]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-linux-tdep.c
Change tui_addr_is_displayed into a method
[thirdparty/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2-frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "utils.h"
34 #include "glibc-tdep.h"
35 #include "solib-svr4.h"
36 #include "symtab.h"
37 #include "arch-utils.h"
38 #include "xml-syscall.h"
39
40 #include "i387-tdep.h"
41 #include "gdbsupport/x86-xstate.h"
42
43 /* The syscall's XML filename for i386. */
44 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
45
46 #include "record-full.h"
47 #include "linux-record.h"
48
49 #include "arch/i386.h"
50 #include "target-descriptions.h"
51
52 /* Return non-zero, when the register is in the corresponding register
53 group. Put the LINUX_ORIG_EAX register in the system group. */
54 static int
55 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
56 struct reggroup *group)
57 {
58 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
59 return (group == system_reggroup
60 || group == save_reggroup
61 || group == restore_reggroup);
62 return i386_register_reggroup_p (gdbarch, regnum, group);
63 }
64
65 \f
66 /* Recognizing signal handler frames. */
67
68 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
69 "realtime" (RT) signals. The RT signals can provide additional
70 information to the signal handler if the SA_SIGINFO flag is set
71 when establishing a signal handler using `sigaction'. It is not
72 unlikely that future versions of GNU/Linux will support SA_SIGINFO
73 for normal signals too. */
74
75 /* When the i386 Linux kernel calls a signal handler and the
76 SA_RESTORER flag isn't set, the return address points to a bit of
77 code on the stack. This function returns whether the PC appears to
78 be within this bit of code.
79
80 The instruction sequence for normal signals is
81 pop %eax
82 mov $0x77, %eax
83 int $0x80
84 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
85
86 Checking for the code sequence should be somewhat reliable, because
87 the effect is to call the system call sigreturn. This is unlikely
88 to occur anywhere other than in a signal trampoline.
89
90 It kind of sucks that we have to read memory from the process in
91 order to identify a signal trampoline, but there doesn't seem to be
92 any other way. Therefore we only do the memory reads if no
93 function name could be identified, which should be the case since
94 the code is on the stack.
95
96 Detection of signal trampolines for handlers that set the
97 SA_RESTORER flag is in general not possible. Unfortunately this is
98 what the GNU C Library has been doing for quite some time now.
99 However, as of version 2.1.2, the GNU C Library uses signal
100 trampolines (named __restore and __restore_rt) that are identical
101 to the ones used by the kernel. Therefore, these trampolines are
102 supported too. */
103
104 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
105 #define LINUX_SIGTRAMP_OFFSET0 0
106 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
107 #define LINUX_SIGTRAMP_OFFSET1 1
108 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
109 #define LINUX_SIGTRAMP_OFFSET2 6
110
111 static const gdb_byte linux_sigtramp_code[] =
112 {
113 LINUX_SIGTRAMP_INSN0, /* pop %eax */
114 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
115 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
116 };
117
118 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
119
120 /* If THIS_FRAME is a sigtramp routine, return the address of the
121 start of the routine. Otherwise, return 0. */
122
123 static CORE_ADDR
124 i386_linux_sigtramp_start (struct frame_info *this_frame)
125 {
126 CORE_ADDR pc = get_frame_pc (this_frame);
127 gdb_byte buf[LINUX_SIGTRAMP_LEN];
128
129 /* We only recognize a signal trampoline if PC is at the start of
130 one of the three instructions. We optimize for finding the PC at
131 the start, as will be the case when the trampoline is not the
132 first frame on the stack. We assume that in the case where the
133 PC is not at the start of the instruction sequence, there will be
134 a few trailing readable bytes on the stack. */
135
136 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
137 return 0;
138
139 if (buf[0] != LINUX_SIGTRAMP_INSN0)
140 {
141 int adjust;
142
143 switch (buf[0])
144 {
145 case LINUX_SIGTRAMP_INSN1:
146 adjust = LINUX_SIGTRAMP_OFFSET1;
147 break;
148 case LINUX_SIGTRAMP_INSN2:
149 adjust = LINUX_SIGTRAMP_OFFSET2;
