]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infcall.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "f-lang.h"
37 #include "gdbthread.h"
38 #include "event-top.h"
39 #include "observable.h"
40 #include "top.h"
41 #include "interps.h"
42 #include "thread-fsm.h"
43 #include <algorithm>
44 #include "common/scope-exit.h"
45
46 /* If we can't find a function's name from its address,
47 we print this instead. */
48 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
49 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
50 + 2 * sizeof (CORE_ADDR))
51
52 /* NOTE: cagney/2003-04-16: What's the future of this code?
53
54 GDB needs an asynchronous expression evaluator, that means an
55 asynchronous inferior function call implementation, and that in
56 turn means restructuring the code so that it is event driven. */
57
58 /* How you should pass arguments to a function depends on whether it
59 was defined in K&R style or prototype style. If you define a
60 function using the K&R syntax that takes a `float' argument, then
61 callers must pass that argument as a `double'. If you define the
62 function using the prototype syntax, then you must pass the
63 argument as a `float', with no promotion.
64
65 Unfortunately, on certain older platforms, the debug info doesn't
66 indicate reliably how each function was defined. A function type's
67 TYPE_PROTOTYPED flag may be clear, even if the function was defined
68 in prototype style. When calling a function whose TYPE_PROTOTYPED
69 flag is clear, GDB consults this flag to decide what to do.
70
71 For modern targets, it is proper to assume that, if the prototype
72 flag is clear, that can be trusted: `float' arguments should be
73 promoted to `double'. For some older targets, if the prototype
74 flag is clear, that doesn't tell us anything. The default is to
75 trust the debug information; the user can override this behavior
76 with "set coerce-float-to-double 0". */
77
78 static int coerce_float_to_double_p = 1;
79 static void
80 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
81 struct cmd_list_element *c, const char *value)
82 {
83 fprintf_filtered (file,
84 _("Coercion of floats to doubles "
85 "when calling functions is %s.\n"),
86 value);
87 }
88
89 /* This boolean tells what gdb should do if a signal is received while
90 in a function called from gdb (call dummy). If set, gdb unwinds
91 the stack and restore the context to what as it was before the
92 call.
93
94 The default is to stop in the frame where the signal was received. */
95
96 static int unwind_on_signal_p = 0;
97 static void
98 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
99 struct cmd_list_element *c, const char *value)
100 {
101 fprintf_filtered (file,
102 _("Unwinding of stack if a signal is "
103 "received while in a call dummy is %s.\n"),
104 value);
105 }
106
107 /* This boolean tells what gdb should do if a std::terminate call is
108 made while in a function called from gdb (call dummy).
109 As the confines of a single dummy stack prohibit out-of-frame
110 handlers from handling a raised exception, and as out-of-frame
111 handlers are common in C++, this can lead to no handler being found
112 by the unwinder, and a std::terminate call. This is a false positive.
113 If set, gdb unwinds the stack and restores the context to what it
114 was before the call.
115
116 The default is to unwind the frame if a std::terminate call is
117 made. */
118
119 static int unwind_on_terminating_exception_p = 1;
120
121 static void
122 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c,
124 const char *value)
125
126 {
127 fprintf_filtered (file,
128 _("Unwind stack if a C++ exception is "
129 "unhandled while in a call dummy is %s.\n"),
130 value);
131 }
132
133 /* Perform the standard coercions that are specified
134 for arguments to be passed to C, Ada or Fortran functions.
135
136 If PARAM_TYPE is non-NULL, it is the expected parameter type.
137 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
138 SP is the stack pointer were additional data can be pushed (updating
139 its value as needed). */
140
141 static struct value *
142 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
143 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
144 {
145 const struct builtin_type *builtin = builtin_type (gdbarch);
146 struct type *arg_type = check_typedef (value_type (arg));
147 struct type *type
148 = param_type ? check_typedef (param_type) : arg_type;
149
150 /* Perform any Ada- and Fortran-specific coercion first. */
151 if (current_language->la_language == language_ada)
152 arg = ada_convert_actual (arg, type);
153 else if (current_language->la_language == language_fortran)
154 type = fortran_preserve_arg_pointer (arg, type);
155
156 /* Force the value to the target if we will need its address. At
157 this point, we could allocate arguments on the stack instead of
158 calling malloc if we knew that their addresses would not be
159 saved by the called function. */
160 arg = value_coerce_to_target (arg);
161
162 switch (TYPE_CODE (type))
163 {
164 case TYPE_CODE_REF:
165 case TYPE_CODE_RVALUE_REF:
166 {
167 struct value *new_value;
168
169 if (TYPE_IS_REFERENCE (arg_type))
170 return value_cast_pointers (type, arg, 0);
171
172 /* Cast the value to the reference's target type, and then
173 convert it back to a reference. This will issue an error
174 if the value was not previously in memory - in some cases
175 we should clearly be allowing this, but how? */
176 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
177 new_value = value_ref (new_value, TYPE_CODE (type));
178 return new_value;
179 }
180 case TYPE_CODE_INT:
181 case TYPE_CODE_CHAR:
182 case TYPE_CODE_BOOL:
183 case TYPE_CODE_ENUM:
184 /* If we don't have a prototype, coerce to integer type if necessary. */
