]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/i386-tdep.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68
69 /* Register names. */
70
71 static const char *i386_register_names[] =
72 {
73 "eax", "ecx", "edx", "ebx",
74 "esp", "ebp", "esi", "edi",
75 "eip", "eflags", "cs", "ss",
76 "ds", "es", "fs", "gs",
77 "st0", "st1", "st2", "st3",
78 "st4", "st5", "st6", "st7",
79 "fctrl", "fstat", "ftag", "fiseg",
80 "fioff", "foseg", "fooff", "fop",
81 "xmm0", "xmm1", "xmm2", "xmm3",
82 "xmm4", "xmm5", "xmm6", "xmm7",
83 "mxcsr"
84 };
85
86 static const char *i386_zmm_names[] =
87 {
88 "zmm0", "zmm1", "zmm2", "zmm3",
89 "zmm4", "zmm5", "zmm6", "zmm7"
90 };
91
92 static const char *i386_zmmh_names[] =
93 {
94 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
95 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
96 };
97
98 static const char *i386_k_names[] =
99 {
100 "k0", "k1", "k2", "k3",
101 "k4", "k5", "k6", "k7"
102 };
103
104 static const char *i386_ymm_names[] =
105 {
106 "ymm0", "ymm1", "ymm2", "ymm3",
107 "ymm4", "ymm5", "ymm6", "ymm7",
108 };
109
110 static const char *i386_ymmh_names[] =
111 {
112 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
113 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
114 };
115
116 static const char *i386_mpx_names[] =
117 {
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119 };
120
121 static const char* i386_pkeys_names[] =
122 {
123 "pkru"
124 };
125
126 /* Register names for MPX pseudo-registers. */
127
128 static const char *i386_bnd_names[] =
129 {
130 "bnd0", "bnd1", "bnd2", "bnd3"
131 };
132
133 /* Register names for MMX pseudo-registers. */
134
135 static const char *i386_mmx_names[] =
136 {
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139 };
140
141 /* Register names for byte pseudo-registers. */
142
143 static const char *i386_byte_names[] =
144 {
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147 };
148
149 /* Register names for word pseudo-registers. */
150
151 static const char *i386_word_names[] =
152 {
153 "ax", "cx", "dx", "bx",
154 "", "bp", "si", "di"
155 };
156
157 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161 const int num_lower_zmm_regs = 16;
162
163 /* MMX register? */
164
165 static int
166 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
170
171 if (mm0_regnum < 0)
172 return 0;
173
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176 }
177
178 /* Byte register? */
179
180 int
181 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187 }
188
189 /* Word register? */
190
191 int
192 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198 }
199
200 /* Dword register? */
201
202 int
203 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
213 }
214
215 /* AVX512 register? */
216
217 int
218 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219 {
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228 }
229
230 int
231 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241 }
242
243 int
244 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245 {
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254 }
255
256 static int
257 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258 {
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267 }
268
269 /* AVX register? */
270
271 int
272 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282 }
283
284 static int
285 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286 {
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295 }
296
297 int
298 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299 {
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308 }
309
310 /* BND register? */
311
312 int
313 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314 {
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323 }
324
325 /* SSE register? */
326
327 int
328 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
329 {
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
332
333 if (num_xmm_regs == 0)
334 return 0;
335
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
338 }
339
340 /* XMM_512 register? */
341
342 int
343 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344 {
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353 }
354
355 static int
356 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
357 {
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
360 if (I387_NUM_XMM_REGS (tdep) == 0)
361 return 0;
362
363 return (regnum == I387_MXCSR_REGNUM (tdep));
364 }
365
366 /* FP register? */
367
368 int
369 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
370 {
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
374 return 0;
375
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
378 }
379
380 int
381 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
382 {
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
386 return 0;
387
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
390 }
391
392 /* BNDr (raw) register? */
393
394 static int
395 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396 {
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404 }
405
406 /* BND control register? */
407
408 static int
409 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410 {
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418 }
419
420 /* PKRU register? */
421
422 bool
423 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
424 {
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 int pkru_regnum = tdep->pkru_regnum;
427
428 if (pkru_regnum < 0)
429 return false;
430
431 regnum -= pkru_regnum;
432 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
433 }
434
435 /* Return the name of register REGNUM, or the empty string if it is
436 an anonymous register. */
437
438 static const char *
439 i386_register_name (struct gdbarch *gdbarch, int regnum)
440 {
441 /* Hide the upper YMM registers. */
442 if (i386_ymmh_regnum_p (gdbarch, regnum))
443 return "";
444
445 /* Hide the upper YMM16-31 registers. */
446 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper ZMM registers. */
450 if (i386_zmmh_regnum_p (gdbarch, regnum))
451 return "";
452
453 return tdesc_register_name (gdbarch, regnum);
454 }
455
456 /* Return the name of register REGNUM. */
457
458 const char *
459 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 if (i386_bnd_regnum_p (gdbarch, regnum))
463 return i386_bnd_names[regnum - tdep->bnd0_regnum];
464 if (i386_mmx_regnum_p (gdbarch, regnum))
465 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
466 else if (i386_ymm_regnum_p (gdbarch, regnum))
467 return i386_ymm_names[regnum - tdep->ymm0_regnum];
468 else if (i386_zmm_regnum_p (gdbarch, regnum))
469 return i386_zmm_names[regnum - tdep->zmm0_regnum];
470 else if (i386_byte_regnum_p (gdbarch, regnum))
471 return i386_byte_names[regnum - tdep->al_regnum];
472 else if (i386_word_regnum_p (gdbarch, regnum))
473 return i386_word_names[regnum - tdep->ax_regnum];
474
475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
476 }
477
478 /* Convert a dbx register number REG to the appropriate register
479 number used by GDB. */
480
481 static int
482 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
483 {
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485
486 /* This implements what GCC calls the "default" register map
487 (dbx_register_map[]). */
488
489 if (reg >= 0 && reg <= 7)
490 {
491 /* General-purpose registers. The debug info calls %ebp
492 register 4, and %esp register 5. */
493 if (reg == 4)
494 return 5;
495 else if (reg == 5)
496 return 4;
497 else return reg;
498 }
499 else if (reg >= 12 && reg <= 19)
500 {
501 /* Floating-point registers. */
502 return reg - 12 + I387_ST0_REGNUM (tdep);
503 }
504 else if (reg >= 21 && reg <= 28)
505 {
506 /* SSE registers. */
507 int ymm0_regnum = tdep->ymm0_regnum;
508
509 if (ymm0_regnum >= 0
510 && i386_xmm_regnum_p (gdbarch, reg))
511 return reg - 21 + ymm0_regnum;
512 else
513 return reg - 21 + I387_XMM0_REGNUM (tdep);
514 }
515 else if (reg >= 29 && reg <= 36)
516 {
517 /* MMX registers. */
518 return reg - 29 + I387_MM0_REGNUM (tdep);
519 }
520
521 /* This will hopefully provoke a warning. */
522 return gdbarch_num_cooked_regs (gdbarch);
523 }
524
525 /* Convert SVR4 DWARF register number REG to the appropriate register number
526 used by GDB. */
527
528 static int
529 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
530 {
531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
532
533 /* This implements the GCC register map that tries to be compatible
534 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
535
536 /* The SVR4 register numbering includes %eip and %eflags, and
537 numbers the floating point registers differently. */
538 if (reg >= 0 && reg <= 9)
539 {
540 /* General-purpose registers. */
541 return reg;
542 }
543 else if (reg >= 11 && reg <= 18)
544 {
545 /* Floating-point registers. */
546 return reg - 11 + I387_ST0_REGNUM (tdep);
547 }
548 else if (reg >= 21 && reg <= 36)
549 {
550 /* The SSE and MMX registers have the same numbers as with dbx. */
551 return i386_dbx_reg_to_regnum (gdbarch, reg);
552 }
553
554 switch (reg)
555 {
556 case 37: return I387_FCTRL_REGNUM (tdep);
557 case 38: return I387_FSTAT_REGNUM (tdep);
558 case 39: return I387_MXCSR_REGNUM (tdep);
559 case 40: return I386_ES_REGNUM;
560 case 41: return I386_CS_REGNUM;
561 case 42: return I386_SS_REGNUM;
562 case 43: return I386_DS_REGNUM;
563 case 44: return I386_FS_REGNUM;
564 case 45: return I386_GS_REGNUM;
565 }
566
567 return -1;
568 }
569
570 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
571 num_regs + num_pseudo_regs for other debug formats. */
572
573 int
574 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
575 {
576 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
577
578 if (regnum == -1)
579 return gdbarch_num_cooked_regs (gdbarch);
580 return regnum;
581 }
582
583 \f
584
585 /* This is the variable that is set with "set disassembly-flavor", and
586 its legitimate values. */
587 static const char att_flavor[] = "att";
588 static const char intel_flavor[] = "intel";
589 static const char *const valid_flavors[] =
590 {
591 att_flavor,
592 intel_flavor,
593 NULL
594 };
595 static const char *disassembly_flavor = att_flavor;
596 \f
597
598 /* Use the program counter to determine the contents and size of a
599 breakpoint instruction. Return a pointer to a string of bytes that
600 encode a breakpoint instruction, store the length of the string in
601 *LEN and optionally adjust *PC to point to the correct memory
602 location for inserting the breakpoint.
603
604 On the i386 we have a single breakpoint that fits in a single byte
605 and can be inserted anywhere.
606
607 This function is 64-bit safe. */
608
609 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
610
611 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
612
613 \f
614 /* Displaced instruction handling. */
615
616 /* Skip the legacy instruction prefixes in INSN.
617 Not all prefixes are valid for any particular insn
618 but we needn't care, the insn will fault if it's invalid.
619 The result is a pointer to the first opcode byte,
620 or NULL if we run off the end of the buffer. */
621
622 static gdb_byte *
623 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
624 {
625 gdb_byte *end = insn + max_len;
626
627 while (insn < end)
628 {
629 switch (*insn)
630 {
631 case DATA_PREFIX_OPCODE:
632 case ADDR_PREFIX_OPCODE:
633 case CS_PREFIX_OPCODE:
634 case DS_PREFIX_OPCODE:
635 case ES_PREFIX_OPCODE:
636 case FS_PREFIX_OPCODE:
637 case GS_PREFIX_OPCODE:
638 case SS_PREFIX_OPCODE:
639 case LOCK_PREFIX_OPCODE:
640 case REPE_PREFIX_OPCODE:
641 case REPNE_PREFIX_OPCODE:
642 ++insn;
643 continue;
644 default:
645 return insn;
646 }
647 }
648
649 return NULL;
650 }
651
652 static int
653 i386_absolute_jmp_p (const gdb_byte *insn)
654 {
655 /* jmp far (absolute address in operand). */
656 if (insn[0] == 0xea)
657 return 1;
658
659 if (insn[0] == 0xff)
660 {
661 /* jump near, absolute indirect (/4). */
662 if ((insn[1] & 0x38) == 0x20)
663 return 1;
664
665 /* jump far, absolute indirect (/5). */
666 if ((insn[1] & 0x38) == 0x28)
667 return 1;
668 }
669
670 return 0;
671 }
672
673 /* Return non-zero if INSN is a jump, zero otherwise. */
674
675 static int
676 i386_jmp_p (const gdb_byte *insn)
677 {
678 /* jump short, relative. */
679 if (insn[0] == 0xeb)
680 return 1;
681
682 /* jump near, relative. */
683 if (insn[0] == 0xe9)
684 return 1;
685
686 return i386_absolute_jmp_p (insn);
687 }
688
689 static int
690 i386_absolute_call_p (const gdb_byte *insn)
691 {
692 /* call far, absolute. */
693 if (insn[0] == 0x9a)
694 return 1;
695
696 if (insn[0] == 0xff)
697 {
698 /* Call near, absolute indirect (/2). */
699 if ((insn[1] & 0x38) == 0x10)
700 return 1;
701
702 /* Call far, absolute indirect (/3). */
703 if ((insn[1] & 0x38) == 0x18)
704 return 1;
705 }
706
707 return 0;
708 }
709
710 static int
711 i386_ret_p (const gdb_byte *insn)
712 {
713 switch (insn[0])
714 {
715 case 0xc2: /* ret near, pop N bytes. */
716 case 0xc3: /* ret near */
717 case 0xca: /* ret far, pop N bytes. */
718 case 0xcb: /* ret far */
719 case 0xcf: /* iret */
720 return 1;
721
722 default:
723 return 0;
724 }
725 }
726
727 static int
728 i386_call_p (const gdb_byte *insn)
729 {
730 if (i386_absolute_call_p (insn))
731 return 1;
732
733 /* call near, relative. */
734 if (insn[0] == 0xe8)
735 return 1;
736
737 return 0;
738 }
739
740 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
741 length in bytes. Otherwise, return zero. */
742
743 static int
744 i386_syscall_p (const gdb_byte *insn, int *lengthp)
745 {
746 /* Is it 'int $0x80'? */
747 if ((insn[0] == 0xcd && insn[1] == 0x80)
748 /* Or is it 'sysenter'? */
749 || (insn[0] == 0x0f && insn[1] == 0x34)
750 /* Or is it 'syscall'? */
751 || (insn[0] == 0x0f && insn[1] == 0x05))
752 {
753 *lengthp = 2;
754 return 1;
755 }
756
757 return 0;
758 }
759
760 /* The gdbarch insn_is_call method. */
761
762 static int
763 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
764 {
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_call_p (insn);
771 }
772
773 /* The gdbarch insn_is_ret method. */
774
775 static int
776 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
777 {
778 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
779
780 read_code (addr, buf, I386_MAX_INSN_LEN);
781 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
782
783 return i386_ret_p (insn);
784 }
785
786 /* The gdbarch insn_is_jump method. */
787
788 static int
789 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
790 {
791 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
792
793 read_code (addr, buf, I386_MAX_INSN_LEN);
794 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
795
796 return i386_jmp_p (insn);
797 }
798
799 /* Some kernels may run one past a syscall insn, so we have to cope. */
800
801 displaced_step_closure_up
802 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805 {
806 size_t len = gdbarch_max_insn_length (gdbarch);
807 std::unique_ptr<i386_displaced_step_closure> closure
808 (new i386_displaced_step_closure (len));
809 gdb_byte *buf = closure->buf.data ();
810
811 read_memory (from, buf, len);
812
813 /* GDB may get control back after the insn after the syscall.
814 Presumably this is a kernel bug.
815 If this is a syscall, make sure there's a nop afterwards. */
816 {
817 int syscall_length;
818 gdb_byte *insn;
819
820 insn = i386_skip_prefixes (buf, len);
821 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
822 insn[syscall_length] = NOP_OPCODE;
823 }
824
825 write_memory (to, buf, len);
826
827 if (debug_displaced)
828 {
829 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
830 paddress (gdbarch, from), paddress (gdbarch, to));
831 displaced_step_dump_bytes (gdb_stdlog, buf, len);
832 }
833
834 /* This is a work around for a problem with g++ 4.8. */
835 return displaced_step_closure_up (closure.release ());
836 }
837
838 /* Fix up the state of registers and memory after having single-stepped
839 a displaced instruction. */
840
841 void
842 i386_displaced_step_fixup (struct gdbarch *gdbarch,
843 struct displaced_step_closure *closure_,
844 CORE_ADDR from, CORE_ADDR to,
845 struct regcache *regs)
846 {
847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
848
849 /* The offset we applied to the instruction's address.
850 This could well be negative (when viewed as a signed 32-bit
851 value), but ULONGEST won't reflect that, so take care when
852 applying it. */
853 ULONGEST insn_offset = to - from;
854
855 i386_displaced_step_closure *closure
856 = (i386_displaced_step_closure *) closure_;
857 gdb_byte *insn = closure->buf.data ();
858 /* The start of the insn, needed in case we see some prefixes. */
859 gdb_byte *insn_start = insn;
860
861 if (debug_displaced)
862 fprintf_unfiltered (gdb_stdlog,
863 "displaced: fixup (%s, %s), "
864 "insn = 0x%02x 0x%02x ...\n",
865 paddress (gdbarch, from), paddress (gdbarch, to),
866 insn[0], insn[1]);
867
868 /* The list of issues to contend with here is taken from
869 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
870 Yay for Free Software! */
871
872 /* Relocate the %eip, if necessary. */
873
874 /* The instruction recognizers we use assume any leading prefixes
875 have been skipped. */
876 {
877 /* This is the size of the buffer in closure. */
878 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
879 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
880 /* If there are too many prefixes, just ignore the insn.
881 It will fault when run. */
882 if (opcode != NULL)
883 insn = opcode;
884 }
885
886 /* Except in the case of absolute or indirect jump or call
887 instructions, or a return instruction, the new eip is relative to
888 the displaced instruction; make it relative. Well, signal
889 handler returns don't need relocation either, but we use the
890 value of %eip to recognize those; see below. */
891 if (! i386_absolute_jmp_p (insn)
892 && ! i386_absolute_call_p (insn)
893 && ! i386_ret_p (insn))
894 {
895 ULONGEST orig_eip;
896 int insn_len;
897
898 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
899
900 /* A signal trampoline system call changes the %eip, resuming
901 execution of the main program after the signal handler has
902 returned. That makes them like 'return' instructions; we
903 shouldn't relocate %eip.
904
905 But most system calls don't, and we do need to relocate %eip.
906
907 Our heuristic for distinguishing these cases: if stepping
908 over the system call instruction left control directly after
909 the instruction, the we relocate --- control almost certainly
910 doesn't belong in the displaced copy. Otherwise, we assume
911 the instruction has put control where it belongs, and leave
912 it unrelocated. Goodness help us if there are PC-relative
913 system calls. */
914 if (i386_syscall_p (insn, &insn_len)
915 && orig_eip != to + (insn - insn_start) + insn_len
916 /* GDB can get control back after the insn after the syscall.
917 Presumably this is a kernel bug.
918 i386_displaced_step_copy_insn ensures its a nop,
919 we add one to the length for it. */
920 && orig_eip != to + (insn - insn_start) + insn_len + 1)
921 {
922 if (debug_displaced)
923 fprintf_unfiltered (gdb_stdlog,
924 "displaced: syscall changed %%eip; "
925 "not relocating\n");
926 }
927 else
928 {
929 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
930
931 /* If we just stepped over a breakpoint insn, we don't backup
932 the pc on purpose; this is to match behaviour without
933 stepping. */
934
935 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
939 "displaced: "
940 "relocated %%eip from %s to %s\n",
941 paddress (gdbarch, orig_eip),
942 paddress (gdbarch, eip));
943 }
944 }
945
946 /* If the instruction was PUSHFL, then the TF bit will be set in the
947 pushed value, and should be cleared. We'll leave this for later,
948 since GDB already messes up the TF flag when stepping over a
949 pushfl. */
950
951 /* If the instruction was a call, the return address now atop the
952 stack is the address following the copied instruction. We need
953 to make it the address following the original instruction. */
954 if (i386_call_p (insn))
955 {
956 ULONGEST esp;
957 ULONGEST retaddr;
958 const ULONGEST retaddr_len = 4;
959
960 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
961 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
962 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
963 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
964
965 if (debug_displaced)
966 fprintf_unfiltered (gdb_stdlog,
967 "displaced: relocated return addr at %s to %s\n",
968 paddress (gdbarch, esp),
969 paddress (gdbarch, retaddr));
970 }
971 }
972
973 static void
974 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
975 {
976 target_write_memory (*to, buf, len);
977 *to += len;
978 }
979
980 static void
981 i386_relocate_instruction (struct gdbarch *gdbarch,
982 CORE_ADDR *to, CORE_ADDR oldloc)
983 {
984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
985 gdb_byte buf[I386_MAX_INSN_LEN];
986 int offset = 0, rel32, newrel;
987 int insn_length;
988 gdb_byte *insn = buf;
989
990 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
991
992 insn_length = gdb_buffered_insn_length (gdbarch, insn,
993 I386_MAX_INSN_LEN, oldloc);
994
995 /* Get past the prefixes. */
996 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
997
998 /* Adjust calls with 32-bit relative addresses as push/jump, with
999 the address pushed being the location where the original call in
1000 the user program would return to. */
1001 if (insn[0] == 0xe8)
1002 {
1003 gdb_byte push_buf[16];
1004 unsigned int ret_addr;
1005
1006 /* Where "ret" in the original code will return to. */
1007 ret_addr = oldloc + insn_length;
1008 push_buf[0] = 0x68; /* pushq $... */
1009 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1010 /* Push the push. */
1011 append_insns (to, 5, push_buf);
1012
1013 /* Convert the relative call to a relative jump. */
1014 insn[0] = 0xe9;
1015
1016 /* Adjust the destination offset. */
1017 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1018 newrel = (oldloc - *to) + rel32;
1019 store_signed_integer (insn + 1, 4, byte_order, newrel);
1020
1021 if (debug_displaced)
1022 fprintf_unfiltered (gdb_stdlog,
1023 "Adjusted insn rel32=%s at %s to"
1024 " rel32=%s at %s\n",
1025 hex_string (rel32), paddress (gdbarch, oldloc),
1026 hex_string (newrel), paddress (gdbarch, *to));
1027
1028 /* Write the adjusted jump into its displaced location. */
1029 append_insns (to, 5, insn);
1030 return;
1031 }
1032
1033 /* Adjust jumps with 32-bit relative addresses. Calls are already
1034 handled above. */
1035 if (insn[0] == 0xe9)
1036 offset = 1;
1037 /* Adjust conditional jumps. */
1038 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1039 offset = 2;
1040
1041 if (offset)
1042 {
1043 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1044 newrel = (oldloc - *to) + rel32;
1045 store_signed_integer (insn + offset, 4, byte_order, newrel);
1046 if (debug_displaced)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "Adjusted insn rel32=%s at %s to"
1049 " rel32=%s at %s\n",
1050 hex_string (rel32), paddress (gdbarch, oldloc),
1051 hex_string (newrel), paddress (gdbarch, *to));
1052 }
1053
1054 /* Write the adjusted instructions into their displaced
1055 location. */
1056 append_insns (to, insn_length, buf);
1057 }
1058
1059 \f
1060 #ifdef I386_REGNO_TO_SYMMETRY
1061 #error "The Sequent Symmetry is no longer supported."
1062 #endif
1063
1064 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1065 and %esp "belong" to the calling function. Therefore these
1066 registers should be saved if they're going to be modified. */
1067
1068 /* The maximum number of saved registers. This should include all
1069 registers mentioned above, and %eip. */
1070 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1071
1072 struct i386_frame_cache
1073 {
1074 /* Base address. */
1075 CORE_ADDR base;
1076 int base_p;
1077 LONGEST sp_offset;
1078 CORE_ADDR pc;
1079
1080 /* Saved registers. */
1081 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1082 CORE_ADDR saved_sp;
1083 int saved_sp_reg;
1084 int pc_in_eax;
1085
1086 /* Stack space reserved for local variables. */
1087 long locals;
1088 };
1089
1090 /* Allocate and initialize a frame cache. */
1091
1092 static struct i386_frame_cache *
1093 i386_alloc_frame_cache (void)
1094 {
1095 struct i386_frame_cache *cache;
1096 int i;
1097
1098 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1099
1100 /* Base address. */
1101 cache->base_p = 0;
1102 cache->base = 0;
1103 cache->sp_offset = -4;
1104 cache->pc = 0;
1105
1106 /* Saved registers. We initialize these to -1 since zero is a valid
1107 offset (that's where %ebp is supposed to be stored). */
1108 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1109 cache->saved_regs[i] = -1;
1110 cache->saved_sp = 0;
1111 cache->saved_sp_reg = -1;
1112 cache->pc_in_eax = 0;
1113
1114 /* Frameless until proven otherwise. */
1115 cache->locals = -1;
1116
1117 return cache;
1118 }
1119
1120 /* If the instruction at PC is a jump, return the address of its
1121 target. Otherwise, return PC. */
1122
1123 static CORE_ADDR
1124 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1125 {
1126 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1127 gdb_byte op;
1128 long delta = 0;
1129 int data16 = 0;
1130
1131 if (target_read_code (pc, &op, 1))
1132 return pc;
1133
1134 if (op == 0x66)
1135 {
1136 data16 = 1;
1137
1138 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1139 }
1140
1141 switch (op)
1142 {
1143 case 0xe9:
1144 /* Relative jump: if data16 == 0, disp32, else disp16. */
1145 if (data16)
1146 {
1147 delta = read_memory_integer (pc + 2, 2, byte_order);
1148
1149 /* Include the size of the jmp instruction (including the
1150 0x66 prefix). */
1151 delta += 4;
1152 }
1153 else
1154 {
1155 delta = read_memory_integer (pc + 1, 4, byte_order);
1156
1157 /* Include the size of the jmp instruction. */
1158 delta += 5;
1159 }
1160 break;
1161 case 0xeb:
1162 /* Relative jump, disp8 (ignore data16). */
1163 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1164
1165 delta += data16 + 2;
1166 break;
1167 }
1168
1169 return pc + delta;
1170 }
1171
1172 /* Check whether PC points at a prologue for a function returning a
1173 structure or union. If so, it updates CACHE and returns the
1174 address of the first instruction after the code sequence that
1175 removes the "hidden" argument from the stack or CURRENT_PC,
1176 whichever is smaller. Otherwise, return PC. */
1177
1178 static CORE_ADDR
1179 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1180 struct i386_frame_cache *cache)
1181 {
1182 /* Functions that return a structure or union start with:
1183
1184 popl %eax 0x58
1185 xchgl %eax, (%esp) 0x87 0x04 0x24
1186 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1187
1188 (the System V compiler puts out the second `xchg' instruction,
1189 and the assembler doesn't try to optimize it, so the 'sib' form
1190 gets generated). This sequence is used to get the address of the
1191 return buffer for a function that returns a structure. */
1192 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1193 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1194 gdb_byte buf[4];
1195 gdb_byte op;
1196
1197 if (current_pc <= pc)
1198 return pc;
1199
1200 if (target_read_code (pc, &op, 1))
1201 return pc;
1202
1203 if (op != 0x58) /* popl %eax */
1204 return pc;
1205
1206 if (target_read_code (pc + 1, buf, 4))
1207 return pc;
1208
1209 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1210 return pc;
1211
1212 if (current_pc == pc)
1213 {
1214 cache->sp_offset += 4;
1215 return current_pc;
1216 }
1217
1218 if (current_pc == pc + 1)
1219 {
1220 cache->pc_in_eax = 1;
1221 return current_pc;
1222 }
1223
1224 if (buf[1] == proto1[1])
1225 return pc + 4;
1226 else
1227 return pc + 5;
1228 }
1229
1230 static CORE_ADDR
1231 i386_skip_probe (CORE_ADDR pc)
1232 {
1233 /* A function may start with
1234
1235 pushl constant
1236 call _probe
1237 addl $4, %esp
1238
1239 followed by
1240
1241 pushl %ebp
1242
1243 etc. */
1244 gdb_byte buf[8];
1245 gdb_byte op;
1246
1247 if (target_read_code (pc, &op, 1))
1248 return pc;
1249
1250 if (op == 0x68 || op == 0x6a)
1251 {
1252 int delta;
1253
1254 /* Skip past the `pushl' instruction; it has either a one-byte or a
1255 four-byte operand, depending on the opcode. */
1256 if (op == 0x68)
1257 delta = 5;
1258 else
1259 delta = 2;
1260
1261 /* Read the following 8 bytes, which should be `call _probe' (6
1262 bytes) followed by `addl $4,%esp' (2 bytes). */
1263 read_memory (pc + delta, buf, sizeof (buf));
1264 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1265 pc += delta + sizeof (buf);
1266 }
1267
1268 return pc;
1269 }
1270
1271 /* GCC 4.1 and later, can put code in the prologue to realign the
1272 stack pointer. Check whether PC points to such code, and update
1273 CACHE accordingly. Return the first instruction after the code
1274 sequence or CURRENT_PC, whichever is smaller. If we don't
1275 recognize the code, return PC. */
1276
1277 static CORE_ADDR
1278 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1279 struct i386_frame_cache *cache)
1280 {
1281 /* There are 2 code sequences to re-align stack before the frame
1282 gets set up:
1283
1284 1. Use a caller-saved saved register:
1285
1286 leal 4(%esp), %reg
1287 andl $-XXX, %esp
1288 pushl -4(%reg)
1289
1290 2. Use a callee-saved saved register:
1291
1292 pushl %reg
1293 leal 8(%esp), %reg
1294 andl $-XXX, %esp
1295 pushl -4(%reg)
1296
1297 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1298
1299 0x83 0xe4 0xf0 andl $-16, %esp
1300 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1301 */
1302
1303 gdb_byte buf[14];
1304 int reg;
1305 int offset, offset_and;
1306 static int regnums[8] = {
1307 I386_EAX_REGNUM, /* %eax */
1308 I386_ECX_REGNUM, /* %ecx */
1309 I386_EDX_REGNUM, /* %edx */
1310 I386_EBX_REGNUM, /* %ebx */
1311 I386_ESP_REGNUM, /* %esp */
1312 I386_EBP_REGNUM, /* %ebp */
1313 I386_ESI_REGNUM, /* %esi */
1314 I386_EDI_REGNUM /* %edi */
1315 };
1316
1317 if (target_read_code (pc, buf, sizeof buf))
1318 return pc;
1319
1320 /* Check caller-saved saved register. The first instruction has
1321 to be "leal 4(%esp), %reg". */
1322 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1323 {
1324 /* MOD must be binary 10 and R/M must be binary 100. */
1325 if ((buf[1] & 0xc7) != 0x44)
1326 return pc;
1327
1328 /* REG has register number. */
1329 reg = (buf[1] >> 3) & 7;
1330 offset = 4;
1331 }
1332 else
1333 {
1334 /* Check callee-saved saved register. The first instruction
1335 has to be "pushl %reg". */
1336 if ((buf[0] & 0xf8) != 0x50)
1337 return pc;
1338
1339 /* Get register. */
1340 reg = buf[0] & 0x7;
1341
1342 /* The next instruction has to be "leal 8(%esp), %reg". */
1343 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1344 return pc;
1345
1346 /* MOD must be binary 10 and R/M must be binary 100. */
1347 if ((buf[2] & 0xc7) != 0x44)
1348 return pc;
1349
1350 /* REG has register number. Registers in pushl and leal have to
1351 be the same. */
1352 if (reg != ((buf[2] >> 3) & 7))
1353 return pc;
1354
1355 offset = 5;
1356 }
1357
1358 /* Rigister can't be %esp nor %ebp. */
1359 if (reg == 4 || reg == 5)
1360 return pc;
1361
1362 /* The next instruction has to be "andl $-XXX, %esp". */
1363 if (buf[offset + 1] != 0xe4
1364 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1365 return pc;
1366
1367 offset_and = offset;
1368 offset += buf[offset] == 0x81 ? 6 : 3;
1369
1370 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1371 0xfc. REG must be binary 110 and MOD must be binary 01. */
1372 if (buf[offset] != 0xff
1373 || buf[offset + 2] != 0xfc
1374 || (buf[offset + 1] & 0xf8) != 0x70)
1375 return pc;
1376
1377 /* R/M has register. Registers in leal and pushl have to be the
1378 same. */
1379 if (reg != (buf[offset + 1] & 7))
1380 return pc;
1381
1382 if (current_pc > pc + offset_and)
1383 cache->saved_sp_reg = regnums[reg];
1384
1385 return std::min (pc + offset + 3, current_pc);
1386 }
1387
1388 /* Maximum instruction length we need to handle. */
1389 #define I386_MAX_MATCHED_INSN_LEN 6
1390
1391 /* Instruction description. */
1392 struct i386_insn
1393 {
1394 size_t len;
1395 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1396 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1397 };
1398
1399 /* Return whether instruction at PC matches PATTERN. */
1400
1401 static int
1402 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1403 {
1404 gdb_byte op;
1405
1406 if (target_read_code (pc, &op, 1))
1407 return 0;
1408
1409 if ((op & pattern.mask[0]) == pattern.insn[0])
1410 {
1411 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1412 int insn_matched = 1;
1413 size_t i;
1414
1415 gdb_assert (pattern.len > 1);
1416 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1417
1418 if (target_read_code (pc + 1, buf, pattern.len - 1))
1419 return 0;
1420
1421 for (i = 1; i < pattern.len; i++)
1422 {
1423 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1424 insn_matched = 0;
1425 }
1426 return insn_matched;
1427 }
1428 return 0;
1429 }
1430
1431 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1432 the first instruction description that matches. Otherwise, return
1433 NULL. */
1434
1435 static struct i386_insn *
1436 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1437 {
1438 struct i386_insn *pattern;
1439
1440 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1441 {
1442 if (i386_match_pattern (pc, *pattern))
1443 return pattern;
1444 }
1445
1446 return NULL;
1447 }
1448
1449 /* Return whether PC points inside a sequence of instructions that
1450 matches INSN_PATTERNS. */
1451
1452 static int
1453 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1454 {
1455 CORE_ADDR current_pc;
1456 int ix, i;
1457 struct i386_insn *insn;
1458
1459 insn = i386_match_insn (pc, insn_patterns);
1460 if (insn == NULL)
1461 return 0;
1462
1463 current_pc = pc;
1464 ix = insn - insn_patterns;
1465 for (i = ix - 1; i >= 0; i--)
1466 {
1467 current_pc -= insn_patterns[i].len;
1468
1469 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1470 return 0;
1471 }
1472
1473 current_pc = pc + insn->len;
1474 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1475 {
1476 if (!i386_match_pattern (current_pc, *insn))
1477 return 0;
1478
1479 current_pc += insn->len;
1480 }
1481
1482 return 1;
1483 }
1484
1485 /* Some special instructions that might be migrated by GCC into the
1486 part of the prologue that sets up the new stack frame. Because the
1487 stack frame hasn't been setup yet, no registers have been saved
1488 yet, and only the scratch registers %eax, %ecx and %edx can be
1489 touched. */
1490
1491 struct i386_insn i386_frame_setup_skip_insns[] =
1492 {
1493 /* Check for `movb imm8, r' and `movl imm32, r'.
