]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m32r-tdep.c
Generated files
[thirdparty/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright (C) 1996-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "osabi.h"
33 #include "language.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "m32r-tdep.h"
40 #include <algorithm>
41
42 /* The size of the argument registers (r0 - r3) in bytes. */
43 #define M32R_ARG_REGISTER_SIZE 4
44
45 /* Local functions */
46
47 static CORE_ADDR
48 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
49 {
50 /* Align to the size of an instruction (so that they can safely be
51 pushed onto the stack. */
52 return sp & ~3;
53 }
54
55
56 /* Breakpoints
57
58 The little endian mode of M32R is unique. In most of architectures,
59 two 16-bit instructions, A and B, are placed as the following:
60
61 Big endian:
62 A0 A1 B0 B1
63
64 Little endian:
65 A1 A0 B1 B0
66
67 In M32R, they are placed like this:
68
69 Big endian:
70 A0 A1 B0 B1
71
72 Little endian:
73 B1 B0 A1 A0
74
75 This is because M32R always fetches instructions in 32-bit.
76
77 The following functions take care of this behavior. */
78
79 static int
80 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
81 struct bp_target_info *bp_tgt)
82 {
83 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
84 int val;
85 gdb_byte buf[4];
86 gdb_byte contents_cache[4];
87 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
88
89 /* Save the memory contents. */
90 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
91 if (val != 0)
92 return val; /* return error */
93
94 memcpy (bp_tgt->shadow_contents, contents_cache, 4);
95 bp_tgt->shadow_len = 4;
96
97 /* Determine appropriate breakpoint contents and size for this address. */
98 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
99 {
100 if ((addr & 3) == 0)
101 {
102 buf[0] = bp_entry[0];
103 buf[1] = bp_entry[1];
104 buf[2] = contents_cache[2] & 0x7f;
105 buf[3] = contents_cache[3];
106 }
107 else
108 {
109 buf[0] = contents_cache[0];
110 buf[1] = contents_cache[1];
111 buf[2] = bp_entry[0];
112 buf[3] = bp_entry[1];
113 }
114 }
115 else /* little-endian */
116 {
117 if ((addr & 3) == 0)
118 {
119 buf[0] = contents_cache[0];
120 buf[1] = contents_cache[1] & 0x7f;
121 buf[2] = bp_entry[1];
122 buf[3] = bp_entry[0];
123 }
124 else
125 {
126 buf[0] = bp_entry[1];
127 buf[1] = bp_entry[0];
128 buf[2] = contents_cache[2];
129 buf[3] = contents_cache[3];
130 }
131 }
132
133 /* Write the breakpoint. */
134 val = target_write_memory (addr & 0xfffffffc, buf, 4);
135 return val;
136 }
137
138 static int
139 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
140 struct bp_target_info *bp_tgt)
141 {
142 CORE_ADDR addr = bp_tgt->placed_address;
143 int val;
144 gdb_byte buf[4];
145 gdb_byte *contents_cache = bp_tgt->shadow_contents;
146
147 buf[0] = contents_cache[0];
148 buf[1] = contents_cache[1];
149 buf[2] = contents_cache[2];
150 buf[3] = contents_cache[3];
151
152 /* Remove parallel bit. */
153 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
154 {
155 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
156 buf[2] &= 0x7f;
157 }
158 else /* little-endian */
159 {
160 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
161 buf[1] &= 0x7f;
162 }
163
164 /* Write contents. */
165 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4);
166 return val;
167 }
168
169 /* Implement the breakpoint_kind_from_pc gdbarch method. */
170
171 static int
172 m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
173 {
174 if ((*pcptr & 3) == 0)
175 return 4;
176 else
177 return 2;
178 }
179
180 /* Implement the sw_breakpoint_from_kind gdbarch method. */
181
182 static const gdb_byte *
183 m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
184 {
185 static gdb_byte be_bp_entry[] = {
186 0x10, 0xf1, 0x70, 0x00
187 }; /* dpt -> nop */
188 static gdb_byte le_bp_entry[] = {
189 0x00, 0x70, 0xf1, 0x10
190 }; /* dpt -> nop */
191
192 *size = kind;
193
194 /* Determine appropriate breakpoint. */
195 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
196 return be_bp_entry;
197 else
198 {
199 if (kind == 4)
200 return le_bp_entry;
201 else
202 return le_bp_entry + 2;
203 }
204 }
205
206 static const char *m32r_register_names[] = {
207 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
208 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
209 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
210 "evb"
211 };
212
213 static const char *
214 m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
215 {
216 if (reg_nr < 0)
217 return NULL;
218 if (reg_nr >= M32R_NUM_REGS)
219 return NULL;
220 return m32r_register_names[reg_nr];
221 }
222
223
224 /* Return the GDB type object for the "standard" data type
225 of data in register N. */
226
227 static struct type *
228 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
229 {
230 if (reg_nr == M32R_PC_REGNUM)
231 return builtin_type (gdbarch)->builtin_func_ptr;
232 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
233 return builtin_type (gdbarch)->builtin_data_ptr;
234 else
235 return builtin_type (gdbarch)->builtin_int32;
236 }
237
238
239 /* Write into appropriate registers a function return value
240 of type TYPE, given in virtual format.