185 if (!is_prototyped)
186 {
187 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
188 type = builtin->builtin_int;
189 }
190 /* Currently all target ABIs require at least the width of an integer
191 type for an argument. We may have to conditionalize the following
192 type coercion for future targets. */
193 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
194 type = builtin->builtin_int;
195 break;
196 case TYPE_CODE_FLT:
197 if (!is_prototyped && coerce_float_to_double_p)
198 {
199 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
200 type = builtin->builtin_double;
201 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
202 type = builtin->builtin_long_double;
203 }
204 break;
205 case TYPE_CODE_FUNC:
206 type = lookup_pointer_type (type);
207 break;
208 case TYPE_CODE_ARRAY:
209 /* Arrays are coerced to pointers to their first element, unless
210 they are vectors, in which case we want to leave them alone,
211 because they are passed by value. */
212 if (current_language->c_style_arrays)
213 if (!TYPE_VECTOR (type))
214 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
215 break;
216 case TYPE_CODE_UNDEF:
217 case TYPE_CODE_PTR:
218 case TYPE_CODE_STRUCT:
219 case TYPE_CODE_UNION:
220 case TYPE_CODE_VOID:
221 case TYPE_CODE_SET:
222 case TYPE_CODE_RANGE:
223 case TYPE_CODE_STRING:
224 case TYPE_CODE_ERROR:
225 case TYPE_CODE_MEMBERPTR:
226 case TYPE_CODE_METHODPTR:
227 case TYPE_CODE_METHOD:
228 case TYPE_CODE_COMPLEX:
229 default:
230 break;
231 }
232
233 return value_cast (type, arg);
234 }
235
236 /* See infcall.h. */
237
238 CORE_ADDR
239 find_function_addr (struct value *function,
240 struct type **retval_type,
241 struct type **function_type)
242 {
243 struct type *ftype = check_typedef (value_type (function));
244 struct gdbarch *gdbarch = get_type_arch (ftype);
245 struct type *value_type = NULL;
246 /* Initialize it just to avoid a GCC false warning. */
247 CORE_ADDR funaddr = 0;
248
249 /* If it's a member function, just look at the function
250 part of it. */
251
252 /* Determine address to call. */
253 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
254 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
255 funaddr = value_address (function);
256 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
257 {
258 funaddr = value_as_address (function);
259 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
260 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
261 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
262 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
263 current_top_target ());
264 }
265 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
266 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
267 {
268 if (TYPE_GNU_IFUNC (ftype))
269 {
270 CORE_ADDR resolver_addr = funaddr;
271
272 /* Resolve the ifunc. Note this may call the resolver
273 function in the inferior. */
274 funaddr = gnu_ifunc_resolve_addr (gdbarch, resolver_addr);
275
276 /* Skip querying the function symbol if no RETVAL_TYPE or
277 FUNCTION_TYPE have been asked for. */
278 if (retval_type != NULL || function_type != NULL)
279 {
280 type *target_ftype = find_function_type (funaddr);
281 /* If we don't have debug info for the target function,
282 see if we can instead extract the target function's
283 type from the type that the resolver returns. */
284 if (target_ftype == NULL)
285 target_ftype = find_gnu_ifunc_target_type (resolver_addr);
286 if (target_ftype != NULL)
287 {
288 value_type = TYPE_TARGET_TYPE (check_typedef (target_ftype));
289 ftype = target_ftype;
290 }
291 }
292 }
293 else
294 value_type = TYPE_TARGET_TYPE (ftype);
295 }
296 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
297 {
298 /* Handle the case of functions lacking debugging info.
299 Their values are characters since their addresses are char. */
300 if (TYPE_LENGTH (ftype) == 1)
301 funaddr = value_as_address (value_addr (function));
302 else
303 {
304 /* Handle function descriptors lacking debug info. */
305 int found_descriptor = 0;
306
307 funaddr = 0; /* pacify "gcc -Werror" */
308 if (VALUE_LVAL (function) == lval_memory)
309 {
310 CORE_ADDR nfunaddr;
311
312 funaddr = value_as_address (value_addr (function));
313 nfunaddr = funaddr;
314 funaddr
315 = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
316 current_top_target ());
317 if (funaddr != nfunaddr)
318 found_descriptor = 1;
319 }
320 if (!found_descriptor)
321 /* Handle integer used as address of a function. */
322 funaddr = (CORE_ADDR) value_as_long (function);
323 }
324 }
325 else
326 error (_("Invalid data type for function to be called."));
327
328 if (retval_type != NULL)
329 *retval_type = value_type;
330 if (function_type != NULL)
331 *function_type = ftype;
332 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
333 }
334
335 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
336 function returns to. */
337
338 static CORE_ADDR
339 push_dummy_code (struct gdbarch *gdbarch,
340 CORE_ADDR sp, CORE_ADDR funaddr,
341 gdb::array_view<value *> args,
342 struct type *value_type,
343 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
344 struct regcache *regcache)
345 {
346 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
347
348 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
349 args.data (), args.size (),
350 value_type, real_pc, bp_addr,
351 regcache);
352 }
353
354 /* See infcall.h. */
355
356 void
357 error_call_unknown_return_type (const char *func_name)
358 {
359 if (func_name != NULL)
360 error (_("'%s' has unknown return type; "
361 "cast the call to its declared return type"),
362 func_name);
363 else
364 error (_("function has unknown return type; "
365 "cast the call to its declared return type"));
366 }
367
368 /* Fetch the name of the function at FUNADDR.