1494
1495 ??? Should we handle 16-bit operand-sizes here? */
1496
1497 /* `movb imm8, %al' and `movb imm8, %ah' */
1498 /* `movb imm8, %cl' and `movb imm8, %ch' */
1499 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1500 /* `movb imm8, %dl' and `movb imm8, %dh' */
1501 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1502 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1503 { 5, { 0xb8 }, { 0xfe } },
1504 /* `movl imm32, %edx' */
1505 { 5, { 0xba }, { 0xff } },
1506
1507 /* Check for `mov imm32, r32'. Note that there is an alternative
1508 encoding for `mov m32, %eax'.
1509
1510 ??? Should we handle SIB addressing here?
1511 ??? Should we handle 16-bit operand-sizes here? */
1512
1513 /* `movl m32, %eax' */
1514 { 5, { 0xa1 }, { 0xff } },
1515 /* `movl m32, %eax' and `mov; m32, %ecx' */
1516 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1517 /* `movl m32, %edx' */
1518 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1519
1520 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1521 Because of the symmetry, there are actually two ways to encode
1522 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1523 opcode bytes 0x31 and 0x33 for `xorl'. */
1524
1525 /* `subl %eax, %eax' */
1526 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1527 /* `subl %ecx, %ecx' */
1528 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1529 /* `subl %edx, %edx' */
1530 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1531 /* `xorl %eax, %eax' */
1532 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1533 /* `xorl %ecx, %ecx' */
1534 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1535 /* `xorl %edx, %edx' */
1536 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1537 { 0 }
1538 };
1539
1540
1541 /* Check whether PC points to a no-op instruction. */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545 gdb_byte op;
1546 int check = 1;
1547
1548 if (target_read_code (pc, &op, 1))
1549 return pc;
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
1558 if (target_read_code (pc, &op, 1))
1559 return pc;
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
1575 if (target_read_code (pc + 1, &op, 1))
1576 return pc;
1577
1578 if (op == 0xff)
1579 {
1580 pc += 2;
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589 }
1590
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1595
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
1599 struct i386_frame_cache *cache)
1600 {
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 struct i386_insn *insn;
1603 gdb_byte op;
1604 int skip = 0;
1605
1606 if (limit <= pc)
1607 return limit;
1608
1609 if (target_read_code (pc, &op, 1))
1610 return pc;
1611
1612 if (op == 0x55) /* pushl %ebp */
1613 {
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
1617 cache->sp_offset += 4;
1618 pc++;
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc)
1622 return limit;
1623
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1628 it is limited.
1629
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc + skip < limit)
1633 {
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
1637
1638 skip += insn->len;
1639 }
1640
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
1645 if (target_read_code (pc + skip, &op, 1))
1646 return pc + skip;
1647
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
1662 switch (op)
1663 {
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 case 0x8b:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xec)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x89:
1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 != 0xe5)
1674 return pc;
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
1682 break;
1683 default:
1684 return pc;
1685 }
1686
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
1694 if (limit <= pc)
1695 return limit;
1696
1697 /* Check for stack adjustment
1698
1699 subl $XXX, %esp
1700 or
1701 lea -XXX(%esp),%esp
1702
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc, &op, 1))
1706 return pc;
1707 if (op == 0x83)
1708 {
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1712 return pc;
1713
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 return pc + 3;
1718 }
1719 else if (op == 0x81)
1720 {
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1724 return pc;
1725
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 return pc + 6;
1729 }
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 return pc + 4;
1738 }
1739 else
1740 {
1741 /* Some instruction other than `subl' nor 'lea'. */
1742 return pc;
1743 }
1744 }
1745 else if (op == 0xc8) /* enter */
1746 {
1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748 return pc + 4;
1749 }
1750
1751 return pc;
1752 }
1753
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1758
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
1762 {
1763 CORE_ADDR offset = 0;
1764 gdb_byte op;
1765 int i;
1766
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
1771 if (target_read_code (pc, &op, 1))
1772 return pc;
1773 if (op < 0x50 || op > 0x57)
1774 break;
1775
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
1780 }
1781
1782 return pc;
1783 }
1784
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1788
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1811
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
1815 struct i386_frame_cache *cache)
1816 {
1817 pc = i386_skip_noop (pc);
1818 pc = i386_follow_jump (gdbarch, pc);
1819 pc = i386_analyze_struct_return (pc, current_pc, cache);
1820 pc = i386_skip_probe (pc);
1821 pc = i386_analyze_stack_align (pc, current_pc, cache);
1822 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1823 return i386_analyze_register_saves (pc, current_pc, cache);
1824 }
1825
1826 /* Return PC of first real instruction. */
1827
1828 static CORE_ADDR
1829 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1830 {
1831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1832
1833 static gdb_byte pic_pat[6] =
1834 {
1835 0xe8, 0, 0, 0, 0, /* call 0x0 */
1836 0x5b, /* popl %ebx */
1837 };
1838 struct i386_frame_cache cache;
1839 CORE_ADDR pc;
1840 gdb_byte op;
1841 int i;
1842 CORE_ADDR func_addr;
1843
1844 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1845 {
1846 CORE_ADDR post_prologue_pc
1847 = skip_prologue_using_sal (gdbarch, func_addr);
1848 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1849
1850 /* Clang always emits a line note before the prologue and another
1851 one after. We trust clang to emit usable line notes. */
1852 if (post_prologue_pc
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
1855 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1856 return std::max (start_pc, post_prologue_pc);
1857 }
1858
1859 cache.locals = -1;
1860 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1861 if (cache.locals < 0)
1862 return start_pc;
1863
1864 /* Found valid frame setup. */
1865
1866 /* The native cc on SVR4 in -K PIC mode inserts the following code
1867 to get the address of the global offset table (GOT) into register
1868 %ebx:
1869
1870 call 0x0
1871 popl %ebx
1872 movl %ebx,x(%ebp) (optional)
1873 addl y,%ebx
1874
1875 This code is with the rest of the prologue (at the end of the
1876 function), so we have to skip it to get to the first real
1877 instruction at the start of the function. */
1878
1879 for (i = 0; i < 6; i++)
1880 {
1881 if (target_read_code (pc + i, &op, 1))
1882 return pc;
1883
1884 if (pic_pat[i] != op)
1885 break;
1886 }
1887 if (i == 6)
1888 {
1889 int delta = 6;
1890
1891 if (target_read_code (pc + delta, &op, 1))
1892 return pc;
1893
1894 if (op == 0x89) /* movl %ebx, x(%ebp) */
1895 {
1896 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1897
1898 if (op == 0x5d) /* One byte offset from %ebp. */
1899 delta += 3;
1900 else if (op == 0x9d) /* Four byte offset from %ebp. */
1901 delta += 6;
1902 else /* Unexpected instruction. */
1903 delta = 0;
1904
1905 if (target_read_code (pc + delta, &op, 1))
1906 return pc;
1907 }
1908
1909 /* addl y,%ebx */
1910 if (delta > 0 && op == 0x81
1911 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1912 == 0xc3)
1913 {
1914 pc += delta + 6;
1915 }
1916 }
1917
1918 /* If the function starts with a branch (to startup code at the end)
1919 the last instruction should bring us back to the first
1920 instruction of the real code. */
1921 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1922 pc = i386_follow_jump (gdbarch, pc);
1923
1924 return pc;
1925 }
1926
1927 /* Check that the code pointed to by PC corresponds to a call to
1928 __main, skip it if so. Return PC otherwise. */
1929
1930 CORE_ADDR
1931 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1932 {
1933 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1934 gdb_byte op;
1935
1936 if (target_read_code (pc, &op, 1))
1937 return pc;
1938 if (op == 0xe8)
1939 {
1940 gdb_byte buf[4];
1941
1942 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1943 {
1944 /* Make sure address is computed correctly as a 32bit
1945 integer even if CORE_ADDR is 64 bit wide. */
1946 struct bound_minimal_symbol s;
1947 CORE_ADDR call_dest;
1948
1949 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1950 call_dest = call_dest & 0xffffffffU;
1951 s = lookup_minimal_symbol_by_pc (call_dest);
1952 if (s.minsym != NULL
1953 && s.minsym->linkage_name () != NULL
1954 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1955 pc += 5;
1956 }
1957 }
1958
1959 return pc;
1960 }
1961
1962 /* This function is 64-bit safe. */
1963
1964 static CORE_ADDR
1965 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1966 {
1967 gdb_byte buf[8];
1968
1969 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1970 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1971 }
1972 \f
1973
1974 /* Normal frames. */
1975
1976 static void
1977 i386_frame_cache_1 (struct frame_info *this_frame,
1978 struct i386_frame_cache *cache)
1979 {
1980 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1982 gdb_byte buf[4];
1983 int i;
1984
1985 cache->pc = get_frame_func (this_frame);
1986
1987 /* In principle, for normal frames, %ebp holds the frame pointer,
1988 which holds the base address for the current stack frame.
1989 However, for functions that don't need it, the frame pointer is
1990 optional. For these "frameless" functions the frame pointer is
1991 actually the frame pointer of the calling frame. Signal
1992 trampolines are just a special case of a "frameless" function.
1993 They (usually) share their frame pointer with the frame that was
1994 in progress when the signal occurred. */
1995
1996 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1997 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1998 if (cache->base == 0)
1999 {
2000 cache->base_p = 1;
2001 return;
2002 }
2003
2004 /* For normal frames, %eip is stored at 4(%ebp). */
2005 cache->saved_regs[I386_EIP_REGNUM] = 4;
2006
2007 if (cache->pc != 0)
2008 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2009 cache);
2010
2011 if (cache->locals < 0)
2012 {
2013 /* We didn't find a valid frame, which means that CACHE->base
2014 currently holds the frame pointer for our calling frame. If
2015 we're at the start of a function, or somewhere half-way its
2016 prologue, the function's frame probably hasn't been fully
2017 setup yet. Try to reconstruct the base address for the stack
2018 frame by looking at the stack pointer. For truly "frameless"
2019 functions this might work too. */
2020
2021 if (cache->saved_sp_reg != -1)
2022 {
2023 /* Saved stack pointer has been saved. */
2024 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2025 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2026
2027 /* We're halfway aligning the stack. */
2028 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2029 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2030
2031 /* This will be added back below. */
2032 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2033 }
2034 else if (cache->pc != 0
2035 || target_read_code (get_frame_pc (this_frame), buf, 1))
2036 {
2037 /* We're in a known function, but did not find a frame
2038 setup. Assume that the function does not use %ebp.
2039 Alternatively, we may have jumped to an invalid
2040 address; in that case there is definitely no new
2041 frame in %ebp. */
2042 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2043 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2044 + cache->sp_offset;
2045 }
2046 else
2047 /* We're in an unknown function. We could not find the start
2048 of the function to analyze the prologue; our best option is
2049 to assume a typical frame layout with the caller's %ebp
2050 saved. */
2051 cache->saved_regs[I386_EBP_REGNUM] = 0;
2052 }
2053
2054 if (cache->saved_sp_reg != -1)
2055 {
2056 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2057 register may be unavailable). */
2058 if (cache->saved_sp == 0
2059 && deprecated_frame_register_read (this_frame,
2060 cache->saved_sp_reg, buf))
2061 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2062 }
2063 /* Now that we have the base address for the stack frame we can
2064 calculate the value of %esp in the calling frame. */
2065 else if (cache->saved_sp == 0)
2066 cache->saved_sp = cache->base + 8;
2067
2068 /* Adjust all the saved registers such that they contain addresses
2069 instead of offsets. */
2070 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2071 if (cache->saved_regs[i] != -1)
2072 cache->saved_regs[i] += cache->base;
2073
2074 cache->base_p = 1;
2075 }
2076
2077 static struct i386_frame_cache *
2078 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2079 {
2080 struct i386_frame_cache *cache;
2081
2082 if (*this_cache)
2083 return (struct i386_frame_cache *) *this_cache;
2084
2085 cache = i386_alloc_frame_cache ();
2086 *this_cache = cache;
2087
2088 try
2089 {
2090 i386_frame_cache_1 (this_frame, cache);
2091 }
2092 catch (const gdb_exception_error &ex)
2093 {
2094 if (ex.error != NOT_AVAILABLE_ERROR)
2095 throw;
2096 }
2097
2098 return cache;
2099 }
2100
2101 static void
2102 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2103 struct frame_id *this_id)
2104 {
2105 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2106
2107 if (!cache->base_p)
2108 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2109 else if (cache->base == 0)
2110 {
2111 /* This marks the outermost frame. */
2112 }
2113 else
2114 {
2115 /* See the end of i386_push_dummy_call. */
2116 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2117 }
2118 }
2119
2120 static enum unwind_stop_reason
2121 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2122 void **this_cache)
2123 {
2124 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2125
2126 if (!cache->base_p)
2127 return UNWIND_UNAVAILABLE;
2128
2129 /* This marks the outermost frame. */
2130 if (cache->base == 0)
2131 return UNWIND_OUTERMOST;
2132
2133 return UNWIND_NO_REASON;
2134 }
2135
2136 static struct value *
2137 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2138 int regnum)
2139 {
2140 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2141
2142 gdb_assert (regnum >= 0);
2143
2144 /* The System V ABI says that:
2145
2146 "The flags register contains the system flags, such as the
2147 direction flag and the carry flag. The direction flag must be
2148 set to the forward (that is, zero) direction before entry and
2149 upon exit from a function. Other user flags have no specified
2150 role in the standard calling sequence and are not preserved."
2151
2152 To guarantee the "upon exit" part of that statement we fake a
2153 saved flags register that has its direction flag cleared.
2154
2155 Note that GCC doesn't seem to rely on the fact that the direction
2156 flag is cleared after a function return; it always explicitly
2157 clears the flag before operations where it matters.
2158
2159 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2160 right thing to do. The way we fake the flags register here makes
2161 it impossible to change it. */
2162
2163 if (regnum == I386_EFLAGS_REGNUM)
2164 {
2165 ULONGEST val;
2166
2167 val = get_frame_register_unsigned (this_frame, regnum);
2168 val &= ~(1 << 10);
2169 return frame_unwind_got_constant (this_frame, regnum, val);
2170 }
2171
2172 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2173 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2174
2175 if (regnum == I386_ESP_REGNUM
2176 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2177 {
2178 /* If the SP has been saved, but we don't know where, then this
2179 means that SAVED_SP_REG register was found unavailable back
2180 when we built the cache. */
2181 if (cache->saved_sp == 0)
2182 return frame_unwind_got_register (this_frame, regnum,
2183 cache->saved_sp_reg);
2184 else
2185 return frame_unwind_got_constant (this_frame, regnum,
2186 cache->saved_sp);
2187 }
2188
2189 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2190 return frame_unwind_got_memory (this_frame, regnum,
2191 cache->saved_regs[regnum]);
2192
2193 return frame_unwind_got_register (this_frame, regnum, regnum);
2194 }
2195
2196 static const struct frame_unwind i386_frame_unwind =
2197 {
2198 NORMAL_FRAME,
2199 i386_frame_unwind_stop_reason,
2200 i386_frame_this_id,
2201 i386_frame_prev_register,
2202 NULL,
2203 default_frame_sniffer
2204 };
2205
2206 /* Normal frames, but in a function epilogue. */
2207
2208 /* Implement the stack_frame_destroyed_p gdbarch method.
2209
2210 The epilogue is defined here as the 'ret' instruction, which will
2211 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2212 the function's stack frame. */
2213
2214 static int
2215 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2216 {
2217 gdb_byte insn;
2218 struct compunit_symtab *cust;
2219
2220 cust = find_pc_compunit_symtab (pc);
2221 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2222 return 0;
2223
2224 if (target_read_memory (pc, &insn, 1))
2225 return 0; /* Can't read memory at pc. */
2226
2227 if (insn != 0xc3) /* 'ret' instruction. */
2228 return 0;
2229
2230 return 1;
2231 }
2232
2233 static int
2234 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2235 struct frame_info *this_frame,
2236 void **this_prologue_cache)
2237 {
2238 if (frame_relative_level (this_frame) == 0)
2239 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2240 get_frame_pc (this_frame));
2241 else
2242 return 0;
2243 }
2244
2245 static struct i386_frame_cache *
2246 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2247 {
2248 struct i386_frame_cache *cache;
2249 CORE_ADDR sp;
2250
2251 if (*this_cache)
2252 return (struct i386_frame_cache *) *this_cache;
2253
2254 cache = i386_alloc_frame_cache ();
2255 *this_cache = cache;
2256
2257 try
2258 {
2259 cache->pc = get_frame_func (this_frame);
2260
2261 /* At this point the stack looks as if we just entered the
2262 function, with the return address at the top of the
2263 stack. */
2264 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2265 cache->base = sp + cache->sp_offset;
2266 cache->saved_sp = cache->base + 8;
2267 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2268
2269 cache->base_p = 1;
2270 }
2271 catch (const gdb_exception_error &ex)
2272 {
2273 if (ex.error != NOT_AVAILABLE_ERROR)
2274 throw;
2275 }
2276
2277 return cache;
2278 }
2279
2280 static enum unwind_stop_reason
2281 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2282 void **this_cache)
2283 {
2284 struct i386_frame_cache *cache =
2285 i386_epilogue_frame_cache (this_frame, this_cache);
2286
2287 if (!cache->base_p)
2288 return UNWIND_UNAVAILABLE;
2289
2290 return UNWIND_NO_REASON;
2291 }
2292
2293 static void
2294 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2295 void **this_cache,
2296 struct frame_id *this_id)
2297 {
2298 struct i386_frame_cache *cache =
2299 i386_epilogue_frame_cache (this_frame, this_cache);
2300
2301 if (!cache->base_p)
2302 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2303 else
2304 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2305 }
2306
2307 static struct value *
2308 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2309 void **this_cache, int regnum)
2310 {
2311 /* Make sure we've initialized the cache. */
2312 i386_epilogue_frame_cache (this_frame, this_cache);
2313
2314 return i386_frame_prev_register (this_frame, this_cache, regnum);
2315 }
2316
2317 static const struct frame_unwind i386_epilogue_frame_unwind =
2318 {
2319 NORMAL_FRAME,
2320 i386_epilogue_frame_unwind_stop_reason,
2321 i386_epilogue_frame_this_id,
2322 i386_epilogue_frame_prev_register,
2323 NULL,
2324 i386_epilogue_frame_sniffer
2325 };
2326 \f
2327
2328 /* Stack-based trampolines. */
2329
2330 /* These trampolines are used on cross x86 targets, when taking the
2331 address of a nested function. When executing these trampolines,
2332 no stack frame is set up, so we are in a similar situation as in
2333 epilogues and i386_epilogue_frame_this_id can be re-used. */
2334
2335 /* Static chain passed in register. */
2336
2337 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2338 {
2339 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2340 { 5, { 0xb8 }, { 0xfe } },
2341
2342 /* `jmp imm32' */
2343 { 5, { 0xe9 }, { 0xff } },
2344
2345 {0}
2346 };
2347
2348 /* Static chain passed on stack (when regparm=3). */
2349
2350 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2351 {
2352 /* `push imm32' */
2353 { 5, { 0x68 }, { 0xff } },
2354
2355 /* `jmp imm32' */
2356 { 5, { 0xe9 }, { 0xff } },
2357
2358 {0}
2359 };
2360
2361 /* Return whether PC points inside a stack trampoline. */
2362
2363 static int
2364 i386_in_stack_tramp_p (CORE_ADDR pc)
2365 {
2366 gdb_byte insn;
2367 const char *name;
2368
2369 /* A stack trampoline is detected if no name is associated
2370 to the current pc and if it points inside a trampoline
2371 sequence. */
2372
2373 find_pc_partial_function (pc, &name, NULL, NULL);
2374 if (name)
2375 return 0;
2376
2377 if (target_read_memory (pc, &insn, 1))
2378 return 0;
2379
2380 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2381 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2382 return 0;
2383
2384 return 1;
2385 }
2386
2387 static int
2388 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2389 struct frame_info *this_frame,
2390 void **this_cache)
2391 {
2392 if (frame_relative_level (this_frame) == 0)
2393 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2394 else
2395 return 0;
2396 }
2397
2398 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2399 {
2400 NORMAL_FRAME,
2401 i386_epilogue_frame_unwind_stop_reason,
2402 i386_epilogue_frame_this_id,
2403 i386_epilogue_frame_prev_register,
2404 NULL,
2405 i386_stack_tramp_frame_sniffer
2406 };
2407 \f
2408 /* Generate a bytecode expression to get the value of the saved PC. */
2409
2410 static void
2411 i386_gen_return_address (struct gdbarch *gdbarch,
2412 struct agent_expr *ax, struct axs_value *value,
2413 CORE_ADDR scope)
2414 {
2415 /* The following sequence assumes the traditional use of the base
2416 register. */
2417 ax_reg (ax, I386_EBP_REGNUM);
2418 ax_const_l (ax, 4);
2419 ax_simple (ax, aop_add);
2420 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2421 value->kind = axs_lvalue_memory;
2422 }
2423 \f
2424
2425 /* Signal trampolines. */
2426
2427 static struct i386_frame_cache *
2428 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2429 {
2430 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2433 struct i386_frame_cache *cache;
2434 CORE_ADDR addr;
2435 gdb_byte buf[4];
2436
2437 if (*this_cache)
2438 return (struct i386_frame_cache *) *this_cache;
2439
2440 cache = i386_alloc_frame_cache ();
2441
2442 try
2443 {
2444 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2445 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2446
2447 addr = tdep->sigcontext_addr (this_frame);
2448 if (tdep->sc_reg_offset)
2449 {
2450 int i;
2451
2452 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2453
2454 for (i = 0; i < tdep->sc_num_regs; i++)
2455 if (tdep->sc_reg_offset[i] != -1)
2456 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2457 }
2458 else
2459 {
2460 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2461 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2462 }
2463
2464 cache->base_p = 1;
2465 }
2466 catch (const gdb_exception_error &ex)
2467 {
2468 if (ex.error != NOT_AVAILABLE_ERROR)
2469 throw;
2470 }
2471
2472 *this_cache = cache;
2473 return cache;
2474 }
2475
2476 static enum unwind_stop_reason
2477 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2478 void **this_cache)
2479 {
2480 struct i386_frame_cache *cache =
2481 i386_sigtramp_frame_cache (this_frame, this_cache);
2482
2483 if (!cache->base_p)
2484 return UNWIND_UNAVAILABLE;
2485
2486 return UNWIND_NO_REASON;
2487 }
2488
2489 static void
2490 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2491 struct frame_id *this_id)
2492 {
2493 struct i386_frame_cache *cache =
2494 i386_sigtramp_frame_cache (this_frame, this_cache);
2495
2496 if (!cache->base_p)
2497 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2498 else
2499 {
2500 /* See the end of i386_push_dummy_call. */
2501 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2502 }
2503 }
2504
2505 static struct value *
2506 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2507 void **this_cache, int regnum)
2508 {
2509 /* Make sure we've initialized the cache. */
2510 i386_sigtramp_frame_cache (this_frame, this_cache);
2511
2512 return i386_frame_prev_register (this_frame, this_cache, regnum);
2513 }
2514
2515 static int
2516 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2517 struct frame_info *this_frame,
2518 void **this_prologue_cache)
2519 {
2520 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2521
2522 /* We shouldn't even bother if we don't have a sigcontext_addr
2523 handler. */
2524 if (tdep->sigcontext_addr == NULL)
2525 return 0;
2526
2527 if (tdep->sigtramp_p != NULL)
2528 {
2529 if (tdep->sigtramp_p (this_frame))
2530 return 1;
2531 }
2532
2533 if (tdep->sigtramp_start != 0)
2534 {
2535 CORE_ADDR pc = get_frame_pc (this_frame);
2536
2537 gdb_assert (tdep->sigtramp_end != 0);
2538 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2539 return 1;
2540 }
2541
2542 return 0;
2543 }
2544
2545 static const struct frame_unwind i386_sigtramp_frame_unwind =
2546 {
2547 SIGTRAMP_FRAME,
2548 i386_sigtramp_frame_unwind_stop_reason,
2549 i386_sigtramp_frame_this_id,
2550 i386_sigtramp_frame_prev_register,
2551 NULL,
2552 i386_sigtramp_frame_sniffer
2553 };
2554 \f
2555
2556 static CORE_ADDR
2557 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2558 {
2559 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2560
2561 return cache->base;
2562 }
2563
2564 static const struct frame_base i386_frame_base =
2565 {
2566 &i386_frame_unwind,
2567 i386_frame_base_address,
2568 i386_frame_base_address,
2569 i386_frame_base_address
2570 };
2571
2572 static struct frame_id
2573 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2574 {
2575 CORE_ADDR fp;
2576
2577 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2578
2579 /* See the end of i386_push_dummy_call. */
2580 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2581 }
2582
2583 /* _Decimal128 function return values need 16-byte alignment on the
2584 stack. */
2585
2586 static CORE_ADDR
2587 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2588 {
2589 return sp & -(CORE_ADDR)16;
2590 }
2591 \f
2592
2593 /* Figure out where the longjmp will land. Slurp the args out of the
2594 stack. We expect the first arg to be a pointer to the jmp_buf
2595 structure from which we extract the address that we will land at.