150 break;
151 default:
152 return 0;
153 }
154
155 pc -= adjust;
156
157 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
158 return 0;
159 }
160
161 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
162 return 0;
163
164 return pc;
165 }
166
167 /* This function does the same for RT signals. Here the instruction
168 sequence is
169 mov $0xad, %eax
170 int $0x80
171 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
172
173 The effect is to call the system call rt_sigreturn. */
174
175 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
176 #define LINUX_RT_SIGTRAMP_OFFSET0 0
177 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
178 #define LINUX_RT_SIGTRAMP_OFFSET1 5
179
180 static const gdb_byte linux_rt_sigtramp_code[] =
181 {
182 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
183 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
184 };
185
186 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
187
188 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
189 start of the routine. Otherwise, return 0. */
190
191 static CORE_ADDR
192 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
193 {
194 CORE_ADDR pc = get_frame_pc (this_frame);
195 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
196
197 /* We only recognize a signal trampoline if PC is at the start of
198 one of the two instructions. We optimize for finding the PC at
199 the start, as will be the case when the trampoline is not the
200 first frame on the stack. We assume that in the case where the
201 PC is not at the start of the instruction sequence, there will be
202 a few trailing readable bytes on the stack. */
203
204 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
205 return 0;
206
207 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
208 {
209 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
210 return 0;
211
212 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
213
214 if (!safe_frame_unwind_memory (this_frame, pc, buf,
215 LINUX_RT_SIGTRAMP_LEN))
216 return 0;
217 }
218
219 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
220 return 0;
221
222 return pc;
223 }
224
225 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
226 routine. */
227
228 static int
229 i386_linux_sigtramp_p (struct frame_info *this_frame)
230 {
231 CORE_ADDR pc = get_frame_pc (this_frame);
232 const char *name;
233
234 find_pc_partial_function (pc, &name, NULL, NULL);
235
236 /* If we have NAME, we can optimize the search. The trampolines are
237 named __restore and __restore_rt. However, they aren't dynamically
238 exported from the shared C library, so the trampoline may appear to
239 be part of the preceding function. This should always be sigaction,
240 __sigaction, or __libc_sigaction (all aliases to the same function). */
241 if (name == NULL || strstr (name, "sigaction") != NULL)
242 return (i386_linux_sigtramp_start (this_frame) != 0
243 || i386_linux_rt_sigtramp_start (this_frame) != 0);
244
245 return (strcmp ("__restore", name) == 0
246 || strcmp ("__restore_rt", name) == 0);
247 }
248
249 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
250 may have DWARF-2 CFI. */
251
252 static int
253 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
254 struct frame_info *this_frame)
255 {
256 CORE_ADDR pc = get_frame_pc (this_frame);
257 const char *name;
258
259 find_pc_partial_function (pc, &name, NULL, NULL);
260
261 /* If a vsyscall DSO is in use, the signal trampolines may have these
262 names. */
263 if (name && (strcmp (name, "__kernel_sigreturn") == 0
264 || strcmp (name, "__kernel_rt_sigreturn") == 0))
265 return 1;
266
267 return 0;
268 }
269
270 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
271 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
272
273 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
274 address of the associated sigcontext structure. */
275
276 static CORE_ADDR
277 i386_linux_sigcontext_addr (struct frame_info *this_frame)
278 {
279 struct gdbarch *gdbarch = get_frame_arch (this_frame);
280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
281 CORE_ADDR pc;
282 CORE_ADDR sp;
283 gdb_byte buf[4];
284
285 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
286 sp = extract_unsigned_integer (buf, 4, byte_order);
287
288 pc = i386_linux_sigtramp_start (this_frame);
289 if (pc)
290 {
291 /* The sigcontext structure lives on the stack, right after
292 the signum argument. We determine the address of the
