]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ia64-linux-nat.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "ia64-tdep.h"
27 #include "linux-nat.h"
28
29 #include <signal.h>
30 #include "nat/gdb_ptrace.h"
31 #include "gdbsupport/gdb_wait.h"
32 #ifdef HAVE_SYS_REG_H
33 #include <sys/reg.h>
34 #endif
35 #include <sys/syscall.h>
36 #include <sys/user.h>
37
38 #include <asm/ptrace_offsets.h>
39 #include <sys/procfs.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43
44 #include "inf-ptrace.h"
45
46 class ia64_linux_nat_target final : public linux_nat_target
47 {
48 public:
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache *, int) override;
51 void store_registers (struct regcache *, int) override;
52
53 enum target_xfer_status xfer_partial (enum target_object object,
54 const char *annex,
55 gdb_byte *readbuf,
56 const gdb_byte *writebuf,
57 ULONGEST offset, ULONGEST len,
58 ULONGEST *xfered_len) override;
59
60 /* Override watchpoint routines. */
61
62 /* The IA-64 architecture can step over a watch point (without
63 triggering it again) if the "dd" (data debug fault disable) bit
64 in the processor status word is set.
65
66 This PSR bit is set in
67 ia64_linux_nat_target::stopped_by_watchpoint when the code there
68 has determined that a hardware watchpoint has indeed been hit.
69 The CPU will then be able to execute one instruction without
70 triggering a watchpoint. */
71 bool have_steppable_watchpoint () override { return true; }
72
73 int can_use_hw_breakpoint (enum bptype, int, int) override;
74 bool stopped_by_watchpoint () override;
75 bool stopped_data_address (CORE_ADDR *) override;
76 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
77 struct expression *) override;
78 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
79 struct expression *) override;
80 /* Override linux_nat_target low methods. */
81 void low_new_thread (struct lwp_info *lp) override;
82 bool low_status_is_event (int status) override;
83
84 void enable_watchpoints_in_psr (ptid_t ptid);
85 };
86
87 static ia64_linux_nat_target the_ia64_linux_nat_target;
88
89 /* These must match the order of the register names.
90
91 Some sort of lookup table is needed because the offsets associated
92 with the registers are all over the board. */
93
94 static int u_offsets[] =
95 {
96 /* general registers */
97 -1, /* gr0 not available; i.e, it's always zero. */
98 PT_R1,
99 PT_R2,
100 PT_R3,
101 PT_R4,
102 PT_R5,
103 PT_R6,
104 PT_R7,
105 PT_R8,
106 PT_R9,
107 PT_R10,
108 PT_R11,
109 PT_R12,
110 PT_R13,
111 PT_R14,
112 PT_R15,
113 PT_R16,
114 PT_R17,
115 PT_R18,
116 PT_R19,
117 PT_R20,
118 PT_R21,
119 PT_R22,
120 PT_R23,
121 PT_R24,
122 PT_R25,
123 PT_R26,
124 PT_R27,
125 PT_R28,
126 PT_R29,
127 PT_R30,
128 PT_R31,
129 /* gr32 through gr127 not directly available via the ptrace interface. */
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136 /* Floating point registers */
137 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
138 PT_F2,
139 PT_F3,
140 PT_F4,
141 PT_F5,
142 PT_F6,
143 PT_F7,
144 PT_F8,
145 PT_F9,
146 PT_F10,
147 PT_F11,
148 PT_F12,
149 PT_F13,
150 PT_F14,
151 PT_F15,
152 PT_F16,
153 PT_F17,
154 PT_F18,
155 PT_F19,
156 PT_F20,
157 PT_F21,
158 PT_F22,
159 PT_F23,
160 PT_F24,
161 PT_F25,
162 PT_F26,
163 PT_F27,
164 PT_F28,
165 PT_F29,
166 PT_F30,
167 PT_F31,
168 PT_F32,
169 PT_F33,
170 PT_F34,
171 PT_F35,
