]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-sysv-tdep.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / ppc-sysv-tdep.c
1 /* Target-dependent code for PowerPC systems using the SVR4 ABI
2 for GDB, the GNU debugger.
3
4 Copyright (C) 2000-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "inferior.h"
24 #include "regcache.h"
25 #include "value.h"
26 #include "ppc-tdep.h"
27 #include "target.h"
28 #include "objfiles.h"
29 #include "infcall.h"
30 #include "dwarf2.h"
31 #include "target-float.h"
32 #include <algorithm>
33
34
35 /* Check whether FTPYE is a (pointer to) function type that should use
36 the OpenCL vector ABI. */
37
38 static int
39 ppc_sysv_use_opencl_abi (struct type *ftype)
40 {
41 ftype = check_typedef (ftype);
42
43 if (ftype->code () == TYPE_CODE_PTR)
44 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
45
46 return (ftype->code () == TYPE_CODE_FUNC
47 && TYPE_CALLING_CONVENTION (ftype) == DW_CC_GDB_IBM_OpenCL);
48 }
49
50 /* Pass the arguments in either registers, or in the stack. Using the
51 ppc sysv ABI, the first eight words of the argument list (that might
52 be less than eight parameters if some parameters occupy more than one
53 word) are passed in r3..r10 registers. float and double parameters are
54 passed in fpr's, in addition to that. Rest of the parameters if any
55 are passed in user stack.
56
57 If the function is returning a structure, then the return address is passed
58 in r3, then the first 7 words of the parameters can be passed in registers,
59 starting from r4. */
60
61 CORE_ADDR
62 ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
63 struct regcache *regcache, CORE_ADDR bp_addr,
64 int nargs, struct value **args, CORE_ADDR sp,
65 function_call_return_method return_method,
66 CORE_ADDR struct_addr)
67 {
68 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
69 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
70 int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
71 ULONGEST saved_sp;
72 int argspace = 0; /* 0 is an initial wrong guess. */
73 int write_pass;
74
75 gdb_assert (tdep->wordsize == 4);
76
77 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
78 &saved_sp);
79
80 /* Go through the argument list twice.
81
82 Pass 1: Figure out how much new stack space is required for
83 arguments and pushed values. Unlike the PowerOpen ABI, the SysV
84 ABI doesn't reserve any extra space for parameters which are put
85 in registers, but does always push structures and then pass their
86 address.
87
88 Pass 2: Replay the same computation but this time also write the
89 values out to the target. */
90
91 for (write_pass = 0; write_pass < 2; write_pass++)
92 {
93 int argno;
94 /* Next available floating point register for float and double
95 arguments. */
96 int freg = 1;
97 /* Next available general register for non-float, non-vector
98 arguments. */
99 int greg = 3;
100 /* Next available vector register for vector arguments. */
101 int vreg = 2;
102 /* Arguments start above the "LR save word" and "Back chain". */
103 int argoffset = 2 * tdep->wordsize;
104 /* Structures start after the arguments. */
105 int structoffset = argoffset + argspace;
106
107 /* If the function is returning a `struct', then the first word
108 (which will be passed in r3) is used for struct return
109 address. In that case we should advance one word and start
110 from r4 register to copy parameters. */
111 if (return_method == return_method_struct)
112 {
113 if (write_pass)
114 regcache_cooked_write_signed (regcache,
115 tdep->ppc_gp0_regnum + greg,
116 struct_addr);
117 greg++;
118 }
119
120 for (argno = 0; argno < nargs; argno++)
121 {
122 struct value *arg = args[argno];
123 struct type *type = check_typedef (value_type (arg));
124 int len = TYPE_LENGTH (type);
125 const bfd_byte *val = value_contents (arg);
126
127 if (type->code () == TYPE_CODE_FLT && len <= 8
128 && !tdep->soft_float)
129 {
130 /* Floating point value converted to "double" then
131 passed in an FP register, when the registers run out,
132 8 byte aligned stack is used. */
133 if (freg <= 8)
134 {
135 if (write_pass)
136 {
137 /* Always store the floating point value using
138 the register's floating-point format. */
139 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
140 struct type *regtype
141 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
142 target_float_convert (val, type, regval, regtype);
143 regcache->cooked_write (tdep->ppc_fp0_regnum + freg,
144 regval);
145 }
146 freg++;
147 }
148 else
149 {
150 /* The SysV ABI tells us to convert floats to
151 doubles before writing them to an 8 byte aligned
152 stack location. Unfortunately GCC does not do
153 that, and stores floats into 4 byte aligned
154 locations without converting them to doubles.
155 Since there is no know compiler that actually
156 follows the ABI here, we implement the GCC
157 convention. */
158
159 /* Align to 4 bytes or 8 bytes depending on the type of
160 the argument (float or double). */
161 argoffset = align_up (argoffset, len);
162 if (write_pass)
163 write_memory (sp + argoffset, val, len);
164 argoffset += len;
165 }
166 }
167 else if (type->code () == TYPE_CODE_FLT
168 && len == 16
169 && !tdep->soft_float
170 && (gdbarch_long_double_format (gdbarch)
171 == floatformats_ibm_long_double))
172 {
173 /* IBM long double passed in two FP registers if
174 available, otherwise 8-byte aligned stack. */
175 if (freg <= 7)
176 {
177 if (write_pass)
178 {
179 regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val);
180 regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1,
181 val + 8);
182 }
183 freg += 2;
184 }
185 else
186 {
187 argoffset = align_up (argoffset, 8);
188 if (write_pass)
189 write_memory (sp + argoffset, val, len);
190 argoffset += 16;
191 }
192 }
193 else if (len == 8
194 && (type->code () == TYPE_CODE_INT /* long long */
195 || type->code () == TYPE_CODE_FLT /* double */
196 || (type->code () == TYPE_CODE_DECFLOAT
197 && tdep->soft_float)))
198 {
199 /* "long long" or soft-float "double" or "_Decimal64"
200 passed in an odd/even register pair with the low
201 addressed word in the odd register and the high
202 addressed word in the even register, or when the
203 registers run out an 8 byte aligned stack
204 location. */
205 if (greg > 9)
206 {
207 /* Just in case GREG was 10. */
208 greg = 11;
209 argoffset = align_up (argoffset, 8);
210 if (write_pass)
211 write_memory (sp + argoffset, val, len);
212 argoffset += 8;
213 }
214 else
215 {
216 /* Must start on an odd register - r3/r4 etc. */
217 if ((greg & 1) == 0)
218 greg++;
219 if (write_pass)
220 {
221 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0,
222 val + 0);
223 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1,
224 val + 4);
225 }
226 greg += 2;
227 }
228 }
229 else if (len == 16
230 && ((type->code () == TYPE_CODE_FLT
231 && (gdbarch_long_double_format (gdbarch)
232 == floatformats_ibm_long_double))
233 || (type->code () == TYPE_CODE_DECFLOAT
234 && tdep->soft_float)))
235 {
236 /* Soft-float IBM long double or _Decimal128 passed in
237 four consecutive registers, or on the stack. The
238 registers are not necessarily odd/even pairs. */
239 if (greg > 7)
240 {
241 greg = 11;
242 argoffset = align_up (argoffset, 8);
243 if (write_pass)
244 write_memory (sp + argoffset, val, len);
245 argoffset += 16;
246 }
247 else
248 {
249 if (write_pass)
250 {
251 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0,
252 val + 0);
253 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1,
254 val + 4);
255 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 2,
256 val + 8);
257 regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 3,
258 val + 12);
259 }
260 greg += 4;
261 }
262 }
263 else if (type->code () == TYPE_CODE_DECFLOAT && len <= 8
264 && !tdep->soft_float)
265 {
266 /* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
267 end up in memory. */
268
269 if (freg <= 8)
270 {
271 if (write_pass)
272 {
273 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
274 const gdb_byte *p;
275
276 /* 32-bit decimal floats are right aligned in the
277 doubleword. */
278 if (TYPE_LENGTH (type) == 4)
279 {
280 memcpy (regval + 4, val, 4);
281 p = regval;
282 }
283 else
284 p = val;
285
286 regcache->cooked_write (tdep->ppc_fp0_regnum + freg, p);
287 }
288
289 freg++;
290 }
291 else
292 {
293 argoffset = align_up (argoffset, len);
294
295 if (write_pass)
296 /* Write value in the stack's parameter save area. */
297 write_memory (sp + argoffset, val, len);
298
299 argoffset += len;
300 }
301 }
302 else if (type->code () == TYPE_CODE_DECFLOAT && len == 16
303 && !tdep->soft_float)
304 {
305 /* 128-bit decimal floats go in f2 .. f7, always in even/odd
306 pairs. They can end up in memory, using two doublewords. */
307
308 if (freg <= 6)
309 {
310 /* Make sure freg is even. */
311 freg += freg & 1;
312
313 if (write_pass)
314 {
315 regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val);
316 regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1,
317 val + 8);
318 }
319 }
320 else
321 {
322 argoffset = align_up (argoffset, 8);
323
324 if (write_pass)
325 write_memory (sp + argoffset, val, 16);
326
327 argoffset += 16;
328 }
329
330 /* If a 128-bit decimal float goes to the stack because only f7
331 and f8 are free (thus there's no even/odd register pair
332 available), these registers should be marked as occupied.