2596 This address is copied into PC. This routine returns non-zero on
2597 success. */
2598
2599 static int
2600 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 {
2602 gdb_byte buf[4];
2603 CORE_ADDR sp, jb_addr;
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2606 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2607
2608 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2609 longjmp will land. */
2610 if (jb_pc_offset == -1)
2611 return 0;
2612
2613 get_frame_register (frame, I386_ESP_REGNUM, buf);
2614 sp = extract_unsigned_integer (buf, 4, byte_order);
2615 if (target_read_memory (sp + 4, buf, 4))
2616 return 0;
2617
2618 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2619 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2620 return 0;
2621
2622 *pc = extract_unsigned_integer (buf, 4, byte_order);
2623 return 1;
2624 }
2625 \f
2626
2627 /* Check whether TYPE must be 16-byte-aligned when passed as a
2628 function argument. 16-byte vectors, _Decimal128 and structures or
2629 unions containing such types must be 16-byte-aligned; other
2630 arguments are 4-byte-aligned. */
2631
2632 static int
2633 i386_16_byte_align_p (struct type *type)
2634 {
2635 type = check_typedef (type);
2636 if ((type->code () == TYPE_CODE_DECFLOAT
2637 || (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2638 && TYPE_LENGTH (type) == 16)
2639 return 1;
2640 if (type->code () == TYPE_CODE_ARRAY)
2641 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2642 if (type->code () == TYPE_CODE_STRUCT
2643 || type->code () == TYPE_CODE_UNION)
2644 {
2645 int i;
2646 for (i = 0; i < type->num_fields (); i++)
2647 {
2648 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2649 return 1;
2650 }
2651 }
2652 return 0;
2653 }
2654
2655 /* Implementation for set_gdbarch_push_dummy_code. */
2656
2657 static CORE_ADDR
2658 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2659 struct value **args, int nargs, struct type *value_type,
2660 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2661 struct regcache *regcache)
2662 {
2663 /* Use 0xcc breakpoint - 1 byte. */
2664 *bp_addr = sp - 1;
2665 *real_pc = funaddr;
2666
2667 /* Keep the stack aligned. */
2668 return sp - 16;
2669 }
2670
2671 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2672 calling convention. */
2673
2674 CORE_ADDR
2675 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2676 struct regcache *regcache, CORE_ADDR bp_addr,
2677 int nargs, struct value **args, CORE_ADDR sp,
2678 function_call_return_method return_method,
2679 CORE_ADDR struct_addr, bool thiscall)
2680 {
2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2682 gdb_byte buf[4];
2683 int i;
2684 int write_pass;
2685 int args_space = 0;
2686
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2693
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2697
2698 for (write_pass = 0; write_pass < 2; write_pass++)
2699 {
2700 int args_space_used = 0;
2701
2702 if (return_method == return_method_struct)
2703 {
2704 if (write_pass)
2705 {
2706 /* Push value address. */
2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2710 }
2711 else
2712 args_space += 4;
2713 }
2714
2715 for (i = thiscall ? 1 : 0; i < nargs; i++)
2716 {
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2718
2719 if (write_pass)
2720 {
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
2723
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
2727
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
2731
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2734 }
2735 else
2736 {
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2738 args_space = align_up (args_space, 16);
2739 args_space += align_up (len, 4);
2740 }
2741 }
2742
2743 if (!write_pass)
2744 {
2745 sp -= args_space;
2746
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2751 sp &= ~0xf;
2752 }
2753 }
2754
2755 /* Store return address. */
2756 sp -= 4;
2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2758 write_memory (sp, buf, 4);
2759
2760 /* Finally, update the stack pointer... */
2761 store_unsigned_integer (buf, 4, byte_order, sp);
2762 regcache->cooked_write (I386_ESP_REGNUM, buf);
2763
2764 /* ...and fake a frame pointer. */
2765 regcache->cooked_write (I386_EBP_REGNUM, buf);
2766
2767 /* The 'this' pointer needs to be in ECX. */
2768 if (thiscall)
2769 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2770
2771 /* MarkK wrote: This "+ 8" is all over the place:
2772 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2773 i386_dummy_id). It's there, since all frame unwinders for
2774 a given target have to agree (within a certain margin) on the
2775 definition of the stack address of a frame. Otherwise frame id
2776 comparison might not work correctly. Since DWARF2/GCC uses the
2777 stack address *before* the function call as a frame's CFA. On
2778 the i386, when %ebp is used as a frame pointer, the offset
2779 between the contents %ebp and the CFA as defined by GCC. */
2780 return sp + 8;
2781 }
2782
2783 /* Implement the "push_dummy_call" gdbarch method. */
2784
2785 static CORE_ADDR
2786 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2787 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2788 struct value **args, CORE_ADDR sp,
2789 function_call_return_method return_method,
2790 CORE_ADDR struct_addr)
2791 {
2792 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2793 nargs, args, sp, return_method,
2794 struct_addr, false);
2795 }
2796
2797 /* These registers are used for returning integers (and on some
2798 targets also for returning `struct' and `union' values when their
2799 size and alignment match an integer type). */
2800 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2801 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2802
2803 /* Read, for architecture GDBARCH, a function return value of TYPE
2804 from REGCACHE, and copy that into VALBUF. */
2805
2806 static void
2807 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2808 struct regcache *regcache, gdb_byte *valbuf)
2809 {
2810 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2811 int len = TYPE_LENGTH (type);
2812 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2813
2814 if (type->code () == TYPE_CODE_FLT)
2815 {
2816 if (tdep->st0_regnum < 0)
2817 {
2818 warning (_("Cannot find floating-point return value."));
2819 memset (valbuf, 0, len);
2820 return;
2821 }
2822
2823 /* Floating-point return values can be found in %st(0). Convert
2824 its contents to the desired type. This is probably not
2825 exactly how it would happen on the target itself, but it is
2826 the best we can do. */
2827 regcache->raw_read (I386_ST0_REGNUM, buf);
2828 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2829 }
2830 else
2831 {
2832 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2833 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2834
2835 if (len <= low_size)
2836 {
2837 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2838 memcpy (valbuf, buf, len);
2839 }
2840 else if (len <= (low_size + high_size))
2841 {
2842 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2843 memcpy (valbuf, buf, low_size);
2844 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2845 memcpy (valbuf + low_size, buf, len - low_size);
2846 }
2847 else
2848 internal_error (__FILE__, __LINE__,
2849 _("Cannot extract return value of %d bytes long."),
2850 len);
2851 }
2852 }
2853
2854 /* Write, for architecture GDBARCH, a function return value of TYPE
2855 from VALBUF into REGCACHE. */
2856
2857 static void
2858 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2859 struct regcache *regcache, const gdb_byte *valbuf)
2860 {
2861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2862 int len = TYPE_LENGTH (type);
2863
2864 if (type->code () == TYPE_CODE_FLT)
2865 {
2866 ULONGEST fstat;
2867 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2868
2869 if (tdep->st0_regnum < 0)
2870 {
2871 warning (_("Cannot set floating-point return value."));
2872 return;
2873 }
2874
2875 /* Returning floating-point values is a bit tricky. Apart from
2876 storing the return value in %st(0), we have to simulate the
2877 state of the FPU at function return point. */
2878
2879 /* Convert the value found in VALBUF to the extended
2880 floating-point format used by the FPU. This is probably
2881 not exactly how it would happen on the target itself, but
2882 it is the best we can do. */
2883 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2884 regcache->raw_write (I386_ST0_REGNUM, buf);
2885
2886 /* Set the top of the floating-point register stack to 7. The
2887 actual value doesn't really matter, but 7 is what a normal
2888 function return would end up with if the program started out
2889 with a freshly initialized FPU. */
2890 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2891 fstat |= (7 << 11);
2892 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2893
2894 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2895 the floating-point register stack to 7, the appropriate value
2896 for the tag word is 0x3fff. */
2897 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2898 }
2899 else
2900 {
2901 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2902 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2903
2904 if (len <= low_size)
2905 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2906 else if (len <= (low_size + high_size))
2907 {
2908 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2909 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2910 valbuf + low_size);
2911 }
2912 else
2913 internal_error (__FILE__, __LINE__,
2914 _("Cannot store return value of %d bytes long."), len);
2915 }
2916 }
2917 \f
2918
2919 /* This is the variable that is set with "set struct-convention", and
2920 its legitimate values. */
2921 static const char default_struct_convention[] = "default";
2922 static const char pcc_struct_convention[] = "pcc";
2923 static const char reg_struct_convention[] = "reg";
2924 static const char *const valid_conventions[] =
2925 {
2926 default_struct_convention,
2927 pcc_struct_convention,
2928 reg_struct_convention,
2929 NULL
2930 };
2931 static const char *struct_convention = default_struct_convention;
2932
2933 /* Return non-zero if TYPE, which is assumed to be a structure,
2934 a union type, or an array type, should be returned in registers
2935 for architecture GDBARCH. */
2936
2937 static int
2938 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2939 {
2940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2941 enum type_code code = type->code ();
2942 int len = TYPE_LENGTH (type);
2943
2944 gdb_assert (code == TYPE_CODE_STRUCT
2945 || code == TYPE_CODE_UNION
2946 || code == TYPE_CODE_ARRAY);
2947
2948 if (struct_convention == pcc_struct_convention
2949 || (struct_convention == default_struct_convention
2950 && tdep->struct_return == pcc_struct_return))
2951 return 0;
2952
2953 /* Structures consisting of a single `float', `double' or 'long
2954 double' member are returned in %st(0). */
2955 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2956 {
2957 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2958 if (type->code () == TYPE_CODE_FLT)
2959 return (len == 4 || len == 8 || len == 12);
2960 }
2961
2962 return (len == 1 || len == 2 || len == 4 || len == 8);
2963 }
2964
2965 /* Determine, for architecture GDBARCH, how a return value of TYPE
2966 should be returned. If it is supposed to be returned in registers,
2967 and READBUF is non-zero, read the appropriate value from REGCACHE,
2968 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2969 from WRITEBUF into REGCACHE. */
2970
2971 static enum return_value_convention
2972 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2973 struct type *type, struct regcache *regcache,
2974 gdb_byte *readbuf, const gdb_byte *writebuf)
2975 {
2976 enum type_code code = type->code ();
2977
2978 if (((code == TYPE_CODE_STRUCT
2979 || code == TYPE_CODE_UNION
2980 || code == TYPE_CODE_ARRAY)
2981 && !i386_reg_struct_return_p (gdbarch, type))
2982 /* Complex double and long double uses the struct return convention. */
2983 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2984 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2985 /* 128-bit decimal float uses the struct return convention. */
2986 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2987 {
2988 /* The System V ABI says that:
2989
2990 "A function that returns a structure or union also sets %eax
2991 to the value of the original address of the caller's area
2992 before it returns. Thus when the caller receives control
2993 again, the address of the returned object resides in register
2994 %eax and can be used to access the object."
2995
2996 So the ABI guarantees that we can always find the return
2997 value just after the function has returned. */
2998
2999 /* Note that the ABI doesn't mention functions returning arrays,
3000 which is something possible in certain languages such as Ada.
3001 In this case, the value is returned as if it was wrapped in
3002 a record, so the convention applied to records also applies
3003 to arrays. */
3004
3005 if (readbuf)
3006 {
3007 ULONGEST addr;
3008
3009 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3010 read_memory (addr, readbuf, TYPE_LENGTH (type));
3011 }
3012
3013 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3014 }
3015
3016 /* This special case is for structures consisting of a single
3017 `float', `double' or 'long double' member. These structures are
3018 returned in %st(0). For these structures, we call ourselves
3019 recursively, changing TYPE into the type of the first member of
3020 the structure. Since that should work for all structures that
3021 have only one member, we don't bother to check the member's type
3022 here. */
3023 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3024 {
3025 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
3026 return i386_return_value (gdbarch, function, type, regcache,
3027 readbuf, writebuf);
3028 }
3029
3030 if (readbuf)
3031 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3032 if (writebuf)
3033 i386_store_return_value (gdbarch, type, regcache, writebuf);
3034
3035 return RETURN_VALUE_REGISTER_CONVENTION;
3036 }
3037 \f
3038
3039 struct type *
3040 i387_ext_type (struct gdbarch *gdbarch)
3041 {
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044 if (!tdep->i387_ext_type)
3045 {
3046 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3047 gdb_assert (tdep->i387_ext_type != NULL);
3048 }
3049
3050 return tdep->i387_ext_type;
3051 }
3052
3053 /* Construct type for pseudo BND registers. We can't use
3054 tdesc_find_type since a complement of one value has to be used
3055 to describe the upper bound. */
3056
3057 static struct type *
3058 i386_bnd_type (struct gdbarch *gdbarch)
3059 {
3060 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3061
3062
3063 if (!tdep->i386_bnd_type)
3064 {
3065 struct type *t;
3066 const struct builtin_type *bt = builtin_type (gdbarch);
3067
3068 /* The type we're building is described bellow: */
3069 #if 0
3070 struct __bound128
3071 {
3072 void *lbound;
3073 void *ubound; /* One complement of raw ubound field. */
3074 };
3075 #endif
3076
3077 t = arch_composite_type (gdbarch,
3078 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3079
3080 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3081 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3082
3083 t->set_name ("builtin_type_bound128");
3084 tdep->i386_bnd_type = t;
3085 }
3086
3087 return tdep->i386_bnd_type;
3088 }
3089
3090 /* Construct vector type for pseudo ZMM registers. We can't use
3091 tdesc_find_type since ZMM isn't described in target description. */
3092
3093 static struct type *
3094 i386_zmm_type (struct gdbarch *gdbarch)
3095 {
3096 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3097
3098 if (!tdep->i386_zmm_type)
3099 {
3100 const struct builtin_type *bt = builtin_type (gdbarch);
3101
3102 /* The type we're building is this: */
3103 #if 0
3104 union __gdb_builtin_type_vec512i
3105 {
3106 int128_t uint128[4];
3107 int64_t v4_int64[8];
3108 int32_t v8_int32[16];
3109 int16_t v16_int16[32];
3110 int8_t v32_int8[64];
3111 double v4_double[8];
3112 float v8_float[16];
3113 };
3114 #endif
3115
3116 struct type *t;
3117
3118 t = arch_composite_type (gdbarch,
3119 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3120 append_composite_type_field (t, "v16_float",
3121 init_vector_type (bt->builtin_float, 16));
3122 append_composite_type_field (t, "v8_double",
3123 init_vector_type (bt->builtin_double, 8));
3124 append_composite_type_field (t, "v64_int8",
3125 init_vector_type (bt->builtin_int8, 64));
3126 append_composite_type_field (t, "v32_int16",
3127 init_vector_type (bt->builtin_int16, 32));
3128 append_composite_type_field (t, "v16_int32",
3129 init_vector_type (bt->builtin_int32, 16));
3130 append_composite_type_field (t, "v8_int64",
3131 init_vector_type (bt->builtin_int64, 8));
3132 append_composite_type_field (t, "v4_int128",
3133 init_vector_type (bt->builtin_int128, 4));
3134
3135 TYPE_VECTOR (t) = 1;
3136 t->set_name ("builtin_type_vec512i");
3137 tdep->i386_zmm_type = t;
3138 }
3139
3140 return tdep->i386_zmm_type;
3141 }
3142
3143 /* Construct vector type for pseudo YMM registers. We can't use
3144 tdesc_find_type since YMM isn't described in target description. */
3145
3146 static struct type *
3147 i386_ymm_type (struct gdbarch *gdbarch)
3148 {
3149 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3150
3151 if (!tdep->i386_ymm_type)
3152 {
3153 const struct builtin_type *bt = builtin_type (gdbarch);
3154
3155 /* The type we're building is this: */
3156 #if 0
3157 union __gdb_builtin_type_vec256i
3158 {
3159 int128_t uint128[2];
3160 int64_t v2_int64[4];
3161 int32_t v4_int32[8];
3162 int16_t v8_int16[16];
3163 int8_t v16_int8[32];
3164 double v2_double[4];
3165 float v4_float[8];
3166 };
3167 #endif
3168
3169 struct type *t;
3170
3171 t = arch_composite_type (gdbarch,
3172 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3173 append_composite_type_field (t, "v8_float",
3174 init_vector_type (bt->builtin_float, 8));
3175 append_composite_type_field (t, "v4_double",
3176 init_vector_type (bt->builtin_double, 4));
3177 append_composite_type_field (t, "v32_int8",
3178 init_vector_type (bt->builtin_int8, 32));
3179 append_composite_type_field (t, "v16_int16",
3180 init_vector_type (bt->builtin_int16, 16));
3181 append_composite_type_field (t, "v8_int32",
3182 init_vector_type (bt->builtin_int32, 8));
3183 append_composite_type_field (t, "v4_int64",
3184 init_vector_type (bt->builtin_int64, 4));
3185 append_composite_type_field (t, "v2_int128",
3186 init_vector_type (bt->builtin_int128, 2));
3187
3188 TYPE_VECTOR (t) = 1;
3189 t->set_name ("builtin_type_vec256i");
3190 tdep->i386_ymm_type = t;
3191 }
3192
3193 return tdep->i386_ymm_type;
3194 }
3195
3196 /* Construct vector type for MMX registers. */
3197 static struct type *
3198 i386_mmx_type (struct gdbarch *gdbarch)
3199 {
3200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3201
3202 if (!tdep->i386_mmx_type)
3203 {
3204 const struct builtin_type *bt = builtin_type (gdbarch);
3205
3206 /* The type we're building is this: */
3207 #if 0
3208 union __gdb_builtin_type_vec64i
3209 {
3210 int64_t uint64;
3211 int32_t v2_int32[2];
3212 int16_t v4_int16[4];
3213 int8_t v8_int8[8];
3214 };
3215 #endif
3216
3217 struct type *t;
3218
3219 t = arch_composite_type (gdbarch,
3220 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3221
3222 append_composite_type_field (t, "uint64", bt->builtin_int64);
3223 append_composite_type_field (t, "v2_int32",
3224 init_vector_type (bt->builtin_int32, 2));
3225 append_composite_type_field (t, "v4_int16",
3226 init_vector_type (bt->builtin_int16, 4));
3227 append_composite_type_field (t, "v8_int8",
3228 init_vector_type (bt->builtin_int8, 8));
3229
3230 TYPE_VECTOR (t) = 1;
3231 t->set_name ("builtin_type_vec64i");
3232 tdep->i386_mmx_type = t;
3233 }
3234
3235 return tdep->i386_mmx_type;
3236 }
3237
3238 /* Return the GDB type object for the "standard" data type of data in
3239 register REGNUM. */
3240
3241 struct type *
3242 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3243 {
3244 if (i386_bnd_regnum_p (gdbarch, regnum))
3245 return i386_bnd_type (gdbarch);
3246 if (i386_mmx_regnum_p (gdbarch, regnum))
3247 return i386_mmx_type (gdbarch);
3248 else if (i386_ymm_regnum_p (gdbarch, regnum))
3249 return i386_ymm_type (gdbarch);
3250 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3251 return i386_ymm_type (gdbarch);
3252 else if (i386_zmm_regnum_p (gdbarch, regnum))
3253 return i386_zmm_type (gdbarch);
3254 else
3255 {
3256 const struct builtin_type *bt = builtin_type (gdbarch);
3257 if (i386_byte_regnum_p (gdbarch, regnum))
3258 return bt->builtin_int8;
3259 else if (i386_word_regnum_p (gdbarch, regnum))
3260 return bt->builtin_int16;
3261 else if (i386_dword_regnum_p (gdbarch, regnum))
3262 return bt->builtin_int32;
3263 else if (i386_k_regnum_p (gdbarch, regnum))
3264 return bt->builtin_int64;
3265 }
3266
3267 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3268 }
3269
3270 /* Map a cooked register onto a raw register or memory. For the i386,
3271 the MMX registers need to be mapped onto floating point registers. */
3272
3273 static int
3274 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3275 {
3276 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3277 int mmxreg, fpreg;
3278 ULONGEST fstat;
3279 int tos;
3280
3281 mmxreg = regnum - tdep->mm0_regnum;
3282 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3283 tos = (fstat >> 11) & 0x7;
3284 fpreg = (mmxreg + tos) % 8;
3285
3286 return (I387_ST0_REGNUM (tdep) + fpreg);
3287 }
3288
3289 /* A helper function for us by i386_pseudo_register_read_value and
3290 amd64_pseudo_register_read_value. It does all the work but reads
3291 the data into an already-allocated value. */
3292
3293 void
3294 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3295 readable_regcache *regcache,
3296 int regnum,
3297 struct value *result_value)
3298 {
3299 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3300 enum register_status status;
3301 gdb_byte *buf = value_contents_raw (result_value);
3302
3303 if (i386_mmx_regnum_p (gdbarch, regnum))
3304 {
3305 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3306
3307 /* Extract (always little endian). */
3308 status = regcache->raw_read (fpnum, raw_buf);
3309 if (status != REG_VALID)
3310 mark_value_bytes_unavailable (result_value, 0,
3311 TYPE_LENGTH (value_type (result_value)));
3312 else
3313 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3314 }
3315 else
3316 {
3317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3318 if (i386_bnd_regnum_p (gdbarch, regnum))
3319 {
3320 regnum -= tdep->bnd0_regnum;
3321
3322 /* Extract (always little endian). Read lower 128bits. */
3323 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3324 raw_buf);
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 16);
3327 else
3328 {
3329 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3330 LONGEST upper, lower;
3331 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3332
3333 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3334 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3335 upper = ~upper;
3336
3337 memcpy (buf, &lower, size);
3338 memcpy (buf + size, &upper, size);
3339 }
3340 }
3341 else if (i386_k_regnum_p (gdbarch, regnum))
3342 {
3343 regnum -= tdep->k0_regnum;
3344
3345 /* Extract (always little endian). */
3346 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 8);
3349 else
3350 memcpy (buf, raw_buf, 8);
3351 }
3352 else if (i386_zmm_regnum_p (gdbarch, regnum))
3353 {
3354 regnum -= tdep->zmm0_regnum;
3355
3356 if (regnum < num_lower_zmm_regs)
3357 {
3358 /* Extract (always little endian). Read lower 128bits. */
3359 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3360 raw_buf);
3361 if (status != REG_VALID)
3362 mark_value_bytes_unavailable (result_value, 0, 16);
3363 else
3364 memcpy (buf, raw_buf, 16);
3365
3366 /* Extract (always little endian). Read upper 128bits. */
3367 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3368 raw_buf);
3369 if (status != REG_VALID)
3370 mark_value_bytes_unavailable (result_value, 16, 16);
3371 else
3372 memcpy (buf + 16, raw_buf, 16);
3373 }
3374 else
3375 {
3376 /* Extract (always little endian). Read lower 128bits. */
3377 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3378 - num_lower_zmm_regs,
3379 raw_buf);
3380 if (status != REG_VALID)
3381 mark_value_bytes_unavailable (result_value, 0, 16);
3382 else
3383 memcpy (buf, raw_buf, 16);
3384
3385 /* Extract (always little endian). Read upper 128bits. */
3386 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3387 - num_lower_zmm_regs,
3388 raw_buf);
3389 if (status != REG_VALID)
3390 mark_value_bytes_unavailable (result_value, 16, 16);
3391 else
3392 memcpy (buf + 16, raw_buf, 16);
3393 }
3394
3395 /* Read upper 256bits. */
3396 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3397 raw_buf);
3398 if (status != REG_VALID)
3399 mark_value_bytes_unavailable (result_value, 32, 32);
3400 else
3401 memcpy (buf + 32, raw_buf, 32);
3402 }
3403 else if (i386_ymm_regnum_p (gdbarch, regnum))
3404 {
3405 regnum -= tdep->ymm0_regnum;
3406
3407 /* Extract (always little endian). Read lower 128bits. */
3408 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3409 raw_buf);
3410 if (status != REG_VALID)
3411 mark_value_bytes_unavailable (result_value, 0, 16);
3412 else
3413 memcpy (buf, raw_buf, 16);
3414 /* Read upper 128bits. */
3415 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3416 raw_buf);
3417 if (status != REG_VALID)
3418 mark_value_bytes_unavailable (result_value, 16, 32);
3419 else
3420 memcpy (buf + 16, raw_buf, 16);
3421 }
3422 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3423 {
3424 regnum -= tdep->ymm16_regnum;
3425 /* Extract (always little endian). Read lower 128bits. */
3426 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3427 raw_buf);
3428 if (status != REG_VALID)
3429 mark_value_bytes_unavailable (result_value, 0, 16);
3430 else
3431 memcpy (buf, raw_buf, 16);
3432 /* Read upper 128bits. */
3433 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3434 raw_buf);
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 16, 16);
3437 else
3438 memcpy (buf + 16, raw_buf, 16);
3439 }
3440 else if (i386_word_regnum_p (gdbarch, regnum))
3441 {
3442 int gpnum = regnum - tdep->ax_regnum;
3443
3444 /* Extract (always little endian). */
3445 status = regcache->raw_read (gpnum, raw_buf);
3446 if (status != REG_VALID)
3447 mark_value_bytes_unavailable (result_value, 0,
3448 TYPE_LENGTH (value_type (result_value)));
3449 else
3450 memcpy (buf, raw_buf, 2);
3451 }
3452 else if (i386_byte_regnum_p (gdbarch, regnum))
3453 {
3454 int gpnum = regnum - tdep->al_regnum;
3455
3456 /* Extract (always little endian). We read both lower and
3457 upper registers. */
3458 status = regcache->raw_read (gpnum % 4, raw_buf);
3459 if (status != REG_VALID)
3460 mark_value_bytes_unavailable (result_value, 0,
3461 TYPE_LENGTH (value_type (result_value)));
3462 else if (gpnum >= 4)
3463 memcpy (buf, raw_buf + 1, 1);
3464 else
3465 memcpy (buf, raw_buf, 1);
3466 }
3467 else
3468 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3469 }
3470 }
3471
3472 static struct value *
3473 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3474 readable_regcache *regcache,
3475 int regnum)
3476 {
3477 struct value *result;
3478
3479 result = allocate_value (register_type (gdbarch, regnum));
3480 VALUE_LVAL (result) = lval_register;
3481 VALUE_REGNUM (result) = regnum;
3482
3483 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3484
3485 return result;
3486 }
3487
3488 void
3489 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3490 int regnum, const gdb_byte *buf)
3491 {
3492 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3493
3494 if (i386_mmx_regnum_p (gdbarch, regnum))
3495 {
3496 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3497
3498 /* Read ... */
3499 regcache->raw_read (fpnum, raw_buf);
3500 /* ... Modify ... (always little endian). */
3501 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3502 /* ... Write. */
3503 regcache->raw_write (fpnum, raw_buf);
3504 }
3505 else
3506 {
3507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3508
3509 if (i386_bnd_regnum_p (gdbarch, regnum))
3510 {
3511 ULONGEST upper, lower;
3512 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3513 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3514
3515 /* New values from input value. */
3516 regnum -= tdep->bnd0_regnum;
3517 lower = extract_unsigned_integer (buf, size, byte_order);
3518 upper = extract_unsigned_integer (buf + size, size, byte_order);
3519
3520 /* Fetching register buffer. */
3521 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3522 raw_buf);
3523
3524 upper = ~upper;
3525
3526 /* Set register bits. */
3527 memcpy (raw_buf, &lower, 8);
3528 memcpy (raw_buf + 8, &upper, 8);
3529
3530 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3531 }
3532 else if (i386_k_regnum_p (gdbarch, regnum))
3533 {
3534 regnum -= tdep->k0_regnum;
3535
3536 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3537 }
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->zmm0_regnum;
3541
3542 if (regnum < num_lower_zmm_regs)
3543 {
3544 /* Write lower 128bits. */
3545 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3546 /* Write upper 128bits. */
3547 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3548 }
3549 else
3550 {
3551 /* Write lower 128bits. */
3552 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3553 - num_lower_zmm_regs, buf);
3554 /* Write upper 128bits. */
3555 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3556 - num_lower_zmm_regs, buf + 16);
3557 }
3558 /* Write upper 256bits. */
3559 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3560 }
3561 else if (i386_ymm_regnum_p (gdbarch, regnum))
3562 {
3563 regnum -= tdep->ymm0_regnum;
3564
3565 /* ... Write lower 128bits. */
3566 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3567 /* ... Write upper 128bits. */
3568 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3569 }
3570 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3571 {
3572 regnum -= tdep->ymm16_regnum;
3573
3574 /* ... Write lower 128bits. */
3575 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3576 /* ... Write upper 128bits. */
3577 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3578 }
3579 else if (i386_word_regnum_p (gdbarch, regnum))
3580 {
3581 int gpnum = regnum - tdep->ax_regnum;
3582
3583 /* Read ... */
3584 regcache->raw_read (gpnum, raw_buf);
3585 /* ... Modify ... (always little endian). */
3586 memcpy (raw_buf, buf, 2);
3587 /* ... Write. */
3588 regcache->raw_write (gpnum, raw_buf);
3589 }
3590 else if (i386_byte_regnum_p (gdbarch, regnum))
3591 {
3592 int gpnum = regnum - tdep->al_regnum;
3593
3594 /* Read ... We read both lower and upper registers. */
3595 regcache->raw_read (gpnum % 4, raw_buf);
3596 /* ... Modify ... (always little endian). */
3597 if (gpnum >= 4)
3598 memcpy (raw_buf + 1, buf, 1);
3599 else
3600 memcpy (raw_buf, buf, 1);
3601 /* ... Write. */
3602 regcache->raw_write (gpnum % 4, raw_buf);
3603 }
3604 else
3605 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3606 }
3607 }
3608
3609 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3610
3611 int
3612 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3613 struct agent_expr *ax, int regnum)
3614 {
3615 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3616
3617 if (i386_mmx_regnum_p (gdbarch, regnum))
3618 {
3619 /* MMX to FPU register mapping depends on current TOS. Let's just
3620 not care and collect everything... */
3621 int i;
3622
3623 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3624 for (i = 0; i < 8; i++)
3625 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3626 return 0;
3627 }
3628 else if (i386_bnd_regnum_p (gdbarch, regnum))
3629 {
3630 regnum -= tdep->bnd0_regnum;
3631 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3632 return 0;
3633 }
3634 else if (i386_k_regnum_p (gdbarch, regnum))
3635 {
3636 regnum -= tdep->k0_regnum;
3637 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3638 return 0;
3639 }
3640 else if (i386_zmm_regnum_p (gdbarch, regnum))
3641 {
3642 regnum -= tdep->zmm0_regnum;
3643 if (regnum < num_lower_zmm_regs)
3644 {
3645 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3646 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3647 }
3648 else
3649 {
3650 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3651 - num_lower_zmm_regs);
3652 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3653 - num_lower_zmm_regs);
3654 }
3655 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3656 return 0;
3657 }
3658 else if (i386_ymm_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->ymm0_regnum;
3661 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3662 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3663 return 0;
3664 }
3665 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3666 {
3667 regnum -= tdep->ymm16_regnum;
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3669 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3670 return 0;
3671 }
3672 else if (i386_word_regnum_p (gdbarch, regnum))
3673 {
3674 int gpnum = regnum - tdep->ax_regnum;
3675
3676 ax_reg_mask (ax, gpnum);
3677 return 0;
3678 }
3679 else if (i386_byte_regnum_p (gdbarch, regnum))
3680 {
3681 int gpnum = regnum - tdep->al_regnum;
3682
3683 ax_reg_mask (ax, gpnum % 4);
3684 return 0;
3685 }
3686 else
3687 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3688 return 1;
3689 }
3690 \f
3691
3692 /* Return the register number of the register allocated by GCC after
3693 REGNUM, or -1 if there is no such register. */
3694
3695 static int
3696 i386_next_regnum (int regnum)
3697 {
3698 /* GCC allocates the registers in the order:
3699
3700 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3701
3702 Since storing a variable in %esp doesn't make any sense we return
3703 -1 for %ebp and for %esp itself. */
3704 static int next_regnum[] =
3705 {
3706 I386_EDX_REGNUM, /* Slot for %eax. */
3707 I386_EBX_REGNUM, /* Slot for %ecx. */
3708 I386_ECX_REGNUM, /* Slot for %edx. */
3709 I386_ESI_REGNUM, /* Slot for %ebx. */
3710 -1, -1, /* Slots for %esp and %ebp. */
3711 I386_EDI_REGNUM, /* Slot for %esi. */
3712 I386_EBP_REGNUM /* Slot for %edi. */
3713 };
3714
3715 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3716 return next_regnum[regnum];
3717
3718 return -1;
3719 }
3720
3721 /* Return nonzero if a value of type TYPE stored in register REGNUM
3722 needs any special handling. */
3723
3724 static int
3725 i386_convert_register_p (struct gdbarch *gdbarch,
3726 int regnum, struct type *type)
3727 {
3728 int len = TYPE_LENGTH (type);
3729
3730 /* Values may be spread across multiple registers. Most debugging
3731 formats aren't expressive enough to specify the locations, so
3732 some heuristics is involved. Right now we only handle types that
3733 have a length that is a multiple of the word size, since GCC
3734 doesn't seem to put any other types into registers. */
3735 if (len > 4 && len % 4 == 0)
3736 {
3737 int last_regnum = regnum;
3738
3739 while (len > 4)
3740 {
3741 last_regnum = i386_next_regnum (last_regnum);
3742 len -= 4;
3743 }
3744
3745 if (last_regnum != -1)
3746 return 1;
3747 }
3748
3749 return i387_convert_register_p (gdbarch, regnum, type);
3750 }
3751
3752 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3753 return its contents in TO. */
3754
3755 static int
3756 i386_register_to_value (struct frame_info *frame, int regnum,
3757 struct type *type, gdb_byte *to,
3758 int *optimizedp, int *unavailablep)
3759 {
3760 struct gdbarch *gdbarch = get_frame_arch (frame);
3761 int len = TYPE_LENGTH (type);
3762
3763 if (i386_fp_regnum_p (gdbarch, regnum))
3764 return i387_register_to_value (frame, regnum, type, to,
3765 optimizedp, unavailablep);
3766
3767 /* Read a value spread across multiple registers. */
3768
3769 gdb_assert (len > 4 && len % 4 == 0);
3770
3771 while (len > 0)
3772 {
3773 gdb_assert (regnum != -1);
3774 gdb_assert (register_size (gdbarch, regnum) == 4);
3775
3776 if (!get_frame_register_bytes (frame, regnum, 0,
3777 register_size (gdbarch, regnum),
3778 to, optimizedp, unavailablep))
3779 return 0;
3780
3781 regnum = i386_next_regnum (regnum);
3782 len -= 4;
3783 to += 4;
3784 }
3785
3786 *optimizedp = *unavailablep = 0;
3787 return 1;
3788 }
3789
3790 /* Write the contents FROM of a value of type TYPE into register
3791 REGNUM in frame FRAME. */
3792
3793 static void
3794 i386_value_to_register (struct frame_info *frame, int regnum,
3795 struct type *type, const gdb_byte *from)
3796 {
3797 int len = TYPE_LENGTH (type);
3798
3799 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3800 {
3801 i387_value_to_register (frame, regnum, type, from);
3802 return;
3803 }
3804
3805 /* Write a value spread across multiple registers. */
3806
3807 gdb_assert (len > 4 && len % 4 == 0);
3808
3809 while (len > 0)
3810 {
3811 gdb_assert (regnum != -1);
3812 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3813
3814 put_frame_register (frame, regnum, from);
3815 regnum = i386_next_regnum (regnum);
3816 len -= 4;
3817 from += 4;
3818 }
3819 }
3820 \f
3821 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3822 in the general-purpose register set REGSET to register cache
3823 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3824
3825 void
3826 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3827 int regnum, const void *gregs, size_t len)
3828 {
3829 struct gdbarch *gdbarch = regcache->arch ();
3830 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3831 const gdb_byte *regs = (const gdb_byte *) gregs;
3832 int i;
3833
3834 gdb_assert (len >= tdep->sizeof_gregset);
3835
3836 for (i = 0; i < tdep->gregset_num_regs; i++)
3837 {
3838 if ((regnum == i || regnum == -1)
3839 && tdep->gregset_reg_offset[i] != -1)
3840 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3841 }
3842 }
3843
3844 /* Collect register REGNUM from the register cache REGCACHE and store
3845 it in the buffer specified by GREGS and LEN as described by the
3846 general-purpose register set REGSET. If REGNUM is -1, do this for
3847 all registers in REGSET. */
3848
3849 static void
3850 i386_collect_gregset (const struct regset *regset,
3851 const struct regcache *regcache,
3852 int regnum, void *gregs, size_t len)
3853 {
3854 struct gdbarch *gdbarch = regcache->arch ();
3855 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3856 gdb_byte *regs = (gdb_byte *) gregs;
3857 int i;
3858
3859 gdb_assert (len >= tdep->sizeof_gregset);
3860
3861 for (i = 0; i < tdep->gregset_num_regs; i++)
3862 {
3863 if ((regnum == i || regnum == -1)
3864 && tdep->gregset_reg_offset[i] != -1)
3865 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3866 }
3867 }
3868
3869 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3870 in the floating-point register set REGSET to register cache
3871 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3872
3873 static void
3874 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3875 int regnum, const void *fpregs, size_t len)
3876 {
3877 struct gdbarch *gdbarch = regcache->arch ();
3878 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3879
3880 if (len == I387_SIZEOF_FXSAVE)
3881 {
3882 i387_supply_fxsave (regcache, regnum, fpregs);
3883 return;
3884 }
3885
3886 gdb_assert (len >= tdep->sizeof_fpregset);
3887 i387_supply_fsave (regcache, regnum, fpregs);
3888 }
3889
3890 /* Collect register REGNUM from the register cache REGCACHE and store
3891 it in the buffer specified by FPREGS and LEN as described by the
3892 floating-point register set REGSET. If REGNUM is -1, do this for
3893 all registers in REGSET. */
3894
3895 static void
3896 i386_collect_fpregset (const struct regset *regset,
3897 const struct regcache *regcache,
3898 int regnum, void *fpregs, size_t len)
3899 {
3900 struct gdbarch *gdbarch = regcache->arch ();
3901 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3902
3903 if (len == I387_SIZEOF_FXSAVE)
3904 {
3905 i387_collect_fxsave (regcache, regnum, fpregs);
3906 return;
3907 }
3908
3909 gdb_assert (len >= tdep->sizeof_fpregset);
3910 i387_collect_fsave (regcache, regnum, fpregs);
3911 }
3912
3913 /* Register set definitions. */
3914
3915 const struct regset i386_gregset =
3916 {
3917 NULL, i386_supply_gregset, i386_collect_gregset
3918 };
3919
3920 const struct regset i386_fpregset =
3921 {
3922 NULL, i386_supply_fpregset, i386_collect_fpregset
3923 };
3924
3925 /* Default iterator over core file register note sections. */
3926
3927 void
3928 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3929 iterate_over_regset_sections_cb *cb,
3930 void *cb_data,
3931 const struct regcache *regcache)
3932 {
3933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3934
3935 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3936 cb_data);
3937 if (tdep->sizeof_fpregset)
3938 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3939 NULL, cb_data);
3940 }
3941 \f
3942
3943 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3944
3945 CORE_ADDR
3946 i386_pe_skip_trampoline_code (struct frame_info *frame,
3947 CORE_ADDR pc, char *name)
3948 {
3949 struct gdbarch *gdbarch = get_frame_arch (frame);
3950 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3951
3952 /* jmp *(dest) */
3953 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3954 {
3955 unsigned long indirect =
3956 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3957 struct minimal_symbol *indsym =
3958 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3959 const char *symname = indsym ? indsym->linkage_name () : 0;
3960
3961 if (symname)
3962 {
3963 if (startswith (symname, "__imp_")
3964 || startswith (symname, "_imp_"))
3965 return name ? 1 :
3966 read_memory_unsigned_integer (indirect, 4, byte_order);
3967 }
3968 }
3969 return 0; /* Not a trampoline. */
3970 }
3971 \f
3972
3973 /* Return whether the THIS_FRAME corresponds to a sigtramp
3974 routine. */
3975
3976 int
3977 i386_sigtramp_p (struct frame_info *this_frame)
3978 {
3979 CORE_ADDR pc = get_frame_pc (this_frame);
3980 const char *name;
3981
3982 find_pc_partial_function (pc, &name, NULL, NULL);
3983 return (name && strcmp ("_sigtramp", name) == 0);
3984 }
3985 \f
3986
3987 /* We have two flavours of disassembly. The machinery on this page
3988 deals with switching between those. */
3989
3990 static int
3991 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3992 {
3993 gdb_assert (disassembly_flavor == att_flavor
3994 || disassembly_flavor == intel_flavor);
3995
3996 info->disassembler_options = disassembly_flavor;
3997
3998 return default_print_insn (pc, info);
3999 }
4000 \f
4001
4002 /* There are a few i386 architecture variants that differ only
4003 slightly from the generic i386 target. For now, we don't give them
4004 their own source file, but include them here. As a consequence,
4005 they'll always be included. */
4006
4007 /* System V Release 4 (SVR4). */
4008
4009 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4010 routine. */
4011
4012 static int
4013 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4014 {
4015 CORE_ADDR pc = get_frame_pc (this_frame);
4016 const char *name;
4017
4018 /* The origin of these symbols is currently unknown. */
4019 find_pc_partial_function (pc, &name, NULL, NULL);
4020 return (name && (strcmp ("_sigreturn", name) == 0
4021 || strcmp ("sigvechandler", name) == 0));
4022 }
4023
4024 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4025 address of the associated sigcontext (ucontext) structure. */
4026
4027 static CORE_ADDR
4028 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4029 {
4030 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4031 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4032 gdb_byte buf[4];
4033 CORE_ADDR sp;
4034
4035 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4036 sp = extract_unsigned_integer (buf, 4, byte_order);
4037
4038 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4039 }
4040
4041 \f
4042
4043 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4044 gdbarch.h. */
4045
4046 int
4047 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4048 {
4049 return (*s == '$' /* Literal number. */
4050 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4051 || (*s == '(' && s[1] == '%') /* Register indirection. */
4052 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4053 }
4054
4055 /* Helper function for i386_stap_parse_special_token.
