]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/memattr.c
Fix regression on aarch64-linux gdbserver
[thirdparty/binutils-gdb.git] / gdb / memattr.c
1 /* Memory attributes support, for GDB.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "command.h"
22 #include "gdbcmd.h"
23 #include "memattr.h"
24 #include "target.h"
25 #include "target-dcache.h"
26 #include "value.h"
27 #include "language.h"
28 #include "common/vec.h"
29 #include "breakpoint.h"
30 #include "cli/cli-utils.h"
31 #include <algorithm>
32
33 static std::vector<mem_region> user_mem_region_list, target_mem_region_list;
34 static std::vector<mem_region> *mem_region_list = &target_mem_region_list;
35 static int mem_number = 0;
36
37 /* If this flag is set, the memory region list should be automatically
38 updated from the target. If it is clear, the list is user-controlled
39 and should be left alone. */
40
41 static bool
42 mem_use_target ()
43 {
44 return mem_region_list == &target_mem_region_list;
45 }
46
47 /* If this flag is set, we have tried to fetch the target memory regions
48 since the last time it was invalidated. If that list is still
49 empty, then the target can't supply memory regions. */
50 static bool target_mem_regions_valid;
51
52 /* If this flag is set, gdb will assume that memory ranges not
53 specified by the memory map have type MEM_NONE, and will
54 emit errors on all accesses to that memory. */
55 static int inaccessible_by_default = 1;
56
57 static void
58 show_inaccessible_by_default (struct ui_file *file, int from_tty,
59 struct cmd_list_element *c,
60 const char *value)
61 {
62 if (inaccessible_by_default)
63 fprintf_filtered (file, _("Unknown memory addresses will "
64 "be treated as inaccessible.\n"));
65 else
66 fprintf_filtered (file, _("Unknown memory addresses "
67 "will be treated as RAM.\n"));
68 }
69
70 /* This function should be called before any command which would
71 modify the memory region list. It will handle switching from
72 a target-provided list to a local list, if necessary. */
73
74 static void
75 require_user_regions (int from_tty)
76 {
77 /* If we're already using a user-provided list, nothing to do. */
78 if (!mem_use_target ())
79 return;
80
81 /* Switch to a user-provided list (possibly a copy of the current
82 one). */
83 mem_region_list = &user_mem_region_list;
84
85 /* If we don't have a target-provided region list yet, then
86 no need to warn. */
87 if (target_mem_region_list.empty ())
88 return;
89
90 /* Otherwise, let the user know how to get back. */
91 if (from_tty)
92 warning (_("Switching to manual control of memory regions; use "
93 "\"mem auto\" to fetch regions from the target again."));
94
95 /* And create a new list (copy of the target-supplied regions) for the user
96 to modify. */
97 user_mem_region_list = target_mem_region_list;
98 }
99
100 /* This function should be called before any command which would
101 read the memory region list, other than those which call
102 require_user_regions. It will handle fetching the
103 target-provided list, if necessary. */
104
105 static void
106 require_target_regions (void)
107 {
108 if (mem_use_target () && !target_mem_regions_valid)
109 {
110 target_mem_regions_valid = true;
111 target_mem_region_list = target_memory_map ();
112 }
113 }
114
115 /* Create a new user-defined memory region. */
116
117 static void
118 create_user_mem_region (CORE_ADDR lo, CORE_ADDR hi,
119 const mem_attrib &attrib)
120 {
121 /* lo == hi is a useless empty region. */
122 if (lo >= hi && hi != 0)
123 {
124 printf_unfiltered (_("invalid memory region: low >= high\n"));
125 return;
126 }
127
128 mem_region newobj (lo, hi, attrib);
129
130 auto it = std::lower_bound (user_mem_region_list.begin (),
131 user_mem_region_list.end (),
132 newobj);
133 int ix = std::distance (user_mem_region_list.begin (), it);
134
135 /* Check for an overlapping memory region. We only need to check
136 in the vicinity - at most one before and one after the
137 insertion point. */
138 for (int i = ix - 1; i < ix + 1; i++)
139 {
140 if (i < 0)
141 continue;
142 if (i >= user_mem_region_list.size ())
143 continue;
144
145 mem_region &n = user_mem_region_list[i];
146
147 if ((lo >= n.lo && (lo < n.hi || n.hi == 0))
148 || (hi > n.lo && (hi <= n.hi || n.hi == 0))
149 || (lo <= n.lo && ((hi >= n.hi && n.hi != 0) || hi == 0)))
150 {
151 printf_unfiltered (_("overlapping memory region\n"));
152 return;
153 }
154 }
155
156 newobj.number = ++mem_number;
157 user_mem_region_list.insert (it, newobj);
158 }
159
160 /* Look up the memory region corresponding to ADDR. */
161
162 struct mem_region *
163 lookup_mem_region (CORE_ADDR addr)
164 {
165 static struct mem_region region (0, 0);
166 CORE_ADDR lo;
167 CORE_ADDR hi;
168
169 require_target_regions ();
170
171 /* First we initialize LO and HI so that they describe the entire
172 memory space. As we process the memory region chain, they are
173 redefined to describe the minimal region containing ADDR. LO
174 and HI are used in the case where no memory region is defined
175 that contains ADDR. If a memory region is disabled, it is
176 treated as if it does not exist. The initial values for LO
177 and HI represent the bottom and top of memory. */
178
179 lo = 0;
180 hi = 0;
181
182 /* Either find memory range containing ADDR, or set LO and HI
183 to the nearest boundaries of an existing memory range.