333 Hence we increase freg even when writing to memory. */
334 freg += 2;
335 }
336 else if (len < 16
337 && type->code () == TYPE_CODE_ARRAY
338 && TYPE_VECTOR (type)
339 && opencl_abi)
340 {
341 /* OpenCL vectors shorter than 16 bytes are passed as if
342 a series of independent scalars. */
343 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
344 int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
345
346 for (i = 0; i < nelt; i++)
347 {
348 const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
349
350 if (eltype->code () == TYPE_CODE_FLT && !tdep->soft_float)
351 {
352 if (freg <= 8)
353 {
354 if (write_pass)
355 {
356 int regnum = tdep->ppc_fp0_regnum + freg;
357 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
358 struct type *regtype
359 = register_type (gdbarch, regnum);
360 target_float_convert (elval, eltype,
361 regval, regtype);
362 regcache->cooked_write (regnum, regval);
363 }
364 freg++;
365 }
366 else
367 {
368 argoffset = align_up (argoffset, len);
369 if (write_pass)
370 write_memory (sp + argoffset, val, len);
371 argoffset += len;
372 }
373 }
374 else if (TYPE_LENGTH (eltype) == 8)
375 {
376 if (greg > 9)
377 {
378 /* Just in case GREG was 10. */
379 greg = 11;
380 argoffset = align_up (argoffset, 8);
381 if (write_pass)
382 write_memory (sp + argoffset, elval,
383 TYPE_LENGTH (eltype));
384 argoffset += 8;
385 }
386 else
387 {
388 /* Must start on an odd register - r3/r4 etc. */
389 if ((greg & 1) == 0)
390 greg++;
391 if (write_pass)
392 {
393 int regnum = tdep->ppc_gp0_regnum + greg;
394 regcache->cooked_write (regnum + 0, elval + 0);
395 regcache->cooked_write (regnum + 1, elval + 4);
396 }
397 greg += 2;
398 }
399 }
400 else
401 {
402 gdb_byte word[PPC_MAX_REGISTER_SIZE];
403 store_unsigned_integer (word, tdep->wordsize, byte_order,
404 unpack_long (eltype, elval));
405
406 if (greg <= 10)
407 {
408 if (write_pass)
409 regcache->cooked_write (tdep->ppc_gp0_regnum + greg,
410 word);
411 greg++;
412 }
413 else
414 {
415 argoffset = align_up (argoffset, tdep->wordsize);
416 if (write_pass)
417 write_memory (sp + argoffset, word, tdep->wordsize);
418 argoffset += tdep->wordsize;
419 }
420 }
421 }
422 }
423 else if (len >= 16
424 && type->code () == TYPE_CODE_ARRAY
425 && TYPE_VECTOR (type)
426 && opencl_abi)
427 {
428 /* OpenCL vectors 16 bytes or longer are passed as if
429 a series of AltiVec vectors. */
430 int i;
431
432 for (i = 0; i < len / 16; i++)
433 {
434 const gdb_byte *elval = val + i * 16;
435
436 if (vreg <= 13)
437 {
438 if (write_pass)
439 regcache->cooked_write (tdep->ppc_vr0_regnum + vreg,
440 elval);
441 vreg++;
442 }
443 else
444 {
445 argoffset = align_up (argoffset, 16);
446 if (write_pass)
447 write_memory (sp + argoffset, elval, 16);
448 argoffset += 16;
449 }
450 }
451 }
452 else if (len == 16
453 && type->code () == TYPE_CODE_ARRAY
454 && TYPE_VECTOR (type)
455 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
456 {
457 /* Vector parameter passed in an Altivec register, or
458 when that runs out, 16 byte aligned stack location. */
459 if (vreg <= 13)
460 {
461 if (write_pass)
462 regcache->cooked_write (tdep->ppc_vr0_regnum + vreg, val);
463 vreg++;
464 }
465 else
466 {
467 argoffset = align_up (argoffset, 16);
468 if (write_pass)
469 write_memory (sp + argoffset, val, 16);
470 argoffset += 16;
471 }
472 }
473 else if (len == 8
474 && type->code () == TYPE_CODE_ARRAY
475 && TYPE_VECTOR (type)
476 && tdep->vector_abi == POWERPC_VEC_SPE)
477 {
478 /* Vector parameter passed in an e500 register, or when
479 that runs out, 8 byte aligned stack location. Note
480 that since e500 vector and general purpose registers
481 both map onto the same underlying register set, a
482 "greg" and not a "vreg" is consumed here. A cooked
483 write stores the value in the correct locations
484 within the raw register cache. */
485 if (greg <= 10)
486 {
487 if (write_pass)
488 regcache->cooked_write (tdep->ppc_ev0_regnum + greg, val);
489 greg++;
490 }
491 else
492 {
493 argoffset = align_up (argoffset, 8);
494 if (write_pass)
495 write_memory (sp + argoffset, val, 8);
496 argoffset += 8;
497 }
498 }
499 else
500 {
501 /* Reduce the parameter down to something that fits in a
502 "word". */
503 gdb_byte word[PPC_MAX_REGISTER_SIZE];
504 memset (word, 0, PPC_MAX_REGISTER_SIZE);
505 if (len > tdep->wordsize
506 || type->code () == TYPE_CODE_STRUCT
507 || type->code () == TYPE_CODE_UNION)
508 {
509 /* Structs and large values are put in an
510 aligned stack slot ... */
511 if (type->code () == TYPE_CODE_ARRAY
512 && TYPE_VECTOR (type)
513 && len >= 16)
514 structoffset = align_up (structoffset, 16);
515 else
516 structoffset = align_up (structoffset, 8);
517
518 if (write_pass)
519 write_memory (sp + structoffset, val, len);
520 /* ... and then a "word" pointing to that address is
521 passed as the parameter. */
522 store_unsigned_integer (word, tdep->wordsize, byte_order,
523 sp + structoffset);
524 structoffset += len;
525 }
526 else if (type->code () == TYPE_CODE_INT)
527 /* Sign or zero extend the "int" into a "word". */
528 store_unsigned_integer (word, tdep->wordsize, byte_order,
529 unpack_long (type, val));
530 else
531 /* Always goes in the low address. */
532 memcpy (word, val, len);
533 /* Store that "word" in a register, or on the stack.
534 The words have "4" byte alignment. */
535 if (greg <= 10)
536 {
537 if (write_pass)
538 regcache->cooked_write (tdep->ppc_gp0_regnum + greg, word);
539 greg++;
540 }
541 else
542 {
543 argoffset = align_up (argoffset, tdep->wordsize);
544 if (write_pass)
545 write_memory (sp + argoffset, word, tdep->wordsize);
546 argoffset += tdep->wordsize;
547 }
548 }
549 }
550
551 /* Compute the actual stack space requirements. */
552 if (!write_pass)
553 {
554 /* Remember the amount of space needed by the arguments. */
555 argspace = argoffset;
556 /* Allocate space for both the arguments and the structures. */
557 sp -= (argoffset + structoffset);
558 /* Ensure that the stack is still 16 byte aligned. */
559 sp = align_down (sp, 16);
560 }
561
562 /* The psABI says that "A caller of a function that takes a
563 variable argument list shall set condition register bit 6 to
564 1 if it passes one or more arguments in the floating-point
565 registers. It is strongly recommended that the caller set the
566 bit to 0 otherwise..." Doing this for normal functions too
567 shouldn't hurt. */
568 if (write_pass)
569 {
570 ULONGEST cr;
571
572 regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
573 if (freg > 1)
574 cr |= 0x02000000;
575 else
576 cr &= ~0x02000000;
577 regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
578 }
579 }
580
581 /* Update %sp. */
582 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
583
584 /* Write the backchain (it occupies WORDSIZED bytes). */
585 write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
586
587 /* Point the inferior function call's return address at the dummy's
588 breakpoint. */
589 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
590
591 return sp;
592 }
593
594 /* Handle the return-value conventions for Decimal Floating Point values. */
595 static enum return_value_convention
596 get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
597 struct regcache *regcache, gdb_byte *readbuf,
598 const gdb_byte *writebuf)
599 {
600 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
601
602 gdb_assert (valtype->code () == TYPE_CODE_DECFLOAT);
603
604 /* 32-bit and 64-bit decimal floats in f1. */
605 if (TYPE_LENGTH (valtype) <= 8)
606 {
607 if (writebuf != NULL)
608 {
609 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
610 const gdb_byte *p;
611
612 /* 32-bit decimal float is right aligned in the doubleword. */
613 if (TYPE_LENGTH (valtype) == 4)
614 {
615 memcpy (regval + 4, writebuf, 4);
616 p = regval;
617 }
618 else
619 p = writebuf;
620
621 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, p);
622 }
623 if (readbuf != NULL)
624 {
625 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf);
626
627 /* Left align 32-bit decimal float. */
628 if (TYPE_LENGTH (valtype) == 4)
629 memcpy (readbuf, readbuf + 4, 4);
630 }
631 }
632 /* 128-bit decimal floats in f2,f3. */
633 else if (TYPE_LENGTH (valtype) == 16)
634 {
635 if (writebuf != NULL || readbuf != NULL)
636 {
637 int i;
638
639 for (i = 0; i < 2; i++)
640 {
641 if (writebuf != NULL)
642 regcache->cooked_write (tdep->ppc_fp0_regnum + 2 + i,
643 writebuf + i * 8);
644 if (readbuf != NULL)
645 regcache->cooked_read (tdep->ppc_fp0_regnum + 2 + i,
646 readbuf + i * 8);
647 }
648 }
649 }
650 else
651 /* Can't happen. */
652 internal_error (__FILE__, __LINE__, _("Unknown decimal float size."));
653
654 return RETURN_VALUE_REGISTER_CONVENTION;
655 }
656
657 /* Handle the return-value conventions specified by the SysV 32-bit
658 PowerPC ABI (including all the supplements):
659
660 no floating-point: floating-point values returned using 32-bit
661 general-purpose registers.
