpoint lists. LISTPP is a pointer to the pointer that is the head of
30 the new list. ITEMP is a pointer to the item to be added to the list.
31 TAILP must be defined to be the same type as ITEMP, and initialized to
32 NULL. */
33
34 #define APPEND_TO_LIST(listpp, itemp, tailp) \
35 do \
36 { \
37 if ((tailp) == NULL) \
38 *(listpp) = (itemp); \
39 else \
40 (tailp)->next = (itemp); \
41 (tailp) = (itemp); \
42 } \
43 while (0)
44
45 /* GDB will never try to install multiple breakpoints at the same
46 address. However, we can see GDB requesting to insert a breakpoint
47 at an address is had already inserted one previously in a few
48 situations.
49
50 - The RSP documentation on Z packets says that to avoid potential
51 problems with duplicate packets, the operations should be
52 implemented in an idempotent way.
53
54 - A breakpoint is set at ADDR, an address in a shared library.
55 Then the shared library is unloaded. And then another, unrelated,
56 breakpoint at ADDR is set. There is not breakpoint removal request
57 between the first and the second breakpoint.
58
59 - When GDB wants to update the target-side breakpoint conditions or
60 commands, it re-inserts the breakpoint, with updated
61 conditions/commands associated.
62
63 Also, we need to keep track of internal breakpoints too, so we do
64 need to be able to install multiple breakpoints at the same address
65 transparently.
66
67 We keep track of two different, and closely related structures. A
68 raw breakpoint, which manages the low level, close to the metal
69 aspect of a breakpoint. It holds the breakpoint address, and for
70 software breakpoints, a buffer holding a copy of the instructions
71 that would be in memory had not been a breakpoint there (we call
72 that the shadow memory of the breakpoint). We occasionally need to
73 temporarilly uninsert a breakpoint without the client knowing about
74 it (e.g., to step over an internal breakpoint), so we keep an
75 `inserted' state associated with this low level breakpoint
76 structure. There can only be one such object for a given address.
77 Then, we have (a bit higher level) breakpoints. This structure
78 holds a callback to be called whenever a breakpoint is hit, a
79 high-level type, and a link to a low level raw breakpoint. There
80 can be many high-level breakpoints at the same address, and all of
81 them will point to the same raw breakpoint, which is reference
82 counted. */
83
84 /* The low level, physical, raw breakpoint. */
85 struct raw_breakpoint
86 {
87 struct raw_breakpoint *next;
88
89 /* The low level type of the breakpoint (software breakpoint,
90 watchpoint, etc.) */
91 enum raw_bkpt_type raw_type;
92
93 /* A reference count. Each high level breakpoint referencing this
94 raw breakpoint accounts for one reference. */
95 int refcount;
96
97 /* The breakpoint's insertion address. There can only be one raw
98 breakpoint for a given PC. */
99 CORE_ADDR pc;
100
101 /* The breakpoint's kind. This is target specific. Most
102 architectures only use one specific instruction for breakpoints, while
103 others may use more than one. E.g., on ARM, we need to use different
104 breakpoint instructions on Thumb, Thumb-2, and ARM code. Likewise for
105 hardware breakpoints -- some architectures (including ARM) need to
106 setup debug registers differently depending on mode. */
107 int kind;
108
109 /* The breakpoint's shadow memory. */
110 unsigned char old_data[MAX_BREAKPOINT_LEN];
111
112 /* Positive if this breakpoint is currently inserted in the
113 inferior. Negative if it was, but we've detected that it's now
114 gone. Zero if not inserted. */
115 int inserted;
116 };
117
118 /* The type of a breakpoint. */
119 enum bkpt_type
120 {
121 /* A GDB breakpoint, requested with a Z0 packet. */
122 gdb_breakpoint_Z0,
123
124 /* A GDB hardware breakpoint, requested with a Z1 packet. */
125 gdb_breakpoint_Z1,
126
127 /* A GDB write watchpoint, requested with a Z2 packet. */
128 gdb_breakpoint_Z2,
129
130 /* A GDB read watchpoint, requested with a Z3 packet. */
131 gdb_breakpoint_Z3,
132
133 /* A GDB access watchpoint, requested with a Z4 packet. */
134 gdb_breakpoint_Z4,
135
136 /* A basic-software-single-step breakpoint. */
137 reinsert_breakpoint,
138
139 /* Any other breakpoint type that doesn't require specific
140 treatment goes here. E.g., an event breakpoint. */
141 other_breakpoint,
142 };
143
144 struct point_cond_list
145 {
146 /* Pointer to the agent expression that is the breakpoint's
147 conditional. */
148 struct agent_expr *cond;
149
150 /* Pointer to the next condition. */
151 struct point_cond_list *next;
152 };
153
154 struct point_command_list
155 {
156 /* Pointer to the agent expression that is the breakpoint's
157 commands. */
158 struct agent_expr *cmd;
159
160 /* Flag that is true if this command should run even while GDB is
161 disconnected. */
162 int persistence;
163
164 /* Pointer to the next command. */
165 struct point_command_list *next;
166 };
167
168 /* A high level (in gdbserver's perspective) breakpoint. */
169 struct breakpoint
170 {
171 struct breakpoint *next;
172
173 /* The breakpoint's type. */
174 enum bkpt_type type;
175
176 /* Pointer to the condition list that should be evaluated on
177 the target or NULL if the breakpoint is unconditional or
178 if GDB doesn't want us to evaluate the conditionals on the
179 target's side. */
180 struct point_cond_list *cond_list;
181
182 /* Point to the list of commands to run when this is hit. */
183 struct point_command_list *command_list;
184
185 /* Link to this breakpoint's raw breakpoint. This is always
186 non-NULL. */
187 struct raw_breakpoint *raw;
188
189 /* Function to call when we hit this breakpoint. If it returns 1,
190 the breakpoint shall be deleted; 0 or if this callback is NULL,
191 it will be left inserted. */
192 int (*handler) (CORE_ADDR);
193 };
194
195 /* Return the breakpoint size from its kind. */
196
197 static int
198 bp_size (struct raw_breakpoint *bp)
199 {
200 int size = 0;
201
202 the_target->sw_breakpoint_from_kind (bp->kind, &size);
203 return size;
204 }
205
206 /* Return the breakpoint opcode from its kind. */
207
208 static const gdb_byte *
209 bp_opcode (struct raw_breakpoint *bp)
210 {
211 int size = 0;
212
213 return the_target->sw_breakpoint_from_kind (bp->kind, &size);
214 }
215
216 /* See mem-break.h. */
217
218 enum target_hw_bp_type
219 raw_bkpt_type_to_target_hw_bp_type (enum raw_bkpt_type raw_type)
220 {
221 switch (raw_type)
222 {
223 case raw_bkpt_type_hw:
224 return hw_execute;
225 case raw_bkpt_type_write_wp:
226 return hw_write;
227 case raw_bkpt_type_read_wp:
228 return hw_read;
229 case raw_bkpt_type_access_wp:
230 return hw_access;
231 default:
232 internal_error (__FILE__, __LINE__,
233 "bad raw breakpoint type %d", (int) raw_type);
234 }
235 }
236
237 /* See mem-break.h. */
238
239 static enum bkpt_type
240 Z_packet_to_bkpt_type (char z_type)
241 {
242 gdb_assert ('0' <= z_type && z_type <= '4');
243
244 return (enum bkpt_type) (gdb_breakpoint_Z0 + (z_type - '0'));
245 }
246
247 /* See mem-break.h. */
248
249 enum raw_bkpt_type
250 Z_packet_to_raw_bkpt_type (char z_type)
251 {
252 switch (z_type)
253 {
254 case Z_PACKET_SW_BP:
255 return raw_bkpt_type_sw;
256 case Z_PACKET_HW_BP:
257 return raw_bkpt_type_hw;
258 case Z_PACKET_WRITE_WP:
259 return raw_bkpt_type_write_wp;
260 case Z_PACKET_READ_WP:
261 return raw_bkpt_type_read_wp;
262 case Z_PACKET_ACCESS_WP:
263 return raw_bkpt_type_access_wp;
264 default:
265 gdb_assert_not_reached ("unhandled Z packet type.");
266 }
267 }
268
269 int
270 any_persistent_commands ()
271 {
272 struct process_info *proc = current_process ();
