]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sh-tdep.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2/frame.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "value.h"
33 #include "dis-asm.h"
34 #include "inferior.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "target-float.h"
38 #include "osabi.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "objfiles.h"
42
43 #include "sh-tdep.h"
44
45 #include "elf-bfd.h"
46 #include "solib-svr4.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 #include "dwarf2.h"
51 /* registers numbers shared with the simulator. */
52 #include "gdb/sim-sh.h"
53 #include <algorithm>
54
55 /* List of "set sh ..." and "show sh ..." commands. */
56 static struct cmd_list_element *setshcmdlist = NULL;
57 static struct cmd_list_element *showshcmdlist = NULL;
58
59 static const char sh_cc_gcc[] = "gcc";
60 static const char sh_cc_renesas[] = "renesas";
61 static const char *const sh_cc_enum[] = {
62 sh_cc_gcc,
63 sh_cc_renesas,
64 NULL
65 };
66
67 static const char *sh_active_calling_convention = sh_cc_gcc;
68
69 #define SH_NUM_REGS 67
70
71 struct sh_frame_cache
72 {
73 /* Base address. */
74 CORE_ADDR base;
75 LONGEST sp_offset;
76 CORE_ADDR pc;
77
78 /* Flag showing that a frame has been created in the prologue code. */
79 int uses_fp;
80
81 /* Saved registers. */
82 CORE_ADDR saved_regs[SH_NUM_REGS];
83 CORE_ADDR saved_sp;
84 };
85
86 static int
87 sh_is_renesas_calling_convention (struct type *func_type)
88 {
89 int val = 0;
90
91 if (func_type)
92 {
93 func_type = check_typedef (func_type);
94
95 if (func_type->code () == TYPE_CODE_PTR)
96 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
97
98 if (func_type->code () == TYPE_CODE_FUNC
99 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
100 val = 1;
101 }
102
103 if (sh_active_calling_convention == sh_cc_renesas)
104 val = 1;
105
106 return val;
107 }
108
109 static const char *
110 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
111 {
112 static const char *register_names[] = {
113 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
114 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
115 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
116 "", "",
117 "", "", "", "", "", "", "", "",
118 "", "", "", "", "", "", "", "",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
122 "", "", "", "", "", "", "", "",
123 };
124 if (reg_nr < 0)
125 return NULL;
126 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
127 return NULL;
128 return register_names[reg_nr];
129 }
130
131 static const char *
132 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
133 {
134 static const char *register_names[] = {
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
138 "", "",
139 "", "", "", "", "", "", "", "",
140 "", "", "", "", "", "", "", "",
141 "ssr", "spc",
142 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
143 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
144 "", "", "", "", "", "", "", "",
145 };
146 if (reg_nr < 0)
147 return NULL;
148 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
149 return NULL;
150 return register_names[reg_nr];
151 }
152
153 static const char *
154 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
155 {
156 static const char *register_names[] = {
157 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
159 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
160 "fpul", "fpscr",
161 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
162 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
163 "ssr", "spc",
164 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
165 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
166 "", "", "", "", "", "", "", "",
167 };
168 if (reg_nr < 0)
169 return NULL;
170 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
171 return NULL;
172 return register_names[reg_nr];
173 }
174
175 static const char *
176 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
177 {
178 static const char *register_names[] = {
179 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
180 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
181 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
182 "fpul", "fpscr",
183 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
184 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
185 "", "",
186 "", "", "", "", "", "", "", "",
187 "", "", "", "", "", "", "", "",
188 "", "", "", "", "", "", "", "",
189 };
190 if (reg_nr < 0)
191 return NULL;
192 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
193 return NULL;
194 return register_names[reg_nr];
195 }
196
197 static const char *
198 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
199 {
200 static const char *register_names[] = {
201 /* general registers 0-15 */
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
204 /* 16 - 22 */
205 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
206 /* 23, 24 */
207 "fpul", "fpscr",
208 /* floating point registers 25 - 40 */
209 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
210 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
211 /* 41, 42 */
212 "", "",
213 /* 43 - 62. Banked registers. The bank number used is determined by
214 the bank register (63). */
215 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
216 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
217 "machb", "ivnb", "prb", "gbrb", "maclb",
218 /* 63: register bank number, not a real register but used to
219 communicate the register bank currently get/set. This register
220 is hidden to the user, who manipulates it using the pseudo
221 register called "bank" (67). See below. */
222 "",
223 /* 64 - 66 */
224 "ibcr", "ibnr", "tbr",
225 /* 67: register bank number, the user visible pseudo register. */
226 "bank",
227 /* double precision (pseudo) 68 - 75 */
228 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
229 };
230 if (reg_nr < 0)
231 return NULL;
232 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
233 return NULL;
234 return register_names[reg_nr];
235 }
236
237 static const char *
238 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
239 {
240 static const char *register_names[] = {
241 /* general registers 0-15 */
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
244 /* 16 - 22 */
245 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
246 /* 23, 24 */
247 "", "",
248 /* floating point registers 25 - 40 */
249 "", "", "", "", "", "", "", "",
250 "", "", "", "", "", "", "", "",
251 /* 41, 42 */
252 "", "",
253 /* 43 - 62. Banked registers. The bank number used is determined by
254 the bank register (63). */
255 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
256 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
257 "machb", "ivnb", "prb", "gbrb", "maclb",
258 /* 63: register bank number, not a real register but used to
259 communicate the register bank currently get/set. This register
260 is hidden to the user, who manipulates it using the pseudo
261 register called "bank" (67). See below. */
262 "",
263 /* 64 - 66 */
264 "ibcr", "ibnr", "tbr",
265 /* 67: register bank number, the user visible pseudo register. */
266 "bank",
267 /* double precision (pseudo) 68 - 75 */
268 "", "", "", "", "", "", "", "",
269 };
270 if (reg_nr < 0)
271 return NULL;
272 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
273 return NULL;
274 return register_names[reg_nr];
275 }
276
277 static const char *
278 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
279 {
280 static const char *register_names[] = {
281 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
282 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
283 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
284 "", "dsr",
285 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
286 "y0", "y1", "", "", "", "", "", "mod",
287 "", "",
288 "rs", "re", "", "", "", "", "", "",
289 "", "", "", "", "", "", "", "",
290 "", "", "", "", "", "", "", "",
291 };
292 if (reg_nr < 0)
293 return NULL;
294 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
295 return NULL;
296 return register_names[reg_nr];
297 }
298
299 static const char *
300 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
301 {
302 static const char *register_names[] = {
303 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
304 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
305 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
306 "", "dsr",
307 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
308 "y0", "y1", "", "", "", "", "", "mod",
309 "ssr", "spc",
310 "rs", "re", "", "", "", "", "", "",
311 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
312 "", "", "", "", "", "", "", "",
313 "", "", "", "", "", "", "", "",
314 };
315 if (reg_nr < 0)
316 return NULL;
317 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
318 return NULL;
319 return register_names[reg_nr];
320 }
321
322 static const char *
323 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
324 {
325 static const char *register_names[] = {
326 /* general registers 0-15 */
327 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
328 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
329 /* 16 - 22 */
330 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
331 /* 23, 24 */
332 "fpul", "fpscr",
333 /* floating point registers 25 - 40 */
334 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
335 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
336 /* 41, 42 */
337 "ssr", "spc",
338 /* bank 0 43 - 50 */
339 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
340 /* bank 1 51 - 58 */
341 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
342 /* 59 - 66 */
343 "", "", "", "", "", "", "", "",
344 /* pseudo bank register. */
345 "",
346 /* double precision (pseudo) 68 - 75 */
347 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
348 /* vectors (pseudo) 76 - 79 */
349 "fv0", "fv4", "fv8", "fv12",
350 /* FIXME: missing XF */
351 /* FIXME: missing XD */
352 };
353 if (reg_nr < 0)
354 return NULL;