4056
4057 This function parses operands of the form `-8+3+1(%rbp)', which
4058 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4059
4060 Return true if the operand was parsed successfully, false
4061 otherwise. */
4062
4063 static bool
4064 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4065 struct stap_parse_info *p)
4066 {
4067 const char *s = p->arg;
4068
4069 if (isdigit (*s) || *s == '-' || *s == '+')
4070 {
4071 bool got_minus[3];
4072 int i;
4073 long displacements[3];
4074 const char *start;
4075 char *regname;
4076 int len;
4077 struct stoken str;
4078 char *endp;
4079
4080 got_minus[0] = false;
4081 if (*s == '+')
4082 ++s;
4083 else if (*s == '-')
4084 {
4085 ++s;
4086 got_minus[0] = true;
4087 }
4088
4089 if (!isdigit ((unsigned char) *s))
4090 return false;
4091
4092 displacements[0] = strtol (s, &endp, 10);
4093 s = endp;
4094
4095 if (*s != '+' && *s != '-')
4096 {
4097 /* We are not dealing with a triplet. */
4098 return false;
4099 }
4100
4101 got_minus[1] = false;
4102 if (*s == '+')
4103 ++s;
4104 else
4105 {
4106 ++s;
4107 got_minus[1] = true;
4108 }
4109
4110 if (!isdigit ((unsigned char) *s))
4111 return false;
4112
4113 displacements[1] = strtol (s, &endp, 10);
4114 s = endp;
4115
4116 if (*s != '+' && *s != '-')
4117 {
4118 /* We are not dealing with a triplet. */
4119 return false;
4120 }
4121
4122 got_minus[2] = false;
4123 if (*s == '+')
4124 ++s;
4125 else
4126 {
4127 ++s;
4128 got_minus[2] = true;
4129 }
4130
4131 if (!isdigit ((unsigned char) *s))
4132 return false;
4133
4134 displacements[2] = strtol (s, &endp, 10);
4135 s = endp;
4136
4137 if (*s != '(' || s[1] != '%')
4138 return false;
4139
4140 s += 2;
4141 start = s;
4142
4143 while (isalnum (*s))
4144 ++s;
4145
4146 if (*s++ != ')')
4147 return false;
4148
4149 len = s - start - 1;
4150 regname = (char *) alloca (len + 1);
4151
4152 strncpy (regname, start, len);
4153 regname[len] = '\0';
4154
4155 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4156 error (_("Invalid register name `%s' on expression `%s'."),
4157 regname, p->saved_arg);
4158
4159 for (i = 0; i < 3; i++)
4160 {
4161 write_exp_elt_opcode (&p->pstate, OP_LONG);
4162 write_exp_elt_type
4163 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4164 write_exp_elt_longcst (&p->pstate, displacements[i]);
4165 write_exp_elt_opcode (&p->pstate, OP_LONG);
4166 if (got_minus[i])
4167 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4168 }
4169
4170 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4171 str.ptr = regname;
4172 str.length = len;
4173 write_exp_string (&p->pstate, str);
4174 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4175
4176 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4177 write_exp_elt_type (&p->pstate,
4178 builtin_type (gdbarch)->builtin_data_ptr);
4179 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4180
4181 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4182 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4183 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4184
4185 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4186 write_exp_elt_type (&p->pstate,
4187 lookup_pointer_type (p->arg_type));
4188 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4189
4190 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4191
4192 p->arg = s;
4193
4194 return true;
4195 }
4196
4197 return false;
4198 }
4199
4200 /* Helper function for i386_stap_parse_special_token.
4201
4202 This function parses operands of the form `register base +
4203 (register index * size) + offset', as represented in
4204 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4205
4206 Return true if the operand was parsed successfully, false
4207 otherwise. */
4208
4209 static bool
4210 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4211 struct stap_parse_info *p)
4212 {
4213 const char *s = p->arg;
4214
4215 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4216 {
4217 bool offset_minus = false;
4218 long offset = 0;
4219 bool size_minus = false;
4220 long size = 0;
4221 const char *start;
4222 char *base;
4223 int len_base;
4224 char *index;
4225 int len_index;
4226 struct stoken base_token, index_token;
4227
4228 if (*s == '+')
4229 ++s;
4230 else if (*s == '-')
4231 {
4232 ++s;
4233 offset_minus = true;
4234 }
4235
4236 if (offset_minus && !isdigit (*s))
4237 return false;
4238
4239 if (isdigit (*s))
4240 {
4241 char *endp;
4242
4243 offset = strtol (s, &endp, 10);
4244 s = endp;
4245 }
4246
4247 if (*s != '(' || s[1] != '%')
4248 return false;
4249
4250 s += 2;
4251 start = s;
4252
4253 while (isalnum (*s))
4254 ++s;
4255
4256 if (*s != ',' || s[1] != '%')
4257 return false;
4258
4259 len_base = s - start;
4260 base = (char *) alloca (len_base + 1);
4261 strncpy (base, start, len_base);
4262 base[len_base] = '\0';
4263
4264 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4265 error (_("Invalid register name `%s' on expression `%s'."),
4266 base, p->saved_arg);
4267
4268 s += 2;
4269 start = s;
4270
4271 while (isalnum (*s))
4272 ++s;
4273
4274 len_index = s - start;
4275 index = (char *) alloca (len_index + 1);
4276 strncpy (index, start, len_index);
4277 index[len_index] = '\0';
4278
4279 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4280 error (_("Invalid register name `%s' on expression `%s'."),
4281 index, p->saved_arg);
4282
4283 if (*s != ',' && *s != ')')
4284 return false;
4285
4286 if (*s == ',')
4287 {
4288 char *endp;
4289
4290 ++s;
4291 if (*s == '+')
4292 ++s;
4293 else if (*s == '-')
4294 {
4295 ++s;
4296 size_minus = true;
4297 }
4298
4299 size = strtol (s, &endp, 10);
4300 s = endp;
4301
4302 if (*s != ')')
4303 return false;
4304 }
4305
4306 ++s;
4307
4308 if (offset)
4309 {
4310 write_exp_elt_opcode (&p->pstate, OP_LONG);
4311 write_exp_elt_type (&p->pstate,
4312 builtin_type (gdbarch)->builtin_long);
4313 write_exp_elt_longcst (&p->pstate, offset);
4314 write_exp_elt_opcode (&p->pstate, OP_LONG);
4315 if (offset_minus)
4316 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4317 }
4318
4319 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4320 base_token.ptr = base;
4321 base_token.length = len_base;
4322 write_exp_string (&p->pstate, base_token);
4323 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4324
4325 if (offset)
4326 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4327
4328 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4329 index_token.ptr = index;
4330 index_token.length = len_index;
4331 write_exp_string (&p->pstate, index_token);
4332 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4333
4334 if (size)
4335 {
4336 write_exp_elt_opcode (&p->pstate, OP_LONG);
4337 write_exp_elt_type (&p->pstate,
4338 builtin_type (gdbarch)->builtin_long);
4339 write_exp_elt_longcst (&p->pstate, size);
4340 write_exp_elt_opcode (&p->pstate, OP_LONG);
4341 if (size_minus)
4342 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4343 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4344 }
4345
4346 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4347
4348 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4349 write_exp_elt_type (&p->pstate,
4350 lookup_pointer_type (p->arg_type));
4351 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4352
4353 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4354
4355 p->arg = s;
4356
4357 return true;
4358 }
4359
4360 return false;
4361 }
4362
4363 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4364 gdbarch.h. */
4365
4366 int
4367 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4368 struct stap_parse_info *p)
4369 {
4370 /* In order to parse special tokens, we use a state-machine that go
4371 through every known token and try to get a match. */
4372 enum
4373 {
4374 TRIPLET,
4375 THREE_ARG_DISPLACEMENT,
4376 DONE
4377 };
4378 int current_state;
4379
4380 current_state = TRIPLET;
4381
4382 /* The special tokens to be parsed here are:
4383
4384 - `register base + (register index * size) + offset', as represented
4385 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4386
4387 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4388 `*(-8 + 3 - 1 + (void *) $eax)'. */
4389
4390 while (current_state != DONE)
4391 {
4392 switch (current_state)
4393 {
4394 case TRIPLET:
4395 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4396 return 1;
4397 break;
4398
4399 case THREE_ARG_DISPLACEMENT:
4400 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4401 return 1;
4402 break;
4403 }
4404
4405 /* Advancing to the next state. */
4406 ++current_state;
4407 }
4408
4409 return 0;
4410 }
4411
4412 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4413 gdbarch.h. */
4414
4415 static std::string
4416 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4417 const std::string &regname, int regnum)
4418 {
4419 static const std::unordered_set<std::string> reg_assoc
4420 = { "ax", "bx", "cx", "dx",
4421 "si", "di", "bp", "sp" };
4422
4423 /* If we are dealing with a register whose size is less than the size
4424 specified by the "[-]N@" prefix, and it is one of the registers that
4425 we know has an extended variant available, then use the extended
4426 version of the register instead. */
4427 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4428 && reg_assoc.find (regname) != reg_assoc.end ())
4429 return "e" + regname;
4430
4431 /* Otherwise, just use the requested register. */
4432 return regname;
4433 }
4434
4435 \f
4436
4437 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4438 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4439
4440 static const char *
4441 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4442 {
4443 return "(x86_64|i.86)";
4444 }
4445
4446 \f
4447
4448 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4449
4450 static bool
4451 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4452 {
4453 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4454 I386_EAX_REGNUM, I386_EIP_REGNUM);
4455 }
4456
4457 /* Generic ELF. */
4458
4459 void
4460 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4461 {
4462 static const char *const stap_integer_prefixes[] = { "$", NULL };
4463 static const char *const stap_register_prefixes[] = { "%", NULL };
4464 static const char *const stap_register_indirection_prefixes[] = { "(",
4465 NULL };
4466 static const char *const stap_register_indirection_suffixes[] = { ")",
4467 NULL };
4468
4469 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4470 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4471
4472 /* Registering SystemTap handlers. */
4473 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4474 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4475 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4476 stap_register_indirection_prefixes);
4477 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4478 stap_register_indirection_suffixes);
4479 set_gdbarch_stap_is_single_operand (gdbarch,
4480 i386_stap_is_single_operand);
4481 set_gdbarch_stap_parse_special_token (gdbarch,
4482 i386_stap_parse_special_token);
4483 set_gdbarch_stap_adjust_register (gdbarch,
4484 i386_stap_adjust_register);
4485
4486 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4487 i386_in_indirect_branch_thunk);
4488 }
4489
4490 /* System V Release 4 (SVR4). */
4491
4492 void
4493 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4494 {
4495 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4496
4497 /* System V Release 4 uses ELF. */
4498 i386_elf_init_abi (info, gdbarch);
4499
4500 /* System V Release 4 has shared libraries. */
4501 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4502
4503 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4504 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4505 tdep->sc_pc_offset = 36 + 14 * 4;
4506 tdep->sc_sp_offset = 36 + 17 * 4;
4507
4508 tdep->jb_pc_offset = 20;
4509 }
4510
4511 \f
4512
4513 /* i386 register groups. In addition to the normal groups, add "mmx"
4514 and "sse". */
4515
4516 static struct reggroup *i386_sse_reggroup;
4517 static struct reggroup *i386_mmx_reggroup;
4518
4519 static void
4520 i386_init_reggroups (void)
4521 {
4522 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4523 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4524 }
4525
4526 static void
4527 i386_add_reggroups (struct gdbarch *gdbarch)
4528 {
4529 reggroup_add (gdbarch, i386_sse_reggroup);
4530 reggroup_add (gdbarch, i386_mmx_reggroup);
4531 reggroup_add (gdbarch, general_reggroup);
4532 reggroup_add (gdbarch, float_reggroup);
4533 reggroup_add (gdbarch, all_reggroup);
4534 reggroup_add (gdbarch, save_reggroup);
4535 reggroup_add (gdbarch, restore_reggroup);
4536 reggroup_add (gdbarch, vector_reggroup);
4537 reggroup_add (gdbarch, system_reggroup);
4538 }
4539
4540 int
4541 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4542 struct reggroup *group)
4543 {
4544 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4545 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4546 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4547 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4548 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4549 avx512_p, avx_p, sse_p, pkru_regnum_p;
4550
4551 /* Don't include pseudo registers, except for MMX, in any register
4552 groups. */
4553 if (i386_byte_regnum_p (gdbarch, regnum))
4554 return 0;
4555
4556 if (i386_word_regnum_p (gdbarch, regnum))
4557 return 0;
4558
4559 if (i386_dword_regnum_p (gdbarch, regnum))
4560 return 0;
4561
4562 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4563 if (group == i386_mmx_reggroup)
4564 return mmx_regnum_p;
4565
4566 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4567 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4568 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4569 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4570 if (group == i386_sse_reggroup)
4571 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4572
4573 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4574 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4575 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4576
4577 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4578 == X86_XSTATE_AVX_AVX512_MASK);
4579 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4580 == X86_XSTATE_AVX_MASK) && !avx512_p;
4581 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4582 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4583
4584 if (group == vector_reggroup)
4585 return (mmx_regnum_p
4586 || (zmm_regnum_p && avx512_p)
4587 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4588 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4589 || mxcsr_regnum_p);
4590
4591 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4592 || i386_fpc_regnum_p (gdbarch, regnum));
4593 if (group == float_reggroup)
4594 return fp_regnum_p;
4595
4596 /* For "info reg all", don't include upper YMM registers nor XMM
4597 registers when AVX is supported. */
4598 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4599 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4600 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4601 if (group == all_reggroup
4602 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4603 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4604 || ymmh_regnum_p
4605 || ymmh_avx512_regnum_p
4606 || zmmh_regnum_p))
4607 return 0;
4608
4609 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4610 if (group == all_reggroup
4611 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4612 return bnd_regnum_p;
4613
4614 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4615 if (group == all_reggroup
4616 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4617 return 0;
4618
4619 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4620 if (group == all_reggroup
4621 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4622 return mpx_ctrl_regnum_p;
4623
4624 if (group == general_reggroup)
4625 return (!fp_regnum_p
4626 && !mmx_regnum_p
4627 && !mxcsr_regnum_p
4628 && !xmm_regnum_p
4629 && !xmm_avx512_regnum_p
4630 && !ymm_regnum_p
4631 && !ymmh_regnum_p
4632 && !ymm_avx512_regnum_p
4633 && !ymmh_avx512_regnum_p
4634 && !bndr_regnum_p
4635 && !bnd_regnum_p
4636 && !mpx_ctrl_regnum_p
4637 && !zmm_regnum_p
4638 && !zmmh_regnum_p
4639 && !pkru_regnum_p);
4640
4641 return default_register_reggroup_p (gdbarch, regnum, group);
4642 }
4643 \f
4644
4645 /* Get the ARGIth function argument for the current function. */
4646
4647 static CORE_ADDR
4648 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4649 struct type *type)
4650 {
4651 struct gdbarch *gdbarch = get_frame_arch (frame);
4652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4653 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4654 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4655 }
4656
4657 #define PREFIX_REPZ 0x01
4658 #define PREFIX_REPNZ 0x02
4659 #define PREFIX_LOCK 0x04
4660 #define PREFIX_DATA 0x08
4661 #define PREFIX_ADDR 0x10
4662
4663 /* operand size */
4664 enum
4665 {
4666 OT_BYTE = 0,
4667 OT_WORD,
4668 OT_LONG,
4669 OT_QUAD,
4670 OT_DQUAD,
4671 };
4672
4673 /* i386 arith/logic operations */
4674 enum
4675 {
4676 OP_ADDL,
4677 OP_ORL,
4678 OP_ADCL,
4679 OP_SBBL,
4680 OP_ANDL,
4681 OP_SUBL,
4682 OP_XORL,
4683 OP_CMPL,
4684 };
4685
4686 struct i386_record_s
4687 {
4688 struct gdbarch *gdbarch;
4689 struct regcache *regcache;
4690 CORE_ADDR orig_addr;
4691 CORE_ADDR addr;
4692 int aflag;
4693 int dflag;
4694 int override;
4695 uint8_t modrm;
4696 uint8_t mod, reg, rm;
4697 int ot;
4698 uint8_t rex_x;
4699 uint8_t rex_b;
4700 int rip_offset;
4701 int popl_esp_hack;
4702 const int *regmap;
4703 };
4704
4705 /* Parse the "modrm" part of the memory address irp->addr points at.
