]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-lynx178-tdep.c
Fix regression on aarch64-linux gdbserver
[thirdparty/binutils-gdb.git] / gdb / rs6000-lynx178-tdep.c
1 /* Copyright (C) 2012-2019 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "osabi.h"
20 #include "regcache.h"
21 #include "gdbcore.h"
22 #include "gdbtypes.h"
23 #include "infcall.h"
24 #include "ppc-tdep.h"
25 #include "target-float.h"
26 #include "value.h"
27 #include "xcoffread.h"
28
29 /* Implement the "push_dummy_call" gdbarch method. */
30
31 static CORE_ADDR
32 rs6000_lynx178_push_dummy_call (struct gdbarch *gdbarch,
33 struct value *function,
34 struct regcache *regcache, CORE_ADDR bp_addr,
35 int nargs, struct value **args, CORE_ADDR sp,
36 function_call_return_method return_method,
37 CORE_ADDR struct_addr)
38 {
39 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
40 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
41 int ii;
42 int len = 0;
43 int argno; /* current argument number */
44 int argbytes; /* current argument byte */
45 gdb_byte tmp_buffer[50];
46 int f_argno = 0; /* current floating point argno */
47 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
48
49 struct value *arg = 0;
50 struct type *type;
51
52 ULONGEST saved_sp;
53
54 /* The calling convention this function implements assumes the
55 processor has floating-point registers. We shouldn't be using it
56 on PPC variants that lack them. */
57 gdb_assert (ppc_floating_point_unit_p (gdbarch));
58
59 /* The first eight words of ther arguments are passed in registers.
60 Copy them appropriately. */
61 ii = 0;
62
63 /* If the function is returning a `struct', then the first word
64 (which will be passed in r3) is used for struct return address.
65 In that case we should advance one word and start from r4
66 register to copy parameters. */
67 if (return_method == return_method_struct)
68 {
69 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
70 struct_addr);
71 ii++;
72 }
73
74 /* Effectively indirect call... gcc does...
75
76 return_val example( float, int);
77
78 eabi:
79 float in fp0, int in r3
80 offset of stack on overflow 8/16
81 for varargs, must go by type.
82 power open:
83 float in r3&r4, int in r5
84 offset of stack on overflow different
85 both:
86 return in r3 or f0. If no float, must study how gcc emulates floats;
87 pay attention to arg promotion.
88 User may have to cast\args to handle promotion correctly
89 since gdb won't know if prototype supplied or not. */
90
91 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
92 {
93 int reg_size = register_size (gdbarch, ii + 3);
94
95 arg = args[argno];
96 type = check_typedef (value_type (arg));
97 len = TYPE_LENGTH (type);
98
99 if (TYPE_CODE (type) == TYPE_CODE_FLT)
100 {
101
102 /* Floating point arguments are passed in fpr's, as well as gpr's.
103 There are 13 fpr's reserved for passing parameters. At this point
104 there is no way we would run out of them.