184
185 If we ever want to support a huge list of memory regions, this
186 check should be replaced with a binary search (probably using
187 VEC_lower_bound). */
188 for (mem_region &m : *mem_region_list)
189 {
190 if (m.enabled_p == 1)
191 {
192 /* If the address is in the memory region, return that
193 memory range. */
194 if (addr >= m.lo && (addr < m.hi || m.hi == 0))
195 return &m;
196
197 /* This (correctly) won't match if m->hi == 0, representing
198 the top of the address space, because CORE_ADDR is unsigned;
199 no value of LO is less than zero. */
200 if (addr >= m.hi && lo < m.hi)
201 lo = m.hi;
202
203 /* This will never set HI to zero; if we're here and ADDR
204 is at or below M, and the region starts at zero, then ADDR
205 would have been in the region. */
206 if (addr <= m.lo && (hi == 0 || hi > m.lo))
207 hi = m.lo;
208 }
209 }
210
211 /* Because no region was found, we must cons up one based on what
212 was learned above. */
213 region.lo = lo;
214 region.hi = hi;
215
216 /* When no memory map is defined at all, we always return
217 'default_mem_attrib', so that we do not make all memory
218 inaccessible for targets that don't provide a memory map. */
219 if (inaccessible_by_default && !mem_region_list->empty ())
220 region.attrib = mem_attrib::unknown ();
221 else
222 region.attrib = mem_attrib ();
223
224 return &region;
225 }
226
227 /* Invalidate any memory regions fetched from the target. */
228
229 void
230 invalidate_target_mem_regions (void)
231 {
232 if (!target_mem_regions_valid)
233 return;
234
235 target_mem_regions_valid = false;
236 target_mem_region_list.clear ();
237 }
238
239 /* Clear user-defined memory region list. */
240
241 static void
242 user_mem_clear (void)
243 {
244 user_mem_region_list.clear ();
245 }
246 \f
247
248 static void
249 mem_command (const char *args, int from_tty)
250 {
251 CORE_ADDR lo, hi;
252
253 if (!args)
254 error_no_arg (_("No mem"));
255
256 /* For "mem auto", switch back to using a target provided list. */
257 if (strcmp (args, "auto") == 0)
258 {
259 if (mem_use_target ())
260 return;
261
262 user_mem_clear ();
263 mem_region_list = &target_mem_region_list;
264
265 return;
266 }
267
268 require_user_regions (from_tty);
269
270 std::string tok = extract_arg (&args);
271 if (tok == "")
272 error (_("no lo address"));
273 lo = parse_and_eval_address (tok.c_str ());
274
275 tok = extract_arg (&args);
276 if (tok == "")
277 error (_("no hi address"));
278 hi = parse_and_eval_address (tok.c_str ());
279
280 mem_attrib attrib;
281 while ((tok = extract_arg (&args)) != "")
282 {
283 if (tok == "rw")
284 attrib.mode = MEM_RW;
285 else if (tok == "ro")
286 attrib.mode = MEM_RO;
287 else if (tok == "wo")
288 attrib.mode = MEM_WO;
289
290 else if (tok == "8")
291 attrib.width = MEM_WIDTH_8;
292 else if (tok == "16")
293 {
294 if ((lo % 2 != 0) || (hi % 2 != 0))
295 error (_("region bounds not 16 bit aligned"));
296 attrib.width = MEM_WIDTH_16;
297 }
298 else if (tok == "32")
299 {
300 if ((lo % 4 != 0) || (hi % 4 != 0))
301 error (_("region bounds not 32 bit aligned"));
302 attrib.width = MEM_WIDTH_32;
303 }
304 else if (tok == "64")
305 {
306 if ((lo % 8 != 0) || (hi % 8 != 0))
307 error (_("region bounds not 64 bit aligned"));
308 attrib.width = MEM_WIDTH_64;
309 }
310
311 #if 0
312 else if (tok == "hwbreak")
313 attrib.hwbreak = 1;
314 else if (tok == "swbreak")
315 attrib.hwbreak = 0;
316 #endif
317
318 else if (tok == "cache")
319 attrib.cache = 1;
320 else if (tok == "nocache")
321 attrib.cache = 0;
322
323 #if 0
324 else if (tok == "verify")
325 attrib.verify = 1;
326 else if (tok == "noverify")
327 attrib.verify = 0;
328 #endif
329
330 else
331 error (_("unknown attribute: %s"), tok.c_str ());
332 }
333
334 create_user_mem_region (lo, hi, attrib);
335 }
336 \f
337
338 static void
339 info_mem_command (const char *args, int from_tty)
340 {