369 This is used in printing an error message for call_function_by_hand.
370 BUF is used to print FUNADDR in hex if the function name cannot be
371 determined. It must be large enough to hold formatted result of
372 RAW_FUNCTION_ADDRESS_FORMAT. */
373
374 static const char *
375 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
376 {
377 {
378 struct symbol *symbol = find_pc_function (funaddr);
379
380 if (symbol)
381 return SYMBOL_PRINT_NAME (symbol);
382 }
383
384 {
385 /* Try the minimal symbols. */
386 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
387
388 if (msymbol.minsym)
389 return MSYMBOL_PRINT_NAME (msymbol.minsym);
390 }
391
392 {
393 std::string tmp = string_printf (_(RAW_FUNCTION_ADDRESS_FORMAT),
394 hex_string (funaddr));
395
396 gdb_assert (tmp.length () + 1 <= buf_size);
397 return strcpy (buf, tmp.c_str ());
398 }
399 }
400
401 /* All the meta data necessary to extract the call's return value. */
402
403 struct call_return_meta_info
404 {
405 /* The caller frame's architecture. */
406 struct gdbarch *gdbarch;
407
408 /* The called function. */
409 struct value *function;
410
411 /* The return value's type. */
412 struct type *value_type;
413
414 /* Are we returning a value using a structure return or a normal
415 value return? */
416 int struct_return_p;
417
418 /* If using a structure return, this is the structure's address. */
419 CORE_ADDR struct_addr;
420 };
421
422 /* Extract the called function's return value. */
423
424 static struct value *
425 get_call_return_value (struct call_return_meta_info *ri)
426 {
427 struct value *retval = NULL;
428 thread_info *thr = inferior_thread ();
429 bool stack_temporaries = thread_stack_temporaries_enabled_p (thr);
430
431 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
432 retval = allocate_value (ri->value_type);
433 else if (ri->struct_return_p)
434 {
435 if (stack_temporaries)
436 {
437 retval = value_from_contents_and_address (ri->value_type, NULL,
438 ri->struct_addr);
439 push_thread_stack_temporary (thr, retval);
440 }
441 else
442 {
443 retval = allocate_value (ri->value_type);
444 read_value_memory (retval, 0, 1, ri->struct_addr,
445 value_contents_raw (retval),
446 TYPE_LENGTH (ri->value_type));
447 }
448 }
449 else
450 {
451 retval = allocate_value (ri->value_type);
452 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
453 get_current_regcache (),
454 value_contents_raw (retval), NULL);
455 if (stack_temporaries && class_or_union_p (ri->value_type))
456 {
457 /* Values of class type returned in registers are copied onto
458 the stack and their lval_type set to lval_memory. This is
459 required because further evaluation of the expression
460 could potentially invoke methods on the return value
461 requiring GDB to evaluate the "this" pointer. To evaluate
462 the this pointer, GDB needs the memory address of the
463 value. */
464 value_force_lval (retval, ri->struct_addr);
465 push_thread_stack_temporary (thr, retval);
466 }
467 }
468
469 gdb_assert (retval != NULL);
470 return retval;
471 }
472
473 /* Data for the FSM that manages an infcall. It's main job is to
474 record the called function's return value. */
475
476 struct call_thread_fsm : public thread_fsm
477 {
478 /* All the info necessary to be able to extract the return
479 value. */
480 struct call_return_meta_info return_meta_info;
481
482 /* The called function's return value. This is extracted from the
483 target before the dummy frame is popped. */
484 struct value *return_value = nullptr;
485
486 /* The top level that started the infcall (and is synchronously
487 waiting for it to end). */
488 struct ui *waiting_ui;
489
490 call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
491 struct gdbarch *gdbarch, struct value *function,
492 struct type *value_type,
493 int struct_return_p, CORE_ADDR struct_addr);
494
495 bool should_stop (struct thread_info *thread) override;
496
497 bool should_notify_stop () override;
498 };
499
500 /* Allocate a new call_thread_fsm object. */
501
502 call_thread_fsm::call_thread_fsm (struct ui *waiting_ui,
503 struct interp *cmd_interp,
504 struct gdbarch *gdbarch,
505 struct value *function,
506 struct type *value_type,
507 int struct_return_p, CORE_ADDR struct_addr)
508 : thread_fsm (cmd_interp),
509 waiting_ui (waiting_ui)
510 {
511 return_meta_info.gdbarch = gdbarch;
512 return_meta_info.function = function;
513 return_meta_info.value_type = value_type;
514 return_meta_info.struct_return_p = struct_return_p;
515 return_meta_info.struct_addr = struct_addr;
516 }
517
518 /* Implementation of should_stop method for infcalls. */
519
520 bool
521 call_thread_fsm::should_stop (struct thread_info *thread)
522 {
523 if (stop_stack_dummy == STOP_STACK_DUMMY)
524 {
525 /* Done. */
526 set_finished ();
527
528 /* Stash the return value before the dummy frame is popped and
529 registers are restored to what they were before the
530 call.. */
531 return_value = get_call_return_value (&return_meta_info);
532
533 /* Break out of wait_sync_command_done. */
534 scoped_restore save_ui = make_scoped_restore (&current_ui, waiting_ui);
535 target_terminal::ours ();
536 waiting_ui->prompt_state = PROMPT_NEEDED;
537 }
538
539 return true;
540 }
541
542 /* Implementation of should_notify_stop method for infcalls. */
543
544 bool
545 call_thread_fsm::should_notify_stop ()
546 {
547 if (finished_p ())
548 {
549 /* Infcall succeeded. Be silent and proceed with evaluating the
550 expression. */
551 return false;
552 }
553
554 /* Something wrong happened. E.g., an unexpected breakpoint
555 triggered, or a signal was intercepted. Notify the stop. */
556 return true;
557 }
558
559 /* Subroutine of call_function_by_hand to simplify it.
560 Start up the inferior and wait for it to stop.
561 Return the exception if there's an error, or an exception with
562 reason >= 0 if there's no error.
