]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/or1k-tdep.c
Use filtered output for gdbarch dump
[thirdparty/binutils-gdb.git] / gdb / or1k-tdep.c
1 /* Target-dependent code for the 32-bit OpenRISC 1000, for the GDB.
2 Copyright (C) 2008-2022 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "frame.h"
21 #include "inferior.h"
22 #include "symtab.h"
23 #include "value.h"
24 #include "gdbcmd.h"
25 #include "language.h"
26 #include "gdbcore.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "target.h"
31 #include "regcache.h"
32 #include "safe-ctype.h"
33 #include "block.h"
34 #include "reggroups.h"
35 #include "arch-utils.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "dwarf2/frame.h"
39 #include "trad-frame.h"
40 #include "regset.h"
41 #include "remote.h"
42 #include "target-descriptions.h"
43 #include <inttypes.h>
44 #include "dis-asm.h"
45 #include "gdbarch.h"
46
47 /* OpenRISC specific includes. */
48 #include "or1k-tdep.h"
49 #include "features/or1k.c"
50 \f
51
52 /* Global debug flag. */
53
54 static bool or1k_debug = false;
55
56 static void
57 show_or1k_debug (struct ui_file *file, int from_tty,
58 struct cmd_list_element *c, const char *value)
59 {
60 fprintf_filtered (file, _("OpenRISC debugging is %s.\n"), value);
61 }
62
63
64 /* The target-dependent structure for gdbarch. */
65
66 struct or1k_gdbarch_tdep : gdbarch_tdep
67 {
68 int bytes_per_word = 0;
69 int bytes_per_address = 0;
70 CGEN_CPU_DESC gdb_cgen_cpu_desc = nullptr;
71 };
72
73 /* Support functions for the architecture definition. */
74
75 /* Get an instruction from memory. */
76
77 static ULONGEST
78 or1k_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
79 {
80 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
81 gdb_byte buf[OR1K_INSTLEN];
82
83 if (target_read_code (addr, buf, OR1K_INSTLEN)) {
84 memory_error (TARGET_XFER_E_IO, addr);
85 }
86
87 return extract_unsigned_integer (buf, OR1K_INSTLEN, byte_order);
88 }
89
90 /* Generic function to read bits from an instruction. */
91
92 static bool
93 or1k_analyse_inst (uint32_t inst, const char *format, ...)
94 {
95 /* Break out each field in turn, validating as we go. */
96 va_list ap;
97 int i;
98 int iptr = 0; /* Instruction pointer */
99
100 va_start (ap, format);
101
102 for (i = 0; 0 != format[i];)
103 {
104 const char *start_ptr;
105 char *end_ptr;
106
107 uint32_t bits; /* Bit substring of interest */
108 uint32_t width; /* Substring width */
109 uint32_t *arg_ptr;
110
111 switch (format[i])
112 {
113 case ' ':
114 i++;
115 break; /* Formatting: ignored */
116
117 case '0':
118 case '1': /* Constant bit field */
119 bits = (inst >> (OR1K_INSTBITLEN - iptr - 1)) & 0x1;
120
121 if ((format[i] - '0') != bits)
122 return false;
123
124 iptr++;
125 i++;
126 break;
127
128 case '%': /* Bit field */
129 i++;
130 start_ptr = &(format[i]);
131 width = strtoul (start_ptr, &end_ptr, 10);
132
133 /* Check we got something, and if so skip on. */
134 if (start_ptr == end_ptr)
135 error (_("bitstring \"%s\" at offset %d has no length field."),
136 format, i);
137
138 i += end_ptr - start_ptr;
139
140 /* Look for and skip the terminating 'b'. If it's not there, we
141 still give a fatal error, because these are fixed strings that
142 just should not be wrong. */
143 if ('b' != format[i++])
144 error (_("bitstring \"%s\" at offset %d has no terminating 'b'."),
145 format, i);
146
147 /* Break out the field. There is a special case with a bit width
148 of 32. */
149 if (32 == width)
150 bits = inst;
151 else
152 bits =
153 (inst >> (OR1K_INSTBITLEN - iptr - width)) & ((1 << width) - 1);
154
155 arg_ptr = va_arg (ap, uint32_t *);
156 *arg_ptr = bits;
157 iptr += width;
158 break;
159
160 default:
161 error (_("invalid character in bitstring \"%s\" at offset %d."),
162 format, i);
163 break;
164 }
165 }
166
167 /* Is the length OK? */
168 gdb_assert (OR1K_INSTBITLEN == iptr);
169
170 return true; /* Success */
171 }
172
173 /* This is used to parse l.addi instructions during various prologue
174 analysis routines. The l.addi instruction has semantics:
175
176 assembly: l.addi rD,rA,I
177 implementation: rD = rA + sign_extend(Immediate)
178
179 The rd_ptr, ra_ptr and simm_ptr must be non NULL pointers and are used
180 to store the parse results. Upon successful parsing true is returned,
181 false on failure. */
182
183 static bool
184 or1k_analyse_l_addi (uint32_t inst, unsigned int *rd_ptr,
185 unsigned int *ra_ptr, int *simm_ptr)
186 {
187 /* Instruction fields */
188 uint32_t rd, ra, i;
189
190 if (or1k_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
191 {
192 /* Found it. Construct the result fields. */
193 *rd_ptr = (unsigned int) rd;
194 *ra_ptr = (unsigned int) ra;
195 *simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
196
197 return true; /* Success */
198 }
199 else
200 return false; /* Failure */
