]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-tdep.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static int dump_excluded_mappings = 0;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Per-inferior data key. */
187 static const struct inferior_data *linux_inferior_data;
188
189 /* Linux-specific cached data. This is used by GDB for caching
190 purposes for each inferior. This helps reduce the overhead of
191 transfering data from a remote target to the local host. */
192 struct linux_info
193 {
194 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
195 if VSYSCALL_RANGE_P is positive. This is cached because getting
196 at this info requires an auxv lookup (which is itself cached),
197 and looking through the inferior's mappings (which change
198 throughout execution and therefore cannot be cached). */
199 struct mem_range vsyscall_range;
200
201 /* Zero if we haven't tried looking up the vsyscall's range before
202 yet. Positive if we tried looking it up, and found it. Negative
203 if we tried looking it up but failed. */
204 int vsyscall_range_p;
205 };
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 struct linux_info *info;
214
215 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
216 if (info != NULL)
217 {
218 xfree (info);
219 set_inferior_data (inf, linux_inferior_data, NULL);
220 }
221 }
222
223 /* Handles the cleanup of the linux cache for inferior INF. ARG is
224 ignored. Callback for the inferior_appeared and inferior_exit
225 events. */
226
227 static void
228 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
229 {
230 invalidate_linux_cache_inf (inf);
231 }
232
233 /* Fetch the linux cache info for INF. This function always returns a
234 valid INFO pointer. */
235
236 static struct linux_info *
237 get_linux_inferior_data (void)
238 {
239 struct linux_info *info;
240 struct inferior *inf = current_inferior ();
241
242 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
243 if (info == NULL)
244 {
245 info = XCNEW (struct linux_info);
246 set_inferior_data (inf, linux_inferior_data, info);
247 }
248
249 return info;
250 }
251
252 /* See linux-tdep.h. */
253
254 struct type *
255 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
256 linux_siginfo_extra_fields extra_fields)
257 {
258 struct linux_gdbarch_data *linux_gdbarch_data;
259 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
260 struct type *uid_type, *pid_type;
261 struct type *sigval_type, *clock_type;
262 struct type *siginfo_type, *sifields_type;
263 struct type *type;
264
265 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
266 if (linux_gdbarch_data->siginfo_type != NULL)
267 return linux_gdbarch_data->siginfo_type;
268
269 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
270 0, "int");
271 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
272 1, "unsigned int");
273 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
274 0, "long");
275 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
276 0, "short");
277 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
278
279 /* sival_t */
280 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
281 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
282 append_composite_type_field (sigval_type, "sival_int", int_type);
283 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
284
285 /* __pid_t */
286 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
287 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
288 TYPE_TARGET_TYPE (pid_type) = int_type;
289 TYPE_TARGET_STUB (pid_type) = 1;
290
291 /* __uid_t */
292 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
293 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
294 TYPE_TARGET_TYPE (uid_type) = uint_type;
295 TYPE_TARGET_STUB (uid_type) = 1;
296
297 /* __clock_t */
298 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
299 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
300 "__clock_t");
301 TYPE_TARGET_TYPE (clock_type) = long_type;
302 TYPE_TARGET_STUB (clock_type) = 1;
303
304 /* _sifields */
305 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
306
307 {
308 const int si_max_size = 128;
309 int si_pad_size;
310 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
311
312 /* _pad */
313 if (gdbarch_ptr_bit (gdbarch) == 64)
314 si_pad_size = (si_max_size / size_of_int) - 4;
315 else
316 si_pad_size = (si_max_size / size_of_int) - 3;
317 append_composite_type_field (sifields_type, "_pad",
318 init_vector_type (int_type, si_pad_size));
319 }
320
321 /* _kill */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (sifields_type, "_kill", type);
326
327 /* _timer */
328 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
329 append_composite_type_field (type, "si_tid", int_type);
330 append_composite_type_field (type, "si_overrun", int_type);
331 append_composite_type_field (type, "si_sigval", sigval_type);
332 append_composite_type_field (sifields_type, "_timer", type);
333
334 /* _rt */
335 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
336 append_composite_type_field (type, "si_pid", pid_type);
337 append_composite_type_field (type, "si_uid", uid_type);
338 append_composite_type_field (type, "si_sigval", sigval_type);
339 append_composite_type_field (sifields_type, "_rt", type);
340
341 /* _sigchld */
342 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
343 append_composite_type_field (type, "si_pid", pid_type);
344 append_composite_type_field (type, "si_uid", uid_type);
345 append_composite_type_field (type, "si_status", int_type);
346 append_composite_type_field (type, "si_utime", clock_type);
347 append_composite_type_field (type, "si_stime", clock_type);
348 append_composite_type_field (sifields_type, "_sigchld", type);
349
350 /* _sigfault */
351 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
352 append_composite_type_field (type, "si_addr", void_ptr_type);
353
354 /* Additional bound fields for _sigfault in case they were requested. */
355 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
356 {
357 struct type *sigfault_bnd_fields;
358
359 append_composite_type_field (type, "_addr_lsb", short_type);
360 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
361 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
362 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
363 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
364 }
365 append_composite_type_field (sifields_type, "_sigfault", type);
366
367 /* _sigpoll */
368 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
369 append_composite_type_field (type, "si_band", long_type);
370 append_composite_type_field (type, "si_fd", int_type);
371 append_composite_type_field (sifields_type, "_sigpoll", type);
372
373 /* struct siginfo */
374 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
375 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
376 append_composite_type_field (siginfo_type, "si_signo", int_type);
377 append_composite_type_field (siginfo_type, "si_errno", int_type);
378 append_composite_type_field (siginfo_type, "si_code", int_type);
379 append_composite_type_field_aligned (siginfo_type,
380 "_sifields", sifields_type,
381 TYPE_LENGTH (long_type));
382
383 linux_gdbarch_data->siginfo_type = siginfo_type;
384
385 return siginfo_type;
386 }
387
388 /* This function is suitable for architectures that don't
389 extend/override the standard siginfo structure. */
390
391 static struct type *
392 linux_get_siginfo_type (struct gdbarch *gdbarch)
393 {
394 return linux_get_siginfo_type_with_fields (gdbarch, 0);
395 }
396
397 /* Return true if the target is running on uClinux instead of normal
398 Linux kernel. */
399
400 int
401 linux_is_uclinux (void)
402 {
403 CORE_ADDR dummy;
404
405 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
406 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
407 }
408
409 static int
410 linux_has_shared_address_space (struct gdbarch *gdbarch)
411 {
412 return linux_is_uclinux ();
413 }
414
415 /* This is how we want PTIDs from core files to be printed. */
416
417 static std::string
418 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
419 {
420 if (ptid.lwp () != 0)
421 return string_printf ("LWP %ld", ptid.lwp ());
422
423 return normal_pid_to_str (ptid);
424 }
425
426 /* Service function for corefiles and info proc. */
427
428 static void
429 read_mapping (const char *line,
430 ULONGEST *addr, ULONGEST *endaddr,
431 const char **permissions, size_t *permissions_len,
432 ULONGEST *offset,
433 const char **device, size_t *device_len,
434 ULONGEST *inode,
435 const char **filename)
436 {
437 const char *p = line;
438
439 *addr = strtoulst (p, &p, 16);
440 if (*p == '-')
441 p++;
442 *endaddr = strtoulst (p, &p, 16);
443
444 p = skip_spaces (p);
445 *permissions = p;
446 while (*p && !isspace (*p))
447 p++;
448 *permissions_len = p - *permissions;
449
450 *offset = strtoulst (p, &p, 16);
451
452 p = skip_spaces (p);
453 *device = p;
454 while (*p && !isspace (*p))
455 p++;
456 *device_len = p - *device;
457
458 *inode = strtoulst (p, &p, 10);
459
460 p = skip_spaces (p);
461 *filename = p;
462 }
463
464 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
465
466 This function was based on the documentation found on
467 <Documentation/filesystems/proc.txt>, on the Linux kernel.
468
469 Linux kernels before commit
470 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
471 field on smaps. */
472
473 static void
474 decode_vmflags (char *p, struct smaps_vmflags *v)
475 {
476 char *saveptr = NULL;
477 const char *s;
478
479 v->initialized_p = 1;
480 p = skip_to_space (p);
481 p = skip_spaces (p);
482
483 for (s = strtok_r (p, " ", &saveptr);
484 s != NULL;
485 s = strtok_r (NULL, " ", &saveptr))
486 {
487 if (strcmp (s, "io") == 0)
488 v->io_page = 1;
489 else if (strcmp (s, "ht") == 0)
490 v->uses_huge_tlb = 1;
491 else if (strcmp (s, "dd") == 0)
492 v->exclude_coredump = 1;
493 else if (strcmp (s, "sh") == 0)
494 v->shared_mapping = 1;
495 }
496 }
497
498 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
499 they're initialized lazily. */
500
501 struct mapping_regexes
502 {
503 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
504 string in the end). We know for sure, based on the Linux kernel
505 code, that memory mappings whose associated filename is
506 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
507 compiled_regex dev_zero
508 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
509 _("Could not compile regex to match /dev/zero filename")};
510
511 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
512 string in the end). These filenames refer to shared memory
513 (shmem), and memory mappings associated with them are
514 MAP_ANONYMOUS as well. */
515 compiled_regex shmem_file
516 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
517 _("Could not compile regex to match shmem filenames")};
518
519 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
520 0' code, which is responsible to decide if it is dealing with a
521 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
522 FILE_DELETED matches, it does not necessarily mean that we are
523 dealing with an anonymous shared mapping. However, there is no
524 easy way to detect this currently, so this is the best
525 approximation we have.