172 PT_F36,
173 PT_F37,
174 PT_F38,
175 PT_F39,
176 PT_F40,
177 PT_F41,
178 PT_F42,
179 PT_F43,
180 PT_F44,
181 PT_F45,
182 PT_F46,
183 PT_F47,
184 PT_F48,
185 PT_F49,
186 PT_F50,
187 PT_F51,
188 PT_F52,
189 PT_F53,
190 PT_F54,
191 PT_F55,
192 PT_F56,
193 PT_F57,
194 PT_F58,
195 PT_F59,
196 PT_F60,
197 PT_F61,
198 PT_F62,
199 PT_F63,
200 PT_F64,
201 PT_F65,
202 PT_F66,
203 PT_F67,
204 PT_F68,
205 PT_F69,
206 PT_F70,
207 PT_F71,
208 PT_F72,
209 PT_F73,
210 PT_F74,
211 PT_F75,
212 PT_F76,
213 PT_F77,
214 PT_F78,
215 PT_F79,
216 PT_F80,
217 PT_F81,
218 PT_F82,
219 PT_F83,
220 PT_F84,
221 PT_F85,
222 PT_F86,
223 PT_F87,
224 PT_F88,
225 PT_F89,
226 PT_F90,
227 PT_F91,
228 PT_F92,
229 PT_F93,
230 PT_F94,
231 PT_F95,
232 PT_F96,
233 PT_F97,
234 PT_F98,
235 PT_F99,
236 PT_F100,
237 PT_F101,
238 PT_F102,
239 PT_F103,
240 PT_F104,
241 PT_F105,
242 PT_F106,
243 PT_F107,
244 PT_F108,
245 PT_F109,
246 PT_F110,
247 PT_F111,
248 PT_F112,
249 PT_F113,
250 PT_F114,
251 PT_F115,
252 PT_F116,
253 PT_F117,
254 PT_F118,
255 PT_F119,
256 PT_F120,
257 PT_F121,
258 PT_F122,
259 PT_F123,
260 PT_F124,
261 PT_F125,
262 PT_F126,
263 PT_F127,
264 /* Predicate registers - we don't fetch these individually. */
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1,
273 /* branch registers */
274 PT_B0,
275 PT_B1,
276 PT_B2,
277 PT_B3,
278 PT_B4,
279 PT_B5,
280 PT_B6,
281 PT_B7,
282 /* Virtual frame pointer and virtual return address pointer. */
283 -1, -1,
284 /* other registers */
285 PT_PR,
286 PT_CR_IIP, /* ip */
287 PT_CR_IPSR, /* psr */
288 PT_CFM, /* cfm */
289 /* kernel registers not visible via ptrace interface (?) */
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 /* hole */
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 PT_AR_RSC,
294 PT_AR_BSP,
295 PT_AR_BSPSTORE,
296 PT_AR_RNAT,
297 -1,
298 -1, /* Not available: FCR, IA32 floating control register. */
299 -1, -1,
300 -1, /* Not available: EFLAG */
301 -1, /* Not available: CSD */
302 -1, /* Not available: SSD */
303 -1, /* Not available: CFLG */
304 -1, /* Not available: FSR */
305 -1, /* Not available: FIR */
306 -1, /* Not available: FDR */
307 -1,
308 PT_AR_CCV,
309 -1, -1, -1,
310 PT_AR_UNAT,
311 -1, -1, -1,
312 PT_AR_FPSR,
313 -1, -1, -1,
314 -1, /* Not available: ITC */
315 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
316 -1, -1, -1, -1, -1, -1, -1, -1, -1,
317 PT_AR_PFS,
318 PT_AR_LC,
319 PT_AR_EC,
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
326 -1,
327 /* nat bits - not fetched directly; instead we obtain these bits from
328 either rnat or unat or from memory. */
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 -1, -1, -1, -1, -1, -1, -1, -1,
344 -1, -1, -1, -1, -1, -1, -1, -1,
345 };
346
347 static CORE_ADDR
348 ia64_register_addr (struct gdbarch *gdbarch, int regno)
349 {
350 CORE_ADDR addr;
351
352 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
353 error (_("Invalid register number %d."), regno);
354
355 if (u_offsets[regno] == -1)
356 addr = 0;
357 else
358 addr = (CORE_ADDR) u_offsets[regno];
359
360 return addr;
361 }
362
363 static int
364 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
365 {
366 return regno < 0
367 || regno >= gdbarch_num_regs (gdbarch)
368 || u_offsets[regno] == -1;
369 }
370
371 static int
372 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
373 {
374 /* Rationale behind not permitting stores to bspstore...