241
242 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
243
244 static void
245 m32r_store_return_value (struct type *type, struct regcache *regcache,
246 const gdb_byte *valbuf)
247 {
248 struct gdbarch *gdbarch = regcache->arch ();
249 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
250 CORE_ADDR regval;
251 int len = TYPE_LENGTH (type);
252
253 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
254 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
255
256 if (len > 4)
257 {
258 regval = extract_unsigned_integer (valbuf + 4,
259 len - 4, byte_order);
260 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
261 }
262 }
263
264 /* This is required by skip_prologue. The results of decoding a prologue
265 should be cached because this thrashing is getting nuts. */
266
267 static int
268 decode_prologue (struct gdbarch *gdbarch,
269 CORE_ADDR start_pc, CORE_ADDR scan_limit,
270 CORE_ADDR *pl_endptr, unsigned long *framelength)
271 {
272 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
273 unsigned long framesize;
274 int insn;
275 int op1;
276 CORE_ADDR after_prologue = 0;
277 CORE_ADDR after_push = 0;
278 CORE_ADDR after_stack_adjust = 0;
279 CORE_ADDR current_pc;
280 LONGEST return_value;
281
282 framesize = 0;
283 after_prologue = 0;
284
285 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
286 {
287 /* Check if current pc's location is readable. */
288 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
289 return -1;
290
291 insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
292
293 if (insn == 0x0000)
294 break;
295
296 /* If this is a 32 bit instruction, we dont want to examine its
297 immediate data as though it were an instruction. */
298 if (current_pc & 0x02)
299 {
300 /* Decode this instruction further. */
301 insn &= 0x7fff;
302 }
303 else
304 {
305 if (insn & 0x8000)
306 {
307 if (current_pc == scan_limit)
308 scan_limit += 2; /* extend the search */
309
310 current_pc += 2; /* skip the immediate data */
311
312 /* Check if current pc's location is readable. */
313 if (!safe_read_memory_integer (current_pc, 2, byte_order,
314 &return_value))
315 return -1;
316
317 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
318 /* add 16 bit sign-extended offset */
319 {
320 framesize +=
321 -((short) read_memory_unsigned_integer (current_pc,
322 2, byte_order));
323 }
324 else
325 {
326 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
327 && safe_read_memory_integer (current_pc + 2,
328 2, byte_order,
329 &return_value)
330 && read_memory_unsigned_integer (current_pc + 2,
331 2, byte_order)
332 == 0x0f24)
333 {
334 /* Subtract 24 bit sign-extended negative-offset. */
335 insn = read_memory_unsigned_integer (current_pc - 2,
336 4, byte_order);
337 if (insn & 0x00800000) /* sign extend */
338 insn |= 0xff000000; /* negative */
339 else
340 insn &= 0x00ffffff; /* positive */
341 framesize += insn;
342 }
343 }
344 after_push = current_pc + 2;
345 continue;
346 }
347 }
348 op1 = insn & 0xf000; /* Isolate just the first nibble. */
349
350 if ((insn & 0xf0ff) == 0x207f)
351 { /* st reg, @-sp */
352 framesize += 4;
353 after_prologue = 0;
354 continue;
355 }
356 if ((insn >> 8) == 0x4f) /* addi sp, xx */
357 /* Add 8 bit sign-extended offset. */
358 {
359 int stack_adjust = (signed char) (insn & 0xff);
360
361 /* there are probably two of these stack adjustments:
362 1) A negative one in the prologue, and
363 2) A positive one in the epilogue.