526
527 As a result, GDB will dump readonly pages of deleted executables
528 when using the default value of coredump_filter (0x33), while the
529 Linux kernel will not dump those pages. But we can live with
530 that. */
531 compiled_regex file_deleted
532 {" (deleted)$", REG_NOSUB,
533 _("Could not compile regex to match '<file> (deleted)'")};
534 };
535
536 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
537
538 FILENAME is the name of the file present in the first line of the
539 memory mapping, in the "/proc/PID/smaps" output. For example, if
540 the first line is:
541
542 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
543
544 Then FILENAME will be "/path/to/file". */
545
546 static int
547 mapping_is_anonymous_p (const char *filename)
548 {
549 static gdb::optional<mapping_regexes> regexes;
550 static int init_regex_p = 0;
551
552 if (!init_regex_p)
553 {
554 /* Let's be pessimistic and assume there will be an error while
555 compiling the regex'es. */
556 init_regex_p = -1;
557
558 regexes.emplace ();
559
560 /* If we reached this point, then everything succeeded. */
561 init_regex_p = 1;
562 }
563
564 if (init_regex_p == -1)
565 {
566 const char deleted[] = " (deleted)";
567 size_t del_len = sizeof (deleted) - 1;
568 size_t filename_len = strlen (filename);
569
570 /* There was an error while compiling the regex'es above. In
571 order to try to give some reliable information to the caller,
572 we just try to find the string " (deleted)" in the filename.
573 If we managed to find it, then we assume the mapping is
574 anonymous. */
575 return (filename_len >= del_len
576 && strcmp (filename + filename_len - del_len, deleted) == 0);
577 }
578
579 if (*filename == '\0'
580 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
581 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
582 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
583 return 1;
584
585 return 0;
586 }
587
588 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
589 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
590 greater than 0 if it should.
591
592 In a nutshell, this is the logic that we follow in order to decide
593 if a mapping should be dumped or not.
594
595 - If the mapping is associated to a file whose name ends with
596 " (deleted)", or if the file is "/dev/zero", or if it is
597 "/SYSV%08x" (shared memory), or if there is no file associated
598 with it, or if the AnonHugePages: or the Anonymous: fields in the
599 /proc/PID/smaps have contents, then GDB considers this mapping to
600 be anonymous. Otherwise, GDB considers this mapping to be a
601 file-backed mapping (because there will be a file associated with
602 it).
603
604 It is worth mentioning that, from all those checks described
605 above, the most fragile is the one to see if the file name ends
606 with " (deleted)". This does not necessarily mean that the
607 mapping is anonymous, because the deleted file associated with
608 the mapping may have been a hard link to another file, for
609 example. The Linux kernel checks to see if "i_nlink == 0", but
610 GDB cannot easily (and normally) do this check (iff running as
611 root, it could find the mapping in /proc/PID/map_files/ and
612 determine whether there still are other hard links to the
613 inode/file). Therefore, we made a compromise here, and we assume
614 that if the file name ends with " (deleted)", then the mapping is
615 indeed anonymous. FWIW, this is something the Linux kernel could
616 do better: expose this information in a more direct way.
617
618 - If we see the flag "sh" in the "VmFlags:" field (in
619 /proc/PID/smaps), then certainly the memory mapping is shared
620 (VM_SHARED). If we have access to the VmFlags, and we don't see
621 the "sh" there, then certainly the mapping is private. However,
622 Linux kernels before commit
623 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
624 "VmFlags:" field; in that case, we use another heuristic: if we
625 see 'p' in the permission flags, then we assume that the mapping
626 is private, even though the presence of the 's' flag there would
627 mean VM_MAYSHARE, which means the mapping could still be private.
628 This should work OK enough, however. */
629
630 static int
631 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
632 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
633 const char *filename)
634 {
635 /* Initially, we trust in what we received from our caller. This
636 value may not be very precise (i.e., it was probably gathered
637 from the permission line in the /proc/PID/smaps list, which
638 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
639 what we have until we take a look at the "VmFlags:" field
640 (assuming that the version of the Linux kernel being used
641 supports it, of course). */
642 int private_p = maybe_private_p;
643
644 /* We always dump vDSO and vsyscall mappings, because it's likely that
645 there'll be no file to read the contents from at core load time.
646 The kernel does the same. */
647 if (strcmp ("[vdso]", filename) == 0
648 || strcmp ("[vsyscall]", filename) == 0)
649 return 1;
650
651 if (v->initialized_p)
652 {
653 /* We never dump I/O mappings. */
654 if (v->io_page)
655 return 0;
656
657 /* Check if we should exclude this mapping. */
658 if (!dump_excluded_mappings && v->exclude_coredump)
659 return 0;
660
661 /* Update our notion of whether this mapping is shared or
662 private based on a trustworthy value. */
663 private_p = !v->shared_mapping;
664
665 /* HugeTLB checking. */
666 if (v->uses_huge_tlb)
667 {
668 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
669 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
670 return 1;
671
672 return 0;
673 }
674 }
675
676 if (private_p)
677 {
678 if (mapping_anon_p && mapping_file_p)
679 {
680 /* This is a special situation. It can happen when we see a
681 mapping that is file-backed, but that contains anonymous
682 pages. */
683 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
684 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
685 }
686 else if (mapping_anon_p)
687 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
688 else
689 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
690 }
691 else
692 {
693 if (mapping_anon_p && mapping_file_p)
694 {
695 /* This is a special situation. It can happen when we see a
696 mapping that is file-backed, but that contains anonymous
697 pages. */
698 return ((filterflags & COREFILTER_ANON_SHARED) != 0
699 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
700 }
701 else if (mapping_anon_p)
702 return (filterflags & COREFILTER_ANON_SHARED) != 0;
703 else
704 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
705 }
706 }
707
708 /* Implement the "info proc" command. */
709
710 static void
711 linux_info_proc (struct gdbarch *gdbarch, const char *args,
712 enum info_proc_what what)
713 {
714 /* A long is used for pid instead of an int to avoid a loss of precision
715 compiler warning from the output of strtoul. */
716 long pid;
717 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
718 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
719 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
720 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
721 int status_f = (what == IP_STATUS || what == IP_ALL);
722 int stat_f = (what == IP_STAT || what == IP_ALL);
723 char filename[100];
724 int target_errno;
725
726 if (args && isdigit (args[0]))
727 {
728 char *tem;
729
730 pid = strtoul (args, &tem, 10);
731 args = tem;
732 }
733 else
734 {
735 if (!target_has_execution)
736 error (_("No current process: you must name one."));
737 if (current_inferior ()->fake_pid_p)
738 error (_("Can't determine the current process's PID: you must name one."));
739
740 pid = current_inferior ()->pid;
741 }
742
743 args = skip_spaces (args);
744 if (args && args[0])
745 error (_("Too many parameters: %s"), args);
746
747 printf_filtered (_("process %ld\n"), pid);
748 if (cmdline_f)
749 {
750 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
751 gdb_byte *buffer;
752 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
753
754 if (len > 0)
755 {
756 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
757 ssize_t pos;
758
759 for (pos = 0; pos < len - 1; pos++)
760 {