375
376 The IA-64 architecture provides bspstore and bsp which refer
377 memory locations in the RSE's backing store. bspstore is the
378 next location which will be written when the RSE needs to write
379 to memory. bsp is the address at which r32 in the current frame
380 would be found if it were written to the backing store.
381
382 The IA-64 architecture provides read-only access to bsp and
383 read/write access to bspstore (but only when the RSE is in
384 the enforced lazy mode). It should be noted that stores
385 to bspstore also affect the value of bsp. Changing bspstore
386 does not affect the number of dirty entries between bspstore
387 and bsp, so changing bspstore by N words will also cause bsp
388 to be changed by (roughly) N as well. (It could be N-1 or N+1
389 depending upon where the NaT collection bits fall.)
390
391 OTOH, the Linux kernel provides read/write access to bsp (and
392 currently read/write access to bspstore as well). But it
393 is definitely the case that if you change one, the other
394 will change at the same time. It is more useful to gdb to
395 be able to change bsp. So in order to prevent strange and
396 undesirable things from happening when a dummy stack frame
397 is popped (after calling an inferior function), we allow
398 bspstore to be read, but not written. (Note that popping
399 a (generic) dummy stack frame causes all registers that
400 were previously read from the inferior process to be written
401 back.) */
402
403 return regno < 0
404 || regno >= gdbarch_num_regs (gdbarch)
405 || u_offsets[regno] == -1
406 || regno == IA64_BSPSTORE_REGNUM;
407 }
408
409 void
410 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
411 {
412 int regi;
413 const greg_t *regp = (const greg_t *) gregsetp;
414
415 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
416 {
417 regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
418 }
419
420 /* FIXME: NAT collection bits are at index 32; gotta deal with these
421 somehow... */
422
423 regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
424
425 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
426 {
427 regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
428 }
429
430 regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
431 regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
432 regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
433 regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
434 regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
435 regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
436 regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
437 regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
438 regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
439 regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
440 regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
441 regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
442 regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
443 }
444
445 void
446 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
447 {
448 int regi;
449 greg_t *regp = (greg_t *) gregsetp;
450
451 #define COPY_REG(_idx_,_regi_) \
452 if ((regno == -1) || regno == _regi_) \
453 regcache->raw_collect (_regi_, regp + _idx_)
454
455 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
456 {
457 COPY_REG (regi - IA64_GR0_REGNUM, regi);
458 }
459
460 /* FIXME: NAT collection bits at index 32? */
461
462 COPY_REG (33, IA64_PR_REGNUM);
463
464 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
465 {
466 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
467 }
468
469 COPY_REG (42, IA64_IP_REGNUM);
470 COPY_REG (43, IA64_CFM_REGNUM);
471 COPY_REG (44, IA64_PSR_REGNUM);
472 COPY_REG (45, IA64_RSC_REGNUM);
473 COPY_REG (46, IA64_BSP_REGNUM);
474 COPY_REG (47, IA64_BSPSTORE_REGNUM);
475 COPY_REG (48, IA64_RNAT_REGNUM);
476 COPY_REG (49, IA64_CCV_REGNUM);
477 COPY_REG (50, IA64_UNAT_REGNUM);
478 COPY_REG (51, IA64_FPSR_REGNUM);