4706 Returns -1 if something goes wrong, 0 otherwise. */
4707
4708 static int
4709 i386_record_modrm (struct i386_record_s *irp)
4710 {
4711 struct gdbarch *gdbarch = irp->gdbarch;
4712
4713 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4714 return -1;
4715
4716 irp->addr++;
4717 irp->mod = (irp->modrm >> 6) & 3;
4718 irp->reg = (irp->modrm >> 3) & 7;
4719 irp->rm = irp->modrm & 7;
4720
4721 return 0;
4722 }
4723
4724 /* Extract the memory address that the current instruction writes to,
4725 and return it in *ADDR. Return -1 if something goes wrong. */
4726
4727 static int
4728 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4729 {
4730 struct gdbarch *gdbarch = irp->gdbarch;
4731 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4732 gdb_byte buf[4];
4733 ULONGEST offset64;
4734
4735 *addr = 0;
4736 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4737 {
4738 /* 32/64 bits */
4739 int havesib = 0;
4740 uint8_t scale = 0;
4741 uint8_t byte;
4742 uint8_t index = 0;
4743 uint8_t base = irp->rm;
4744
4745 if (base == 4)
4746 {
4747 havesib = 1;
4748 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4749 return -1;
4750 irp->addr++;
4751 scale = (byte >> 6) & 3;
4752 index = ((byte >> 3) & 7) | irp->rex_x;
4753 base = (byte & 7);
4754 }
4755 base |= irp->rex_b;
4756
4757 switch (irp->mod)
4758 {
4759 case 0:
4760 if ((base & 7) == 5)
4761 {
4762 base = 0xff;
4763 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4764 return -1;
4765 irp->addr += 4;
4766 *addr = extract_signed_integer (buf, 4, byte_order);
4767 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4768 *addr += irp->addr + irp->rip_offset;
4769 }
4770 break;
4771 case 1:
4772 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4773 return -1;
4774 irp->addr++;
4775 *addr = (int8_t) buf[0];
4776 break;
4777 case 2:
4778 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4779 return -1;
4780 *addr = extract_signed_integer (buf, 4, byte_order);
4781 irp->addr += 4;
4782 break;
4783 }
4784
4785 offset64 = 0;
4786 if (base != 0xff)
4787 {
4788 if (base == 4 && irp->popl_esp_hack)
4789 *addr += irp->popl_esp_hack;
4790 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4791 &offset64);
4792 }
4793 if (irp->aflag == 2)
4794 {
4795 *addr += offset64;
4796 }
4797 else
4798 *addr = (uint32_t) (offset64 + *addr);
4799
4800 if (havesib && (index != 4 || scale != 0))
4801 {
4802 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4803 &offset64);
4804 if (irp->aflag == 2)
4805 *addr += offset64 << scale;
4806 else
4807 *addr = (uint32_t) (*addr + (offset64 << scale));
4808 }
4809
4810 if (!irp->aflag)
4811 {
4812 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4813 address from 32-bit to 64-bit. */
4814 *addr = (uint32_t) *addr;
4815 }
4816 }
4817 else
4818 {
4819 /* 16 bits */
4820 switch (irp->mod)
4821 {
4822 case 0:
4823 if (irp->rm == 6)
4824 {
4825 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4826 return -1;
4827 irp->addr += 2;
4828 *addr = extract_signed_integer (buf, 2, byte_order);
4829 irp->rm = 0;
4830 goto no_rm;
4831 }
4832 break;
4833 case 1:
4834 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4835 return -1;
4836 irp->addr++;
4837 *addr = (int8_t) buf[0];
4838 break;
4839 case 2:
4840 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4841 return -1;
4842 irp->addr += 2;
4843 *addr = extract_signed_integer (buf, 2, byte_order);
4844 break;
4845 }
4846
4847 switch (irp->rm)
4848 {
4849 case 0:
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REBX_REGNUM],
4852 &offset64);
4853 *addr = (uint32_t) (*addr + offset64);
4854 regcache_raw_read_unsigned (irp->regcache,
4855 irp->regmap[X86_RECORD_RESI_REGNUM],
4856 &offset64);
4857 *addr = (uint32_t) (*addr + offset64);
4858 break;
4859 case 1:
4860 regcache_raw_read_unsigned (irp->regcache,
4861 irp->regmap[X86_RECORD_REBX_REGNUM],
4862 &offset64);
4863 *addr = (uint32_t) (*addr + offset64);
4864 regcache_raw_read_unsigned (irp->regcache,
4865 irp->regmap[X86_RECORD_REDI_REGNUM],
4866 &offset64);
4867 *addr = (uint32_t) (*addr + offset64);
4868 break;
4869 case 2:
4870 regcache_raw_read_unsigned (irp->regcache,
4871 irp->regmap[X86_RECORD_REBP_REGNUM],
4872 &offset64);
4873 *addr = (uint32_t) (*addr + offset64);
4874 regcache_raw_read_unsigned (irp->regcache,
4875 irp->regmap[X86_RECORD_RESI_REGNUM],
4876 &offset64);
4877 *addr = (uint32_t) (*addr + offset64);
4878 break;
4879 case 3:
4880 regcache_raw_read_unsigned (irp->regcache,
4881 irp->regmap[X86_RECORD_REBP_REGNUM],
4882 &offset64);
4883 *addr = (uint32_t) (*addr + offset64);
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_REDI_REGNUM],
4886 &offset64);
4887 *addr = (uint32_t) (*addr + offset64);
4888 break;
4889 case 4:
4890 regcache_raw_read_unsigned (irp->regcache,
4891 irp->regmap[X86_RECORD_RESI_REGNUM],
4892 &offset64);
4893 *addr = (uint32_t) (*addr + offset64);
4894 break;
4895 case 5:
4896 regcache_raw_read_unsigned (irp->regcache,
4897 irp->regmap[X86_RECORD_REDI_REGNUM],
4898 &offset64);
4899 *addr = (uint32_t) (*addr + offset64);
4900 break;
4901 case 6:
4902 regcache_raw_read_unsigned (irp->regcache,
4903 irp->regmap[X86_RECORD_REBP_REGNUM],
4904 &offset64);
4905 *addr = (uint32_t) (*addr + offset64);
4906 break;
4907 case 7:
4908 regcache_raw_read_unsigned (irp->regcache,
4909 irp->regmap[X86_RECORD_REBX_REGNUM],
4910 &offset64);
4911 *addr = (uint32_t) (*addr + offset64);
4912 break;
4913 }
4914 *addr &= 0xffff;
4915 }
4916
4917 no_rm:
4918 return 0;
4919 }
4920
4921 /* Record the address and contents of the memory that will be changed
4922 by the current instruction. Return -1 if something goes wrong, 0
4923 otherwise. */
4924
4925 static int
4926 i386_record_lea_modrm (struct i386_record_s *irp)
4927 {
4928 struct gdbarch *gdbarch = irp->gdbarch;
4929 uint64_t addr;
4930
4931 if (irp->override >= 0)
4932 {
4933 if (record_full_memory_query)
4934 {
4935 if (yquery (_("\
4936 Process record ignores the memory change of instruction at address %s\n\
4937 because it can't get the value of the segment register.\n\
4938 Do you want to stop the program?"),
4939 paddress (gdbarch, irp->orig_addr)))
4940 return -1;
4941 }
4942
4943 return 0;
4944 }
4945
4946 if (i386_record_lea_modrm_addr (irp, &addr))
4947 return -1;
4948
4949 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4950 return -1;
4951
4952 return 0;
4953 }
4954
4955 /* Record the effects of a push operation. Return -1 if something
4956 goes wrong, 0 otherwise. */
4957
4958 static int
4959 i386_record_push (struct i386_record_s *irp, int size)
4960 {
4961 ULONGEST addr;
4962
4963 if (record_full_arch_list_add_reg (irp->regcache,
4964 irp->regmap[X86_RECORD_RESP_REGNUM]))
4965 return -1;
4966 regcache_raw_read_unsigned (irp->regcache,
4967 irp->regmap[X86_RECORD_RESP_REGNUM],
4968 &addr);
4969 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4970 return -1;
4971
4972 return 0;
4973 }
4974
4975
4976 /* Defines contents to record. */
4977 #define I386_SAVE_FPU_REGS 0xfffd
4978 #define I386_SAVE_FPU_ENV 0xfffe
4979 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4980
4981 /* Record the values of the floating point registers which will be
4982 changed by the current instruction. Returns -1 if something is
4983 wrong, 0 otherwise. */
4984
4985 static int i386_record_floats (struct gdbarch *gdbarch,
4986 struct i386_record_s *ir,
4987 uint32_t iregnum)
4988 {
4989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4990 int i;
4991
4992 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4993 happen. Currently we store st0-st7 registers, but we need not store all
4994 registers all the time, in future we use ftag register and record only
4995 those who are not marked as an empty. */
4996
4997 if (I386_SAVE_FPU_REGS == iregnum)
4998 {
4999 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5000 {
5001 if (record_full_arch_list_add_reg (ir->regcache, i))
5002 return -1;
5003 }
5004 }
5005 else if (I386_SAVE_FPU_ENV == iregnum)
5006 {
5007 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5008 {
5009 if (record_full_arch_list_add_reg (ir->regcache, i))
5010 return -1;
5011 }
5012 }
5013 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5014 {
5015 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5016 {
5017 if (record_full_arch_list_add_reg (ir->regcache, i))
5018 return -1;
5019 }
5020 }
5021 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5022 (iregnum <= I387_FOP_REGNUM (tdep)))
5023 {
5024 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5025 return -1;
5026 }
5027 else
5028 {
5029 /* Parameter error. */
5030 return -1;
5031 }
5032 if(I386_SAVE_FPU_ENV != iregnum)
5033 {
5034 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5035 {
5036 if (record_full_arch_list_add_reg (ir->regcache, i))
5037 return -1;
5038 }
5039 }
5040 return 0;
5041 }
5042
5043 /* Parse the current instruction, and record the values of the
5044 registers and memory that will be changed by the current
5045 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5046
5047 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5048 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5049
5050 int
5051 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5052 CORE_ADDR input_addr)
5053 {
5054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5055 int prefixes = 0;
5056 int regnum = 0;
5057 uint32_t opcode;
5058 uint8_t opcode8;
5059 ULONGEST addr;
5060 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5061 struct i386_record_s ir;
5062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5063 uint8_t rex_w = -1;
5064 uint8_t rex_r = 0;
5065
5066 memset (&ir, 0, sizeof (struct i386_record_s));
5067 ir.regcache = regcache;
5068 ir.addr = input_addr;
5069 ir.orig_addr = input_addr;
5070 ir.aflag = 1;
5071 ir.dflag = 1;
5072 ir.override = -1;
5073 ir.popl_esp_hack = 0;
5074 ir.regmap = tdep->record_regmap;
5075 ir.gdbarch = gdbarch;
5076
5077 if (record_debug > 1)
5078 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5079 "addr = %s\n",
5080 paddress (gdbarch, ir.addr));
5081
5082 /* prefixes */
5083 while (1)
5084 {
5085 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5086 return -1;
5087 ir.addr++;
5088 switch (opcode8) /* Instruction prefixes */
5089 {
5090 case REPE_PREFIX_OPCODE:
5091 prefixes |= PREFIX_REPZ;
5092 break;
5093 case REPNE_PREFIX_OPCODE:
5094 prefixes |= PREFIX_REPNZ;
5095 break;
5096 case LOCK_PREFIX_OPCODE:
5097 prefixes |= PREFIX_LOCK;
5098 break;
5099 case CS_PREFIX_OPCODE:
5100 ir.override = X86_RECORD_CS_REGNUM;
5101 break;
5102 case SS_PREFIX_OPCODE:
5103 ir.override = X86_RECORD_SS_REGNUM;
5104 break;
5105 case DS_PREFIX_OPCODE:
5106 ir.override = X86_RECORD_DS_REGNUM;
5107 break;
5108 case ES_PREFIX_OPCODE:
5109 ir.override = X86_RECORD_ES_REGNUM;
5110 break;
5111 case FS_PREFIX_OPCODE:
5112 ir.override = X86_RECORD_FS_REGNUM;
5113 break;
5114 case GS_PREFIX_OPCODE:
5115 ir.override = X86_RECORD_GS_REGNUM;
5116 break;
5117 case DATA_PREFIX_OPCODE:
5118 prefixes |= PREFIX_DATA;
5119 break;
5120 case ADDR_PREFIX_OPCODE:
5121 prefixes |= PREFIX_ADDR;
5122 break;
5123 case 0x40: /* i386 inc %eax */
5124 case 0x41: /* i386 inc %ecx */
5125 case 0x42: /* i386 inc %edx */
5126 case 0x43: /* i386 inc %ebx */
5127 case 0x44: /* i386 inc %esp */
5128 case 0x45: /* i386 inc %ebp */
5129 case 0x46: /* i386 inc %esi */
5130 case 0x47: /* i386 inc %edi */
5131 case 0x48: /* i386 dec %eax */
5132 case 0x49: /* i386 dec %ecx */
5133 case 0x4a: /* i386 dec %edx */
5134 case 0x4b: /* i386 dec %ebx */
5135 case 0x4c: /* i386 dec %esp */
5136 case 0x4d: /* i386 dec %ebp */
5137 case 0x4e: /* i386 dec %esi */
5138 case 0x4f: /* i386 dec %edi */
5139 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5140 {
5141 /* REX */
5142 rex_w = (opcode8 >> 3) & 1;
5143 rex_r = (opcode8 & 0x4) << 1;
5144 ir.rex_x = (opcode8 & 0x2) << 2;
5145 ir.rex_b = (opcode8 & 0x1) << 3;
5146 }
5147 else /* 32 bit target */
5148 goto out_prefixes;
5149 break;
5150 default:
5151 goto out_prefixes;
5152 break;
5153 }
5154 }
5155 out_prefixes:
5156 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5157 {
5158 ir.dflag = 2;
5159 }
5160 else
5161 {
5162 if (prefixes & PREFIX_DATA)
5163 ir.dflag ^= 1;
5164 }
5165 if (prefixes & PREFIX_ADDR)
5166 ir.aflag ^= 1;
5167 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5168 ir.aflag = 2;
5169
5170 /* Now check op code. */
5171 opcode = (uint32_t) opcode8;
5172 reswitch:
5173 switch (opcode)
5174 {
5175 case 0x0f:
5176 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5177 return -1;
5178 ir.addr++;
5179 opcode = (uint32_t) opcode8 | 0x0f00;
5180 goto reswitch;
5181 break;
5182
5183 case 0x00: /* arith & logic */
5184 case 0x01:
5185 case 0x02:
5186 case 0x03:
5187 case 0x04:
5188 case 0x05:
5189 case 0x08:
5190 case 0x09:
5191 case 0x0a:
5192 case 0x0b:
5193 case 0x0c:
5194 case 0x0d:
5195 case 0x10:
5196 case 0x11:
5197 case 0x12:
5198 case 0x13:
5199 case 0x14:
5200 case 0x15:
5201 case 0x18:
5202 case 0x19:
5203 case 0x1a:
5204 case 0x1b:
5205 case 0x1c:
5206 case 0x1d:
5207 case 0x20:
5208 case 0x21:
5209 case 0x22:
5210 case 0x23:
5211 case 0x24:
5212 case 0x25:
5213 case 0x28:
5214 case 0x29:
5215 case 0x2a:
5216 case 0x2b:
5217 case 0x2c:
5218 case 0x2d:
5219 case 0x30:
5220 case 0x31:
5221 case 0x32:
5222 case 0x33:
5223 case 0x34:
5224 case 0x35:
5225 case 0x38:
5226 case 0x39:
5227 case 0x3a:
5228 case 0x3b:
5229 case 0x3c:
5230 case 0x3d:
5231 if (((opcode >> 3) & 7) != OP_CMPL)
5232 {
5233 if ((opcode & 1) == 0)
5234 ir.ot = OT_BYTE;
5235 else
5236 ir.ot = ir.dflag + OT_WORD;
5237
5238 switch ((opcode >> 1) & 3)
5239 {
5240 case 0: /* OP Ev, Gv */
5241 if (i386_record_modrm (&ir))
5242 return -1;
5243 if (ir.mod != 3)
5244 {
5245 if (i386_record_lea_modrm (&ir))
5246 return -1;
5247 }
5248 else
5249 {
5250 ir.rm |= ir.rex_b;
5251 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5252 ir.rm &= 0x3;
5253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5254 }
5255 break;
5256 case 1: /* OP Gv, Ev */
5257 if (i386_record_modrm (&ir))
5258 return -1;
5259 ir.reg |= rex_r;
5260 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5261 ir.reg &= 0x3;
5262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5263 break;
5264 case 2: /* OP A, Iv */
5265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5266 break;
5267 }
5268 }
5269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5270 break;
5271
5272 case 0x80: /* GRP1 */
5273 case 0x81:
5274 case 0x82:
5275 case 0x83:
5276 if (i386_record_modrm (&ir))
5277 return -1;
5278
5279 if (ir.reg != OP_CMPL)
5280 {
5281 if ((opcode & 1) == 0)
5282 ir.ot = OT_BYTE;
5283 else
5284 ir.ot = ir.dflag + OT_WORD;
5285
5286 if (ir.mod != 3)
5287 {
5288 if (opcode == 0x83)
5289 ir.rip_offset = 1;
5290 else
5291 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5292 if (i386_record_lea_modrm (&ir))
5293 return -1;
5294 }
5295 else
5296 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5297 }
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5299 break;
5300
5301 case 0x40: /* inc */
5302 case 0x41:
5303 case 0x42:
5304 case 0x43:
5305 case 0x44:
5306 case 0x45:
5307 case 0x46:
5308 case 0x47:
5309
5310 case 0x48: /* dec */
5311 case 0x49:
5312 case 0x4a:
5313 case 0x4b:
5314 case 0x4c:
5315 case 0x4d:
5316 case 0x4e:
5317 case 0x4f:
5318
5319 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5321 break;
5322
5323 case 0xf6: /* GRP3 */
5324 case 0xf7:
5325 if ((opcode & 1) == 0)
5326 ir.ot = OT_BYTE;
5327 else
5328 ir.ot = ir.dflag + OT_WORD;
5329 if (i386_record_modrm (&ir))
5330 return -1;
5331
5332 if (ir.mod != 3 && ir.reg == 0)
5333 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5334
5335 switch (ir.reg)
5336 {
5337 case 0: /* test */
5338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5339 break;
5340 case 2: /* not */
5341 case 3: /* neg */
5342 if (ir.mod != 3)
5343 {
5344 if (i386_record_lea_modrm (&ir))
5345 return -1;
5346 }
5347 else
5348 {
5349 ir.rm |= ir.rex_b;
5350 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5351 ir.rm &= 0x3;
5352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5353 }
5354 if (ir.reg == 3) /* neg */
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5356 break;
5357 case 4: /* mul */
5358 case 5: /* imul */
5359 case 6: /* div */
5360 case 7: /* idiv */
5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5362 if (ir.ot != OT_BYTE)
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5365 break;
5366 default:
5367 ir.addr -= 2;
5368 opcode = opcode << 8 | ir.modrm;
5369 goto no_support;
5370 break;
5371 }
5372 break;
5373
5374 case 0xfe: /* GRP4 */
5375 case 0xff: /* GRP5 */
5376 if (i386_record_modrm (&ir))
5377 return -1;
5378 if (ir.reg >= 2 && opcode == 0xfe)
5379 {
5380 ir.addr -= 2;
5381 opcode = opcode << 8 | ir.modrm;
5382 goto no_support;
5383 }
5384 switch (ir.reg)
5385 {
5386 case 0: /* inc */
5387 case 1: /* dec */
5388 if ((opcode & 1) == 0)
5389 ir.ot = OT_BYTE;
5390 else
5391 ir.ot = ir.dflag + OT_WORD;
5392 if (ir.mod != 3)
5393 {
5394 if (i386_record_lea_modrm (&ir))
5395 return -1;
5396 }
5397 else
5398 {
5399 ir.rm |= ir.rex_b;
5400 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5401 ir.rm &= 0x3;
5402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5403 }
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5405 break;
5406 case 2: /* call */
5407 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5408 ir.dflag = 2;
5409 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5410 return -1;
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5412 break;
5413 case 3: /* lcall */
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5415 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5416 return -1;
5417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5418 break;
5419 case 4: /* jmp */
5420 case 5: /* ljmp */
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5422 break;
5423 case 6: /* push */
5424 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5425 ir.dflag = 2;
5426 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5427 return -1;
5428 break;
5429 default:
5430 ir.addr -= 2;
5431 opcode = opcode << 8 | ir.modrm;
5432 goto no_support;
5433 break;
5434 }
5435 break;
5436
5437 case 0x84: /* test */
5438 case 0x85:
5439 case 0xa8:
5440 case 0xa9:
5441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5442 break;
5443
5444 case 0x98: /* CWDE/CBW */
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5446 break;
5447
5448 case 0x99: /* CDQ/CWD */
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5451 break;
5452
5453 case 0x0faf: /* imul */
5454 case 0x69:
5455 case 0x6b:
5456 ir.ot = ir.dflag + OT_WORD;
5457 if (i386_record_modrm (&ir))
5458 return -1;
5459 if (opcode == 0x69)
5460 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5461 else if (opcode == 0x6b)
5462 ir.rip_offset = 1;
5463 ir.reg |= rex_r;
5464 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5465 ir.reg &= 0x3;
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5468 break;
5469
5470 case 0x0fc0: /* xadd */
5471 case 0x0fc1:
5472 if ((opcode & 1) == 0)
5473 ir.ot = OT_BYTE;
5474 else
5475 ir.ot = ir.dflag + OT_WORD;
5476 if (i386_record_modrm (&ir))
5477 return -1;
5478 ir.reg |= rex_r;
5479 if (ir.mod == 3)
5480 {
5481 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5482 ir.reg &= 0x3;
5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5484 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5485 ir.rm &= 0x3;
5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5487 }
5488 else
5489 {
5490 if (i386_record_lea_modrm (&ir))
5491 return -1;
5492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5493 ir.reg &= 0x3;
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5495 }
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5497 break;
5498
5499 case 0x0fb0: /* cmpxchg */
5500 case 0x0fb1:
5501 if ((opcode & 1) == 0)
5502 ir.ot = OT_BYTE;
5503 else
5504 ir.ot = ir.dflag + OT_WORD;
5505 if (i386_record_modrm (&ir))
5506 return -1;
5507 if (ir.mod == 3)
5508 {
5509 ir.reg |= rex_r;
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5511 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5512 ir.reg &= 0x3;
5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5514 }
5515 else
5516 {
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5518 if (i386_record_lea_modrm (&ir))
5519 return -1;
5520 }
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5522 break;
5523
5524 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5525 if (i386_record_modrm (&ir))
5526 return -1;
5527 if (ir.mod == 3)
5528 {
5529 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5530 an extended opcode. rdrand has bits 110 (/6) and rdseed
5531 has bits 111 (/7). */
5532 if (ir.reg == 6 || ir.reg == 7)
5533 {
5534 /* The storage register is described by the 3 R/M bits, but the
5535 REX.B prefix may be used to give access to registers
5536 R8~R15. In this case ir.rex_b + R/M will give us the register
5537 in the range R8~R15.
5538
5539 REX.W may also be used to access 64-bit registers, but we
5540 already record entire registers and not just partial bits
5541 of them. */
5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5543 /* These instructions also set conditional bits. */
5544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5545 break;
5546 }
5547 else
5548 {
5549 /* We don't handle this particular instruction yet. */
5550 ir.addr -= 2;
5551 opcode = opcode << 8 | ir.modrm;
5552 goto no_support;
5553 }
5554 }
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5557 if (i386_record_lea_modrm (&ir))
5558 return -1;
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5560 break;
5561
5562 case 0x50: /* push */
5563 case 0x51:
5564 case 0x52:
5565 case 0x53:
5566 case 0x54:
5567 case 0x55:
5568 case 0x56:
5569 case 0x57:
5570 case 0x68:
5571 case 0x6a:
5572 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5573 ir.dflag = 2;
5574 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5575 return -1;
5576 break;
5577
5578 case 0x06: /* push es */
5579 case 0x0e: /* push cs */
5580 case 0x16: /* push ss */
5581 case 0x1e: /* push ds */
5582 if (ir.regmap[X86_RECORD_R8_REGNUM])
5583 {
5584 ir.addr -= 1;
5585 goto no_support;
5586 }
5587 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5588 return -1;
5589 break;
5590
5591 case 0x0fa0: /* push fs */
5592 case 0x0fa8: /* push gs */
5593 if (ir.regmap[X86_RECORD_R8_REGNUM])
5594 {
5595 ir.addr -= 2;
5596 goto no_support;
5597 }
5598 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5599 return -1;
5600 break;
5601
5602 case 0x60: /* pusha */
5603 if (ir.regmap[X86_RECORD_R8_REGNUM])
5604 {
5605 ir.addr -= 1;
5606 goto no_support;
5607 }
5608 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5609 return -1;
5610 break;
5611
5612 case 0x58: /* pop */
5613 case 0x59:
5614 case 0x5a:
5615 case 0x5b:
5616 case 0x5c:
5617 case 0x5d:
5618 case 0x5e:
5619 case 0x5f:
5620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5622 break;
5623
5624 case 0x61: /* popa */
5625 if (ir.regmap[X86_RECORD_R8_REGNUM])
5626 {
5627 ir.addr -= 1;
5628 goto no_support;
5629 }
5630 for (regnum = X86_RECORD_REAX_REGNUM;
5631 regnum <= X86_RECORD_REDI_REGNUM;
5632 regnum++)
5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5634 break;
5635
5636 case 0x8f: /* pop */
5637 if (ir.regmap[X86_RECORD_R8_REGNUM])
5638 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5639 else
5640 ir.ot = ir.dflag + OT_WORD;
5641 if (i386_record_modrm (&ir))
5642 return -1;
5643 if (ir.mod == 3)
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5645 else
5646 {
5647 ir.popl_esp_hack = 1 << ir.ot;
5648 if (i386_record_lea_modrm (&ir))
5649 return -1;
5650 }
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5652 break;
5653
5654 case 0xc8: /* enter */
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5656 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5657 ir.dflag = 2;
5658 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5659 return -1;
5660 break;
5661
5662 case 0xc9: /* leave */
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5665 break;
5666
5667 case 0x07: /* pop es */
5668 if (ir.regmap[X86_RECORD_R8_REGNUM])
5669 {
5670 ir.addr -= 1;
5671 goto no_support;
5672 }
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5676 break;
5677
5678 case 0x17: /* pop ss */
5679 if (ir.regmap[X86_RECORD_R8_REGNUM])
5680 {
5681 ir.addr -= 1;
5682 goto no_support;
5683 }
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5687 break;
5688
5689 case 0x1f: /* pop ds */
5690 if (ir.regmap[X86_RECORD_R8_REGNUM])
5691 {
5692 ir.addr -= 1;
5693 goto no_support;
5694 }
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5698 break;
5699
5700 case 0x0fa1: /* pop fs */
5701 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5702 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5704 break;
5705
5706 case 0x0fa9: /* pop gs */
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5710 break;
5711
5712 case 0x88: /* mov */
5713 case 0x89:
5714 case 0xc6:
5715 case 0xc7:
5716 if ((opcode & 1) == 0)
5717 ir.ot = OT_BYTE;
5718 else
5719 ir.ot = ir.dflag + OT_WORD;
5720
5721 if (i386_record_modrm (&ir))
5722 return -1;
5723
5724 if (ir.mod != 3)
5725 {
5726 if (opcode == 0xc6 || opcode == 0xc7)
5727 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5728 if (i386_record_lea_modrm (&ir))
5729 return -1;
5730 }
5731 else
5732 {
5733 if (opcode == 0xc6 || opcode == 0xc7)
5734 ir.rm |= ir.rex_b;
5735 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5736 ir.rm &= 0x3;
5737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5738 }
5739 break;
5740
5741 case 0x8a: /* mov */
5742 case 0x8b:
5743 if ((opcode & 1) == 0)
5744 ir.ot = OT_BYTE;
5745 else
5746 ir.ot = ir.dflag + OT_WORD;
5747 if (i386_record_modrm (&ir))
5748 return -1;
5749 ir.reg |= rex_r;
5750 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5751 ir.reg &= 0x3;
5752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5753 break;
5754
5755 case 0x8c: /* mov seg */
5756 if (i386_record_modrm (&ir))
5757 return -1;
5758 if (ir.reg > 5)
5759 {
5760 ir.addr -= 2;
5761 opcode = opcode << 8 | ir.modrm;
5762 goto no_support;
5763 }
5764
5765 if (ir.mod == 3)
5766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5767 else
5768 {
5769 ir.ot = OT_WORD;
5770 if (i386_record_lea_modrm (&ir))
5771 return -1;
5772 }
5773 break;
5774
5775 case 0x8e: /* mov seg */
5776 if (i386_record_modrm (&ir))
5777 return -1;
5778 switch (ir.reg)
5779 {
5780 case 0:
5781 regnum = X86_RECORD_ES_REGNUM;
5782 break;
5783 case 2:
5784 regnum = X86_RECORD_SS_REGNUM;
5785 break;
5786 case 3:
5787 regnum = X86_RECORD_DS_REGNUM;
5788 break;
5789 case 4:
5790 regnum = X86_RECORD_FS_REGNUM;
5791 break;
5792 case 5:
5793 regnum = X86_RECORD_GS_REGNUM;
5794 break;
5795 default:
5796 ir.addr -= 2;
5797 opcode = opcode << 8 | ir.modrm;
5798 goto no_support;
5799 break;
5800 }
5801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5803 break;
5804
5805 case 0x0fb6: /* movzbS */
5806 case 0x0fb7: /* movzwS */
5807 case 0x0fbe: /* movsbS */
5808 case 0x0fbf: /* movswS */
5809 if (i386_record_modrm (&ir))
5810 return -1;
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5812 break;
5813
5814 case 0x8d: /* lea */
5815 if (i386_record_modrm (&ir))
5816 return -1;
5817 if (ir.mod == 3)
5818 {
5819 ir.addr -= 2;
5820 opcode = opcode << 8 | ir.modrm;
5821 goto no_support;
5822 }
5823 ir.ot = ir.dflag;
5824 ir.reg |= rex_r;
5825 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5826 ir.reg &= 0x3;
5827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5828 break;
5829
5830 case 0xa0: /* mov EAX */
5831 case 0xa1:
5832
5833 case 0xd7: /* xlat */
5834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5835 break;
5836
5837 case 0xa2: /* mov EAX */
5838 case 0xa3:
5839 if (ir.override >= 0)
5840 {
5841 if (record_full_memory_query)
5842 {
5843 if (yquery (_("\
5844 Process record ignores the memory change of instruction at address %s\n\
5845 because it can't get the value of the segment register.\n\
5846 Do you want to stop the program?"),
5847 paddress (gdbarch, ir.orig_addr)))
5848 return -1;
5849 }
5850 }
5851 else
5852 {
5853 if ((opcode & 1) == 0)
5854 ir.ot = OT_BYTE;
5855 else
5856 ir.ot = ir.dflag + OT_WORD;
5857 if (ir.aflag == 2)