563
564 This is done inside a TRY_CATCH so the caller needn't worry about
565 thrown errors. The caller should rethrow if there's an error. */
566
567 static struct gdb_exception
568 run_inferior_call (struct call_thread_fsm *sm,
569 struct thread_info *call_thread, CORE_ADDR real_pc)
570 {
571 struct gdb_exception caught_error = exception_none;
572 int saved_in_infcall = call_thread->control.in_infcall;
573 ptid_t call_thread_ptid = call_thread->ptid;
574 enum prompt_state saved_prompt_state = current_ui->prompt_state;
575 int was_running = call_thread->state == THREAD_RUNNING;
576 int saved_ui_async = current_ui->async;
577
578 /* Infcalls run synchronously, in the foreground. */
579 current_ui->prompt_state = PROMPT_BLOCKED;
580 /* So that we don't print the prompt prematurely in
581 fetch_inferior_event. */
582 current_ui->async = 0;
583
584 delete_file_handler (current_ui->input_fd);
585
586 call_thread->control.in_infcall = 1;
587
588 clear_proceed_status (0);
589
590 /* Associate the FSM with the thread after clear_proceed_status
591 (otherwise it'd clear this FSM), and before anything throws, so
592 we don't leak it (and any resources it manages). */
593 call_thread->thread_fsm = sm;
594
595 disable_watchpoints_before_interactive_call_start ();
596
597 /* We want to print return value, please... */
598 call_thread->control.proceed_to_finish = 1;
599
600 try
601 {
602 proceed (real_pc, GDB_SIGNAL_0);
603
604 /* Inferior function calls are always synchronous, even if the
605 target supports asynchronous execution. */
606 wait_sync_command_done ();
607 }
608 catch (const gdb_exception &e)
609 {
610 caught_error = e;
611 }
612
613 /* If GDB has the prompt blocked before, then ensure that it remains
614 so. normal_stop calls async_enable_stdin, so reset the prompt
615 state again here. In other cases, stdin will be re-enabled by
616 inferior_event_handler, when an exception is thrown. */
617 current_ui->prompt_state = saved_prompt_state;
618 if (current_ui->prompt_state == PROMPT_BLOCKED)
619 delete_file_handler (current_ui->input_fd);
620 else
621 ui_register_input_event_handler (current_ui);
622 current_ui->async = saved_ui_async;
623
624 /* If the infcall does NOT succeed, normal_stop will have already
625 finished the thread states. However, on success, normal_stop
626 defers here, so that we can set back the thread states to what
627 they were before the call. Note that we must also finish the
628 state of new threads that might have spawned while the call was
629 running. The main cases to handle are:
630
631 - "(gdb) print foo ()", or any other command that evaluates an
632 expression at the prompt. (The thread was marked stopped before.)
633
634 - "(gdb) break foo if return_false()" or similar cases where we
635 do an infcall while handling an event (while the thread is still
636 marked running). In this example, whether the condition
637 evaluates true and thus we'll present a user-visible stop is
638 decided elsewhere. */
639 if (!was_running
640 && call_thread_ptid == inferior_ptid
641 && stop_stack_dummy == STOP_STACK_DUMMY)
642 finish_thread_state (user_visible_resume_ptid (0));
643
644 enable_watchpoints_after_interactive_call_stop ();
645
646 /* Call breakpoint_auto_delete on the current contents of the bpstat
647 of inferior call thread.
648 If all error()s out of proceed ended up calling normal_stop
649 (and perhaps they should; it already does in the special case
650 of error out of resume()), then we wouldn't need this. */
651 if (caught_error.reason < 0)
652 {
653 if (call_thread->state != THREAD_EXITED)
654 breakpoint_auto_delete (call_thread->control.stop_bpstat);
655 }
656
657 call_thread->control.in_infcall = saved_in_infcall;
658
659 return caught_error;
660 }
661
662 /* See infcall.h. */
663
664 struct value *
665 call_function_by_hand (struct value *function,
666 type *default_return_type,
667 gdb::array_view<value *> args)
668 {
669 return call_function_by_hand_dummy (function, default_return_type,
670 args, NULL, NULL);
671 }
672
673 /* All this stuff with a dummy frame may seem unnecessarily complicated
674 (why not just save registers in GDB?). The purpose of pushing a dummy
675 frame which looks just like a real frame is so that if you call a
676 function and then hit a breakpoint (get a signal, etc), "backtrace"
677 will look right. Whether the backtrace needs to actually show the
678 stack at the time the inferior function was called is debatable, but
679 it certainly needs to not display garbage. So if you are contemplating
680 making dummy frames be different from normal frames, consider that. */
681
682 /* Perform a function call in the inferior.
683 ARGS is a vector of values of arguments (NARGS of them).
684 FUNCTION is a value, the function to be called.
685 Returns a value representing what the function returned.
686 May fail to return, if a breakpoint or signal is hit
687 during the execution of the function.
688
689 ARGS is modified to contain coerced values. */
690
691 struct value *
692 call_function_by_hand_dummy (struct value *function,
693 type *default_return_type,
694 gdb::array_view<value *> args,
695 dummy_frame_dtor_ftype *dummy_dtor,
696 void *dummy_dtor_data)
697 {
698 CORE_ADDR sp;
699 struct type *target_values_type;
700 function_call_return_method return_method = return_method_normal;
701 CORE_ADDR struct_addr = 0;
702 CORE_ADDR real_pc;
703 CORE_ADDR bp_addr;
704 struct frame_id dummy_id;
705 struct frame_info *frame;
706 struct gdbarch *gdbarch;
707 ptid_t call_thread_ptid;
708 struct gdb_exception e;
709 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
710
711 if (!target_has_execution)
712 noprocess ();
713
714 if (get_traceframe_number () >= 0)
715 error (_("May not call functions while looking at trace frames."));
716
717 if (execution_direction == EXEC_REVERSE)
718 error (_("Cannot call functions in reverse mode."));
719
720 /* We're going to run the target, and inspect the thread's state
721 afterwards. Hold a strong reference so that the pointer remains
722 valid even if the thread exits. */
723 thread_info_ref call_thread
724 = thread_info_ref::new_reference (inferior_thread ());
725
726 bool stack_temporaries = thread_stack_temporaries_enabled_p (call_thread.get ());
727
728 frame = get_current_frame ();
729 gdbarch = get_frame_arch (frame);
730
731 if (!gdbarch_push_dummy_call_p (gdbarch))
732 error (_("This target does not support function calls."));
733
734 /* A holder for the inferior status.