293 sigcontext structure by looking at the frame's stack
294 pointer. Keep in mind that the first instruction of the
295 sigtramp code is "pop %eax". If the PC is after this
296 instruction, adjust the returned value accordingly. */
297 if (pc == get_frame_pc (this_frame))
298 return sp + 4;
299 return sp;
300 }
301
302 pc = i386_linux_rt_sigtramp_start (this_frame);
303 if (pc)
304 {
305 CORE_ADDR ucontext_addr;
306
307 /* The sigcontext structure is part of the user context. A
308 pointer to the user context is passed as the third argument
309 to the signal handler. */
310 read_memory (sp + 8, buf, 4);
311 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
312 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
313 }
314
315 error (_("Couldn't recognize signal trampoline."));
316 return 0;
317 }
318
319 /* Set the program counter for process PTID to PC. */
320
321 static void
322 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
323 {
324 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
325
326 /* We must be careful with modifying the program counter. If we
327 just interrupted a system call, the kernel might try to restart
328 it when we resume the inferior. On restarting the system call,
329 the kernel will try backing up the program counter even though it
330 no longer points at the system call. This typically results in a
331 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
332 "orig_eax" pseudo-register.
333
334 Note that "orig_eax" is saved when setting up a dummy call frame.
335 This means that it is properly restored when that frame is
336 popped, and that the interrupted system call will be restarted
337 when we resume the inferior on return from a function call from
338 within GDB. In all other cases the system call will not be
339 restarted. */
340 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
341 }
342
343 /* Record all registers but IP register for process-record. */
344
345 static int
346 i386_all_but_ip_registers_record (struct regcache *regcache)
347 {
348 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
349 return -1;
350 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
351 return -1;
352 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
353 return -1;
354 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
355 return -1;
356 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
357 return -1;
358 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
359 return -1;
360 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
361 return -1;
362 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
363 return -1;
364 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
365 return -1;
366
367 return 0;
368 }
369
370 /* i386_canonicalize_syscall maps from the native i386 Linux set
371 of syscall ids into a canonical set of syscall ids used by
372 process record (a mostly trivial mapping, since the canonical
373 set was originally taken from the i386 set). */
374
375 static enum gdb_syscall
376 i386_canonicalize_syscall (int syscall)
377 {
378 enum { i386_syscall_max = 499 };
379
380 if (syscall <= i386_syscall_max)
381 return (enum gdb_syscall) syscall;
382 else
383 return gdb_sys_no_syscall;
384 }
385
386 /* Value of the sigcode in case of a boundary fault. */
387
388 #define SIG_CODE_BONDARY_FAULT 3
389
390 /* i386 GNU/Linux implementation of the handle_segmentation_fault
391 gdbarch hook. Displays information related to MPX bound
392 violations. */
393 void
394 i386_linux_handle_segmentation_fault (struct gdbarch *gdbarch,
395 struct ui_out *uiout)
396 {
397 /* -Wmaybe-uninitialized */
398 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
399 int is_upper;
400 long sig_code = 0;
401
402 if (!i386_mpx_enabled ())
403 return;
404
405 try
406 {
407 /* Sigcode evaluates if the actual segfault is a boundary violation. */
408 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
409
410 lower_bound
411 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
412 upper_bound
413 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
414 access
415 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
416 }
417 catch (const gdb_exception &exception)
418 {
419 return;
420 }
421
422 /* If this is not a boundary violation just return. */
423 if (sig_code != SIG_CODE_BONDARY_FAULT)
424 return;
425
426 is_upper = (access > upper_bound ? 1 : 0);
427
428 uiout->text ("\n");
429 if (is_upper)