364 We are only interested in the first one. */
365
366 if (stack_adjust < 0)
367 {
368 framesize -= stack_adjust;
369 after_prologue = 0;
370 /* A frameless function may have no "mv fp, sp".
371 In that case, this is the end of the prologue. */
372 after_stack_adjust = current_pc + 2;
373 }
374 continue;
375 }
376 if (insn == 0x1d8f)
377 { /* mv fp, sp */
378 after_prologue = current_pc + 2;
379 break; /* end of stack adjustments */
380 }
381
382 /* Nop looks like a branch, continue explicitly. */
383 if (insn == 0x7000)
384 {
385 after_prologue = current_pc + 2;
386 continue; /* nop occurs between pushes. */
387 }
388 /* End of prolog if any of these are trap instructions. */
389 if ((insn & 0xfff0) == 0x10f0)
390 {
391 after_prologue = current_pc;
392 break;
393 }
394 /* End of prolog if any of these are branch instructions. */
395 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
396 {
397 after_prologue = current_pc;
398 continue;
399 }
400 /* Some of the branch instructions are mixed with other types. */
401 if (op1 == 0x1000)
402 {
403 int subop = insn & 0x0ff0;
404 if ((subop == 0x0ec0) || (subop == 0x0fc0))
405 {
406 after_prologue = current_pc;
407 continue; /* jmp , jl */
408 }
409 }
410 }
411
412 if (framelength)
413 *framelength = framesize;
414
415 if (current_pc >= scan_limit)
416 {
417 if (pl_endptr)
418 {
419 if (after_stack_adjust != 0)
420 /* We did not find a "mv fp,sp", but we DID find
421 a stack_adjust. Is it safe to use that as the
422 end of the prologue? I just don't know. */
423 {
424 *pl_endptr = after_stack_adjust;
425 }
426 else if (after_push != 0)
427 /* We did not find a "mv fp,sp", but we DID find
428 a push. Is it safe to use that as the
429 end of the prologue? I just don't know. */
430 {
431 *pl_endptr = after_push;
432 }
433 else
434 /* We reached the end of the loop without finding the end
435 of the prologue. No way to win -- we should report
436 failure. The way we do that is to return the original
437 start_pc. GDB will set a breakpoint at the start of
438 the function (etc.) */
439 *pl_endptr = start_pc;
440 }
441 return 0;
442 }
443
444 if (after_prologue == 0)
445 after_prologue = current_pc;
446
447 if (pl_endptr)
448 *pl_endptr = after_prologue;
449
450 return 0;
451 } /* decode_prologue */
452
453 /* Function: skip_prologue
454 Find end of function prologue. */
455
456 #define DEFAULT_SEARCH_LIMIT 128
457
458 static CORE_ADDR
459 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
460 {
461 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
462 CORE_ADDR func_addr, func_end;
463 struct symtab_and_line sal;
464 LONGEST return_value;
465
466 /* See what the symbol table says. */
467
468 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
469 {
470 sal = find_pc_line (func_addr, 0);
471
472 if (sal.line != 0 && sal.end <= func_end)
473 {
474 func_end = sal.end;
475 }
476 else
477 /* Either there's no line info, or the line after the prologue is after
478 the end of the function. In this case, there probably isn't a
479 prologue. */
480 {
481 func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
482 }
483 }
484 else
485 func_end = pc + DEFAULT_SEARCH_LIMIT;
486
487 /* If pc's location is not readable, just quit. */
488 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
489 return pc;
490
491 /* Find the end of prologue. */
492 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
493 return pc;
494
495 return sal.end;
496 }
497
498 struct m32r_unwind_cache
499 {
500 /* The previous frame's inner most stack address. Used as this
501 frame ID's stack_addr. */
502 CORE_ADDR prev_sp;
503 /* The frame's base, optionally used by the high-level debug info. */
504 CORE_ADDR base;
505 int size;
506 /* How far the SP and r13 (FP) have been offset from the start of
507 the stack frame (as defined by the previous frame's stack
508 pointer). */
509 LONGEST sp_offset;
510 LONGEST r13_offset;