273 struct breakpoint *bp;
274 struct point_command_list *cl;
275
276 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
277 {
278 for (cl = bp->command_list; cl != NULL; cl = cl->next)
279 if (cl->persistence)
280 return 1;
281 }
282
283 return 0;
284 }
285
286 /* Find low-level breakpoint of type TYPE at address ADDR that is not
287 insert-disabled. Returns NULL if not found. */
288
289 static struct raw_breakpoint *
290 find_enabled_raw_code_breakpoint_at (CORE_ADDR addr, enum raw_bkpt_type type)
291 {
292 struct process_info *proc = current_process ();
293 struct raw_breakpoint *bp;
294
295 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
296 if (bp->pc == addr
297 && bp->raw_type == type
298 && bp->inserted >= 0)
299 return bp;
300
301 return NULL;
302 }
303
304 /* Find low-level breakpoint of type TYPE at address ADDR. Returns
305 NULL if not found. */
306
307 static struct raw_breakpoint *
308 find_raw_breakpoint_at (CORE_ADDR addr, enum raw_bkpt_type type, int kind)
309 {
310 struct process_info *proc = current_process ();
311 struct raw_breakpoint *bp;
312
313 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
314 if (bp->pc == addr && bp->raw_type == type && bp->kind == kind)
315 return bp;
316
317 return NULL;
318 }
319
320 /* See mem-break.h. */
321
322 int
323 insert_memory_breakpoint (struct raw_breakpoint *bp)
324 {
325 unsigned char buf[MAX_BREAKPOINT_LEN];
326 int err;
327
328 /* Note that there can be fast tracepoint jumps installed in the
329 same memory range, so to get at the original memory, we need to
330 use read_inferior_memory, which masks those out. */
331 err = read_inferior_memory (bp->pc, buf, bp_size (bp));
332 if (err != 0)
333 {
334 if (debug_threads)
335 debug_printf ("Failed to read shadow memory of"
336 " breakpoint at 0x%s (%s).\n",
337 paddress (bp->pc), strerror (err));
338 }
339 else
340 {
341 memcpy (bp->old_data, buf, bp_size (bp));
342
343 err = (*the_target->write_memory) (bp->pc, bp_opcode (bp),
344 bp_size (bp));
345 if (err != 0)
346 {
347 if (debug_threads)
348 debug_printf ("Failed to insert breakpoint at 0x%s (%s).\n",
349 paddress (bp->pc), strerror (err));
350 }
351 }
352 return err != 0 ? -1 : 0;
353 }
354
355 /* See mem-break.h */
356
357 int
358 remove_memory_breakpoint (struct raw_breakpoint *bp)
359 {
360 unsigned char buf[MAX_BREAKPOINT_LEN];
361 int err;
362
363 /* Since there can be trap breakpoints inserted in the same address
364 range, we use `write_inferior_memory', which takes care of
365 layering breakpoints on top of fast tracepoints, and on top of
366 the buffer we pass it. This works because the caller has already
367 either unlinked the breakpoint or marked it uninserted. Also
368 note that we need to pass the current shadow contents, because
369 write_inferior_memory updates any shadow memory with what we pass
370 here, and we want that to be a nop. */
371 memcpy (buf, bp->old_data, bp_size (bp));
372 err = write_inferior_memory (bp->pc, buf, bp_size (bp));
373 if (err != 0)
374 {
375 if (debug_threads)
376 debug_printf ("Failed to uninsert raw breakpoint "
377 "at 0x%s (%s) while deleting it.\n",
378 paddress (bp->pc), strerror (err));
379 }
380 return err != 0 ? -1 : 0;
381 }
382
383 /* Set a RAW breakpoint of type TYPE and kind KIND at WHERE. On
384 success, a pointer to the new breakpoint is returned. On failure,
385 returns NULL and writes the error code to *ERR. */
386
387 static struct raw_breakpoint *
388 set_raw_breakpoint_at (enum raw_bkpt_type type, CORE_ADDR where, int kind,
389 int *err)
390 {
391 struct process_info *proc = current_process ();
392 struct raw_breakpoint *bp;
393
394 if (type == raw_bkpt_type_sw || type == raw_bkpt_type_hw)
395 {
396 bp = find_enabled_raw_code_breakpoint_at (where, type);
397 if (bp != NULL && bp->kind != kind)
398 {
399 /* A different kind than previously seen. The previous
400 breakpoint must be gone then. */
401 if (debug_threads)
402 debug_printf ("Inconsistent breakpoint kind? Was %d, now %d.\n",
403 bp->kind, kind);
404 bp->inserted = -1;
405 bp = NULL;
406 }
407 }
408 else
409 bp = find_raw_breakpoint_at (where, type, kind);
410
411 if (bp != NULL)
412 {
413 bp->refcount++;
414 return bp;
415 }
416
417 bp = XCNEW (struct raw_breakpoint);
418 bp->pc = where;
419 bp->kind = kind;
420 bp->refcount = 1;
421 bp->raw_type = type;
422
423 *err = the_target->insert_point (bp->raw_type, bp->pc, bp->kind, bp);
424 if (*err != 0)
425 {
426 if (debug_threads)
427 debug_printf ("Failed to insert breakpoint at 0x%s (%d).\n",
428 paddress (where), *err);
429 free (bp);
430 return NULL;
431 }
432
433 bp->inserted = 1;
434 /* Link the breakpoint in. */
435 bp->next = proc->raw_breakpoints;
436 proc->raw_breakpoints = bp;
437 return bp;
438 }
439
440 /* Notice that breakpoint traps are always installed on top of fast
441 tracepoint jumps. This is even if the fast tracepoint is installed
442 at a later time compared to when the breakpoint was installed.
443 This means that a stopping breakpoint or tracepoint has higher
444 "priority". In turn, this allows having fast and slow tracepoints
445 (and breakpoints) at the same address behave correctly. */
446
447
448 /* A fast tracepoint jump. */
449
450 struct fast_tracepoint_jump
451 {
452 struct fast_tracepoint_jump *next;
453
454 /* A reference count. GDB can install more than one fast tracepoint
455 at the same address (each with its own action list, for
456 example). */
457 int refcount;
458
459 /* The fast tracepoint's insertion address. There can only be one
460 of these for a given PC. */
461 CORE_ADDR pc;
462
463 /* Non-zero if this fast tracepoint jump is currently inserted in
464 the inferior. */
465 int inserted;
466
467 /* The length of the jump instruction. */
468 int length;
469
470 /* A poor-man's flexible array member, holding both the jump
471 instruction to insert, and a copy of the instruction that would
472 be in memory had not been a jump there (the shadow memory of the
473 tracepoint jump). */
474 unsigned char insn_and_shadow[0];
475 };
476
477 /* Fast tracepoint FP's jump instruction to insert. */
478 #define fast_tracepoint_jump_insn(fp) \
479 ((fp)->insn_and_shadow + 0)
480
481 /* The shadow memory of fast tracepoint jump FP. */
482 #define fast_tracepoint_jump_shadow(fp) \
483 ((fp)->insn_and_shadow + (fp)->length)
484
485
486 /* Return the fast tracepoint jump set at WHERE. */
487
488 static struct fast_tracepoint_jump *
489 find_fast_tracepoint_jump_at (CORE_ADDR where)
490 {
491 struct process_info *proc = current_process ();
492 struct fast_tracepoint_jump *jp;
493
494 for (jp = proc->fast_tracepoint_jumps; jp != NULL; jp = jp->next)
495 if (jp->pc == where)
496 return jp;
497
498 return NULL;
499 }
500
501 int
502 fast_tracepoint_jump_here (CORE_ADDR where)
503 {
504 struct fast_tracepoint_jump *jp = find_fast_tracepoint_jump_at (where);
505
506 return (jp != NULL);
507 }
508
509 int
510 delete_fast_tracepoint_jump (struct fast_tracepoint_jump *todel)
511 {
512 struct fast_tracepoint_jump *bp, **bp_link;
513 int ret;
514 struct process_info *proc = current_process ();
515
516 bp = proc->fast_tracepoint_jumps;
517 bp_link = &proc->fast_tracepoint_jumps;
518
519 while (bp)
520 {
521 if (bp == todel)
522 {
523 if (--bp->refcount == 0)
524 {
525 struct fast_tracepoint_jump *prev_bp_link = *bp_link;
526 unsigned char *buf;
527
528 /* Unlink it. */
529 *bp_link = bp->next;
530
531 /* Since there can be breakpoints inserted in the same
532 address range, we use `write_inferior_memory', which
533 takes care of layering breakpoints on top of fast
534 tracepoints, and on top of the buffer we pass it.