735 This is only needed while we're preparing the inferior function call. */
736 infcall_control_state_up inf_status (save_infcall_control_state ());
737
738 /* Save the caller's registers and other state associated with the
739 inferior itself so that they can be restored once the
740 callee returns. To allow nested calls the registers are (further
741 down) pushed onto a dummy frame stack. This unique pointer
742 is released once the regcache has been pushed). */
743 infcall_suspend_state_up caller_state (save_infcall_suspend_state ());
744
745 /* Ensure that the initial SP is correctly aligned. */
746 {
747 CORE_ADDR old_sp = get_frame_sp (frame);
748
749 if (gdbarch_frame_align_p (gdbarch))
750 {
751 sp = gdbarch_frame_align (gdbarch, old_sp);
752 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
753 ABIs, a function can use memory beyond the inner most stack
754 address. AMD64 called that region the "red zone". Skip at
755 least the "red zone" size before allocating any space on
756 the stack. */
757 if (gdbarch_inner_than (gdbarch, 1, 2))
758 sp -= gdbarch_frame_red_zone_size (gdbarch);
759 else
760 sp += gdbarch_frame_red_zone_size (gdbarch);
761 /* Still aligned? */
762 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
763 /* NOTE: cagney/2002-09-18:
764
765 On a RISC architecture, a void parameterless generic dummy
766 frame (i.e., no parameters, no result) typically does not
767 need to push anything the stack and hence can leave SP and
768 FP. Similarly, a frameless (possibly leaf) function does
769 not push anything on the stack and, hence, that too can
770 leave FP and SP unchanged. As a consequence, a sequence of
771 void parameterless generic dummy frame calls to frameless
772 functions will create a sequence of effectively identical
773 frames (SP, FP and TOS and PC the same). This, not
774 suprisingly, results in what appears to be a stack in an
775 infinite loop --- when GDB tries to find a generic dummy
776 frame on the internal dummy frame stack, it will always
777 find the first one.
778
779 To avoid this problem, the code below always grows the
780 stack. That way, two dummy frames can never be identical.
781 It does burn a few bytes of stack but that is a small price
782 to pay :-). */
783 if (sp == old_sp)
784 {
785 if (gdbarch_inner_than (gdbarch, 1, 2))
786 /* Stack grows down. */
787 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
788 else
789 /* Stack grows up. */
790 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
791 }
792 /* SP may have underflown address zero here from OLD_SP. Memory access
793 functions will probably fail in such case but that is a target's
794 problem. */
795 }
796 else
797 /* FIXME: cagney/2002-09-18: Hey, you loose!
798
799 Who knows how badly aligned the SP is!
800
801 If the generic dummy frame ends up empty (because nothing is
802 pushed) GDB won't be able to correctly perform back traces.
803 If a target is having trouble with backtraces, first thing to
804 do is add FRAME_ALIGN() to the architecture vector. If that
805 fails, try dummy_id().
806
807 If the ABI specifies a "Red Zone" (see the doco) the code
808 below will quietly trash it. */
809 sp = old_sp;
810
811 /* Skip over the stack temporaries that might have been generated during
812 the evaluation of an expression. */
813 if (stack_temporaries)
814 {
815 struct value *lastval;
816
817 lastval = get_last_thread_stack_temporary (call_thread.get ());
818 if (lastval != NULL)
819 {
820 CORE_ADDR lastval_addr = value_address (lastval);
821
822 if (gdbarch_inner_than (gdbarch, 1, 2))
823 {
824 gdb_assert (sp >= lastval_addr);
825 sp = lastval_addr;
826 }
827 else
828 {
829 gdb_assert (sp <= lastval_addr);
830 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
831 }
832
833 if (gdbarch_frame_align_p (gdbarch))
834 sp = gdbarch_frame_align (gdbarch, sp);
835 }
836 }
837 }
838
839 type *ftype;
840 type *values_type;
841 CORE_ADDR funaddr = find_function_addr (function, &values_type, &ftype);
842
843 if (values_type == NULL)
844 values_type = default_return_type;
845 if (values_type == NULL)
846 {
847 const char *name = get_function_name (funaddr,
848 name_buf, sizeof (name_buf));
849 error (_("'%s' has unknown return type; "
850 "cast the call to its declared return type"),
851 name);
852 }
853
854 values_type = check_typedef (values_type);
855
856 /* Are we returning a value using a structure return? */
857
858 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
859 {
860 return_method = return_method_hidden_param;
861
862 /* Tell the target specific argument pushing routine not to
863 expect a value. */
864 target_values_type = builtin_type (gdbarch)->builtin_void;
865 }
866 else
867 {
868 if (using_struct_return (gdbarch, function, values_type))
869 return_method = return_method_struct;
870 target_values_type = values_type;
871 }
872
873 gdb::observers::inferior_call_pre.notify (inferior_ptid, funaddr);
874
875 /* Determine the location of the breakpoint (and possibly other
876 stuff) that the called function will return to. The SPARC, for a
877 function returning a structure or union, needs to make space for
878 not just the breakpoint but also an extra word containing the
879 size (?) of the structure being passed. */
880
881 switch (gdbarch_call_dummy_location (gdbarch))
882 {
883 case ON_STACK:
884 {
885 const gdb_byte *bp_bytes;
886 CORE_ADDR bp_addr_as_address;
887 int bp_size;
888
889 /* Be careful BP_ADDR is in inferior PC encoding while
890 BP_ADDR_AS_ADDRESS is a plain memory address. */
891
892 sp = push_dummy_code (gdbarch, sp, funaddr, args,
893 target_values_type, &real_pc, &bp_addr,
894 get_current_regcache ());
895
896 /* Write a legitimate instruction at the point where the infcall
897 breakpoint is going to be inserted. While this instruction
898 is never going to be executed, a user investigating the
899 memory from GDB would see this instruction instead of random
900 uninitialized bytes. We chose the breakpoint instruction
901 as it may look as the most logical one to the user and also
902 valgrind 3.7.0 needs it for proper vgdb inferior calls.
903
904 If software breakpoints are unsupported for this target we
905 leave the user visible memory content uninitialized. */
906
907 bp_addr_as_address = bp_addr;
908 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
909 &bp_size);
910 if (bp_bytes != NULL)
911 write_memory (bp_addr_as_address, bp_bytes, bp_size);
912 }
913 break;
914 case AT_ENTRY_POINT:
915 {
916 CORE_ADDR dummy_addr;
917
918 real_pc = funaddr;
919 dummy_addr = entry_point_address ();
920
921 /* A call dummy always consists of just a single breakpoint, so
922 its address is the same as the address of the dummy.
