]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/monitor.c
opcodes: bfin: simplify field width processing and fix build warnings
[thirdparty/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright (C) 1990-2002, 2006-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
6 Resurrected from the ashes by Stu Grossman.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This file was derived from various remote-* modules. It is a collection
24 of generic support functions so GDB can talk directly to a ROM based
25 monitor. This saves use from having to hack an exception based handler
26 into existence, and makes for quick porting.
27
28 This module talks to a debug monitor called 'MONITOR', which
29 We communicate with MONITOR via either a direct serial line, or a TCP
30 (or possibly TELNET) stream to a terminal multiplexor,
31 which in turn talks to the target board. */
32
33 /* FIXME 32x64: This code assumes that registers and addresses are at
34 most 32 bits long. If they can be larger, you will need to declare
35 values as LONGEST and use %llx or some such to print values when
36 building commands to send to the monitor. Since we don't know of
37 any actual 64-bit targets with ROM monitors that use this code,
38 it's not an issue right now. -sts 4/18/96 */
39
40 #include "defs.h"
41 #include "gdbcore.h"
42 #include "target.h"
43 #include "exceptions.h"
44 #include <signal.h>
45 #include <ctype.h>
46 #include "gdb_string.h"
47 #include <sys/types.h>
48 #include "command.h"
49 #include "serial.h"
50 #include "monitor.h"
51 #include "gdbcmd.h"
52 #include "inferior.h"
53 #include "gdb_regex.h"
54 #include "srec.h"
55 #include "regcache.h"
56 #include "gdbthread.h"
57
58 static char *dev_name;
59 static struct target_ops *targ_ops;
60
61 static void monitor_interrupt_query (void);
62 static void monitor_interrupt_twice (int);
63 static void monitor_stop (ptid_t);
64 static void monitor_dump_regs (struct regcache *regcache);
65
66 #if 0
67 static int from_hex (int a);
68 #endif
69
70 static struct monitor_ops *current_monitor;
71
72 static int hashmark; /* flag set by "set hash". */
73
74 static int timeout = 30;
75
76 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait(). */
77
78 static void (*ofunc) (); /* Old SIGINT signal handler. */
79
80 static CORE_ADDR *breakaddr;
81
82 /* Descriptor for I/O to remote machine. Initialize it to NULL so
83 that monitor_open knows that we don't have a file open when the
84 program starts. */
85
86 static struct serial *monitor_desc = NULL;
87
88 /* Pointer to regexp pattern matching data. */
89
90 static struct re_pattern_buffer register_pattern;
91 static char register_fastmap[256];
92
93 static struct re_pattern_buffer getmem_resp_delim_pattern;
94 static char getmem_resp_delim_fastmap[256];
95
96 static struct re_pattern_buffer setmem_resp_delim_pattern;
97 static char setmem_resp_delim_fastmap[256];
98
99 static struct re_pattern_buffer setreg_resp_delim_pattern;
100 static char setreg_resp_delim_fastmap[256];
101
102 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
103 monitor_wait wakes up. */
104
105 static int first_time = 0; /* Is this the first time we're
106 executing after gaving created the
107 child proccess? */
108
109
110 /* This is the ptid we use while we're connected to a monitor. Its
111 value is arbitrary, as monitor targets don't have a notion of
112 processes or threads, but we need something non-null to place in
113 inferior_ptid. */
114 static ptid_t monitor_ptid;
115
116 #define TARGET_BUF_SIZE 2048
117
118 /* Monitor specific debugging information. Typically only useful to
119 the developer of a new monitor interface. */
120
121 static void monitor_debug (const char *fmt, ...) ATTRIBUTE_PRINTF (1, 2);
122
123 static int monitor_debug_p = 0;
124
125 /* NOTE: This file alternates between monitor_debug_p and remote_debug
126 when determining if debug information is printed. Perhaps this
127 could be simplified. */
128
129 static void
130 monitor_debug (const char *fmt, ...)
131 {
132 if (monitor_debug_p)
133 {
134 va_list args;
135
136 va_start (args, fmt);
137 vfprintf_filtered (gdb_stdlog, fmt, args);
138 va_end (args);
139 }
140 }
141
142
143 /* Convert a string into a printable representation, Return # byte in
144 the new string. When LEN is >0 it specifies the size of the
145 string. Otherwize strlen(oldstr) is used. */
146
147 static void
148 monitor_printable_string (char *newstr, char *oldstr, int len)
149 {
150 int ch;
151 int i;
152
153 if (len <= 0)
154 len = strlen (oldstr);
155
156 for (i = 0; i < len; i++)
157 {
158 ch = oldstr[i];
159 switch (ch)
160 {
161 default:
162 if (isprint (ch))
163 *newstr++ = ch;
164
165 else
166 {
167 sprintf (newstr, "\\x%02x", ch & 0xff);
168 newstr += 4;
169 }
170 break;
171
172 case '\\':
173 *newstr++ = '\\';
174 *newstr++ = '\\';
175 break;
176 case '\b':
177 *newstr++ = '\\';
178 *newstr++ = 'b';
179 break;
180 case '\f':
181 *newstr++ = '\\';
182 *newstr++ = 't';
183 break;
184 case '\n':
185 *newstr++ = '\\';
186 *newstr++ = 'n';
187 break;
188 case '\r':
189 *newstr++ = '\\';
190 *newstr++ = 'r';
191 break;
192 case '\t':
193 *newstr++ = '\\';
194 *newstr++ = 't';
195 break;
196 case '\v':
197 *newstr++ = '\\';
198 *newstr++ = 'v';
199 break;
200 }
201 }
202
203 *newstr++ = '\0';
204 }
205
206 /* Print monitor errors with a string, converting the string to printable
207 representation. */
208
209 static void
210 monitor_error (char *function, char *message,
211 CORE_ADDR memaddr, int len, char *string, int final_char)
212 {
213 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
214 char *safe_string = alloca ((real_len * 4) + 1);
215
216 monitor_printable_string (safe_string, string, real_len);
217
218 if (final_char)
219 error (_("%s (%s): %s: %s%c"),
220 function, paddress (target_gdbarch, memaddr),
221 message, safe_string, final_char);
222 else
223 error (_("%s (%s): %s: %s"),
224 function, paddress (target_gdbarch, memaddr),
225 message, safe_string);
226 }
227
228 /* Convert hex digit A to a number. */
229
230 static int
231 fromhex (int a)
232 {
233 if (a >= '0' && a <= '9')
234 return a - '0';
235 else if (a >= 'a' && a <= 'f')
236 return a - 'a' + 10;
237 else if (a >= 'A' && a <= 'F')
238 return a - 'A' + 10;
239 else
240 error (_("Invalid hex digit %d"), a);
241 }
242
243 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
244
245 This function exists to get around the problem that many host platforms
246 don't have a printf that can print 64-bit addresses. The %A format
247 specification is recognized as a special case, and causes the argument
248 to be printed as a 64-bit hexadecimal address.
249
250 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
251 If it is a '%s' format, the argument is a string; otherwise the
252 argument is assumed to be a long integer.
253
254 %% is also turned into a single %. */
255
256 static void
257 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
258 {
259 int addr_bit = gdbarch_addr_bit (target_gdbarch);
260 char format[10];
261 char fmt;
262 char *p;
263 int i;
264 long arg_int;
265 CORE_ADDR arg_addr;
266 char *arg_string;
267
268 for (p = pattern; *p; p++)
269 {
270 if (*p == '%')
271 {
272 /* Copy the format specifier to a separate buffer. */
273 format[0] = *p++;
274 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
275 i++, p++)
276 format[i] = *p;
277 format[i] = fmt = *p;
278 format[i + 1] = '\0';
279
280 /* Fetch the next argument and print it. */
281 switch (fmt)
282 {
283 case '%':
284 strcpy (sndbuf, "%");
285 break;
286 case 'A':
287 arg_addr = va_arg (args, CORE_ADDR);
288 strcpy (sndbuf, phex_nz (arg_addr, addr_bit / 8));
289 break;
290 case 's':
291 arg_string = va_arg (args, char *);
292 sprintf (sndbuf, format, arg_string);
293 break;
294 default:
295 arg_int = va_arg (args, long);
296 sprintf (sndbuf, format, arg_int);
297 break;
298 }
299 sndbuf += strlen (sndbuf);
300 }
301 else
302 *sndbuf++ = *p;
303 }
304 *sndbuf = '\0';
305 }
306
307
308 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
309 Works just like printf. */
310
311 void
312 monitor_printf_noecho (char *pattern,...)