201 }
202
203 /* This is used to to parse store instructions during various prologue
204 analysis routines. The l.sw instruction has semantics:
205
206 assembly: l.sw I(rA),rB
207 implementation: store rB contents to memory at effective address of
208 rA + sign_extend(Immediate)
209
210 The simm_ptr, ra_ptr and rb_ptr must be non NULL pointers and are used
211 to store the parse results. Upon successful parsing true is returned,
212 false on failure. */
213
214 static bool
215 or1k_analyse_l_sw (uint32_t inst, int *simm_ptr, unsigned int *ra_ptr,
216 unsigned int *rb_ptr)
217 {
218 /* Instruction fields */
219 uint32_t ihi, ilo, ra, rb;
220
221 if (or1k_analyse_inst (inst, "11 0101 %5b %5b %5b %11b", &ihi, &ra, &rb,
222 &ilo))
223
224 {
225 /* Found it. Construct the result fields. */
226 *simm_ptr = (int) ((ihi << 11) | ilo);
227 *simm_ptr |= ((ihi & 0x10) == 0x10) ? 0xffff0000 : 0;
228
229 *ra_ptr = (unsigned int) ra;
230 *rb_ptr = (unsigned int) rb;
231
232 return true; /* Success */
233 }
234 else
235 return false; /* Failure */
236 }
237 \f
238
239 /* Functions defining the architecture. */
240
241 /* Implement the return_value gdbarch method. */
242
243 static enum return_value_convention
244 or1k_return_value (struct gdbarch *gdbarch, struct value *functype,
245 struct type *valtype, struct regcache *regcache,
246 gdb_byte *readbuf, const gdb_byte *writebuf)
247 {
248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
249 enum type_code rv_type = valtype->code ();
250 unsigned int rv_size = TYPE_LENGTH (valtype);
251 or1k_gdbarch_tdep *tdep = (or1k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
252 int bpw = tdep->bytes_per_word;
253
254 /* Deal with struct/union as addresses. If an array won't fit in a
255 single register it is returned as address. Anything larger than 2
256 registers needs to also be passed as address (matches gcc
257 default_return_in_memory). */
258 if ((TYPE_CODE_STRUCT == rv_type) || (TYPE_CODE_UNION == rv_type)
259 || ((TYPE_CODE_ARRAY == rv_type) && (rv_size > bpw))
260 || (rv_size > 2 * bpw))
261 {
262 if (readbuf != NULL)
263 {
264 ULONGEST tmp;
265
266 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
267 read_memory (tmp, readbuf, rv_size);
268 }
269 if (writebuf != NULL)
270 {
271 ULONGEST tmp;
272
273 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
274 write_memory (tmp, writebuf, rv_size);
275 }
276
277 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
278 }
279
280 if (rv_size <= bpw)
281 {
282 /* Up to one word scalars are returned in R11. */
283 if (readbuf != NULL)
284 {
285 ULONGEST tmp;
286
287 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
288 store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
289
290 }
291 if (writebuf != NULL)
292 {
293 gdb_byte *buf = XCNEWVEC(gdb_byte, bpw);
294
295 if (BFD_ENDIAN_BIG == byte_order)
296 memcpy (buf + (sizeof (gdb_byte) * bpw) - rv_size, writebuf,
297 rv_size);
298 else
299 memcpy (buf, writebuf, rv_size);
300
301 regcache->cooked_write (OR1K_RV_REGNUM, buf);
302
303 free (buf);
304 }
305 }
306 else
307 {
308 /* 2 word scalars are returned in r11/r12 (with the MS word in r11). */
309 if (readbuf != NULL)
310 {
311 ULONGEST tmp_lo;
312 ULONGEST tmp_hi;
313 ULONGEST tmp;
314
315 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM,
316 &tmp_hi);
317 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM + 1,
318 &tmp_lo);
319 tmp = (tmp_hi << (bpw * 8)) | tmp_lo;
320
321 store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
322 }
323 if (writebuf != NULL)
324 {
325 gdb_byte *buf_lo = XCNEWVEC(gdb_byte, bpw);
326 gdb_byte *buf_hi = XCNEWVEC(gdb_byte, bpw);
327
328 /* This is cheating. We assume that we fit in 2 words exactly,
329 which wouldn't work if we had (say) a 6-byte scalar type on a
330 big endian architecture (with the OpenRISC 1000 usually is). */
331 memcpy (buf_hi, writebuf, rv_size - bpw);
332 memcpy (buf_lo, writebuf + bpw, bpw);
333
334 regcache->cooked_write (OR1K_RV_REGNUM, buf_hi);
335 regcache->cooked_write (OR1K_RV_REGNUM + 1, buf_lo);
336
337 free (buf_lo);
338 free (buf_hi);
339 }
340 }
341
342 return RETURN_VALUE_REGISTER_CONVENTION;
343 }
344
345 /* OR1K always uses a l.trap instruction for breakpoints. */
346
347 constexpr gdb_byte or1k_break_insn[] = {0x21, 0x00, 0x00, 0x01};
348
349 typedef BP_MANIPULATION (or1k_break_insn) or1k_breakpoint;
350
351 static int
352 or1k_delay_slot_p (struct gdbarch *gdbarch, CORE_ADDR pc)
353 {
354 const CGEN_INSN *insn;
355 CGEN_FIELDS tmp_fields;
356 or1k_gdbarch_tdep *tdep = (or1k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
357
358 insn = cgen_lookup_insn (tdep->gdb_cgen_cpu_desc,
359 NULL,
360 or1k_fetch_instruction (gdbarch, pc),
361 NULL, 32, &tmp_fields, 0);
362
363 /* NULL here would mean the last instruction was not understood by cgen.