479 COPY_REG (52, IA64_PFS_REGNUM);
480 COPY_REG (53, IA64_LC_REGNUM);
481 COPY_REG (54, IA64_EC_REGNUM);
482 }
483
484 /* Given a pointer to a floating point register set in /proc format
485 (fpregset_t *), unpack the register contents and supply them as gdb's
486 idea of the current floating point register values. */
487
488 void
489 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
490 {
491 int regi;
492 const char *from;
493 const gdb_byte f_zero[16] = { 0 };
494 const gdb_byte f_one[16] =
495 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
496
497 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
498 did the same. So ignore whatever might be recorded in fpregset_t
499 for fr0/fr1 and always supply their expected values. */
500
501 /* fr0 is always read as zero. */
502 regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
503 /* fr1 is always read as one (1.0). */
504 regcache->raw_supply (IA64_FR1_REGNUM, f_one);
505
506 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
507 {
508 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
509 regcache->raw_supply (regi, from);
510 }
511 }
512
513 /* Given a pointer to a floating point register set in /proc format
514 (fpregset_t *), update the register specified by REGNO from gdb's idea
515 of the current floating point register set. If REGNO is -1, update
516 them all. */
517
518 void
519 fill_fpregset (const struct regcache *regcache,
520 fpregset_t *fpregsetp, int regno)
521 {
522 int regi;
523
524 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
525 {
526 if ((regno == -1) || (regno == regi))
527 regcache->raw_collect (regi, &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
528 }
529 }
530
531 #define IA64_PSR_DB (1UL << 24)
532 #define IA64_PSR_DD (1UL << 39)
533
534 void
535 ia64_linux_nat_target::enable_watchpoints_in_psr (ptid_t ptid)
536 {
537 struct regcache *regcache = get_thread_regcache (this, ptid);
538 ULONGEST psr;
539
540 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
541 if (!(psr & IA64_PSR_DB))
542 {
543 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
544 watchpoints and breakpoints. */
545 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
546 }
547 }
548
549 static long debug_registers[8];
550
551 static void
552 store_debug_register (ptid_t ptid, int idx, long val)
553 {
554 int tid;
555
556 tid = ptid.lwp ();
557 if (tid == 0)
558 tid = ptid.pid ();
559
560 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
561 }
562
563 static void
564 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
565 long *dbr_mask)
566 {
567 if (dbr_addr)
568 store_debug_register (ptid, 2 * idx, *dbr_addr);
569 if (dbr_mask)
570 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
571 }
572
573 static int
574 is_power_of_2 (int val)
575 {
576 int i, onecount;
577
578 onecount = 0;
579 for (i = 0; i < 8 * sizeof (val); i++)
580 if (val & (1 << i))
581 onecount++;
582
583 return onecount <= 1;
584 }
585
586 int
587 ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
588 enum target_hw_bp_type type,
589 struct expression *cond)
590 {
591 struct lwp_info *lp;
592 int idx;
593 long dbr_addr, dbr_mask;
594 int max_watchpoints = 4;
595
596 if (len <= 0 || !is_power_of_2 (len))
597 return -1;
598
599 for (idx = 0; idx < max_watchpoints; idx++)
600 {
601 dbr_mask = debug_registers[idx * 2 + 1];
602 if ((dbr_mask & (0x3UL << 62)) == 0)
603 {
604 /* Exit loop if both r and w bits clear. */
605 break;
606 }
607 }
608
609 if (idx == max_watchpoints)
610 return -1;
611
612 dbr_addr = (long) addr;
613 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
614 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
615 switch (type)
616 {
617 case hw_write:
618 dbr_mask |= (1L << 62); /* Set w bit */
619 break;
620 case hw_read:
621 dbr_mask |= (1L << 63); /* Set r bit */
622 break;
623 case hw_access:
624 dbr_mask |= (3L << 62); /* Set both r and w bits */
625 break;
626 default:
627 return -1;
628 }
629
630 debug_registers[2 * idx] = dbr_addr;