313 {
314 va_list args;
315 char sndbuf[2000];
316 int len;
317
318 va_start (args, pattern);
319
320 monitor_vsprintf (sndbuf, pattern, args);
321
322 len = strlen (sndbuf);
323 if (len + 1 > sizeof sndbuf)
324 internal_error (__FILE__, __LINE__,
325 _("failed internal consistency check"));
326
327 if (monitor_debug_p)
328 {
329 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
330
331 monitor_printable_string (safe_string, sndbuf, 0);
332 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
333 }
334
335 monitor_write (sndbuf, len);
336 }
337
338 /* monitor_printf -- Send data to monitor and check the echo. Works just like
339 printf. */
340
341 void
342 monitor_printf (char *pattern,...)
343 {
344 va_list args;
345 char sndbuf[2000];
346 int len;
347
348 va_start (args, pattern);
349
350 monitor_vsprintf (sndbuf, pattern, args);
351
352 len = strlen (sndbuf);
353 if (len + 1 > sizeof sndbuf)
354 internal_error (__FILE__, __LINE__,
355 _("failed internal consistency check"));
356
357 if (monitor_debug_p)
358 {
359 char *safe_string = (char *) alloca ((len * 4) + 1);
360
361 monitor_printable_string (safe_string, sndbuf, 0);
362 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
363 }
364
365 monitor_write (sndbuf, len);
366
367 /* We used to expect that the next immediate output was the
368 characters we just output, but sometimes some extra junk appeared
369 before the characters we expected, like an extra prompt, or a
370 portmaster sending telnet negotiations. So, just start searching
371 for what we sent, and skip anything unknown. */
372 monitor_debug ("ExpectEcho\n");
373 monitor_expect (sndbuf, (char *) 0, 0);
374 }
375
376
377 /* Write characters to the remote system. */
378
379 void
380 monitor_write (char *buf, int buflen)
381 {
382 if (serial_write (monitor_desc, buf, buflen))
383 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
384 safe_strerror (errno));
385 }
386
387
388 /* Read a binary character from the remote system, doing all the fancy
389 timeout stuff, but without interpreting the character in any way,
390 and without printing remote debug information. */
391
392 int
393 monitor_readchar (void)
394 {
395 int c;
396 int looping;
397
398 do
399 {
400 looping = 0;
401 c = serial_readchar (monitor_desc, timeout);
402
403 if (c >= 0)
404 c &= 0xff; /* don't lose bit 7 */
405 }
406 while (looping);
407
408 if (c >= 0)
409 return c;
410
411 if (c == SERIAL_TIMEOUT)
412 error (_("Timeout reading from remote system."));
413
414 perror_with_name (_("remote-monitor"));
415 }
416
417
418 /* Read a character from the remote system, doing all the fancy
419 timeout stuff. */
420
421 static int
422 readchar (int timeout)
423 {
424 int c;
425 static enum
426 {
427 last_random, last_nl, last_cr, last_crnl
428 }
429 state = last_random;
430 int looping;
431
432 do
433 {
434 looping = 0;
435 c = serial_readchar (monitor_desc, timeout);
436
437 if (c >= 0)
438 {
439 c &= 0x7f;
440 /* This seems to interfere with proper function of the
441 input stream. */
442 if (monitor_debug_p || remote_debug)
443 {
444 char buf[2];
445
446 buf[0] = c;
447 buf[1] = '\0';
448 puts_debug ("read -->", buf, "<--");
449 }
450
451 }
452
453 /* Canonicialize \n\r combinations into one \r. */
454 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
455 {
456 if ((c == '\r' && state == last_nl)
457 || (c == '\n' && state == last_cr))
458 {
459 state = last_crnl;
460 looping = 1;
461 }
462 else if (c == '\r')
463 state = last_cr;
464 else if (c != '\n')
465 state = last_random;
466 else
467 {
468 state = last_nl;
469 c = '\r';
470 }
471 }
472 }
473 while (looping);
474
475 if (c >= 0)
476 return c;
477
478 if (c == SERIAL_TIMEOUT)
479 #if 0
480 /* I fail to see how detaching here can be useful. */
481 if (in_monitor_wait) /* Watchdog went off. */
482 {
483 target_mourn_inferior ();
484 error (_("GDB serial timeout has expired. Target detached."));
485 }
486 else
487 #endif
488 error (_("Timeout reading from remote system."));
489
490 perror_with_name (_("remote-monitor"));
491 }
492
493 /* Scan input from the remote system, until STRING is found. If BUF is non-
494 zero, then collect input until we have collected either STRING or BUFLEN-1
495 chars. In either case we terminate BUF with a 0. If input overflows BUF
496 because STRING can't be found, return -1, else return number of chars in BUF
497 (minus the terminating NUL). Note that in the non-overflow case, STRING
498 will be at the end of BUF. */
499
500 int
501 monitor_expect (char *string, char *buf, int buflen)
502 {
503 char *p = string;
504 int obuflen = buflen;
505 int c;
506
507 if (monitor_debug_p)
508 {
509 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
510 monitor_printable_string (safe_string, string, 0);
511 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
512 }
513
514 immediate_quit++;
515 while (1)
516 {
517 if (buf)
518 {
519 if (buflen < 2)
520 {
521 *buf = '\000';
522 immediate_quit--;
523 return -1;
524 }
525
526 c = readchar (timeout);
527 if (c == '\000')
528 continue;
529 *buf++ = c;
530 buflen--;
531 }
532 else
533 c = readchar (timeout);
534
535 /* Don't expect any ^C sent to be echoed. */
536
537 if (*p == '\003' || c == *p)
538 {
539 p++;
540 if (*p == '\0')
541 {
542 immediate_quit--;
543
544 if (buf)
545 {
546 *buf++ = '\000';
547 return obuflen - buflen;
548 }
549 else
550 return 0;
551 }
552 }
553 else
554 {
555 /* We got a character that doesn't match the string. We need to
556 back up p, but how far? If we're looking for "..howdy" and the
557 monitor sends "...howdy"? There's certainly a match in there,
558 but when we receive the third ".", we won't find it if we just
559 restart the matching at the beginning of the string.
560
561 This is a Boyer-Moore kind of situation. We want to reset P to
562 the end of the longest prefix of STRING that is a suffix of
563 what we've read so far. In the example above, that would be
564 ".." --- the longest prefix of "..howdy" that is a suffix of
565 "...". This longest prefix could be the empty string, if C
566 is nowhere to be found in STRING.
567
568 If this longest prefix is not the empty string, it must contain
569 C, so let's search from the end of STRING for instances of C,
570 and see if the portion of STRING before that is a suffix of
571 what we read before C. Actually, we can search backwards from
572 p, since we know no prefix can be longer than that.
573
574 Note that we can use STRING itself, along with C, as a record
575 of what we've received so far. :) */
576 int i;
577
578 for (i = (p - string) - 1; i >= 0; i--)
579 if (string[i] == c)
580 {
581 /* Is this prefix a suffix of what we've read so far?
582 In other words, does
583 string[0 .. i-1] == string[p - i, p - 1]? */
584 if (! memcmp (string, p - i, i))
585 {
586 p = string + i + 1;
587 break;
588 }
589 }
590 if (i < 0)
591 p = string;
592 }
593 }
594 }
595
596 /* Search for a regexp. */
597
598 static int
599 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
600 {
601 char *mybuf;
602 char *p;
603
604 monitor_debug ("MON Expecting regexp\n");
605 if (buf)
606 mybuf = buf;
607 else
608 {
609 mybuf = alloca (TARGET_BUF_SIZE);
610 buflen = TARGET_BUF_SIZE;
611 }
612
613 p = mybuf;
614 while (1)
615 {
616 int retval;
617
618 if (p - mybuf >= buflen)
619 { /* Buffer about to overflow. */
620
621 /* On overflow, we copy the upper half of the buffer to the lower half. Not
622 great, but it usually works... */
623
624 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
625 p = mybuf + buflen / 2;
626 }
627
628 *p++ = readchar (timeout);
629
630 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
631 if (retval >= 0)
632 return 1;
633 }
634 }
635
636 /* Keep discarding input until we see the MONITOR prompt.
637
638 The convention for dealing with the prompt is that you
639 o give your command
640 o *then* wait for the prompt.