535 This works because we've already unlinked the fast
536 tracepoint jump above. Also note that we need to
537 pass the current shadow contents, because
538 write_inferior_memory updates any shadow memory with
539 what we pass here, and we want that to be a nop. */
540 buf = (unsigned char *) alloca (bp->length);
541 memcpy (buf, fast_tracepoint_jump_shadow (bp), bp->length);
542 ret = write_inferior_memory (bp->pc, buf, bp->length);
543 if (ret != 0)
544 {
545 /* Something went wrong, relink the jump. */
546 *bp_link = prev_bp_link;
547
548 if (debug_threads)
549 debug_printf ("Failed to uninsert fast tracepoint jump "
550 "at 0x%s (%s) while deleting it.\n",
551 paddress (bp->pc), strerror (ret));
552 return ret;
553 }
554
555 free (bp);
556 }
557
558 return 0;
559 }
560 else
561 {
562 bp_link = &bp->next;
563 bp = *bp_link;
564 }
565 }
566
567 warning ("Could not find fast tracepoint jump in list.");
568 return ENOENT;
569 }
570
571 void
572 inc_ref_fast_tracepoint_jump (struct fast_tracepoint_jump *jp)
573 {
574 jp->refcount++;
575 }
576
577 struct fast_tracepoint_jump *
578 set_fast_tracepoint_jump (CORE_ADDR where,
579 unsigned char *insn, ULONGEST length)
580 {
581 struct process_info *proc = current_process ();
582 struct fast_tracepoint_jump *jp;
583 int err;
584 unsigned char *buf;
585
586 /* We refcount fast tracepoint jumps. Check if we already know
587 about a jump at this address. */
588 jp = find_fast_tracepoint_jump_at (where);
589 if (jp != NULL)
590 {
591 jp->refcount++;
592 return jp;
593 }
594
595 /* We don't, so create a new object. Double the length, because the
596 flexible array member holds both the jump insn, and the
597 shadow. */
598 jp = (struct fast_tracepoint_jump *) xcalloc (1, sizeof (*jp) + (length * 2));
599 jp->pc = where;
600 jp->length = length;
601 memcpy (fast_tracepoint_jump_insn (jp), insn, length);
602 jp->refcount = 1;
603 buf = (unsigned char *) alloca (length);
604
605 /* Note that there can be trap breakpoints inserted in the same
606 address range. To access the original memory contents, we use
607 `read_inferior_memory', which masks out breakpoints. */
608 err = read_inferior_memory (where, buf, length);
609 if (err != 0)
610 {
611 if (debug_threads)
612 debug_printf ("Failed to read shadow memory of"
613 " fast tracepoint at 0x%s (%s).\n",
614 paddress (where), strerror (err));
615 free (jp);
616 return NULL;
617 }
618 memcpy (fast_tracepoint_jump_shadow (jp), buf, length);
619
620 /* Link the jump in. */
621 jp->inserted = 1;
622 jp->next = proc->fast_tracepoint_jumps;
623 proc->fast_tracepoint_jumps = jp;
624
625 /* Since there can be trap breakpoints inserted in the same address
626 range, we use use `write_inferior_memory', which takes care of
627 layering breakpoints on top of fast tracepoints, on top of the
628 buffer we pass it. This works because we've already linked in
629 the fast tracepoint jump above. Also note that we need to pass
630 the current shadow contents, because write_inferior_memory
631 updates any shadow memory with what we pass here, and we want
632 that to be a nop. */
633 err = write_inferior_memory (where, buf, length);
634 if (err != 0)
635 {
636 if (debug_threads)
637 debug_printf ("Failed to insert fast tracepoint jump at 0x%s (%s).\n",
638 paddress (where), strerror (err));
639
640 /* Unlink it. */
641 proc->fast_tracepoint_jumps = jp->next;
642 free (jp);
643
644 return NULL;
645 }
646
647 return jp;
648 }
649
650 void
651 uninsert_fast_tracepoint_jumps_at (CORE_ADDR pc)
652 {
653 struct fast_tracepoint_jump *jp;
654 int err;
655
656 jp = find_fast_tracepoint_jump_at (pc);
657 if (jp == NULL)
658 {
659 /* This can happen when we remove all breakpoints while handling
660 a step-over. */
661 if (debug_threads)
662 debug_printf ("Could not find fast tracepoint jump at 0x%s "
663 "in list (uninserting).\n",
664 paddress (pc));
665 return;
666 }
667
668 if (jp->inserted)
669 {
670 unsigned char *buf;
671
672 jp->inserted = 0;
673
674 /* Since there can be trap breakpoints inserted in the same
675 address range, we use use `write_inferior_memory', which
676 takes care of layering breakpoints on top of fast
677 tracepoints, and on top of the buffer we pass it. This works
678 because we've already marked the fast tracepoint fast
679 tracepoint jump uninserted above. Also note that we need to
680 pass the current shadow contents, because
681 write_inferior_memory updates any shadow memory with what we
682 pass here, and we want that to be a nop. */
683 buf = (unsigned char *) alloca (jp->length);
684 memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length);
685 err = write_inferior_memory (jp->pc, buf, jp->length);
686 if (err != 0)
687 {
688 jp->inserted = 1;
689
690 if (debug_threads)
691 debug_printf ("Failed to uninsert fast tracepoint jump at"
692 " 0x%s (%s).\n",
693 paddress (pc), strerror (err));
694 }
695 }
696 }
697
698 void
699 reinsert_fast_tracepoint_jumps_at (CORE_ADDR where)
700 {
701 struct fast_tracepoint_jump *jp;
702 int err;
703 unsigned char *buf;
704
705 jp = find_fast_tracepoint_jump_at (where);
706 if (jp == NULL)
707 {
708 /* This can happen when we remove breakpoints when a tracepoint
709 hit causes a tracing stop, while handling a step-over. */
710 if (debug_threads)
711 debug_printf ("Could not find fast tracepoint jump at 0x%s "
712 "in list (reinserting).\n",
713 paddress (where));
714 return;
715 }
716
717 if (jp->inserted)
718 error ("Jump already inserted at reinsert time.");
719
720 jp->inserted = 1;
721
722 /* Since there can be trap breakpoints inserted in the same address
723 range, we use `write_inferior_memory', which takes care of
724 layering breakpoints on top of fast tracepoints, and on top of
725 the buffer we pass it. This works because we've already marked
726 the fast tracepoint jump inserted above. Also note that we need
727 to pass the current shadow contents, because
728 write_inferior_memory updates any shadow memory with what we pass
729 here, and we want that to be a nop. */
730 buf = (unsigned char *) alloca (jp->length);
731 memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length);
732 err = write_inferior_memory (where, buf, jp->length);
733 if (err != 0)
734 {
735 jp->inserted = 0;
736
737 if (debug_threads)
738 debug_printf ("Failed to reinsert fast tracepoint jump at"
739 " 0x%s (%s).\n",
740 paddress (where), strerror (err));
741 }
742 }
743
744 /* Set a high-level breakpoint of type TYPE, with low level type
745 RAW_TYPE and kind KIND, at WHERE. On success, a pointer to the new
746 breakpoint is returned. On failure, returns NULL and writes the
747 error code to *ERR. HANDLER is called when the breakpoint is hit.