364 This should not usually happen, but if does its not a delay slot. */
365 if (insn == NULL)
366 return 0;
367
368 /* TODO: we should add a delay slot flag to the CGEN_INSN and remove
369 this hard coded test. */
370 return ((CGEN_INSN_NUM (insn) == OR1K_INSN_L_J)
371 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JAL)
372 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JR)
373 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JALR)
374 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BNF)
375 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BF));
376 }
377
378 /* Implement the single_step_through_delay gdbarch method. */
379
380 static int
381 or1k_single_step_through_delay (struct gdbarch *gdbarch,
382 struct frame_info *this_frame)
383 {
384 ULONGEST val;
385 CORE_ADDR ppc;
386 CORE_ADDR npc;
387 struct regcache *regcache = get_current_regcache ();
388
389 /* Get the previous and current instruction addresses. If they are not
390 adjacent, we cannot be in a delay slot. */
391 regcache_cooked_read_unsigned (regcache, OR1K_PPC_REGNUM, &val);
392 ppc = (CORE_ADDR) val;
393 regcache_cooked_read_unsigned (regcache, OR1K_NPC_REGNUM, &val);
394 npc = (CORE_ADDR) val;
395
396 if (0x4 != (npc - ppc))
397 return 0;
398
399 return or1k_delay_slot_p (gdbarch, ppc);
400 }
401
402 /* or1k_software_single_step() is called just before we want to resume
403 the inferior, if we want to single-step it but there is no hardware
404 or kernel single-step support (OpenRISC on GNU/Linux for example). We
405 find the target of the coming instruction skipping over delay slots
406 and breakpoint it. */
407
408 std::vector<CORE_ADDR>
409 or1k_software_single_step (struct regcache *regcache)
410 {
411 struct gdbarch *gdbarch = regcache->arch ();
412 CORE_ADDR pc, next_pc;
413
414 pc = regcache_read_pc (regcache);
415 next_pc = pc + 4;
416
417 if (or1k_delay_slot_p (gdbarch, pc))
418 next_pc += 4;
419
420 return {next_pc};
421 }
422
423 /* Name for or1k general registers. */
424
425 static const char *const or1k_reg_names[OR1K_NUM_REGS] = {
426 /* general purpose registers */
427 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
428 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
429 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
430 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
431
432 /* previous program counter, next program counter and status register */
433 "ppc", "npc", "sr"
434 };
435
436 static int
437 or1k_is_arg_reg (unsigned int regnum)
438 {
439 return (OR1K_FIRST_ARG_REGNUM <= regnum)
440 && (regnum <= OR1K_LAST_ARG_REGNUM);
441 }
442
443 static int
444 or1k_is_callee_saved_reg (unsigned int regnum)
445 {
446 return (OR1K_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
447 }
448
449 /* Implement the skip_prologue gdbarch method. */
450
451 static CORE_ADDR
452 or1k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
453 {
454 CORE_ADDR start_pc;
455 CORE_ADDR addr;
456 uint32_t inst;
457
458 unsigned int ra, rb, rd; /* for instruction analysis */
459 int simm;
460
461 int frame_size = 0;
462
463 /* Try using SAL first if we have symbolic information available. This
464 only works for DWARF 2, not STABS. */
465
466 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
467 {
468 CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
469
470 if (0 != prologue_end)
471 {
472 struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
473 struct compunit_symtab *compunit
474 = SYMTAB_COMPUNIT (prologue_sal.symtab);
475 const char *debug_format = COMPUNIT_DEBUGFORMAT (compunit);
476
477 if ((NULL != debug_format)
478 && (strlen ("dwarf") <= strlen (debug_format))
479 && (0 == strncasecmp ("dwarf", debug_format, strlen ("dwarf"))))
480 return (prologue_end > pc) ? prologue_end : pc;
481 }
482 }
483
484 /* Look to see if we can find any of the standard prologue sequence. All
485 quite difficult, since any or all of it may be missing. So this is
486 just a best guess! */
487
488 addr = pc; /* Where we have got to */
489 inst = or1k_fetch_instruction (gdbarch, addr);
490
491 /* Look for the new stack pointer being set up. */
492 if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
493 && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
494 && (simm < 0) && (0 == (simm % 4)))
495 {
496 frame_size = -simm;
497 addr += OR1K_INSTLEN;
498 inst = or1k_fetch_instruction (gdbarch, addr);
499 }
500
501 /* Look for the frame pointer being manipulated. */
502 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
503 && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
504 && (simm >= 0) && (0 == (simm % 4)))
505 {
506 addr += OR1K_INSTLEN;
507 inst = or1k_fetch_instruction (gdbarch, addr);
508
509 gdb_assert (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
510 && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
511 && (simm == frame_size));
512
513 addr += OR1K_INSTLEN;
514 inst = or1k_fetch_instruction (gdbarch, addr);
515 }
516
517 /* Look for the link register being saved. */