761 if (buffer[pos] == '\0')
762 buffer[pos] = ' ';
763 }
764 buffer[len - 1] = '\0';
765 printf_filtered ("cmdline = '%s'\n", buffer);
766 }
767 else
768 warning (_("unable to open /proc file '%s'"), filename);
769 }
770 if (cwd_f)
771 {
772 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
773 gdb::optional<std::string> contents
774 = target_fileio_readlink (NULL, filename, &target_errno);
775 if (contents.has_value ())
776 printf_filtered ("cwd = '%s'\n", contents->c_str ());
777 else
778 warning (_("unable to read link '%s'"), filename);
779 }
780 if (exe_f)
781 {
782 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
783 gdb::optional<std::string> contents
784 = target_fileio_readlink (NULL, filename, &target_errno);
785 if (contents.has_value ())
786 printf_filtered ("exe = '%s'\n", contents->c_str ());
787 else
788 warning (_("unable to read link '%s'"), filename);
789 }
790 if (mappings_f)
791 {
792 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
793 gdb::unique_xmalloc_ptr<char> map
794 = target_fileio_read_stralloc (NULL, filename);
795 if (map != NULL)
796 {
797 char *line;
798
799 printf_filtered (_("Mapped address spaces:\n\n"));
800 if (gdbarch_addr_bit (gdbarch) == 32)
801 {
802 printf_filtered ("\t%10s %10s %10s %10s %s\n",
803 "Start Addr",
804 " End Addr",
805 " Size", " Offset", "objfile");
806 }
807 else
808 {
809 printf_filtered (" %18s %18s %10s %10s %s\n",
810 "Start Addr",
811 " End Addr",
812 " Size", " Offset", "objfile");
813 }
814
815 for (line = strtok (map.get (), "\n");
816 line;
817 line = strtok (NULL, "\n"))
818 {
819 ULONGEST addr, endaddr, offset, inode;
820 const char *permissions, *device, *mapping_filename;
821 size_t permissions_len, device_len;
822
823 read_mapping (line, &addr, &endaddr,
824 &permissions, &permissions_len,
825 &offset, &device, &device_len,
826 &inode, &mapping_filename);
827
828 if (gdbarch_addr_bit (gdbarch) == 32)
829 {
830 printf_filtered ("\t%10s %10s %10s %10s %s\n",
831 paddress (gdbarch, addr),
832 paddress (gdbarch, endaddr),
833 hex_string (endaddr - addr),
834 hex_string (offset),
835 *mapping_filename ? mapping_filename : "");
836 }
837 else
838 {
839 printf_filtered (" %18s %18s %10s %10s %s\n",
840 paddress (gdbarch, addr),
841 paddress (gdbarch, endaddr),
842 hex_string (endaddr - addr),
843 hex_string (offset),
844 *mapping_filename ? mapping_filename : "");
845 }
846 }
847 }
848 else
849 warning (_("unable to open /proc file '%s'"), filename);
850 }
851 if (status_f)
852 {
853 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
854 gdb::unique_xmalloc_ptr<char> status
855 = target_fileio_read_stralloc (NULL, filename);
856 if (status)
857 puts_filtered (status.get ());
858 else
859 warning (_("unable to open /proc file '%s'"), filename);
860 }
861 if (stat_f)
862 {
863 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
864 gdb::unique_xmalloc_ptr<char> statstr
865 = target_fileio_read_stralloc (NULL, filename);
866 if (statstr)
867 {
868 const char *p = statstr.get ();
869
870 printf_filtered (_("Process: %s\n"),
871 pulongest (strtoulst (p, &p, 10)));
872
873 p = skip_spaces (p);
874 if (*p == '(')
875 {
876 /* ps command also relies on no trailing fields
877 ever contain ')'. */
878 const char *ep = strrchr (p, ')');
879 if (ep != NULL)
880 {
881 printf_filtered ("Exec file: %.*s\n",
882 (int) (ep - p - 1), p + 1);
883 p = ep + 1;
884 }
885 }
886
887 p = skip_spaces (p);
888 if (*p)
889 printf_filtered (_("State: %c\n"), *p++);
890
891 if (*p)
892 printf_filtered (_("Parent process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894 if (*p)
895 printf_filtered (_("Process group: %s\n"),
896 pulongest (strtoulst (p, &p, 10)));
897 if (*p)
898 printf_filtered (_("Session id: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900 if (*p)
901 printf_filtered (_("TTY: %s\n"),
902 pulongest (strtoulst (p, &p, 10)));
903 if (*p)
904 printf_filtered (_("TTY owner process group: %s\n"),
905 pulongest (strtoulst (p, &p, 10)));
906
907 if (*p)
908 printf_filtered (_("Flags: %s\n"),
909 hex_string (strtoulst (p, &p, 10)));
910 if (*p)
911 printf_filtered (_("Minor faults (no memory page): %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913 if (*p)
914 printf_filtered (_("Minor faults, children: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Major faults (memory page faults): %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Major faults, children: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("utime: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("stime: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("utime, children: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("stime, children: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("jiffies remaining in current "
936 "time slice: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("'nice' value: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("jiffies until next timeout: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("start time (jiffies since "
949 "system boot): %s\n"),
950 pulongest (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Virtual memory size: %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Resident set size: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("rlim: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Start of text: %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("End of text: %s\n"),
965 hex_string (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("Start of stack: %s\n"),
968 hex_string (strtoulst (p, &p, 10)));
969 #if 0 /* Don't know how architecture-dependent the rest is...
970 Anyway the signal bitmap info is available from "status". */
971 if (*p)
972 printf_filtered (_("Kernel stack pointer: %s\n"),
973 hex_string (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("Kernel instr pointer: %s\n"),
976 hex_string (strtoulst (p, &p, 10)));
977 if (*p)
978 printf_filtered (_("Pending signals bitmap: %s\n"),
979 hex_string (strtoulst (p, &p, 10)));
980 if (*p)
981 printf_filtered (_("Blocked signals bitmap: %s\n"),
982 hex_string (strtoulst (p, &p, 10)));
983 if (*p)
984 printf_filtered (_("Ignored signals bitmap: %s\n"),
985 hex_string (strtoulst (p, &p, 10)));
986 if (*p)
987 printf_filtered (_("Catched signals bitmap: %s\n"),
988 hex_string (strtoulst (p, &p, 10)));
989 if (*p)
990 printf_filtered (_("wchan (system call): %s\n"),
991 hex_string (strtoulst (p, &p, 10)));
992 #endif
993 }
994 else
995 warning (_("unable to open /proc file '%s'"), filename);
996 }
997 }
998
999 /* Implement "info proc mappings" for a corefile. */
1000
1001 static void
1002 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1003 {
1004 asection *section;
1005 ULONGEST count, page_size;
1006 unsigned char *descdata, *filenames, *descend;
1007 size_t note_size;
1008 unsigned int addr_size_bits, addr_size;
1009 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1010 /* We assume this for reading 64-bit core files. */
1011 gdb_static_assert (sizeof (ULONGEST) >= 8);
1012
1013 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1014 if (section == NULL)
1015 {
1016 warning (_("unable to find mappings in core file"));
1017 return;
1018 }
1019
1020 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1021 addr_size = addr_size_bits / 8;
1022 note_size = bfd_get_section_size (section);
1023
1024 if (note_size < 2 * addr_size)
1025 error (_("malformed core note - too short for header"));
1026
1027 gdb::def_vector<unsigned char> contents (note_size);
1028 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1029 0, note_size))
1030 error (_("could not get core note contents"));
1031
1032 descdata = contents.data ();
1033 descend = descdata + note_size;
1034
1035 if (descdata[note_size - 1] != '\0')
1036 error (_("malformed note - does not end with \\0"));
1037
1038 count = bfd_get (addr_size_bits, core_bfd, descdata);
1039 descdata += addr_size;
1040
1041 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1042 descdata += addr_size;
1043
1044 if (note_size < 2 * addr_size + count * 3 * addr_size)
1045 error (_("malformed note - too short for supplied file count"));
1046
1047 printf_filtered (_("Mapped address spaces:\n\n"));
1048 if (gdbarch_addr_bit (gdbarch) == 32)
1049 {