662
663 Altivec: 128-bit vectors returned using vector registers.
664
665 e500: 64-bit vectors returned using the full full 64 bit EV
666 register, floating-point values returned using 32-bit
667 general-purpose registers.
668
669 GCC (broken): Small struct values right (instead of left) aligned
670 when returned in general-purpose registers. */
671
672 static enum return_value_convention
673 do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *func_type,
674 struct type *type, struct regcache *regcache,
675 gdb_byte *readbuf, const gdb_byte *writebuf,
676 int broken_gcc)
677 {
678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
679 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
680 int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
681
682 gdb_assert (tdep->wordsize == 4);
683
684 if (type->code () == TYPE_CODE_FLT
685 && TYPE_LENGTH (type) <= 8
686 && !tdep->soft_float)
687 {
688 if (readbuf)
689 {
690 /* Floats and doubles stored in "f1". Convert the value to
691 the required type. */
692 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
693 struct type *regtype = register_type (gdbarch,
694 tdep->ppc_fp0_regnum + 1);
695 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
696 target_float_convert (regval, regtype, readbuf, type);
697 }
698 if (writebuf)
699 {
700 /* Floats and doubles stored in "f1". Convert the value to
701 the register's "double" type. */
702 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
703 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
704 target_float_convert (writebuf, type, regval, regtype);
705 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
706 }
707 return RETURN_VALUE_REGISTER_CONVENTION;
708 }
709 if (type->code () == TYPE_CODE_FLT
710 && TYPE_LENGTH (type) == 16
711 && !tdep->soft_float
712 && (gdbarch_long_double_format (gdbarch)
713 == floatformats_ibm_long_double))
714 {
715 /* IBM long double stored in f1 and f2. */
716 if (readbuf)
717 {
718 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf);
719 regcache->cooked_read (tdep->ppc_fp0_regnum + 2, readbuf + 8);
720 }
721 if (writebuf)
722 {
723 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, writebuf);
724 regcache->cooked_write (tdep->ppc_fp0_regnum + 2, writebuf + 8);
725 }
726 return RETURN_VALUE_REGISTER_CONVENTION;
727 }
728 if (TYPE_LENGTH (type) == 16
729 && ((type->code () == TYPE_CODE_FLT
730 && (gdbarch_long_double_format (gdbarch)
731 == floatformats_ibm_long_double))
732 || (type->code () == TYPE_CODE_DECFLOAT && tdep->soft_float)))
733 {
734 /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
735 r5, r6. */
736 if (readbuf)
737 {
738 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf);
739 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
740 regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8);
741 regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12);
742 }
743 if (writebuf)
744 {
745 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
746 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
747 regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8);
748 regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12);
749 }
750 return RETURN_VALUE_REGISTER_CONVENTION;
751 }
752 if ((type->code () == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
753 || (type->code () == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
754 || (type->code () == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
755 && tdep->soft_float))
756 {
757 if (readbuf)
758 {
759 /* A long long, double or _Decimal64 stored in the 32 bit
760 r3/r4. */
761 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0);
762 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
763 }
764 if (writebuf)
765 {
766 /* A long long, double or _Decimal64 stored in the 32 bit
767 r3/r4. */
768 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0);
769 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
770 }
771 return RETURN_VALUE_REGISTER_CONVENTION;
772 }
773 if (type->code () == TYPE_CODE_DECFLOAT && !tdep->soft_float)
774 return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
775 writebuf);
776 else if ((type->code () == TYPE_CODE_INT
777 || type->code () == TYPE_CODE_CHAR
778 || type->code () == TYPE_CODE_BOOL
779 || type->code () == TYPE_CODE_PTR
780 || TYPE_IS_REFERENCE (type)
781 || type->code () == TYPE_CODE_ENUM)
782 && TYPE_LENGTH (type) <= tdep->wordsize)
783 {
784 if (readbuf)
785 {
786 /* Some sort of integer stored in r3. Since TYPE isn't
787 bigger than the register, sign extension isn't a problem
788 - just do everything unsigned. */
789 ULONGEST regval;
790 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
791 &regval);
792 store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
793 regval);
794 }
795 if (writebuf)
796 {
797 /* Some sort of integer stored in r3. Use unpack_long since
798 that should handle any required sign extension. */
799 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
800 unpack_long (type, writebuf));
801 }
802 return RETURN_VALUE_REGISTER_CONVENTION;
803 }
804 /* OpenCL vectors < 16 bytes are returned as distinct
805 scalars in f1..f2 or r3..r10. */
806 if (type->code () == TYPE_CODE_ARRAY
807 && TYPE_VECTOR (type)
808 && TYPE_LENGTH (type) < 16
809 && opencl_abi)
810 {
811 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
812 int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
813
814 for (i = 0; i < nelt; i++)
815 {
816 int offset = i * TYPE_LENGTH (eltype);
817
818 if (eltype->code () == TYPE_CODE_FLT)
819 {
820 int regnum = tdep->ppc_fp0_regnum + 1 + i;
821 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
822 struct type *regtype = register_type (gdbarch, regnum);
823
824 if (writebuf != NULL)
825 {
826 target_float_convert (writebuf + offset, eltype,
827 regval, regtype);
828 regcache->cooked_write (regnum, regval);
829 }
830 if (readbuf != NULL)
831 {
832 regcache->cooked_read (regnum, regval);
833 target_float_convert (regval, regtype,
834 readbuf + offset, eltype);
835 }
836 }
837 else
838 {
839 int regnum = tdep->ppc_gp0_regnum + 3 + i;
840 ULONGEST regval;
841
842 if (writebuf != NULL)
843 {
844 regval = unpack_long (eltype, writebuf + offset);
845 regcache_cooked_write_unsigned (regcache, regnum, regval);
846 }
847 if (readbuf != NULL)
848 {
849 regcache_cooked_read_unsigned (regcache, regnum, &regval);
850 store_unsigned_integer (readbuf + offset,
851 TYPE_LENGTH (eltype), byte_order,
852 regval);
853 }
854 }
855 }
856
857 return RETURN_VALUE_REGISTER_CONVENTION;
858 }
859 /* OpenCL vectors >= 16 bytes are returned in v2..v9. */
860 if (type->code () == TYPE_CODE_ARRAY
861 && TYPE_VECTOR (type)
862 && TYPE_LENGTH (type) >= 16
863 && opencl_abi)
864 {
865 int n_regs = TYPE_LENGTH (type) / 16;
866 int i;
867
868 for (i = 0; i < n_regs; i++)
869 {
870 int offset = i * 16;
871 int regnum = tdep->ppc_vr0_regnum + 2 + i;
872
873 if (writebuf != NULL)
874 regcache->cooked_write (regnum, writebuf + offset);
875 if (readbuf != NULL)
876 regcache->cooked_read (regnum, readbuf + offset);