511 int uses_frame;
512 /* Table indicating the location of each and every register. */
513 struct trad_frame_saved_reg *saved_regs;
514 };
515
516 /* Put here the code to store, into fi->saved_regs, the addresses of
517 the saved registers of frame described by FRAME_INFO. This
518 includes special registers such as pc and fp saved in special ways
519 in the stack frame. sp is even more special: the address we return
520 for it IS the sp for the next frame. */
521
522 static struct m32r_unwind_cache *
523 m32r_frame_unwind_cache (struct frame_info *this_frame,
524 void **this_prologue_cache)
525 {
526 CORE_ADDR pc, scan_limit;
527 ULONGEST prev_sp;
528 ULONGEST this_base;
529 unsigned long op;
530 int i;
531 struct m32r_unwind_cache *info;
532
533
534 if ((*this_prologue_cache))
535 return (struct m32r_unwind_cache *) (*this_prologue_cache);
536
537 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
538 (*this_prologue_cache) = info;
539 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
540
541 info->size = 0;
542 info->sp_offset = 0;
543 info->uses_frame = 0;
544
545 scan_limit = get_frame_pc (this_frame);
546 for (pc = get_frame_func (this_frame);
547 pc > 0 && pc < scan_limit; pc += 2)
548 {
549 if ((pc & 2) == 0)
550 {
551 op = get_frame_memory_unsigned (this_frame, pc, 4);
552 if ((op & 0x80000000) == 0x80000000)
553 {
554 /* 32-bit instruction */
555 if ((op & 0xffff0000) == 0x8faf0000)
556 {
557 /* add3 sp,sp,xxxx */
558 short n = op & 0xffff;
559 info->sp_offset += n;
560 }
561 else if (((op >> 8) == 0xe4)
562 && get_frame_memory_unsigned (this_frame, pc + 2,
563 2) == 0x0f24)
564 {
565 /* ld24 r4, xxxxxx; sub sp, r4 */
566 unsigned long n = op & 0xffffff;
567 info->sp_offset += n;
568 pc += 2; /* skip sub instruction */
569 }
570
571 if (pc == scan_limit)
572 scan_limit += 2; /* extend the search */
573 pc += 2; /* skip the immediate data */
574 continue;
575 }
576 }
577
578 /* 16-bit instructions */
579 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
580 if ((op & 0xf0ff) == 0x207f)
581 {
582 /* st rn, @-sp */
583 int regno = ((op >> 8) & 0xf);
584 info->sp_offset -= 4;
585 info->saved_regs[regno].addr = info->sp_offset;
586 }
587 else if ((op & 0xff00) == 0x4f00)
588 {
589 /* addi sp, xx */
590 int n = (signed char) (op & 0xff);
591 info->sp_offset += n;
592 }
593 else if (op == 0x1d8f)
594 {
595 /* mv fp, sp */
596 info->uses_frame = 1;
597 info->r13_offset = info->sp_offset;
598 break; /* end of stack adjustments */
599 }
600 else if ((op & 0xfff0) == 0x10f0)
601 {
602 /* End of prologue if this is a trap instruction. */
603 break; /* End of stack adjustments. */
604 }
605 }
606
607 info->size = -info->sp_offset;
608
609 /* Compute the previous frame's stack pointer (which is also the
610 frame's ID's stack address), and this frame's base pointer. */
611 if (info->uses_frame)
612 {
613 /* The SP was moved to the FP. This indicates that a new frame
614 was created. Get THIS frame's FP value by unwinding it from
615 the next frame. */
616 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
617 /* The FP points at the last saved register. Adjust the FP back
618 to before the first saved register giving the SP. */
619 prev_sp = this_base + info->size;
620 }
621 else
622 {
623 /* Assume that the FP is this frame's SP but with that pushed
624 stack space added back. */
625 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
626 prev_sp = this_base + info->size;
627 }
628
629 /* Convert that SP/BASE into real addresses. */
630 info->prev_sp = prev_sp;
631 info->base = this_base;
632
633 /* Adjust all the saved registers so that they contain addresses and
634 not offsets. */
635 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
636 if (trad_frame_addr_p (info->saved_regs, i))
637 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
638
639 /* The call instruction moves the caller's PC in the callee's LR.