641
642 Thus the last thing that a procedure does with the serial line will
643 be an monitor_expect_prompt(). Exception: monitor_resume does not
644 wait for the prompt, because the terminal is being handed over to
645 the inferior. However, the next thing which happens after that is
646 a monitor_wait which does wait for the prompt. Note that this
647 includes abnormal exit, e.g. error(). This is necessary to prevent
648 getting into states from which we can't recover. */
649
650 int
651 monitor_expect_prompt (char *buf, int buflen)
652 {
653 monitor_debug ("MON Expecting prompt\n");
654 return monitor_expect (current_monitor->prompt, buf, buflen);
655 }
656
657 /* Get N 32-bit words from remote, each preceded by a space, and put
658 them in registers starting at REGNO. */
659
660 #if 0
661 static unsigned long
662 get_hex_word (void)
663 {
664 unsigned long val;
665 int i;
666 int ch;
667
668 do
669 ch = readchar (timeout);
670 while (isspace (ch));
671
672 val = from_hex (ch);
673
674 for (i = 7; i >= 1; i--)
675 {
676 ch = readchar (timeout);
677 if (!isxdigit (ch))
678 break;
679 val = (val << 4) | from_hex (ch);
680 }
681
682 return val;
683 }
684 #endif
685
686 static void
687 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
688 char *fastmap)
689 {
690 int tmp;
691 const char *val;
692
693 compiled_pattern->fastmap = fastmap;
694
695 tmp = re_set_syntax (RE_SYNTAX_EMACS);
696 val = re_compile_pattern (pattern,
697 strlen (pattern),
698 compiled_pattern);
699 re_set_syntax (tmp);
700
701 if (val)
702 error (_("compile_pattern: Can't compile pattern string `%s': %s!"),
703 pattern, val);
704
705 if (fastmap)
706 re_compile_fastmap (compiled_pattern);
707 }
708
709 /* Open a connection to a remote debugger. NAME is the filename used
710 for communication. */
711
712 void
713 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
714 {
715 char *name;
716 char **p;
717 struct inferior *inf;
718
719 if (mon_ops->magic != MONITOR_OPS_MAGIC)
720 error (_("Magic number of monitor_ops struct wrong."));
721
722 targ_ops = mon_ops->target;
723 name = targ_ops->to_shortname;
724
725 if (!args)
726 error (_("Use `target %s DEVICE-NAME' to use a serial port, or\n\
727 `target %s HOST-NAME:PORT-NUMBER' to use a network connection."), name, name);
728
729 target_preopen (from_tty);
730
731 /* Setup pattern for register dump. */
732
733 if (mon_ops->register_pattern)
734 compile_pattern (mon_ops->register_pattern, &register_pattern,
735 register_fastmap);
736
737 if (mon_ops->getmem.resp_delim)
738 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
739 getmem_resp_delim_fastmap);
740
741 if (mon_ops->setmem.resp_delim)
742 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
743 setmem_resp_delim_fastmap);
744
745 if (mon_ops->setreg.resp_delim)
746 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
747 setreg_resp_delim_fastmap);
748
749 unpush_target (targ_ops);
750
751 if (dev_name)
752 xfree (dev_name);
753 dev_name = xstrdup (args);
754
755 monitor_desc = serial_open (dev_name);
756
757 if (!monitor_desc)
758 perror_with_name (dev_name);
759
760 if (baud_rate != -1)
761 {
762 if (serial_setbaudrate (monitor_desc, baud_rate))
763 {
764 serial_close (monitor_desc);
765 perror_with_name (dev_name);
766 }
767 }
768
769 serial_raw (monitor_desc);
770
771 serial_flush_input (monitor_desc);
772
773 /* some systems only work with 2 stop bits. */
774
775 serial_setstopbits (monitor_desc, mon_ops->stopbits);
776
777 current_monitor = mon_ops;
778
779 /* See if we can wake up the monitor. First, try sending a stop sequence,
780 then send the init strings. Last, remove all breakpoints. */
781
782 if (current_monitor->stop)
783 {
784 monitor_stop (inferior_ptid);
785 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
786 {
787 monitor_debug ("EXP Open echo\n");
788 monitor_expect_prompt (NULL, 0);
789 }
790 }
791
792 /* wake up the monitor and see if it's alive. */
793 for (p = mon_ops->init; *p != NULL; p++)
794 {
795 /* Some of the characters we send may not be echoed,
796 but we hope to get a prompt at the end of it all. */
797
798 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
799 monitor_printf (*p);
800 else
801 monitor_printf_noecho (*p);
802 monitor_expect_prompt (NULL, 0);
803 }
804
805 serial_flush_input (monitor_desc);
806
807 /* Alloc breakpoints */
808 if (mon_ops->set_break != NULL)
809 {
810 if (mon_ops->num_breakpoints == 0)
811 mon_ops->num_breakpoints = 8;
812
813 breakaddr = (CORE_ADDR *)
814 xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
815 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
816 }
817
818 /* Remove all breakpoints. */
819
820 if (mon_ops->clr_all_break)
821 {
822 monitor_printf (mon_ops->clr_all_break);
823 monitor_expect_prompt (NULL, 0);
824 }
825
826 if (from_tty)
827 printf_unfiltered (_("Remote target %s connected to %s\n"),
828 name, dev_name);
829
830 push_target (targ_ops);
831
832 /* Start afresh. */
833 init_thread_list ();
834
835 /* Make run command think we are busy... */
836 inferior_ptid = monitor_ptid;
837 inf = current_inferior ();
838 inferior_appeared (inf, ptid_get_pid (inferior_ptid));
839 add_thread_silent (inferior_ptid);
840
841 /* Give monitor_wait something to read. */
842
843 monitor_printf (current_monitor->line_term);
844
845 init_wait_for_inferior ();
846
847 start_remote (from_tty);
848 }
849
850 /* Close out all files and local state before this target loses
851 control. */
852
853 void
854 monitor_close (int quitting)
855 {
856 if (monitor_desc)
857 serial_close (monitor_desc);
858
859 /* Free breakpoint memory. */
860 if (breakaddr != NULL)
861 {
862 xfree (breakaddr);
863 breakaddr = NULL;
864 }
865
866 monitor_desc = NULL;
867
868 delete_thread_silent (monitor_ptid);
869 delete_inferior_silent (ptid_get_pid (monitor_ptid));
870 }
871
872 /* Terminate the open connection to the remote debugger. Use this
873 when you want to detach and do something else with your gdb. */
874
875 static void
876 monitor_detach (struct target_ops *ops, char *args, int from_tty)
877 {
878 pop_target (); /* calls monitor_close to do the real work. */
879 if (from_tty)
880 printf_unfiltered (_("Ending remote %s debugging\n"), target_shortname);
881 }
882
883 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
884
885 char *
886 monitor_supply_register (struct regcache *regcache, int regno, char *valstr)
887 {
888 struct gdbarch *gdbarch = get_regcache_arch (regcache);
889 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
890 ULONGEST val;
891 unsigned char regbuf[MAX_REGISTER_SIZE];
892 char *p;
893
894 val = 0;
895 p = valstr;
896 while (p && *p != '\0')
897 {
898 if (*p == '\r' || *p == '\n')
899 {
900 while (*p != '\0')
901 p++;
902 break;
903 }
904 if (isspace (*p))
905 {
906 p++;
907 continue;
908 }
909 if (!isxdigit (*p) && *p != 'x')
910 {
911 break;
912 }
913
914 val <<= 4;
915 val += fromhex (*p++);
916 }
917 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
918
919 if (val == 0 && valstr == p)
920 error (_("monitor_supply_register (%d): bad value from monitor: %s."),
921 regno, valstr);
922
923 /* supply register stores in target byte order, so swap here. */
924
925 store_unsigned_integer (regbuf, register_size (gdbarch, regno), byte_order,
926 val);
927
928 regcache_raw_supply (regcache, regno, regbuf);
929
930 return p;
931 }
932
933 /* Tell the remote machine to resume. */
934
935 static void
936 monitor_resume (struct target_ops *ops,
937 ptid_t ptid, int step, enum target_signal sig)
938 {
939 /* Some monitors require a different command when starting a program. */
940 monitor_debug ("MON resume\n");
941 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
942 {
943 first_time = 0;
944 monitor_printf ("run\r");
945 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
946 dump_reg_flag = 1;
947 return;
948 }
949 if (step)
950 monitor_printf (current_monitor->step);
951 else
952 {
953 if (current_monitor->continue_hook)
954 (*current_monitor->continue_hook) ();
955 else
956 monitor_printf (current_monitor->cont);
957 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
958 dump_reg_flag = 1;
959 }
960 }
961
962 /* Parse the output of a register dump command. A monitor specific
963 regexp is used to extract individual register descriptions of the
964 form REG=VAL. Each description is split up into a name and a value
965 string which are passed down to monitor specific code. */
966
967 static void
968 parse_register_dump (struct regcache *regcache, char *buf, int len)
969 {
970 monitor_debug ("MON Parsing register dump\n");
971 while (1)
972 {
973 int regnamelen, vallen;
974 char *regname, *val;
975
976 /* Element 0 points to start of register name, and element 1
977 points to the start of the register value. */
978 struct re_registers register_strings;
979
980 memset (&register_strings, 0, sizeof (struct re_registers));
981
982 if (re_search (&register_pattern, buf, len, 0, len,
983 &register_strings) == -1)