877 }
878
879 return RETURN_VALUE_REGISTER_CONVENTION;
880 }
881 if (TYPE_LENGTH (type) == 16
882 && type->code () == TYPE_CODE_ARRAY
883 && TYPE_VECTOR (type)
884 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
885 {
886 if (readbuf)
887 {
888 /* Altivec places the return value in "v2". */
889 regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
890 }
891 if (writebuf)
892 {
893 /* Altivec places the return value in "v2". */
894 regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
895 }
896 return RETURN_VALUE_REGISTER_CONVENTION;
897 }
898 if (TYPE_LENGTH (type) == 16
899 && type->code () == TYPE_CODE_ARRAY
900 && TYPE_VECTOR (type)
901 && tdep->vector_abi == POWERPC_VEC_GENERIC)
902 {
903 /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
904 GCC without AltiVec returns them in memory, but it warns about
905 ABI risks in that case; we don't try to support it. */
906 if (readbuf)
907 {
908 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0);
909 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4);
910 regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8);
911 regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12);
912 }
913 if (writebuf)
914 {
915 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0);
916 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
917 regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8);
918 regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12);
919 }
920 return RETURN_VALUE_REGISTER_CONVENTION;
921 }
922 if (TYPE_LENGTH (type) == 8
923 && type->code () == TYPE_CODE_ARRAY
924 && TYPE_VECTOR (type)
925 && tdep->vector_abi == POWERPC_VEC_SPE)
926 {
927 /* The e500 ABI places return values for the 64-bit DSP types
928 (__ev64_opaque__) in r3. However, in GDB-speak, ev3
929 corresponds to the entire r3 value for e500, whereas GDB's r3
930 only corresponds to the least significant 32-bits. So place
931 the 64-bit DSP type's value in ev3. */
932 if (readbuf)
933 regcache->cooked_read (tdep->ppc_ev0_regnum + 3, readbuf);
934 if (writebuf)
935 regcache->cooked_write (tdep->ppc_ev0_regnum + 3, writebuf);
936 return RETURN_VALUE_REGISTER_CONVENTION;
937 }
938 if (broken_gcc && TYPE_LENGTH (type) <= 8)
939 {
940 /* GCC screwed up for structures or unions whose size is less
941 than or equal to 8 bytes.. Instead of left-aligning, it
942 right-aligns the data into the buffer formed by r3, r4. */
943 gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
944 int len = TYPE_LENGTH (type);
945 int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
946
947 if (readbuf)
948 {
949 regcache->cooked_read (tdep->ppc_gp0_regnum + 3,
950 regvals + 0 * tdep->wordsize);
951 if (len > tdep->wordsize)
952 regcache->cooked_read (tdep->ppc_gp0_regnum + 4,
953 regvals + 1 * tdep->wordsize);
954 memcpy (readbuf, regvals + offset, len);
955 }
956 if (writebuf)
957 {
958 memset (regvals, 0, sizeof regvals);
959 memcpy (regvals + offset, writebuf, len);
960 regcache->cooked_write (tdep->ppc_gp0_regnum + 3,
961 regvals + 0 * tdep->wordsize);
962 if (len > tdep->wordsize)
963 regcache->cooked_write (tdep->ppc_gp0_regnum + 4,
964 regvals + 1 * tdep->wordsize);
965 }
966
967 return RETURN_VALUE_REGISTER_CONVENTION;
968 }
969 if (TYPE_LENGTH (type) <= 8)
970 {
971 if (readbuf)
972 {
973 /* This matches SVr4 PPC, it does not match GCC. */
974 /* The value is right-padded to 8 bytes and then loaded, as
975 two "words", into r3/r4. */
976 gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
977 regcache->cooked_read (tdep->ppc_gp0_regnum + 3,
978 regvals + 0 * tdep->wordsize);
979 if (TYPE_LENGTH (type) > tdep->wordsize)
980 regcache->cooked_read (tdep->ppc_gp0_regnum + 4,
981 regvals + 1 * tdep->wordsize);
982 memcpy (readbuf, regvals, TYPE_LENGTH (type));
983 }
984 if (writebuf)
985 {
986 /* This matches SVr4 PPC, it does not match GCC. */
987 /* The value is padded out to 8 bytes and then loaded, as
988 two "words" into r3/r4. */
989 gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2];
990 memset (regvals, 0, sizeof regvals);
991 memcpy (regvals, writebuf, TYPE_LENGTH (type));
992 regcache->cooked_write (tdep->ppc_gp0_regnum + 3,
993 regvals + 0 * tdep->wordsize);
994 if (TYPE_LENGTH (type) > tdep->wordsize)
995 regcache->cooked_write (tdep->ppc_gp0_regnum + 4,
996 regvals + 1 * tdep->wordsize);
997 }
998 return RETURN_VALUE_REGISTER_CONVENTION;
999 }
1000 return RETURN_VALUE_STRUCT_CONVENTION;
1001 }
1002
1003 enum return_value_convention
1004 ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
1005 struct type *valtype, struct regcache *regcache,
1006 gdb_byte *readbuf, const gdb_byte *writebuf)
1007 {
1008 return do_ppc_sysv_return_value (gdbarch,
1009 function ? value_type (function) : NULL,
1010 valtype, regcache, readbuf, writebuf, 0);
1011 }
1012
1013 enum return_value_convention
1014 ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
1015 struct value *function,
1016 struct type *valtype,
1017 struct regcache *regcache,
1018 gdb_byte *readbuf, const gdb_byte *writebuf)
1019 {
1020 return do_ppc_sysv_return_value (gdbarch,
1021 function ? value_type (function) : NULL,
1022 valtype, regcache, readbuf, writebuf, 1);
1023 }
1024
1025 /* The helper function for 64-bit SYSV push_dummy_call. Converts the
1026 function's code address back into the function's descriptor
1027 address.
1028
1029 Find a value for the TOC register. Every symbol should have both
1030 ".FN" and "FN" in the minimal symbol table. "FN" points at the
1031 FN's descriptor, while ".FN" points at the entry point (which
1032 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
1033 FN's descriptor address (while at the same time being careful to
1034 find "FN" in the same object file as ".FN"). */
1035
1036 static int
1037 convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
1038 {
1039 struct obj_section *dot_fn_section;
1040 struct bound_minimal_symbol dot_fn;
1041 struct bound_minimal_symbol fn;
1042
1043 /* Find the minimal symbol that corresponds to CODE_ADDR (should
1044 have a name of the form ".FN"). */
1045 dot_fn = lookup_minimal_symbol_by_pc (code_addr);
1046 if (dot_fn.minsym == NULL || dot_fn.minsym->linkage_name ()[0] != '.')
1047 return 0;
1048 /* Get the section that contains CODE_ADDR. Need this for the
1049 "objfile" that it contains. */
1050 dot_fn_section = find_pc_section (code_addr);
1051 if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
1052 return 0;
1053 /* Now find the corresponding "FN" (dropping ".") minimal symbol's
1054 address. Only look for the minimal symbol in ".FN"'s object file
1055 - avoids problems when two object files (i.e., shared libraries)
1056 contain a minimal symbol with the same name. */
1057 fn = lookup_minimal_symbol (dot_fn.minsym->linkage_name () + 1, NULL,
1058 dot_fn_section->objfile);
1059 if (fn.minsym == NULL)
1060 return 0;
1061 /* Found a descriptor. */
1062 (*desc_addr) = BMSYMBOL_VALUE_ADDRESS (fn);
1063 return 1;
1064 }
1065
1066 /* Walk down the type tree of TYPE counting consecutive base elements.