640 Since this is an unwind, do the reverse. Copy the location of LR
641 into PC (the address / regnum) so that a request for PC will be
642 converted into a request for the LR. */
643 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
644
645 /* The previous frame's SP needed to be computed. Save the computed
646 value. */
647 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
648
649 return info;
650 }
651
652 static CORE_ADDR
653 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
654 {
655 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
656 }
657
658
659 static CORE_ADDR
660 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
661 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
662 struct value **args, CORE_ADDR sp, int struct_return,
663 CORE_ADDR struct_addr)
664 {
665 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
666 int stack_offset, stack_alloc;
667 int argreg = ARG1_REGNUM;
668 int argnum;
669 struct type *type;
670 enum type_code typecode;
671 CORE_ADDR regval;
672 gdb_byte *val;
673 gdb_byte valbuf[M32R_ARG_REGISTER_SIZE];
674 int len;
675
676 /* First force sp to a 4-byte alignment. */
677 sp = sp & ~3;
678
679 /* Set the return address. For the m32r, the return breakpoint is
680 always at BP_ADDR. */
681 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
682
683 /* If STRUCT_RETURN is true, then the struct return address (in
684 STRUCT_ADDR) will consume the first argument-passing register.
685 Both adjust the register count and store that value. */
686 if (struct_return)
687 {
688 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
689 argreg++;
690 }
691
692 /* Now make sure there's space on the stack. */
693 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
694 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
695 sp -= stack_alloc; /* Make room on stack for args. */
696
697 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
698 {
699 type = value_type (args[argnum]);
700 typecode = TYPE_CODE (type);
701 len = TYPE_LENGTH (type);
702
703 memset (valbuf, 0, sizeof (valbuf));
704
705 /* Passes structures that do not fit in 2 registers by reference. */
706 if (len > 8
707 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
708 {
709 store_unsigned_integer (valbuf, 4, byte_order,
710 value_address (args[argnum]));
711 typecode = TYPE_CODE_PTR;
712 len = 4;
713 val = valbuf;
714 }
715 else if (len < 4)
716 {
717 /* Value gets right-justified in the register or stack word. */
718 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
719 (gdb_byte *) value_contents (args[argnum]), len);
720 val = valbuf;
721 }
722 else
723 val = (gdb_byte *) value_contents (args[argnum]);
724
725 while (len > 0)
726 {
727 if (argreg > ARGN_REGNUM)
728 {
729 /* Must go on the stack. */
730 write_memory (sp + stack_offset, val, 4);
731 stack_offset += 4;
732 }
733 else if (argreg <= ARGN_REGNUM)
734 {
735 /* There's room in a register. */
736 regval =
737 extract_unsigned_integer (val,
738 register_size (gdbarch, argreg),
739 byte_order);
740 regcache_cooked_write_unsigned (regcache, argreg++, regval);
741 }
742
743 /* Store the value 4 bytes at a time. This means that things
744 larger than 4 bytes may go partly in registers and partly
745 on the stack. */
746 len -= register_size (gdbarch, argreg);
747 val += register_size (gdbarch, argreg);
748 }
749 }
750
751 /* Finally, update the SP register. */
752 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
753
754 return sp;
755 }
756
757
758 /* Given a return value in `regbuf' with a type `valtype',
759 extract and copy its value into `valbuf'. */
760
761 static void
762 m32r_extract_return_value (struct type *type, struct regcache *regcache,
763 gdb_byte *dst)
764 {
765 struct gdbarch *gdbarch = regcache->arch ();
766 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
767 int len = TYPE_LENGTH (type);
768 ULONGEST tmp;
769
770 /* By using store_unsigned_integer we avoid having to do
771 anything special for small big-endian values. */
772 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
773 store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp);
774
775 /* Ignore return values more than 8 bytes in size because the m32r
776 returns anything more than 8 bytes in the stack. */
777 if (len > 4)
778 {
779 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
780 store_unsigned_integer (dst + len - 4, 4, byte_order, tmp);
781 }
782 }
783
784 static enum return_value_convention
785 m32r_return_value (struct gdbarch *gdbarch, struct value *function,
786 struct type *valtype, struct regcache *regcache,
787 gdb_byte *readbuf, const gdb_byte *writebuf)
788 {
789 if (TYPE_LENGTH (valtype) > 8)
790 return RETURN_VALUE_STRUCT_CONVENTION;
791 else
792 {
793 if (readbuf != NULL)
794 m32r_extract_return_value (valtype, regcache, readbuf);
795 if (writebuf != NULL)
796 m32r_store_return_value (valtype, regcache, writebuf);
797 return RETURN_VALUE_REGISTER_CONVENTION;