518 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
519 && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
520 && (simm >= 0) && (0 == (simm % 4)))
521 {
522 addr += OR1K_INSTLEN;
523 inst = or1k_fetch_instruction (gdbarch, addr);
524 }
525
526 /* Look for arguments or callee-saved register being saved. The register
527 must be one of the arguments (r3-r8) or the 10 callee saved registers
528 (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30). The base
529 register must be the FP (for the args) or the SP (for the callee_saved
530 registers). */
531 while (1)
532 {
533 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
534 && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
535 || ((OR1K_SP_REGNUM == ra) && or1k_is_callee_saved_reg (rb)))
536 && (0 == (simm % 4)))
537 {
538 addr += OR1K_INSTLEN;
539 inst = or1k_fetch_instruction (gdbarch, addr);
540 }
541 else
542 {
543 /* Nothing else to look for. We have found the end of the
544 prologue. */
545 break;
546 }
547 }
548 return addr;
549 }
550
551 /* Implement the frame_align gdbarch method. */
552
553 static CORE_ADDR
554 or1k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
555 {
556 return align_down (sp, OR1K_STACK_ALIGN);
557 }
558
559 /* Implement the unwind_pc gdbarch method. */
560
561 static CORE_ADDR
562 or1k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
563 {
564 CORE_ADDR pc;
565
566 if (or1k_debug)
567 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, next_frame=%d\n",
568 frame_relative_level (next_frame));
569
570 pc = frame_unwind_register_unsigned (next_frame, OR1K_NPC_REGNUM);
571
572 if (or1k_debug)
573 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, pc=%s\n",
574 paddress (gdbarch, pc));
575
576 return pc;
577 }
578
579 /* Implement the unwind_sp gdbarch method. */
580
581 static CORE_ADDR
582 or1k_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
583 {
584 CORE_ADDR sp;
585
586 if (or1k_debug)
587 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, next_frame=%d\n",
588 frame_relative_level (next_frame));
589
590 sp = frame_unwind_register_unsigned (next_frame, OR1K_SP_REGNUM);
591
592 if (or1k_debug)
593 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, sp=%s\n",
594 paddress (gdbarch, sp));
595
596 return sp;
597 }
598
599 /* Implement the push_dummy_code gdbarch method. */
600
601 static CORE_ADDR
602 or1k_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
603 CORE_ADDR function, struct value **args, int nargs,
604 struct type *value_type, CORE_ADDR * real_pc,
605 CORE_ADDR * bp_addr, struct regcache *regcache)
606 {
607 CORE_ADDR bp_slot;
608
609 /* Reserve enough room on the stack for our breakpoint instruction. */
610 bp_slot = sp - 4;
611 /* Store the address of that breakpoint. */
612 *bp_addr = bp_slot;
613 /* keeping the stack aligned. */
614 sp = or1k_frame_align (gdbarch, bp_slot);
615 /* The call starts at the callee's entry point. */
616 *real_pc = function;
617
618 return sp;
619 }
620
621 /* Implement the push_dummy_call gdbarch method. */
622
623 static CORE_ADDR
624 or1k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
625 struct regcache *regcache, CORE_ADDR bp_addr,
626 int nargs, struct value **args, CORE_ADDR sp,
627 function_call_return_method return_method,
628 CORE_ADDR struct_addr)
629 {
630
631 int argreg;
632 int argnum;
633 int first_stack_arg;
634 int stack_offset = 0;
635 int heap_offset = 0;
636 CORE_ADDR heap_sp = sp - 128;
637 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
638 or1k_gdbarch_tdep *tdep = (or1k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
639 int bpa = tdep->bytes_per_address;
640 int bpw = tdep->bytes_per_word;
641 struct type *func_type = value_type (function);
642
643 /* Return address */
644 regcache_cooked_write_unsigned (regcache, OR1K_LR_REGNUM, bp_addr);
645
646 /* Register for the next argument. */
647 argreg = OR1K_FIRST_ARG_REGNUM;
648
649 /* Location for a returned structure. This is passed as a silent first
650 argument. */
651 if (return_method == return_method_struct)
652 {
653 regcache_cooked_write_unsigned (regcache, OR1K_FIRST_ARG_REGNUM,
654 struct_addr);
655 argreg++;
656 }
657
658 /* Put as many args as possible in registers. */
659 for (argnum = 0; argnum < nargs; argnum++)
660 {
661 const gdb_byte *val;
662 gdb_byte valbuf[sizeof (ULONGEST)];
663
664 struct value *arg = args[argnum];
665 struct type *arg_type = check_typedef (value_type (arg));
666 int len = TYPE_LENGTH (arg_type);
667 enum type_code typecode = arg_type->code ();
668
669 if (func_type->has_varargs () && argnum >= func_type->num_fields ())
670 break; /* end or regular args, varargs go to stack. */
671
672 /* Extract the value, either a reference or the data. */
673 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
674 || (len > bpw * 2))
675 {
676 CORE_ADDR valaddr = value_address (arg);
677
678 /* If the arg is fabricated (i.e. 3*i, instead of i) valaddr is
679 undefined. */
680 if (valaddr == 0)
681 {
682 /* The argument needs to be copied into the target space.