430 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
431 else
432 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
433
434 uiout->text (_(" while accessing address "));
435 uiout->field_core_addr ("bound-access", gdbarch, access);
436
437 uiout->text (_("\nBounds: [lower = "));
438 uiout->field_core_addr ("lower-bound", gdbarch, lower_bound);
439
440 uiout->text (_(", upper = "));
441 uiout->field_core_addr ("upper-bound", gdbarch, upper_bound);
442
443 uiout->text (_("]"));
444 }
445
446 /* Parse the arguments of current system call instruction and record
447 the values of the registers and memory that will be changed into
448 "record_arch_list". This instruction is "int 0x80" (Linux
449 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
450
451 Return -1 if something wrong. */
452
453 static struct linux_record_tdep i386_linux_record_tdep;
454
455 static int
456 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
457 {
458 int ret;
459 LONGEST syscall_native;
460 enum gdb_syscall syscall_gdb;
461
462 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
463
464 syscall_gdb = i386_canonicalize_syscall (syscall_native);
465
466 if (syscall_gdb < 0)
467 {
468 printf_unfiltered (_("Process record and replay target doesn't "
469 "support syscall number %s\n"),
470 plongest (syscall_native));
471 return -1;
472 }
473
474 if (syscall_gdb == gdb_sys_sigreturn
475 || syscall_gdb == gdb_sys_rt_sigreturn)
476 {
477 if (i386_all_but_ip_registers_record (regcache))
478 return -1;
479 return 0;
480 }
481
482 ret = record_linux_system_call (syscall_gdb, regcache,
483 &i386_linux_record_tdep);
484 if (ret)
485 return ret;
486
487 /* Record the return value of the system call. */
488 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
489 return -1;
490
491 return 0;
492 }
493
494 #define I386_LINUX_xstate 270
495 #define I386_LINUX_frame_size 732
496
497 static int
498 i386_linux_record_signal (struct gdbarch *gdbarch,
499 struct regcache *regcache,
500 enum gdb_signal signal)
501 {
502 ULONGEST esp;
503
504 if (i386_all_but_ip_registers_record (regcache))
505 return -1;
506
507 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
508 return -1;
509
510 /* Record the change in the stack. */
511 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
512 /* This is for xstate.
513 sp -= sizeof (struct _fpstate); */
514 esp -= I386_LINUX_xstate;
515 /* This is for frame_size.
516 sp -= sizeof (struct rt_sigframe); */
517 esp -= I386_LINUX_frame_size;
518 if (record_full_arch_list_add_mem (esp,
519 I386_LINUX_xstate + I386_LINUX_frame_size))
520 return -1;
521
522 if (record_full_arch_list_add_end ())
523 return -1;
524
525 return 0;
526 }
527 \f
528
529 /* Core of the implementation for gdbarch get_syscall_number. Get pending
530 syscall number from REGCACHE. If there is no pending syscall -1 will be
531 returned. Pending syscall means ptrace has stepped into the syscall but
532 another ptrace call will step out. PC is right after the int $0x80
533 / syscall / sysenter instruction in both cases, PC does not change during
534 the second ptrace step. */
535
536 static LONGEST
537 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
538 {
539 struct gdbarch *gdbarch = regcache->arch ();
540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
541 /* The content of a register. */
542 gdb_byte buf[4];
543 /* The result. */
544 LONGEST ret;
545
546 /* Getting the system call number from the register.
547 When dealing with x86 architecture, this information
548 is stored at %eax register. */
549 regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf);
550
551 ret = extract_signed_integer (buf, 4, byte_order);
552
553 return ret;
554 }
555
556 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
557 compatible with gdbarch get_syscall_number method prototype. */
558
559 static LONGEST
560 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
561 thread_info *thread)
562 {
563 struct regcache *regcache = get_thread_regcache (thread);
564
565 return i386_linux_get_syscall_number_from_regcache (regcache);
566 }
567
568 /* The register sets used in GNU/Linux ELF core-dumps are identical to
569 the register sets in `struct user' that are used for a.out
570 core-dumps. These are also used by ptrace(2). The corresponding
571 types are `elf_gregset_t' for the general-purpose registers (with
572 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
573 for the floating-point registers.