1050 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1051 "Start Addr",
1052 " End Addr",
1053 " Size", " Offset", "objfile");
1054 }
1055 else
1056 {
1057 printf_filtered (" %18s %18s %10s %10s %s\n",
1058 "Start Addr",
1059 " End Addr",
1060 " Size", " Offset", "objfile");
1061 }
1062
1063 filenames = descdata + count * 3 * addr_size;
1064 while (--count > 0)
1065 {
1066 ULONGEST start, end, file_ofs;
1067
1068 if (filenames == descend)
1069 error (_("malformed note - filenames end too early"));
1070
1071 start = bfd_get (addr_size_bits, core_bfd, descdata);
1072 descdata += addr_size;
1073 end = bfd_get (addr_size_bits, core_bfd, descdata);
1074 descdata += addr_size;
1075 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1076 descdata += addr_size;
1077
1078 file_ofs *= page_size;
1079
1080 if (gdbarch_addr_bit (gdbarch) == 32)
1081 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1082 paddress (gdbarch, start),
1083 paddress (gdbarch, end),
1084 hex_string (end - start),
1085 hex_string (file_ofs),
1086 filenames);
1087 else
1088 printf_filtered (" %18s %18s %10s %10s %s\n",
1089 paddress (gdbarch, start),
1090 paddress (gdbarch, end),
1091 hex_string (end - start),
1092 hex_string (file_ofs),
1093 filenames);
1094
1095 filenames += 1 + strlen ((char *) filenames);
1096 }
1097 }
1098
1099 /* Implement "info proc" for a corefile. */
1100
1101 static void
1102 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1103 enum info_proc_what what)
1104 {
1105 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1106 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1107
1108 if (exe_f)
1109 {
1110 const char *exe;
1111
1112 exe = bfd_core_file_failing_command (core_bfd);
1113 if (exe != NULL)
1114 printf_filtered ("exe = '%s'\n", exe);
1115 else
1116 warning (_("unable to find command name in core file"));
1117 }
1118
1119 if (mappings_f)
1120 linux_core_info_proc_mappings (gdbarch, args);
1121
1122 if (!exe_f && !mappings_f)
1123 error (_("unable to handle request"));
1124 }
1125
1126 /* Read siginfo data from the core, if possible. Returns -1 on
1127 failure. Otherwise, returns the number of bytes read. READBUF,
1128 OFFSET, and LEN are all as specified by the to_xfer_partial
1129 interface. */
1130
1131 static LONGEST
1132 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1133 ULONGEST offset, ULONGEST len)
1134 {
1135 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1136 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1137 if (section == NULL)
1138 return -1;
1139
1140 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1141 return -1;
1142
1143 return len;
1144 }
1145
1146 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1147 ULONGEST offset, ULONGEST inode,
1148 int read, int write,
1149 int exec, int modified,
1150 const char *filename,
1151 void *data);
1152
1153 /* List memory regions in the inferior for a corefile. */
1154
1155 static int
1156 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1157 linux_find_memory_region_ftype *func,
1158 void *obfd)
1159 {
1160 char mapsfilename[100];
1161 char coredumpfilter_name[100];
1162 pid_t pid;
1163 /* Default dump behavior of coredump_filter (0x33), according to
1164 Documentation/filesystems/proc.txt from the Linux kernel
1165 tree. */
1166 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1167 | COREFILTER_ANON_SHARED
1168 | COREFILTER_ELF_HEADERS
1169 | COREFILTER_HUGETLB_PRIVATE);
1170
1171 /* We need to know the real target PID to access /proc. */
1172 if (current_inferior ()->fake_pid_p)
1173 return 1;
1174
1175 pid = current_inferior ()->pid;
1176
1177 if (use_coredump_filter)
1178 {
1179 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1180 "/proc/%d/coredump_filter", pid);
1181 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1182 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1183 if (coredumpfilterdata != NULL)
1184 {
1185 unsigned int flags;
1186
1187 sscanf (coredumpfilterdata.get (), "%x", &flags);
1188 filterflags = (enum filter_flag) flags;
1189 }
1190 }
1191
1192 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1193 gdb::unique_xmalloc_ptr<char> data
1194 = target_fileio_read_stralloc (NULL, mapsfilename);
1195 if (data == NULL)
1196 {
1197 /* Older Linux kernels did not support /proc/PID/smaps. */
1198 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1199 data = target_fileio_read_stralloc (NULL, mapsfilename);
1200 }
1201
1202 if (data != NULL)
1203 {
1204 char *line, *t;
1205
1206 line = strtok_r (data.get (), "\n", &t);
1207 while (line != NULL)
1208 {
1209 ULONGEST addr, endaddr, offset, inode;
1210 const char *permissions, *device, *filename;
1211 struct smaps_vmflags v;
1212 size_t permissions_len, device_len;
1213 int read, write, exec, priv;
1214 int has_anonymous = 0;
1215 int should_dump_p = 0;
1216 int mapping_anon_p;
1217 int mapping_file_p;
1218
1219 memset (&v, 0, sizeof (v));
1220 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1221 &offset, &device, &device_len, &inode, &filename);
1222 mapping_anon_p = mapping_is_anonymous_p (filename);
1223 /* If the mapping is not anonymous, then we can consider it
1224 to be file-backed. These two states (anonymous or
1225 file-backed) seem to be exclusive, but they can actually
1226 coexist. For example, if a file-backed mapping has
1227 "Anonymous:" pages (see more below), then the Linux
1228 kernel will dump this mapping when the user specified
1229 that she only wants anonymous mappings in the corefile
1230 (*even* when she explicitly disabled the dumping of
1231 file-backed mappings). */
1232 mapping_file_p = !mapping_anon_p;
1233
1234 /* Decode permissions. */
1235 read = (memchr (permissions, 'r', permissions_len) != 0);
1236 write = (memchr (permissions, 'w', permissions_len) != 0);
1237 exec = (memchr (permissions, 'x', permissions_len) != 0);
1238 /* 'private' here actually means VM_MAYSHARE, and not
1239 VM_SHARED. In order to know if a mapping is really
1240 private or not, we must check the flag "sh" in the
1241 VmFlags field. This is done by decode_vmflags. However,
1242 if we are using a Linux kernel released before the commit
1243 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1244 not have the VmFlags there. In this case, there is
1245 really no way to know if we are dealing with VM_SHARED,
1246 so we just assume that VM_MAYSHARE is enough. */
1247 priv = memchr (permissions, 'p', permissions_len) != 0;
1248
1249 /* Try to detect if region should be dumped by parsing smaps
1250 counters. */
1251 for (line = strtok_r (NULL, "\n", &t);
1252 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1253 line = strtok_r (NULL, "\n", &t))
1254 {
1255 char keyword[64 + 1];
1256
1257 if (sscanf (line, "%64s", keyword) != 1)
1258 {
1259 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1260 break;
1261 }
1262
1263 if (strcmp (keyword, "Anonymous:") == 0)
1264 {
1265 /* Older Linux kernels did not support the
1266 "Anonymous:" counter. Check it here. */
1267 has_anonymous = 1;
1268 }
1269 else if (strcmp (keyword, "VmFlags:") == 0)
1270 decode_vmflags (line, &v);
1271
1272 if (strcmp (keyword, "AnonHugePages:") == 0
1273 || strcmp (keyword, "Anonymous:") == 0)
1274 {
1275 unsigned long number;
1276
1277 if (sscanf (line, "%*s%lu", &number) != 1)
1278 {
1279 warning (_("Error parsing {s,}maps file '%s' number"),
1280 mapsfilename);
1281 break;
1282 }
1283 if (number > 0)
1284 {
1285 /* Even if we are dealing with a file-backed
1286 mapping, if it contains anonymous pages we
1287 consider it to be *also* an anonymous
1288 mapping, because this is what the Linux
1289 kernel does:
1290
1291 // Dump segments that have been written to.
1292 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1293 goto whole;
1294
1295 Note that if the mapping is already marked as
1296 file-backed (i.e., mapping_file_p is
1297 non-zero), then this is a special case, and
1298 this mapping will be dumped either when the
1299 user wants to dump file-backed *or* anonymous
1300 mappings. */
1301 mapping_anon_p = 1;
1302 }
1303 }
1304 }
1305
1306 if (has_anonymous)
1307 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1308 mapping_anon_p, mapping_file_p,
1309 filename);
1310 else
1311 {
1312 /* Older Linux kernels did not support the "Anonymous:" counter.