923
924 The actual breakpoint is inserted separatly so there is no need to
925 write that out. */
926 bp_addr = dummy_addr;
927 break;
928 }
929 default:
930 internal_error (__FILE__, __LINE__, _("bad switch"));
931 }
932
933 if (args.size () < TYPE_NFIELDS (ftype))
934 error (_("Too few arguments in function call."));
935
936 for (int i = args.size () - 1; i >= 0; i--)
937 {
938 int prototyped;
939 struct type *param_type;
940
941 /* FIXME drow/2002-05-31: Should just always mark methods as
942 prototyped. Can we respect TYPE_VARARGS? Probably not. */
943 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
944 prototyped = 1;
945 if (TYPE_TARGET_TYPE (ftype) == NULL && TYPE_NFIELDS (ftype) == 0
946 && default_return_type != NULL)
947 {
948 /* Calling a no-debug function with the return type
949 explicitly cast. Assume the function is prototyped,
950 with a prototype matching the types of the arguments.
951 E.g., with:
952 float mult (float v1, float v2) { return v1 * v2; }
953 This:
954 (gdb) p (float) mult (2.0f, 3.0f)
955 Is a simpler alternative to:
956 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
957 */
958 prototyped = 1;
959 }
960 else if (i < TYPE_NFIELDS (ftype))
961 prototyped = TYPE_PROTOTYPED (ftype);
962 else
963 prototyped = 0;
964
965 if (i < TYPE_NFIELDS (ftype))
966 param_type = TYPE_FIELD_TYPE (ftype, i);
967 else
968 param_type = NULL;
969
970 args[i] = value_arg_coerce (gdbarch, args[i],
971 param_type, prototyped, &sp);
972
973 if (param_type != NULL && language_pass_by_reference (param_type))
974 args[i] = value_addr (args[i]);
975 }
976
977 /* Reserve space for the return structure to be written on the
978 stack, if necessary. Make certain that the value is correctly
979 aligned.
980
981 While evaluating expressions, we reserve space on the stack for
982 return values of class type even if the language ABI and the target
983 ABI do not require that the return value be passed as a hidden first
984 argument. This is because we want to store the return value as an
985 on-stack temporary while the expression is being evaluated. This
986 enables us to have chained function calls in expressions.
987
988 Keeping the return values as on-stack temporaries while the expression
989 is being evaluated is OK because the thread is stopped until the
990 expression is completely evaluated. */
991
992 if (return_method != return_method_normal
993 || (stack_temporaries && class_or_union_p (values_type)))
994 {
995 if (gdbarch_inner_than (gdbarch, 1, 2))
996 {
997 /* Stack grows downward. Align STRUCT_ADDR and SP after
998 making space for the return value. */
999 sp -= TYPE_LENGTH (values_type);
1000 if (gdbarch_frame_align_p (gdbarch))
1001 sp = gdbarch_frame_align (gdbarch, sp);
1002 struct_addr = sp;
1003 }
1004 else
1005 {
1006 /* Stack grows upward. Align the frame, allocate space, and
1007 then again, re-align the frame??? */
1008 if (gdbarch_frame_align_p (gdbarch))
1009 sp = gdbarch_frame_align (gdbarch, sp);
1010 struct_addr = sp;
1011 sp += TYPE_LENGTH (values_type);
1012 if (gdbarch_frame_align_p (gdbarch))
1013 sp = gdbarch_frame_align (gdbarch, sp);
1014 }
1015 }
1016
1017 std::vector<struct value *> new_args;
1018 if (return_method == return_method_hidden_param)
1019 {
1020 /* Add the new argument to the front of the argument list. */
1021 new_args.reserve (args.size ());
1022 new_args.push_back
1023 (value_from_pointer (lookup_pointer_type (values_type), struct_addr));
1024 new_args.insert (new_args.end (), args.begin (), args.end ());
1025 args = new_args;
1026 }
1027
1028 /* Create the dummy stack frame. Pass in the call dummy address as,
1029 presumably, the ABI code knows where, in the call dummy, the
1030 return address should be pointed. */
1031 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1032 bp_addr, args.size (), args.data (),
1033 sp, return_method, struct_addr);
1034
1035 /* Set up a frame ID for the dummy frame so we can pass it to
1036 set_momentary_breakpoint. We need to give the breakpoint a frame
1037 ID so that the breakpoint code can correctly re-identify the
1038 dummy breakpoint. */
1039 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1040 saved as the dummy-frame TOS, and used by dummy_id to form
1041 the frame ID's stack address. */
1042 dummy_id = frame_id_build (sp, bp_addr);
1043
1044 /* Create a momentary breakpoint at the return address of the
1045 inferior. That way it breaks when it returns. */
1046
1047 {
1048 symtab_and_line sal;
1049 sal.pspace = current_program_space;
1050 sal.pc = bp_addr;
1051 sal.section = find_pc_overlay (sal.pc);
1052
1053 /* Sanity. The exact same SP value is returned by
1054 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1055 dummy_id to form the frame ID's stack address. */
1056 breakpoint *bpt
1057 = set_momentary_breakpoint (gdbarch, sal,
1058 dummy_id, bp_call_dummy).release ();
1059
1060 /* set_momentary_breakpoint invalidates FRAME. */
1061 frame = NULL;
1062
1063 bpt->disposition = disp_del;
1064 gdb_assert (bpt->related_breakpoint == bpt);
1065
1066 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1067 if (longjmp_b)
1068 {
1069 /* Link BPT into the chain of LONGJMP_B. */
1070 bpt->related_breakpoint = longjmp_b;
1071 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1072 longjmp_b = longjmp_b->related_breakpoint;
1073 longjmp_b->related_breakpoint = bpt;
1074 }
1075 }
1076
1077 /* Create a breakpoint in std::terminate.