748 HANDLER should return 1 if the breakpoint should be deleted, 0
749 otherwise. */
750
751 static struct breakpoint *
752 set_breakpoint (enum bkpt_type type, enum raw_bkpt_type raw_type,
753 CORE_ADDR where, int kind,
754 int (*handler) (CORE_ADDR), int *err)
755 {
756 struct process_info *proc = current_process ();
757 struct breakpoint *bp;
758 struct raw_breakpoint *raw;
759
760 raw = set_raw_breakpoint_at (raw_type, where, kind, err);
761
762 if (raw == NULL)
763 {
764 /* warn? */
765 return NULL;
766 }
767
768 bp = XCNEW (struct breakpoint);
769 bp->type = type;
770
771 bp->raw = raw;
772 bp->handler = handler;
773
774 bp->next = proc->breakpoints;
775 proc->breakpoints = bp;
776
777 return bp;
778 }
779
780 /* See mem-break.h */
781
782 struct breakpoint *
783 set_breakpoint_at (CORE_ADDR where, int (*handler) (CORE_ADDR))
784 {
785 int err_ignored;
786 CORE_ADDR placed_address = where;
787 int breakpoint_kind = target_breakpoint_kind_from_pc (&placed_address);
788
789 return set_breakpoint (other_breakpoint, raw_bkpt_type_sw,
790 placed_address, breakpoint_kind, handler,
791 &err_ignored);
792 }
793
794
795 static int
796 delete_raw_breakpoint (struct process_info *proc, struct raw_breakpoint *todel)
797 {
798 struct raw_breakpoint *bp, **bp_link;
799 int ret;
800
801 bp = proc->raw_breakpoints;
802 bp_link = &proc->raw_breakpoints;
803
804 while (bp)
805 {
806 if (bp == todel)
807 {
808 if (bp->inserted > 0)
809 {
810 struct raw_breakpoint *prev_bp_link = *bp_link;
811
812 *bp_link = bp->next;
813
814 ret = the_target->remove_point (bp->raw_type, bp->pc, bp->kind,
815 bp);
816 if (ret != 0)
817 {
818 /* Something went wrong, relink the breakpoint. */
819 *bp_link = prev_bp_link;
820
821 if (debug_threads)
822 debug_printf ("Failed to uninsert raw breakpoint "
823 "at 0x%s while deleting it.\n",
824 paddress (bp->pc));
825 return ret;
826 }
827 }
828 else
829 *bp_link = bp->next;
830
831 free (bp);
832 return 0;
833 }
834 else
835 {
836 bp_link = &bp->next;
837 bp = *bp_link;
838 }
839 }
840
841 warning ("Could not find raw breakpoint in list.");
842 return ENOENT;
843 }
844
845 static int
846 release_breakpoint (struct process_info *proc, struct breakpoint *bp)
847 {
848 int newrefcount;
849 int ret;
850
851 newrefcount = bp->raw->refcount - 1;
852 if (newrefcount == 0)
853 {
854 ret = delete_raw_breakpoint (proc, bp->raw);
855 if (ret != 0)
856 return ret;
857 }
858 else
859 bp->raw->refcount = newrefcount;
860
861 free (bp);
862
863 return 0;
864 }
865
866 static int
867 delete_breakpoint_1 (struct process_info *proc, struct breakpoint *todel)
868 {
869 struct breakpoint *bp, **bp_link;
870 int err;
871
872 bp = proc->breakpoints;
873 bp_link = &proc->breakpoints;
874
875 while (bp)
876 {
877 if (bp == todel)
878 {
879 *bp_link = bp->next;
880
881 err = release_breakpoint (proc, bp);
882 if (err != 0)
883 return err;
884
885 bp = *bp_link;
886 return 0;
887 }
888 else
889 {
890 bp_link = &bp->next;
891 bp = *bp_link;
892 }
893 }
894
895 warning ("Could not find breakpoint in list.");
896 return ENOENT;
897 }
898
899 int
900 delete_breakpoint (struct breakpoint *todel)
901 {
902 struct process_info *proc = current_process ();
903 return delete_breakpoint_1 (proc, todel);
904 }
905
906 /* Locate a GDB breakpoint of type Z_TYPE and kind KIND placed at
907 address ADDR and return a pointer to its structure. If KIND is -1,
908 the breakpoint's kind is ignored. */
909
910 static struct breakpoint *
911 find_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind)
912 {
913 struct process_info *proc = current_process ();
914 struct breakpoint *bp;
915 enum bkpt_type type = Z_packet_to_bkpt_type (z_type);
916
917 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
918 if (bp->type == type && bp->raw->pc == addr
919 && (kind == -1 || bp->raw->kind == kind))
920 return bp;
921
922 return NULL;
923 }
924
925 static int
926 z_type_supported (char z_type)
927 {
928 return (z_type >= '0' && z_type <= '4'
929 && the_target->supports_z_point_type != NULL
930 && the_target->supports_z_point_type (z_type));
931 }
932
933 /* Create a new GDB breakpoint of type Z_TYPE at ADDR with kind KIND.
934 Returns a pointer to the newly created breakpoint on success. On
935 failure returns NULL and sets *ERR to either -1 for error, or 1 if
936 Z_TYPE breakpoints are not supported on this target. */
937
938 static struct breakpoint *
939 set_gdb_breakpoint_1 (char z_type, CORE_ADDR addr, int kind, int *err)
940 {
941 struct breakpoint *bp;
942 enum bkpt_type type;
943 enum raw_bkpt_type raw_type;
944
945 /* If we see GDB inserting a second code breakpoint at the same
946 address, then either: GDB is updating the breakpoint's conditions
947 or commands; or, the first breakpoint must have disappeared due
948 to a shared library unload. On targets where the shared
949 libraries are handled by userspace, like SVR4, for example,
950 GDBserver can't tell if a library was loaded or unloaded. Since
951 we refcount raw breakpoints, we must be careful to make sure GDB
952 breakpoints never contribute more than one reference. if we
953 didn't do this, in case the previous breakpoint is gone due to a
954 shared library unload, we'd just increase the refcount of the
955 previous breakpoint at this address, but the trap was not planted
956 in the inferior anymore, thus the breakpoint would never be hit.