631 debug_registers[2 * idx + 1] = dbr_mask;
632 ALL_LWPS (lp)
633 {
634 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
635 enable_watchpoints_in_psr (lp->ptid);
636 }
637
638 return 0;
639 }
640
641 int
642 ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
643 enum target_hw_bp_type type,
644 struct expression *cond)
645 {
646 int idx;
647 long dbr_addr, dbr_mask;
648 int max_watchpoints = 4;
649
650 if (len <= 0 || !is_power_of_2 (len))
651 return -1;
652
653 for (idx = 0; idx < max_watchpoints; idx++)
654 {
655 dbr_addr = debug_registers[2 * idx];
656 dbr_mask = debug_registers[2 * idx + 1];
657 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
658 {
659 struct lwp_info *lp;
660
661 debug_registers[2 * idx] = 0;
662 debug_registers[2 * idx + 1] = 0;
663 dbr_addr = 0;
664 dbr_mask = 0;
665
666 ALL_LWPS (lp)
667 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
668
669 return 0;
670 }
671 }
672 return -1;
673 }
674
675 void
676 ia64_linux_nat_target::low_new_thread (struct lwp_info *lp)
677 {
678 int i, any;
679
680 any = 0;
681 for (i = 0; i < 8; i++)
682 {
683 if (debug_registers[i] != 0)
684 any = 1;
685 store_debug_register (lp->ptid, i, debug_registers[i]);
686 }
687
688 if (any)
689 enable_watchpoints_in_psr (lp->ptid);
690 }
691
692 bool
693 ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
694 {
695 CORE_ADDR psr;
696 siginfo_t siginfo;
697 struct regcache *regcache = get_current_regcache ();
698
699 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
700 return false;
701
702 if (siginfo.si_signo != SIGTRAP
703 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
704 return false;
705
706 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
707 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
708 for the next instruction. */
709 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
710
711 *addr_p = (CORE_ADDR) siginfo.si_addr;
712 return true;
713 }
714
715 bool
716 ia64_linux_nat_target::stopped_by_watchpoint ()
717 {
718 CORE_ADDR addr;
719 return stopped_data_address (&addr);
720 }
721
722 int
723 ia64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
724 int cnt, int othertype)
725 {
726 return 1;
727 }
728
729
730 /* Fetch register REGNUM from the inferior. */
731
732 static void
733 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
734 {
735 struct gdbarch *gdbarch = regcache->arch ();
736 CORE_ADDR addr;
737 size_t size;
738 PTRACE_TYPE_RET *buf;
739 pid_t pid;
740 int i;
741
742 /* r0 cannot be fetched but is always zero. */
743 if (regnum == IA64_GR0_REGNUM)
744 {
745 const gdb_byte zero[8] = { 0 };
746
747 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
748 regcache->raw_supply (regnum, zero);
749 return;
750 }
751
752 /* fr0 cannot be fetched but is always zero. */
753 if (regnum == IA64_FR0_REGNUM)
754 {
755 const gdb_byte f_zero[16] = { 0 };
756
757 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
758 regcache->raw_supply (regnum, f_zero);
759 return;
760 }
761
762 /* fr1 cannot be fetched but is always one (1.0). */
763 if (regnum == IA64_FR1_REGNUM)
764 {
765 const gdb_byte f_one[16] =
766 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
767
768 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
769 regcache->raw_supply (regnum, f_one);
770 return;
771 }
772
773 if (ia64_cannot_fetch_register (gdbarch, regnum))
774 {
775 regcache->raw_supply (regnum, NULL);
776 return;
777 }
778
779 pid = get_ptrace_pid (regcache->ptid ());
780
781 /* This isn't really an address, but ptrace thinks of it as one. */
782 addr = ia64_register_addr (gdbarch, regnum);
783 size = register_size (gdbarch, regnum);
784
785 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
786 buf = (PTRACE_TYPE_RET *) alloca (size);
787
788 /* Read the register contents from the inferior a chunk at a time. */
789 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
790 {
791 errno = 0;
792 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
793 if (errno != 0)