105
106 Always store the floating point value using the register's
107 floating-point format. */
108 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
109 gdb_byte reg_val[PPC_MAX_REGISTER_SIZE];
110 struct type *reg_type = register_type (gdbarch, fp_regnum);
111
112 gdb_assert (len <= 8);
113
114 target_float_convert (value_contents (arg), type, reg_val, reg_type);
115 regcache->cooked_write (fp_regnum, reg_val);
116 ++f_argno;
117 }
118
119 if (len > reg_size)
120 {
121
122 /* Argument takes more than one register. */
123 while (argbytes < len)
124 {
125 gdb_byte word[PPC_MAX_REGISTER_SIZE];
126 memset (word, 0, reg_size);
127 memcpy (word,
128 ((char *) value_contents (arg)) + argbytes,
129 (len - argbytes) > reg_size
130 ? reg_size : len - argbytes);
131 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 + ii, word);
132 ++ii, argbytes += reg_size;
133
134 if (ii >= 8)
135 goto ran_out_of_registers_for_arguments;
136 }
137 argbytes = 0;
138 --ii;
139 }
140 else
141 {
142 /* Argument can fit in one register. No problem. */
143 gdb_byte word[PPC_MAX_REGISTER_SIZE];
144
145 memset (word, 0, reg_size);
146 memcpy (word, value_contents (arg), len);
147 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 +ii, word);
148 }
149 ++argno;
150 }
151
152 ran_out_of_registers_for_arguments:
153
154 regcache_cooked_read_unsigned (regcache,
155 gdbarch_sp_regnum (gdbarch),
156 &saved_sp);
157
158 /* Location for 8 parameters are always reserved. */
159 sp -= wordsize * 8;
160
161 /* Another six words for back chain, TOC register, link register, etc. */
162 sp -= wordsize * 6;
163
164 /* Stack pointer must be quadword aligned. */
165 sp = align_down (sp, 16);
166
167 /* If there are more arguments, allocate space for them in
168 the stack, then push them starting from the ninth one. */
169
170 if ((argno < nargs) || argbytes)
171 {
172 int space = 0, jj;
173
174 if (argbytes)
175 {
176 space += align_up (len - argbytes, 4);
177 jj = argno + 1;
178 }
179 else
180 jj = argno;
181
182 for (; jj < nargs; ++jj)
183 {
184 struct value *val = args[jj];
185
186 space += align_up (TYPE_LENGTH (value_type (val)), 4);
187 }
188
189 /* Add location required for the rest of the parameters. */
190 space = align_up (space, 16);
191 sp -= space;
192
193 /* This is another instance we need to be concerned about
194 securing our stack space. If we write anything underneath %sp
195 (r1), we might conflict with the kernel who thinks he is free
196 to use this area. So, update %sp first before doing anything
197 else. */
198
199 regcache_raw_write_signed (regcache,
200 gdbarch_sp_regnum (gdbarch), sp);
201
202 /* If the last argument copied into the registers didn't fit there
203 completely, push the rest of it into stack. */
204
205 if (argbytes)
206 {
207 write_memory (sp + 24 + (ii * 4),
208 value_contents (arg) + argbytes,
209 len - argbytes);
210 ++argno;
211 ii += align_up (len - argbytes, 4) / 4;
212 }
213
214 /* Push the rest of the arguments into stack. */
215 for (; argno < nargs; ++argno)
216 {
217
218 arg = args[argno];
219 type = check_typedef (value_type (arg));
220 len = TYPE_LENGTH (type);
221
222
223 /* Float types should be passed in fpr's, as well as in the
224 stack. */
225 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
226 {
227
228 gdb_assert (len <= 8);
229
230 regcache->cooked_write (tdep->ppc_fp0_regnum + 1 + f_argno,
231 value_contents (arg));
232 ++f_argno;
233 }
234
235 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
236 ii += align_up (len, 4) / 4;
237 }
238 }
239
240 /* Set the stack pointer. According to the ABI, the SP is meant to
241 be set _before_ the corresponding stack space is used. On AIX,
242 this even applies when the target has been completely stopped!