574
575 Those types used to be available under the names `gregset_t' and
576 `fpregset_t' too, and GDB used those names in the past. But those
577 names are now used for the register sets used in the `mcontext_t'
578 type, which have a different size and layout. */
579
580 /* Mapping between the general-purpose registers in `struct user'
581 format and GDB's register cache layout. */
582
583 /* From <sys/reg.h>. */
584 int i386_linux_gregset_reg_offset[] =
585 {
586 6 * 4, /* %eax */
587 1 * 4, /* %ecx */
588 2 * 4, /* %edx */
589 0 * 4, /* %ebx */
590 15 * 4, /* %esp */
591 5 * 4, /* %ebp */
592 3 * 4, /* %esi */
593 4 * 4, /* %edi */
594 12 * 4, /* %eip */
595 14 * 4, /* %eflags */
596 13 * 4, /* %cs */
597 16 * 4, /* %ss */
598 7 * 4, /* %ds */
599 8 * 4, /* %es */
600 9 * 4, /* %fs */
601 10 * 4, /* %gs */
602 -1, -1, -1, -1, -1, -1, -1, -1,
603 -1, -1, -1, -1, -1, -1, -1, -1,
604 -1, -1, -1, -1, -1, -1, -1, -1,
605 -1,
606 -1, -1, -1, -1, -1, -1, -1, -1,
607 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
608 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
609 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
610 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
611 -1, /* PKRU register */
612 11 * 4, /* "orig_eax" */
613 };
614
615 /* Mapping between the general-purpose registers in `struct
616 sigcontext' format and GDB's register cache layout. */
617
618 /* From <asm/sigcontext.h>. */
619 static int i386_linux_sc_reg_offset[] =
620 {
621 11 * 4, /* %eax */
622 10 * 4, /* %ecx */
623 9 * 4, /* %edx */
624 8 * 4, /* %ebx */
625 7 * 4, /* %esp */
626 6 * 4, /* %ebp */
627 5 * 4, /* %esi */
628 4 * 4, /* %edi */
629 14 * 4, /* %eip */
630 16 * 4, /* %eflags */
631 15 * 4, /* %cs */
632 18 * 4, /* %ss */
633 3 * 4, /* %ds */
634 2 * 4, /* %es */
635 1 * 4, /* %fs */
636 0 * 4 /* %gs */
637 };
638
639 /* Get XSAVE extended state xcr0 from core dump. */
640
641 uint64_t
642 i386_linux_core_read_xcr0 (bfd *abfd)
643 {
644 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
645 uint64_t xcr0;
646
647 if (xstate)
648 {
649 size_t size = bfd_section_size (abfd, xstate);
650
651 /* Check extended state size. */
652 if (size < X86_XSTATE_AVX_SIZE)
653 xcr0 = X86_XSTATE_SSE_MASK;
654 else
655 {
656 char contents[8];
657
658 if (! bfd_get_section_contents (abfd, xstate, contents,
659 I386_LINUX_XSAVE_XCR0_OFFSET,
660 8))
661 {
662 warning (_("Couldn't read `xcr0' bytes from "
663 "`.reg-xstate' section in core file."));
664 return 0;
665 }
666
667 xcr0 = bfd_get_64 (abfd, contents);
668 }
669 }
670 else
671 xcr0 = 0;
672
673 return xcr0;
674 }
675
676 /* See i386-linux-tdep.h. */
677
678 const struct target_desc *
679 i386_linux_read_description (uint64_t xcr0)
680 {
681 if (xcr0 == 0)
682 return NULL;
683
684 static struct target_desc *i386_linux_tdescs \
685 [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
686 struct target_desc **tdesc;
687
688 tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0]
689 [(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
690 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
691 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
692 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
693 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
694
695 if (*tdesc == NULL)
696 *tdesc = i386_create_target_description (xcr0, true, false);
697
698 return *tdesc;
699 }
700
701 /* Get Linux/x86 target description from core dump. */
702
703 static const struct target_desc *
704 i386_linux_core_read_description (struct gdbarch *gdbarch,
705 struct target_ops *target,
706 bfd *abfd)
707 {
708 /* Linux/i386. */
709 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
710 const struct target_desc *tdesc = i386_linux_read_description (xcr0);
711
712 if (tdesc != NULL)
713 return tdesc;
714
715 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
716 return i386_linux_read_description (X86_XSTATE_SSE_MASK);
717 else
718 return i386_linux_read_description (X86_XSTATE_X87_MASK);
719 }
720
721 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
722
723 static void
724 i386_linux_supply_xstateregset (const struct regset *regset,
725 struct regcache *regcache, int regnum,
726 const void *xstateregs, size_t len)
727 {
728 i387_supply_xsave (regcache, regnum, xstateregs);
729 }
730
731 struct type *
732 x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
733 {
734 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
735 }
736
737 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
738
739 static void
740 i386_linux_collect_xstateregset (const struct regset *regset,
741 const struct regcache *regcache,
742 int regnum, void *xstateregs, size_t len)
743 {
744 i387_collect_xsave (regcache, regnum, xstateregs, 1);
745 }
746
747 /* Register set definitions. */
748
749 static const struct regset i386_linux_xstateregset =