794 error (_("Couldn't read register %s (#%d): %s."),
795 gdbarch_register_name (gdbarch, regnum),
796 regnum, safe_strerror (errno));
797
798 addr += sizeof (PTRACE_TYPE_RET);
799 }
800 regcache->raw_supply (regnum, buf);
801 }
802
803 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
804 for all registers. */
805
806 void
807 ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
808 {
809 if (regnum == -1)
810 for (regnum = 0;
811 regnum < gdbarch_num_regs (regcache->arch ());
812 regnum++)
813 ia64_linux_fetch_register (regcache, regnum);
814 else
815 ia64_linux_fetch_register (regcache, regnum);
816 }
817
818 /* Store register REGNUM into the inferior. */
819
820 static void
821 ia64_linux_store_register (const struct regcache *regcache, int regnum)
822 {
823 struct gdbarch *gdbarch = regcache->arch ();
824 CORE_ADDR addr;
825 size_t size;
826 PTRACE_TYPE_RET *buf;
827 pid_t pid;
828 int i;
829
830 if (ia64_cannot_store_register (gdbarch, regnum))
831 return;
832
833 pid = get_ptrace_pid (regcache->ptid ());
834
835 /* This isn't really an address, but ptrace thinks of it as one. */
836 addr = ia64_register_addr (gdbarch, regnum);
837 size = register_size (gdbarch, regnum);
838
839 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
840 buf = (PTRACE_TYPE_RET *) alloca (size);
841
842 /* Write the register contents into the inferior a chunk at a time. */
843 regcache->raw_collect (regnum, buf);
844 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
845 {
846 errno = 0;
847 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
848 if (errno != 0)
849 error (_("Couldn't write register %s (#%d): %s."),
850 gdbarch_register_name (gdbarch, regnum),
851 regnum, safe_strerror (errno));
852
853 addr += sizeof (PTRACE_TYPE_RET);
854 }
855 }
856
857 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
858 this for all registers. */
859
860 void
861 ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
862 {
863 if (regnum == -1)
864 for (regnum = 0;
865 regnum < gdbarch_num_regs (regcache->arch ());
866 regnum++)
867 ia64_linux_store_register (regcache, regnum);
868 else
869 ia64_linux_store_register (regcache, regnum);
870 }
871
872 /* Implement the xfer_partial target_ops method. */
873
874 enum target_xfer_status
875 ia64_linux_nat_target::xfer_partial (enum target_object object,
876 const char *annex,
877 gdb_byte *readbuf, const gdb_byte *writebuf,
878 ULONGEST offset, ULONGEST len,
879 ULONGEST *xfered_len)
880 {
881 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
882 {
883 static long gate_table_size;
884 gdb_byte *tmp_buf;
885 long res;
886
887 /* Probe for the table size once. */
888 if (gate_table_size == 0)
889 gate_table_size = syscall (__NR_getunwind, NULL, 0);
890 if (gate_table_size < 0)
891 return TARGET_XFER_E_IO;
892
893 if (offset >= gate_table_size)
894 return TARGET_XFER_EOF;
895
896 tmp_buf = (gdb_byte *) alloca (gate_table_size);
897 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
898 if (res < 0)
899 return TARGET_XFER_E_IO;
900 gdb_assert (res == gate_table_size);
901
902 if (offset + len > gate_table_size)
903 len = gate_table_size - offset;
904
905 memcpy (readbuf, tmp_buf + offset, len);
906 *xfered_len = len;
907 return TARGET_XFER_OK;
908 }
909
910 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
911 offset, len, xfered_len);
912 }
913
914 /* For break.b instruction ia64 CPU forgets the immediate value and generates
915 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
916 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
917 difference for the signals here. */
918
919 bool
920 ia64_linux_nat_target::low_status_is_event (int status)
921 {
922 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
923 || WSTOPSIG (status) == SIGILL);
924 }
925
926 void _initialize_ia64_linux_nat ();
927 void
928 _initialize_ia64_linux_nat ()
929 {
930 /* Register the target. */
931 linux_target = &the_ia64_linux_nat_target;
932 add_inf_child_target (&the_ia64_linux_nat_target);
933 }