683 Since the bottom of the stack is reserved for function
684 arguments we store this at the these at the top growing
685 down. */
686 heap_offset += align_up (len, bpw);
687 valaddr = heap_sp + heap_offset;
688
689 write_memory (valaddr, value_contents (arg).data (), len);
690 }
691
692 /* The ABI passes all structures by reference, so get its
693 address. */
694 store_unsigned_integer (valbuf, bpa, byte_order, valaddr);
695 len = bpa;
696 val = valbuf;
697 }
698 else
699 {
700 /* Everything else, we just get the value. */
701 val = value_contents (arg).data ();
702 }
703
704 /* Stick the value in a register. */
705 if (len > bpw)
706 {
707 /* Big scalars use two registers, but need NOT be pair aligned. */
708
709 if (argreg <= (OR1K_LAST_ARG_REGNUM - 1))
710 {
711 ULONGEST regval = extract_unsigned_integer (val, len,
712 byte_order);
713
714 unsigned int bits_per_word = bpw * 8;
715 ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
716 ULONGEST lo = regval & mask;
717 ULONGEST hi = regval >> bits_per_word;
718
719 regcache_cooked_write_unsigned (regcache, argreg, hi);
720 regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
721 argreg += 2;
722 }
723 else
724 {
725 /* Run out of regs */
726 break;
727 }
728 }
729 else if (argreg <= OR1K_LAST_ARG_REGNUM)
730 {
731 /* Smaller scalars fit in a single register. */
732 regcache_cooked_write_unsigned
733 (regcache, argreg, extract_unsigned_integer (val, len,
734 byte_order));
735 argreg++;
736 }
737 else
738 {
739 /* Ran out of regs. */
740 break;
741 }
742 }
743
744 first_stack_arg = argnum;
745
746 /* If we get here with argnum < nargs, then arguments remain to be
747 placed on the stack. This is tricky, since they must be pushed in
748 reverse order and the stack in the end must be aligned. The only
749 solution is to do it in two stages, the first to compute the stack
750 size, the second to save the args. */
751
752 for (argnum = first_stack_arg; argnum < nargs; argnum++)
753 {
754 struct value *arg = args[argnum];
755 struct type *arg_type = check_typedef (value_type (arg));
756 int len = TYPE_LENGTH (arg_type);
757 enum type_code typecode = arg_type->code ();
758
759 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
760 || (len > bpw * 2))
761 {
762 /* Structures are passed as addresses. */
763 sp -= bpa;
764 }
765 else
766 {
767 /* Big scalars use more than one word. Code here allows for
768 future quad-word entities (e.g. long double.) */
769 sp -= align_up (len, bpw);
770 }
771
772 /* Ensure our dummy heap doesn't touch the stack, this could only
773 happen if we have many arguments including fabricated arguments. */
774 gdb_assert (heap_offset == 0 || ((heap_sp + heap_offset) < sp));
775 }
776
777 sp = gdbarch_frame_align (gdbarch, sp);
778 stack_offset = 0;
779
780 /* Push the remaining args on the stack. */
781 for (argnum = first_stack_arg; argnum < nargs; argnum++)
782 {
783 const gdb_byte *val;
784 gdb_byte valbuf[sizeof (ULONGEST)];
785
786 struct value *arg = args[argnum];
787 struct type *arg_type = check_typedef (value_type (arg));
788 int len = TYPE_LENGTH (arg_type);
789 enum type_code typecode = arg_type->code ();
790 /* The EABI passes structures that do not fit in a register by
791 reference. In all other cases, pass the structure by value. */
792 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
793 || (len > bpw * 2))
794 {
795 store_unsigned_integer (valbuf, bpa, byte_order,
796 value_address (arg));
797 len = bpa;
798 val = valbuf;
799 }
800 else
801 val = value_contents (arg).data ();
802
803 while (len > 0)
804 {
805 int partial_len = (len < bpw ? len : bpw);
806
807 write_memory (sp + stack_offset, val, partial_len);
808 stack_offset += align_up (partial_len, bpw);
809 len -= partial_len;
810 val += partial_len;
811 }
812 }
813
814 /* Save the updated stack pointer. */
815 regcache_cooked_write_unsigned (regcache, OR1K_SP_REGNUM, sp);
816
817 if (heap_offset > 0)
818 sp = heap_sp;
819
820 return sp;
821 }
822
823 \f
824
825 /* Support functions for frame handling. */
826
827 /* Initialize a prologue cache
828
829 We build a cache, saying where registers of the prev frame can be found
830 from the data so far set up in this this.
831
832 We also compute a unique ID for this frame, based on the function start
833 address and the stack pointer (as it will be, even if it has yet to be
834 computed.
835
836 STACK FORMAT
837 ============
838
839 The OR1K has a falling stack frame and a simple prolog. The Stack
840 pointer is R1 and the frame pointer R2. The frame base is therefore the
841 address held in R2 and the stack pointer (R1) is the frame base of the
842 next frame.
843
844 l.addi r1,r1,-frame_size # SP now points to end of new stack frame
845
846 The stack pointer may not be set up in a frameless function (e.g. a
847 simple leaf function).
848
849 l.sw fp_loc(r1),r2 # old FP saved in new stack frame
850 l.addi r2,r1,frame_size # FP now points to base of new stack frame
851
852 The frame pointer is not necessarily saved right at the end of the stack
853 frame - OR1K saves enough space for any args to called functions right
854 at the end (this is a difference from the Architecture Manual).
855
856 l.sw lr_loc(r1),r9 # Link (return) address
857
858 The link register is usually saved at fp_loc - 4. It may not be saved at
859 all in a leaf function.
860
861 l.sw reg_loc(r1),ry # Save any callee saved regs
862
863 The offsets x for the callee saved registers generally (always?) rise in
864 increments of 4, starting at fp_loc + 4. If the frame pointer is
865 omitted (an option to GCC), then it may not be saved at all. There may
866 be no callee saved registers.
867
868 So in summary none of this may be present. However what is present
869 seems always to follow this fixed order, and occur before any
870 substantive code (it is possible for GCC to have more flexible
871 scheduling of the prologue, but this does not seem to occur for OR1K).
872
873 ANALYSIS
874 ========
875
876 This prolog is used, even for -O3 with GCC.
877
878 All this analysis must allow for the possibility that the PC is in the
879 middle of the prologue. Data in the cache should only be set up insofar
880 as it has been computed.
881
882 HOWEVER. The frame_id must be created with the SP *as it will be* at
883 the end of the Prologue. Otherwise a recursive call, checking the frame
884 with the PC at the start address will end up with the same frame_id as
885 the caller.
886
887 A suite of "helper" routines are used, allowing reuse for
888 or1k_skip_prologue().