5858 {
5859 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5860 return -1;
5861 ir.addr += 8;
5862 addr = extract_unsigned_integer (buf, 8, byte_order);
5863 }
5864 else if (ir.aflag)
5865 {
5866 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5867 return -1;
5868 ir.addr += 4;
5869 addr = extract_unsigned_integer (buf, 4, byte_order);
5870 }
5871 else
5872 {
5873 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5874 return -1;
5875 ir.addr += 2;
5876 addr = extract_unsigned_integer (buf, 2, byte_order);
5877 }
5878 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5879 return -1;
5880 }
5881 break;
5882
5883 case 0xb0: /* mov R, Ib */
5884 case 0xb1:
5885 case 0xb2:
5886 case 0xb3:
5887 case 0xb4:
5888 case 0xb5:
5889 case 0xb6:
5890 case 0xb7:
5891 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5892 ? ((opcode & 0x7) | ir.rex_b)
5893 : ((opcode & 0x7) & 0x3));
5894 break;
5895
5896 case 0xb8: /* mov R, Iv */
5897 case 0xb9:
5898 case 0xba:
5899 case 0xbb:
5900 case 0xbc:
5901 case 0xbd:
5902 case 0xbe:
5903 case 0xbf:
5904 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5905 break;
5906
5907 case 0x91: /* xchg R, EAX */
5908 case 0x92:
5909 case 0x93:
5910 case 0x94:
5911 case 0x95:
5912 case 0x96:
5913 case 0x97:
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5915 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5916 break;
5917
5918 case 0x86: /* xchg Ev, Gv */
5919 case 0x87:
5920 if ((opcode & 1) == 0)
5921 ir.ot = OT_BYTE;
5922 else
5923 ir.ot = ir.dflag + OT_WORD;
5924 if (i386_record_modrm (&ir))
5925 return -1;
5926 if (ir.mod == 3)
5927 {
5928 ir.rm |= ir.rex_b;
5929 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5930 ir.rm &= 0x3;
5931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5932 }
5933 else
5934 {
5935 if (i386_record_lea_modrm (&ir))
5936 return -1;
5937 }
5938 ir.reg |= rex_r;
5939 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5940 ir.reg &= 0x3;
5941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5942 break;
5943
5944 case 0xc4: /* les Gv */
5945 case 0xc5: /* lds Gv */
5946 if (ir.regmap[X86_RECORD_R8_REGNUM])
5947 {
5948 ir.addr -= 1;
5949 goto no_support;
5950 }
5951 /* FALLTHROUGH */
5952 case 0x0fb2: /* lss Gv */
5953 case 0x0fb4: /* lfs Gv */
5954 case 0x0fb5: /* lgs Gv */
5955 if (i386_record_modrm (&ir))
5956 return -1;
5957 if (ir.mod == 3)
5958 {
5959 if (opcode > 0xff)
5960 ir.addr -= 3;
5961 else
5962 ir.addr -= 2;
5963 opcode = opcode << 8 | ir.modrm;
5964 goto no_support;
5965 }
5966 switch (opcode)
5967 {
5968 case 0xc4: /* les Gv */
5969 regnum = X86_RECORD_ES_REGNUM;
5970 break;
5971 case 0xc5: /* lds Gv */
5972 regnum = X86_RECORD_DS_REGNUM;
5973 break;
5974 case 0x0fb2: /* lss Gv */
5975 regnum = X86_RECORD_SS_REGNUM;
5976 break;
5977 case 0x0fb4: /* lfs Gv */
5978 regnum = X86_RECORD_FS_REGNUM;
5979 break;
5980 case 0x0fb5: /* lgs Gv */
5981 regnum = X86_RECORD_GS_REGNUM;
5982 break;
5983 }
5984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5985 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5987 break;
5988
5989 case 0xc0: /* shifts */
5990 case 0xc1:
5991 case 0xd0:
5992 case 0xd1:
5993 case 0xd2:
5994 case 0xd3:
5995 if ((opcode & 1) == 0)
5996 ir.ot = OT_BYTE;
5997 else
5998 ir.ot = ir.dflag + OT_WORD;
5999 if (i386_record_modrm (&ir))
6000 return -1;
6001 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6002 {
6003 if (i386_record_lea_modrm (&ir))
6004 return -1;
6005 }
6006 else
6007 {
6008 ir.rm |= ir.rex_b;
6009 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6010 ir.rm &= 0x3;
6011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6012 }
6013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6014 break;
6015
6016 case 0x0fa4:
6017 case 0x0fa5:
6018 case 0x0fac:
6019 case 0x0fad:
6020 if (i386_record_modrm (&ir))
6021 return -1;
6022 if (ir.mod == 3)
6023 {
6024 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6025 return -1;
6026 }
6027 else
6028 {
6029 if (i386_record_lea_modrm (&ir))
6030 return -1;
6031 }
6032 break;
6033
6034 case 0xd8: /* Floats. */
6035 case 0xd9:
6036 case 0xda:
6037 case 0xdb:
6038 case 0xdc:
6039 case 0xdd:
6040 case 0xde:
6041 case 0xdf:
6042 if (i386_record_modrm (&ir))
6043 return -1;
6044 ir.reg |= ((opcode & 7) << 3);
6045 if (ir.mod != 3)
6046 {
6047 /* Memory. */
6048 uint64_t addr64;
6049
6050 if (i386_record_lea_modrm_addr (&ir, &addr64))
6051 return -1;
6052 switch (ir.reg)
6053 {
6054 case 0x02:
6055 case 0x12:
6056 case 0x22:
6057 case 0x32:
6058 /* For fcom, ficom nothing to do. */
6059 break;
6060 case 0x03:
6061 case 0x13:
6062 case 0x23:
6063 case 0x33:
6064 /* For fcomp, ficomp pop FPU stack, store all. */
6065 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6066 return -1;
6067 break;
6068 case 0x00:
6069 case 0x01:
6070 case 0x04:
6071 case 0x05:
6072 case 0x06:
6073 case 0x07:
6074 case 0x10:
6075 case 0x11:
6076 case 0x14:
6077 case 0x15:
6078 case 0x16:
6079 case 0x17:
6080 case 0x20:
6081 case 0x21:
6082 case 0x24:
6083 case 0x25:
6084 case 0x26:
6085 case 0x27:
6086 case 0x30:
6087 case 0x31:
6088 case 0x34:
6089 case 0x35:
6090 case 0x36:
6091 case 0x37:
6092 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6093 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6094 of code, always affects st(0) register. */
6095 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6096 return -1;
6097 break;
6098 case 0x08:
6099 case 0x0a:
6100 case 0x0b:
6101 case 0x18:
6102 case 0x19:
6103 case 0x1a:
6104 case 0x1b:
6105 case 0x1d:
6106 case 0x28:
6107 case 0x29:
6108 case 0x2a:
6109 case 0x2b:
6110 case 0x38:
6111 case 0x39:
6112 case 0x3a:
6113 case 0x3b:
6114 case 0x3c:
6115 case 0x3d:
6116 switch (ir.reg & 7)
6117 {
6118 case 0:
6119 /* Handling fld, fild. */
6120 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6121 return -1;
6122 break;
6123 case 1:
6124 switch (ir.reg >> 4)
6125 {
6126 case 0:
6127 if (record_full_arch_list_add_mem (addr64, 4))
6128 return -1;
6129 break;
6130 case 2:
6131 if (record_full_arch_list_add_mem (addr64, 8))
6132 return -1;
6133 break;
6134 case 3:
6135 break;
6136 default:
6137 if (record_full_arch_list_add_mem (addr64, 2))
6138 return -1;
6139 break;
6140 }
6141 break;
6142 default:
6143 switch (ir.reg >> 4)
6144 {
6145 case 0:
6146 if (record_full_arch_list_add_mem (addr64, 4))
6147 return -1;
6148 if (3 == (ir.reg & 7))
6149 {
6150 /* For fstp m32fp. */
6151 if (i386_record_floats (gdbarch, &ir,
6152 I386_SAVE_FPU_REGS))
6153 return -1;
6154 }
6155 break;
6156 case 1:
6157 if (record_full_arch_list_add_mem (addr64, 4))
6158 return -1;
6159 if ((3 == (ir.reg & 7))
6160 || (5 == (ir.reg & 7))
6161 || (7 == (ir.reg & 7)))
6162 {
6163 /* For fstp insn. */
6164 if (i386_record_floats (gdbarch, &ir,
6165 I386_SAVE_FPU_REGS))
6166 return -1;
6167 }
6168 break;
6169 case 2:
6170 if (record_full_arch_list_add_mem (addr64, 8))
6171 return -1;
6172 if (3 == (ir.reg & 7))
6173 {
6174 /* For fstp m64fp. */
6175 if (i386_record_floats (gdbarch, &ir,
6176 I386_SAVE_FPU_REGS))
6177 return -1;
6178 }
6179 break;
6180 case 3:
6181 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6182 {
6183 /* For fistp, fbld, fild, fbstp. */
6184 if (i386_record_floats (gdbarch, &ir,
6185 I386_SAVE_FPU_REGS))
6186 return -1;
6187 }
6188 /* Fall through */
6189 default:
6190 if (record_full_arch_list_add_mem (addr64, 2))
6191 return -1;
6192 break;
6193 }
6194 break;
6195 }
6196 break;
6197 case 0x0c:
6198 /* Insn fldenv. */
6199 if (i386_record_floats (gdbarch, &ir,
6200 I386_SAVE_FPU_ENV_REG_STACK))
6201 return -1;
6202 break;
6203 case 0x0d:
6204 /* Insn fldcw. */
6205 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6206 return -1;
6207 break;
6208 case 0x2c:
6209 /* Insn frstor. */
6210 if (i386_record_floats (gdbarch, &ir,
6211 I386_SAVE_FPU_ENV_REG_STACK))
6212 return -1;
6213 break;
6214 case 0x0e:
6215 if (ir.dflag)
6216 {
6217 if (record_full_arch_list_add_mem (addr64, 28))
6218 return -1;
6219 }
6220 else
6221 {
6222 if (record_full_arch_list_add_mem (addr64, 14))
6223 return -1;
6224 }
6225 break;
6226 case 0x0f:
6227 case 0x2f:
6228 if (record_full_arch_list_add_mem (addr64, 2))
6229 return -1;
6230 /* Insn fstp, fbstp. */
6231 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6232 return -1;
6233 break;
6234 case 0x1f:
6235 case 0x3e:
6236 if (record_full_arch_list_add_mem (addr64, 10))
6237 return -1;
6238 break;
6239 case 0x2e:
6240 if (ir.dflag)
6241 {
6242 if (record_full_arch_list_add_mem (addr64, 28))
6243 return -1;
6244 addr64 += 28;
6245 }
6246 else
6247 {
6248 if (record_full_arch_list_add_mem (addr64, 14))
6249 return -1;
6250 addr64 += 14;
6251 }
6252 if (record_full_arch_list_add_mem (addr64, 80))
6253 return -1;
6254 /* Insn fsave. */
6255 if (i386_record_floats (gdbarch, &ir,
6256 I386_SAVE_FPU_ENV_REG_STACK))
6257 return -1;
6258 break;
6259 case 0x3f:
6260 if (record_full_arch_list_add_mem (addr64, 8))
6261 return -1;
6262 /* Insn fistp. */
6263 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6264 return -1;
6265 break;
6266 default:
6267 ir.addr -= 2;
6268 opcode = opcode << 8 | ir.modrm;
6269 goto no_support;
6270 break;
6271 }
6272 }
6273 /* Opcode is an extension of modR/M byte. */
6274 else
6275 {
6276 switch (opcode)
6277 {
6278 case 0xd8:
6279 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6280 return -1;
6281 break;
6282 case 0xd9:
6283 if (0x0c == (ir.modrm >> 4))
6284 {
6285 if ((ir.modrm & 0x0f) <= 7)
6286 {
6287 if (i386_record_floats (gdbarch, &ir,
6288 I386_SAVE_FPU_REGS))
6289 return -1;
6290 }
6291 else
6292 {
6293 if (i386_record_floats (gdbarch, &ir,
6294 I387_ST0_REGNUM (tdep)))
6295 return -1;
6296 /* If only st(0) is changing, then we have already
6297 recorded. */
6298 if ((ir.modrm & 0x0f) - 0x08)
6299 {
6300 if (i386_record_floats (gdbarch, &ir,
6301 I387_ST0_REGNUM (tdep) +
6302 ((ir.modrm & 0x0f) - 0x08)))
6303 return -1;
6304 }
6305 }
6306 }
6307 else
6308 {
6309 switch (ir.modrm)
6310 {
6311 case 0xe0:
6312 case 0xe1:
6313 case 0xf0:
6314 case 0xf5:
6315 case 0xf8:
6316 case 0xfa:
6317 case 0xfc:
6318 case 0xfe:
6319 case 0xff:
6320 if (i386_record_floats (gdbarch, &ir,
6321 I387_ST0_REGNUM (tdep)))
6322 return -1;
6323 break;
6324 case 0xf1:
6325 case 0xf2:
6326 case 0xf3:
6327 case 0xf4:
6328 case 0xf6:
6329 case 0xf7:
6330 case 0xe8:
6331 case 0xe9:
6332 case 0xea:
6333 case 0xeb:
6334 case 0xec:
6335 case 0xed:
6336 case 0xee:
6337 case 0xf9:
6338 case 0xfb:
6339 if (i386_record_floats (gdbarch, &ir,
6340 I386_SAVE_FPU_REGS))
6341 return -1;
6342 break;
6343 case 0xfd:
6344 if (i386_record_floats (gdbarch, &ir,
6345 I387_ST0_REGNUM (tdep)))
6346 return -1;
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep) + 1))
6349 return -1;
6350 break;
6351 }
6352 }
6353 break;
6354 case 0xda:
6355 if (0xe9 == ir.modrm)
6356 {
6357 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6358 return -1;
6359 }
6360 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6361 {
6362 if (i386_record_floats (gdbarch, &ir,
6363 I387_ST0_REGNUM (tdep)))
6364 return -1;
6365 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6366 {
6367 if (i386_record_floats (gdbarch, &ir,
6368 I387_ST0_REGNUM (tdep) +
6369 (ir.modrm & 0x0f)))
6370 return -1;
6371 }
6372 else if ((ir.modrm & 0x0f) - 0x08)
6373 {
6374 if (i386_record_floats (gdbarch, &ir,
6375 I387_ST0_REGNUM (tdep) +
6376 ((ir.modrm & 0x0f) - 0x08)))
6377 return -1;
6378 }
6379 }
6380 break;
6381 case 0xdb:
6382 if (0xe3 == ir.modrm)
6383 {
6384 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6385 return -1;
6386 }
6387 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6388 {
6389 if (i386_record_floats (gdbarch, &ir,
6390 I387_ST0_REGNUM (tdep)))
6391 return -1;
6392 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 (ir.modrm & 0x0f)))
6397 return -1;
6398 }
6399 else if ((ir.modrm & 0x0f) - 0x08)
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 ((ir.modrm & 0x0f) - 0x08)))
6404 return -1;
6405 }
6406 }
6407 break;
6408 case 0xdc:
6409 if ((0x0c == ir.modrm >> 4)
6410 || (0x0d == ir.modrm >> 4)
6411 || (0x0f == ir.modrm >> 4))
6412 {
6413 if ((ir.modrm & 0x0f) <= 7)
6414 {
6415 if (i386_record_floats (gdbarch, &ir,
6416 I387_ST0_REGNUM (tdep) +
6417 (ir.modrm & 0x0f)))
6418 return -1;
6419 }
6420 else
6421 {
6422 if (i386_record_floats (gdbarch, &ir,
6423 I387_ST0_REGNUM (tdep) +
6424 ((ir.modrm & 0x0f) - 0x08)))
6425 return -1;
6426 }
6427 }
6428 break;
6429 case 0xdd:
6430 if (0x0c == ir.modrm >> 4)
6431 {
6432 if (i386_record_floats (gdbarch, &ir,
6433 I387_FTAG_REGNUM (tdep)))
6434 return -1;
6435 }
6436 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6437 {
6438 if ((ir.modrm & 0x0f) <= 7)
6439 {
6440 if (i386_record_floats (gdbarch, &ir,
6441 I387_ST0_REGNUM (tdep) +
6442 (ir.modrm & 0x0f)))
6443 return -1;
6444 }
6445 else
6446 {
6447 if (i386_record_floats (gdbarch, &ir,
6448 I386_SAVE_FPU_REGS))
6449 return -1;
6450 }
6451 }
6452 break;
6453 case 0xde:
6454 if ((0x0c == ir.modrm >> 4)
6455 || (0x0e == ir.modrm >> 4)
6456 || (0x0f == ir.modrm >> 4)
6457 || (0xd9 == ir.modrm))
6458 {
6459 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6460 return -1;
6461 }
6462 break;
6463 case 0xdf:
6464 if (0xe0 == ir.modrm)
6465 {
6466 if (record_full_arch_list_add_reg (ir.regcache,
6467 I386_EAX_REGNUM))
6468 return -1;
6469 }
6470 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6471 {
6472 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6473 return -1;
6474 }
6475 break;
6476 }
6477 }
6478 break;
6479 /* string ops */
6480 case 0xa4: /* movsS */
6481 case 0xa5:
6482 case 0xaa: /* stosS */
6483 case 0xab:
6484 case 0x6c: /* insS */
6485 case 0x6d:
6486 regcache_raw_read_unsigned (ir.regcache,
6487 ir.regmap[X86_RECORD_RECX_REGNUM],
6488 &addr);
6489 if (addr)
6490 {
6491 ULONGEST es, ds;
6492
6493 if ((opcode & 1) == 0)
6494 ir.ot = OT_BYTE;
6495 else
6496 ir.ot = ir.dflag + OT_WORD;
6497 regcache_raw_read_unsigned (ir.regcache,
6498 ir.regmap[X86_RECORD_REDI_REGNUM],
6499 &addr);
6500
6501 regcache_raw_read_unsigned (ir.regcache,
6502 ir.regmap[X86_RECORD_ES_REGNUM],
6503 &es);
6504 regcache_raw_read_unsigned (ir.regcache,
6505 ir.regmap[X86_RECORD_DS_REGNUM],
6506 &ds);
6507 if (ir.aflag && (es != ds))
6508 {
6509 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6510 if (record_full_memory_query)
6511 {
6512 if (yquery (_("\
6513 Process record ignores the memory change of instruction at address %s\n\
6514 because it can't get the value of the segment register.\n\
6515 Do you want to stop the program?"),
6516 paddress (gdbarch, ir.orig_addr)))
6517 return -1;
6518 }
6519 }
6520 else
6521 {
6522 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6523 return -1;
6524 }
6525
6526 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6528 if (opcode == 0xa4 || opcode == 0xa5)
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6532 }
6533 break;
6534
6535 case 0xa6: /* cmpsS */
6536 case 0xa7:
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6539 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6542 break;
6543
6544 case 0xac: /* lodsS */
6545 case 0xad:
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6548 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6551 break;
6552
6553 case 0xae: /* scasS */
6554 case 0xaf:
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6556 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6559 break;
6560
6561 case 0x6e: /* outsS */
6562 case 0x6f:
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6564 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6567 break;
6568
6569 case 0xe4: /* port I/O */
6570 case 0xe5:
6571 case 0xec:
6572 case 0xed:
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6575 break;
6576
6577 case 0xe6:
6578 case 0xe7:
6579 case 0xee:
6580 case 0xef:
6581 break;
6582
6583 /* control */
6584 case 0xc2: /* ret im */
6585 case 0xc3: /* ret */
6586 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6588 break;
6589
6590 case 0xca: /* lret im */
6591 case 0xcb: /* lret */
6592 case 0xcf: /* iret */
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6596 break;
6597
6598 case 0xe8: /* call im */
6599 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6600 ir.dflag = 2;
6601 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6602 return -1;
6603 break;
6604
6605 case 0x9a: /* lcall im */
6606 if (ir.regmap[X86_RECORD_R8_REGNUM])
6607 {
6608 ir.addr -= 1;
6609 goto no_support;
6610 }
6611 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6612 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6613 return -1;
6614 break;
6615
6616 case 0xe9: /* jmp im */
6617 case 0xea: /* ljmp im */
6618 case 0xeb: /* jmp Jb */
6619 case 0x70: /* jcc Jb */
6620 case 0x71:
6621 case 0x72:
6622 case 0x73:
6623 case 0x74:
6624 case 0x75:
6625 case 0x76:
6626 case 0x77:
6627 case 0x78:
6628 case 0x79:
6629 case 0x7a:
6630 case 0x7b:
6631 case 0x7c:
6632 case 0x7d:
6633 case 0x7e:
6634 case 0x7f:
6635 case 0x0f80: /* jcc Jv */
6636 case 0x0f81:
6637 case 0x0f82:
6638 case 0x0f83:
6639 case 0x0f84:
6640 case 0x0f85:
6641 case 0x0f86:
6642 case 0x0f87:
6643 case 0x0f88:
6644 case 0x0f89:
6645 case 0x0f8a:
6646 case 0x0f8b:
6647 case 0x0f8c:
6648 case 0x0f8d:
6649 case 0x0f8e:
6650 case 0x0f8f:
6651 break;
6652
6653 case 0x0f90: /* setcc Gv */
6654 case 0x0f91:
6655 case 0x0f92:
6656 case 0x0f93:
6657 case 0x0f94:
6658 case 0x0f95:
6659 case 0x0f96:
6660 case 0x0f97:
6661 case 0x0f98:
6662 case 0x0f99:
6663 case 0x0f9a:
6664 case 0x0f9b:
6665 case 0x0f9c:
6666 case 0x0f9d:
6667 case 0x0f9e:
6668 case 0x0f9f:
6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6670 ir.ot = OT_BYTE;
6671 if (i386_record_modrm (&ir))
6672 return -1;
6673 if (ir.mod == 3)
6674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6675 : (ir.rm & 0x3));
6676 else
6677 {
6678 if (i386_record_lea_modrm (&ir))
6679 return -1;
6680 }
6681 break;
6682
6683 case 0x0f40: /* cmov Gv, Ev */
6684 case 0x0f41:
6685 case 0x0f42:
6686 case 0x0f43:
6687 case 0x0f44:
6688 case 0x0f45:
6689 case 0x0f46:
6690 case 0x0f47:
6691 case 0x0f48:
6692 case 0x0f49:
6693 case 0x0f4a:
6694 case 0x0f4b:
6695 case 0x0f4c:
6696 case 0x0f4d:
6697 case 0x0f4e:
6698 case 0x0f4f:
6699 if (i386_record_modrm (&ir))
6700 return -1;
6701 ir.reg |= rex_r;
6702 if (ir.dflag == OT_BYTE)
6703 ir.reg &= 0x3;
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6705 break;
6706
6707 /* flags */
6708 case 0x9c: /* pushf */
6709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6710 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6711 ir.dflag = 2;
6712 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6713 return -1;
6714 break;
6715
6716 case 0x9d: /* popf */
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6719 break;
6720
6721 case 0x9e: /* sahf */
6722 if (ir.regmap[X86_RECORD_R8_REGNUM])
6723 {
6724 ir.addr -= 1;
6725 goto no_support;
6726 }
6727 /* FALLTHROUGH */
6728 case 0xf5: /* cmc */
6729 case 0xf8: /* clc */
6730 case 0xf9: /* stc */
6731 case 0xfc: /* cld */
6732 case 0xfd: /* std */
6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6734 break;
6735
6736 case 0x9f: /* lahf */
6737 if (ir.regmap[X86_RECORD_R8_REGNUM])
6738 {
6739 ir.addr -= 1;
6740 goto no_support;
6741 }
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6744 break;
6745
6746 /* bit operations */
6747 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6748 ir.ot = ir.dflag + OT_WORD;
6749 if (i386_record_modrm (&ir))
6750 return -1;
6751 if (ir.reg < 4)
6752 {
6753 ir.addr -= 2;
6754 opcode = opcode << 8 | ir.modrm;
6755 goto no_support;
6756 }
6757 if (ir.reg != 4)
6758 {
6759 if (ir.mod == 3)
6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6761 else
6762 {
6763 if (i386_record_lea_modrm (&ir))
6764 return -1;
6765 }
6766 }
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6768 break;
6769
6770 case 0x0fa3: /* bt Gv, Ev */
6771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6772 break;
6773
6774 case 0x0fab: /* bts */
6775 case 0x0fb3: /* btr */
6776 case 0x0fbb: /* btc */
6777 ir.ot = ir.dflag + OT_WORD;
6778 if (i386_record_modrm (&ir))
6779 return -1;
6780 if (ir.mod == 3)
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6782 else
6783 {
6784 uint64_t addr64;
6785 if (i386_record_lea_modrm_addr (&ir, &addr64))
6786 return -1;
6787 regcache_raw_read_unsigned (ir.regcache,
6788 ir.regmap[ir.reg | rex_r],
6789 &addr);
6790 switch (ir.dflag)
6791 {
6792 case 0:
6793 addr64 += ((int16_t) addr >> 4) << 4;
6794 break;
6795 case 1:
6796 addr64 += ((int32_t) addr >> 5) << 5;
6797 break;
6798 case 2:
6799 addr64 += ((int64_t) addr >> 6) << 6;
6800 break;
6801 }
6802 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6803 return -1;
6804 if (i386_record_lea_modrm (&ir))
6805 return -1;
6806 }
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6808 break;
6809
6810 case 0x0fbc: /* bsf */
6811 case 0x0fbd: /* bsr */
6812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6814 break;
6815
6816 /* bcd */
6817 case 0x27: /* daa */
6818 case 0x2f: /* das */
6819 case 0x37: /* aaa */
6820 case 0x3f: /* aas */
6821 case 0xd4: /* aam */
6822 case 0xd5: /* aad */
6823 if (ir.regmap[X86_RECORD_R8_REGNUM])
6824 {
6825 ir.addr -= 1;
6826 goto no_support;
6827 }
6828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6830 break;
6831
6832 /* misc */
6833 case 0x90: /* nop */
6834 if (prefixes & PREFIX_LOCK)
6835 {
6836 ir.addr -= 1;
6837 goto no_support;
6838 }
6839 break;
6840
6841 case 0x9b: /* fwait */
6842 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6843 return -1;
6844 opcode = (uint32_t) opcode8;
6845 ir.addr++;
6846 goto reswitch;
6847 break;
6848
6849 /* XXX */
6850 case 0xcc: /* int3 */
6851 printf_unfiltered (_("Process record does not support instruction "
6852 "int3.\n"));
6853 ir.addr -= 1;
6854 goto no_support;
6855 break;
6856
6857 /* XXX */
6858 case 0xcd: /* int */
6859 {
6860 int ret;
6861 uint8_t interrupt;
6862 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6863 return -1;
6864 ir.addr++;
6865 if (interrupt != 0x80
6866 || tdep->i386_intx80_record == NULL)
6867 {
6868 printf_unfiltered (_("Process record does not support "
6869 "instruction int 0x%02x.\n"),
6870 interrupt);
6871 ir.addr -= 2;
6872 goto no_support;
6873 }
6874 ret = tdep->i386_intx80_record (ir.regcache);
6875 if (ret)
6876 return ret;
6877 }
6878 break;
6879
6880 /* XXX */
6881 case 0xce: /* into */
6882 printf_unfiltered (_("Process record does not support "
6883 "instruction into.\n"));
6884 ir.addr -= 1;
6885 goto no_support;
6886 break;
6887
6888 case 0xfa: /* cli */
6889 case 0xfb: /* sti */
6890 break;
6891
6892 case 0x62: /* bound */
6893 printf_unfiltered (_("Process record does not support "
6894 "instruction bound.\n"));
6895 ir.addr -= 1;
6896 goto no_support;
6897 break;
6898
6899 case 0x0fc8: /* bswap reg */
6900 case 0x0fc9:
6901 case 0x0fca:
6902 case 0x0fcb:
6903 case 0x0fcc:
6904 case 0x0fcd:
6905 case 0x0fce:
6906 case 0x0fcf:
6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6908 break;
6909
6910 case 0xd6: /* salc */
6911 if (ir.regmap[X86_RECORD_R8_REGNUM])
6912 {
6913 ir.addr -= 1;
6914 goto no_support;
6915 }
6916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6917 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6918 break;
6919
6920 case 0xe0: /* loopnz */
6921 case 0xe1: /* loopz */
6922 case 0xe2: /* loop */
6923 case 0xe3: /* jecxz */
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6926 break;
6927
6928 case 0x0f30: /* wrmsr */
6929 printf_unfiltered (_("Process record does not support "
6930 "instruction wrmsr.\n"));
6931 ir.addr -= 2;
6932 goto no_support;
6933 break;
6934
6935 case 0x0f32: /* rdmsr */
6936 printf_unfiltered (_("Process record does not support "
6937 "instruction rdmsr.\n"));
6938 ir.addr -= 2;
6939 goto no_support;
6940 break;
6941
6942 case 0x0f31: /* rdtsc */
6943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6945 break;
6946
6947 case 0x0f34: /* sysenter */
6948 {
6949 int ret;
6950 if (ir.regmap[X86_RECORD_R8_REGNUM])
6951 {
6952 ir.addr -= 2;
6953 goto no_support;
6954 }
6955 if (tdep->i386_sysenter_record == NULL)
6956 {
6957 printf_unfiltered (_("Process record does not support "
6958 "instruction sysenter.\n"));
6959 ir.addr -= 2;
6960 goto no_support;
6961 }
6962 ret = tdep->i386_sysenter_record (ir.regcache);
6963 if (ret)
6964 return ret;
6965 }
6966 break;
6967
6968 case 0x0f35: /* sysexit */
6969 printf_unfiltered (_("Process record does not support "
6970 "instruction sysexit.\n"));
6971 ir.addr -= 2;
6972 goto no_support;
6973 break;
6974
6975 case 0x0f05: /* syscall */
6976 {
6977 int ret;
6978 if (tdep->i386_syscall_record == NULL)
6979 {
6980 printf_unfiltered (_("Process record does not support "
6981 "instruction syscall.\n"));
6982 ir.addr -= 2;
6983 goto no_support;
6984 }
6985 ret = tdep->i386_syscall_record (ir.regcache);
6986 if (ret)
6987 return ret;
6988 }
6989 break;
6990
6991 case 0x0f07: /* sysret */
6992 printf_unfiltered (_("Process record does not support "
6993 "instruction sysret.\n"));
6994 ir.addr -= 2;
6995 goto no_support;
6996 break;
6997
6998 case 0x0fa2: /* cpuid */
6999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7003 break;
7004
7005 case 0xf4: /* hlt */
7006 printf_unfiltered (_("Process record does not support "
7007 "instruction hlt.\n"));
7008 ir.addr -= 1;
7009 goto no_support;
7010 break;
7011
7012 case 0x0f00:
7013 if (i386_record_modrm (&ir))
7014 return -1;
7015 switch (ir.reg)
7016 {
7017 case 0: /* sldt */
7018 case 1: /* str */
7019 if (ir.mod == 3)
7020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7021 else
7022 {
7023 ir.ot = OT_WORD;
7024 if (i386_record_lea_modrm (&ir))
7025 return -1;
7026 }
7027 break;
7028 case 2: /* lldt */
7029 case 3: /* ltr */
7030 break;
7031 case 4: /* verr */
7032 case 5: /* verw */
7033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7034 break;
7035 default:
7036 ir.addr -= 3;
7037 opcode = opcode << 8 | ir.modrm;
7038 goto no_support;
7039 break;
7040 }
7041 break;
7042
7043 case 0x0f01:
7044 if (i386_record_modrm (&ir))
7045 return -1;
7046 switch (ir.reg)
7047 {
7048 case 0: /* sgdt */
7049 {
7050 uint64_t addr64;
7051
7052 if (ir.mod == 3)
7053 {
7054 ir.addr -= 3;
7055 opcode = opcode << 8 | ir.modrm;
7056 goto no_support;
7057 }
7058 if (ir.override >= 0)
7059 {
7060 if (record_full_memory_query)
7061 {
7062 if (yquery (_("\
7063 Process record ignores the memory change of instruction at address %s\n\
7064 because it can't get the value of the segment register.\n\
7065 Do you want to stop the program?"),
7066 paddress (gdbarch, ir.orig_addr)))
7067 return -1;
7068 }
7069 }
7070 else
7071 {
7072 if (i386_record_lea_modrm_addr (&ir, &addr64))
7073 return -1;
7074 if (record_full_arch_list_add_mem (addr64, 2))
7075 return -1;
7076 addr64 += 2;
7077 if (ir.regmap[X86_RECORD_R8_REGNUM])
7078 {
7079 if (record_full_arch_list_add_mem (addr64, 8))
7080 return -1;
7081 }
7082 else
7083 {
7084 if (record_full_arch_list_add_mem (addr64, 4))
7085 return -1;
7086 }
7087 }
7088 }
7089 break;
7090 case 1:
7091 if (ir.mod == 3)
7092 {
7093 switch (ir.rm)
7094 {
7095 case 0: /* monitor */
7096 break;
7097 case 1: /* mwait */
7098 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7099 break;
7100 default:
7101 ir.addr -= 3;
7102 opcode = opcode << 8 | ir.modrm;
7103 goto no_support;
7104 break;
7105 }
7106 }
7107 else
7108 {
7109 /* sidt */
7110 if (ir.override >= 0)
7111 {
7112 if (record_full_memory_query)
7113 {
7114 if (yquery (_("\
7115 Process record ignores the memory change of instruction at address %s\n\
7116 because it can't get the value of the segment register.\n\
7117 Do you want to stop the program?"),
7118 paddress (gdbarch, ir.orig_addr)))
7119 return -1;
7120 }
7121 }
7122 else
7123 {
7124 uint64_t addr64;
7125
7126 if (i386_record_lea_modrm_addr (&ir, &addr64))
7127 return -1;
7128 if (record_full_arch_list_add_mem (addr64, 2))
7129 return -1;
7130 addr64 += 2;
7131 if (ir.regmap[X86_RECORD_R8_REGNUM])
7132 {
7133 if (record_full_arch_list_add_mem (addr64, 8))
7134 return -1;
7135 }
7136 else
7137 {
7138 if (record_full_arch_list_add_mem (addr64, 4))
7139 return -1;
7140 }
7141 }
7142 }
7143 break;
7144 case 2: /* lgdt */
7145 if (ir.mod == 3)
7146 {
7147 /* xgetbv */
7148 if (ir.rm == 0)