1313 If it is missing, we can't be sure - dump all the pages. */
1314 should_dump_p = 1;
1315 }
1316
1317 /* Invoke the callback function to create the corefile segment. */
1318 if (should_dump_p)
1319 func (addr, endaddr - addr, offset, inode,
1320 read, write, exec, 1, /* MODIFIED is true because we
1321 want to dump the mapping. */
1322 filename, obfd);
1323 }
1324
1325 return 0;
1326 }
1327
1328 return 1;
1329 }
1330
1331 /* A structure for passing information through
1332 linux_find_memory_regions_full. */
1333
1334 struct linux_find_memory_regions_data
1335 {
1336 /* The original callback. */
1337
1338 find_memory_region_ftype func;
1339
1340 /* The original datum. */
1341
1342 void *obfd;
1343 };
1344
1345 /* A callback for linux_find_memory_regions that converts between the
1346 "full"-style callback and find_memory_region_ftype. */
1347
1348 static int
1349 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1350 ULONGEST offset, ULONGEST inode,
1351 int read, int write, int exec, int modified,
1352 const char *filename, void *arg)
1353 {
1354 struct linux_find_memory_regions_data *data
1355 = (struct linux_find_memory_regions_data *) arg;
1356
1357 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1358 }
1359
1360 /* A variant of linux_find_memory_regions_full that is suitable as the
1361 gdbarch find_memory_regions method. */
1362
1363 static int
1364 linux_find_memory_regions (struct gdbarch *gdbarch,
1365 find_memory_region_ftype func, void *obfd)
1366 {
1367 struct linux_find_memory_regions_data data;
1368
1369 data.func = func;
1370 data.obfd = obfd;
1371
1372 return linux_find_memory_regions_full (gdbarch,
1373 linux_find_memory_regions_thunk,
1374 &data);
1375 }
1376
1377 /* Determine which signal stopped execution. */
1378
1379 static int
1380 find_signalled_thread (struct thread_info *info, void *data)
1381 {
1382 if (info->suspend.stop_signal != GDB_SIGNAL_0
1383 && info->ptid.pid () == inferior_ptid.pid ())
1384 return 1;
1385
1386 return 0;
1387 }
1388
1389 /* Generate corefile notes for SPU contexts. */
1390
1391 static char *
1392 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1393 {
1394 static const char *spu_files[] =
1395 {
1396 "object-id",
1397 "mem",
1398 "regs",
1399 "fpcr",
1400 "lslr",
1401 "decr",
1402 "decr_status",
1403 "signal1",
1404 "signal1_type",
1405 "signal2",
1406 "signal2_type",
1407 "event_mask",
1408 "event_status",
1409 "mbox_info",
1410 "ibox_info",
1411 "wbox_info",
1412 "dma_info",
1413 "proxydma_info",
1414 };
1415
1416 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1417
1418 /* Determine list of SPU ids. */
1419 gdb::optional<gdb::byte_vector>
1420 spu_ids = target_read_alloc (current_top_target (),
1421 TARGET_OBJECT_SPU, NULL);
1422
1423 if (!spu_ids)
1424 return note_data;
1425
1426 /* Generate corefile notes for each SPU file. */
1427 for (size_t i = 0; i < spu_ids->size (); i += 4)
1428 {
1429 int fd = extract_unsigned_integer (spu_ids->data () + i, 4, byte_order);
1430
1431 for (size_t j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1432 {
1433 char annex[32], note_name[32];
1434
1435 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1436 gdb::optional<gdb::byte_vector> spu_data
1437 = target_read_alloc (current_top_target (), TARGET_OBJECT_SPU, annex);
1438
1439 if (spu_data && !spu_data->empty ())
1440 {
1441 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1442 note_data = elfcore_write_note (obfd, note_data, note_size,
1443 note_name, NT_SPU,
1444 spu_data->data (),
1445 spu_data->size ());
1446
1447 if (!note_data)
1448 return nullptr;
1449 }
1450 }
1451 }
1452
1453 return note_data;
1454 }
1455
1456 /* This is used to pass information from
1457 linux_make_mappings_corefile_notes through
1458 linux_find_memory_regions_full. */
1459
1460 struct linux_make_mappings_data
1461 {
1462 /* Number of files mapped. */
1463 ULONGEST file_count;
1464
1465 /* The obstack for the main part of the data. */
1466 struct obstack *data_obstack;
1467
1468 /* The filename obstack. */
1469 struct obstack *filename_obstack;
1470
1471 /* The architecture's "long" type. */
1472 struct type *long_type;
1473 };
1474
1475 static linux_find_memory_region_ftype linux_make_mappings_callback;
1476
1477 /* A callback for linux_find_memory_regions_full that updates the
1478 mappings data for linux_make_mappings_corefile_notes. */
1479
1480 static int
1481 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1482 ULONGEST offset, ULONGEST inode,
1483 int read, int write, int exec, int modified,
1484 const char *filename, void *data)
1485 {
1486 struct linux_make_mappings_data *map_data
1487 = (struct linux_make_mappings_data *) data;
1488 gdb_byte buf[sizeof (ULONGEST)];
1489
1490 if (*filename == '\0' || inode == 0)
1491 return 0;
1492
1493 ++map_data->file_count;
1494
1495 pack_long (buf, map_data->long_type, vaddr);
1496 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1497 pack_long (buf, map_data->long_type, vaddr + size);
1498 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1499 pack_long (buf, map_data->long_type, offset);
1500 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1501
1502 obstack_grow_str0 (map_data->filename_obstack, filename);
1503
1504 return 0;
1505 }
1506
1507 /* Write the file mapping data to the core file, if possible. OBFD is
1508 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1509 is a pointer to the note size. Returns the new NOTE_DATA and
1510 updates NOTE_SIZE. */
1511
1512 static char *
1513 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1514 char *note_data, int *note_size)
1515 {
1516 struct linux_make_mappings_data mapping_data;
1517 struct type *long_type
1518 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1519 gdb_byte buf[sizeof (ULONGEST)];
1520
1521 auto_obstack data_obstack, filename_obstack;
1522
1523 mapping_data.file_count = 0;
1524 mapping_data.data_obstack = &data_obstack;
1525 mapping_data.filename_obstack = &filename_obstack;
1526 mapping_data.long_type = long_type;
1527
1528 /* Reserve space for the count. */
1529 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1530 /* We always write the page size as 1 since we have no good way to
1531 determine the correct value. */
1532 pack_long (buf, long_type, 1);
1533 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1534
1535 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1536 &mapping_data);
1537
1538 if (mapping_data.file_count != 0)
1539 {
1540 /* Write the count to the obstack. */
1541 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1542 long_type, mapping_data.file_count);
1543
1544 /* Copy the filenames to the data obstack. */
1545 int size = obstack_object_size (&filename_obstack);
1546 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1547 size);
1548
1549 note_data = elfcore_write_note (obfd, note_data, note_size,
1550 "CORE", NT_FILE,
1551 obstack_base (&data_obstack),
1552 obstack_object_size (&data_obstack));
1553 }
1554
1555 return note_data;
1556 }
1557
1558 /* Structure for passing information from
1559 linux_collect_thread_registers via an iterator to
1560 linux_collect_regset_section_cb. */
1561
1562 struct linux_collect_regset_section_cb_data
1563 {
1564 struct gdbarch *gdbarch;
1565 const struct regcache *regcache;
1566 bfd *obfd;
1567 char *note_data;
1568 int *note_size;
1569 unsigned long lwp;
1570 enum gdb_signal stop_signal;
1571 int abort_iteration;
1572 };
1573
1574 /* Callback for iterate_over_regset_sections that records a single
1575 regset in the corefile note section. */
1576
1577 static void
1578 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1579 int collect_size, const struct regset *regset,
1580 const char *human_name, void *cb_data)
1581 {
1582 struct linux_collect_regset_section_cb_data *data
1583 = (struct linux_collect_regset_section_cb_data *) cb_data;
1584 bool variable_size_section = (regset != NULL
1585 && regset->flags & REGSET_VARIABLE_SIZE);
1586
1587 if (!variable_size_section)
1588 gdb_assert (supply_size == collect_size);
1589
1590 if (data->abort_iteration)
1591 return;
1592
1593 gdb_assert (regset && regset->collect_regset);
1594
1595 /* This is intentionally zero-initialized by using std::vector, so
1596 that any padding bytes in the core file will show as 0. */
1597 std::vector<gdb_byte> buf (collect_size);
1598
1599 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1600 collect_size);
1601
1602 /* PRSTATUS still needs to be treated specially. */
1603 if (strcmp (sect_name, ".reg") == 0)
1604 data->note_data = (char *) elfcore_write_prstatus
1605 (data->obfd, data->note_data, data->note_size, data->lwp,
1606 gdb_signal_to_host (data->stop_signal), buf.data ());
1607 else
1608 data->note_data = (char *) elfcore_write_register_note
1609 (data->obfd, data->note_data, data->note_size,
1610 sect_name, buf.data (), collect_size);
1611
1612 if (data->note_data == NULL)
1613 data->abort_iteration = 1;
1614 }
1615
1616 /* Records the thread's register state for the corefile note
1617 section. */
1618
1619 static char *
1620 linux_collect_thread_registers (const struct regcache *regcache,
1621 ptid_t ptid, bfd *obfd,
1622 char *note_data, int *note_size,
1623 enum gdb_signal stop_signal)
1624 {
1625 struct gdbarch *gdbarch = regcache->arch ();
1626 struct linux_collect_regset_section_cb_data data;
1627
1628 data.gdbarch = gdbarch;
1629 data.regcache = regcache;
1630 data.obfd = obfd;
1631 data.note_data = note_data;
1632 data.note_size = note_size;
1633 data.stop_signal = stop_signal;
1634 data.abort_iteration = 0;
1635
1636 /* For remote targets the LWP may not be available, so use the TID. */
1637 data.lwp = ptid.lwp ();
1638 if (!data.lwp)
1639 data.lwp = ptid.tid ();
1640
1641 gdbarch_iterate_over_regset_sections (gdbarch,
1642 linux_collect_regset_section_cb,
1643 &data, regcache);
1644 return data.note_data;
1645 }
1646
1647 /* Fetch the siginfo data for the specified thread, if it exists. If
1648 there is no data, or we could not read it, return an empty
1649 buffer. */
1650
1651 static gdb::byte_vector
1652 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1653 {
1654 struct type *siginfo_type;
1655 LONGEST bytes_read;
1656
1657 if (!gdbarch_get_siginfo_type_p (gdbarch))
1658 return gdb::byte_vector ();
1659
1660 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1661 inferior_ptid = thread->ptid;
1662
1663 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1664
1665 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1666
1667 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1668 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1669 if (bytes_read != TYPE_LENGTH (siginfo_type))
1670 buf.clear ();
1671
1672 return buf;
1673 }
1674
1675 struct linux_corefile_thread_data
1676 {
1677 struct gdbarch *gdbarch;
1678 bfd *obfd;
1679 char *note_data;
1680 int *note_size;
1681 enum gdb_signal stop_signal;
1682 };
1683
1684 /* Records the thread's register state for the corefile note
1685 section. */
1686
1687 static void
1688 linux_corefile_thread (struct thread_info *info,
1689 struct linux_corefile_thread_data *args)
1690 {
1691 struct regcache *regcache;
1692
1693 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1694
1695 target_fetch_registers (regcache, -1);
1696 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1697
1698 args->note_data = linux_collect_thread_registers
1699 (regcache, info->ptid, args->obfd, args->note_data,
1700 args->note_size, args->stop_signal);
1701
1702 /* Don't return anything if we got no register information above,
1703 such a core file is useless. */
1704 if (args->note_data != NULL)
1705 if (!siginfo_data.empty ())
1706 args->note_data = elfcore_write_note (args->obfd,
1707 args->note_data,
1708 args->note_size,
1709 "CORE", NT_SIGINFO,
1710 siginfo_data.data (),
1711 siginfo_data.size ());
1712 }
1713
1714 /* Fill the PRPSINFO structure with information about the process being
1715 debugged. Returns 1 in case of success, 0 for failures. Please note that
1716 even if the structure cannot be entirely filled (e.g., GDB was unable to
1717 gather information about the process UID/GID), this function will still
1718 return 1 since some information was already recorded. It will only return
1719 0 iff nothing can be gathered. */
1720
1721 static int
1722 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1723 {
1724 /* The filename which we will use to obtain some info about the process.