984 break;
985
986 regnamelen = register_strings.end[1] - register_strings.start[1];
987 regname = buf + register_strings.start[1];
988 vallen = register_strings.end[2] - register_strings.start[2];
989 val = buf + register_strings.start[2];
990
991 current_monitor->supply_register (regcache, regname, regnamelen,
992 val, vallen);
993
994 buf += register_strings.end[0];
995 len -= register_strings.end[0];
996 }
997 }
998
999 /* Send ^C to target to halt it. Target will respond, and send us a
1000 packet. */
1001
1002 static void
1003 monitor_interrupt (int signo)
1004 {
1005 /* If this doesn't work, try more severe steps. */
1006 signal (signo, monitor_interrupt_twice);
1007
1008 if (monitor_debug_p || remote_debug)
1009 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1010
1011 target_stop (inferior_ptid);
1012 }
1013
1014 /* The user typed ^C twice. */
1015
1016 static void
1017 monitor_interrupt_twice (int signo)
1018 {
1019 signal (signo, ofunc);
1020
1021 monitor_interrupt_query ();
1022
1023 signal (signo, monitor_interrupt);
1024 }
1025
1026 /* Ask the user what to do when an interrupt is received. */
1027
1028 static void
1029 monitor_interrupt_query (void)
1030 {
1031 target_terminal_ours ();
1032
1033 if (query (_("Interrupted while waiting for the program.\n\
1034 Give up (and stop debugging it)? ")))
1035 {
1036 target_mourn_inferior ();
1037 deprecated_throw_reason (RETURN_QUIT);
1038 }
1039
1040 target_terminal_inferior ();
1041 }
1042
1043 static void
1044 monitor_wait_cleanup (void *old_timeout)
1045 {
1046 timeout = *(int *) old_timeout;
1047 signal (SIGINT, ofunc);
1048 in_monitor_wait = 0;
1049 }
1050
1051
1052
1053 static void
1054 monitor_wait_filter (char *buf,
1055 int bufmax,
1056 int *ext_resp_len,
1057 struct target_waitstatus *status)
1058 {
1059 int resp_len;
1060
1061 do
1062 {
1063 resp_len = monitor_expect_prompt (buf, bufmax);
1064 *ext_resp_len = resp_len;
1065
1066 if (resp_len <= 0)
1067 fprintf_unfiltered (gdb_stderr,
1068 "monitor_wait: excessive "
1069 "response from monitor: %s.", buf);
1070 }
1071 while (resp_len < 0);
1072
1073 /* Print any output characters that were preceded by ^O. */
1074 /* FIXME - This would be great as a user settabgle flag. */
1075 if (monitor_debug_p || remote_debug
1076 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1077 {
1078 int i;
1079
1080 for (i = 0; i < resp_len - 1; i++)
1081 if (buf[i] == 0x0f)
1082 putchar_unfiltered (buf[++i]);
1083 }
1084 }
1085
1086
1087
1088 /* Wait until the remote machine stops, then return, storing status in
1089 status just as `wait' would. */
1090
1091 static ptid_t
1092 monitor_wait (struct target_ops *ops,
1093 ptid_t ptid, struct target_waitstatus *status, int options)
1094 {
1095 int old_timeout = timeout;
1096 char buf[TARGET_BUF_SIZE];
1097 int resp_len;
1098 struct cleanup *old_chain;
1099
1100 status->kind = TARGET_WAITKIND_EXITED;
1101 status->value.integer = 0;
1102
1103 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1104 monitor_debug ("MON wait\n");
1105
1106 #if 0
1107 /* This is somthing other than a maintenance command. */
1108 in_monitor_wait = 1;
1109 timeout = watchdog > 0 ? watchdog : -1;
1110 #else
1111 timeout = -1; /* Don't time out -- user program is running. */
1112 #endif
1113
1114 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1115
1116 if (current_monitor->wait_filter)
1117 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1118 else
1119 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1120
1121 #if 0 /* Transferred to monitor wait filter. */
1122 do
1123 {
1124 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1125
1126 if (resp_len <= 0)
1127 fprintf_unfiltered (gdb_stderr,
1128 "monitor_wait: excessive "
1129 "response from monitor: %s.", buf);
1130 }
1131 while (resp_len < 0);
1132
1133 /* Print any output characters that were preceded by ^O. */
1134 /* FIXME - This would be great as a user settabgle flag. */
1135 if (monitor_debug_p || remote_debug
1136 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1137 {
1138 int i;
1139
1140 for (i = 0; i < resp_len - 1; i++)
1141 if (buf[i] == 0x0f)
1142 putchar_unfiltered (buf[++i]);
1143 }
1144 #endif
1145
1146 signal (SIGINT, ofunc);
1147
1148 timeout = old_timeout;
1149 #if 0
1150 if (dump_reg_flag && current_monitor->dump_registers)
1151 {
1152 dump_reg_flag = 0;
1153 monitor_printf (current_monitor->dump_registers);
1154 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1155 }
1156
1157 if (current_monitor->register_pattern)
1158 parse_register_dump (get_current_regcache (), buf, resp_len);
1159 #else
1160 monitor_debug ("Wait fetching registers after stop\n");
1161 monitor_dump_regs (get_current_regcache ());
1162 #endif
1163
1164 status->kind = TARGET_WAITKIND_STOPPED;
1165 status->value.sig = TARGET_SIGNAL_TRAP;
1166
1167 discard_cleanups (old_chain);
1168
1169 in_monitor_wait = 0;
1170
1171 return inferior_ptid;
1172 }
1173
1174 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1175 errno value. */
1176
1177 static void
1178 monitor_fetch_register (struct regcache *regcache, int regno)
1179 {
1180 const char *name;
1181 char *zerobuf;
1182 char *regbuf;
1183 int i;
1184
1185 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1186 zerobuf = alloca (MAX_REGISTER_SIZE);
1187 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1188
1189 if (current_monitor->regname != NULL)
1190 name = current_monitor->regname (regno);
1191 else
1192 name = current_monitor->regnames[regno];
1193 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1194
1195 if (!name || (*name == '\0'))
1196 {
1197 monitor_debug ("No register known for %d\n", regno);
1198 regcache_raw_supply (regcache, regno, zerobuf);
1199 return;
1200 }
1201
1202 /* Send the register examine command. */
1203
1204 monitor_printf (current_monitor->getreg.cmd, name);
1205
1206 /* If RESP_DELIM is specified, we search for that as a leading
1207 delimiter for the register value. Otherwise, we just start
1208 searching from the start of the buf. */
1209
1210 if (current_monitor->getreg.resp_delim)
1211 {
1212 monitor_debug ("EXP getreg.resp_delim\n");
1213 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1214 /* Handle case of first 32 registers listed in pairs. */
1215 if (current_monitor->flags & MO_32_REGS_PAIRED
1216 && (regno & 1) != 0 && regno < 32)
1217 {
1218 monitor_debug ("EXP getreg.resp_delim\n");
1219 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1220 }
1221 }
1222
1223 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1224 if (current_monitor->flags & MO_HEX_PREFIX)
1225 {
1226 int c;
1227
1228 c = readchar (timeout);
1229 while (c == ' ')
1230 c = readchar (timeout);
1231 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1232 ;
1233 else
1234 error (_("Bad value returned from monitor "
1235 "while fetching register %x."),
1236 regno);
1237 }
1238
1239 /* Read upto the maximum number of hex digits for this register, skipping
1240 spaces, but stop reading if something else is seen. Some monitors
1241 like to drop leading zeros. */
1242
1243 for (i = 0; i < register_size (get_regcache_arch (regcache), regno) * 2; i++)
1244 {
1245 int c;
1246
1247 c = readchar (timeout);
1248 while (c == ' ')
1249 c = readchar (timeout);
1250
1251 if (!isxdigit (c))
1252 break;
1253
1254 regbuf[i] = c;
1255 }
1256
1257 regbuf[i] = '\000'; /* Terminate the number. */
1258 monitor_debug ("REGVAL '%s'\n", regbuf);
1259
1260 /* If TERM is present, we wait for that to show up. Also, (if TERM
1261 is present), we will send TERM_CMD if that is present. In any
1262 case, we collect all of the output into buf, and then wait for
1263 the normal prompt. */
1264
1265 if (current_monitor->getreg.term)
1266 {
1267 monitor_debug ("EXP getreg.term\n");
1268 monitor_expect (current_monitor->getreg.term, NULL, 0); /* Get
1269 response. */
1270 }
1271
1272 if (current_monitor->getreg.term_cmd)
1273 {
1274 monitor_debug ("EMIT getreg.term.cmd\n");
1275 monitor_printf (current_monitor->getreg.term_cmd);
1276 }
1277 if (!current_monitor->getreg.term || /* Already expected or */
1278 current_monitor->getreg.term_cmd) /* ack expected. */
1279 monitor_expect_prompt (NULL, 0); /* Get response. */
1280
1281 monitor_supply_register (regcache, regno, regbuf);
1282 }
1283
1284 /* Sometimes, it takes several commands to dump the registers. */
1285 /* This is a primitive for use by variations of monitor interfaces in
1286 case they need to compose the operation. */
1287
1288 int
1289 monitor_dump_reg_block (struct regcache *regcache, char *block_cmd)
1290 {
1291 char buf[TARGET_BUF_SIZE];
1292 int resp_len;
1293
1294 monitor_printf (block_cmd);
1295 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1296 parse_register_dump (regcache, buf, resp_len);
1297 return 1;
1298 }
1299
1300
1301 /* Read the remote registers into the block regs. */
1302 /* Call the specific function if it has been provided. */
1303
1304 static void
1305 monitor_dump_regs (struct regcache *regcache)