957 Note this must be careful to not create a window where
958 breakpoints are removed from the target, for non-stop, in case
959 the target can poke at memory while the program is running. */
960 if (z_type == Z_PACKET_SW_BP
961 || z_type == Z_PACKET_HW_BP)
962 {
963 bp = find_gdb_breakpoint (z_type, addr, -1);
964
965 if (bp != NULL)
966 {
967 if (bp->raw->kind != kind)
968 {
969 /* A different kind than previously seen. The previous
970 breakpoint must be gone then. */
971 bp->raw->inserted = -1;
972 delete_breakpoint (bp);
973 bp = NULL;
974 }
975 else if (z_type == Z_PACKET_SW_BP)
976 {
977 /* Check if the breakpoint is actually gone from the
978 target, due to an solib unload, for example. Might
979 as well validate _all_ breakpoints. */
980 validate_breakpoints ();
981
982 /* Breakpoints that don't pass validation are
983 deleted. */
984 bp = find_gdb_breakpoint (z_type, addr, -1);
985 }
986 }
987 }
988 else
989 {
990 /* Data breakpoints for the same address but different kind are
991 expected. GDB doesn't merge these. The backend gets to do
992 that if it wants/can. */
993 bp = find_gdb_breakpoint (z_type, addr, kind);
994 }
995
996 if (bp != NULL)
997 {
998 /* We already know about this breakpoint, there's nothing else
999 to do - GDB's reference is already accounted for. Note that
1000 whether the breakpoint inserted is left as is - we may be
1001 stepping over it, for example, in which case we don't want to
1002 force-reinsert it. */
1003 return bp;
1004 }
1005
1006 raw_type = Z_packet_to_raw_bkpt_type (z_type);
1007 type = Z_packet_to_bkpt_type (z_type);
1008 return set_breakpoint (type, raw_type, addr, kind, NULL, err);
1009 }
1010
1011 static int
1012 check_gdb_bp_preconditions (char z_type, int *err)
1013 {
1014 /* As software/memory breakpoints work by poking at memory, we need
1015 to prepare to access memory. If that operation fails, we need to
1016 return error. Seeing an error, if this is the first breakpoint
1017 of that type that GDB tries to insert, GDB would then assume the
1018 breakpoint type is supported, but it may actually not be. So we
1019 need to check whether the type is supported at all before
1020 preparing to access memory. */
1021 if (!z_type_supported (z_type))
1022 {
1023 *err = 1;
1024 return 0;
1025 }
1026
1027 return 1;
1028 }
1029
1030 /* See mem-break.h. This is a wrapper for set_gdb_breakpoint_1 that
1031 knows to prepare to access memory for Z0 breakpoints. */
1032
1033 struct breakpoint *
1034 set_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind, int *err)
1035 {
1036 struct breakpoint *bp;
1037
1038 if (!check_gdb_bp_preconditions (z_type, err))
1039 return NULL;
1040
1041 /* If inserting a software/memory breakpoint, need to prepare to
1042 access memory. */
1043 if (z_type == Z_PACKET_SW_BP)
1044 {
1045 if (prepare_to_access_memory () != 0)
1046 {
1047 *err = -1;
1048 return NULL;
1049 }
1050 }
1051
1052 bp = set_gdb_breakpoint_1 (z_type, addr, kind, err);
1053
1054 if (z_type == Z_PACKET_SW_BP)
1055 done_accessing_memory ();
1056
1057 return bp;
1058 }
1059
1060 /* Delete a GDB breakpoint of type Z_TYPE and kind KIND previously
1061 inserted at ADDR with set_gdb_breakpoint_at. Returns 0 on success,
1062 -1 on error, and 1 if Z_TYPE breakpoints are not supported on this
1063 target. */
1064
1065 static int
1066 delete_gdb_breakpoint_1 (char z_type, CORE_ADDR addr, int kind)
1067 {
1068 struct breakpoint *bp;
1069 int err;
1070
1071 bp = find_gdb_breakpoint (z_type, addr, kind);
1072 if (bp == NULL)
1073 return -1;
1074
1075 /* Before deleting the breakpoint, make sure to free its condition
1076 and command lists. */
1077 clear_breakpoint_conditions_and_commands (bp);
1078 err = delete_breakpoint (bp);
1079 if (err != 0)
1080 return -1;
1081
1082 return 0;
1083 }
1084
1085 /* See mem-break.h. This is a wrapper for delete_gdb_breakpoint that
1086 knows to prepare to access memory for Z0 breakpoints. */
1087
1088 int
1089 delete_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind)
1090 {
1091 int ret;
1092
1093 if (!check_gdb_bp_preconditions (z_type, &ret))
1094 return ret;
1095
1096 /* If inserting a software/memory breakpoint, need to prepare to
1097 access memory. */
1098 if (z_type == Z_PACKET_SW_BP)
1099 {
1100 int err;
1101
1102 err = prepare_to_access_memory ();
1103 if (err != 0)
1104 return -1;
1105 }
1106
1107 ret = delete_gdb_breakpoint_1 (z_type, addr, kind);
1108
1109 if (z_type == Z_PACKET_SW_BP)
1110 done_accessing_memory ();
1111
1112 return ret;
1113 }
1114
1115 /* Clear all conditions associated with a breakpoint. */
1116
1117 static void
1118 clear_breakpoint_conditions (struct breakpoint *bp)
1119 {
1120 struct point_cond_list *cond;
1121
1122 if (bp->cond_list == NULL)
1123 return;
1124
1125 cond = bp->cond_list;
1126
1127 while (cond != NULL)
1128 {
1129 struct point_cond_list *cond_next;
1130
1131 cond_next = cond->next;
1132 gdb_free_agent_expr (cond->cond);
1133 free (cond);
1134 cond = cond_next;
1135 }
1136
1137 bp->cond_list = NULL;
1138 }
1139
1140 /* Clear all commands associated with a breakpoint. */
1141
1142 static void
1143 clear_breakpoint_commands (struct breakpoint *bp)
1144 {
1145 struct point_command_list *cmd;
1146
1147 if (bp->command_list == NULL)
1148 return;
1149
1150 cmd = bp->command_list;
1151
1152 while (cmd != NULL)
1153 {
1154 struct point_command_list *cmd_next;
1155
1156 cmd_next = cmd->next;
1157 gdb_free_agent_expr (cmd->cmd);
1158 free (cmd);
1159 cmd = cmd_next;
1160 }
1161
1162 bp->command_list = NULL;
1163 }
1164
1165 void
1166 clear_breakpoint_conditions_and_commands (struct breakpoint *bp)
1167 {
1168 clear_breakpoint_conditions (bp);
1169 clear_breakpoint_commands (bp);
1170 }
1171
1172 /* Add condition CONDITION to GDBserver's breakpoint BP. */
1173
1174 static void
1175 add_condition_to_breakpoint (struct breakpoint *bp,
1176 struct agent_expr *condition)
1177 {
1178 struct point_cond_list *new_cond;
1179
1180 /* Create new condition. */
1181 new_cond = XCNEW (struct point_cond_list);
1182 new_cond->cond = condition;
1183
1184 /* Add condition to the list. */
1185 new_cond->next = bp->cond_list;
1186 bp->cond_list = new_cond;
1187 }
1188
1189 /* Add a target-side condition CONDITION to a breakpoint. */
1190
1191 int
1192 add_breakpoint_condition (struct breakpoint *bp, char **condition)
1193 {
1194 char *actparm = *condition;
1195 struct agent_expr *cond;
1196
1197 if (condition == NULL)
1198 return 1;
1199
1200 if (bp == NULL)
1201 return 0;
1202
1203 cond = gdb_parse_agent_expr (&actparm);
1204
1205 if (cond == NULL)
1206 {
1207 fprintf (stderr, "Condition evaluation failed. "
1208 "Assuming unconditional.\n");
1209 return 0;
1210 }
1211
1212 add_condition_to_breakpoint (bp, cond);
1213
1214 *condition = actparm;
1215
1216 return 1;
1217 }
1218
1219 /* Evaluate condition (if any) at breakpoint BP. Return 1 if
1220 true and 0 otherwise. */
1221
1222 static int
1223 gdb_condition_true_at_breakpoint_z_type (char z_type, CORE_ADDR addr)
1224 {
1225 /* Fetch registers for the current inferior. */
1226 struct breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1227 ULONGEST value = 0;
1228 struct point_cond_list *cl;
1229 int err = 0;
1230 struct eval_agent_expr_context ctx;
1231
1232 if (bp == NULL)
1233 return 0;
1234
1235 /* Check if the breakpoint is unconditional. If it is,
1236 the condition always evaluates to TRUE. */
1237 if (bp->cond_list == NULL)
1238 return 1;
1239
1240 ctx.regcache = get_thread_regcache (current_thread, 1);
1241 ctx.tframe = NULL;
1242 ctx.tpoint = NULL;
1243
1244 /* Evaluate each condition in the breakpoint's list of conditions.