1725 We will basically use this to store the `/proc/PID/FILENAME' file. */
1726 char filename[100];
1727 /* The basename of the executable. */
1728 const char *basename;
1729 const char *infargs;
1730 /* Temporary buffer. */
1731 char *tmpstr;
1732 /* The valid states of a process, according to the Linux kernel. */
1733 const char valid_states[] = "RSDTZW";
1734 /* The program state. */
1735 const char *prog_state;
1736 /* The state of the process. */
1737 char pr_sname;
1738 /* The PID of the program which generated the corefile. */
1739 pid_t pid;
1740 /* Process flags. */
1741 unsigned int pr_flag;
1742 /* Process nice value. */
1743 long pr_nice;
1744 /* The number of fields read by `sscanf'. */
1745 int n_fields = 0;
1746
1747 gdb_assert (p != NULL);
1748
1749 /* Obtaining PID and filename. */
1750 pid = inferior_ptid.pid ();
1751 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1752 /* The full name of the program which generated the corefile. */
1753 gdb::unique_xmalloc_ptr<char> fname
1754 = target_fileio_read_stralloc (NULL, filename);
1755
1756 if (fname == NULL || fname.get ()[0] == '\0')
1757 {
1758 /* No program name was read, so we won't be able to retrieve more
1759 information about the process. */
1760 return 0;
1761 }
1762
1763 memset (p, 0, sizeof (*p));
1764
1765 /* Defining the PID. */
1766 p->pr_pid = pid;
1767
1768 /* Copying the program name. Only the basename matters. */
1769 basename = lbasename (fname.get ());
1770 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1771 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1772
1773 infargs = get_inferior_args ();
1774
1775 /* The arguments of the program. */
1776 std::string psargs = fname.get ();
1777 if (infargs != NULL)
1778 psargs = psargs + " " + infargs;
1779
1780 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1781 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1782
1783 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1784 /* The contents of `/proc/PID/stat'. */
1785 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1786 = target_fileio_read_stralloc (NULL, filename);
1787 char *proc_stat = proc_stat_contents.get ();
1788
1789 if (proc_stat == NULL || *proc_stat == '\0')
1790 {
1791 /* Despite being unable to read more information about the
1792 process, we return 1 here because at least we have its
1793 command line, PID and arguments. */
1794 return 1;
1795 }
1796
1797 /* Ok, we have the stats. It's time to do a little parsing of the
1798 contents of the buffer, so that we end up reading what we want.
1799
1800 The following parsing mechanism is strongly based on the
1801 information generated by the `fs/proc/array.c' file, present in
1802 the Linux kernel tree. More details about how the information is
1803 displayed can be obtained by seeing the manpage of proc(5),
1804 specifically under the entry of `/proc/[pid]/stat'. */
1805
1806 /* Getting rid of the PID, since we already have it. */
1807 while (isdigit (*proc_stat))
1808 ++proc_stat;
1809
1810 proc_stat = skip_spaces (proc_stat);
1811
1812 /* ps command also relies on no trailing fields ever contain ')'. */
1813 proc_stat = strrchr (proc_stat, ')');
1814 if (proc_stat == NULL)
1815 return 1;
1816 proc_stat++;
1817
1818 proc_stat = skip_spaces (proc_stat);
1819
1820 n_fields = sscanf (proc_stat,
1821 "%c" /* Process state. */
1822 "%d%d%d" /* Parent PID, group ID, session ID. */
1823 "%*d%*d" /* tty_nr, tpgid (not used). */
1824 "%u" /* Flags. */
1825 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1826 cmajflt (not used). */
1827 "%*s%*s%*s%*s" /* utime, stime, cutime,
1828 cstime (not used). */
1829 "%*s" /* Priority (not used). */
1830 "%ld", /* Nice. */
1831 &pr_sname,
1832 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1833 &pr_flag,
1834 &pr_nice);
1835
1836 if (n_fields != 6)
1837 {
1838 /* Again, we couldn't read the complementary information about
1839 the process state. However, we already have minimal
1840 information, so we just return 1 here. */
1841 return 1;
1842 }
1843
1844 /* Filling the structure fields. */
1845 prog_state = strchr (valid_states, pr_sname);
1846 if (prog_state != NULL)
1847 p->pr_state = prog_state - valid_states;
1848 else
1849 {
1850 /* Zero means "Running". */
1851 p->pr_state = 0;
1852 }
1853
1854 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1855 p->pr_zomb = p->pr_sname == 'Z';
1856 p->pr_nice = pr_nice;
1857 p->pr_flag = pr_flag;
1858
1859 /* Finally, obtaining the UID and GID. For that, we read and parse the
1860 contents of the `/proc/PID/status' file. */
1861 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1862 /* The contents of `/proc/PID/status'. */
1863 gdb::unique_xmalloc_ptr<char> proc_status_contents
1864 = target_fileio_read_stralloc (NULL, filename);
1865 char *proc_status = proc_status_contents.get ();
1866
1867 if (proc_status == NULL || *proc_status == '\0')
1868 {
1869 /* Returning 1 since we already have a bunch of information. */
1870 return 1;
1871 }
1872
1873 /* Extracting the UID. */
1874 tmpstr = strstr (proc_status, "Uid:");
1875 if (tmpstr != NULL)
1876 {
1877 /* Advancing the pointer to the beginning of the UID. */
1878 tmpstr += sizeof ("Uid:");
1879 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1880 ++tmpstr;
1881
1882 if (isdigit (*tmpstr))
1883 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1884 }
1885
1886 /* Extracting the GID. */
1887 tmpstr = strstr (proc_status, "Gid:");
1888 if (tmpstr != NULL)
1889 {
1890 /* Advancing the pointer to the beginning of the GID. */
1891 tmpstr += sizeof ("Gid:");
1892 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1893 ++tmpstr;
1894
1895 if (isdigit (*tmpstr))
1896 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1897 }
1898
1899 return 1;
1900 }
1901
1902 /* Build the note section for a corefile, and return it in a malloc
1903 buffer. */
1904
1905 static char *
1906 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1907 {
1908 struct linux_corefile_thread_data thread_args;
1909 struct elf_internal_linux_prpsinfo prpsinfo;
1910 char *note_data = NULL;
1911 struct thread_info *curr_thr, *signalled_thr;
1912
1913 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1914 return NULL;
1915
1916 if (linux_fill_prpsinfo (&prpsinfo))
1917 {
1918 if (gdbarch_ptr_bit (gdbarch) == 64)
1919 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1920 note_data, note_size,
1921 &prpsinfo);
1922 else
1923 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1924 note_data, note_size,
1925 &prpsinfo);
1926 }
1927
1928 /* Thread register information. */
1929 try
1930 {
1931 update_thread_list ();
1932 }
1933 catch (const gdb_exception_error &e)
1934 {
1935 exception_print (gdb_stderr, e);
1936 }
1937
1938 /* Like the kernel, prefer dumping the signalled thread first.
1939 "First thread" is what tools use to infer the signalled thread.