798 }
799 }
800
801
802
803 static CORE_ADDR
804 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
805 {
806 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
807 }
808
809 /* Given a GDB frame, determine the address of the calling function's
810 frame. This will be used to create a new GDB frame struct. */
811
812 static void
813 m32r_frame_this_id (struct frame_info *this_frame,
814 void **this_prologue_cache, struct frame_id *this_id)
815 {
816 struct m32r_unwind_cache *info
817 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
818 CORE_ADDR base;
819 CORE_ADDR func;
820 struct bound_minimal_symbol msym_stack;
821 struct frame_id id;
822
823 /* The FUNC is easy. */
824 func = get_frame_func (this_frame);
825
826 /* Check if the stack is empty. */
827 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
828 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
829 return;
830
831 /* Hopefully the prologue analysis either correctly determined the
832 frame's base (which is the SP from the previous frame), or set
833 that base to "NULL". */
834 base = info->prev_sp;
835 if (base == 0)
836 return;
837
838 id = frame_id_build (base, func);
839 (*this_id) = id;
840 }
841
842 static struct value *
843 m32r_frame_prev_register (struct frame_info *this_frame,
844 void **this_prologue_cache, int regnum)
845 {
846 struct m32r_unwind_cache *info
847 = m32r_frame_unwind_cache (this_frame, this_prologue_cache);
848 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
849 }
850
851 static const struct frame_unwind m32r_frame_unwind = {
852 NORMAL_FRAME,
853 default_frame_unwind_stop_reason,
854 m32r_frame_this_id,
855 m32r_frame_prev_register,
856 NULL,
857 default_frame_sniffer
858 };
859
860 static CORE_ADDR
861 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
862 {
863 struct m32r_unwind_cache *info
864 = m32r_frame_unwind_cache (this_frame, this_cache);
865 return info->base;
866 }
867
868 static const struct frame_base m32r_frame_base = {
869 &m32r_frame_unwind,
870 m32r_frame_base_address,
871 m32r_frame_base_address,
872 m32r_frame_base_address
873 };
874
875 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
876 frame. The frame ID's base needs to match the TOS value saved by
877 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
878
879 static struct frame_id
880 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
881 {
882 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
883 return frame_id_build (sp, get_frame_pc (this_frame));
884 }
885
886
887 static gdbarch_init_ftype m32r_gdbarch_init;
888
889 static struct gdbarch *
890 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
891 {
892 struct gdbarch *gdbarch;
893 struct gdbarch_tdep *tdep;
894
895 /* If there is already a candidate, use it. */
896 arches = gdbarch_list_lookup_by_info (arches, &info);
897 if (arches != NULL)
898 return arches->gdbarch;
899
900 /* Allocate space for the new architecture. */
901 tdep = XCNEW (struct gdbarch_tdep);
902 gdbarch = gdbarch_alloc (&info, tdep);
903
904 set_gdbarch_wchar_bit (gdbarch, 16);
905 set_gdbarch_wchar_signed (gdbarch, 0);
906
907 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
908
909 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
910 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM);
911 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
912 set_gdbarch_register_name (gdbarch, m32r_register_name);
913 set_gdbarch_register_type (gdbarch, m32r_register_type);
914
915 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
916 set_gdbarch_return_value (gdbarch, m32r_return_value);
917
918 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
919 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
920 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc);
921 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind);
922 set_gdbarch_memory_insert_breakpoint (gdbarch,
923 m32r_memory_insert_breakpoint);
924 set_gdbarch_memory_remove_breakpoint (gdbarch,
925 m32r_memory_remove_breakpoint);
926
927 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
928
929 frame_base_set_default (gdbarch, &m32r_frame_base);
930
931 /* Methods for saving / extracting a dummy frame's ID. The ID's
932 stack address must match the SP value returned by
933 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
934 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
935
936 /* Return the unwound PC value. */
937 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
938
939 /* Hook in ABI-specific overrides, if they have been registered. */
940 gdbarch_init_osabi (info, gdbarch);
941
942 /* Hook in the default unwinders. */
943 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
944
945 /* Support simple overlay manager. */
946 set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
947
948 return gdbarch;
949 }
950
951 void
952 _initialize_m32r_tdep (void)
953 {
954 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
955 }