7149 {
7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7152 break;
7153 }
7154 /* xsetbv */
7155 else if (ir.rm == 1)
7156 break;
7157 }
7158 /* Fall through. */
7159 case 3: /* lidt */
7160 if (ir.mod == 3)
7161 {
7162 ir.addr -= 3;
7163 opcode = opcode << 8 | ir.modrm;
7164 goto no_support;
7165 }
7166 break;
7167 case 4: /* smsw */
7168 if (ir.mod == 3)
7169 {
7170 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7171 return -1;
7172 }
7173 else
7174 {
7175 ir.ot = OT_WORD;
7176 if (i386_record_lea_modrm (&ir))
7177 return -1;
7178 }
7179 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7180 break;
7181 case 6: /* lmsw */
7182 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7183 break;
7184 case 7: /* invlpg */
7185 if (ir.mod == 3)
7186 {
7187 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7189 else
7190 {
7191 ir.addr -= 3;
7192 opcode = opcode << 8 | ir.modrm;
7193 goto no_support;
7194 }
7195 }
7196 else
7197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7198 break;
7199 default:
7200 ir.addr -= 3;
7201 opcode = opcode << 8 | ir.modrm;
7202 goto no_support;
7203 break;
7204 }
7205 break;
7206
7207 case 0x0f08: /* invd */
7208 case 0x0f09: /* wbinvd */
7209 break;
7210
7211 case 0x63: /* arpl */
7212 if (i386_record_modrm (&ir))
7213 return -1;
7214 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7215 {
7216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7217 ? (ir.reg | rex_r) : ir.rm);
7218 }
7219 else
7220 {
7221 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7222 if (i386_record_lea_modrm (&ir))
7223 return -1;
7224 }
7225 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7226 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7227 break;
7228
7229 case 0x0f02: /* lar */
7230 case 0x0f03: /* lsl */
7231 if (i386_record_modrm (&ir))
7232 return -1;
7233 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7235 break;
7236
7237 case 0x0f18:
7238 if (i386_record_modrm (&ir))
7239 return -1;
7240 if (ir.mod == 3 && ir.reg == 3)
7241 {
7242 ir.addr -= 3;
7243 opcode = opcode << 8 | ir.modrm;
7244 goto no_support;
7245 }
7246 break;
7247
7248 case 0x0f19:
7249 case 0x0f1a:
7250 case 0x0f1b:
7251 case 0x0f1c:
7252 case 0x0f1d:
7253 case 0x0f1e:
7254 case 0x0f1f:
7255 /* nop (multi byte) */
7256 break;
7257
7258 case 0x0f20: /* mov reg, crN */
7259 case 0x0f22: /* mov crN, reg */
7260 if (i386_record_modrm (&ir))
7261 return -1;
7262 if ((ir.modrm & 0xc0) != 0xc0)
7263 {
7264 ir.addr -= 3;
7265 opcode = opcode << 8 | ir.modrm;
7266 goto no_support;
7267 }
7268 switch (ir.reg)
7269 {
7270 case 0:
7271 case 2:
7272 case 3:
7273 case 4:
7274 case 8:
7275 if (opcode & 2)
7276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7277 else
7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7279 break;
7280 default:
7281 ir.addr -= 3;
7282 opcode = opcode << 8 | ir.modrm;
7283 goto no_support;
7284 break;
7285 }
7286 break;
7287
7288 case 0x0f21: /* mov reg, drN */
7289 case 0x0f23: /* mov drN, reg */
7290 if (i386_record_modrm (&ir))
7291 return -1;
7292 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7293 || ir.reg == 5 || ir.reg >= 8)
7294 {
7295 ir.addr -= 3;
7296 opcode = opcode << 8 | ir.modrm;
7297 goto no_support;
7298 }
7299 if (opcode & 2)
7300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7301 else
7302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7303 break;
7304
7305 case 0x0f06: /* clts */
7306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7307 break;
7308
7309 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7310
7311 case 0x0f0d: /* 3DNow! prefetch */
7312 break;
7313
7314 case 0x0f0e: /* 3DNow! femms */
7315 case 0x0f77: /* emms */
7316 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7317 goto no_support;
7318 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7319 break;
7320
7321 case 0x0f0f: /* 3DNow! data */
7322 if (i386_record_modrm (&ir))
7323 return -1;
7324 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7325 return -1;
7326 ir.addr++;
7327 switch (opcode8)
7328 {
7329 case 0x0c: /* 3DNow! pi2fw */
7330 case 0x0d: /* 3DNow! pi2fd */
7331 case 0x1c: /* 3DNow! pf2iw */
7332 case 0x1d: /* 3DNow! pf2id */
7333 case 0x8a: /* 3DNow! pfnacc */
7334 case 0x8e: /* 3DNow! pfpnacc */
7335 case 0x90: /* 3DNow! pfcmpge */
7336 case 0x94: /* 3DNow! pfmin */
7337 case 0x96: /* 3DNow! pfrcp */
7338 case 0x97: /* 3DNow! pfrsqrt */
7339 case 0x9a: /* 3DNow! pfsub */
7340 case 0x9e: /* 3DNow! pfadd */
7341 case 0xa0: /* 3DNow! pfcmpgt */
7342 case 0xa4: /* 3DNow! pfmax */
7343 case 0xa6: /* 3DNow! pfrcpit1 */
7344 case 0xa7: /* 3DNow! pfrsqit1 */
7345 case 0xaa: /* 3DNow! pfsubr */
7346 case 0xae: /* 3DNow! pfacc */
7347 case 0xb0: /* 3DNow! pfcmpeq */
7348 case 0xb4: /* 3DNow! pfmul */
7349 case 0xb6: /* 3DNow! pfrcpit2 */
7350 case 0xb7: /* 3DNow! pmulhrw */
7351 case 0xbb: /* 3DNow! pswapd */
7352 case 0xbf: /* 3DNow! pavgusb */
7353 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7354 goto no_support_3dnow_data;
7355 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7356 break;
7357
7358 default:
7359 no_support_3dnow_data:
7360 opcode = (opcode << 8) | opcode8;
7361 goto no_support;
7362 break;
7363 }
7364 break;
7365
7366 case 0x0faa: /* rsm */
7367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7376 break;
7377
7378 case 0x0fae:
7379 if (i386_record_modrm (&ir))
7380 return -1;
7381 switch(ir.reg)
7382 {
7383 case 0: /* fxsave */
7384 {
7385 uint64_t tmpu64;
7386
7387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7388 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7389 return -1;
7390 if (record_full_arch_list_add_mem (tmpu64, 512))
7391 return -1;
7392 }
7393 break;
7394
7395 case 1: /* fxrstor */
7396 {
7397 int i;
7398
7399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7400
7401 for (i = I387_MM0_REGNUM (tdep);
7402 i386_mmx_regnum_p (gdbarch, i); i++)
7403 record_full_arch_list_add_reg (ir.regcache, i);
7404
7405 for (i = I387_XMM0_REGNUM (tdep);
7406 i386_xmm_regnum_p (gdbarch, i); i++)
7407 record_full_arch_list_add_reg (ir.regcache, i);
7408
7409 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7410 record_full_arch_list_add_reg (ir.regcache,
7411 I387_MXCSR_REGNUM(tdep));
7412
7413 for (i = I387_ST0_REGNUM (tdep);
7414 i386_fp_regnum_p (gdbarch, i); i++)
7415 record_full_arch_list_add_reg (ir.regcache, i);
7416
7417 for (i = I387_FCTRL_REGNUM (tdep);
7418 i386_fpc_regnum_p (gdbarch, i); i++)
7419 record_full_arch_list_add_reg (ir.regcache, i);
7420 }
7421 break;
7422
7423 case 2: /* ldmxcsr */
7424 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7425 goto no_support;
7426 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7427 break;
7428
7429 case 3: /* stmxcsr */
7430 ir.ot = OT_LONG;
7431 if (i386_record_lea_modrm (&ir))
7432 return -1;
7433 break;
7434
7435 case 5: /* lfence */
7436 case 6: /* mfence */
7437 case 7: /* sfence clflush */
7438 break;
7439
7440 default:
7441 opcode = (opcode << 8) | ir.modrm;
7442 goto no_support;
7443 break;
7444 }
7445 break;
7446
7447 case 0x0fc3: /* movnti */
7448 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7449 if (i386_record_modrm (&ir))
7450 return -1;
7451 if (ir.mod == 3)
7452 goto no_support;
7453 ir.reg |= rex_r;
7454 if (i386_record_lea_modrm (&ir))
7455 return -1;
7456 break;
7457
7458 /* Add prefix to opcode. */
7459 case 0x0f10:
7460 case 0x0f11:
7461 case 0x0f12:
7462 case 0x0f13:
7463 case 0x0f14:
7464 case 0x0f15:
7465 case 0x0f16:
7466 case 0x0f17:
7467 case 0x0f28:
7468 case 0x0f29:
7469 case 0x0f2a:
7470 case 0x0f2b:
7471 case 0x0f2c:
7472 case 0x0f2d:
7473 case 0x0f2e:
7474 case 0x0f2f:
7475 case 0x0f38:
7476 case 0x0f39:
7477 case 0x0f3a:
7478 case 0x0f50:
7479 case 0x0f51:
7480 case 0x0f52:
7481 case 0x0f53:
7482 case 0x0f54:
7483 case 0x0f55:
7484 case 0x0f56:
7485 case 0x0f57:
7486 case 0x0f58:
7487 case 0x0f59:
7488 case 0x0f5a:
7489 case 0x0f5b:
7490 case 0x0f5c:
7491 case 0x0f5d:
7492 case 0x0f5e:
7493 case 0x0f5f:
7494 case 0x0f60:
7495 case 0x0f61:
7496 case 0x0f62:
7497 case 0x0f63:
7498 case 0x0f64:
7499 case 0x0f65:
7500 case 0x0f66:
7501 case 0x0f67:
7502 case 0x0f68:
7503 case 0x0f69:
7504 case 0x0f6a:
7505 case 0x0f6b:
7506 case 0x0f6c:
7507 case 0x0f6d:
7508 case 0x0f6e:
7509 case 0x0f6f:
7510 case 0x0f70:
7511 case 0x0f71:
7512 case 0x0f72:
7513 case 0x0f73:
7514 case 0x0f74:
7515 case 0x0f75:
7516 case 0x0f76:
7517 case 0x0f7c:
7518 case 0x0f7d:
7519 case 0x0f7e:
7520 case 0x0f7f:
7521 case 0x0fb8:
7522 case 0x0fc2:
7523 case 0x0fc4:
7524 case 0x0fc5:
7525 case 0x0fc6:
7526 case 0x0fd0:
7527 case 0x0fd1:
7528 case 0x0fd2:
7529 case 0x0fd3:
7530 case 0x0fd4:
7531 case 0x0fd5:
7532 case 0x0fd6:
7533 case 0x0fd7:
7534 case 0x0fd8:
7535 case 0x0fd9:
7536 case 0x0fda:
7537 case 0x0fdb:
7538 case 0x0fdc:
7539 case 0x0fdd:
7540 case 0x0fde:
7541 case 0x0fdf:
7542 case 0x0fe0:
7543 case 0x0fe1:
7544 case 0x0fe2:
7545 case 0x0fe3:
7546 case 0x0fe4:
7547 case 0x0fe5:
7548 case 0x0fe6:
7549 case 0x0fe7:
7550 case 0x0fe8:
7551 case 0x0fe9:
7552 case 0x0fea:
7553 case 0x0feb:
7554 case 0x0fec:
7555 case 0x0fed:
7556 case 0x0fee:
7557 case 0x0fef:
7558 case 0x0ff0:
7559 case 0x0ff1:
7560 case 0x0ff2:
7561 case 0x0ff3:
7562 case 0x0ff4:
7563 case 0x0ff5:
7564 case 0x0ff6:
7565 case 0x0ff7:
7566 case 0x0ff8:
7567 case 0x0ff9:
7568 case 0x0ffa:
7569 case 0x0ffb:
7570 case 0x0ffc:
7571 case 0x0ffd:
7572 case 0x0ffe:
7573 /* Mask out PREFIX_ADDR. */
7574 switch ((prefixes & ~PREFIX_ADDR))
7575 {
7576 case PREFIX_REPNZ:
7577 opcode |= 0xf20000;
7578 break;
7579 case PREFIX_DATA:
7580 opcode |= 0x660000;
7581 break;
7582 case PREFIX_REPZ:
7583 opcode |= 0xf30000;
7584 break;
7585 }
7586 reswitch_prefix_add:
7587 switch (opcode)
7588 {
7589 case 0x0f38:
7590 case 0x660f38:
7591 case 0xf20f38:
7592 case 0x0f3a:
7593 case 0x660f3a:
7594 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7595 return -1;
7596 ir.addr++;
7597 opcode = (uint32_t) opcode8 | opcode << 8;
7598 goto reswitch_prefix_add;
7599 break;
7600
7601 case 0x0f10: /* movups */
7602 case 0x660f10: /* movupd */
7603 case 0xf30f10: /* movss */
7604 case 0xf20f10: /* movsd */
7605 case 0x0f12: /* movlps */
7606 case 0x660f12: /* movlpd */
7607 case 0xf30f12: /* movsldup */
7608 case 0xf20f12: /* movddup */
7609 case 0x0f14: /* unpcklps */
7610 case 0x660f14: /* unpcklpd */
7611 case 0x0f15: /* unpckhps */
7612 case 0x660f15: /* unpckhpd */
7613 case 0x0f16: /* movhps */
7614 case 0x660f16: /* movhpd */
7615 case 0xf30f16: /* movshdup */
7616 case 0x0f28: /* movaps */
7617 case 0x660f28: /* movapd */
7618 case 0x0f2a: /* cvtpi2ps */
7619 case 0x660f2a: /* cvtpi2pd */
7620 case 0xf30f2a: /* cvtsi2ss */
7621 case 0xf20f2a: /* cvtsi2sd */
7622 case 0x0f2c: /* cvttps2pi */
7623 case 0x660f2c: /* cvttpd2pi */
7624 case 0x0f2d: /* cvtps2pi */
7625 case 0x660f2d: /* cvtpd2pi */
7626 case 0x660f3800: /* pshufb */
7627 case 0x660f3801: /* phaddw */
7628 case 0x660f3802: /* phaddd */
7629 case 0x660f3803: /* phaddsw */
7630 case 0x660f3804: /* pmaddubsw */
7631 case 0x660f3805: /* phsubw */
7632 case 0x660f3806: /* phsubd */
7633 case 0x660f3807: /* phsubsw */
7634 case 0x660f3808: /* psignb */
7635 case 0x660f3809: /* psignw */
7636 case 0x660f380a: /* psignd */
7637 case 0x660f380b: /* pmulhrsw */
7638 case 0x660f3810: /* pblendvb */
7639 case 0x660f3814: /* blendvps */
7640 case 0x660f3815: /* blendvpd */
7641 case 0x660f381c: /* pabsb */
7642 case 0x660f381d: /* pabsw */
7643 case 0x660f381e: /* pabsd */
7644 case 0x660f3820: /* pmovsxbw */
7645 case 0x660f3821: /* pmovsxbd */
7646 case 0x660f3822: /* pmovsxbq */
7647 case 0x660f3823: /* pmovsxwd */
7648 case 0x660f3824: /* pmovsxwq */
7649 case 0x660f3825: /* pmovsxdq */
7650 case 0x660f3828: /* pmuldq */
7651 case 0x660f3829: /* pcmpeqq */
7652 case 0x660f382a: /* movntdqa */
7653 case 0x660f3a08: /* roundps */
7654 case 0x660f3a09: /* roundpd */
7655 case 0x660f3a0a: /* roundss */
7656 case 0x660f3a0b: /* roundsd */
7657 case 0x660f3a0c: /* blendps */
7658 case 0x660f3a0d: /* blendpd */
7659 case 0x660f3a0e: /* pblendw */
7660 case 0x660f3a0f: /* palignr */
7661 case 0x660f3a20: /* pinsrb */
7662 case 0x660f3a21: /* insertps */
7663 case 0x660f3a22: /* pinsrd pinsrq */
7664 case 0x660f3a40: /* dpps */
7665 case 0x660f3a41: /* dppd */
7666 case 0x660f3a42: /* mpsadbw */
7667 case 0x660f3a60: /* pcmpestrm */
7668 case 0x660f3a61: /* pcmpestri */
7669 case 0x660f3a62: /* pcmpistrm */
7670 case 0x660f3a63: /* pcmpistri */
7671 case 0x0f51: /* sqrtps */
7672 case 0x660f51: /* sqrtpd */
7673 case 0xf20f51: /* sqrtsd */
7674 case 0xf30f51: /* sqrtss */
7675 case 0x0f52: /* rsqrtps */
7676 case 0xf30f52: /* rsqrtss */
7677 case 0x0f53: /* rcpps */
7678 case 0xf30f53: /* rcpss */
7679 case 0x0f54: /* andps */
7680 case 0x660f54: /* andpd */
7681 case 0x0f55: /* andnps */
7682 case 0x660f55: /* andnpd */
7683 case 0x0f56: /* orps */
7684 case 0x660f56: /* orpd */
7685 case 0x0f57: /* xorps */
7686 case 0x660f57: /* xorpd */
7687 case 0x0f58: /* addps */
7688 case 0x660f58: /* addpd */
7689 case 0xf20f58: /* addsd */
7690 case 0xf30f58: /* addss */
7691 case 0x0f59: /* mulps */
7692 case 0x660f59: /* mulpd */
7693 case 0xf20f59: /* mulsd */
7694 case 0xf30f59: /* mulss */
7695 case 0x0f5a: /* cvtps2pd */
7696 case 0x660f5a: /* cvtpd2ps */
7697 case 0xf20f5a: /* cvtsd2ss */
7698 case 0xf30f5a: /* cvtss2sd */
7699 case 0x0f5b: /* cvtdq2ps */
7700 case 0x660f5b: /* cvtps2dq */
7701 case 0xf30f5b: /* cvttps2dq */
7702 case 0x0f5c: /* subps */
7703 case 0x660f5c: /* subpd */
7704 case 0xf20f5c: /* subsd */
7705 case 0xf30f5c: /* subss */
7706 case 0x0f5d: /* minps */
7707 case 0x660f5d: /* minpd */
7708 case 0xf20f5d: /* minsd */
7709 case 0xf30f5d: /* minss */
7710 case 0x0f5e: /* divps */
7711 case 0x660f5e: /* divpd */
7712 case 0xf20f5e: /* divsd */
7713 case 0xf30f5e: /* divss */
7714 case 0x0f5f: /* maxps */
7715 case 0x660f5f: /* maxpd */
7716 case 0xf20f5f: /* maxsd */
7717 case 0xf30f5f: /* maxss */
7718 case 0x660f60: /* punpcklbw */
7719 case 0x660f61: /* punpcklwd */
7720 case 0x660f62: /* punpckldq */
7721 case 0x660f63: /* packsswb */
7722 case 0x660f64: /* pcmpgtb */
7723 case 0x660f65: /* pcmpgtw */
7724 case 0x660f66: /* pcmpgtd */
7725 case 0x660f67: /* packuswb */
7726 case 0x660f68: /* punpckhbw */
7727 case 0x660f69: /* punpckhwd */
7728 case 0x660f6a: /* punpckhdq */
7729 case 0x660f6b: /* packssdw */
7730 case 0x660f6c: /* punpcklqdq */
7731 case 0x660f6d: /* punpckhqdq */
7732 case 0x660f6e: /* movd */
7733 case 0x660f6f: /* movdqa */
7734 case 0xf30f6f: /* movdqu */
7735 case 0x660f70: /* pshufd */
7736 case 0xf20f70: /* pshuflw */
7737 case 0xf30f70: /* pshufhw */
7738 case 0x660f74: /* pcmpeqb */
7739 case 0x660f75: /* pcmpeqw */
7740 case 0x660f76: /* pcmpeqd */
7741 case 0x660f7c: /* haddpd */
7742 case 0xf20f7c: /* haddps */
7743 case 0x660f7d: /* hsubpd */
7744 case 0xf20f7d: /* hsubps */
7745 case 0xf30f7e: /* movq */
7746 case 0x0fc2: /* cmpps */
7747 case 0x660fc2: /* cmppd */
7748 case 0xf20fc2: /* cmpsd */
7749 case 0xf30fc2: /* cmpss */
7750 case 0x660fc4: /* pinsrw */
7751 case 0x0fc6: /* shufps */
7752 case 0x660fc6: /* shufpd */
7753 case 0x660fd0: /* addsubpd */
7754 case 0xf20fd0: /* addsubps */
7755 case 0x660fd1: /* psrlw */
7756 case 0x660fd2: /* psrld */
7757 case 0x660fd3: /* psrlq */
7758 case 0x660fd4: /* paddq */
7759 case 0x660fd5: /* pmullw */
7760 case 0xf30fd6: /* movq2dq */
7761 case 0x660fd8: /* psubusb */
7762 case 0x660fd9: /* psubusw */
7763 case 0x660fda: /* pminub */
7764 case 0x660fdb: /* pand */
7765 case 0x660fdc: /* paddusb */
7766 case 0x660fdd: /* paddusw */
7767 case 0x660fde: /* pmaxub */
7768 case 0x660fdf: /* pandn */
7769 case 0x660fe0: /* pavgb */
7770 case 0x660fe1: /* psraw */
7771 case 0x660fe2: /* psrad */
7772 case 0x660fe3: /* pavgw */
7773 case 0x660fe4: /* pmulhuw */
7774 case 0x660fe5: /* pmulhw */
7775 case 0x660fe6: /* cvttpd2dq */
7776 case 0xf20fe6: /* cvtpd2dq */
7777 case 0xf30fe6: /* cvtdq2pd */
7778 case 0x660fe8: /* psubsb */
7779 case 0x660fe9: /* psubsw */
7780 case 0x660fea: /* pminsw */
7781 case 0x660feb: /* por */
7782 case 0x660fec: /* paddsb */
7783 case 0x660fed: /* paddsw */
7784 case 0x660fee: /* pmaxsw */
7785 case 0x660fef: /* pxor */
7786 case 0xf20ff0: /* lddqu */
7787 case 0x660ff1: /* psllw */
7788 case 0x660ff2: /* pslld */
7789 case 0x660ff3: /* psllq */
7790 case 0x660ff4: /* pmuludq */
7791 case 0x660ff5: /* pmaddwd */
7792 case 0x660ff6: /* psadbw */
7793 case 0x660ff8: /* psubb */
7794 case 0x660ff9: /* psubw */
7795 case 0x660ffa: /* psubd */
7796 case 0x660ffb: /* psubq */
7797 case 0x660ffc: /* paddb */
7798 case 0x660ffd: /* paddw */
7799 case 0x660ffe: /* paddd */
7800 if (i386_record_modrm (&ir))
7801 return -1;
7802 ir.reg |= rex_r;
7803 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7804 goto no_support;
7805 record_full_arch_list_add_reg (ir.regcache,
7806 I387_XMM0_REGNUM (tdep) + ir.reg);
7807 if ((opcode & 0xfffffffc) == 0x660f3a60)
7808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7809 break;
7810
7811 case 0x0f11: /* movups */
7812 case 0x660f11: /* movupd */
7813 case 0xf30f11: /* movss */
7814 case 0xf20f11: /* movsd */
7815 case 0x0f13: /* movlps */
7816 case 0x660f13: /* movlpd */
7817 case 0x0f17: /* movhps */
7818 case 0x660f17: /* movhpd */
7819 case 0x0f29: /* movaps */
7820 case 0x660f29: /* movapd */
7821 case 0x660f3a14: /* pextrb */
7822 case 0x660f3a15: /* pextrw */
7823 case 0x660f3a16: /* pextrd pextrq */
7824 case 0x660f3a17: /* extractps */
7825 case 0x660f7f: /* movdqa */
7826 case 0xf30f7f: /* movdqu */
7827 if (i386_record_modrm (&ir))
7828 return -1;
7829 if (ir.mod == 3)
7830 {
7831 if (opcode == 0x0f13 || opcode == 0x660f13
7832 || opcode == 0x0f17 || opcode == 0x660f17)
7833 goto no_support;
7834 ir.rm |= ir.rex_b;
7835 if (!i386_xmm_regnum_p (gdbarch,
7836 I387_XMM0_REGNUM (tdep) + ir.rm))
7837 goto no_support;
7838 record_full_arch_list_add_reg (ir.regcache,
7839 I387_XMM0_REGNUM (tdep) + ir.rm);
7840 }
7841 else
7842 {
7843 switch (opcode)
7844 {
7845 case 0x660f3a14:
7846 ir.ot = OT_BYTE;
7847 break;
7848 case 0x660f3a15:
7849 ir.ot = OT_WORD;
7850 break;
7851 case 0x660f3a16:
7852 ir.ot = OT_LONG;
7853 break;
7854 case 0x660f3a17:
7855 ir.ot = OT_QUAD;
7856 break;
7857 default:
7858 ir.ot = OT_DQUAD;
7859 break;
7860 }
7861 if (i386_record_lea_modrm (&ir))
7862 return -1;
7863 }
7864 break;
7865
7866 case 0x0f2b: /* movntps */
7867 case 0x660f2b: /* movntpd */
7868 case 0x0fe7: /* movntq */
7869 case 0x660fe7: /* movntdq */
7870 if (ir.mod == 3)
7871 goto no_support;
7872 if (opcode == 0x0fe7)
7873 ir.ot = OT_QUAD;
7874 else
7875 ir.ot = OT_DQUAD;
7876 if (i386_record_lea_modrm (&ir))
7877 return -1;
7878 break;
7879
7880 case 0xf30f2c: /* cvttss2si */
7881 case 0xf20f2c: /* cvttsd2si */
7882 case 0xf30f2d: /* cvtss2si */
7883 case 0xf20f2d: /* cvtsd2si */
7884 case 0xf20f38f0: /* crc32 */
7885 case 0xf20f38f1: /* crc32 */
7886 case 0x0f50: /* movmskps */
7887 case 0x660f50: /* movmskpd */
7888 case 0x0fc5: /* pextrw */
7889 case 0x660fc5: /* pextrw */
7890 case 0x0fd7: /* pmovmskb */
7891 case 0x660fd7: /* pmovmskb */
7892 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7893 break;
7894
7895 case 0x0f3800: /* pshufb */
7896 case 0x0f3801: /* phaddw */
7897 case 0x0f3802: /* phaddd */
7898 case 0x0f3803: /* phaddsw */
7899 case 0x0f3804: /* pmaddubsw */
7900 case 0x0f3805: /* phsubw */
7901 case 0x0f3806: /* phsubd */
7902 case 0x0f3807: /* phsubsw */
7903 case 0x0f3808: /* psignb */
7904 case 0x0f3809: /* psignw */
7905 case 0x0f380a: /* psignd */
7906 case 0x0f380b: /* pmulhrsw */
7907 case 0x0f381c: /* pabsb */
7908 case 0x0f381d: /* pabsw */
7909 case 0x0f381e: /* pabsd */
7910 case 0x0f382b: /* packusdw */
7911 case 0x0f3830: /* pmovzxbw */
7912 case 0x0f3831: /* pmovzxbd */
7913 case 0x0f3832: /* pmovzxbq */
7914 case 0x0f3833: /* pmovzxwd */
7915 case 0x0f3834: /* pmovzxwq */
7916 case 0x0f3835: /* pmovzxdq */
7917 case 0x0f3837: /* pcmpgtq */
7918 case 0x0f3838: /* pminsb */
7919 case 0x0f3839: /* pminsd */
7920 case 0x0f383a: /* pminuw */
7921 case 0x0f383b: /* pminud */
7922 case 0x0f383c: /* pmaxsb */
7923 case 0x0f383d: /* pmaxsd */
7924 case 0x0f383e: /* pmaxuw */
7925 case 0x0f383f: /* pmaxud */
7926 case 0x0f3840: /* pmulld */
7927 case 0x0f3841: /* phminposuw */
7928 case 0x0f3a0f: /* palignr */
7929 case 0x0f60: /* punpcklbw */
7930 case 0x0f61: /* punpcklwd */
7931 case 0x0f62: /* punpckldq */
7932 case 0x0f63: /* packsswb */
7933 case 0x0f64: /* pcmpgtb */
7934 case 0x0f65: /* pcmpgtw */
7935 case 0x0f66: /* pcmpgtd */
7936 case 0x0f67: /* packuswb */
7937 case 0x0f68: /* punpckhbw */
7938 case 0x0f69: /* punpckhwd */
7939 case 0x0f6a: /* punpckhdq */
7940 case 0x0f6b: /* packssdw */
7941 case 0x0f6e: /* movd */
7942 case 0x0f6f: /* movq */
7943 case 0x0f70: /* pshufw */
7944 case 0x0f74: /* pcmpeqb */
7945 case 0x0f75: /* pcmpeqw */
7946 case 0x0f76: /* pcmpeqd */
7947 case 0x0fc4: /* pinsrw */
7948 case 0x0fd1: /* psrlw */
7949 case 0x0fd2: /* psrld */
7950 case 0x0fd3: /* psrlq */
7951 case 0x0fd4: /* paddq */
7952 case 0x0fd5: /* pmullw */
7953 case 0xf20fd6: /* movdq2q */
7954 case 0x0fd8: /* psubusb */
7955 case 0x0fd9: /* psubusw */
7956 case 0x0fda: /* pminub */
7957 case 0x0fdb: /* pand */
7958 case 0x0fdc: /* paddusb */
7959 case 0x0fdd: /* paddusw */
7960 case 0x0fde: /* pmaxub */
7961 case 0x0fdf: /* pandn */
7962 case 0x0fe0: /* pavgb */
7963 case 0x0fe1: /* psraw */
7964 case 0x0fe2: /* psrad */
7965 case 0x0fe3: /* pavgw */
7966 case 0x0fe4: /* pmulhuw */
7967 case 0x0fe5: /* pmulhw */
7968 case 0x0fe8: /* psubsb */
7969 case 0x0fe9: /* psubsw */
7970 case 0x0fea: /* pminsw */
7971 case 0x0feb: /* por */
7972 case 0x0fec: /* paddsb */
7973 case 0x0fed: /* paddsw */
7974 case 0x0fee: /* pmaxsw */
7975 case 0x0fef: /* pxor */
7976 case 0x0ff1: /* psllw */
7977 case 0x0ff2: /* pslld */
7978 case 0x0ff3: /* psllq */
7979 case 0x0ff4: /* pmuludq */
7980 case 0x0ff5: /* pmaddwd */
7981 case 0x0ff6: /* psadbw */
7982 case 0x0ff8: /* psubb */
7983 case 0x0ff9: /* psubw */
7984 case 0x0ffa: /* psubd */
7985 case 0x0ffb: /* psubq */
7986 case 0x0ffc: /* paddb */
7987 case 0x0ffd: /* paddw */
7988 case 0x0ffe: /* paddd */
7989 if (i386_record_modrm (&ir))
7990 return -1;
7991 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7992 goto no_support;
7993 record_full_arch_list_add_reg (ir.regcache,
7994 I387_MM0_REGNUM (tdep) + ir.reg);
7995 break;
7996
7997 case 0x0f71: /* psllw */
7998 case 0x0f72: /* pslld */
7999 case 0x0f73: /* psllq */
8000 if (i386_record_modrm (&ir))
8001 return -1;
8002 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8003 goto no_support;
8004 record_full_arch_list_add_reg (ir.regcache,
8005 I387_MM0_REGNUM (tdep) + ir.rm);
8006 break;
8007
8008 case 0x660f71: /* psllw */
8009 case 0x660f72: /* pslld */
8010 case 0x660f73: /* psllq */
8011 if (i386_record_modrm (&ir))
8012 return -1;
8013 ir.rm |= ir.rex_b;
8014 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8015 goto no_support;
8016 record_full_arch_list_add_reg (ir.regcache,
8017 I387_XMM0_REGNUM (tdep) + ir.rm);
8018 break;
8019
8020 case 0x0f7e: /* movd */
8021 case 0x660f7e: /* movd */
8022 if (i386_record_modrm (&ir))
8023 return -1;
8024 if (ir.mod == 3)
8025 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8026 else
8027 {
8028 if (ir.dflag == 2)
8029 ir.ot = OT_QUAD;
8030 else
8031 ir.ot = OT_LONG;
8032 if (i386_record_lea_modrm (&ir))
8033 return -1;
8034 }
8035 break;
8036
8037 case 0x0f7f: /* movq */
8038 if (i386_record_modrm (&ir))
8039 return -1;
8040 if (ir.mod == 3)
8041 {
8042 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8043 goto no_support;
8044 record_full_arch_list_add_reg (ir.regcache,
8045 I387_MM0_REGNUM (tdep) + ir.rm);
8046 }
8047 else
8048 {
8049 ir.ot = OT_QUAD;
8050 if (i386_record_lea_modrm (&ir))
8051 return -1;
8052 }
8053 break;
8054
8055 case 0xf30fb8: /* popcnt */
8056 if (i386_record_modrm (&ir))
8057 return -1;
8058 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8059 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8060 break;
8061
8062 case 0x660fd6: /* movq */
8063 if (i386_record_modrm (&ir))
8064 return -1;
8065 if (ir.mod == 3)
8066 {
8067 ir.rm |= ir.rex_b;
8068 if (!i386_xmm_regnum_p (gdbarch,
8069 I387_XMM0_REGNUM (tdep) + ir.rm))
8070 goto no_support;
8071 record_full_arch_list_add_reg (ir.regcache,
8072 I387_XMM0_REGNUM (tdep) + ir.rm);
8073 }
8074 else
8075 {
8076 ir.ot = OT_QUAD;
8077 if (i386_record_lea_modrm (&ir))
8078 return -1;
8079 }
8080 break;
8081
8082 case 0x660f3817: /* ptest */
8083 case 0x0f2e: /* ucomiss */
8084 case 0x660f2e: /* ucomisd */
8085 case 0x0f2f: /* comiss */
8086 case 0x660f2f: /* comisd */
8087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8088 break;
8089
8090 case 0x0ff7: /* maskmovq */
8091 regcache_raw_read_unsigned (ir.regcache,
8092 ir.regmap[X86_RECORD_REDI_REGNUM],
8093 &addr);
8094 if (record_full_arch_list_add_mem (addr, 64))
8095 return -1;
8096 break;
8097
8098 case 0x660ff7: /* maskmovdqu */
8099 regcache_raw_read_unsigned (ir.regcache,
8100 ir.regmap[X86_RECORD_REDI_REGNUM],
8101 &addr);
8102 if (record_full_arch_list_add_mem (addr, 128))
8103 return -1;
8104 break;
8105
8106 default:
8107 goto no_support;
8108 break;
8109 }
8110 break;
8111
8112 default:
8113 goto no_support;
8114 break;
8115 }
8116
8117 /* In the future, maybe still need to deal with need_dasm. */
8118 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8119 if (record_full_arch_list_add_end ())
8120 return -1;
8121
8122 return 0;
8123
8124 no_support:
8125 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8126 "at address %s.\n"),
8127 (unsigned int) (opcode),
8128 paddress (gdbarch, ir.orig_addr));
8129 return -1;
8130 }
8131
8132 static const int i386_record_regmap[] =
8133 {
8134 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8135 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8136 0, 0, 0, 0, 0, 0, 0, 0,
8137 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8138 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8139 };
8140
8141 /* Check that the given address appears suitable for a fast
8142 tracepoint, which on x86-64 means that we need an instruction of at
8143 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8144 jump and not have to worry about program jumps to an address in the
8145 middle of the tracepoint jump. On x86, it may be possible to use
8146 4-byte jumps with a 2-byte offset to a trampoline located in the
8147 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8148 of instruction to replace, and 0 if not, plus an explanatory
8149 string. */
8150
8151 static int
8152 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8153 std::string *msg)
8154 {
8155 int len, jumplen;
8156
8157 /* Ask the target for the minimum instruction length supported. */
8158 jumplen = target_get_min_fast_tracepoint_insn_len ();
8159
8160 if (jumplen < 0)
8161 {
8162 /* If the target does not support the get_min_fast_tracepoint_insn_len
8163 operation, assume that fast tracepoints will always be implemented
8164 using 4-byte relative jumps on both x86 and x86-64. */
8165 jumplen = 5;
8166 }
8167 else if (jumplen == 0)
8168 {
8169 /* If the target does support get_min_fast_tracepoint_insn_len but
8170 returns zero, then the IPA has not loaded yet. In this case,
8171 we optimistically assume that truncated 2-byte relative jumps
8172 will be available on x86, and compensate later if this assumption
8173 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8174 jumps will always be used. */
8175 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8176 }
8177
8178 /* Check for fit. */
8179 len = gdb_insn_length (gdbarch, addr);
8180
8181 if (len < jumplen)
8182 {
8183 /* Return a bit of target-specific detail to add to the caller's
8184 generic failure message. */
8185 if (msg)
8186 *msg = string_printf (_("; instruction is only %d bytes long, "
8187 "need at least %d bytes for the jump"),
8188 len, jumplen);
8189 return 0;
8190 }
8191 else
8192 {
8193 if (msg)
8194 msg->clear ();
8195 return 1;
8196 }
8197 }
8198
8199 /* Return a floating-point format for a floating-point variable of
8200 length LEN in bits. If non-NULL, NAME is the name of its type.