1940 In case there's more than one signalled thread, prefer the
1941 current thread, if it is signalled. */
1942 curr_thr = inferior_thread ();
1943 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1944 signalled_thr = curr_thr;
1945 else
1946 {
1947 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1948 if (signalled_thr == NULL)
1949 signalled_thr = curr_thr;
1950 }
1951
1952 thread_args.gdbarch = gdbarch;
1953 thread_args.obfd = obfd;
1954 thread_args.note_data = note_data;
1955 thread_args.note_size = note_size;
1956 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1957
1958 linux_corefile_thread (signalled_thr, &thread_args);
1959 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1960 {
1961 if (thr == signalled_thr)
1962 continue;
1963
1964 linux_corefile_thread (thr, &thread_args);
1965 }
1966
1967 note_data = thread_args.note_data;
1968 if (!note_data)
1969 return NULL;
1970
1971 /* Auxillary vector. */
1972 gdb::optional<gdb::byte_vector> auxv =
1973 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
1974 if (auxv && !auxv->empty ())
1975 {
1976 note_data = elfcore_write_note (obfd, note_data, note_size,
1977 "CORE", NT_AUXV, auxv->data (),
1978 auxv->size ());
1979
1980 if (!note_data)
1981 return NULL;
1982 }
1983
1984 /* SPU information. */
1985 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
1986 if (!note_data)
1987 return NULL;
1988
1989 /* File mappings. */
1990 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1991 note_data, note_size);
1992
1993 return note_data;
1994 }
1995
1996 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1997 gdbarch.h. This function is not static because it is exported to
1998 other -tdep files. */
1999
2000 enum gdb_signal
2001 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2002 {
2003 switch (signal)
2004 {
2005 case 0:
2006 return GDB_SIGNAL_0;
2007
2008 case LINUX_SIGHUP:
2009 return GDB_SIGNAL_HUP;
2010
2011 case LINUX_SIGINT:
2012 return GDB_SIGNAL_INT;
2013
2014 case LINUX_SIGQUIT:
2015 return GDB_SIGNAL_QUIT;
2016
2017 case LINUX_SIGILL:
2018 return GDB_SIGNAL_ILL;
2019
2020 case LINUX_SIGTRAP:
2021 return GDB_SIGNAL_TRAP;
2022
2023 case LINUX_SIGABRT:
2024 return GDB_SIGNAL_ABRT;
2025
2026 case LINUX_SIGBUS:
2027 return GDB_SIGNAL_BUS;
2028
2029 case LINUX_SIGFPE:
2030 return GDB_SIGNAL_FPE;
2031
2032 case LINUX_SIGKILL:
2033 return GDB_SIGNAL_KILL;
2034
2035 case LINUX_SIGUSR1:
2036 return GDB_SIGNAL_USR1;
2037
2038 case LINUX_SIGSEGV:
2039 return GDB_SIGNAL_SEGV;
2040
2041 case LINUX_SIGUSR2:
2042 return GDB_SIGNAL_USR2;
2043
2044 case LINUX_SIGPIPE:
2045 return GDB_SIGNAL_PIPE;
2046
2047 case LINUX_SIGALRM:
2048 return GDB_SIGNAL_ALRM;
2049
2050 case LINUX_SIGTERM:
2051 return GDB_SIGNAL_TERM;
2052
2053 case LINUX_SIGCHLD:
2054 return GDB_SIGNAL_CHLD;
2055
2056 case LINUX_SIGCONT:
2057 return GDB_SIGNAL_CONT;
2058
2059 case LINUX_SIGSTOP:
2060 return GDB_SIGNAL_STOP;
2061
2062 case LINUX_SIGTSTP:
2063 return GDB_SIGNAL_TSTP;
2064
2065 case LINUX_SIGTTIN:
2066 return GDB_SIGNAL_TTIN;
2067
2068 case LINUX_SIGTTOU:
2069 return GDB_SIGNAL_TTOU;
2070
2071 case LINUX_SIGURG:
2072 return GDB_SIGNAL_URG;
2073
2074 case LINUX_SIGXCPU:
2075 return GDB_SIGNAL_XCPU;
2076
2077 case LINUX_SIGXFSZ:
2078 return GDB_SIGNAL_XFSZ;
2079
2080 case LINUX_SIGVTALRM:
2081 return GDB_SIGNAL_VTALRM;
2082
2083 case LINUX_SIGPROF:
2084 return GDB_SIGNAL_PROF;
2085
2086 case LINUX_SIGWINCH:
2087 return GDB_SIGNAL_WINCH;
2088
2089 /* No way to differentiate between SIGIO and SIGPOLL.
2090 Therefore, we just handle the first one. */
2091 case LINUX_SIGIO:
2092 return GDB_SIGNAL_IO;
2093
2094 case LINUX_SIGPWR:
2095 return GDB_SIGNAL_PWR;
2096
2097 case LINUX_SIGSYS:
2098 return GDB_SIGNAL_SYS;
2099
2100 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2101 therefore we have to handle them here. */
2102 case LINUX_SIGRTMIN:
2103 return GDB_SIGNAL_REALTIME_32;
2104
2105 case LINUX_SIGRTMAX:
2106 return GDB_SIGNAL_REALTIME_64;
2107 }
2108
2109 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2110 {
2111 int offset = signal - LINUX_SIGRTMIN + 1;
2112
2113 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2114 }
2115
2116 return GDB_SIGNAL_UNKNOWN;
2117 }
2118
2119 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2120 gdbarch.h. This function is not static because it is exported to
2121 other -tdep files. */
2122
2123 int
2124 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2125 enum gdb_signal signal)
2126 {
2127 switch (signal)
2128 {
2129 case GDB_SIGNAL_0:
2130 return 0;
2131
2132 case GDB_SIGNAL_HUP:
2133 return LINUX_SIGHUP;
2134
2135 case GDB_SIGNAL_INT:
2136 return LINUX_SIGINT;
2137
2138 case GDB_SIGNAL_QUIT:
2139 return LINUX_SIGQUIT;
2140
2141 case GDB_SIGNAL_ILL:
2142 return LINUX_SIGILL;
2143
2144 case GDB_SIGNAL_TRAP:
2145 return LINUX_SIGTRAP;
2146
2147 case GDB_SIGNAL_ABRT:
2148 return LINUX_SIGABRT;
2149
2150 case GDB_SIGNAL_FPE:
2151 return LINUX_SIGFPE;
2152
2153 case GDB_SIGNAL_KILL:
2154 return LINUX_SIGKILL;
2155
2156 case GDB_SIGNAL_BUS:
2157 return LINUX_SIGBUS;
2158
2159 case GDB_SIGNAL_SEGV:
2160 return LINUX_SIGSEGV;
2161
2162 case GDB_SIGNAL_SYS:
2163 return LINUX_SIGSYS;
2164
2165 case GDB_SIGNAL_PIPE:
2166 return LINUX_SIGPIPE;
2167
2168 case GDB_SIGNAL_ALRM:
2169 return LINUX_SIGALRM;
2170
2171 case GDB_SIGNAL_TERM:
2172 return LINUX_SIGTERM;
2173
2174 case GDB_SIGNAL_URG:
2175 return LINUX_SIGURG;
2176
2177 case GDB_SIGNAL_STOP:
2178 return LINUX_SIGSTOP;
2179
2180 case GDB_SIGNAL_TSTP:
2181 return LINUX_SIGTSTP;
2182
2183 case GDB_SIGNAL_CONT:
2184 return LINUX_SIGCONT;
2185
2186 case GDB_SIGNAL_CHLD:
2187 return LINUX_SIGCHLD;
2188
2189 case GDB_SIGNAL_TTIN:
2190 return LINUX_SIGTTIN;
2191
2192 case GDB_SIGNAL_TTOU:
2193 return LINUX_SIGTTOU;
2194
2195 case GDB_SIGNAL_IO:
2196 return LINUX_SIGIO;
2197
2198 case GDB_SIGNAL_XCPU:
2199 return LINUX_SIGXCPU;
2200
2201 case GDB_SIGNAL_XFSZ:
2202 return LINUX_SIGXFSZ;
2203
2204 case GDB_SIGNAL_VTALRM:
2205 return LINUX_SIGVTALRM;
2206
2207 case GDB_SIGNAL_PROF:
2208 return LINUX_SIGPROF;
2209
2210 case GDB_SIGNAL_WINCH:
2211 return LINUX_SIGWINCH;
2212
2213 case GDB_SIGNAL_USR1:
2214 return LINUX_SIGUSR1;
2215
2216 case GDB_SIGNAL_USR2:
2217 return LINUX_SIGUSR2;
2218
2219 case GDB_SIGNAL_PWR:
2220 return LINUX_SIGPWR;
2221
2222 case GDB_SIGNAL_POLL:
2223 return LINUX_SIGPOLL;
2224
2225 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2226 therefore we have to handle it here. */
2227 case GDB_SIGNAL_REALTIME_32:
2228 return LINUX_SIGRTMIN;
2229
2230 /* Same comment applies to _64. */
2231 case GDB_SIGNAL_REALTIME_64:
2232 return LINUX_SIGRTMAX;
2233 }
2234
2235 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2236 if (signal >= GDB_SIGNAL_REALTIME_33
2237 && signal <= GDB_SIGNAL_REALTIME_63)
2238 {
2239 int offset = signal - GDB_SIGNAL_REALTIME_33;
2240
2241 return LINUX_SIGRTMIN + 1 + offset;
2242 }
2243
2244 return -1;
2245 }
2246
2247 /* Helper for linux_vsyscall_range that does the real work of finding
2248 the vsyscall's address range. */
2249
2250 static int
2251 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2252 {
2253 char filename[100];
2254 long pid;
2255
2256 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2257 return 0;
2258
2259 /* It doesn't make sense to access the host's /proc when debugging a
2260 core file. Instead, look for the PT_LOAD segment that matches
2261 the vDSO. */
2262 if (!target_has_execution)
2263 {
2264 long phdrs_size;
2265 int num_phdrs, i;
2266
2267 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2268 if (phdrs_size == -1)
2269 return 0;
2270
2271 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2272 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2273 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2274 if (num_phdrs == -1)
2275 return 0;
2276
2277 for (i = 0; i < num_phdrs; i++)
2278 if (phdrs.get ()[i].p_type == PT_LOAD
2279 && phdrs.get ()[i].p_vaddr == range->start)
2280 {
2281 range->length = phdrs.get ()[i].p_memsz;
2282 return 1;
2283 }
2284
2285 return 0;
2286 }
2287
2288 /* We need to know the real target PID to access /proc. */
2289 if (current_inferior ()->fake_pid_p)
2290 return 0;
2291
2292 pid = current_inferior ()->pid;
2293
2294 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2295 reading /proc/PID/maps (2). The later identifies thread stacks
2296 in the output, which requires scanning every thread in the thread
2297 group to check whether a VMA is actually a thread's stack. With
2298 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2299 a few thousand threads, (1) takes a few miliseconds, while (2)
2300 takes several seconds. Also note that "smaps", what we read for
2301 determining core dump mappings, is even slower than "maps". */