355 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
356 return NULL;
357 return register_names[reg_nr];
358 }
359
360 static const char *
361 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
362 {
363 static const char *register_names[] = {
364 /* general registers 0-15 */
365 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
366 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
367 /* 16 - 22 */
368 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
369 /* 23, 24 */
370 "", "",
371 /* floating point registers 25 - 40 -- not for nofpu target */
372 "", "", "", "", "", "", "", "",
373 "", "", "", "", "", "", "", "",
374 /* 41, 42 */
375 "ssr", "spc",
376 /* bank 0 43 - 50 */
377 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
378 /* bank 1 51 - 58 */
379 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
380 /* 59 - 66 */
381 "", "", "", "", "", "", "", "",
382 /* pseudo bank register. */
383 "",
384 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
385 "", "", "", "", "", "", "", "",
386 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
387 "", "", "", "",
388 };
389 if (reg_nr < 0)
390 return NULL;
391 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
392 return NULL;
393 return register_names[reg_nr];
394 }
395
396 static const char *
397 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
398 {
399 static const char *register_names[] = {
400 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
401 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
402 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
403 "", "dsr",
404 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
405 "y0", "y1", "", "", "", "", "", "mod",
406 "ssr", "spc",
407 "rs", "re", "", "", "", "", "", "",
408 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
409 "", "", "", "", "", "", "", "",
410 "", "", "", "", "", "", "", "",
411 };
412 if (reg_nr < 0)
413 return NULL;
414 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
415 return NULL;
416 return register_names[reg_nr];
417 }
418
419 /* Implement the breakpoint_kind_from_pc gdbarch method. */
420
421 static int
422 sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
423 {
424 return 2;
425 }
426
427 /* Implement the sw_breakpoint_from_kind gdbarch method. */
428
429 static const gdb_byte *
430 sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
431 {
432 *size = kind;
433
434 /* For remote stub targets, trapa #20 is used. */
435 if (strcmp (target_shortname, "remote") == 0)
436 {
437 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
438 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
439
440 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
441 return big_remote_breakpoint;
442 else
443 return little_remote_breakpoint;
444 }
445 else
446 {
447 /* 0xc3c3 is trapa #c3, and it works in big and little endian
448 modes. */
449 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
450
451 return breakpoint;
452 }
453 }
454
455 /* Prologue looks like
456 mov.l r14,@-r15
457 sts.l pr,@-r15
458 mov.l <regs>,@-r15
459 sub <room_for_loca_vars>,r15
460 mov r15,r14
461
462 Actually it can be more complicated than this but that's it, basically. */
463
464 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
465 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
466
467 /* JSR @Rm 0100mmmm00001011 */
468 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
469
470 /* STS.L PR,@-r15 0100111100100010
471 r15-4-->r15, PR-->(r15) */
472 #define IS_STS(x) ((x) == 0x4f22)
473
474 /* STS.L MACL,@-r15 0100111100010010
475 r15-4-->r15, MACL-->(r15) */
476 #define IS_MACL_STS(x) ((x) == 0x4f12)
477
478 /* MOV.L Rm,@-r15 00101111mmmm0110
479 r15-4-->r15, Rm-->(R15) */
480 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
481
482 /* MOV r15,r14 0110111011110011
483 r15-->r14 */
484 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
485
486 /* ADD #imm,r15 01111111iiiiiiii
487 r15+imm-->r15 */
488 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
489
490 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
491 #define IS_SHLL_R3(x) ((x) == 0x4300)
492
493 /* ADD r3,r15 0011111100111100
494 r15+r3-->r15 */
495 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
496
497 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
498 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
499 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
500 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
501 make this entirely clear. */
502 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
503 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
504
505 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
506 #define IS_MOV_ARG_TO_REG(x) \
507 (((x) & 0xf00f) == 0x6003 && \
508 ((x) & 0x00f0) >= 0x0040 && \
509 ((x) & 0x00f0) <= 0x0070)
510 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
511 #define IS_MOV_ARG_TO_IND_R14(x) \
512 (((x) & 0xff0f) == 0x2e02 && \
513 ((x) & 0x00f0) >= 0x0040 && \
514 ((x) & 0x00f0) <= 0x0070)
515 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
516 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
517 (((x) & 0xff00) == 0x1e00 && \
518 ((x) & 0x00f0) >= 0x0040 && \
519 ((x) & 0x00f0) <= 0x0070)
520
521 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
522 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
523 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
524 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
525 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
526 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
527 /* SUB Rn,R15 00111111nnnn1000 */
528 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
529
530 #define FPSCR_SZ (1 << 20)
531
532 /* The following instructions are used for epilogue testing. */
533 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
534 #define IS_RTS(x) ((x) == 0x000b)
535 #define IS_LDS(x) ((x) == 0x4f26)
536 #define IS_MACL_LDS(x) ((x) == 0x4f16)
537 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
538 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
539 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
540
541 static CORE_ADDR
542 sh_analyze_prologue (struct gdbarch *gdbarch,
543 CORE_ADDR pc, CORE_ADDR limit_pc,
544 struct sh_frame_cache *cache, ULONGEST fpscr)
545 {
546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
547 ULONGEST inst;
548 int offset;
549 int sav_offset = 0;
550 int r3_val = 0;
551 int reg, sav_reg = -1;
552
553 cache->uses_fp = 0;
554 for (; pc < limit_pc; pc += 2)
555 {
556 inst = read_memory_unsigned_integer (pc, 2, byte_order);
557 /* See where the registers will be saved to. */
558 if (IS_PUSH (inst))
559 {
560 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
561 cache->sp_offset += 4;
562 }
563 else if (IS_STS (inst))
564 {
565 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
566 cache->sp_offset += 4;
567 }
568 else if (IS_MACL_STS (inst))
569 {
570 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
571 cache->sp_offset += 4;
572 }
573 else if (IS_MOV_R3 (inst))
574 {
575 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
576 }
577 else if (IS_SHLL_R3 (inst))
578 {
579 r3_val <<= 1;
580 }
581 else if (IS_ADD_R3SP (inst))
582 {
583 cache->sp_offset += -r3_val;
584 }
585 else if (IS_ADD_IMM_SP (inst))
586 {
587 offset = ((inst & 0xff) ^ 0x80) - 0x80;
588 cache->sp_offset -= offset;
589 }
590 else if (IS_MOVW_PCREL_TO_REG (inst))
591 {
592 if (sav_reg < 0)
593 {
594 reg = GET_TARGET_REG (inst);
595 if (reg < 14)
596 {
597 sav_reg = reg;
598 offset = (inst & 0xff) << 1;
599 sav_offset =
600 read_memory_integer ((pc + 4) + offset, 2, byte_order);
601 }
602 }
603 }
604 else if (IS_MOVL_PCREL_TO_REG (inst))
605 {
606 if (sav_reg < 0)
607 {
608 reg = GET_TARGET_REG (inst);
609 if (reg < 14)
610 {
611 sav_reg = reg;
612 offset = (inst & 0xff) << 2;
613 sav_offset =
614 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
615 4, byte_order);
616 }
617 }
618 }
619 else if (IS_MOVI20 (inst)
620 && (pc + 2 < limit_pc))
621 {
622 if (sav_reg < 0)
623 {
624 reg = GET_TARGET_REG (inst);
625 if (reg < 14)
626 {
627 sav_reg = reg;
628 sav_offset = GET_SOURCE_REG (inst) << 16;
629 /* MOVI20 is a 32 bit instruction! */
630 pc += 2;
631 sav_offset
632 |= read_memory_unsigned_integer (pc, 2, byte_order);
633 /* Now sav_offset contains an unsigned 20 bit value.
634 It must still get sign extended. */
635 if (sav_offset & 0x00080000)
636 sav_offset |= 0xfff00000;
637 }
638 }
639 }
640 else if (IS_SUB_REG_FROM_SP (inst))
641 {
642 reg = GET_SOURCE_REG (inst);
643 if (sav_reg > 0 && reg == sav_reg)
644 {
645 sav_reg = -1;
646 }
647 cache->sp_offset += sav_offset;
648 }
649 else if (IS_FPUSH (inst))
650 {
651 if (fpscr & FPSCR_SZ)
652 {
653 cache->sp_offset += 8;
654 }
655 else
656 {
657 cache->sp_offset += 4;
658 }
659 }
660 else if (IS_MOV_SP_FP (inst))
661 {
662 pc += 2;
663 /* Don't go any further than six more instructions. */
664 limit_pc = std::min (limit_pc, pc + (2 * 6));
665
666 cache->uses_fp = 1;
667 /* At this point, only allow argument register moves to other
668 registers or argument register moves to @(X,fp) which are
669 moving the register arguments onto the stack area allocated
670 by a former add somenumber to SP call. Don't allow moving
671 to an fp indirect address above fp + cache->sp_offset. */
672 for (; pc < limit_pc; pc += 2)
673 {
674 inst = read_memory_integer (pc, 2, byte_order);
675 if (IS_MOV_ARG_TO_IND_R14 (inst))
676 {
677 reg = GET_SOURCE_REG (inst);
678 if (cache->sp_offset > 0)
679 cache->saved_regs[reg] = cache->sp_offset;
680 }
681 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
682 {
683 reg = GET_SOURCE_REG (inst);
684 offset = (inst & 0xf) * 4;
685 if (cache->sp_offset > offset)
686 cache->saved_regs[reg] = cache->sp_offset - offset;
687 }
688 else if (IS_MOV_ARG_TO_REG (inst))
689 continue;
690 else
691 break;
692 }
693 break;
694 }
695 else if (IS_JSR (inst))
696 {
697 /* We have found a jsr that has been scheduled into the prologue.