1078 If a C++ exception is raised in the dummy-frame, and the
1079 exception handler is (normally, and expected to be) out-of-frame,
1080 the default C++ handler will (wrongly) be called in an inferior
1081 function call. This is wrong, as an exception can be normally
1082 and legally handled out-of-frame. The confines of the dummy frame
1083 prevent the unwinder from finding the correct handler (or any
1084 handler, unless it is in-frame). The default handler calls
1085 std::terminate. This will kill the inferior. Assert that
1086 terminate should never be called in an inferior function
1087 call. Place a momentary breakpoint in the std::terminate function
1088 and if triggered in the call, rewind. */
1089 if (unwind_on_terminating_exception_p)
1090 set_std_terminate_breakpoint ();
1091
1092 /* Everything's ready, push all the info needed to restore the
1093 caller (and identify the dummy-frame) onto the dummy-frame
1094 stack. */
1095 dummy_frame_push (caller_state.release (), &dummy_id, call_thread.get ());
1096 if (dummy_dtor != NULL)
1097 register_dummy_frame_dtor (dummy_id, call_thread.get (),
1098 dummy_dtor, dummy_dtor_data);
1099
1100 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1101 SCOPE_EXIT { delete_std_terminate_breakpoint (); };
1102
1103 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1104 If you're looking to implement asynchronous dummy-frames, then
1105 just below is the place to chop this function in two.. */
1106
1107 {
1108 struct thread_fsm *saved_sm;
1109 struct call_thread_fsm *sm;
1110
1111 /* Save the current FSM. We'll override it. */
1112 saved_sm = call_thread->thread_fsm;
1113 call_thread->thread_fsm = NULL;
1114
1115 /* Save this thread's ptid, we need it later but the thread
1116 may have exited. */
1117 call_thread_ptid = call_thread->ptid;
1118
1119 /* Run the inferior until it stops. */
1120
1121 /* Create the FSM used to manage the infcall. It tells infrun to
1122 not report the stop to the user, and captures the return value
1123 before the dummy frame is popped. run_inferior_call registers
1124 it with the thread ASAP. */
1125 sm = new call_thread_fsm (current_ui, command_interp (),
1126 gdbarch, function,
1127 values_type,
1128 return_method != return_method_normal,
1129 struct_addr);
1130
1131 e = run_inferior_call (sm, call_thread.get (), real_pc);
1132
1133 gdb::observers::inferior_call_post.notify (call_thread_ptid, funaddr);
1134
1135 if (call_thread->state != THREAD_EXITED)
1136 {
1137 /* The FSM should still be the same. */
1138 gdb_assert (call_thread->thread_fsm == sm);
1139
1140 if (call_thread->thread_fsm->finished_p ())
1141 {
1142 struct value *retval;
1143
1144 /* The inferior call is successful. Pop the dummy frame,
1145 which runs its destructors and restores the inferior's
1146 suspend state, and restore the inferior control
1147 state. */
1148 dummy_frame_pop (dummy_id, call_thread.get ());
1149 restore_infcall_control_state (inf_status.release ());
1150
1151 /* Get the return value. */
1152 retval = sm->return_value;
1153
1154 /* Clean up / destroy the call FSM, and restore the
1155 original one. */
1156 call_thread->thread_fsm->clean_up (call_thread.get ());
1157 delete call_thread->thread_fsm;
1158 call_thread->thread_fsm = saved_sm;
1159
1160 maybe_remove_breakpoints ();
1161
1162 gdb_assert (retval != NULL);
1163 return retval;
1164 }
1165
1166 /* Didn't complete. Clean up / destroy the call FSM, and restore the
1167 previous state machine, and handle the error. */
1168 call_thread->thread_fsm->clean_up (call_thread.get ());
1169 delete call_thread->thread_fsm;
1170 call_thread->thread_fsm = saved_sm;
1171 }
1172 }
1173
1174 /* Rethrow an error if we got one trying to run the inferior. */
1175
1176 if (e.reason < 0)
1177 {
1178 const char *name = get_function_name (funaddr,
1179 name_buf, sizeof (name_buf));
1180
1181 discard_infcall_control_state (inf_status.release ());
1182
1183 /* We could discard the dummy frame here if the program exited,
1184 but it will get garbage collected the next time the program is
1185 run anyway. */
1186
1187 switch (e.reason)
1188 {
1189 case RETURN_ERROR:
1190 throw_error (e.error, _("%s\n\
1191 An error occurred while in a function called from GDB.\n\
1192 Evaluation of the expression containing the function\n\
1193 (%s) will be abandoned.\n\
1194 When the function is done executing, GDB will silently stop."),
1195 e.what (), name);
1196 case RETURN_QUIT:
1197 default:
1198 throw_exception (e);
1199 }
1200 }
1201
1202 /* If the program has exited, or we stopped at a different thread,
1203 exit and inform the user. */
1204
1205 if (! target_has_execution)
1206 {
1207 const char *name = get_function_name (funaddr,
1208 name_buf, sizeof (name_buf));
1209
1210 /* If we try to restore the inferior status,
1211 we'll crash as the inferior is no longer running. */
1212 discard_infcall_control_state (inf_status.release ());
1213
1214 /* We could discard the dummy frame here given that the program exited,
1215 but it will get garbage collected the next time the program is
1216 run anyway. */
1217
1218 error (_("The program being debugged exited while in a function "
1219 "called from GDB.\n"
1220 "Evaluation of the expression containing the function\n"
1221 "(%s) will be abandoned."),
1222 name);
1223 }
1224
1225 if (call_thread_ptid != inferior_ptid)
1226 {
1227 const char *name = get_function_name (funaddr,
1228 name_buf, sizeof (name_buf));
1229
1230 /* We've switched threads. This can happen if another thread gets a
1231 signal or breakpoint while our thread was running.