2302 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2303 gdb::unique_xmalloc_ptr<char> data
2304 = target_fileio_read_stralloc (NULL, filename);
2305 if (data != NULL)
2306 {
2307 char *line;
2308 char *saveptr = NULL;
2309
2310 for (line = strtok_r (data.get (), "\n", &saveptr);
2311 line != NULL;
2312 line = strtok_r (NULL, "\n", &saveptr))
2313 {
2314 ULONGEST addr, endaddr;
2315 const char *p = line;
2316
2317 addr = strtoulst (p, &p, 16);
2318 if (addr == range->start)
2319 {
2320 if (*p == '-')
2321 p++;
2322 endaddr = strtoulst (p, &p, 16);
2323 range->length = endaddr - addr;
2324 return 1;
2325 }
2326 }
2327 }
2328 else
2329 warning (_("unable to open /proc file '%s'"), filename);
2330
2331 return 0;
2332 }
2333
2334 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2335 caching, and defers the real work to linux_vsyscall_range_raw. */
2336
2337 static int
2338 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2339 {
2340 struct linux_info *info = get_linux_inferior_data ();
2341
2342 if (info->vsyscall_range_p == 0)
2343 {
2344 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2345 info->vsyscall_range_p = 1;
2346 else
2347 info->vsyscall_range_p = -1;
2348 }
2349
2350 if (info->vsyscall_range_p < 0)
2351 return 0;
2352
2353 *range = info->vsyscall_range;
2354 return 1;
2355 }
2356
2357 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2358 definitions would be dependent on compilation host. */
2359 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2360 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2361
2362 /* See gdbarch.sh 'infcall_mmap'. */
2363
2364 static CORE_ADDR
2365 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2366 {
2367 struct objfile *objf;
2368 /* Do there still exist any Linux systems without "mmap64"?
2369 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2370 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2371 struct value *addr_val;
2372 struct gdbarch *gdbarch = get_objfile_arch (objf);
2373 CORE_ADDR retval;
2374 enum
2375 {
2376 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2377 };
2378 struct value *arg[ARG_LAST];
2379
2380 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2381 0);
2382 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2383 arg[ARG_LENGTH] = value_from_ulongest
2384 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2385 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2386 | GDB_MMAP_PROT_EXEC))
2387 == 0);
2388 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2389 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2390 GDB_MMAP_MAP_PRIVATE
2391 | GDB_MMAP_MAP_ANONYMOUS);
2392 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2393 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2394 0);
2395 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2396 retval = value_as_address (addr_val);
2397 if (retval == (CORE_ADDR) -1)
2398 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2399 pulongest (size));
2400 return retval;
2401 }
2402
2403 /* See gdbarch.sh 'infcall_munmap'. */
2404
2405 static void
2406 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2407 {
2408 struct objfile *objf;
2409 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2410 struct value *retval_val;
2411 struct gdbarch *gdbarch = get_objfile_arch (objf);
2412 LONGEST retval;
2413 enum
2414 {
2415 ARG_ADDR, ARG_LENGTH, ARG_LAST
2416 };
2417 struct value *arg[ARG_LAST];
2418
2419 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2420 addr);
2421 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2422 arg[ARG_LENGTH] = value_from_ulongest
2423 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2424 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2425 retval = value_as_long (retval_val);
2426 if (retval != 0)
2427 warning (_("Failed inferior munmap call at %s for %s bytes, "
2428 "errno is changed."),
2429 hex_string (addr), pulongest (size));
2430 }
2431
2432 /* See linux-tdep.h. */
2433
2434 CORE_ADDR
2435 linux_displaced_step_location (struct gdbarch *gdbarch)
2436 {
2437 CORE_ADDR addr;
2438 int bp_len;
2439
2440 /* Determine entry point from target auxiliary vector. This avoids
2441 the need for symbols. Also, when debugging a stand-alone SPU
2442 executable, entry_point_address () will point to an SPU
2443 local-store address and is thus not usable as displaced stepping
2444 location. The auxiliary vector gets us the PowerPC-side entry
2445 point address instead. */
2446 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2447 throw_error (NOT_SUPPORTED_ERROR,
2448 _("Cannot find AT_ENTRY auxiliary vector entry."));
2449
2450 /* Make certain that the address points at real code, and not a
2451 function descriptor. */
2452 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2453 current_top_target ());
2454
2455 /* Inferior calls also use the entry point as a breakpoint location.
2456 We don't want displaced stepping to interfere with those
2457 breakpoints, so leave space. */
2458 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2459 addr += bp_len * 2;
2460
2461 return addr;
2462 }
2463
2464 /* See linux-tdep.h. */
2465
2466 CORE_ADDR
2467 linux_get_hwcap (struct target_ops *target)
2468 {
2469 CORE_ADDR field;
2470 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2471 return 0;
2472 return field;
2473 }
2474
2475 /* See linux-tdep.h. */
2476
2477 CORE_ADDR
2478 linux_get_hwcap2 (struct target_ops *target)
2479 {
2480 CORE_ADDR field;
2481 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2482 return 0;
2483 return field;
2484 }
2485
2486 /* Display whether the gcore command is using the
2487 /proc/PID/coredump_filter file. */
2488
2489 static void
2490 show_use_coredump_filter (struct ui_file *file, int from_tty,
2491 struct cmd_list_element *c, const char *value)
2492 {
2493 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2494 " corefiles is %s.\n"), value);
2495 }
2496
2497 /* Display whether the gcore command is dumping mappings marked with
2498 the VM_DONTDUMP flag. */
2499
2500 static void
2501 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2502 struct cmd_list_element *c, const char *value)
2503 {
2504 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2505 " flag is %s.\n"), value);
2506 }
2507
2508 /* To be called from the various GDB_OSABI_LINUX handlers for the
2509 various GNU/Linux architectures and machine types. */
2510
2511 void
2512 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2513 {
2514 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2515 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2516 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2517 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2518 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2519 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2520 set_gdbarch_has_shared_address_space (gdbarch,
2521 linux_has_shared_address_space);
2522 set_gdbarch_gdb_signal_from_target (gdbarch,
2523 linux_gdb_signal_from_target);
2524 set_gdbarch_gdb_signal_to_target (gdbarch,
2525 linux_gdb_signal_to_target);
2526 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2527 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2528 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2529 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2530 }
2531
2532 void
2533 _initialize_linux_tdep (void)
2534 {
2535 linux_gdbarch_data_handle =
2536 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2537
2538 /* Set a cache per-inferior. */
2539 linux_inferior_data
2540 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2541 /* Observers used to invalidate the cache when needed. */
2542 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2543 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2544
2545 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2546 &use_coredump_filter, _("\
2547 Set whether gcore should consider /proc/PID/coredump_filter."),
2548 _("\
2549 Show whether gcore should consider /proc/PID/coredump_filter."),
2550 _("\
2551 Use this command to set whether gcore should consider the contents\n\
2552 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2553 about this file, refer to the manpage of core(5)."),
2554 NULL, show_use_coredump_filter,
2555 &setlist, &showlist);
2556
2557 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2558 &dump_excluded_mappings, _("\
2559 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2560 _("\
2561 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2562 _("\
2563 Use this command to set whether gcore should dump mappings marked with the\n\
2564 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2565 more information about this file, refer to the manpage of proc(5) and core(5)."),
2566 NULL, show_dump_excluded_mappings,
2567 &setlist, &showlist);
2568 }