698 If we continue the scan and return a pc someplace after this,
699 then setting a breakpoint on this function will cause it to
700 appear to be called after the function it is calling via the
701 jsr, which will be very confusing. Most likely the next
702 instruction is going to be IS_MOV_SP_FP in the delay slot. If
703 so, note that before returning the current pc. */
704 if (pc + 2 < limit_pc)
705 {
706 inst = read_memory_integer (pc + 2, 2, byte_order);
707 if (IS_MOV_SP_FP (inst))
708 cache->uses_fp = 1;
709 }
710 break;
711 }
712 #if 0 /* This used to just stop when it found an instruction
713 that was not considered part of the prologue. Now,
714 we just keep going looking for likely
715 instructions. */
716 else
717 break;
718 #endif
719 }
720
721 return pc;
722 }
723
724 /* Skip any prologue before the guts of a function. */
725 static CORE_ADDR
726 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
727 {
728 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
729 struct sh_frame_cache cache;
730
731 /* See if we can determine the end of the prologue via the symbol table.
732 If so, then return either PC, or the PC after the prologue, whichever
733 is greater. */
734 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
735 {
736 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
737 if (post_prologue_pc != 0)
738 return std::max (pc, post_prologue_pc);
739 }
740
741 /* Can't determine prologue from the symbol table, need to examine
742 instructions. */
743
744 /* Find an upper limit on the function prologue using the debug
745 information. If the debug information could not be used to provide
746 that bound, then use an arbitrary large number as the upper bound. */
747 limit_pc = skip_prologue_using_sal (gdbarch, pc);
748 if (limit_pc == 0)
749 /* Don't go any further than 28 instructions. */
750 limit_pc = pc + (2 * 28);
751
752 /* Do not allow limit_pc to be past the function end, if we know
753 where that end is... */
754 if (func_end_addr != 0)
755 limit_pc = std::min (limit_pc, func_end_addr);
756
757 cache.sp_offset = -4;
758 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
759 if (cache.uses_fp)
760 pc = post_prologue_pc;
761
762 return pc;
763 }
764
765 /* The ABI says:
766
767 Aggregate types not bigger than 8 bytes that have the same size and
768 alignment as one of the integer scalar types are returned in the
769 same registers as the integer type they match.
770
771 For example, a 2-byte aligned structure with size 2 bytes has the
772 same size and alignment as a short int, and will be returned in R0.
773 A 4-byte aligned structure with size 8 bytes has the same size and
774 alignment as a long long int, and will be returned in R0 and R1.
775
776 When an aggregate type is returned in R0 and R1, R0 contains the
777 first four bytes of the aggregate, and R1 contains the
778 remainder. If the size of the aggregate type is not a multiple of 4
779 bytes, the aggregate is tail-padded up to a multiple of 4
780 bytes. The value of the padding is undefined. For little-endian
781 targets the padding will appear at the most significant end of the
782 last element, for big-endian targets the padding appears at the
783 least significant end of the last element.
784
785 All other aggregate types are returned by address. The caller
786 function passes the address of an area large enough to hold the
787 aggregate value in R2. The called function stores the result in
788 this location.
789
790 To reiterate, structs smaller than 8 bytes could also be returned
791 in memory, if they don't pass the "same size and alignment as an
792 integer type" rule.
793
794 For example, in
795
796 struct s { char c[3]; } wibble;
797 struct s foo(void) { return wibble; }
798
799 the return value from foo() will be in memory, not
800 in R0, because there is no 3-byte integer type.
801
802 Similarly, in
803
804 struct s { char c[2]; } wibble;
805 struct s foo(void) { return wibble; }
806
807 because a struct containing two chars has alignment 1, that matches
808 type char, but size 2, that matches type short. There's no integer
809 type that has alignment 1 and size 2, so the struct is returned in
810 memory. */
811
812 static int
813 sh_use_struct_convention (int renesas_abi, struct type *type)
814 {
815 int len = TYPE_LENGTH (type);
816 int nelem = type->num_fields ();
817
818 /* The Renesas ABI returns aggregate types always on stack. */
819 if (renesas_abi && (type->code () == TYPE_CODE_STRUCT
820 || type->code () == TYPE_CODE_UNION))
821 return 1;
822
823 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
824 fit in two registers anyway) use struct convention. */
825 if (len != 1 && len != 2 && len != 4 && len != 8)
826 return 1;
827
828 /* Scalar types and aggregate types with exactly one field are aligned
829 by definition. They are returned in registers. */
830 if (nelem <= 1)
831 return 0;
832
833 /* If the first field in the aggregate has the same length as the entire
834 aggregate type, the type is returned in registers. */
835 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
836 return 0;
837
838 /* If the size of the aggregate is 8 bytes and the first field is
839 of size 4 bytes its alignment is equal to long long's alignment,
840 so it's returned in registers. */
841 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
842 return 0;
843
844 /* Otherwise use struct convention. */
845 return 1;
846 }
847
848 static int
849 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
850 {
851 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
852 if (renesas_abi && type->num_fields () == 0 && TYPE_LENGTH (type) >= 8)
853 return 1;
854 return sh_use_struct_convention (renesas_abi, type);
855 }
856
857 static CORE_ADDR
858 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
859 {
860 return sp & ~3;
861 }
862
863 /* Function: push_dummy_call (formerly push_arguments)
864 Setup the function arguments for calling a function in the inferior.
865
866 On the Renesas SH architecture, there are four registers (R4 to R7)
867 which are dedicated for passing function arguments. Up to the first
868 four arguments (depending on size) may go into these registers.
869 The rest go on the stack.
870
871 MVS: Except on SH variants that have floating point registers.
872 In that case, float and double arguments are passed in the same
873 manner, but using FP registers instead of GP registers.
874
875 Arguments that are smaller than 4 bytes will still take up a whole
876 register or a whole 32-bit word on the stack, and will be
877 right-justified in the register or the stack word. This includes
878 chars, shorts, and small aggregate types.
879
880 Arguments that are larger than 4 bytes may be split between two or
881 more registers. If there are not enough registers free, an argument
882 may be passed partly in a register (or registers), and partly on the
883 stack. This includes doubles, long longs, and larger aggregates.
884 As far as I know, there is no upper limit to the size of aggregates
885 that will be passed in this way; in other words, the convention of
886 passing a pointer to a large aggregate instead of a copy is not used.
887
888 MVS: The above appears to be true for the SH variants that do not
889 have an FPU, however those that have an FPU appear to copy the
890 aggregate argument onto the stack (and not place it in registers)
891 if it is larger than 16 bytes (four GP registers).
892
893 An exceptional case exists for struct arguments (and possibly other
894 aggregates such as arrays) if the size is larger than 4 bytes but
895 not a multiple of 4 bytes. In this case the argument is never split
896 between the registers and the stack, but instead is copied in its
897 entirety onto the stack, AND also copied into as many registers as
898 there is room for. In other words, space in registers permitting,
899 two copies of the same argument are passed in. As far as I can tell,
900 only the one on the stack is used, although that may be a function
901 of the level of compiler optimization. I suspect this is a compiler
902 bug. Arguments of these odd sizes are left-justified within the
903 word (as opposed to arguments smaller than 4 bytes, which are
904 right-justified).
905
906 If the function is to return an aggregate type such as a struct, it
907 is either returned in the normal return value register R0 (if its
908 size is no greater than one byte), or else the caller must allocate
909 space into which the callee will copy the return value (if the size
910 is greater than one byte). In this case, a pointer to the return
911 value location is passed into the callee in register R2, which does
912 not displace any of the other arguments passed in via registers R4
913 to R7. */
914
915 /* Helper function to justify value in register according to endianness. */
916 static const gdb_byte *
917 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
918 {
919 static gdb_byte valbuf[4];
920
921 memset (valbuf, 0, sizeof (valbuf));
922 if (len < 4)
923 {
924 /* value gets right-justified in the register or stack word. */
925 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
926 memcpy (valbuf + (4 - len), value_contents (val), len);
927 else
928 memcpy (valbuf, value_contents (val), len);
929 return valbuf;
930 }
931 return value_contents (val);
932 }
933
934 /* Helper function to eval number of bytes to allocate on stack. */
935 static CORE_ADDR
936 sh_stack_allocsize (int nargs, struct value **args)
937 {
938 int stack_alloc = 0;
939 while (nargs-- > 0)
940 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
941 return stack_alloc;
942 }
943
944 /* Helper functions for getting the float arguments right. Registers usage
945 depends on the ABI and the endianness. The comments should enlighten how
946 it's intended to work. */
947
948 /* This array stores which of the float arg registers are already in use. */
949 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
950
951 /* This function just resets the above array to "no reg used so far". */
952 static void
953 sh_init_flt_argreg (void)
954 {
955 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
956 }
957
958 /* This function returns the next register to use for float arg passing.