1245 Return true if any of the conditions evaluates to TRUE.
1246
1247 If we failed to evaluate the expression, TRUE is returned. This
1248 forces GDB to reevaluate the conditions. */
1249 for (cl = bp->cond_list;
1250 cl && !value && !err; cl = cl->next)
1251 {
1252 /* Evaluate the condition. */
1253 err = gdb_eval_agent_expr (&ctx, cl->cond, &value);
1254 }
1255
1256 if (err)
1257 return 1;
1258
1259 return (value != 0);
1260 }
1261
1262 int
1263 gdb_condition_true_at_breakpoint (CORE_ADDR where)
1264 {
1265 /* Only check code (software or hardware) breakpoints. */
1266 return (gdb_condition_true_at_breakpoint_z_type (Z_PACKET_SW_BP, where)
1267 || gdb_condition_true_at_breakpoint_z_type (Z_PACKET_HW_BP, where));
1268 }
1269
1270 /* Add commands COMMANDS to GDBserver's breakpoint BP. */
1271
1272 void
1273 add_commands_to_breakpoint (struct breakpoint *bp,
1274 struct agent_expr *commands, int persist)
1275 {
1276 struct point_command_list *new_cmd;
1277
1278 /* Create new command. */
1279 new_cmd = XCNEW (struct point_command_list);
1280 new_cmd->cmd = commands;
1281 new_cmd->persistence = persist;
1282
1283 /* Add commands to the list. */
1284 new_cmd->next = bp->command_list;
1285 bp->command_list = new_cmd;
1286 }
1287
1288 /* Add a target-side command COMMAND to the breakpoint at ADDR. */
1289
1290 int
1291 add_breakpoint_commands (struct breakpoint *bp, char **command,
1292 int persist)
1293 {
1294 char *actparm = *command;
1295 struct agent_expr *cmd;
1296
1297 if (command == NULL)
1298 return 1;
1299
1300 if (bp == NULL)
1301 return 0;
1302
1303 cmd = gdb_parse_agent_expr (&actparm);
1304
1305 if (cmd == NULL)
1306 {
1307 fprintf (stderr, "Command evaluation failed. "
1308 "Disabling.\n");
1309 return 0;
1310 }
1311
1312 add_commands_to_breakpoint (bp, cmd, persist);
1313
1314 *command = actparm;
1315
1316 return 1;
1317 }
1318
1319 /* Return true if there are no commands to run at this location,
1320 which likely means we want to report back to GDB. */
1321
1322 static int
1323 gdb_no_commands_at_breakpoint_z_type (char z_type, CORE_ADDR addr)
1324 {
1325 struct breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1326
1327 if (bp == NULL)
1328 return 1;
1329
1330 if (debug_threads)
1331 debug_printf ("at 0x%s, type Z%c, bp command_list is 0x%s\n",
1332 paddress (addr), z_type,
1333 phex_nz ((uintptr_t) bp->command_list, 0));
1334 return (bp->command_list == NULL);
1335 }
1336
1337 /* Return true if there are no commands to run at this location,
1338 which likely means we want to report back to GDB. */
1339
1340 int
1341 gdb_no_commands_at_breakpoint (CORE_ADDR where)
1342 {
1343 /* Only check code (software or hardware) breakpoints. */
1344 return (gdb_no_commands_at_breakpoint_z_type (Z_PACKET_SW_BP, where)
1345 && gdb_no_commands_at_breakpoint_z_type (Z_PACKET_HW_BP, where));
1346 }
1347
1348 /* Run a breakpoint's commands. Returns 0 if there was a problem
1349 running any command, 1 otherwise. */
1350
1351 static int
1352 run_breakpoint_commands_z_type (char z_type, CORE_ADDR addr)
1353 {
1354 /* Fetch registers for the current inferior. */
1355 struct breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1356 ULONGEST value = 0;
1357 struct point_command_list *cl;
1358 int err = 0;
1359 struct eval_agent_expr_context ctx;
1360
1361 if (bp == NULL)
1362 return 1;
1363
1364 ctx.regcache = get_thread_regcache (current_thread, 1);
1365 ctx.tframe = NULL;
1366 ctx.tpoint = NULL;
1367
1368 for (cl = bp->command_list;
1369 cl && !value && !err; cl = cl->next)
1370 {
1371 /* Run the command. */
1372 err = gdb_eval_agent_expr (&ctx, cl->cmd, &value);
1373
1374 /* If one command has a problem, stop digging the hole deeper. */
1375 if (err)
1376 return 0;
1377 }
1378
1379 return 1;
1380 }
1381
1382 void
1383 run_breakpoint_commands (CORE_ADDR where)
1384 {
1385 /* Only check code (software or hardware) breakpoints. If one
1386 command has a problem, stop digging the hole deeper. */
1387 if (run_breakpoint_commands_z_type (Z_PACKET_SW_BP, where))
1388 run_breakpoint_commands_z_type (Z_PACKET_HW_BP, where);
1389 }
1390
1391 /* See mem-break.h. */
1392
1393 int
1394 gdb_breakpoint_here (CORE_ADDR where)
1395 {
1396 /* Only check code (software or hardware) breakpoints. */
1397 return (find_gdb_breakpoint (Z_PACKET_SW_BP, where, -1) != NULL
1398 || find_gdb_breakpoint (Z_PACKET_HW_BP, where, -1) != NULL);
1399 }
1400
1401 void
1402 set_reinsert_breakpoint (CORE_ADDR stop_at)
1403 {
1404 struct breakpoint *bp;
1405
1406 bp = set_breakpoint_at (stop_at, NULL);
1407 bp->type = reinsert_breakpoint;
1408 }
1409
1410 void
1411 delete_reinsert_breakpoints (void)
1412 {
1413 struct process_info *proc = current_process ();
1414 struct breakpoint *bp, **bp_link;
1415
1416 bp = proc->breakpoints;
1417 bp_link = &proc->breakpoints;
1418
1419 while (bp)
1420 {
1421 if (bp->type == reinsert_breakpoint)
1422 {
1423 *bp_link = bp->next;
1424 release_breakpoint (proc, bp);
1425 bp = *bp_link;
1426 }
1427 else
1428 {
1429 bp_link = &bp->next;
1430 bp = *bp_link;
1431 }
1432 }
1433 }
1434
1435 static void
1436 uninsert_raw_breakpoint (struct raw_breakpoint *bp)
1437 {
1438 if (bp->inserted < 0)
1439 {
1440 if (debug_threads)
1441 debug_printf ("Breakpoint at %s is marked insert-disabled.\n",
1442 paddress (bp->pc));
1443 }
1444 else if (bp->inserted > 0)
1445 {
1446 int err;
1447
1448 bp->inserted = 0;
1449
1450 err = the_target->remove_point (bp->raw_type, bp->pc, bp->kind, bp);
1451 if (err != 0)
1452 {
1453 bp->inserted = 1;
1454
1455 if (debug_threads)
1456 debug_printf ("Failed to uninsert raw breakpoint at 0x%s.\n",
1457 paddress (bp->pc));
1458 }
1459 }
1460 }
1461
1462 void
1463 uninsert_breakpoints_at (CORE_ADDR pc)
1464 {
1465 struct process_info *proc = current_process ();
1466 struct raw_breakpoint *bp;
1467 int found = 0;
1468
1469 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1470 if ((bp->raw_type == raw_bkpt_type_sw
1471 || bp->raw_type == raw_bkpt_type_hw)
1472 && bp->pc == pc)
1473 {
1474 found = 1;
1475
1476 if (bp->inserted)
1477 uninsert_raw_breakpoint (bp);
1478 }
1479
1480 if (!found)
1481 {
1482 /* This can happen when we remove all breakpoints while handling
1483 a step-over. */
1484 if (debug_threads)
1485 debug_printf ("Could not find breakpoint at 0x%s "
1486 "in list (uninserting).\n",
1487 paddress (pc));
1488 }
1489 }
1490
1491 void
1492 uninsert_all_breakpoints (void)
1493 {
1494 struct process_info *proc = current_process ();
1495 struct raw_breakpoint *bp;
1496
1497 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1498 if ((bp->raw_type == raw_bkpt_type_sw
1499 || bp->raw_type == raw_bkpt_type_hw)
1500 && bp->inserted)
1501 uninsert_raw_breakpoint (bp);
1502 }
1503
1504 static void
1505 reinsert_raw_breakpoint (struct raw_breakpoint *bp)
1506 {
1507 int err;
1508
1509 if (bp->inserted)
1510 error ("Breakpoint already inserted at reinsert time.");