889
890 Reportedly, this is only valid for frames less than 0x7fff in size. */
891
892 static struct trad_frame_cache *
893 or1k_frame_cache (struct frame_info *this_frame, void **prologue_cache)
894 {
895 struct gdbarch *gdbarch;
896 struct trad_frame_cache *info;
897
898 CORE_ADDR this_pc;
899 CORE_ADDR this_sp;
900 CORE_ADDR this_sp_for_id;
901 int frame_size = 0;
902
903 CORE_ADDR start_addr;
904 CORE_ADDR end_addr;
905
906 if (or1k_debug)
907 fprintf_unfiltered (gdb_stdlog,
908 "or1k_frame_cache, prologue_cache = %s\n",
909 host_address_to_string (*prologue_cache));
910
911 /* Nothing to do if we already have this info. */
912 if (NULL != *prologue_cache)
913 return (struct trad_frame_cache *) *prologue_cache;
914
915 /* Get a new prologue cache and populate it with default values. */
916 info = trad_frame_cache_zalloc (this_frame);
917 *prologue_cache = info;
918
919 /* Find the start address of this function (which is a normal frame, even
920 if the next frame is the sentinel frame) and the end of its prologue. */
921 this_pc = get_frame_pc (this_frame);
922 find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
923
924 /* Get the stack pointer if we have one (if there's no process executing
925 yet we won't have a frame. */
926 this_sp = (NULL == this_frame) ? 0 :
927 get_frame_register_unsigned (this_frame, OR1K_SP_REGNUM);
928
929 /* Return early if GDB couldn't find the function. */
930 if (start_addr == 0)
931 {
932 if (or1k_debug)
933 fprintf_unfiltered (gdb_stdlog, " couldn't find function\n");
934
935 /* JPB: 28-Apr-11. This is a temporary patch, to get round GDB
936 crashing right at the beginning. Build the frame ID as best we
937 can. */
938 trad_frame_set_id (info, frame_id_build (this_sp, this_pc));
939
940 return info;
941 }
942
943 /* The default frame base of this frame (for ID purposes only - frame
944 base is an overloaded term) is its stack pointer. For now we use the
945 value of the SP register in this frame. However if the PC is in the
946 prologue of this frame, before the SP has been set up, then the value
947 will actually be that of the prev frame, and we'll need to adjust it
948 later. */
949 trad_frame_set_this_base (info, this_sp);
950 this_sp_for_id = this_sp;
951
952 /* The default is to find the PC of the previous frame in the link
953 register of this frame. This may be changed if we find the link
954 register was saved on the stack. */
955 trad_frame_set_reg_realreg (info, OR1K_NPC_REGNUM, OR1K_LR_REGNUM);
956
957 /* We should only examine code that is in the prologue. This is all code
958 up to (but not including) end_addr. We should only populate the cache
959 while the address is up to (but not including) the PC or end_addr,
960 whichever is first. */
961 gdbarch = get_frame_arch (this_frame);
962 end_addr = or1k_skip_prologue (gdbarch, start_addr);
963
964 /* All the following analysis only occurs if we are in the prologue and
965 have executed the code. Check we have a sane prologue size, and if
966 zero we are frameless and can give up here. */
967 if (end_addr < start_addr)
968 error (_("end addr %s is less than start addr %s"),
969 paddress (gdbarch, end_addr), paddress (gdbarch, start_addr));
970
971 if (end_addr == start_addr)
972 frame_size = 0;
973 else
974 {
975 /* We have a frame. Look for the various components. */
976 CORE_ADDR addr = start_addr; /* Where we have got to */
977 uint32_t inst = or1k_fetch_instruction (gdbarch, addr);
978
979 unsigned int ra, rb, rd; /* for instruction analysis */
980 int simm;
981
982 /* Look for the new stack pointer being set up. */
983 if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
984 && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
985 && (simm < 0) && (0 == (simm % 4)))
986 {
987 frame_size = -simm;
988 addr += OR1K_INSTLEN;
989 inst = or1k_fetch_instruction (gdbarch, addr);
990
991 /* If the PC has not actually got to this point, then the frame
992 base will be wrong, and we adjust it.