959 It returns either a valid value between FLOAT_ARG0_REGNUM and
960 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
961 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
962
963 Note that register number 0 in flt_argreg_array corresponds with the
964 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
965 29) the parity of the register number is preserved, which is important
966 for the double register passing test (see the "argreg & 1" test below). */
967 static int
968 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
969 {
970 int argreg;
971
972 /* First search for the next free register. */
973 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
974 ++argreg)
975 if (!flt_argreg_array[argreg])
976 break;
977
978 /* No register left? */
979 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
980 return FLOAT_ARGLAST_REGNUM + 1;
981
982 if (len == 8)
983 {
984 /* Doubles are always starting in a even register number. */
985 if (argreg & 1)
986 {
987 /* In gcc ABI, the skipped register is lost for further argument
988 passing now. Not so in Renesas ABI. */
989 if (!sh_is_renesas_calling_convention (func_type))
990 flt_argreg_array[argreg] = 1;
991
992 ++argreg;
993
994 /* No register left? */
995 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
996 return FLOAT_ARGLAST_REGNUM + 1;
997 }
998 /* Also mark the next register as used. */
999 flt_argreg_array[argreg + 1] = 1;
1000 }
1001 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1002 && !sh_is_renesas_calling_convention (func_type))
1003 {
1004 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1005 if (!flt_argreg_array[argreg + 1])
1006 ++argreg;
1007 }
1008 flt_argreg_array[argreg] = 1;
1009 return FLOAT_ARG0_REGNUM + argreg;
1010 }
1011
1012 /* Helper function which figures out, if a type is treated like a float type.
1013
1014 The FPU ABIs have a special way how to treat types as float types.
1015 Structures with exactly one member, which is of type float or double, are
1016 treated exactly as the base types float or double:
1017
1018 struct sf {
1019 float f;
1020 };
1021
1022 struct sd {
1023 double d;
1024 };
1025
1026 are handled the same way as just
1027
1028 float f;
1029
1030 double d;
1031
1032 As a result, arguments of these struct types are pushed into floating point
1033 registers exactly as floats or doubles, using the same decision algorithm.
1034
1035 The same is valid if these types are used as function return types. The
1036 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1037 or even using struct convention as it is for other structs. */
1038
1039 static int
1040 sh_treat_as_flt_p (struct type *type)
1041 {
1042 /* Ordinary float types are obviously treated as float. */
1043 if (type->code () == TYPE_CODE_FLT)
1044 return 1;
1045 /* Otherwise non-struct types are not treated as float. */
1046 if (type->code () != TYPE_CODE_STRUCT)
1047 return 0;
1048 /* Otherwise structs with more than one member are not treated as float. */
1049 if (type->num_fields () != 1)
1050 return 0;
1051 /* Otherwise if the type of that member is float, the whole type is
1052 treated as float. */
1053 if (TYPE_FIELD_TYPE (type, 0)->code () == TYPE_CODE_FLT)
1054 return 1;
1055 /* Otherwise it's not treated as float. */
1056 return 0;
1057 }
1058
1059 static CORE_ADDR
1060 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1061 struct value *function,
1062 struct regcache *regcache,
1063 CORE_ADDR bp_addr, int nargs,
1064 struct value **args,
1065 CORE_ADDR sp, function_call_return_method return_method,
1066 CORE_ADDR struct_addr)
1067 {
1068 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1069 int stack_offset = 0;
1070 int argreg = ARG0_REGNUM;
1071 int flt_argreg = 0;
1072 int argnum;
1073 struct type *func_type = value_type (function);
1074 struct type *type;
1075 CORE_ADDR regval;
1076 const gdb_byte *val;
1077 int len, reg_size = 0;
1078 int pass_on_stack = 0;
1079 int treat_as_flt;
1080 int last_reg_arg = INT_MAX;
1081
1082 /* The Renesas ABI expects all varargs arguments, plus the last
1083 non-vararg argument to be on the stack, no matter how many
1084 registers have been used so far. */
1085 if (sh_is_renesas_calling_convention (func_type)
1086 && TYPE_VARARGS (func_type))
1087 last_reg_arg = func_type->num_fields () - 2;
1088
1089 /* First force sp to a 4-byte alignment. */
1090 sp = sh_frame_align (gdbarch, sp);
1091
1092 /* Make room on stack for args. */
1093 sp -= sh_stack_allocsize (nargs, args);
1094
1095 /* Initialize float argument mechanism. */
1096 sh_init_flt_argreg ();
1097
1098 /* Now load as many as possible of the first arguments into
1099 registers, and push the rest onto the stack. There are 16 bytes
1100 in four registers available. Loop thru args from first to last. */
1101 for (argnum = 0; argnum < nargs; argnum++)
1102 {
1103 type = value_type (args[argnum]);
1104 len = TYPE_LENGTH (type);
1105 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1106
1107 /* Some decisions have to be made how various types are handled.
1108 This also differs in different ABIs. */
1109 pass_on_stack = 0;
1110
1111 /* Find out the next register to use for a floating point value. */
1112 treat_as_flt = sh_treat_as_flt_p (type);
1113 if (treat_as_flt)
1114 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1115 /* In Renesas ABI, long longs and aggregate types are always passed
1116 on stack. */
1117 else if (sh_is_renesas_calling_convention (func_type)
1118 && ((type->code () == TYPE_CODE_INT && len == 8)
1119 || type->code () == TYPE_CODE_STRUCT
1120 || type->code () == TYPE_CODE_UNION))
1121 pass_on_stack = 1;
1122 /* In contrast to non-FPU CPUs, arguments are never split between
1123 registers and stack. If an argument doesn't fit in the remaining
1124 registers it's always pushed entirely on the stack. */
1125 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1126 pass_on_stack = 1;
1127
1128 while (len > 0)
1129 {
1130 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1131 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1132 || pass_on_stack))
1133 || argnum > last_reg_arg)
1134 {
1135 /* The data goes entirely on the stack, 4-byte aligned. */
1136 reg_size = (len + 3) & ~3;
1137 write_memory (sp + stack_offset, val, reg_size);
1138 stack_offset += reg_size;
1139 }
1140 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1141 {
1142 /* Argument goes in a float argument register. */
1143 reg_size = register_size (gdbarch, flt_argreg);
1144 regval = extract_unsigned_integer (val, reg_size, byte_order);
1145 /* In little endian mode, float types taking two registers
1146 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1147 be stored swapped in the argument registers. The below
1148 code first writes the first 32 bits in the next but one
1149 register, increments the val and len values accordingly
1150 and then proceeds as normal by writing the second 32 bits
1151 into the next register. */
1152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1153 && TYPE_LENGTH (type) == 2 * reg_size)
1154 {
1155 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1156 regval);
1157 val += reg_size;
1158 len -= reg_size;
1159 regval = extract_unsigned_integer (val, reg_size,
1160 byte_order);
1161 }
1162 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1163 }
1164 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1165 {
1166 /* there's room in a register */
1167 reg_size = register_size (gdbarch, argreg);
1168 regval = extract_unsigned_integer (val, reg_size, byte_order);
1169 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1170 }
1171 /* Store the value one register at a time or in one step on
1172 stack. */
1173 len -= reg_size;
1174 val += reg_size;
1175 }
1176 }
1177
1178 if (return_method == return_method_struct)
1179 {
1180 if (sh_is_renesas_calling_convention (func_type))
1181 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1182 the stack and store the struct return address there. */
1183 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1184 else
1185 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1186 its own dedicated register. */
1187 regcache_cooked_write_unsigned (regcache,
1188 STRUCT_RETURN_REGNUM, struct_addr);
1189 }
1190
1191 /* Store return address. */
1192 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1193
1194 /* Update stack pointer. */
1195 regcache_cooked_write_unsigned (regcache,
1196 gdbarch_sp_regnum (gdbarch), sp);
1197
1198 return sp;
1199 }
1200
1201 static CORE_ADDR
1202 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1203 struct value *function,
1204 struct regcache *regcache,
1205 CORE_ADDR bp_addr,
1206 int nargs, struct value **args,
1207 CORE_ADDR sp,
1208 function_call_return_method return_method,
1209 CORE_ADDR struct_addr)
1210 {
1211 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1212 int stack_offset = 0;
1213 int argreg = ARG0_REGNUM;
1214 int argnum;
1215 struct type *func_type = value_type (function);
1216 struct type *type;
1217 CORE_ADDR regval;
1218 const gdb_byte *val;
1219 int len, reg_size = 0;
1220 int pass_on_stack = 0;
1221 int last_reg_arg = INT_MAX;
1222
1223 /* The Renesas ABI expects all varargs arguments, plus the last
1224 non-vararg argument to be on the stack, no matter how many
1225 registers have been used so far. */
1226 if (sh_is_renesas_calling_convention (func_type)
1227 && TYPE_VARARGS (func_type))
1228 last_reg_arg = func_type->num_fields () - 2;
1229
1230 /* First force sp to a 4-byte alignment. */
1231 sp = sh_frame_align (gdbarch, sp);
1232
1233 /* Make room on stack for args. */
1234 sp -= sh_stack_allocsize (nargs, args);
1235
1236 /* Now load as many as possible of the first arguments into
1237 registers, and push the rest onto the stack. There are 16 bytes
1238 in four registers available. Loop thru args from first to last. */
1239 for (argnum = 0; argnum < nargs; argnum++)
1240 {
1241 type = value_type (args[argnum]);
1242 len = TYPE_LENGTH (type);
1243 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1244
1245 /* Some decisions have to be made how various types are handled.