1511
1512 err = the_target->insert_point (bp->raw_type, bp->pc, bp->kind, bp);
1513 if (err == 0)
1514 bp->inserted = 1;
1515 else if (debug_threads)
1516 debug_printf ("Failed to reinsert breakpoint at 0x%s (%d).\n",
1517 paddress (bp->pc), err);
1518 }
1519
1520 void
1521 reinsert_breakpoints_at (CORE_ADDR pc)
1522 {
1523 struct process_info *proc = current_process ();
1524 struct raw_breakpoint *bp;
1525 int found = 0;
1526
1527 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1528 if ((bp->raw_type == raw_bkpt_type_sw
1529 || bp->raw_type == raw_bkpt_type_hw)
1530 && bp->pc == pc)
1531 {
1532 found = 1;
1533
1534 reinsert_raw_breakpoint (bp);
1535 }
1536
1537 if (!found)
1538 {
1539 /* This can happen when we remove all breakpoints while handling
1540 a step-over. */
1541 if (debug_threads)
1542 debug_printf ("Could not find raw breakpoint at 0x%s "
1543 "in list (reinserting).\n",
1544 paddress (pc));
1545 }
1546 }
1547
1548 void
1549 reinsert_all_breakpoints (void)
1550 {
1551 struct process_info *proc = current_process ();
1552 struct raw_breakpoint *bp;
1553
1554 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1555 if ((bp->raw_type == raw_bkpt_type_sw
1556 || bp->raw_type == raw_bkpt_type_hw)
1557 && !bp->inserted)
1558 reinsert_raw_breakpoint (bp);
1559 }
1560
1561 void
1562 check_breakpoints (CORE_ADDR stop_pc)
1563 {
1564 struct process_info *proc = current_process ();
1565 struct breakpoint *bp, **bp_link;
1566
1567 bp = proc->breakpoints;
1568 bp_link = &proc->breakpoints;
1569
1570 while (bp)
1571 {
1572 struct raw_breakpoint *raw = bp->raw;
1573
1574 if ((raw->raw_type == raw_bkpt_type_sw
1575 || raw->raw_type == raw_bkpt_type_hw)
1576 && raw->pc == stop_pc)
1577 {
1578 if (!raw->inserted)
1579 {
1580 warning ("Hit a removed breakpoint?");
1581 return;
1582 }
1583
1584 if (bp->handler != NULL && (*bp->handler) (stop_pc))
1585 {
1586 *bp_link = bp->next;
1587
1588 release_breakpoint (proc, bp);
1589
1590 bp = *bp_link;
1591 continue;
1592 }
1593 }
1594
1595 bp_link = &bp->next;
1596 bp = *bp_link;
1597 }
1598 }
1599
1600 int
1601 breakpoint_here (CORE_ADDR addr)
1602 {
1603 struct process_info *proc = current_process ();
1604 struct raw_breakpoint *bp;
1605
1606 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1607 if ((bp->raw_type == raw_bkpt_type_sw
1608 || bp->raw_type == raw_bkpt_type_hw)
1609 && bp->pc == addr)
1610 return 1;
1611
1612 return 0;
1613 }
1614
1615 int
1616 breakpoint_inserted_here (CORE_ADDR addr)
1617 {
1618 struct process_info *proc = current_process ();
1619 struct raw_breakpoint *bp;
1620
1621 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1622 if ((bp->raw_type == raw_bkpt_type_sw
1623 || bp->raw_type == raw_bkpt_type_hw)
1624 && bp->pc == addr
1625 && bp->inserted)
1626 return 1;
1627
1628 return 0;
1629 }
1630
1631 /* See mem-break.h. */
1632
1633 int
1634 software_breakpoint_inserted_here (CORE_ADDR addr)
1635 {
1636 struct process_info *proc = current_process ();
1637 struct raw_breakpoint *bp;
1638
1639 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1640 if (bp->raw_type == raw_bkpt_type_sw
1641 && bp->pc == addr
1642 && bp->inserted)
1643 return 1;
1644
1645 return 0;
1646 }
1647
1648 /* See mem-break.h. */
1649
1650 int
1651 hardware_breakpoint_inserted_here (CORE_ADDR addr)
1652 {
1653 struct process_info *proc = current_process ();
1654 struct raw_breakpoint *bp;
1655
1656 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1657 if (bp->raw_type == raw_bkpt_type_hw
1658 && bp->pc == addr
1659 && bp->inserted)
1660 return 1;
1661
1662 return 0;
1663 }
1664
1665 static int
1666 validate_inserted_breakpoint (struct raw_breakpoint *bp)
1667 {
1668 unsigned char *buf;
1669 int err;
1670
1671 gdb_assert (bp->inserted);
1672 gdb_assert (bp->raw_type == raw_bkpt_type_sw);
1673
1674 buf = (unsigned char *) alloca (bp_size (bp));
1675 err = (*the_target->read_memory) (bp->pc, buf, bp_size (bp));
1676 if (err || memcmp (buf, bp_opcode (bp), bp_size (bp)) != 0)
1677 {
1678 /* Tag it as gone. */
1679 bp->inserted = -1;
1680 return 0;
1681 }
1682
1683 return 1;
1684 }
1685
1686 static void
1687 delete_disabled_breakpoints (void)
1688 {
1689 struct process_info *proc = current_process ();
1690 struct breakpoint *bp, *next;
1691
1692 for (bp = proc->breakpoints; bp != NULL; bp = next)
1693 {
1694 next = bp->next;
1695 if (bp->raw->inserted < 0)
1696 delete_breakpoint_1 (proc, bp);
1697 }
1698 }
1699
1700 /* Check if breakpoints we inserted still appear to be inserted. They
1701 may disappear due to a shared library unload, and worse, a new
1702 shared library may be reloaded at the same address as the
1703 previously unloaded one. If that happens, we should make sure that
1704 the shadow memory of the old breakpoints isn't used when reading or
1705 writing memory. */
1706
1707 void
1708 validate_breakpoints (void)
1709 {
1710 struct process_info *proc = current_process ();
1711 struct breakpoint *bp;
1712
1713 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1714 {
1715 struct raw_breakpoint *raw = bp->raw;
1716
1717 if (raw->raw_type == raw_bkpt_type_sw && raw->inserted > 0)
1718 validate_inserted_breakpoint (raw);
1719 }
1720
1721 delete_disabled_breakpoints ();
1722 }
1723
1724 void
1725 check_mem_read (CORE_ADDR mem_addr, unsigned char *buf, int mem_len)
1726 {
1727 struct process_info *proc = current_process ();
1728 struct raw_breakpoint *bp = proc->raw_breakpoints;
1729 struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps;
1730 CORE_ADDR mem_end = mem_addr + mem_len;
1731 int disabled_one = 0;
1732
1733 for (; jp != NULL; jp = jp->next)
1734 {
1735 CORE_ADDR bp_end = jp->pc + jp->length;
1736 CORE_ADDR start, end;
1737 int copy_offset, copy_len, buf_offset;
1738
1739 gdb_assert (fast_tracepoint_jump_shadow (jp) >= buf + mem_len
1740 || buf >= fast_tracepoint_jump_shadow (jp) + (jp)->length);
1741
1742 if (mem_addr >= bp_end)
1743 continue;
1744 if (jp->pc >= mem_end)
1745 continue;
1746
1747 start = jp->pc;
1748 if (mem_addr > start)
1749 start = mem_addr;
1750
1751 end = bp_end;
1752 if (end > mem_end)
1753 end = mem_end;
1754
1755 copy_len = end - start;
1756 copy_offset = start - jp->pc;
1757 buf_offset = start - mem_addr;
1758
1759 if (jp->inserted)
1760 memcpy (buf + buf_offset,
1761 fast_tracepoint_jump_shadow (jp) + copy_offset,
1762 copy_len);
1763 }
1764
1765 for (; bp != NULL; bp = bp->next)
1766 {
1767 CORE_ADDR bp_end = bp->pc + bp_size (bp);
1768 CORE_ADDR start, end;
1769 int copy_offset, copy_len, buf_offset;
1770
1771 if (bp->raw_type != raw_bkpt_type_sw)
1772 continue;
1773
1774 gdb_assert (bp->old_data >= buf + mem_len
1775 || buf >= &bp->old_data[sizeof (bp->old_data)]);
1776
1777 if (mem_addr >= bp_end)
1778 continue;
1779 if (bp->pc >= mem_end)
1780 continue;
1781
1782 start = bp->pc;
1783 if (mem_addr > start)
1784 start = mem_addr;
1785
1786 end = bp_end;
1787 if (end > mem_end)