8201 If no suitable type is found, return NULL. */
8202
8203 static const struct floatformat **
8204 i386_floatformat_for_type (struct gdbarch *gdbarch,
8205 const char *name, int len)
8206 {
8207 if (len == 128 && name)
8208 if (strcmp (name, "__float128") == 0
8209 || strcmp (name, "_Float128") == 0
8210 || strcmp (name, "complex _Float128") == 0
8211 || strcmp (name, "complex(kind=16)") == 0
8212 || strcmp (name, "real(kind=16)") == 0)
8213 return floatformats_ia64_quad;
8214
8215 return default_floatformat_for_type (gdbarch, name, len);
8216 }
8217
8218 static int
8219 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8220 struct tdesc_arch_data *tdesc_data)
8221 {
8222 const struct target_desc *tdesc = tdep->tdesc;
8223 const struct tdesc_feature *feature_core;
8224
8225 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8226 *feature_avx512, *feature_pkeys, *feature_segments;
8227 int i, num_regs, valid_p;
8228
8229 if (! tdesc_has_registers (tdesc))
8230 return 0;
8231
8232 /* Get core registers. */
8233 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8234 if (feature_core == NULL)
8235 return 0;
8236
8237 /* Get SSE registers. */
8238 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8239
8240 /* Try AVX registers. */
8241 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8242
8243 /* Try MPX registers. */
8244 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8245
8246 /* Try AVX512 registers. */
8247 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8248
8249 /* Try segment base registers. */
8250 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8251
8252 /* Try PKEYS */
8253 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8254
8255 valid_p = 1;
8256
8257 /* The XCR0 bits. */
8258 if (feature_avx512)
8259 {
8260 /* AVX512 register description requires AVX register description. */
8261 if (!feature_avx)
8262 return 0;
8263
8264 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8265
8266 /* It may have been set by OSABI initialization function. */
8267 if (tdep->k0_regnum < 0)
8268 {
8269 tdep->k_register_names = i386_k_names;
8270 tdep->k0_regnum = I386_K0_REGNUM;
8271 }
8272
8273 for (i = 0; i < I387_NUM_K_REGS; i++)
8274 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8275 tdep->k0_regnum + i,
8276 i386_k_names[i]);
8277
8278 if (tdep->num_zmm_regs == 0)
8279 {
8280 tdep->zmmh_register_names = i386_zmmh_names;
8281 tdep->num_zmm_regs = 8;
8282 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8283 }
8284
8285 for (i = 0; i < tdep->num_zmm_regs; i++)
8286 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8287 tdep->zmm0h_regnum + i,
8288 tdep->zmmh_register_names[i]);
8289
8290 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8292 tdep->xmm16_regnum + i,
8293 tdep->xmm_avx512_register_names[i]);
8294
8295 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8297 tdep->ymm16h_regnum + i,
8298 tdep->ymm16h_register_names[i]);
8299 }
8300 if (feature_avx)
8301 {
8302 /* AVX register description requires SSE register description. */
8303 if (!feature_sse)
8304 return 0;
8305
8306 if (!feature_avx512)
8307 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8308
8309 /* It may have been set by OSABI initialization function. */
8310 if (tdep->num_ymm_regs == 0)
8311 {
8312 tdep->ymmh_register_names = i386_ymmh_names;
8313 tdep->num_ymm_regs = 8;
8314 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8315 }
8316
8317 for (i = 0; i < tdep->num_ymm_regs; i++)
8318 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8319 tdep->ymm0h_regnum + i,
8320 tdep->ymmh_register_names[i]);
8321 }
8322 else if (feature_sse)
8323 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8324 else
8325 {
8326 tdep->xcr0 = X86_XSTATE_X87_MASK;
8327 tdep->num_xmm_regs = 0;
8328 }
8329
8330 num_regs = tdep->num_core_regs;
8331 for (i = 0; i < num_regs; i++)
8332 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8333 tdep->register_names[i]);
8334
8335 if (feature_sse)
8336 {
8337 /* Need to include %mxcsr, so add one. */
8338 num_regs += tdep->num_xmm_regs + 1;
8339 for (; i < num_regs; i++)
8340 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8341 tdep->register_names[i]);
8342 }
8343
8344 if (feature_mpx)
8345 {
8346 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8347
8348 if (tdep->bnd0r_regnum < 0)
8349 {
8350 tdep->mpx_register_names = i386_mpx_names;
8351 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8352 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8353 }
8354
8355 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8356 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8357 I387_BND0R_REGNUM (tdep) + i,
8358 tdep->mpx_register_names[i]);
8359 }
8360
8361 if (feature_segments)
8362 {
8363 if (tdep->fsbase_regnum < 0)
8364 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8365 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8366 tdep->fsbase_regnum, "fs_base");
8367 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8368 tdep->fsbase_regnum + 1, "gs_base");
8369 }
8370
8371 if (feature_pkeys)
8372 {
8373 tdep->xcr0 |= X86_XSTATE_PKRU;
8374 if (tdep->pkru_regnum < 0)
8375 {
8376 tdep->pkeys_register_names = i386_pkeys_names;
8377 tdep->pkru_regnum = I386_PKRU_REGNUM;
8378 tdep->num_pkeys_regs = 1;
8379 }
8380
8381 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8382 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8383 I387_PKRU_REGNUM (tdep) + i,
8384 tdep->pkeys_register_names[i]);
8385 }
8386
8387 return valid_p;
8388 }
8389
8390 \f
8391
8392 /* Implement the type_align gdbarch function. */
8393
8394 static ULONGEST
8395 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8396 {
8397 type = check_typedef (type);
8398
8399 if (gdbarch_ptr_bit (gdbarch) == 32)
8400 {
8401 if ((type->code () == TYPE_CODE_INT
8402 || type->code () == TYPE_CODE_FLT)
8403 && TYPE_LENGTH (type) > 4)
8404 return 4;
8405
8406 /* Handle x86's funny long double. */
8407 if (type->code () == TYPE_CODE_FLT
8408 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8409 return 4;
8410 }
8411
8412 return 0;
8413 }
8414
8415 \f
8416 /* Note: This is called for both i386 and amd64. */
8417
8418 static struct gdbarch *
8419 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8420 {
8421 struct gdbarch_tdep *tdep;
8422 struct gdbarch *gdbarch;
8423 struct tdesc_arch_data *tdesc_data;
8424 const struct target_desc *tdesc;
8425 int mm0_regnum;
8426 int ymm0_regnum;
8427 int bnd0_regnum;
8428 int num_bnd_cooked;
8429
8430 /* If there is already a candidate, use it. */
8431 arches = gdbarch_list_lookup_by_info (arches, &info);
8432 if (arches != NULL)
8433 return arches->gdbarch;
8434
8435 /* Allocate space for the new architecture. Assume i386 for now. */
8436 tdep = XCNEW (struct gdbarch_tdep);
8437 gdbarch = gdbarch_alloc (&info, tdep);
8438
8439 /* General-purpose registers. */
8440 tdep->gregset_reg_offset = NULL;
8441 tdep->gregset_num_regs = I386_NUM_GREGS;
8442 tdep->sizeof_gregset = 0;
8443
8444 /* Floating-point registers. */
8445 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8446 tdep->fpregset = &i386_fpregset;
8447
8448 /* The default settings include the FPU registers, the MMX registers
8449 and the SSE registers. This can be overridden for a specific ABI
8450 by adjusting the members `st0_regnum', `mm0_regnum' and
8451 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8452 will show up in the output of "info all-registers". */
8453
8454 tdep->st0_regnum = I386_ST0_REGNUM;
8455
8456 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8457 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8458
8459 tdep->jb_pc_offset = -1;
8460 tdep->struct_return = pcc_struct_return;
8461 tdep->sigtramp_start = 0;
8462 tdep->sigtramp_end = 0;
8463 tdep->sigtramp_p = i386_sigtramp_p;
8464 tdep->sigcontext_addr = NULL;
8465 tdep->sc_reg_offset = NULL;
8466 tdep->sc_pc_offset = -1;
8467 tdep->sc_sp_offset = -1;
8468
8469 tdep->xsave_xcr0_offset = -1;
8470
8471 tdep->record_regmap = i386_record_regmap;
8472
8473 set_gdbarch_type_align (gdbarch, i386_type_align);
8474
8475 /* The format used for `long double' on almost all i386 targets is
8476 the i387 extended floating-point format. In fact, of all targets
8477 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8478 on having a `long double' that's not `long' at all. */
8479 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8480
8481 /* Although the i387 extended floating-point has only 80 significant
8482 bits, a `long double' actually takes up 96, probably to enforce
8483 alignment. */
8484 set_gdbarch_long_double_bit (gdbarch, 96);
8485
8486 /* Support for floating-point data type variants. */
8487 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8488
8489 /* Register numbers of various important registers. */
8490 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8491 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8492 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8493 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8494
8495 /* NOTE: kettenis/20040418: GCC does have two possible register
8496 numbering schemes on the i386: dbx and SVR4. These schemes
8497 differ in how they number %ebp, %esp, %eflags, and the
8498 floating-point registers, and are implemented by the arrays
8499 dbx_register_map[] and svr4_dbx_register_map in
8500 gcc/config/i386.c. GCC also defines a third numbering scheme in
8501 gcc/config/i386.c, which it designates as the "default" register
8502 map used in 64bit mode. This last register numbering scheme is
8503 implemented in dbx64_register_map, and is used for AMD64; see
8504 amd64-tdep.c.
8505
8506 Currently, each GCC i386 target always uses the same register
8507 numbering scheme across all its supported debugging formats
8508 i.e. SDB (COFF), stabs and DWARF 2. This is because
8509 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8510 DBX_REGISTER_NUMBER macro which is defined by each target's
8511 respective config header in a manner independent of the requested
8512 output debugging format.
8513
8514 This does not match the arrangement below, which presumes that
8515 the SDB and stabs numbering schemes differ from the DWARF and
8516 DWARF 2 ones. The reason for this arrangement is that it is
8517 likely to get the numbering scheme for the target's
8518 default/native debug format right. For targets where GCC is the
8519 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8520 targets where the native toolchain uses a different numbering
8521 scheme for a particular debug format (stabs-in-ELF on Solaris)
8522 the defaults below will have to be overridden, like
8523 i386_elf_init_abi() does. */
8524
8525 /* Use the dbx register numbering scheme for stabs and COFF. */
8526 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8527 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8528
8529 /* Use the SVR4 register numbering scheme for DWARF 2. */
8530 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8531
8532 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8533 be in use on any of the supported i386 targets. */
8534
8535 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8536
8537 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8538
8539 /* Call dummy code. */
8540 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8541 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8542 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8543 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8544
8545 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8546 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8547 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8548
8549 set_gdbarch_return_value (gdbarch, i386_return_value);
8550
8551 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8552
8553 /* Stack grows downward. */
8554 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8555
8556 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8557 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8558
8559 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8560 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8561
8562 set_gdbarch_frame_args_skip (gdbarch, 8);
8563
8564 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8565
8566 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8567
8568 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8569
8570 /* Add the i386 register groups. */
8571 i386_add_reggroups (gdbarch);
8572 tdep->register_reggroup_p = i386_register_reggroup_p;
8573
8574 /* Helper for function argument information. */
8575 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8576
8577 /* Hook the function epilogue frame unwinder. This unwinder is
8578 appended to the list first, so that it supercedes the DWARF
8579 unwinder in function epilogues (where the DWARF unwinder
8580 currently fails). */
8581 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8582
8583 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8584 to the list before the prologue-based unwinders, so that DWARF
8585 CFI info will be used if it is available. */
8586 dwarf2_append_unwinders (gdbarch);
8587
8588 frame_base_set_default (gdbarch, &i386_frame_base);
8589
8590 /* Pseudo registers may be changed by amd64_init_abi. */
8591 set_gdbarch_pseudo_register_read_value (gdbarch,
8592 i386_pseudo_register_read_value);
8593 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8594 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8595 i386_ax_pseudo_register_collect);
8596
8597 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8598 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8599
8600 /* Override the normal target description method to make the AVX
8601 upper halves anonymous. */
8602 set_gdbarch_register_name (gdbarch, i386_register_name);
8603
8604 /* Even though the default ABI only includes general-purpose registers,
8605 floating-point registers and the SSE registers, we have to leave a
8606 gap for the upper AVX, MPX and AVX512 registers. */
8607 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8608
8609 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8610
8611 /* Get the x86 target description from INFO. */
8612 tdesc = info.target_desc;
8613 if (! tdesc_has_registers (tdesc))
8614 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8615 tdep->tdesc = tdesc;
8616
8617 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8618 tdep->register_names = i386_register_names;
8619
8620 /* No upper YMM registers. */
8621 tdep->ymmh_register_names = NULL;
8622 tdep->ymm0h_regnum = -1;
8623
8624 /* No upper ZMM registers. */
8625 tdep->zmmh_register_names = NULL;
8626 tdep->zmm0h_regnum = -1;
8627
8628 /* No high XMM registers. */
8629 tdep->xmm_avx512_register_names = NULL;
8630 tdep->xmm16_regnum = -1;
8631
8632 /* No upper YMM16-31 registers. */
8633 tdep->ymm16h_register_names = NULL;
8634 tdep->ymm16h_regnum = -1;
8635
8636 tdep->num_byte_regs = 8;
8637 tdep->num_word_regs = 8;
8638 tdep->num_dword_regs = 0;
8639 tdep->num_mmx_regs = 8;
8640 tdep->num_ymm_regs = 0;
8641
8642 /* No MPX registers. */
8643 tdep->bnd0r_regnum = -1;
8644 tdep->bndcfgu_regnum = -1;
8645
8646 /* No AVX512 registers. */
8647 tdep->k0_regnum = -1;
8648 tdep->num_zmm_regs = 0;
8649 tdep->num_ymm_avx512_regs = 0;
8650 tdep->num_xmm_avx512_regs = 0;
8651
8652 /* No PKEYS registers */
8653 tdep->pkru_regnum = -1;
8654 tdep->num_pkeys_regs = 0;
8655
8656 /* No segment base registers. */
8657 tdep->fsbase_regnum = -1;
8658
8659 tdesc_data = tdesc_data_alloc ();
8660
8661 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8662
8663 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8664
8665 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8666 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8667 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8668
8669 /* Hook in ABI-specific overrides, if they have been registered.
8670 Note: If INFO specifies a 64 bit arch, this is where we turn
8671 a 32-bit i386 into a 64-bit amd64. */
8672 info.tdesc_data = tdesc_data;
8673 gdbarch_init_osabi (info, gdbarch);
8674
8675 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8676 {
8677 tdesc_data_cleanup (tdesc_data);
8678 xfree (tdep);
8679 gdbarch_free (gdbarch);
8680 return NULL;
8681 }
8682
8683 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8684
8685 /* Wire in pseudo registers. Number of pseudo registers may be
8686 changed. */
8687 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8688 + tdep->num_word_regs
8689 + tdep->num_dword_regs
8690 + tdep->num_mmx_regs
8691 + tdep->num_ymm_regs
8692 + num_bnd_cooked
8693 + tdep->num_ymm_avx512_regs
8694 + tdep->num_zmm_regs));
8695
8696 /* Target description may be changed. */
8697 tdesc = tdep->tdesc;
8698
8699 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8700
8701 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8702 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8703
8704 /* Make %al the first pseudo-register. */
8705 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8706 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8707
8708 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8709 if (tdep->num_dword_regs)
8710 {
8711 /* Support dword pseudo-register if it hasn't been disabled. */
8712 tdep->eax_regnum = ymm0_regnum;
8713 ymm0_regnum += tdep->num_dword_regs;
8714 }
8715 else
8716 tdep->eax_regnum = -1;
8717
8718 mm0_regnum = ymm0_regnum;
8719 if (tdep->num_ymm_regs)
8720 {
8721 /* Support YMM pseudo-register if it is available. */
8722 tdep->ymm0_regnum = ymm0_regnum;
8723 mm0_regnum += tdep->num_ymm_regs;
8724 }
8725 else
8726 tdep->ymm0_regnum = -1;
8727
8728 if (tdep->num_ymm_avx512_regs)
8729 {
8730 /* Support YMM16-31 pseudo registers if available. */
8731 tdep->ymm16_regnum = mm0_regnum;
8732 mm0_regnum += tdep->num_ymm_avx512_regs;
8733 }
8734 else
8735 tdep->ymm16_regnum = -1;
8736
8737 if (tdep->num_zmm_regs)
8738 {
8739 /* Support ZMM pseudo-register if it is available. */
8740 tdep->zmm0_regnum = mm0_regnum;
8741 mm0_regnum += tdep->num_zmm_regs;
8742 }
8743 else
8744 tdep->zmm0_regnum = -1;
8745
8746 bnd0_regnum = mm0_regnum;
8747 if (tdep->num_mmx_regs != 0)
8748 {
8749 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8750 tdep->mm0_regnum = mm0_regnum;
8751 bnd0_regnum += tdep->num_mmx_regs;
8752 }
8753 else
8754 tdep->mm0_regnum = -1;
8755
8756 if (tdep->bnd0r_regnum > 0)
8757 tdep->bnd0_regnum = bnd0_regnum;
8758 else
8759 tdep-> bnd0_regnum = -1;
8760
8761 /* Hook in the legacy prologue-based unwinders last (fallback). */
8762 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8763 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8764 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8765
8766 /* If we have a register mapping, enable the generic core file
8767 support, unless it has already been enabled. */
8768 if (tdep->gregset_reg_offset
8769 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8770 set_gdbarch_iterate_over_regset_sections
8771 (gdbarch, i386_iterate_over_regset_sections);
8772
8773 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8774 i386_fast_tracepoint_valid_at);
8775
8776 return gdbarch;
8777 }
8778
8779 \f
8780
8781 /* Return the target description for a specified XSAVE feature mask. */
8782
8783 const struct target_desc *
8784 i386_target_description (uint64_t xcr0, bool segments)
8785 {
8786 static target_desc *i386_tdescs \
8787 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8788 target_desc **tdesc;
8789
8790 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8791 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8792 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8793 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8794 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8795 [segments ? 1 : 0];
8796
8797 if (*tdesc == NULL)
8798 *tdesc = i386_create_target_description (xcr0, false, segments);
8799
8800 return *tdesc;
8801 }
8802
8803 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8804
8805 /* Find the bound directory base address. */
8806
8807 static unsigned long
8808 i386_mpx_bd_base (void)
8809 {
8810 struct regcache *rcache;
8811 struct gdbarch_tdep *tdep;
8812 ULONGEST ret;
8813 enum register_status regstatus;
8814
8815 rcache = get_current_regcache ();
8816 tdep = gdbarch_tdep (rcache->arch ());
8817
8818 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8819
8820 if (regstatus != REG_VALID)
8821 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8822
8823 return ret & MPX_BASE_MASK;
8824 }
8825
8826 int
8827 i386_mpx_enabled (void)
8828 {
8829 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8830 const struct target_desc *tdesc = tdep->tdesc;
8831
8832 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8833 }
8834
8835 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8836 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8837 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8838 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8839
8840 /* Find the bound table entry given the pointer location and the base
8841 address of the table. */
8842
8843 static CORE_ADDR
8844 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8845 {
8846 CORE_ADDR offset1;
8847 CORE_ADDR offset2;
8848 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8849 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8850 CORE_ADDR bd_entry_addr;
8851 CORE_ADDR bt_addr;
8852 CORE_ADDR bd_entry;
8853 struct gdbarch *gdbarch = get_current_arch ();
8854 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8855
8856
8857 if (gdbarch_ptr_bit (gdbarch) == 64)
8858 {
8859 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8860 bd_ptr_r_shift = 20;
8861 bd_ptr_l_shift = 3;
8862 bt_select_r_shift = 3;
8863 bt_select_l_shift = 5;
8864 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8865
8866 if ( sizeof (CORE_ADDR) == 4)
8867 error (_("bound table examination not supported\
8868 for 64-bit process with 32-bit GDB"));
8869 }
8870 else
8871 {
8872 mpx_bd_mask = MPX_BD_MASK_32;
8873 bd_ptr_r_shift = 12;
8874 bd_ptr_l_shift = 2;
8875 bt_select_r_shift = 2;
8876 bt_select_l_shift = 4;
8877 bt_mask = MPX_BT_MASK_32;
8878 }
8879
8880 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8881 bd_entry_addr = bd_base + offset1;
8882 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8883
8884 if ((bd_entry & 0x1) == 0)
8885 error (_("Invalid bounds directory entry at %s."),
8886 paddress (get_current_arch (), bd_entry_addr));
8887
8888 /* Clearing status bit. */
8889 bd_entry--;
8890 bt_addr = bd_entry & ~bt_select_r_shift;
8891 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8892
8893 return bt_addr + offset2;
8894 }
8895
8896 /* Print routine for the mpx bounds. */
8897
8898 static void
8899 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8900 {
8901 struct ui_out *uiout = current_uiout;
8902 LONGEST size;
8903 struct gdbarch *gdbarch = get_current_arch ();
8904 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8905 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8906
8907 if (bounds_in_map == 1)
8908 {
8909 uiout->text ("Null bounds on map:");
8910 uiout->text (" pointer value = ");
8911 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8912 uiout->text (".");
8913 uiout->text ("\n");
8914 }
8915 else
8916 {
8917 uiout->text ("{lbound = ");
8918 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8919 uiout->text (", ubound = ");
8920
8921 /* The upper bound is stored in 1's complement. */
8922 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8923 uiout->text ("}: pointer value = ");
8924 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8925
8926 if (gdbarch_ptr_bit (gdbarch) == 64)
8927 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8928 else
8929 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8930
8931 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8932 -1 represents in this sense full memory access, and there is no need
8933 one to the size. */
8934
8935 size = (size > -1 ? size + 1 : size);
8936 uiout->text (", size = ");
8937 uiout->field_string ("size", plongest (size));
8938
8939 uiout->text (", metadata = ");
8940 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8941 uiout->text ("\n");
8942 }
8943 }
8944
8945 /* Implement the command "show mpx bound". */
8946
8947 static void
8948 i386_mpx_info_bounds (const char *args, int from_tty)
8949 {
8950 CORE_ADDR bd_base = 0;
8951 CORE_ADDR addr;
8952 CORE_ADDR bt_entry_addr = 0;
8953 CORE_ADDR bt_entry[4];
8954 int i;
8955 struct gdbarch *gdbarch = get_current_arch ();
8956 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8957
8958 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8959 || !i386_mpx_enabled ())
8960 {
8961 printf_unfiltered (_("Intel Memory Protection Extensions not "
8962 "supported on this target.\n"));
8963 return;
8964 }
8965
8966 if (args == NULL)
8967 {
8968 printf_unfiltered (_("Address of pointer variable expected.\n"));
8969 return;
8970 }
8971
8972 addr = parse_and_eval_address (args);
8973
8974 bd_base = i386_mpx_bd_base ();
8975 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8976
8977 memset (bt_entry, 0, sizeof (bt_entry));
8978
8979 for (i = 0; i < 4; i++)
8980 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8981 + i * TYPE_LENGTH (data_ptr_type),
8982 data_ptr_type);
8983
8984 i386_mpx_print_bounds (bt_entry);
8985 }
8986
8987 /* Implement the command "set mpx bound". */
8988
8989 static void
8990 i386_mpx_set_bounds (const char *args, int from_tty)
8991 {
8992 CORE_ADDR bd_base = 0;
8993 CORE_ADDR addr, lower, upper;
8994 CORE_ADDR bt_entry_addr = 0;
8995 CORE_ADDR bt_entry[2];
8996 const char *input = args;
8997 int i;
8998 struct gdbarch *gdbarch = get_current_arch ();
8999 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9000 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9001
9002 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9003 || !i386_mpx_enabled ())
9004 error (_("Intel Memory Protection Extensions not supported\
9005 on this target."));
9006
9007 if (args == NULL)
9008 error (_("Pointer value expected."));
9009
9010 addr = value_as_address (parse_to_comma_and_eval (&input));
9011
9012 if (input[0] == ',')
9013 ++input;
9014 if (input[0] == '\0')
9015 error (_("wrong number of arguments: missing lower and upper bound."));
9016 lower = value_as_address (parse_to_comma_and_eval (&input));
9017
9018 if (input[0] == ',')
9019 ++input;
9020 if (input[0] == '\0')
9021 error (_("Wrong number of arguments; Missing upper bound."));
9022 upper = value_as_address (parse_to_comma_and_eval (&input));
9023
9024 bd_base = i386_mpx_bd_base ();
9025 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9026 for (i = 0; i < 2; i++)
9027 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9028 + i * TYPE_LENGTH (data_ptr_type),
9029 data_ptr_type);
9030 bt_entry[0] = (uint64_t) lower;
9031 bt_entry[1] = ~(uint64_t) upper;
9032
9033 for (i = 0; i < 2; i++)
9034 write_memory_unsigned_integer (bt_entry_addr
9035 + i * TYPE_LENGTH (data_ptr_type),
9036 TYPE_LENGTH (data_ptr_type), byte_order,
9037 bt_entry[i]);
9038 }
9039
9040 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9041
9042 void _initialize_i386_tdep ();
9043 void
9044 _initialize_i386_tdep ()
9045 {
9046 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9047
9048 /* Add the variable that controls the disassembly flavor. */
9049 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9050 &disassembly_flavor, _("\
9051 Set the disassembly flavor."), _("\
9052 Show the disassembly flavor."), _("\
9053 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9054 NULL,
9055 NULL, /* FIXME: i18n: */
9056 &setlist, &showlist);
9057
9058 /* Add the variable that controls the convention for returning
9059 structs. */
9060 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9061 &struct_convention, _("\
9062 Set the convention for returning small structs."), _("\
9063 Show the convention for returning small structs."), _("\
9064 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9065 is \"default\"."),
9066 NULL,
9067 NULL, /* FIXME: i18n: */
9068 &setlist, &showlist);
9069
9070 /* Add "mpx" prefix for the set commands. */
9071
9072 add_basic_prefix_cmd ("mpx", class_support, _("\
9073 Set Intel Memory Protection Extensions specific variables."),
9074 &mpx_set_cmdlist, "set mpx ",
9075 0 /* allow-unknown */, &setlist);
9076
9077 /* Add "mpx" prefix for the show commands. */
9078
9079 add_show_prefix_cmd ("mpx", class_support, _("\
9080 Show Intel Memory Protection Extensions specific variables."),
9081 &mpx_show_cmdlist, "show mpx ",
9082 0 /* allow-unknown */, &showlist);
9083
9084 /* Add "bound" command for the show mpx commands list. */
9085
9086 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9087 "Show the memory bounds for a given array/pointer storage\
9088 in the bound table.",
9089 &mpx_show_cmdlist);
9090
9091 /* Add "bound" command for the set mpx commands list. */
9092
9093 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9094 "Set the memory bounds for a given array/pointer storage\
9095 in the bound table.",
9096 &mpx_set_cmdlist);
9097
9098 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9099 i386_svr4_init_abi);
9100
9101 /* Initialize the i386-specific register groups. */
9102 i386_init_reggroups ();
9103
9104 /* Tell remote stub that we support XML target description. */
9105 register_remote_support_xml ("i386");
9106 }