1246 This also differs in different ABIs. */
1247 pass_on_stack = 0;
1248 /* Renesas ABI pushes doubles and long longs entirely on stack.
1249 Same goes for aggregate types. */
1250 if (sh_is_renesas_calling_convention (func_type)
1251 && ((type->code () == TYPE_CODE_INT && len >= 8)
1252 || (type->code () == TYPE_CODE_FLT && len >= 8)
1253 || type->code () == TYPE_CODE_STRUCT
1254 || type->code () == TYPE_CODE_UNION))
1255 pass_on_stack = 1;
1256 while (len > 0)
1257 {
1258 if (argreg > ARGLAST_REGNUM || pass_on_stack
1259 || argnum > last_reg_arg)
1260 {
1261 /* The remainder of the data goes entirely on the stack,
1262 4-byte aligned. */
1263 reg_size = (len + 3) & ~3;
1264 write_memory (sp + stack_offset, val, reg_size);
1265 stack_offset += reg_size;
1266 }
1267 else if (argreg <= ARGLAST_REGNUM)
1268 {
1269 /* There's room in a register. */
1270 reg_size = register_size (gdbarch, argreg);
1271 regval = extract_unsigned_integer (val, reg_size, byte_order);
1272 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1273 }
1274 /* Store the value reg_size bytes at a time. This means that things
1275 larger than reg_size bytes may go partly in registers and partly
1276 on the stack. */
1277 len -= reg_size;
1278 val += reg_size;
1279 }
1280 }
1281
1282 if (return_method == return_method_struct)
1283 {
1284 if (sh_is_renesas_calling_convention (func_type))
1285 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1286 the stack and store the struct return address there. */
1287 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1288 else
1289 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1290 its own dedicated register. */
1291 regcache_cooked_write_unsigned (regcache,
1292 STRUCT_RETURN_REGNUM, struct_addr);
1293 }
1294
1295 /* Store return address. */
1296 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1297
1298 /* Update stack pointer. */
1299 regcache_cooked_write_unsigned (regcache,
1300 gdbarch_sp_regnum (gdbarch), sp);
1301
1302 return sp;
1303 }
1304
1305 /* Find a function's return value in the appropriate registers (in
1306 regbuf), and copy it into valbuf. Extract from an array REGBUF
1307 containing the (raw) register state a function return value of type
1308 TYPE, and copy that, in virtual format, into VALBUF. */
1309 static void
1310 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1311 gdb_byte *valbuf)
1312 {
1313 struct gdbarch *gdbarch = regcache->arch ();
1314 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1315 int len = TYPE_LENGTH (type);
1316
1317 if (len <= 4)
1318 {
1319 ULONGEST c;
1320
1321 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1322 store_unsigned_integer (valbuf, len, byte_order, c);
1323 }
1324 else if (len == 8)
1325 {
1326 int i, regnum = R0_REGNUM;
1327 for (i = 0; i < len; i += 4)
1328 regcache->raw_read (regnum++, valbuf + i);
1329 }
1330 else
1331 error (_("bad size for return value"));
1332 }
1333
1334 static void
1335 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1336 gdb_byte *valbuf)
1337 {
1338 struct gdbarch *gdbarch = regcache->arch ();
1339 if (sh_treat_as_flt_p (type))
1340 {
1341 int len = TYPE_LENGTH (type);
1342 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1343 for (i = 0; i < len; i += 4)
1344 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1345 regcache->raw_read (regnum++,
1346 valbuf + len - 4 - i);
1347 else
1348 regcache->raw_read (regnum++, valbuf + i);
1349 }
1350 else
1351 sh_extract_return_value_nofpu (type, regcache, valbuf);
1352 }
1353
1354 /* Write into appropriate registers a function return value
1355 of type TYPE, given in virtual format.
1356 If the architecture is sh4 or sh3e, store a function's return value
1357 in the R0 general register or in the FP0 floating point register,
1358 depending on the type of the return value. In all the other cases
1359 the result is stored in r0, left-justified. */
1360 static void
1361 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1362 const gdb_byte *valbuf)
1363 {
1364 struct gdbarch *gdbarch = regcache->arch ();
1365 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1366 ULONGEST val;
1367 int len = TYPE_LENGTH (type);
1368
1369 if (len <= 4)
1370 {
1371 val = extract_unsigned_integer (valbuf, len, byte_order);
1372 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1373 }
1374 else
1375 {
1376 int i, regnum = R0_REGNUM;
1377 for (i = 0; i < len; i += 4)
1378 regcache->raw_write (regnum++, valbuf + i);
1379 }
1380 }
1381
1382 static void
1383 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1384 const gdb_byte *valbuf)
1385 {
1386 struct gdbarch *gdbarch = regcache->arch ();
1387 if (sh_treat_as_flt_p (type))
1388 {
1389 int len = TYPE_LENGTH (type);
1390 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1391 for (i = 0; i < len; i += 4)
1392 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1393 regcache->raw_write (regnum++,
1394 valbuf + len - 4 - i);
1395 else
1396 regcache->raw_write (regnum++, valbuf + i);
1397 }
1398 else
1399 sh_store_return_value_nofpu (type, regcache, valbuf);
1400 }
1401
1402 static enum return_value_convention
1403 sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
1404 struct type *type, struct regcache *regcache,
1405 gdb_byte *readbuf, const gdb_byte *writebuf)
1406 {
1407 struct type *func_type = function ? value_type (function) : NULL;
1408
1409 if (sh_use_struct_convention_nofpu (
1410 sh_is_renesas_calling_convention (func_type), type))
1411 return RETURN_VALUE_STRUCT_CONVENTION;
1412 if (writebuf)
1413 sh_store_return_value_nofpu (type, regcache, writebuf);
1414 else if (readbuf)
1415 sh_extract_return_value_nofpu (type, regcache, readbuf);
1416 return RETURN_VALUE_REGISTER_CONVENTION;
1417 }
1418
1419 static enum return_value_convention
1420 sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
1421 struct type *type, struct regcache *regcache,
1422 gdb_byte *readbuf, const gdb_byte *writebuf)
1423 {
1424 struct type *func_type = function ? value_type (function) : NULL;
1425
1426 if (sh_use_struct_convention (
1427 sh_is_renesas_calling_convention (func_type), type))
1428 return RETURN_VALUE_STRUCT_CONVENTION;
1429 if (writebuf)
1430 sh_store_return_value_fpu (type, regcache, writebuf);
1431 else if (readbuf)
1432 sh_extract_return_value_fpu (type, regcache, readbuf);
1433 return RETURN_VALUE_REGISTER_CONVENTION;
1434 }
1435
1436 static struct type *
1437 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1438 {
1439 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1440 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1441 return builtin_type (gdbarch)->builtin_float;
1442 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1443 return builtin_type (gdbarch)->builtin_double;
1444 else
1445 return builtin_type (gdbarch)->builtin_int;
1446 }
1447
1448 /* Return the GDB type object for the "standard" data type
1449 of data in register N. */
1450 static struct type *
1451 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
1452 {
1453 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1454 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1455 return builtin_type (gdbarch)->builtin_float;
1456 else
1457 return builtin_type (gdbarch)->builtin_int;
1458 }
1459
1460 static struct type *
1461 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
1462 {
1463 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1464 0, high);
1465 }
1466
1467 static struct type *
1468 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
1469 {
1470 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1471 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1472 return builtin_type (gdbarch)->builtin_float;
1473 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1474 return builtin_type (gdbarch)->builtin_double;
1475 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1476 return sh_sh4_build_float_register_type (gdbarch, 3);
1477 else
1478 return builtin_type (gdbarch)->builtin_int;
1479 }
1480
1481 static struct type *
1482 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
1483 {
1484 return builtin_type (gdbarch)->builtin_int;
1485 }
1486
1487 /* Is a register in a reggroup?
1488 The default code in reggroup.c doesn't identify system registers, some
1489 float registers or any of the vector registers.