1067 If *FIELD_TYPE is NULL, then set it to the first valid floating point
1068 or vector type. If a non-floating point or vector type is found, or
1069 if a floating point or vector type that doesn't match a non-NULL
1070 *FIELD_TYPE is found, then return -1, otherwise return the count in the
1071 sub-tree. */
1072
1073 static LONGEST
1074 ppc64_aggregate_candidate (struct type *type,
1075 struct type **field_type)
1076 {
1077 type = check_typedef (type);
1078
1079 switch (type->code ())
1080 {
1081 case TYPE_CODE_FLT:
1082 case TYPE_CODE_DECFLOAT:
1083 if (!*field_type)
1084 *field_type = type;
1085 if ((*field_type)->code () == type->code ()
1086 && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
1087 return 1;
1088 break;
1089
1090 case TYPE_CODE_COMPLEX:
1091 type = TYPE_TARGET_TYPE (type);
1092 if (type->code () == TYPE_CODE_FLT
1093 || type->code () == TYPE_CODE_DECFLOAT)
1094 {
1095 if (!*field_type)
1096 *field_type = type;
1097 if ((*field_type)->code () == type->code ()
1098 && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
1099 return 2;
1100 }
1101 break;
1102
1103 case TYPE_CODE_ARRAY:
1104 if (TYPE_VECTOR (type))
1105 {
1106 if (!*field_type)
1107 *field_type = type;
1108 if ((*field_type)->code () == type->code ()
1109 && TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
1110 return 1;
1111 }
1112 else
1113 {
1114 LONGEST count, low_bound, high_bound;
1115
1116 count = ppc64_aggregate_candidate
1117 (TYPE_TARGET_TYPE (type), field_type);
1118 if (count == -1)
1119 return -1;
1120
1121 if (!get_array_bounds (type, &low_bound, &high_bound))
1122 return -1;
1123 count *= high_bound - low_bound;
1124
1125 /* There must be no padding. */
1126 if (count == 0)
1127 return TYPE_LENGTH (type) == 0 ? 0 : -1;
1128 else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
1129 return -1;
1130
1131 return count;
1132 }
1133 break;
1134
1135 case TYPE_CODE_STRUCT:
1136 case TYPE_CODE_UNION:
1137 {
1138 LONGEST count = 0;
1139 int i;
1140
1141 for (i = 0; i < type->num_fields (); i++)
1142 {
1143 LONGEST sub_count;
1144
1145 if (field_is_static (&type->field (i)))
1146 continue;
1147
1148 sub_count = ppc64_aggregate_candidate
1149 (TYPE_FIELD_TYPE (type, i), field_type);
1150 if (sub_count == -1)
1151 return -1;
1152
1153 if (type->code () == TYPE_CODE_STRUCT)
1154 count += sub_count;
1155 else
1156 count = std::max (count, sub_count);
1157 }
1158
1159 /* There must be no padding. */
1160 if (count == 0)
1161 return TYPE_LENGTH (type) == 0 ? 0 : -1;
1162 else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
1163 return -1;
1164
1165 return count;
1166 }
1167 break;
1168
1169 default:
1170 break;
1171 }
1172
1173 return -1;
1174 }
1175
1176 /* If an argument of type TYPE is a homogeneous float or vector aggregate
1177 that shall be passed in FP/vector registers according to the ELFv2 ABI,
1178 return the homogeneous element type in *ELT_TYPE and the number of
1179 elements in *N_ELTS, and return non-zero. Otherwise, return zero. */
1180
1181 static int
1182 ppc64_elfv2_abi_homogeneous_aggregate (struct type *type,
1183 struct type **elt_type, int *n_elts)
1184 {
1185 /* Complex types at the top level are treated separately. However,
1186 complex types can be elements of homogeneous aggregates. */
1187 if (type->code () == TYPE_CODE_STRUCT
1188 || type->code () == TYPE_CODE_UNION
1189 || (type->code () == TYPE_CODE_ARRAY && !TYPE_VECTOR (type)))
1190 {
1191 struct type *field_type = NULL;
1192 LONGEST field_count = ppc64_aggregate_candidate (type, &field_type);
1193
1194 if (field_count > 0)
1195 {
1196 int n_regs = ((field_type->code () == TYPE_CODE_FLT
1197 || field_type->code () == TYPE_CODE_DECFLOAT)?
1198 (TYPE_LENGTH (field_type) + 7) >> 3 : 1);
1199
1200 /* The ELFv2 ABI allows homogeneous aggregates to occupy
1201 up to 8 registers. */
1202 if (field_count * n_regs <= 8)
1203 {
1204 if (elt_type)
1205 *elt_type = field_type;
1206 if (n_elts)
1207 *n_elts = (int) field_count;
1208 /* Note that field_count is LONGEST since it may hold the size
1209 of an array, while *n_elts is int since its value is bounded
1210 by the number of registers used for argument passing. The
1211 cast cannot overflow due to the bounds checking above. */
1212 return 1;
1213 }
1214 }
1215 }
1216
1217 return 0;
1218 }
1219
1220 /* Structure holding the next argument position. */
1221 struct ppc64_sysv_argpos
1222 {
1223 /* Register cache holding argument registers. If this is NULL,
1224 we only simulate argument processing without actually updating
1225 any registers or memory. */
1226 struct regcache *regcache;
1227 /* Next available general-purpose argument register. */
1228 int greg;
1229 /* Next available floating-point argument register. */
1230 int freg;
1231 /* Next available vector argument register. */
1232 int vreg;
1233 /* The address, at which the next general purpose parameter
1234 (integer, struct, float, vector, ...) should be saved. */
1235 CORE_ADDR gparam;
1236 /* The address, at which the next by-reference parameter
1237 (non-Altivec vector, variably-sized type) should be saved. */
1238 CORE_ADDR refparam;
1239 };
1240
1241 /* VAL is a value of length LEN. Store it into the argument area on the
1242 stack and load it into the corresponding general-purpose registers
1243 required by the ABI, and update ARGPOS.
1244
1245 If ALIGN is nonzero, it specifies the minimum alignment required
1246 for the on-stack copy of the argument. */
1247
1248 static void
1249 ppc64_sysv_abi_push_val (struct gdbarch *gdbarch,
1250 const bfd_byte *val, int len, int align,
1251 struct ppc64_sysv_argpos *argpos)
1252 {
1253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1254 int offset = 0;
1255
1256 /* Enforce alignment of stack location, if requested. */
1257 if (align > tdep->wordsize)
1258 {
1259 CORE_ADDR aligned_gparam = align_up (argpos->gparam, align);
1260
1261 argpos->greg += (aligned_gparam - argpos->gparam) / tdep->wordsize;
1262 argpos->gparam = aligned_gparam;
1263 }
1264
1265 /* The ABI (version 1.9) specifies that values smaller than one
1266 doubleword are right-aligned and those larger are left-aligned.
1267 GCC versions before 3.4 implemented this incorrectly; see
1268 <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
1269 if (len < tdep->wordsize
1270 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1271 offset = tdep->wordsize - len;
1272
1273 if (argpos->regcache)
1274 write_memory (argpos->gparam + offset, val, len);
1275 argpos->gparam = align_up (argpos->gparam + len, tdep->wordsize);
1276
1277 while (len >= tdep->wordsize)
1278 {
1279 if (argpos->regcache && argpos->greg <= 10)
1280 argpos->regcache->cooked_write (tdep->ppc_gp0_regnum + argpos->greg,
1281 val);
1282 argpos->greg++;
1283 len -= tdep->wordsize;
1284 val += tdep->wordsize;
1285 }
1286
1287 if (len > 0)
1288 {
1289 if (argpos->regcache && argpos->greg <= 10)
1290 argpos->regcache->cooked_write_part
1291 (tdep->ppc_gp0_regnum + argpos->greg, offset, len, val);
1292 argpos->greg++;
1293 }
1294 }
1295
1296 /* The same as ppc64_sysv_abi_push_val, but using a single-word integer
1297 value VAL as argument. */
1298
1299 static void
1300 ppc64_sysv_abi_push_integer (struct gdbarch *gdbarch, ULONGEST val,
1301 struct ppc64_sysv_argpos *argpos)
1302 {
1303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1304 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1305 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1306
1307 if (argpos->regcache)
1308 store_unsigned_integer (buf, tdep->wordsize, byte_order, val);
1309 ppc64_sysv_abi_push_val (gdbarch, buf, tdep->wordsize, 0, argpos);
1310 }
1311
1312 /* VAL is a value of TYPE, a (binary or decimal) floating-point type.