1306 {
1307 char buf[TARGET_BUF_SIZE];
1308 int resp_len;
1309
1310 if (current_monitor->dumpregs)
1311 (*(current_monitor->dumpregs)) (regcache); /* Call supplied function. */
1312 else if (current_monitor->dump_registers) /* Default version. */
1313 {
1314 monitor_printf (current_monitor->dump_registers);
1315 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1316 parse_register_dump (regcache, buf, resp_len);
1317 }
1318 else
1319 /* Need some way to read registers. */
1320 internal_error (__FILE__, __LINE__,
1321 _("failed internal consistency check"));
1322 }
1323
1324 static void
1325 monitor_fetch_registers (struct target_ops *ops,
1326 struct regcache *regcache, int regno)
1327 {
1328 monitor_debug ("MON fetchregs\n");
1329 if (current_monitor->getreg.cmd)
1330 {
1331 if (regno >= 0)
1332 {
1333 monitor_fetch_register (regcache, regno);
1334 return;
1335 }
1336
1337 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1338 regno++)
1339 monitor_fetch_register (regcache, regno);
1340 }
1341 else
1342 {
1343 monitor_dump_regs (regcache);
1344 }
1345 }
1346
1347 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1348
1349 static void
1350 monitor_store_register (struct regcache *regcache, int regno)
1351 {
1352 int reg_size = register_size (get_regcache_arch (regcache), regno);
1353 const char *name;
1354 ULONGEST val;
1355
1356 if (current_monitor->regname != NULL)
1357 name = current_monitor->regname (regno);
1358 else
1359 name = current_monitor->regnames[regno];
1360
1361 if (!name || (*name == '\0'))
1362 {
1363 monitor_debug ("MON Cannot store unknown register\n");
1364 return;
1365 }
1366
1367 regcache_cooked_read_unsigned (regcache, regno, &val);
1368 monitor_debug ("MON storeg %d %s\n", regno, phex (val, reg_size));
1369
1370 /* Send the register deposit command. */
1371
1372 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1373 monitor_printf (current_monitor->setreg.cmd, val, name);
1374 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1375 monitor_printf (current_monitor->setreg.cmd, name);
1376 else
1377 monitor_printf (current_monitor->setreg.cmd, name, val);
1378
1379 if (current_monitor->setreg.resp_delim)
1380 {
1381 monitor_debug ("EXP setreg.resp_delim\n");
1382 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1383 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1384 monitor_printf ("%s\r", phex_nz (val, reg_size));
1385 }
1386 if (current_monitor->setreg.term)
1387 {
1388 monitor_debug ("EXP setreg.term\n");
1389 monitor_expect (current_monitor->setreg.term, NULL, 0);
1390 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1391 monitor_printf ("%s\r", phex_nz (val, reg_size));
1392 monitor_expect_prompt (NULL, 0);
1393 }
1394 else
1395 monitor_expect_prompt (NULL, 0);
1396 if (current_monitor->setreg.term_cmd) /* Mode exit required. */
1397 {
1398 monitor_debug ("EXP setreg_termcmd\n");
1399 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1400 monitor_expect_prompt (NULL, 0);
1401 }
1402 } /* monitor_store_register */
1403
1404 /* Store the remote registers. */
1405
1406 static void
1407 monitor_store_registers (struct target_ops *ops,
1408 struct regcache *regcache, int regno)
1409 {
1410 if (regno >= 0)
1411 {
1412 monitor_store_register (regcache, regno);
1413 return;
1414 }
1415
1416 for (regno = 0; regno < gdbarch_num_regs (get_regcache_arch (regcache));
1417 regno++)
1418 monitor_store_register (regcache, regno);
1419 }
1420
1421 /* Get ready to modify the registers array. On machines which store
1422 individual registers, this doesn't need to do anything. On machines
1423 which store all the registers in one fell swoop, this makes sure
1424 that registers contains all the registers from the program being
1425 debugged. */
1426
1427 static void
1428 monitor_prepare_to_store (struct regcache *regcache)
1429 {
1430 /* Do nothing, since we can store individual regs. */
1431 }
1432
1433 static void
1434 monitor_files_info (struct target_ops *ops)
1435 {
1436 printf_unfiltered (_("\tAttached to %s at %d baud.\n"), dev_name, baud_rate);
1437 }
1438
1439 static int
1440 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1441 {
1442 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1443 unsigned int val, hostval;
1444 char *cmd;
1445 int i;
1446
1447 monitor_debug ("MON write %d %s\n", len, paddress (target_gdbarch, memaddr));
1448
1449 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1450 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1451
1452 /* Use memory fill command for leading 0 bytes. */
1453
1454 if (current_monitor->fill)
1455 {
1456 for (i = 0; i < len; i++)
1457 if (myaddr[i] != 0)
1458 break;
1459
1460 if (i > 4) /* More than 4 zeros is worth doing. */
1461 {
1462 monitor_debug ("MON FILL %d\n", i);
1463 if (current_monitor->flags & MO_FILL_USES_ADDR)
1464 monitor_printf (current_monitor->fill, memaddr,
1465 (memaddr + i) - 1, 0);
1466 else
1467 monitor_printf (current_monitor->fill, memaddr, i, 0);
1468
1469 monitor_expect_prompt (NULL, 0);
1470
1471 return i;
1472 }
1473 }
1474
1475 #if 0
1476 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1477 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1478 {
1479 len = 8;
1480 cmd = current_monitor->setmem.cmdll;
1481 }
1482 else
1483 #endif
1484 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1485 {
1486 len = 4;
1487 cmd = current_monitor->setmem.cmdl;
1488 }
1489 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1490 {
1491 len = 2;
1492 cmd = current_monitor->setmem.cmdw;
1493 }
1494 else
1495 {
1496 len = 1;
1497 cmd = current_monitor->setmem.cmdb;
1498 }
1499
1500 val = extract_unsigned_integer (myaddr, len, byte_order);
1501
1502 if (len == 4)
1503 {
1504 hostval = *(unsigned int *) myaddr;
1505 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1506 }
1507
1508
1509 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1510 monitor_printf_noecho (cmd, memaddr, val);
1511 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1512 {
1513 monitor_printf_noecho (cmd, memaddr);
1514
1515 if (current_monitor->setmem.resp_delim)
1516 {
1517 monitor_debug ("EXP setmem.resp_delim");
1518 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1519 monitor_printf ("%x\r", val);
1520 }
1521 if (current_monitor->setmem.term)
1522 {
1523 monitor_debug ("EXP setmem.term");
1524 monitor_expect (current_monitor->setmem.term, NULL, 0);
1525 monitor_printf ("%x\r", val);
1526 }
1527 if (current_monitor->setmem.term_cmd)
1528 { /* Emit this to get out of the memory editing state. */
1529 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1530 /* Drop through to expecting a prompt. */
1531 }
1532 }
1533 else
1534 monitor_printf (cmd, memaddr, val);
1535
1536 monitor_expect_prompt (NULL, 0);
1537
1538 return len;
1539 }
1540
1541
1542 static int
1543 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1544 {
1545 unsigned char val;
1546 int written = 0;
1547
1548 if (len == 0)
1549 return 0;
1550 /* Enter the sub mode. */
1551 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1552 monitor_expect_prompt (NULL, 0);
1553 while (len)
1554 {
1555 val = *myaddr;
1556 monitor_printf ("%x\r", val);
1557 myaddr++;
1558 memaddr++;
1559 written++;
1560 /* If we wanted to, here we could validate the address. */
1561 monitor_expect_prompt (NULL, 0);
1562 len--;
1563 }
1564 /* Now exit the sub mode. */
1565 monitor_printf (current_monitor->getreg.term_cmd);
1566 monitor_expect_prompt (NULL, 0);
1567 return written;
1568 }
1569
1570
1571 static void
1572 longlongendswap (unsigned char *a)
1573 {
1574 int i, j;
1575 unsigned char x;
1576
1577 i = 0;
1578 j = 7;
1579 while (i < 4)
1580 {
1581 x = *(a + i);
1582 *(a + i) = *(a + j);
1583 *(a + j) = x;
1584 i++, j--;
1585 }
1586 }
1587 /* Format 32 chars of long long value, advance the pointer. */
1588 static char *hexlate = "0123456789abcdef";
1589 static char *
1590 longlong_hexchars (unsigned long long value,
1591 char *outbuff)
1592 {
1593 if (value == 0)
1594 {
1595 *outbuff++ = '0';
1596 return outbuff;
1597 }
1598 else
1599 {
1600 static unsigned char disbuf[8]; /* disassembly buffer */
1601 unsigned char *scan, *limit; /* loop controls */
1602 unsigned char c, nib;
1603 int leadzero = 1;
1604
1605 scan = disbuf;
1606 limit = scan + 8;
1607 {
1608 unsigned long long *dp;
1609
1610 dp = (unsigned long long *) scan;
1611 *dp = value;
1612 }
1613 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts. */
1614 while (scan < limit)
1615 {
1616 c = *scan++; /* A byte of our long long value. */
1617 if (leadzero)
1618 {
1619 if (c == 0)
1620 continue;
1621 else
1622 leadzero = 0; /* Henceforth we print even zeroes. */
1623 }
1624 nib = c >> 4; /* high nibble bits */
1625 *outbuff++ = hexlate[nib];
1626 nib = c & 0x0f; /* low nibble bits */
1627 *outbuff++ = hexlate[nib];
1628 }
1629 return outbuff;
1630 }
1631 } /* longlong_hexchars */
1632
1633
1634
1635 /* I am only going to call this when writing virtual byte streams.