1232 There's no point in restoring the inferior status,
1233 we're in a different thread. */
1234 discard_infcall_control_state (inf_status.release ());
1235 /* Keep the dummy frame record, if the user switches back to the
1236 thread with the hand-call, we'll need it. */
1237 if (stopped_by_random_signal)
1238 error (_("\
1239 The program received a signal in another thread while\n\
1240 making a function call from GDB.\n\
1241 Evaluation of the expression containing the function\n\
1242 (%s) will be abandoned.\n\
1243 When the function is done executing, GDB will silently stop."),
1244 name);
1245 else
1246 error (_("\
1247 The program stopped in another thread while making a function call from GDB.\n\
1248 Evaluation of the expression containing the function\n\
1249 (%s) will be abandoned.\n\
1250 When the function is done executing, GDB will silently stop."),
1251 name);
1252 }
1253
1254 {
1255 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1256 std::string name = get_function_name (funaddr, name_buf,
1257 sizeof (name_buf));
1258
1259 if (stopped_by_random_signal)
1260 {
1261 /* We stopped inside the FUNCTION because of a random
1262 signal. Further execution of the FUNCTION is not
1263 allowed. */
1264
1265 if (unwind_on_signal_p)
1266 {
1267 /* The user wants the context restored. */
1268
1269 /* We must get back to the frame we were before the
1270 dummy call. */
1271 dummy_frame_pop (dummy_id, call_thread.get ());
1272
1273 /* We also need to restore inferior status to that before the
1274 dummy call. */
1275 restore_infcall_control_state (inf_status.release ());
1276
1277 /* FIXME: Insert a bunch of wrap_here; name can be very
1278 long if it's a C++ name with arguments and stuff. */
1279 error (_("\
1280 The program being debugged was signaled while in a function called from GDB.\n\
1281 GDB has restored the context to what it was before the call.\n\
1282 To change this behavior use \"set unwindonsignal off\".\n\
1283 Evaluation of the expression containing the function\n\
1284 (%s) will be abandoned."),
1285 name.c_str ());
1286 }
1287 else
1288 {
1289 /* The user wants to stay in the frame where we stopped
1290 (default).
1291 Discard inferior status, we're not at the same point
1292 we started at. */
1293 discard_infcall_control_state (inf_status.release ());
1294
1295 /* FIXME: Insert a bunch of wrap_here; name can be very
1296 long if it's a C++ name with arguments and stuff. */
1297 error (_("\
1298 The program being debugged was signaled while in a function called from GDB.\n\
1299 GDB remains in the frame where the signal was received.\n\
1300 To change this behavior use \"set unwindonsignal on\".\n\
1301 Evaluation of the expression containing the function\n\
1302 (%s) will be abandoned.\n\
1303 When the function is done executing, GDB will silently stop."),
1304 name.c_str ());
1305 }
1306 }
1307
1308 if (stop_stack_dummy == STOP_STD_TERMINATE)
1309 {
1310 /* We must get back to the frame we were before the dummy
1311 call. */
1312 dummy_frame_pop (dummy_id, call_thread.get ());
1313
1314 /* We also need to restore inferior status to that before
1315 the dummy call. */
1316 restore_infcall_control_state (inf_status.release ());
1317
1318 error (_("\
1319 The program being debugged entered a std::terminate call, most likely\n\
1320 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1321 to prevent the program from being terminated, and has restored the\n\
1322 context to its original state before the call.\n\
1323 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1324 Evaluation of the expression containing the function (%s)\n\
1325 will be abandoned."),
1326 name.c_str ());
1327 }
1328 else if (stop_stack_dummy == STOP_NONE)
1329 {
1330
1331 /* We hit a breakpoint inside the FUNCTION.
1332 Keep the dummy frame, the user may want to examine its state.
1333 Discard inferior status, we're not at the same point
1334 we started at. */
1335 discard_infcall_control_state (inf_status.release ());
1336
1337 /* The following error message used to say "The expression
1338 which contained the function call has been discarded."
1339 It is a hard concept to explain in a few words. Ideally,
1340 GDB would be able to resume evaluation of the expression
1341 when the function finally is done executing. Perhaps
1342 someday this will be implemented (it would not be easy). */
1343 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1344 a C++ name with arguments and stuff. */
1345 error (_("\
1346 The program being debugged stopped while in a function called from GDB.\n\
1347 Evaluation of the expression containing the function\n\
1348 (%s) will be abandoned.\n\
1349 When the function is done executing, GDB will silently stop."),
1350 name.c_str ());
1351 }
1352
1353 }
1354
1355 /* The above code errors out, so ... */
1356 gdb_assert_not_reached ("... should not be here");
1357 }
1358
1359 void
1360 _initialize_infcall (void)
1361 {
1362 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1363 &coerce_float_to_double_p, _("\
1364 Set coercion of floats to doubles when calling functions."), _("\
1365 Show coercion of floats to doubles when calling functions"), _("\
1366 Variables of type float should generally be converted to doubles before\n\
1367 calling an unprototyped function, and left alone when calling a prototyped\n\
1368 function. However, some older debug info formats do not provide enough\n\
1369 information to determine that a function is prototyped. If this flag is\n\
1370 set, GDB will perform the conversion for a function it considers\n\
1371 unprototyped.\n\
1372 The default is to perform the conversion.\n"),
1373 NULL,
1374 show_coerce_float_to_double_p,
1375 &setlist, &showlist);
1376
1377 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1378 &unwind_on_signal_p, _("\
1379 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1380 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1381 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1382 is received while in a function called from gdb (call dummy). If set, gdb\n\
1383 unwinds the stack and restore the context to what as it was before the call.\n\
1384 The default is to stop in the frame where the signal was received."),
1385 NULL,
1386 show_unwind_on_signal_p,
1387 &setlist, &showlist);
1388
1389 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1390 &unwind_on_terminating_exception_p, _("\
1391 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1392 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1393 _("\
1394 The unwind on terminating exception flag lets the user determine\n\
1395 what gdb should do if a std::terminate() call is made from the\n\
1396 default exception handler. If set, gdb unwinds the stack and restores\n\
1397 the context to what it was before the call. If unset, gdb allows the\n\
1398 std::terminate call to proceed.\n\
1399 The default is to unwind the frame."),
1400 NULL,
1401 show_unwind_on_terminating_exception_p,
1402 &setlist, &showlist);
1403
1404 }