1313 Load it into a floating-point register if required by the ABI,
1314 and update ARGPOS. */
1315
1316 static void
1317 ppc64_sysv_abi_push_freg (struct gdbarch *gdbarch,
1318 struct type *type, const bfd_byte *val,
1319 struct ppc64_sysv_argpos *argpos)
1320 {
1321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1322 if (tdep->soft_float)
1323 return;
1324
1325 if (TYPE_LENGTH (type) <= 8
1326 && type->code () == TYPE_CODE_FLT)
1327 {
1328 /* Floats and doubles go in f1 .. f13. 32-bit floats are converted
1329 to double first. */
1330 if (argpos->regcache && argpos->freg <= 13)
1331 {
1332 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1333 struct type *regtype = register_type (gdbarch, regnum);
1334 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
1335
1336 target_float_convert (val, type, regval, regtype);
1337 argpos->regcache->cooked_write (regnum, regval);
1338 }
1339
1340 argpos->freg++;
1341 }
1342 else if (TYPE_LENGTH (type) <= 8
1343 && type->code () == TYPE_CODE_DECFLOAT)
1344 {
1345 /* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
1346 placed in the least significant word. */
1347 if (argpos->regcache && argpos->freg <= 13)
1348 {
1349 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1350 int offset = 0;
1351
1352 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1353 offset = 8 - TYPE_LENGTH (type);
1354
1355 argpos->regcache->cooked_write_part (regnum, offset,
1356 TYPE_LENGTH (type), val);
1357 }
1358
1359 argpos->freg++;
1360 }
1361 else if (TYPE_LENGTH (type) == 16
1362 && type->code () == TYPE_CODE_FLT
1363 && (gdbarch_long_double_format (gdbarch)
1364 == floatformats_ibm_long_double))
1365 {
1366 /* IBM long double stored in two consecutive FPRs. */
1367 if (argpos->regcache && argpos->freg <= 13)
1368 {
1369 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1370
1371 argpos->regcache->cooked_write (regnum, val);
1372 if (argpos->freg <= 12)
1373 argpos->regcache->cooked_write (regnum + 1, val + 8);
1374 }
1375
1376 argpos->freg += 2;
1377 }
1378 else if (TYPE_LENGTH (type) == 16
1379 && type->code () == TYPE_CODE_DECFLOAT)
1380 {
1381 /* 128-bit decimal floating-point values are stored in and even/odd
1382 pair of FPRs, with the even FPR holding the most significant half. */
1383 argpos->freg += argpos->freg & 1;
1384
1385 if (argpos->regcache && argpos->freg <= 12)
1386 {
1387 int regnum = tdep->ppc_fp0_regnum + argpos->freg;
1388 int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
1389 int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
1390
1391 argpos->regcache->cooked_write (regnum, val + hipart);
1392 argpos->regcache->cooked_write (regnum + 1, val + lopart);
1393 }
1394
1395 argpos->freg += 2;
1396 }
1397 }
1398
1399 /* VAL is a value of AltiVec vector type. Load it into a vector register
1400 if required by the ABI, and update ARGPOS. */
1401
1402 static void
1403 ppc64_sysv_abi_push_vreg (struct gdbarch *gdbarch, const bfd_byte *val,
1404 struct ppc64_sysv_argpos *argpos)
1405 {
1406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1407
1408 if (argpos->regcache && argpos->vreg <= 13)
1409 argpos->regcache->cooked_write (tdep->ppc_vr0_regnum + argpos->vreg, val);
1410
1411 argpos->vreg++;
1412 }
1413
1414 /* VAL is a value of TYPE. Load it into memory and/or registers
1415 as required by the ABI, and update ARGPOS. */
1416
1417 static void
1418 ppc64_sysv_abi_push_param (struct gdbarch *gdbarch,
1419 struct type *type, const bfd_byte *val,
1420 struct ppc64_sysv_argpos *argpos)
1421 {
1422 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1423
1424 if (type->code () == TYPE_CODE_FLT
1425 || type->code () == TYPE_CODE_DECFLOAT)
1426 {
1427 /* Floating-point scalars are passed in floating-point registers. */
1428 ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
1429 ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
1430 }
1431 else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1432 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
1433 && TYPE_LENGTH (type) == 16)
1434 {
1435 /* AltiVec vectors are passed aligned, and in vector registers. */
1436 ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 16, argpos);
1437 ppc64_sysv_abi_push_vreg (gdbarch, val, argpos);
1438 }
1439 else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1440 && TYPE_LENGTH (type) >= 16)
1441 {
1442 /* Non-Altivec vectors are passed by reference. */
1443
1444 /* Copy value onto the stack ... */
1445 CORE_ADDR addr = align_up (argpos->refparam, 16);
1446 if (argpos->regcache)
1447 write_memory (addr, val, TYPE_LENGTH (type));
1448 argpos->refparam = align_up (addr + TYPE_LENGTH (type), tdep->wordsize);
1449
1450 /* ... and pass a pointer to the copy as parameter. */
1451 ppc64_sysv_abi_push_integer (gdbarch, addr, argpos);
1452 }
1453 else if ((type->code () == TYPE_CODE_INT
1454 || type->code () == TYPE_CODE_ENUM
1455 || type->code () == TYPE_CODE_BOOL
1456 || type->code () == TYPE_CODE_CHAR
1457 || type->code () == TYPE_CODE_PTR
1458 || TYPE_IS_REFERENCE (type))
1459 && TYPE_LENGTH (type) <= tdep->wordsize)
1460 {
1461 ULONGEST word = 0;
1462
1463 if (argpos->regcache)
1464 {
1465 /* Sign extend the value, then store it unsigned. */
1466 word = unpack_long (type, val);
1467
1468 /* Convert any function code addresses into descriptors. */
1469 if (tdep->elf_abi == POWERPC_ELF_V1
1470 && (type->code () == TYPE_CODE_PTR
1471 || type->code () == TYPE_CODE_REF))
1472 {
1473 struct type *target_type
1474 = check_typedef (TYPE_TARGET_TYPE (type));
1475
1476 if (target_type->code () == TYPE_CODE_FUNC
1477 || target_type->code () == TYPE_CODE_METHOD)
1478 {
1479 CORE_ADDR desc = word;
1480
1481 convert_code_addr_to_desc_addr (word, &desc);
1482 word = desc;
1483 }
1484 }
1485 }
1486
1487 ppc64_sysv_abi_push_integer (gdbarch, word, argpos);
1488 }
1489 else
1490 {
1491 ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
1492
1493 /* The ABI (version 1.9) specifies that structs containing a
1494 single floating-point value, at any level of nesting of
1495 single-member structs, are passed in floating-point registers. */
1496 if (type->code () == TYPE_CODE_STRUCT
1497 && type->num_fields () == 1)
1498 {
1499 while (type->code () == TYPE_CODE_STRUCT
1500 && type->num_fields () == 1)
1501 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1502
1503 if (type->code () == TYPE_CODE_FLT)
1504 ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
1505 }
1506
1507 /* In the ELFv2 ABI, homogeneous floating-point or vector
1508 aggregates are passed in a series of registers. */
1509 if (tdep->elf_abi == POWERPC_ELF_V2)
1510 {
1511 struct type *eltype;
1512 int i, nelt;
1513
1514 if (ppc64_elfv2_abi_homogeneous_aggregate (type, &eltype, &nelt))
1515 for (i = 0; i < nelt; i++)
1516 {
1517 const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
1518
1519 if (eltype->code () == TYPE_CODE_FLT
1520 || eltype->code () == TYPE_CODE_DECFLOAT)
1521 ppc64_sysv_abi_push_freg (gdbarch, eltype, elval, argpos);
1522 else if (eltype->code () == TYPE_CODE_ARRAY
1523 && TYPE_VECTOR (eltype)
1524 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
1525 && TYPE_LENGTH (eltype) == 16)
1526 ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos);
1527 }
1528 }
1529 }
1530 }
1531
1532 /* Pass the arguments in either registers, or in the stack. Using the
1533 ppc 64 bit SysV ABI.
1534
1535 This implements a dumbed down version of the ABI. It always writes
1536 values to memory, GPR and FPR, even when not necessary. Doing this
1537 greatly simplifies the logic. */
1538
1539 CORE_ADDR
1540 ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch,
1541 struct value *function,
1542 struct regcache *regcache, CORE_ADDR bp_addr,
1543 int nargs, struct value **args, CORE_ADDR sp,
1544 function_call_return_method return_method,
1545 CORE_ADDR struct_addr)
1546 {
1547 CORE_ADDR func_addr = find_function_addr (function, NULL);
1548 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1549 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1550 int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
1551 ULONGEST back_chain;
1552 /* See for-loop comment below. */
1553 int write_pass;
1554 /* Size of the by-reference parameter copy region, the final value is
1555 computed in the for-loop below. */
1556 LONGEST refparam_size = 0;
1557 /* Size of the general parameter region, the final value is computed
1558 in the for-loop below. */
1559 LONGEST gparam_size = 0;
1560 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
1561 calls to align_up(), align_down(), etc. because this makes it
1562 easier to reuse this code (in a copy/paste sense) in the future,
1563 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
1564 at some point makes it easier to verify that this function is
1565 correct without having to do a non-local analysis to figure out
1566 the possible values of tdep->wordsize. */
1567 gdb_assert (tdep->wordsize == 8);
1568
1569 /* This function exists to support a calling convention that
1570 requires floating-point registers. It shouldn't be used on
1571 processors that lack them. */
1572 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1573
1574 /* By this stage in the proceedings, SP has been decremented by "red
1575 zone size" + "struct return size". Fetch the stack-pointer from
1576 before this and use that as the BACK_CHAIN. */
1577 regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
1578 &back_chain);
1579
1580 /* Go through the argument list twice.
1581
1582 Pass 1: Compute the function call's stack space and register
1583 requirements.