1636 Which possably entails endian conversions. */
1637
1638 static int
1639 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1640 {
1641 static char hexstage[20]; /* At least 16 digits required, plus null. */
1642 char *endstring;
1643 long long *llptr;
1644 long long value;
1645 int written = 0;
1646
1647 llptr = (unsigned long long *) myaddr;
1648 if (len == 0)
1649 return 0;
1650 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1651 monitor_expect_prompt (NULL, 0);
1652 while (len >= 8)
1653 {
1654 value = *llptr;
1655 endstring = longlong_hexchars (*llptr, hexstage);
1656 *endstring = '\0'; /* NUll terminate for printf. */
1657 monitor_printf ("%s\r", hexstage);
1658 llptr++;
1659 memaddr += 8;
1660 written += 8;
1661 /* If we wanted to, here we could validate the address. */
1662 monitor_expect_prompt (NULL, 0);
1663 len -= 8;
1664 }
1665 /* Now exit the sub mode. */
1666 monitor_printf (current_monitor->getreg.term_cmd);
1667 monitor_expect_prompt (NULL, 0);
1668 return written;
1669 } /* */
1670
1671
1672
1673 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1674 /* This is for the large blocks of memory which may occur in downloading.
1675 And for monitors which use interactive entry,
1676 And for monitors which do not have other downloading methods.
1677 Without this, we will end up calling monitor_write_memory many times
1678 and do the entry and exit of the sub mode many times
1679 This currently assumes...
1680 MO_SETMEM_INTERACTIVE
1681 ! MO_NO_ECHO_ON_SETMEM
1682 To use this, the you have to patch the monitor_cmds block with
1683 this function. Otherwise, its not tuned up for use by all
1684 monitor variations. */
1685
1686 static int
1687 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1688 {
1689 int written;
1690
1691 written = 0;
1692 /* FIXME: This would be a good place to put the zero test. */
1693 #if 1
1694 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1695 {
1696 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1697 }
1698 #endif
1699 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1700 return written;
1701 }
1702
1703 /* This is an alternate form of monitor_read_memory which is used for monitors
1704 which can only read a single byte/word/etc. at a time. */
1705
1706 static int
1707 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1708 {
1709 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1710 unsigned int val;
1711 char membuf[sizeof (int) * 2 + 1];
1712 char *p;
1713 char *cmd;
1714
1715 monitor_debug ("MON read single\n");
1716 #if 0
1717 /* Can't actually use long longs (nice idea, though). In fact, the
1718 call to strtoul below will fail if it tries to convert a value
1719 that's too big to fit in a long. */
1720 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1721 {
1722 len = 8;
1723 cmd = current_monitor->getmem.cmdll;
1724 }
1725 else
1726 #endif
1727 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1728 {
1729 len = 4;
1730 cmd = current_monitor->getmem.cmdl;
1731 }
1732 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1733 {
1734 len = 2;
1735 cmd = current_monitor->getmem.cmdw;
1736 }
1737 else
1738 {
1739 len = 1;
1740 cmd = current_monitor->getmem.cmdb;
1741 }
1742
1743 /* Send the examine command. */
1744
1745 monitor_printf (cmd, memaddr);
1746
1747 /* If RESP_DELIM is specified, we search for that as a leading
1748 delimiter for the memory value. Otherwise, we just start
1749 searching from the start of the buf. */
1750
1751 if (current_monitor->getmem.resp_delim)
1752 {
1753 monitor_debug ("EXP getmem.resp_delim\n");
1754 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1755 }
1756
1757 /* Now, read the appropriate number of hex digits for this loc,
1758 skipping spaces. */
1759
1760 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1761 if (current_monitor->flags & MO_HEX_PREFIX)
1762 {
1763 int c;
1764
1765 c = readchar (timeout);
1766 while (c == ' ')
1767 c = readchar (timeout);
1768 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1769 ;
1770 else
1771 monitor_error ("monitor_read_memory_single",
1772 "bad response from monitor",
1773 memaddr, 0, NULL, 0);
1774 }
1775
1776 {
1777 int i;
1778
1779 for (i = 0; i < len * 2; i++)
1780 {
1781 int c;
1782
1783 while (1)
1784 {
1785 c = readchar (timeout);
1786 if (isxdigit (c))
1787 break;
1788 if (c == ' ')
1789 continue;
1790
1791 monitor_error ("monitor_read_memory_single",
1792 "bad response from monitor",
1793 memaddr, i, membuf, 0);
1794 }
1795 membuf[i] = c;
1796 }
1797 membuf[i] = '\000'; /* Terminate the number. */
1798 }
1799
1800 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1801 present), we will send TERM_CMD if that is present. In any case, we collect
1802 all of the output into buf, and then wait for the normal prompt. */
1803
1804 if (current_monitor->getmem.term)
1805 {
1806 monitor_expect (current_monitor->getmem.term, NULL, 0); /* Get
1807 response. */
1808
1809 if (current_monitor->getmem.term_cmd)
1810 {
1811 monitor_printf (current_monitor->getmem.term_cmd);
1812 monitor_expect_prompt (NULL, 0);
1813 }
1814 }
1815 else
1816 monitor_expect_prompt (NULL, 0); /* Get response. */
1817
1818 p = membuf;
1819 val = strtoul (membuf, &p, 16);
1820
1821 if (val == 0 && membuf == p)
1822 monitor_error ("monitor_read_memory_single",
1823 "bad value from monitor",
1824 memaddr, 0, membuf, 0);
1825
1826 /* supply register stores in target byte order, so swap here. */
1827
1828 store_unsigned_integer (myaddr, len, byte_order, val);
1829
1830 return len;
1831 }
1832
1833 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1834 memory at MEMADDR. Returns length moved. Currently, we do no more
1835 than 16 bytes at a time. */
1836
1837 static int
1838 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1839 {
1840 unsigned int val;
1841 char buf[512];
1842 char *p, *p1;
1843 int resp_len;
1844 int i;
1845 CORE_ADDR dumpaddr;
1846
1847 if (len <= 0)
1848 {
1849 monitor_debug ("Zero length call to monitor_read_memory\n");
1850 return 0;
1851 }
1852
1853 monitor_debug ("MON read block ta(%s) ha(%s) %d\n",
1854 paddress (target_gdbarch, memaddr),
1855 host_address_to_string (myaddr), len);
1856
1857 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1858 memaddr = gdbarch_addr_bits_remove (target_gdbarch, memaddr);
1859
1860 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1861 return monitor_read_memory_single (memaddr, myaddr, len);
1862
1863 len = min (len, 16);
1864
1865 /* Some dumpers align the first data with the preceding 16
1866 byte boundary. Some print blanks and start at the
1867 requested boundary. EXACT_DUMPADDR */
1868
1869 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1870 ? memaddr : memaddr & ~0x0f;
1871
1872 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1873 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1874 len = ((memaddr + len) & ~0xf) - memaddr;
1875
1876 /* Send the memory examine command. */
1877
1878 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1879 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1880 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1881 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1882 else
1883 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1884
1885 /* If TERM is present, we wait for that to show up. Also, (if TERM
1886 is present), we will send TERM_CMD if that is present. In any
1887 case, we collect all of the output into buf, and then wait for
1888 the normal prompt. */
1889
1890 if (current_monitor->getmem.term)
1891 {
1892 resp_len = monitor_expect (current_monitor->getmem.term,
1893 buf, sizeof buf); /* Get response. */
1894
1895 if (resp_len <= 0)
1896 monitor_error ("monitor_read_memory",
1897 "excessive response from monitor",
1898 memaddr, resp_len, buf, 0);
1899
1900 if (current_monitor->getmem.term_cmd)
1901 {
1902 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1903 strlen (current_monitor->getmem.term_cmd));
1904 monitor_expect_prompt (NULL, 0);
1905 }
1906 }
1907 else
1908 resp_len = monitor_expect_prompt (buf, sizeof buf); /* Get response. */
1909
1910 p = buf;