341 if (mem_use_target ())
342 printf_filtered (_("Using memory regions provided by the target.\n"));
343 else
344 printf_filtered (_("Using user-defined memory regions.\n"));
345
346 require_target_regions ();
347
348 if (mem_region_list->empty ())
349 {
350 printf_unfiltered (_("There are no memory regions defined.\n"));
351 return;
352 }
353
354 printf_filtered ("Num ");
355 printf_filtered ("Enb ");
356 printf_filtered ("Low Addr ");
357 if (gdbarch_addr_bit (target_gdbarch ()) > 32)
358 printf_filtered (" ");
359 printf_filtered ("High Addr ");
360 if (gdbarch_addr_bit (target_gdbarch ()) > 32)
361 printf_filtered (" ");
362 printf_filtered ("Attrs ");
363 printf_filtered ("\n");
364
365 for (const mem_region &m : *mem_region_list)
366 {
367 const char *tmp;
368
369 printf_filtered ("%-3d %-3c\t",
370 m.number,
371 m.enabled_p ? 'y' : 'n');
372 if (gdbarch_addr_bit (target_gdbarch ()) <= 32)
373 tmp = hex_string_custom (m.lo, 8);
374 else
375 tmp = hex_string_custom (m.lo, 16);
376
377 printf_filtered ("%s ", tmp);
378
379 if (gdbarch_addr_bit (target_gdbarch ()) <= 32)
380 {
381 if (m.hi == 0)
382 tmp = "0x100000000";
383 else
384 tmp = hex_string_custom (m.hi, 8);
385 }
386 else
387 {
388 if (m.hi == 0)
389 tmp = "0x10000000000000000";
390 else
391 tmp = hex_string_custom (m.hi, 16);
392 }
393
394 printf_filtered ("%s ", tmp);
395
396 /* Print a token for each attribute.
397
398 * FIXME: Should we output a comma after each token? It may
399 * make it easier for users to read, but we'd lose the ability
400 * to cut-and-paste the list of attributes when defining a new
401 * region. Perhaps that is not important.
402 *
403 * FIXME: If more attributes are added to GDB, the output may
404 * become cluttered and difficult for users to read. At that
405 * time, we may want to consider printing tokens only if they
406 * are different from the default attribute. */
407
408 switch (m.attrib.mode)
409 {
410 case MEM_RW:
411 printf_filtered ("rw ");
412 break;
413 case MEM_RO:
414 printf_filtered ("ro ");
415 break;
416 case MEM_WO:
417 printf_filtered ("wo ");
418 break;
419 case MEM_FLASH:
420 printf_filtered ("flash blocksize 0x%x ", m.attrib.blocksize);
421 break;
422 }
423
424 switch (m.attrib.width)
425 {
426 case MEM_WIDTH_8:
427 printf_filtered ("8 ");
428 break;
429 case MEM_WIDTH_16:
430 printf_filtered ("16 ");
431 break;
432 case MEM_WIDTH_32:
433 printf_filtered ("32 ");
434 break;
435 case MEM_WIDTH_64:
436 printf_filtered ("64 ");
437 break;
438 case MEM_WIDTH_UNSPECIFIED:
439 break;
440 }
441
442 #if 0
443 if (attrib->hwbreak)
444 printf_filtered ("hwbreak");
445 else
446 printf_filtered ("swbreak");
447 #endif
448
449 if (m.attrib.cache)
450 printf_filtered ("cache ");
451 else
452 printf_filtered ("nocache ");
453
454 #if 0
455 if (attrib->verify)
456 printf_filtered ("verify ");
457 else
458 printf_filtered ("noverify ");
459 #endif
460
461 printf_filtered ("\n");
462 }
463 }
464 \f
465
466 /* Enable the memory region number NUM. */
467
468 static void
469 mem_enable (int num)
470 {
471 for (mem_region &m : *mem_region_list)
472 if (m.number == num)
473 {
474 m.enabled_p = 1;
475 return;
476 }
477 printf_unfiltered (_("No memory region number %d.\n"), num);
478 }
479
480 static void
481 enable_mem_command (const char *args, int from_tty)
482 {
483 require_user_regions (from_tty);
484
485 target_dcache_invalidate ();
486
487 if (args == NULL || *args == '\0')
488 { /* Enable all mem regions. */
489 for (mem_region &m : *mem_region_list)
490 m.enabled_p = 1;
491 }
492 else
493 {
494 number_or_range_parser parser (args);
495 while (!parser.finished ())
496 {
497 int num = parser.get_number ();
498 mem_enable (num);
499 }
500 }
501 }
502 \f
503
504 /* Disable the memory region number NUM. */
505
506 static void
507 mem_disable (int num)
508 {
509 for (mem_region &m : *mem_region_list)
510 if (m.number == num)