993
994 If we are past this point, then we need to populate the stack
995 accordingly. */
996 if (this_pc <= addr)
997 {
998 /* Only do if executing. */
999 if (0 != this_sp)
1000 {
1001 this_sp_for_id = this_sp + frame_size;
1002 trad_frame_set_this_base (info, this_sp_for_id);
1003 }
1004 }
1005 else
1006 {
1007 /* We are past this point, so the stack pointer of the prev
1008 frame is frame_size greater than the stack pointer of this
1009 frame. */
1010 trad_frame_set_reg_value (info, OR1K_SP_REGNUM,
1011 this_sp + frame_size);
1012 }
1013 }
1014
1015 /* From now on we are only populating the cache, so we stop once we
1016 get to either the end OR the current PC. */
1017 end_addr = (this_pc < end_addr) ? this_pc : end_addr;
1018
1019 /* Look for the frame pointer being manipulated. */
1020 if ((addr < end_addr)
1021 && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
1022 && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
1023 && (simm >= 0) && (0 == (simm % 4)))
1024 {
1025 addr += OR1K_INSTLEN;
1026 inst = or1k_fetch_instruction (gdbarch, addr);
1027
1028 /* At this stage, we can find the frame pointer of the previous
1029 frame on the stack of the current frame. */
1030 trad_frame_set_reg_addr (info, OR1K_FP_REGNUM, this_sp + simm);
1031
1032 /* Look for the new frame pointer being set up. */
1033 if ((addr < end_addr)
1034 && or1k_analyse_l_addi (inst, &rd, &ra, &simm)
1035 && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
1036 && (simm == frame_size))
1037 {
1038 addr += OR1K_INSTLEN;
1039 inst = or1k_fetch_instruction (gdbarch, addr);
1040
1041 /* If we have got this far, the stack pointer of the previous
1042 frame is the frame pointer of this frame. */
1043 trad_frame_set_reg_realreg (info, OR1K_SP_REGNUM,
1044 OR1K_FP_REGNUM);
1045 }
1046 }
1047
1048 /* Look for the link register being saved. */
1049 if ((addr < end_addr)
1050 && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
1051 && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
1052 && (simm >= 0) && (0 == (simm % 4)))
1053 {
1054 addr += OR1K_INSTLEN;
1055 inst = or1k_fetch_instruction (gdbarch, addr);
1056
1057 /* If the link register is saved in the this frame, it holds the
1058 value of the PC in the previous frame. This overwrites the
1059 previous information about finding the PC in the link
1060 register. */
1061 trad_frame_set_reg_addr (info, OR1K_NPC_REGNUM, this_sp + simm);
1062 }
1063
1064 /* Look for arguments or callee-saved register being saved. The
1065 register must be one of the arguments (r3-r8) or the 10 callee
1066 saved registers (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28,
1067 r30). The base register must be the FP (for the args) or the SP
1068 (for the callee_saved registers). */
1069 while (addr < end_addr)
1070 {
1071 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
1072 && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
1073 || ((OR1K_SP_REGNUM == ra)
1074 && or1k_is_callee_saved_reg (rb)))
1075 && (0 == (simm % 4)))
1076 {
1077 addr += OR1K_INSTLEN;
1078 inst = or1k_fetch_instruction (gdbarch, addr);
1079
1080 /* The register in the previous frame can be found at this
1081 location in this frame. */
1082 trad_frame_set_reg_addr (info, rb, this_sp + simm);
1083 }
1084 else
1085 break; /* Not a register save instruction. */
1086 }
1087 }
1088
1089 /* Build the frame ID */
1090 trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
1091
1092 if (or1k_debug)
1093 {
1094 fprintf_unfiltered (gdb_stdlog, " this_sp_for_id = %s\n",
1095 paddress (gdbarch, this_sp_for_id));
1096 fprintf_unfiltered (gdb_stdlog, " start_addr = %s\n",
1097 paddress (gdbarch, start_addr));
1098 }
1099
1100 return info;
1101 }
1102
1103 /* Implement the this_id function for the stub unwinder. */
1104
1105 static void
1106 or1k_frame_this_id (struct frame_info *this_frame,
1107 void **prologue_cache, struct frame_id *this_id)
1108 {
1109 struct trad_frame_cache *info = or1k_frame_cache (this_frame,
1110 prologue_cache);
1111
1112 trad_frame_get_id (info, this_id);
1113 }
1114
1115 /* Implement the prev_register function for the stub unwinder. */
1116
1117 static struct value *
1118 or1k_frame_prev_register (struct frame_info *this_frame,
1119 void **prologue_cache, int regnum)
1120 {
1121 struct trad_frame_cache *info = or1k_frame_cache (this_frame,
1122 prologue_cache);
1123
1124 return trad_frame_get_register (info, this_frame, regnum);
1125 }
1126
1127 /* Data structures for the normal prologue-analysis-based unwinder. */
1128
1129 static const struct frame_unwind or1k_frame_unwind = {
1130 "or1k prologue",
1131 NORMAL_FRAME,
1132 default_frame_unwind_stop_reason,
1133 or1k_frame_this_id,
1134 or1k_frame_prev_register,
1135 NULL,
1136 default_frame_sniffer,
1137 NULL,
1138 };
1139
1140 /* Architecture initialization for OpenRISC 1000. */
1141
1142 static struct gdbarch *
1143 or1k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1144 {
1145 struct gdbarch *gdbarch;
1146 const struct bfd_arch_info *binfo;
1147 tdesc_arch_data_up tdesc_data;
1148 const struct target_desc *tdesc = info.target_desc;
1149
1150 /* Find a candidate among the list of pre-declared architectures. */
1151 arches = gdbarch_list_lookup_by_info (arches, &info);
1152 if (NULL != arches)
1153 return arches->gdbarch;
1154
1155 /* None found, create a new architecture from the information
1156 provided. Can't initialize all the target dependencies until we
1157 actually know which target we are talking to, but put in some defaults
1158 for now. */
1159 binfo = info.bfd_arch_info;
1160 or1k_gdbarch_tdep *tdep = new or1k_gdbarch_tdep;