1490 TODO: sh2a and dsp registers. */
1491 static int
1492 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1493 struct reggroup *reggroup)
1494 {
1495 if (gdbarch_register_name (gdbarch, regnum) == NULL
1496 || *gdbarch_register_name (gdbarch, regnum) == '\0')
1497 return 0;
1498
1499 if (reggroup == float_reggroup
1500 && (regnum == FPUL_REGNUM
1501 || regnum == FPSCR_REGNUM))
1502 return 1;
1503
1504 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1505 {
1506 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1507 return 1;
1508 if (reggroup == general_reggroup)
1509 return 0;
1510 }
1511
1512 if (regnum == VBR_REGNUM
1513 || regnum == SR_REGNUM
1514 || regnum == FPSCR_REGNUM
1515 || regnum == SSR_REGNUM
1516 || regnum == SPC_REGNUM)
1517 {
1518 if (reggroup == system_reggroup)
1519 return 1;
1520 if (reggroup == general_reggroup)
1521 return 0;
1522 }
1523
1524 /* The default code can cope with any other registers. */
1525 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1526 }
1527
1528 /* On the sh4, the DRi pseudo registers are problematic if the target
1529 is little endian. When the user writes one of those registers, for
1530 instance with 'set var $dr0=1', we want the double to be stored
1531 like this:
1532 fr0 = 0x00 0x00 0xf0 0x3f
1533 fr1 = 0x00 0x00 0x00 0x00
1534
1535 This corresponds to little endian byte order & big endian word
1536 order. However if we let gdb write the register w/o conversion, it
1537 will write fr0 and fr1 this way:
1538 fr0 = 0x00 0x00 0x00 0x00
1539 fr1 = 0x00 0x00 0xf0 0x3f
1540 because it will consider fr0 and fr1 as a single LE stretch of memory.
1541
1542 To achieve what we want we must force gdb to store things in
1543 floatformat_ieee_double_littlebyte_bigword (which is defined in
1544 include/floatformat.h and libiberty/floatformat.c.
1545
1546 In case the target is big endian, there is no problem, the
1547 raw bytes will look like:
1548 fr0 = 0x3f 0xf0 0x00 0x00
1549 fr1 = 0x00 0x00 0x00 0x00
1550
1551 The other pseudo registers (the FVs) also don't pose a problem
1552 because they are stored as 4 individual FP elements. */
1553
1554 static struct type *
1555 sh_littlebyte_bigword_type (struct gdbarch *gdbarch)
1556 {
1557 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1558
1559 if (tdep->sh_littlebyte_bigword_type == NULL)
1560 tdep->sh_littlebyte_bigword_type
1561 = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
1562 floatformats_ieee_double_littlebyte_bigword);
1563
1564 return tdep->sh_littlebyte_bigword_type;
1565 }
1566
1567 static void
1568 sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1569 struct type *type, gdb_byte *from, gdb_byte *to)
1570 {
1571 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1572 {
1573 /* It is a no-op. */
1574 memcpy (to, from, register_size (gdbarch, regnum));
1575 return;
1576 }
1577
1578 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1579 target_float_convert (from, sh_littlebyte_bigword_type (gdbarch),
1580 to, type);
1581 else
1582 error
1583 ("sh_register_convert_to_virtual called with non DR register number");
1584 }
1585
1586 static void
1587 sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1588 int regnum, const gdb_byte *from, gdb_byte *to)
1589 {
1590 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1591 {
1592 /* It is a no-op. */
1593 memcpy (to, from, register_size (gdbarch, regnum));
1594 return;
1595 }
1596
1597 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
1598 target_float_convert (from, type,
1599 to, sh_littlebyte_bigword_type (gdbarch));
1600 else
1601 error (_("sh_register_convert_to_raw called with non DR register number"));
1602 }
1603
1604 /* For vectors of 4 floating point registers. */
1605 static int
1606 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1607 {
1608 int fp_regnum;
1609
1610 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1611 + (fv_regnum - FV0_REGNUM) * 4;
1612 return fp_regnum;
1613 }
1614
1615 /* For double precision floating point registers, i.e 2 fp regs. */
1616 static int
1617 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1618 {
1619 int fp_regnum;
1620
1621 fp_regnum = gdbarch_fp0_regnum (gdbarch)
1622 + (dr_regnum - DR0_REGNUM) * 2;
1623 return fp_regnum;
1624 }
1625
1626 /* Concatenate PORTIONS contiguous raw registers starting at
1627 BASE_REGNUM into BUFFER. */
1628
1629 static enum register_status
1630 pseudo_register_read_portions (struct gdbarch *gdbarch,
1631 readable_regcache *regcache,
1632 int portions,
1633 int base_regnum, gdb_byte *buffer)
1634 {
1635 int portion;
1636
1637 for (portion = 0; portion < portions; portion++)
1638 {
1639 enum register_status status;
1640 gdb_byte *b;
1641
1642 b = buffer + register_size (gdbarch, base_regnum) * portion;
1643 status = regcache->raw_read (base_regnum + portion, b);
1644 if (status != REG_VALID)
1645 return status;
1646 }
1647
1648 return REG_VALID;
1649 }
1650
1651 static enum register_status
1652 sh_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
1653 int reg_nr, gdb_byte *buffer)
1654 {
1655 int base_regnum;
1656 enum register_status status;
1657
1658 if (reg_nr == PSEUDO_BANK_REGNUM)
1659 return regcache->raw_read (BANK_REGNUM, buffer);
1660 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1661 {
1662 /* Enough space for two float registers. */
1663 gdb_byte temp_buffer[4 * 2];
1664 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1665
1666 /* Build the value in the provided buffer. */
1667 /* Read the real regs for which this one is an alias. */
1668 status = pseudo_register_read_portions (gdbarch, regcache,
1669 2, base_regnum, temp_buffer);
1670 if (status == REG_VALID)
1671 {
1672 /* We must pay attention to the endianness. */
1673 sh_register_convert_to_virtual (gdbarch, reg_nr,
1674 register_type (gdbarch, reg_nr),
1675 temp_buffer, buffer);
1676 }
1677 return status;
1678 }
1679 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1680 {
1681 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1682
1683 /* Read the real regs for which this one is an alias. */
1684 return pseudo_register_read_portions (gdbarch, regcache,
1685 4, base_regnum, buffer);
1686 }
1687 else
1688 gdb_assert_not_reached ("invalid pseudo register number");
1689 }
1690
1691 static void
1692 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1693 int reg_nr, const gdb_byte *buffer)
1694 {
1695 int base_regnum, portion;
1696
1697 if (reg_nr == PSEUDO_BANK_REGNUM)
1698 {
1699 /* When the bank register is written to, the whole register bank
1700 is switched and all values in the bank registers must be read
1701 from the target/sim again. We're just invalidating the regcache
1702 so that a re-read happens next time it's necessary. */
1703 int bregnum;
1704
1705 regcache->raw_write (BANK_REGNUM, buffer);
1706 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1707 regcache->invalidate (bregnum);
1708 }
1709 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1710 {
1711 /* Enough space for two float registers. */
1712 gdb_byte temp_buffer[4 * 2];
1713 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
1714
1715 /* We must pay attention to the endianness. */
1716 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1717 reg_nr, buffer, temp_buffer);
1718
1719 /* Write the real regs for which this one is an alias. */
1720 for (portion = 0; portion < 2; portion++)
1721 regcache->raw_write (base_regnum + portion,
1722 (temp_buffer
1723 + register_size (gdbarch,
1724 base_regnum) * portion));
1725 }
1726 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
1727 {
1728 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
1729
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion = 0; portion < 4; portion++)
1732 regcache->raw_write (base_regnum + portion,
1733 (buffer
1734 + register_size (gdbarch,
1735 base_regnum) * portion));
1736 }
1737 }
1738
1739 static int
1740 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
1741 {
1742 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1743 return legacy_register_sim_regno (gdbarch, nr);
1744 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1745 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1746 if (nr == MOD_REGNUM)
1747 return SIM_SH_MOD_REGNUM;
1748 if (nr == RS_REGNUM)
1749 return SIM_SH_RS_REGNUM;
1750 if (nr == RE_REGNUM)
1751 return SIM_SH_RE_REGNUM;
1752 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1753 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
1754 return nr;
1755 }
1756
1757 static int
1758 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
1759 {
1760 switch (nr)
1761 {
1762 case TBR_REGNUM:
1763 return SIM_SH_TBR_REGNUM;
1764 case IBNR_REGNUM:
1765 return SIM_SH_IBNR_REGNUM;
1766 case IBCR_REGNUM:
1767 return SIM_SH_IBCR_REGNUM;
1768 case BANK_REGNUM:
1769 return SIM_SH_BANK_REGNUM;
1770 case MACLB_REGNUM:
1771 return SIM_SH_BANK_MACL_REGNUM;
1772 case GBRB_REGNUM:
1773 return SIM_SH_BANK_GBR_REGNUM;
1774 case PRB_REGNUM:
1775 return SIM_SH_BANK_PR_REGNUM;
1776 case IVNB_REGNUM:
1777 return SIM_SH_BANK_IVN_REGNUM;
1778 case MACHB_REGNUM:
1779 return SIM_SH_BANK_MACH_REGNUM;
1780 default:
1781 break;
1782 }
1783 return legacy_register_sim_regno (gdbarch, nr);
1784 }
1785
1786 /* Set up the register unwinding such that call-clobbered registers are
1787 not displayed in frames >0 because the true value is not certain.