750 {
751 NULL,
752 i386_linux_supply_xstateregset,
753 i386_linux_collect_xstateregset
754 };
755
756 /* Iterate over core file register note sections. */
757
758 static void
759 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
760 iterate_over_regset_sections_cb *cb,
761 void *cb_data,
762 const struct regcache *regcache)
763 {
764 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
765
766 cb (".reg", 68, 68, &i386_gregset, NULL, cb_data);
767
768 if (tdep->xcr0 & X86_XSTATE_AVX)
769 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
770 X86_XSTATE_SIZE (tdep->xcr0), &i386_linux_xstateregset,
771 "XSAVE extended state", cb_data);
772 else if (tdep->xcr0 & X86_XSTATE_SSE)
773 cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point",
774 cb_data);
775 else
776 cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data);
777 }
778
779 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
780 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
781 finish the syscall but PC will not change.
782
783 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
784 i386_displaced_step_fixup would keep PC at the displaced pad location.
785 As PC is pointing to the 'ret' instruction before the step
786 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
787 and PC should not be adjusted. In reality it finished syscall instead and
788 PC should get relocated back to its vDSO address. Hide the 'ret'
789 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
790
791 It is not fully correct as the bytes in struct displaced_step_closure will
792 not match the inferior code. But we would need some new flag in
793 displaced_step_closure otherwise to keep the state that syscall is finishing
794 for the later i386_displaced_step_fixup execution as the syscall execution
795 is already no longer detectable there. The new flag field would mean
796 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
797 which does not seem worth it. The same effect is achieved by patching that
798 'nop' instruction there instead. */
799
800 static struct displaced_step_closure *
801 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
804 {
805 displaced_step_closure *closure_
806 = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
807
808 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
809 {
810 /* The closure returned by i386_displaced_step_copy_insn is simply a
811 buffer with a copy of the instruction. */
812 i386_displaced_step_closure *closure
813 = (i386_displaced_step_closure *) closure_;
814
815 /* Fake nop. */
816 closure->buf[0] = 0x90;
817 }
818
819 return closure_;
820 }
821
822 static void
823 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
824 {
825 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
826 const struct target_desc *tdesc = info.target_desc;
827 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
828 const struct tdesc_feature *feature;
829 int valid_p;
830
831 gdb_assert (tdesc_data);
832
833 linux_init_abi (info, gdbarch);
834
835 /* GNU/Linux uses ELF. */
836 i386_elf_init_abi (info, gdbarch);
837
838 /* Reserve a number for orig_eax. */
839 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
840
841 if (! tdesc_has_registers (tdesc))
842 tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
843 tdep->tdesc = tdesc;
844
845 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
846 if (feature == NULL)
847 return;
848
849 valid_p = tdesc_numbered_register (feature, tdesc_data,
850 I386_LINUX_ORIG_EAX_REGNUM,
851 "orig_eax");
852 if (!valid_p)
853 return;
854
855 /* Add the %orig_eax register used for syscall restarting. */
856 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
857
858 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
859
860 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
861 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
862 tdep->sizeof_gregset = 17 * 4;
863
864 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
865
866 tdep->sigtramp_p = i386_linux_sigtramp_p;
867 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
868 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
869 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
870
871 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
872
873 set_gdbarch_process_record (gdbarch, i386_process_record);
874 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
875
876 /* Initialize the i386_linux_record_tdep. */
877 /* These values are the size of the type that will be used in a system
878 call. They are obtained from Linux Kernel source. */
879 i386_linux_record_tdep.size_pointer
880 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
881 i386_linux_record_tdep.size__old_kernel_stat = 32;
882 i386_linux_record_tdep.size_tms = 16;
883 i386_linux_record_tdep.size_loff_t = 8;
884 i386_linux_record_tdep.size_flock = 16;