1161 tdep->bytes_per_word = binfo->bits_per_word / binfo->bits_per_byte;
1162 tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;
1163 gdbarch = gdbarch_alloc (&info, tdep);
1164
1165 /* Target data types */
1166 set_gdbarch_short_bit (gdbarch, 16);
1167 set_gdbarch_int_bit (gdbarch, 32);
1168 set_gdbarch_long_bit (gdbarch, 32);
1169 set_gdbarch_long_long_bit (gdbarch, 64);
1170 set_gdbarch_float_bit (gdbarch, 32);
1171 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1172 set_gdbarch_double_bit (gdbarch, 64);
1173 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1174 set_gdbarch_long_double_bit (gdbarch, 64);
1175 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1176 set_gdbarch_ptr_bit (gdbarch, binfo->bits_per_address);
1177 set_gdbarch_addr_bit (gdbarch, binfo->bits_per_address);
1178 set_gdbarch_char_signed (gdbarch, 1);
1179
1180 /* Information about the target architecture */
1181 set_gdbarch_return_value (gdbarch, or1k_return_value);
1182 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1183 or1k_breakpoint::kind_from_pc);
1184 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1185 or1k_breakpoint::bp_from_kind);
1186 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
1187
1188 /* Register architecture */
1189 set_gdbarch_num_regs (gdbarch, OR1K_NUM_REGS);
1190 set_gdbarch_num_pseudo_regs (gdbarch, OR1K_NUM_PSEUDO_REGS);
1191 set_gdbarch_sp_regnum (gdbarch, OR1K_SP_REGNUM);
1192 set_gdbarch_pc_regnum (gdbarch, OR1K_NPC_REGNUM);
1193 set_gdbarch_ps_regnum (gdbarch, OR1K_SR_REGNUM);
1194 set_gdbarch_deprecated_fp_regnum (gdbarch, OR1K_FP_REGNUM);
1195
1196 /* Functions to analyse frames */
1197 set_gdbarch_skip_prologue (gdbarch, or1k_skip_prologue);
1198 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1199 set_gdbarch_frame_align (gdbarch, or1k_frame_align);
1200 set_gdbarch_frame_red_zone_size (gdbarch, OR1K_FRAME_RED_ZONE_SIZE);
1201
1202 /* Functions to access frame data */
1203 set_gdbarch_unwind_pc (gdbarch, or1k_unwind_pc);
1204 set_gdbarch_unwind_sp (gdbarch, or1k_unwind_sp);
1205
1206 /* Functions handling dummy frames */
1207 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1208 set_gdbarch_push_dummy_code (gdbarch, or1k_push_dummy_code);
1209 set_gdbarch_push_dummy_call (gdbarch, or1k_push_dummy_call);
1210
1211 /* Frame unwinders. Use DWARF debug info if available, otherwise use our
1212 own unwinder. */
1213 dwarf2_append_unwinders (gdbarch);
1214 frame_unwind_append_unwinder (gdbarch, &or1k_frame_unwind);
1215
1216 /* Get a CGEN CPU descriptor for this architecture. */
1217 {
1218
1219 const char *mach_name = binfo->printable_name;
1220 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
1221 ? CGEN_ENDIAN_BIG : CGEN_ENDIAN_LITTLE);
1222
1223 tdep->gdb_cgen_cpu_desc =
1224 or1k_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
1225 CGEN_CPU_OPEN_ENDIAN, endian, CGEN_CPU_OPEN_END);
1226
1227 or1k_cgen_init_asm (tdep->gdb_cgen_cpu_desc);
1228 }
1229
1230 /* If this mach has a delay slot. */
1231 if (binfo->mach == bfd_mach_or1k)
1232 set_gdbarch_single_step_through_delay (gdbarch,
1233 or1k_single_step_through_delay);
1234
1235 if (!tdesc_has_registers (info.target_desc))
1236 /* Pick a default target description. */
1237 tdesc = tdesc_or1k;
1238
1239 /* Check any target description for validity. */
1240 if (tdesc_has_registers (tdesc))
1241 {
1242 const struct tdesc_feature *feature;
1243 int valid_p;
1244 int i;
1245
1246 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.or1k.group0");
1247 if (feature == NULL)
1248 return NULL;
1249
1250 tdesc_data = tdesc_data_alloc ();
1251
1252 valid_p = 1;
1253
1254 for (i = 0; i < OR1K_NUM_REGS; i++)
1255 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
1256 or1k_reg_names[i]);
1257
1258 if (!valid_p)
1259 return NULL;
1260 }
1261
1262 if (tdesc_data != NULL)
1263 {
1264 /* If we are using tdesc, register our own reggroups, otherwise we
1265 will used the defaults. */
1266 reggroup_add (gdbarch, general_reggroup);
1267 reggroup_add (gdbarch, system_reggroup);
1268 reggroup_add (gdbarch, float_reggroup);
1269 reggroup_add (gdbarch, vector_reggroup);
1270 reggroup_add (gdbarch, all_reggroup);
1271 reggroup_add (gdbarch, save_reggroup);
1272 reggroup_add (gdbarch, restore_reggroup);
1273
1274 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
1275 }
1276
1277 /* Hook in ABI-specific overrides, if they have been registered. */
1278 gdbarch_init_osabi (info, gdbarch);
1279
1280 return gdbarch;
1281 }
1282
1283 /* Dump the target specific data for this architecture. */
1284
1285 static void
1286 or1k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1287 {
1288 or1k_gdbarch_tdep *tdep = (or1k_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1289
1290 if (NULL == tdep)
1291 return; /* Nothing to report */
1292
1293 fprintf_filtered (file, "or1k_dump_tdep: %d bytes per word\n",
1294 tdep->bytes_per_word);
1295 fprintf_filtered (file, "or1k_dump_tdep: %d bytes per address\n",
1296 tdep->bytes_per_address);
1297 }
1298 \f
1299
1300 void _initialize_or1k_tdep ();
1301 void
1302 _initialize_or1k_tdep ()
1303 {
1304 /* Register this architecture. */
1305 gdbarch_register (bfd_arch_or1k, or1k_gdbarch_init, or1k_dump_tdep);
1306
1307 initialize_tdesc_or1k ();
1308
1309 /* Debugging flag. */
1310 add_setshow_boolean_cmd ("or1k", class_maintenance, &or1k_debug,
1311 _("Set OpenRISC debugging."),
1312 _("Show OpenRISC debugging."),
1313 _("When on, OpenRISC specific debugging is enabled."),
1314 NULL,
1315 show_or1k_debug,
1316 &setdebuglist, &showdebuglist);
1317 }