243 Not doing this can lead to conflicts with the kernel which thinks
244 that it still has control over this not-yet-allocated stack
245 region. */
246 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
247
248 /* Set back chain properly. */
249 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
250 write_memory (sp, tmp_buffer, wordsize);
251
252 /* Point the inferior function call's return address at the dummy's
253 breakpoint. */
254 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
255
256 target_store_registers (regcache, -1);
257 return sp;
258 }
259
260 /* Implement the "return_value" gdbarch method. */
261
262 static enum return_value_convention
263 rs6000_lynx178_return_value (struct gdbarch *gdbarch, struct value *function,
264 struct type *valtype, struct regcache *regcache,
265 gdb_byte *readbuf, const gdb_byte *writebuf)
266 {
267 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
268 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
269
270 /* The calling convention this function implements assumes the
271 processor has floating-point registers. We shouldn't be using it
272 on PowerPC variants that lack them. */
273 gdb_assert (ppc_floating_point_unit_p (gdbarch));
274
275 /* AltiVec extension: Functions that declare a vector data type as a
276 return value place that return value in VR2. */
277 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
278 && TYPE_LENGTH (valtype) == 16)
279 {
280 if (readbuf)
281 regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
282 if (writebuf)
283 regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
284
285 return RETURN_VALUE_REGISTER_CONVENTION;
286 }
287
288 /* If the called subprogram returns an aggregate, there exists an
289 implicit first argument, whose value is the address of a caller-
290 allocated buffer into which the callee is assumed to store its
291 return value. All explicit parameters are appropriately
292 relabeled. */
293 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
294 || TYPE_CODE (valtype) == TYPE_CODE_UNION
295 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
296 return RETURN_VALUE_STRUCT_CONVENTION;
297
298 /* Scalar floating-point values are returned in FPR1 for float or
299 double, and in FPR1:FPR2 for quadword precision. Fortran
300 complex*8 and complex*16 are returned in FPR1:FPR2, and
301 complex*32 is returned in FPR1:FPR4. */
302 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
303 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
304 {
305 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
306 gdb_byte regval[8];
307
308 /* FIXME: kettenis/2007-01-01: Add support for quadword
309 precision and complex. */
310
311 if (readbuf)
312 {
313 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
314 target_float_convert (regval, regtype, readbuf, valtype);
315 }
316 if (writebuf)
317 {
318 target_float_convert (writebuf, valtype, regval, regtype);
319 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
320 }
321
322 return RETURN_VALUE_REGISTER_CONVENTION;
323 }
324
325 /* Values of the types int, long, short, pointer, and char (length
326 is less than or equal to four bytes), as well as bit values of
327 lengths less than or equal to 32 bits, must be returned right
328 justified in GPR3 with signed values sign extended and unsigned
329 values zero extended, as necessary. */
330 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
331 {
332 if (readbuf)
333 {
334 ULONGEST regval;
335
336 /* For reading we don't have to worry about sign extension. */
337 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
338 &regval);
339 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
340 regval);
341 }
342 if (writebuf)
343 {
344 /* For writing, use unpack_long since that should handle any
345 required sign extension. */
346 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
347 unpack_long (valtype, writebuf));
348 }
349
350 return RETURN_VALUE_REGISTER_CONVENTION;
351 }
352
353 /* Eight-byte non-floating-point scalar values must be returned in
354 GPR3:GPR4. */
355
356 if (TYPE_LENGTH (valtype) == 8)
357 {
358 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
359 gdb_assert (tdep->wordsize == 4);
360
361 if (readbuf)
362 {
363 gdb_byte regval[8];
364
365 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, regval);
366 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, regval + 4);
367 memcpy (readbuf, regval, 8);
368 }
369 if (writebuf)
370 {
371 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
372 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
373 }
374
375 return RETURN_VALUE_REGISTER_CONVENTION;
376 }
377
378 return RETURN_VALUE_STRUCT_CONVENTION;
379 }
380
381 /* PowerPC Lynx178 OSABI sniffer. */
382
383 static enum gdb_osabi
384 rs6000_lynx178_osabi_sniffer (bfd *abfd)
385 {
386 if (bfd_get_flavour (abfd) != bfd_target_xcoff_flavour)
387 return GDB_OSABI_UNKNOWN;
388
389 /* The only noticeable difference between Lynx178 XCOFF files and
390 AIX XCOFF files comes from the fact that there are no shared
391 libraries on Lynx178. So if the number of import files is
392 different from zero, it cannot be a Lynx178 binary. */
393 if (xcoff_get_n_import_files (abfd) != 0)
394 return GDB_OSABI_UNKNOWN;
395
396 return GDB_OSABI_LYNXOS178;
397 }
398
399 /* Callback for powerpc-lynx178 initialization. */
400
401 static void
402 rs6000_lynx178_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
403 {
404 set_gdbarch_push_dummy_call (gdbarch, rs6000_lynx178_push_dummy_call);
405 set_gdbarch_return_value (gdbarch, rs6000_lynx178_return_value);
406 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
407 }
408
409 void
410 _initialize_rs6000_lynx178_tdep (void)
411 {
412 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
413 bfd_target_xcoff_flavour,
414 rs6000_lynx178_osabi_sniffer);
415 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_LYNXOS178,
416 rs6000_lynx178_init_osabi);
417 }
418