885 i386_linux_record_tdep.size_oldold_utsname = 45;
886 i386_linux_record_tdep.size_ustat = 20;
887 i386_linux_record_tdep.size_old_sigaction = 16;
888 i386_linux_record_tdep.size_old_sigset_t = 4;
889 i386_linux_record_tdep.size_rlimit = 8;
890 i386_linux_record_tdep.size_rusage = 72;
891 i386_linux_record_tdep.size_timeval = 8;
892 i386_linux_record_tdep.size_timezone = 8;
893 i386_linux_record_tdep.size_old_gid_t = 2;
894 i386_linux_record_tdep.size_old_uid_t = 2;
895 i386_linux_record_tdep.size_fd_set = 128;
896 i386_linux_record_tdep.size_old_dirent = 268;
897 i386_linux_record_tdep.size_statfs = 64;
898 i386_linux_record_tdep.size_statfs64 = 84;
899 i386_linux_record_tdep.size_sockaddr = 16;
900 i386_linux_record_tdep.size_int
901 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
902 i386_linux_record_tdep.size_long
903 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
904 i386_linux_record_tdep.size_ulong
905 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
906 i386_linux_record_tdep.size_msghdr = 28;
907 i386_linux_record_tdep.size_itimerval = 16;
908 i386_linux_record_tdep.size_stat = 88;
909 i386_linux_record_tdep.size_old_utsname = 325;
910 i386_linux_record_tdep.size_sysinfo = 64;
911 i386_linux_record_tdep.size_msqid_ds = 88;
912 i386_linux_record_tdep.size_shmid_ds = 84;
913 i386_linux_record_tdep.size_new_utsname = 390;
914 i386_linux_record_tdep.size_timex = 128;
915 i386_linux_record_tdep.size_mem_dqinfo = 24;
916 i386_linux_record_tdep.size_if_dqblk = 68;
917 i386_linux_record_tdep.size_fs_quota_stat = 68;
918 i386_linux_record_tdep.size_timespec = 8;
919 i386_linux_record_tdep.size_pollfd = 8;
920 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
921 i386_linux_record_tdep.size_knfsd_fh = 132;
922 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
923 i386_linux_record_tdep.size_sigaction = 20;
924 i386_linux_record_tdep.size_sigset_t = 8;
925 i386_linux_record_tdep.size_siginfo_t = 128;
926 i386_linux_record_tdep.size_cap_user_data_t = 12;
927 i386_linux_record_tdep.size_stack_t = 12;
928 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
929 i386_linux_record_tdep.size_stat64 = 96;
930 i386_linux_record_tdep.size_gid_t = 4;
931 i386_linux_record_tdep.size_uid_t = 4;
932 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
933 i386_linux_record_tdep.size_flock64 = 24;
934 i386_linux_record_tdep.size_user_desc = 16;
935 i386_linux_record_tdep.size_io_event = 32;
936 i386_linux_record_tdep.size_iocb = 64;
937 i386_linux_record_tdep.size_epoll_event = 12;
938 i386_linux_record_tdep.size_itimerspec
939 = i386_linux_record_tdep.size_timespec * 2;
940 i386_linux_record_tdep.size_mq_attr = 32;
941 i386_linux_record_tdep.size_termios = 36;
942 i386_linux_record_tdep.size_termios2 = 44;
943 i386_linux_record_tdep.size_pid_t = 4;
944 i386_linux_record_tdep.size_winsize = 8;
945 i386_linux_record_tdep.size_serial_struct = 60;
946 i386_linux_record_tdep.size_serial_icounter_struct = 80;
947 i386_linux_record_tdep.size_hayes_esp_config = 12;
948 i386_linux_record_tdep.size_size_t = 4;
949 i386_linux_record_tdep.size_iovec = 8;
950 i386_linux_record_tdep.size_time_t = 4;
951
952 /* These values are the second argument of system call "sys_ioctl".
953 They are obtained from Linux Kernel source. */
954 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
955 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
956 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
957 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
958 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
959 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
960 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
961 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
962 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
963 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
964 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
965 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
966 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
967 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
968 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
969 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
970 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
971 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
972 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
973 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
974 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
975 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
976 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
977 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
978 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
979 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
980 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