1788 The 'undefined' registers will show up as 'not available' unless the
1789 CFI says otherwise.
1790
1791 This function is currently set up for SH4 and compatible only. */
1792
1793 static void
1794 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1795 struct dwarf2_frame_state_reg *reg,
1796 struct frame_info *this_frame)
1797 {
1798 /* Mark the PC as the destination for the return address. */
1799 if (regnum == gdbarch_pc_regnum (gdbarch))
1800 reg->how = DWARF2_FRAME_REG_RA;
1801
1802 /* Mark the stack pointer as the call frame address. */
1803 else if (regnum == gdbarch_sp_regnum (gdbarch))
1804 reg->how = DWARF2_FRAME_REG_CFA;
1805
1806 /* The above was taken from the default init_reg in dwarf2-frame.c
1807 while the below is SH specific. */
1808
1809 /* Caller save registers. */
1810 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1811 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1812 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1813 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1814 || (regnum == MACH_REGNUM)
1815 || (regnum == MACL_REGNUM)
1816 || (regnum == FPUL_REGNUM)
1817 || (regnum == SR_REGNUM))
1818 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1819
1820 /* Callee save registers. */
1821 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1822 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1823 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1824 || (regnum == FV0_REGNUM+3))
1825 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1826
1827 /* Other registers. These are not in the ABI and may or may not
1828 mean anything in frames >0 so don't show them. */
1829 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1830 || (regnum == GBR_REGNUM)
1831 || (regnum == VBR_REGNUM)
1832 || (regnum == FPSCR_REGNUM)
1833 || (regnum == SSR_REGNUM)
1834 || (regnum == SPC_REGNUM))
1835 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1836 }
1837
1838 static struct sh_frame_cache *
1839 sh_alloc_frame_cache (void)
1840 {
1841 struct sh_frame_cache *cache;
1842 int i;
1843
1844 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1845
1846 /* Base address. */
1847 cache->base = 0;
1848 cache->saved_sp = 0;
1849 cache->sp_offset = 0;
1850 cache->pc = 0;
1851
1852 /* Frameless until proven otherwise. */
1853 cache->uses_fp = 0;
1854
1855 /* Saved registers. We initialize these to -1 since zero is a valid
1856 offset (that's where fp is supposed to be stored). */
1857 for (i = 0; i < SH_NUM_REGS; i++)
1858 {
1859 cache->saved_regs[i] = -1;
1860 }
1861
1862 return cache;
1863 }
1864
1865 static struct sh_frame_cache *
1866 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1867 {
1868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1869 struct sh_frame_cache *cache;
1870 CORE_ADDR current_pc;
1871 int i;
1872
1873 if (*this_cache)
1874 return (struct sh_frame_cache *) *this_cache;
1875
1876 cache = sh_alloc_frame_cache ();
1877 *this_cache = cache;
1878
1879 /* In principle, for normal frames, fp holds the frame pointer,
1880 which holds the base address for the current stack frame.
1881 However, for functions that don't need it, the frame pointer is
1882 optional. For these "frameless" functions the frame pointer is
1883 actually the frame pointer of the calling frame. */
1884 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1885 if (cache->base == 0)
1886 return cache;
1887
1888 cache->pc = get_frame_func (this_frame);
1889 current_pc = get_frame_pc (this_frame);
1890 if (cache->pc != 0)
1891 {
1892 ULONGEST fpscr;
1893
1894 /* Check for the existence of the FPSCR register. If it exists,
1895 fetch its value for use in prologue analysis. Passing a zero
1896 value is the best choice for architecture variants upon which
1897 there's no FPSCR register. */
1898 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1899 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1900 else
1901 fpscr = 0;
1902
1903 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
1904 }
1905
1906 if (!cache->uses_fp)
1907 {
1908 /* We didn't find a valid frame, which means that CACHE->base
1909 currently holds the frame pointer for our calling frame. If
1910 we're at the start of a function, or somewhere half-way its
1911 prologue, the function's frame probably hasn't been fully
1912 setup yet. Try to reconstruct the base address for the stack
1913 frame by looking at the stack pointer. For truly "frameless"
1914 functions this might work too. */
1915 cache->base = get_frame_register_unsigned
1916 (this_frame, gdbarch_sp_regnum (gdbarch));
1917 }
1918
1919 /* Now that we have the base address for the stack frame we can
1920 calculate the value of sp in the calling frame. */
1921 cache->saved_sp = cache->base + cache->sp_offset;
1922
1923 /* Adjust all the saved registers such that they contain addresses
1924 instead of offsets. */
1925 for (i = 0; i < SH_NUM_REGS; i++)
1926 if (cache->saved_regs[i] != -1)
1927 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1928
1929 return cache;
1930 }
1931
1932 static struct value *
1933 sh_frame_prev_register (struct frame_info *this_frame,
1934 void **this_cache, int regnum)
1935 {
1936 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1937 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1938
1939 gdb_assert (regnum >= 0);
1940
1941 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1942 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1943
1944 /* The PC of the previous frame is stored in the PR register of
1945 the current frame. Frob regnum so that we pull the value from
1946 the correct place. */
1947 if (regnum == gdbarch_pc_regnum (gdbarch))
1948 regnum = PR_REGNUM;
1949
1950 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1951 return frame_unwind_got_memory (this_frame, regnum,
1952 cache->saved_regs[regnum]);
1953
1954 return frame_unwind_got_register (this_frame, regnum, regnum);
1955 }
1956
1957 static void
1958 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
1959 struct frame_id *this_id)
1960 {
1961 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1962
1963 /* This marks the outermost frame. */
1964 if (cache->base == 0)
1965 return;
1966
1967 *this_id = frame_id_build (cache->saved_sp, cache->pc);
1968 }
1969
1970 static const struct frame_unwind sh_frame_unwind = {
1971 NORMAL_FRAME,
1972 default_frame_unwind_stop_reason,
1973 sh_frame_this_id,
1974 sh_frame_prev_register,
1975 NULL,
1976 default_frame_sniffer
1977 };
1978
1979 static CORE_ADDR
1980 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
1981 {
1982 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1983
1984 return cache->base;
1985 }
1986
1987 static const struct frame_base sh_frame_base = {
1988 &sh_frame_unwind,
1989 sh_frame_base_address,
1990 sh_frame_base_address,
1991 sh_frame_base_address
1992 };
1993
1994 static struct sh_frame_cache *
1995 sh_make_stub_cache (struct frame_info *this_frame)
1996 {
1997 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1998 struct sh_frame_cache *cache;
1999
2000 cache = sh_alloc_frame_cache ();
2001
2002 cache->saved_sp
2003 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2004
2005 return cache;
2006 }
2007
2008 static void
2009 sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2010 struct frame_id *this_id)
2011 {
2012 struct sh_frame_cache *cache;
2013
2014 if (*this_cache == NULL)
2015 *this_cache = sh_make_stub_cache (this_frame);
2016 cache = (struct sh_frame_cache *) *this_cache;
2017
2018 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2019 }
2020
2021 static int
2022 sh_stub_unwind_sniffer (const struct frame_unwind *self,
2023 struct frame_info *this_frame,
2024 void **this_prologue_cache)
2025 {
2026 CORE_ADDR addr_in_block;
2027
2028 addr_in_block = get_frame_address_in_block (this_frame);
2029 if (in_plt_section (addr_in_block))
2030 return 1;
2031
2032 return 0;
2033 }
2034
2035 static const struct frame_unwind sh_stub_unwind =
2036 {
2037 NORMAL_FRAME,
2038 default_frame_unwind_stop_reason,
2039 sh_stub_this_id,
2040 sh_frame_prev_register,
2041 NULL,
2042 sh_stub_unwind_sniffer
2043 };
2044
2045 /* Implement the stack_frame_destroyed_p gdbarch method.
2046
2047 The epilogue is defined here as the area at the end of a function,
2048 either on the `ret' instruction itself or after an instruction which
2049 destroys the function's stack frame. */
2050
2051 static int
2052 sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2053 {
2054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2055 CORE_ADDR func_addr = 0, func_end = 0;
2056
2057 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2058 {
2059 ULONGEST inst;
2060 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2061 for a nop and some fixed data (e.g. big offsets) which are
2062 unfortunately also treated as part of the function (which
2063 means, they are below func_end. */
2064 CORE_ADDR addr = func_end - 28;
2065 if (addr < func_addr + 4)
2066 addr = func_addr + 4;
2067 if (pc < addr)
2068 return 0;
2069
2070 /* First search forward until hitting an rts. */
2071 while (addr < func_end
2072 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2073 addr += 2;
2074 if (addr >= func_end)
2075 return 0;
2076
2077 /* At this point we should find a mov.l @r15+,r14 instruction,
2078 either before or after the rts. If not, then the function has
2079 probably no "normal" epilogue and we bail out here. */
2080 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2081 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2082 byte_order)))
2083 addr -= 2;
2084 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2085 byte_order)))
2086 return 0;
2087
2088 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2089
2090 /* Step over possible lds.l @r15+,macl. */
2091 if (IS_MACL_LDS (inst))
2092 {
2093 addr -= 2;
2094 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2095 }
2096
2097 /* Step over possible lds.l @r15+,pr. */
2098 if (IS_LDS (inst))
2099 {
2100 addr -= 2;
2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2102 }
2103
2104 /* Step over possible mov r14,r15. */
2105 if (IS_MOV_FP_SP (inst))
2106 {
2107 addr -= 2;
2108 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2109 }
2110
2111 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2112 instructions. */
2113 while (addr > func_addr + 4
2114 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2115 {
2116 addr -= 2;
2117 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2118 }
2119
2120 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2121 That's allowed for the epilogue. */
2122 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2123 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2124 && addr > func_addr + 6
2125 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2126 byte_order)))
2127 addr -= 4;
2128
2129 if (pc >= addr)
2130 return 1;
2131 }
2132 return 0;
2133 }
2134
2135
2136 /* Supply register REGNUM from the buffer specified by REGS and LEN
2137 in the register set REGSET to register cache REGCACHE.