1584
1585 Pass 2: Replay the same computation but this time also write the
1586 values out to the target. */
1587
1588 for (write_pass = 0; write_pass < 2; write_pass++)
1589 {
1590 int argno;
1591
1592 struct ppc64_sysv_argpos argpos;
1593 argpos.greg = 3;
1594 argpos.freg = 1;
1595 argpos.vreg = 2;
1596
1597 if (!write_pass)
1598 {
1599 /* During the first pass, GPARAM and REFPARAM are more like
1600 offsets (start address zero) than addresses. That way
1601 they accumulate the total stack space each region
1602 requires. */
1603 argpos.regcache = NULL;
1604 argpos.gparam = 0;
1605 argpos.refparam = 0;
1606 }
1607 else
1608 {
1609 /* Decrement the stack pointer making space for the Altivec
1610 and general on-stack parameters. Set refparam and gparam
1611 to their corresponding regions. */
1612 argpos.regcache = regcache;
1613 argpos.refparam = align_down (sp - refparam_size, 16);
1614 argpos.gparam = align_down (argpos.refparam - gparam_size, 16);
1615 /* Add in space for the TOC, link editor double word (v1 only),
1616 compiler double word (v1 only), LR save area, CR save area,
1617 and backchain. */
1618 if (tdep->elf_abi == POWERPC_ELF_V1)
1619 sp = align_down (argpos.gparam - 48, 16);
1620 else
1621 sp = align_down (argpos.gparam - 32, 16);
1622 }
1623
1624 /* If the function is returning a `struct', then there is an
1625 extra hidden parameter (which will be passed in r3)
1626 containing the address of that struct.. In that case we
1627 should advance one word and start from r4 register to copy
1628 parameters. This also consumes one on-stack parameter slot. */
1629 if (return_method == return_method_struct)
1630 ppc64_sysv_abi_push_integer (gdbarch, struct_addr, &argpos);
1631
1632 for (argno = 0; argno < nargs; argno++)
1633 {
1634 struct value *arg = args[argno];
1635 struct type *type = check_typedef (value_type (arg));
1636 const bfd_byte *val = value_contents (arg);
1637
1638 if (type->code () == TYPE_CODE_COMPLEX)
1639 {
1640 /* Complex types are passed as if two independent scalars. */
1641 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1642
1643 ppc64_sysv_abi_push_param (gdbarch, eltype, val, &argpos);
1644 ppc64_sysv_abi_push_param (gdbarch, eltype,
1645 val + TYPE_LENGTH (eltype), &argpos);
1646 }
1647 else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1648 && opencl_abi)
1649 {
1650 /* OpenCL vectors shorter than 16 bytes are passed as if
1651 a series of independent scalars; OpenCL vectors 16 bytes
1652 or longer are passed as if a series of AltiVec vectors. */
1653 struct type *eltype;
1654 int i, nelt;
1655
1656 if (TYPE_LENGTH (type) < 16)
1657 eltype = check_typedef (TYPE_TARGET_TYPE (type));
1658 else
1659 eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
1660
1661 nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
1662 for (i = 0; i < nelt; i++)
1663 {
1664 const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
1665
1666 ppc64_sysv_abi_push_param (gdbarch, eltype, elval, &argpos);
1667 }
1668 }
1669 else
1670 {
1671 /* All other types are passed as single arguments. */
1672 ppc64_sysv_abi_push_param (gdbarch, type, val, &argpos);
1673 }
1674 }
1675
1676 if (!write_pass)
1677 {
1678 /* Save the true region sizes ready for the second pass. */
1679 refparam_size = argpos.refparam;
1680 /* Make certain that the general parameter save area is at
1681 least the minimum 8 registers (or doublewords) in size. */
1682 if (argpos.greg < 8)
1683 gparam_size = 8 * tdep->wordsize;
1684 else
1685 gparam_size = argpos.gparam;
1686 }
1687 }
1688
1689 /* Update %sp. */
1690 regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
1691
1692 /* Write the backchain (it occupies WORDSIZED bytes). */
1693 write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
1694
1695 /* Point the inferior function call's return address at the dummy's
1696 breakpoint. */
1697 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1698
1699 /* In the ELFv1 ABI, use the func_addr to find the descriptor, and use
1700 that to find the TOC. If we're calling via a function pointer,
1701 the pointer itself identifies the descriptor. */
1702 if (tdep->elf_abi == POWERPC_ELF_V1)
1703 {
1704 struct type *ftype = check_typedef (value_type (function));
1705 CORE_ADDR desc_addr = value_as_address (function);
1706
1707 if (ftype->code () == TYPE_CODE_PTR
1708 || convert_code_addr_to_desc_addr (func_addr, &desc_addr))
1709 {
1710 /* The TOC is the second double word in the descriptor. */
1711 CORE_ADDR toc =
1712 read_memory_unsigned_integer (desc_addr + tdep->wordsize,
1713 tdep->wordsize, byte_order);
1714
1715 regcache_cooked_write_unsigned (regcache,
1716 tdep->ppc_gp0_regnum + 2, toc);
1717 }
1718 }
1719
1720 /* In the ELFv2 ABI, we need to pass the target address in r12 since
1721 we may be calling a global entry point. */
1722 if (tdep->elf_abi == POWERPC_ELF_V2)
1723 regcache_cooked_write_unsigned (regcache,
1724 tdep->ppc_gp0_regnum + 12, func_addr);
1725
1726 return sp;
1727 }
1728
1729 /* Subroutine of ppc64_sysv_abi_return_value that handles "base" types:
1730 integer, floating-point, and AltiVec vector types.
1731
1732 This routine also handles components of aggregate return types;
1733 INDEX describes which part of the aggregate is to be handled.
1734
1735 Returns true if VALTYPE is some such base type that could be handled,
1736 false otherwise. */
1737 static int
1738 ppc64_sysv_abi_return_value_base (struct gdbarch *gdbarch, struct type *valtype,
1739 struct regcache *regcache, gdb_byte *readbuf,
1740 const gdb_byte *writebuf, int index)
1741 {
1742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1743
1744 /* Integers live in GPRs starting at r3. */
1745 if ((valtype->code () == TYPE_CODE_INT
1746 || valtype->code () == TYPE_CODE_ENUM
1747 || valtype->code () == TYPE_CODE_CHAR
1748 || valtype->code () == TYPE_CODE_BOOL)
1749 && TYPE_LENGTH (valtype) <= 8)
1750 {
1751 int regnum = tdep->ppc_gp0_regnum + 3 + index;
1752
1753 if (writebuf != NULL)
1754 {
1755 /* Be careful to sign extend the value. */
1756 regcache_cooked_write_unsigned (regcache, regnum,
1757 unpack_long (valtype, writebuf));
1758 }
1759 if (readbuf != NULL)
1760 {
1761 /* Extract the integer from GPR. Since this is truncating the
1762 value, there isn't a sign extension problem. */
1763 ULONGEST regval;
1764
1765 regcache_cooked_read_unsigned (regcache, regnum, &regval);
1766 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype),
1767 gdbarch_byte_order (gdbarch), regval);
1768 }
1769 return 1;
1770 }
1771
1772 /* Floats and doubles go in f1 .. f13. 32-bit floats are converted
1773 to double first. */
1774 if (TYPE_LENGTH (valtype) <= 8
1775 && valtype->code () == TYPE_CODE_FLT)
1776 {
1777 int regnum = tdep->ppc_fp0_regnum + 1 + index;
1778 struct type *regtype = register_type (gdbarch, regnum);
1779 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
1780
1781 if (writebuf != NULL)
1782 {
1783 target_float_convert (writebuf, valtype, regval, regtype);
1784 regcache->cooked_write (regnum, regval);
1785 }
1786 if (readbuf != NULL)
1787 {
1788 regcache->cooked_read (regnum, regval);
1789 target_float_convert (regval, regtype, readbuf, valtype);
1790 }
1791 return 1;
1792 }
1793
1794 /* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
1795 placed in the least significant word. */
1796 if (TYPE_LENGTH (valtype) <= 8
1797 && valtype->code () == TYPE_CODE_DECFLOAT)
1798 {
1799 int regnum = tdep->ppc_fp0_regnum + 1 + index;
1800 int offset = 0;
1801
1802 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1803 offset = 8 - TYPE_LENGTH (valtype);
1804
1805 if (writebuf != NULL)
1806 regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
1807 writebuf);
1808 if (readbuf != NULL)
1809 regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
1810 readbuf);
1811 return 1;
1812 }
1813
1814 /* IBM long double stored in two consecutive FPRs. */
1815 if (TYPE_LENGTH (valtype) == 16
1816 && valtype->code () == TYPE_CODE_FLT
1817 && (gdbarch_long_double_format (gdbarch)
1818 == floatformats_ibm_long_double))
1819 {
1820 int regnum = tdep->ppc_fp0_regnum + 1 + 2 * index;
1821
1822 if (writebuf != NULL)
1823 {
1824 regcache->cooked_write (regnum, writebuf);
1825 regcache->cooked_write (regnum + 1, writebuf + 8);
1826 }
1827 if (readbuf != NULL)
1828 {
1829 regcache->cooked_read (regnum, readbuf);
1830 regcache->cooked_read (regnum + 1, readbuf + 8);
1831 }
1832 return 1;
1833 }
1834
1835 /* 128-bit decimal floating-point values are stored in an even/odd
1836 pair of FPRs, with the even FPR holding the most significant half. */
1837 if (TYPE_LENGTH (valtype) == 16
1838 && valtype->code () == TYPE_CODE_DECFLOAT)
1839 {
1840 int regnum = tdep->ppc_fp0_regnum + 2 + 2 * index;
1841 int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
1842 int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
1843
1844 if (writebuf != NULL)
1845 {
1846 regcache->cooked_write (regnum, writebuf + hipart);
1847 regcache->cooked_write (regnum + 1, writebuf + lopart);
1848 }
1849 if (readbuf != NULL)
1850 {
1851 regcache->cooked_read (regnum, readbuf + hipart);
1852 regcache->cooked_read (regnum + 1, readbuf + lopart);
1853 }
1854 return 1;
1855 }
1856
1857 /* AltiVec vectors are returned in VRs starting at v2. */
1858 if (TYPE_LENGTH (valtype) == 16
1859 && valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1860 && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
1861 {
1862 int regnum = tdep->ppc_vr0_regnum + 2 + index;
1863
1864 if (writebuf != NULL)
1865 regcache->cooked_write (regnum, writebuf);
1866 if (readbuf != NULL)
1867 regcache->cooked_read (regnum, readbuf);
1868 return 1;
1869 }
1870
1871 /* Short vectors are returned in GPRs starting at r3. */
1872 if (TYPE_LENGTH (valtype) <= 8
1873 && valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype))
1874 {
1875 int regnum = tdep->ppc_gp0_regnum + 3 + index;
1876 int offset = 0;
1877
1878 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1879 offset = 8 - TYPE_LENGTH (valtype);
1880
1881 if (writebuf != NULL)
1882 regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
1883 writebuf);
1884 if (readbuf != NULL)
1885 regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
1886 readbuf);
1887 return 1;
1888 }
1889
1890 return 0;
1891 }
1892
1893 /* The 64 bit ABI return value convention.