1788 end = mem_end;
1789
1790 copy_len = end - start;
1791 copy_offset = start - bp->pc;
1792 buf_offset = start - mem_addr;
1793
1794 if (bp->inserted > 0)
1795 {
1796 if (validate_inserted_breakpoint (bp))
1797 memcpy (buf + buf_offset, bp->old_data + copy_offset, copy_len);
1798 else
1799 disabled_one = 1;
1800 }
1801 }
1802
1803 if (disabled_one)
1804 delete_disabled_breakpoints ();
1805 }
1806
1807 void
1808 check_mem_write (CORE_ADDR mem_addr, unsigned char *buf,
1809 const unsigned char *myaddr, int mem_len)
1810 {
1811 struct process_info *proc = current_process ();
1812 struct raw_breakpoint *bp = proc->raw_breakpoints;
1813 struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps;
1814 CORE_ADDR mem_end = mem_addr + mem_len;
1815 int disabled_one = 0;
1816
1817 /* First fast tracepoint jumps, then breakpoint traps on top. */
1818
1819 for (; jp != NULL; jp = jp->next)
1820 {
1821 CORE_ADDR jp_end = jp->pc + jp->length;
1822 CORE_ADDR start, end;
1823 int copy_offset, copy_len, buf_offset;
1824
1825 gdb_assert (fast_tracepoint_jump_shadow (jp) >= myaddr + mem_len
1826 || myaddr >= fast_tracepoint_jump_shadow (jp) + (jp)->length);
1827 gdb_assert (fast_tracepoint_jump_insn (jp) >= buf + mem_len
1828 || buf >= fast_tracepoint_jump_insn (jp) + (jp)->length);
1829
1830 if (mem_addr >= jp_end)
1831 continue;
1832 if (jp->pc >= mem_end)
1833 continue;
1834
1835 start = jp->pc;
1836 if (mem_addr > start)
1837 start = mem_addr;
1838
1839 end = jp_end;
1840 if (end > mem_end)
1841 end = mem_end;
1842
1843 copy_len = end - start;
1844 copy_offset = start - jp->pc;
1845 buf_offset = start - mem_addr;
1846
1847 memcpy (fast_tracepoint_jump_shadow (jp) + copy_offset,
1848 myaddr + buf_offset, copy_len);
1849 if (jp->inserted)
1850 memcpy (buf + buf_offset,
1851 fast_tracepoint_jump_insn (jp) + copy_offset, copy_len);
1852 }
1853
1854 for (; bp != NULL; bp = bp->next)
1855 {
1856 CORE_ADDR bp_end = bp->pc + bp_size (bp);
1857 CORE_ADDR start, end;
1858 int copy_offset, copy_len, buf_offset;
1859
1860 if (bp->raw_type != raw_bkpt_type_sw)
1861 continue;
1862
1863 gdb_assert (bp->old_data >= myaddr + mem_len
1864 || myaddr >= &bp->old_data[sizeof (bp->old_data)]);
1865
1866 if (mem_addr >= bp_end)
1867 continue;
1868 if (bp->pc >= mem_end)
1869 continue;
1870
1871 start = bp->pc;
1872 if (mem_addr > start)
1873 start = mem_addr;
1874
1875 end = bp_end;
1876 if (end > mem_end)
1877 end = mem_end;
1878
1879 copy_len = end - start;
1880 copy_offset = start - bp->pc;
1881 buf_offset = start - mem_addr;
1882
1883 memcpy (bp->old_data + copy_offset, myaddr + buf_offset, copy_len);
1884 if (bp->inserted > 0)
1885 {
1886 if (validate_inserted_breakpoint (bp))
1887 memcpy (buf + buf_offset, bp_opcode (bp) + copy_offset, copy_len);
1888 else
1889 disabled_one = 1;
1890 }
1891 }
1892
1893 if (disabled_one)
1894 delete_disabled_breakpoints ();
1895 }
1896
1897 /* Delete all breakpoints, and un-insert them from the inferior. */
1898
1899 void
1900 delete_all_breakpoints (void)
1901 {
1902 struct process_info *proc = current_process ();
1903
1904 while (proc->breakpoints)
1905 delete_breakpoint_1 (proc, proc->breakpoints);
1906 }
1907
1908 /* Clear the "inserted" flag in all breakpoints. */
1909
1910 void
1911 mark_breakpoints_out (struct process_info *proc)
1912 {
1913 struct raw_breakpoint *raw_bp;
1914
1915 for (raw_bp = proc->raw_breakpoints; raw_bp != NULL; raw_bp = raw_bp->next)
1916 raw_bp->inserted = 0;
1917 }
1918
1919 /* Release all breakpoints, but do not try to un-insert them from the
1920 inferior. */
1921
1922 void
1923 free_all_breakpoints (struct process_info *proc)
1924 {
1925 mark_breakpoints_out (proc);
1926
1927 /* Note: use PROC explicitly instead of deferring to
1928 delete_all_breakpoints --- CURRENT_INFERIOR may already have been
1929 released when we get here. There should be no call to
1930 current_process from here on. */
1931 while (proc->breakpoints)
1932 delete_breakpoint_1 (proc, proc->breakpoints);
1933 }
1934
1935 /* Clone an agent expression. */
1936
1937 static struct agent_expr *
1938 clone_agent_expr (const struct agent_expr *src_ax)
1939 {
1940 struct agent_expr *ax;
1941
1942 ax = XCNEW (struct agent_expr);
1943 ax->length = src_ax->length;
1944 ax->bytes = (unsigned char *) xcalloc (ax->length, 1);
1945 memcpy (ax->bytes, src_ax->bytes, ax->length);
1946 return ax;
1947 }
1948
1949 /* Deep-copy the contents of one breakpoint to another. */
1950
1951 static struct breakpoint *
1952 clone_one_breakpoint (const struct breakpoint *src)
1953 {
1954 struct breakpoint *dest;
1955 struct raw_breakpoint *dest_raw;
1956 struct point_cond_list *current_cond;
1957 struct point_cond_list *new_cond;
1958 struct point_cond_list *cond_tail = NULL;
1959 struct point_command_list *current_cmd;
1960 struct point_command_list *new_cmd;
1961 struct point_command_list *cmd_tail = NULL;
1962
1963 /* Clone the raw breakpoint. */
1964 dest_raw = XCNEW (struct raw_breakpoint);
1965 dest_raw->raw_type = src->raw->raw_type;
1966 dest_raw->refcount = src->raw->refcount;
1967 dest_raw->pc = src->raw->pc;
1968 dest_raw->kind = src->raw->kind;
1969 memcpy (dest_raw->old_data, src->raw->old_data, MAX_BREAKPOINT_LEN);
1970 dest_raw->inserted = src->raw->inserted;
1971
1972 /* Clone the high-level breakpoint. */
1973 dest = XCNEW (struct breakpoint);
1974 dest->type = src->type;
1975 dest->raw = dest_raw;
1976 dest->handler = src->handler;
1977
1978 /* Clone the condition list. */
1979 for (current_cond = src->cond_list; current_cond != NULL;
1980 current_cond = current_cond->next)
1981 {
1982 new_cond = XCNEW (struct point_cond_list);
1983 new_cond->cond = clone_agent_expr (current_cond->cond);
1984 APPEND_TO_LIST (&dest->cond_list, new_cond, cond_tail);
1985 }
1986
1987 /* Clone the command list. */
1988 for (current_cmd = src->command_list; current_cmd != NULL;
1989 current_cmd = current_cmd->next)
1990 {
1991 new_cmd = XCNEW (struct point_command_list);
1992 new_cmd->cmd = clone_agent_expr (current_cmd->cmd);
1993 new_cmd->persistence = current_cmd->persistence;
1994 APPEND_TO_LIST (&dest->command_list, new_cmd, cmd_tail);
1995 }
1996
1997 return dest;
1998 }
1999
2000 /* Create a new breakpoint list NEW_LIST that is a copy of the
2001 list starting at SRC_LIST. Create the corresponding new
2002 raw_breakpoint list NEW_RAW_LIST as well. */
2003
2004 void
2005 clone_all_breakpoints (struct breakpoint **new_list,
2006 struct raw_breakpoint **new_raw_list,
2007 const struct breakpoint *src_list)
2008 {
2009 const struct breakpoint *bp;
2010 struct breakpoint *new_bkpt;
2011 struct breakpoint *bkpt_tail = NULL;
2012 struct raw_breakpoint *raw_bkpt_tail = NULL;
2013
2014 for (bp = src_list; bp != NULL; bp = bp->next)
2015 {
2016 new_bkpt = clone_one_breakpoint (bp);
2017 APPEND_TO_LIST (new_list, new_bkpt, bkpt_tail);
2018 APPEND_TO_LIST (new_raw_list, new_bkpt->raw, raw_bkpt_tail);
2019 }
2020 }