981 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
982 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
983 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
984 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
985 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
986 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
987 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
988 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
989 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
990 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
991 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
992 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
993 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
994 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
995 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
996 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
997 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
998 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
999 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1000 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1001 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1002 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1003 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1004 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1005 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1006 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1007 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1008 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1009 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1010 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1011 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1012 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1013 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1014 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1015 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1016 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1017 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1018 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1019
1020 /* These values are the second argument of system call "sys_fcntl"
1021 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1022 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1023 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1024 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1025 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1026
1027 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1028 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1029 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1030 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1031 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
1032 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
1033
1034 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1035 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1036 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
1037
1038 /* N_FUN symbols in shared libaries have 0 for their values and need
1039 to be relocated. */
1040 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1041
1042 /* GNU/Linux uses SVR4-style shared libraries. */
1043 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1044 set_solib_svr4_fetch_link_map_offsets
1045 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1046
1047 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
1048 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1049
1050 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
1051
1052 /* Enable TLS support. */
1053 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1054 svr4_fetch_objfile_link_map);
1055
1056 /* Core file support. */
1057 set_gdbarch_iterate_over_regset_sections
1058 (gdbarch, i386_linux_iterate_over_regset_sections);
1059 set_gdbarch_core_read_description (gdbarch,
1060 i386_linux_core_read_description);
1061
1062 /* Displaced stepping. */
1063 set_gdbarch_displaced_step_copy_insn (gdbarch,
1064 i386_linux_displaced_step_copy_insn);
1065 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1066 set_gdbarch_displaced_step_location (gdbarch,
1067 linux_displaced_step_location);
1068
1069 /* Functions for 'catch syscall'. */
1070 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
1071 set_gdbarch_get_syscall_number (gdbarch,
1072 i386_linux_get_syscall_number);
1073
1074 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
1075 set_gdbarch_handle_segmentation_fault (gdbarch,
1076 i386_linux_handle_segmentation_fault);
1077 }
1078
1079 void
1080 _initialize_i386_linux_tdep (void)
1081 {
1082 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1083 i386_linux_init_abi);
1084 }