1894
1895 Return non-zero if the return-value is stored in a register, return
1896 0 if the return-value is instead stored on the stack (a.k.a.,
1897 struct return convention).
1898
1899 For a return-value stored in a register: when WRITEBUF is non-NULL,
1900 copy the buffer to the corresponding register return-value location
1901 location; when READBUF is non-NULL, fill the buffer from the
1902 corresponding register return-value location. */
1903 enum return_value_convention
1904 ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
1905 struct type *valtype, struct regcache *regcache,
1906 gdb_byte *readbuf, const gdb_byte *writebuf)
1907 {
1908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1909 struct type *func_type = function ? value_type (function) : NULL;
1910 int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
1911 struct type *eltype;
1912 int nelt, ok;
1913
1914 /* This function exists to support a calling convention that
1915 requires floating-point registers. It shouldn't be used on
1916 processors that lack them. */
1917 gdb_assert (ppc_floating_point_unit_p (gdbarch));
1918
1919 /* Complex types are returned as if two independent scalars. */
1920 if (valtype->code () == TYPE_CODE_COMPLEX)
1921 {
1922 eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
1923
1924 for (int i = 0; i < 2; i++)
1925 {
1926 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
1927 readbuf, writebuf, i);
1928 gdb_assert (ok);
1929
1930 if (readbuf)
1931 readbuf += TYPE_LENGTH (eltype);
1932 if (writebuf)
1933 writebuf += TYPE_LENGTH (eltype);
1934 }
1935 return RETURN_VALUE_REGISTER_CONVENTION;
1936 }
1937
1938 /* OpenCL vectors shorter than 16 bytes are returned as if
1939 a series of independent scalars; OpenCL vectors 16 bytes
1940 or longer are returned as if a series of AltiVec vectors. */
1941 if (valtype->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1942 && opencl_abi)
1943 {
1944 if (TYPE_LENGTH (valtype) < 16)
1945 eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
1946 else
1947 eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
1948
1949 nelt = TYPE_LENGTH (valtype) / TYPE_LENGTH (eltype);
1950 for (int i = 0; i < nelt; i++)
1951 {
1952 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
1953 readbuf, writebuf, i);
1954 gdb_assert (ok);
1955
1956 if (readbuf)
1957 readbuf += TYPE_LENGTH (eltype);
1958 if (writebuf)
1959 writebuf += TYPE_LENGTH (eltype);
1960 }
1961 return RETURN_VALUE_REGISTER_CONVENTION;
1962 }
1963
1964 /* All pointers live in r3. */
1965 if (valtype->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (valtype))
1966 {
1967 int regnum = tdep->ppc_gp0_regnum + 3;
1968
1969 if (writebuf != NULL)
1970 regcache->cooked_write (regnum, writebuf);
1971 if (readbuf != NULL)
1972 regcache->cooked_read (regnum, readbuf);
1973 return RETURN_VALUE_REGISTER_CONVENTION;
1974 }
1975
1976 /* Small character arrays are returned, right justified, in r3. */
1977 if (valtype->code () == TYPE_CODE_ARRAY
1978 && !TYPE_VECTOR (valtype)
1979 && TYPE_LENGTH (valtype) <= 8
1980 && TYPE_TARGET_TYPE (valtype)->code () == TYPE_CODE_INT
1981 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
1982 {
1983 int regnum = tdep->ppc_gp0_regnum + 3;
1984 int offset = (register_size (gdbarch, regnum) - TYPE_LENGTH (valtype));
1985
1986 if (writebuf != NULL)
1987 regcache->cooked_write_part (regnum, offset, TYPE_LENGTH (valtype),
1988 writebuf);
1989 if (readbuf != NULL)
1990 regcache->cooked_read_part (regnum, offset, TYPE_LENGTH (valtype),
1991 readbuf);
1992 return RETURN_VALUE_REGISTER_CONVENTION;
1993 }
1994
1995 /* In the ELFv2 ABI, homogeneous floating-point or vector
1996 aggregates are returned in registers. */
1997 if (tdep->elf_abi == POWERPC_ELF_V2
1998 && ppc64_elfv2_abi_homogeneous_aggregate (valtype, &eltype, &nelt)
1999 && (eltype->code () == TYPE_CODE_FLT
2000 || eltype->code () == TYPE_CODE_DECFLOAT
2001 || (eltype->code () == TYPE_CODE_ARRAY
2002 && TYPE_VECTOR (eltype)
2003 && tdep->vector_abi == POWERPC_VEC_ALTIVEC
2004 && TYPE_LENGTH (eltype) == 16)))
2005 {
2006 for (int i = 0; i < nelt; i++)
2007 {
2008 ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
2009 readbuf, writebuf, i);
2010 gdb_assert (ok);
2011
2012 if (readbuf)
2013 readbuf += TYPE_LENGTH (eltype);
2014 if (writebuf)
2015 writebuf += TYPE_LENGTH (eltype);
2016 }
2017
2018 return RETURN_VALUE_REGISTER_CONVENTION;
2019 }
2020
2021 /* In the ELFv2 ABI, aggregate types of up to 16 bytes are
2022 returned in registers r3:r4. */
2023 if (tdep->elf_abi == POWERPC_ELF_V2
2024 && TYPE_LENGTH (valtype) <= 16
2025 && (valtype->code () == TYPE_CODE_STRUCT
2026 || valtype->code () == TYPE_CODE_UNION
2027 || (valtype->code () == TYPE_CODE_ARRAY
2028 && !TYPE_VECTOR (valtype))))
2029 {
2030 int n_regs = ((TYPE_LENGTH (valtype) + tdep->wordsize - 1)
2031 / tdep->wordsize);
2032
2033 for (int i = 0; i < n_regs; i++)
2034 {
2035 gdb_byte regval[PPC_MAX_REGISTER_SIZE];
2036 int regnum = tdep->ppc_gp0_regnum + 3 + i;
2037 int offset = i * tdep->wordsize;
2038 int len = TYPE_LENGTH (valtype) - offset;
2039
2040 if (len > tdep->wordsize)
2041 len = tdep->wordsize;
2042
2043 if (writebuf != NULL)
2044 {
2045 memset (regval, 0, sizeof regval);
2046 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
2047 && offset == 0)
2048 memcpy (regval + tdep->wordsize - len, writebuf, len);
2049 else
2050 memcpy (regval, writebuf + offset, len);
2051 regcache->cooked_write (regnum, regval);
2052 }
2053 if (readbuf != NULL)
2054 {
2055 regcache->cooked_read (regnum, regval);
2056 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
2057 && offset == 0)
2058 memcpy (readbuf, regval + tdep->wordsize - len, len);
2059 else
2060 memcpy (readbuf + offset, regval, len);
2061 }
2062 }
2063 return RETURN_VALUE_REGISTER_CONVENTION;
2064 }
2065
2066 /* Handle plain base types. */
2067 if (ppc64_sysv_abi_return_value_base (gdbarch, valtype, regcache,
2068 readbuf, writebuf, 0))
2069 return RETURN_VALUE_REGISTER_CONVENTION;
2070
2071 return RETURN_VALUE_STRUCT_CONVENTION;
2072 }
2073