1911
1912 /* If RESP_DELIM is specified, we search for that as a leading
1913 delimiter for the values. Otherwise, we just start searching
1914 from the start of the buf. */
1915
1916 if (current_monitor->getmem.resp_delim)
1917 {
1918 int retval, tmp;
1919 struct re_registers resp_strings;
1920
1921 monitor_debug ("MON getmem.resp_delim %s\n",
1922 current_monitor->getmem.resp_delim);
1923
1924 memset (&resp_strings, 0, sizeof (struct re_registers));
1925 tmp = strlen (p);
1926 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1927 &resp_strings);
1928
1929 if (retval < 0)
1930 monitor_error ("monitor_read_memory",
1931 "bad response from monitor",
1932 memaddr, resp_len, buf, 0);
1933
1934 p += resp_strings.end[0];
1935 #if 0
1936 p = strstr (p, current_monitor->getmem.resp_delim);
1937 if (!p)
1938 monitor_error ("monitor_read_memory",
1939 "bad response from monitor",
1940 memaddr, resp_len, buf, 0);
1941 p += strlen (current_monitor->getmem.resp_delim);
1942 #endif
1943 }
1944 monitor_debug ("MON scanning %d ,%s '%s'\n", len,
1945 host_address_to_string (p), p);
1946 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1947 {
1948 char c;
1949 int fetched = 0;
1950 i = len;
1951 c = *p;
1952
1953
1954 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1955 {
1956 if (isxdigit (c))
1957 {
1958 if ((dumpaddr >= memaddr) && (i > 0))
1959 {
1960 val = fromhex (c) * 16 + fromhex (*(p + 1));
1961 *myaddr++ = val;
1962 if (monitor_debug_p || remote_debug)
1963 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1964 --i;
1965 fetched++;
1966 }
1967 ++dumpaddr;
1968 ++p;
1969 }
1970 ++p; /* Skip a blank or other non hex char. */
1971 c = *p;
1972 }
1973 if (fetched == 0)
1974 error (_("Failed to read via monitor"));
1975 if (monitor_debug_p || remote_debug)
1976 fprintf_unfiltered (gdb_stdlog, "\n");
1977 return fetched; /* Return the number of bytes actually
1978 read. */
1979 }
1980 monitor_debug ("MON scanning bytes\n");
1981
1982 for (i = len; i > 0; i--)
1983 {
1984 /* Skip non-hex chars, but bomb on end of string and newlines. */
1985
1986 while (1)
1987 {
1988 if (isxdigit (*p))
1989 break;
1990
1991 if (*p == '\000' || *p == '\n' || *p == '\r')
1992 monitor_error ("monitor_read_memory",
1993 "badly terminated response from monitor",
1994 memaddr, resp_len, buf, 0);
1995 p++;
1996 }
1997
1998 val = strtoul (p, &p1, 16);
1999
2000 if (val == 0 && p == p1)
2001 monitor_error ("monitor_read_memory",
2002 "bad value from monitor",
2003 memaddr, resp_len, buf, 0);
2004
2005 *myaddr++ = val;
2006
2007 if (i == 1)
2008 break;
2009
2010 p = p1;
2011 }
2012
2013 return len;
2014 }
2015
2016 /* Transfer LEN bytes between target address MEMADDR and GDB address
2017 MYADDR. Returns 0 for success, errno code for failure. TARGET is
2018 unused. */
2019
2020 static int
2021 monitor_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
2022 struct mem_attrib *attrib, struct target_ops *target)
2023 {
2024 int res;
2025
2026 if (write)
2027 {
2028 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
2029 res = monitor_write_memory_block(memaddr, myaddr, len);
2030 else
2031 res = monitor_write_memory(memaddr, myaddr, len);
2032 }
2033 else
2034 {
2035 res = monitor_read_memory(memaddr, myaddr, len);
2036 }
2037
2038 return res;
2039 }
2040
2041 static void
2042 monitor_kill (struct target_ops *ops)
2043 {
2044 return; /* Ignore attempts to kill target system. */
2045 }
2046
2047 /* All we actually do is set the PC to the start address of exec_bfd. */
2048
2049 static void
2050 monitor_create_inferior (struct target_ops *ops, char *exec_file,
2051 char *args, char **env, int from_tty)
2052 {
2053 if (args && (*args != '\000'))
2054 error (_("Args are not supported by the monitor."));
2055
2056 first_time = 1;
2057 clear_proceed_status ();
2058 regcache_write_pc (get_current_regcache (),
2059 bfd_get_start_address (exec_bfd));
2060 }
2061
2062 /* Clean up when a program exits.
2063 The program actually lives on in the remote processor's RAM, and may be
2064 run again without a download. Don't leave it full of breakpoint
2065 instructions. */
2066
2067 static void
2068 monitor_mourn_inferior (struct target_ops *ops)
2069 {
2070 unpush_target (targ_ops);
2071 generic_mourn_inferior (); /* Do all the proper things now. */
2072 delete_thread_silent (monitor_ptid);
2073 }
2074
2075 /* Tell the monitor to add a breakpoint. */
2076
2077 static int
2078 monitor_insert_breakpoint (struct gdbarch *gdbarch,
2079 struct bp_target_info *bp_tgt)
2080 {
2081 CORE_ADDR addr = bp_tgt->placed_address;
2082 int i;
2083 int bplen;
2084
2085 monitor_debug ("MON inst bkpt %s\n", paddress (gdbarch, addr));
2086 if (current_monitor->set_break == NULL)
2087 error (_("No set_break defined for this monitor"));
2088
2089 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2090 addr = gdbarch_addr_bits_remove (gdbarch, addr);
2091
2092 /* Determine appropriate breakpoint size for this address. */
2093 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
2094 bp_tgt->placed_address = addr;
2095 bp_tgt->placed_size = bplen;
2096
2097 for (i = 0; i < current_monitor->num_breakpoints; i++)
2098 {
2099 if (breakaddr[i] == 0)
2100 {
2101 breakaddr[i] = addr;
2102 monitor_printf (current_monitor->set_break, addr);
2103 monitor_expect_prompt (NULL, 0);
2104 return 0;
2105 }
2106 }
2107
2108 error (_("Too many breakpoints (> %d) for monitor."),
2109 current_monitor->num_breakpoints);
2110 }
2111
2112 /* Tell the monitor to remove a breakpoint. */
2113
2114 static int
2115 monitor_remove_breakpoint (struct gdbarch *gdbarch,
2116 struct bp_target_info *bp_tgt)
2117 {
2118 CORE_ADDR addr = bp_tgt->placed_address;
2119 int i;
2120
2121 monitor_debug ("MON rmbkpt %s\n", paddress (gdbarch, addr));
2122 if (current_monitor->clr_break == NULL)
2123 error (_("No clr_break defined for this monitor"));
2124
2125 for (i = 0; i < current_monitor->num_breakpoints; i++)
2126 {
2127 if (breakaddr[i] == addr)
2128 {
2129 breakaddr[i] = 0;
2130 /* Some monitors remove breakpoints based on the address. */
2131 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2132 monitor_printf (current_monitor->clr_break, addr);
2133 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2134 monitor_printf (current_monitor->clr_break, i + 1);
2135 else
2136 monitor_printf (current_monitor->clr_break, i);
2137 monitor_expect_prompt (NULL, 0);
2138 return 0;
2139 }
2140 }
2141 fprintf_unfiltered (gdb_stderr,
2142 "Can't find breakpoint associated with %s\n",
2143 paddress (gdbarch, addr));
2144 return 1;
2145 }
2146
2147 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2148 an S-record. Return non-zero if the ACK is received properly. */
2149
2150 static int
2151 monitor_wait_srec_ack (void)
2152 {
2153 int ch;
2154
2155 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2156 {
2157 return (readchar (timeout) == '+');
2158 }
2159 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2160 {
2161 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2162 if ((ch = readchar (1)) < 0)
2163 return 0;
2164 if ((ch = readchar (1)) < 0)
2165 return 0;
2166 if ((ch = readchar (1)) < 0)
2167 return 0;
2168 if ((ch = readchar (1)) < 0)
2169 return 0;
2170 }
2171 return 1;
2172 }
2173
2174 /* monitor_load -- download a file. */
2175
2176 static void
2177 monitor_load (char *file, int from_tty)
2178 {
2179 monitor_debug ("MON load\n");
2180
2181 if (current_monitor->load_routine)
2182 current_monitor->load_routine (monitor_desc, file, hashmark);
2183 else
2184 { /* The default is ascii S-records. */
2185 int n;
2186 unsigned long load_offset;
2187 char buf[128];
2188
2189 /* Enable user to specify address for downloading as 2nd arg to load. */
2190 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2191 if (n > 1)
2192 file = buf;
2193 else
2194 load_offset = 0;
2195
2196 monitor_printf (current_monitor->load);
2197 if (current_monitor->loadresp)
2198 monitor_expect (current_monitor->loadresp, NULL, 0);
2199
2200 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2201 32, SREC_ALL, hashmark,
2202 current_monitor->flags & MO_SREC_ACK ?