511 {
512 m.enabled_p = 0;
513 return;
514 }
515 printf_unfiltered (_("No memory region number %d.\n"), num);
516 }
517
518 static void
519 disable_mem_command (const char *args, int from_tty)
520 {
521 require_user_regions (from_tty);
522
523 target_dcache_invalidate ();
524
525 if (args == NULL || *args == '\0')
526 {
527 for (mem_region &m : *mem_region_list)
528 m.enabled_p = false;
529 }
530 else
531 {
532 number_or_range_parser parser (args);
533 while (!parser.finished ())
534 {
535 int num = parser.get_number ();
536 mem_disable (num);
537 }
538 }
539 }
540
541 /* Delete the memory region number NUM. */
542
543 static void
544 mem_delete (int num)
545 {
546 if (!mem_region_list)
547 {
548 printf_unfiltered (_("No memory region number %d.\n"), num);
549 return;
550 }
551
552 auto it = std::remove_if (mem_region_list->begin (), mem_region_list->end (),
553 [num] (const mem_region &m)
554 {
555 return m.number == num;
556 });
557
558 if (it != mem_region_list->end ())
559 mem_region_list->erase (it);
560 else
561 printf_unfiltered (_("No memory region number %d.\n"), num);
562 }
563
564 static void
565 delete_mem_command (const char *args, int from_tty)
566 {
567 require_user_regions (from_tty);
568
569 target_dcache_invalidate ();
570
571 if (args == NULL || *args == '\0')
572 {
573 if (query (_("Delete all memory regions? ")))
574 user_mem_clear ();
575 dont_repeat ();
576 return;
577 }
578
579 number_or_range_parser parser (args);
580 while (!parser.finished ())
581 {
582 int num = parser.get_number ();
583 mem_delete (num);
584 }
585
586 dont_repeat ();
587 }
588
589 static void
590 dummy_cmd (const char *args, int from_tty)
591 {
592 }
593
594 static struct cmd_list_element *mem_set_cmdlist;
595 static struct cmd_list_element *mem_show_cmdlist;
596
597 void
598 _initialize_mem (void)
599 {
600 add_com ("mem", class_vars, mem_command, _("\
601 Define attributes for memory region or reset memory region handling to\n\
602 target-based.\n\
603 Usage: mem auto\n\
604 mem LOW HIGH [MODE WIDTH CACHE],\n\
605 where MODE may be rw (read/write), ro (read-only) or wo (write-only),\n\
606 WIDTH may be 8, 16, 32, or 64, and\n\
607 CACHE may be cache or nocache"));
608
609 add_cmd ("mem", class_vars, enable_mem_command, _("\
610 Enable memory region.\n\
611 Arguments are the IDs of the memory regions to enable.\n\
612 Usage: enable mem [ID]...\n\
613 Do \"info mem\" to see current list of IDs."), &enablelist);
614
615 add_cmd ("mem", class_vars, disable_mem_command, _("\
616 Disable memory region.\n\
617 Arguments are the IDs of the memory regions to disable.\n\
618 Usage: disable mem [ID]...\n\
619 Do \"info mem\" to see current list of IDs."), &disablelist);
620
621 add_cmd ("mem", class_vars, delete_mem_command, _("\
622 Delete memory region.\n\
623 Arguments are the IDs of the memory regions to delete.\n\
624 Usage: delete mem [ID]...\n\
625 Do \"info mem\" to see current list of IDs."), &deletelist);
626
627 add_info ("mem", info_mem_command,
628 _("Memory region attributes"));
629
630 add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
631 Memory regions settings"),
632 &mem_set_cmdlist, "set mem ",
633 0/* allow-unknown */, &setlist);
634 add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
635 Memory regions settings"),
636 &mem_show_cmdlist, "show mem ",
637 0/* allow-unknown */, &showlist);
638
639 add_setshow_boolean_cmd ("inaccessible-by-default", no_class,
640 &inaccessible_by_default, _("\
641 Set handling of unknown memory regions."), _("\
642 Show handling of unknown memory regions."), _("\
643 If on, and some memory map is defined, debugger will emit errors on\n\
644 accesses to memory not defined in the memory map. If off, accesses to all\n\
645 memory addresses will be allowed."),
646 NULL,
647 show_inaccessible_by_default,
648 &mem_set_cmdlist,
649 &mem_show_cmdlist);
650 }