2138 REGTABLE specifies where each register can be found in REGS.
2139 If REGNUM is -1, do this for all registers in REGSET. */
2140
2141 void
2142 sh_corefile_supply_regset (const struct regset *regset,
2143 struct regcache *regcache,
2144 int regnum, const void *regs, size_t len)
2145 {
2146 struct gdbarch *gdbarch = regcache->arch ();
2147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2148 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2149 ? tdep->core_gregmap
2150 : tdep->core_fpregmap);
2151 int i;
2152
2153 for (i = 0; regmap[i].regnum != -1; i++)
2154 {
2155 if ((regnum == -1 || regnum == regmap[i].regnum)
2156 && regmap[i].offset + 4 <= len)
2157 regcache->raw_supply
2158 (regmap[i].regnum, (char *) regs + regmap[i].offset);
2159 }
2160 }
2161
2162 /* Collect register REGNUM in the register set REGSET from register cache
2163 REGCACHE into the buffer specified by REGS and LEN.
2164 REGTABLE specifies where each register can be found in REGS.
2165 If REGNUM is -1, do this for all registers in REGSET. */
2166
2167 void
2168 sh_corefile_collect_regset (const struct regset *regset,
2169 const struct regcache *regcache,
2170 int regnum, void *regs, size_t len)
2171 {
2172 struct gdbarch *gdbarch = regcache->arch ();
2173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2174 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2175 ? tdep->core_gregmap
2176 : tdep->core_fpregmap);
2177 int i;
2178
2179 for (i = 0; regmap[i].regnum != -1; i++)
2180 {
2181 if ((regnum == -1 || regnum == regmap[i].regnum)
2182 && regmap[i].offset + 4 <= len)
2183 regcache->raw_collect (regmap[i].regnum,
2184 (char *)regs + regmap[i].offset);
2185 }
2186 }
2187
2188 /* The following two regsets have the same contents, so it is tempting to
2189 unify them, but they are distiguished by their address, so don't. */
2190
2191 const struct regset sh_corefile_gregset =
2192 {
2193 NULL,
2194 sh_corefile_supply_regset,
2195 sh_corefile_collect_regset
2196 };
2197
2198 static const struct regset sh_corefile_fpregset =
2199 {
2200 NULL,
2201 sh_corefile_supply_regset,
2202 sh_corefile_collect_regset
2203 };
2204
2205 static void
2206 sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2207 iterate_over_regset_sections_cb *cb,
2208 void *cb_data,
2209 const struct regcache *regcache)
2210 {
2211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2212
2213 if (tdep->core_gregmap != NULL)
2214 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset,
2215 &sh_corefile_gregset, NULL, cb_data);
2216
2217 if (tdep->core_fpregmap != NULL)
2218 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset,
2219 &sh_corefile_fpregset, NULL, cb_data);
2220 }
2221
2222 /* This is the implementation of gdbarch method
2223 return_in_first_hidden_param_p. */
2224
2225 static int
2226 sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2227 struct type *type)
2228 {
2229 return 0;
2230 }
2231
2232 \f
2233
2234 static struct gdbarch *
2235 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2236 {
2237 struct gdbarch *gdbarch;
2238 struct gdbarch_tdep *tdep;
2239
2240 /* If there is already a candidate, use it. */
2241 arches = gdbarch_list_lookup_by_info (arches, &info);
2242 if (arches != NULL)
2243 return arches->gdbarch;
2244
2245 /* None found, create a new architecture from the information
2246 provided. */
2247 tdep = XCNEW (struct gdbarch_tdep);
2248 gdbarch = gdbarch_alloc (&info, tdep);
2249
2250 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2251 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2252 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2253 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2254
2255 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2256 set_gdbarch_wchar_signed (gdbarch, 0);
2257
2258 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2259 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2260 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2261 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2262
2263 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2264 set_gdbarch_sp_regnum (gdbarch, 15);
2265 set_gdbarch_pc_regnum (gdbarch, 16);
2266 set_gdbarch_fp0_regnum (gdbarch, -1);
2267 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2268
2269 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2270 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2271
2272 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
2273 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
2274
2275 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2276
2277 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2278
2279 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2280 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2281
2282 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2283 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2284 sh_return_in_first_hidden_param_p);
2285
2286 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2287
2288 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2289 frame_base_set_default (gdbarch, &sh_frame_base);
2290
2291 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
2292
2293 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2294
2295 set_gdbarch_iterate_over_regset_sections
2296 (gdbarch, sh_iterate_over_regset_sections);
2297
2298 switch (info.bfd_arch_info->mach)
2299 {
2300 case bfd_mach_sh:
2301 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2302 break;
2303
2304 case bfd_mach_sh2:
2305 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2306 break;
2307
2308 case bfd_mach_sh2e:
2309 /* doubles on sh2e and sh3e are actually 4 byte. */
2310 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2311 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2312
2313 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2314 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2315 set_gdbarch_fp0_regnum (gdbarch, 25);
2316 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2317 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2318 break;
2319
2320 case bfd_mach_sh2a:
2321 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2322 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2323 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2324
2325 set_gdbarch_fp0_regnum (gdbarch, 25);
2326 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2327 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2328 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2329 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2330 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2331 break;
2332
2333 case bfd_mach_sh2a_nofpu:
2334 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2335 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2336
2337 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2338 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2339 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2340 break;
2341
2342 case bfd_mach_sh_dsp:
2343 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2344 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2345 break;
2346
2347 case bfd_mach_sh3:
2348 case bfd_mach_sh3_nommu:
2349 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2350 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
2351 break;
2352
2353 case bfd_mach_sh3e:
2354 case bfd_mach_sh2a_or_sh3e:
2355 /* doubles on sh2e and sh3e are actually 4 byte. */
2356 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2357 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
2358
2359 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
2360 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2361 set_gdbarch_fp0_regnum (gdbarch, 25);
2362 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2363 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2364 break;
2365
2366 case bfd_mach_sh3_dsp:
2367 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
2368 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2369 break;
2370
2371 case bfd_mach_sh4:
2372 case bfd_mach_sh4a:
2373 case bfd_mach_sh2a_or_sh4:
2374 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
2375 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
2376 set_gdbarch_fp0_regnum (gdbarch, 25);
2377 set_gdbarch_num_pseudo_regs (gdbarch, 13);
2378 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2379 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2380 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2381 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2382 break;
2383
2384 case bfd_mach_sh4_nofpu:
2385 case bfd_mach_sh4a_nofpu:
2386 case bfd_mach_sh4_nommu_nofpu:
2387 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2388 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2389 break;
2390
2391 case bfd_mach_sh4al_dsp:
2392 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2393 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2394 break;
2395
2396 default:
2397 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2398 break;
2399 }
2400
2401 /* Hook in ABI-specific overrides, if they have been registered. */
2402 gdbarch_init_osabi (info, gdbarch);
2403
2404 dwarf2_append_unwinders (gdbarch);
2405 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
2406 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
2407
2408 return gdbarch;
2409 }
2410
2411 void _initialize_sh_tdep ();
2412 void
2413 _initialize_sh_tdep ()
2414 {
2415 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
2416
2417 add_basic_prefix_cmd ("sh", no_class, "SH specific commands.",
2418 &setshcmdlist, "set sh ", 0, &setlist);
2419 add_show_prefix_cmd ("sh", no_class, "SH specific commands.",
2420 &showshcmdlist, "show sh ", 0, &showlist);
2421
2422 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2423 &sh_active_calling_convention,
2424 _("Set calling convention used when calling target "
2425 "functions from GDB."),
2426 _("Show calling convention used when calling target "
2427 "functions from GDB."),
2428 _("gcc - Use GCC calling convention (default).\n"
2429 "renesas - Enforce Renesas calling convention."),
2430 NULL, NULL,
2431 &setshcmdlist, &showshcmdlist);
2432 }