2203 monitor_wait_srec_ack : NULL);
2204
2205 monitor_expect_prompt (NULL, 0);
2206 }
2207
2208 /* Finally, make the PC point at the start address. */
2209 if (exec_bfd)
2210 regcache_write_pc (get_current_regcache (),
2211 bfd_get_start_address (exec_bfd));
2212
2213 /* There used to be code here which would clear inferior_ptid and
2214 call clear_symtab_users. None of that should be necessary:
2215 monitor targets should behave like remote protocol targets, and
2216 since generic_load does none of those things, this function
2217 shouldn't either.
2218
2219 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2220 a load, we still have a valid connection to the monitor, with a
2221 live processor state to fiddle with. The user can type
2222 `continue' or `jump *start' and make the program run. If they do
2223 these things, however, GDB will be talking to a running program
2224 while inferior_ptid is null_ptid; this makes things like
2225 reinit_frame_cache very confused. */
2226 }
2227
2228 static void
2229 monitor_stop (ptid_t ptid)
2230 {
2231 monitor_debug ("MON stop\n");
2232 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2233 serial_send_break (monitor_desc);
2234 if (current_monitor->stop)
2235 monitor_printf_noecho (current_monitor->stop);
2236 }
2237
2238 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2239 in OUTPUT until the prompt is seen. FIXME: We read the characters
2240 ourseleves here cause of a nasty echo. */
2241
2242 static void
2243 monitor_rcmd (char *command,
2244 struct ui_file *outbuf)
2245 {
2246 char *p;
2247 int resp_len;
2248 char buf[1000];
2249
2250 if (monitor_desc == NULL)
2251 error (_("monitor target not open."));
2252
2253 p = current_monitor->prompt;
2254
2255 /* Send the command. Note that if no args were supplied, then we're
2256 just sending the monitor a newline, which is sometimes useful. */
2257
2258 monitor_printf ("%s\r", (command ? command : ""));
2259
2260 resp_len = monitor_expect_prompt (buf, sizeof buf);
2261
2262 fputs_unfiltered (buf, outbuf); /* Output the response. */
2263 }
2264
2265 /* Convert hex digit A to a number. */
2266
2267 #if 0
2268 static int
2269 from_hex (int a)
2270 {
2271 if (a >= '0' && a <= '9')
2272 return a - '0';
2273 if (a >= 'a' && a <= 'f')
2274 return a - 'a' + 10;
2275 if (a >= 'A' && a <= 'F')
2276 return a - 'A' + 10;
2277
2278 error (_("Reply contains invalid hex digit 0x%x"), a);
2279 }
2280 #endif
2281
2282 char *
2283 monitor_get_dev_name (void)
2284 {
2285 return dev_name;
2286 }
2287
2288 /* Check to see if a thread is still alive. */
2289
2290 static int
2291 monitor_thread_alive (struct target_ops *ops, ptid_t ptid)
2292 {
2293 if (ptid_equal (ptid, monitor_ptid))
2294 /* The monitor's task is always alive. */
2295 return 1;
2296
2297 return 0;
2298 }
2299
2300 /* Convert a thread ID to a string. Returns the string in a static
2301 buffer. */
2302
2303 static char *
2304 monitor_pid_to_str (struct target_ops *ops, ptid_t ptid)
2305 {
2306 static char buf[64];
2307
2308 if (ptid_equal (monitor_ptid, ptid))
2309 {
2310 xsnprintf (buf, sizeof buf, "Thread <main>");
2311 return buf;
2312 }
2313
2314 return normal_pid_to_str (ptid);
2315 }
2316
2317 static struct target_ops monitor_ops;
2318
2319 static void
2320 init_base_monitor_ops (void)
2321 {
2322 monitor_ops.to_close = monitor_close;
2323 monitor_ops.to_detach = monitor_detach;
2324 monitor_ops.to_resume = monitor_resume;
2325 monitor_ops.to_wait = monitor_wait;
2326 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2327 monitor_ops.to_store_registers = monitor_store_registers;
2328 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2329 monitor_ops.deprecated_xfer_memory = monitor_xfer_memory;
2330 monitor_ops.to_files_info = monitor_files_info;
2331 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2332 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2333 monitor_ops.to_kill = monitor_kill;
2334 monitor_ops.to_load = monitor_load;
2335 monitor_ops.to_create_inferior = monitor_create_inferior;
2336 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2337 monitor_ops.to_stop = monitor_stop;
2338 monitor_ops.to_rcmd = monitor_rcmd;
2339 monitor_ops.to_log_command = serial_log_command;
2340 monitor_ops.to_thread_alive = monitor_thread_alive;
2341 monitor_ops.to_pid_to_str = monitor_pid_to_str;
2342 monitor_ops.to_stratum = process_stratum;
2343 monitor_ops.to_has_all_memory = default_child_has_all_memory;
2344 monitor_ops.to_has_memory = default_child_has_memory;
2345 monitor_ops.to_has_stack = default_child_has_stack;
2346 monitor_ops.to_has_registers = default_child_has_registers;
2347 monitor_ops.to_has_execution = default_child_has_execution;
2348 monitor_ops.to_magic = OPS_MAGIC;
2349 } /* init_base_monitor_ops */
2350
2351 /* Init the target_ops structure pointed at by OPS. */
2352
2353 void
2354 init_monitor_ops (struct target_ops *ops)
2355 {
2356 if (monitor_ops.to_magic != OPS_MAGIC)
2357 init_base_monitor_ops ();
2358
2359 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2360 }
2361
2362 /* Define additional commands that are usually only used by monitors. */
2363
2364 /* -Wmissing-prototypes */
2365 extern initialize_file_ftype _initialize_remote_monitors;
2366
2367 void
2368 _initialize_remote_monitors (void)
2369 {
2370 init_base_monitor_ops ();
2371 add_setshow_boolean_cmd ("hash", no_class, &hashmark, _("\
2372 Set display of activity while downloading a file."), _("\
2373 Show display of activity while downloading a file."), _("\
2374 When enabled, a hashmark \'#\' is displayed."),
2375 NULL,
2376 NULL, /* FIXME: i18n: */
2377 &setlist, &showlist);
2378
2379 add_setshow_zinteger_cmd ("monitor", no_class, &monitor_debug_p, _("\
2380 Set debugging of remote monitor communication."), _("\
2381 Show debugging of remote monitor communication."), _("\
2382 When enabled, communication between GDB and the remote monitor\n\
2383 is displayed."),
2384 NULL,
2385 NULL, /* FIXME: i18n: */
2386 &setdebuglist, &showdebuglist);
2387
2388 /* Yes, 42000 is arbitrary. The only sense out of it, is that it
2389 isn't 0. */
2390 monitor_ptid = ptid_build (42000, 0, 42000);
2391 }