]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
33
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
36
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
39
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
48
49 struct ext_elf32_fdpic_loadseg
50 {
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57 };
58
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66 };
67
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
72 {
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79 };
80
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88 };
89
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
98 {
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
128
129 if (nsegs <= 0)
130 return NULL;
131
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
173 }
174
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
177 }
178
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
181 typedef gdb_byte ext_ptr[4];
182
183 struct ext_elf32_fdpic_loadaddr
184 {
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187 };
188
189 struct ext_link_map
190 {
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201 };
202
203 /* Link map info to include in an allocated so_list entry. */
204
205 struct lm_info_frv : public lm_info_base
206 {
207 ~lm_info_frv ()
208 {
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
212 }
213
214 /* The loadmap, digested into an easier to use form. */
215 int_elf32_fdpic_loadmap *map = NULL;
216 /* The GOT address for this link map entry. */
217 CORE_ADDR got_value = 0;
218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
219 CORE_ADDR lm_addr = 0;
220
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
223
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
234 };
235
236 /* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
240 static lm_info_frv *main_executable_lm_info;
241
242 static void frv_relocate_main_executable (void);
243 static CORE_ADDR main_got (void);
244 static int enable_break2 (void);
245
246 /* Implement the "open_symbol_file_object" target_so_ops method. */
247
248 static int
249 open_symbol_file_object (int from_tty)
250 {
251 /* Unimplemented. */
252 return 0;
253 }
254
255 /* Cached value for lm_base(), below. */
256 static CORE_ADDR lm_base_cache = 0;
257
258 /* Link map address for main module. */
259 static CORE_ADDR main_lm_addr = 0;
260
261 /* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
268
269 static CORE_ADDR
270 lm_base (void)
271 {
272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
273 struct bound_minimal_symbol got_sym;
274 CORE_ADDR addr;
275 gdb_byte buf[FRV_PTR_SIZE];
276
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
284
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
288
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
290 symfile_objfile);
291 if (got_sym.minsym == 0)
292 {
293 if (solib_frv_debug)
294 fprintf_unfiltered (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
296 return 0;
297 }
298
299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
300
301 if (solib_frv_debug)
302 fprintf_unfiltered (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
304 hex_string_custom (addr, 8));
305
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
309
310 if (solib_frv_debug)
311 fprintf_unfiltered (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
313 hex_string_custom (lm_base_cache, 8));
314
315 return lm_base_cache;
316 }
317
318
319 /* Implement the "current_sos" target_so_ops method. */
320
321 static struct so_list *
322 frv_current_sos (void)
323 {
324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
328
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
333
334 Note that the relocation of the main executable is also performed
335 by solib_create_inferior_hook(), however, in the case of core
336 files, this hook is called too late in order to be of benefit to
337 solib_add. solib_add eventually calls this this function,
338 frv_current_sos, and also precedes the call to
339 solib_create_inferior_hook(). (See post_create_inferior() in
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
343
344 /* Fetch the GOT corresponding to the main executable. */
345 mgot = main_got ();
346
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
349
350 /* We have at least one link map entry. Fetch the lot of them,
351 building the solist chain. */
352 while (lm_addr)
353 {
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
356
357 if (solib_frv_debug)
358 fprintf_unfiltered (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
360 hex_string_custom (lm_addr, 8));
361
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
364 {
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
367 break;
368 }
369
370 got_addr
371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
378 {
379 int errcode;
380 gdb::unique_xmalloc_ptr<char> name_buf;
381 struct int_elf32_fdpic_loadmap *loadmap;
382 struct so_list *sop;
383 CORE_ADDR addr;
384
385 /* Fetch the load map address. */
386 addr = extract_unsigned_integer (lm_buf.l_addr.map,
387 sizeof lm_buf.l_addr.map,
388 byte_order);
389 loadmap = fetch_loadmap (addr);
390 if (loadmap == NULL)
391 {
392 warning (_("frv_current_sos: Unable to fetch load map. "
393 "Shared object chain may be incomplete."));
394 break;
395 }
396
397 sop = XCNEW (struct so_list);
398 lm_info_frv *li = new lm_info_frv;
399 sop->lm_info = li;
400 li->map = loadmap;
401 li->got_value = got_addr;
402 li->lm_addr = lm_addr;
403 /* Fetch the name. */
404 addr = extract_unsigned_integer (lm_buf.l_name,
405 sizeof (lm_buf.l_name),
406 byte_order);
407 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
408 &errcode);
409
410 if (solib_frv_debug)
411 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
412 name_buf.get ());
413
414 if (errcode != 0)
415 warning (_("Can't read pathname for link map entry: %s."),
416 safe_strerror (errcode));
417 else
418 {
419 strncpy (sop->so_name, name_buf.get (),
420 SO_NAME_MAX_PATH_SIZE - 1);
421 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
422 strcpy (sop->so_original_name, sop->so_name);
423 }
424
425 *sos_next_ptr = sop;
426 sos_next_ptr = &sop->next;
427 }
428 else
429 {
430 main_lm_addr = lm_addr;
431 }
432
433 lm_addr = extract_unsigned_integer (lm_buf.l_next,
434 sizeof (lm_buf.l_next), byte_order);
435 }
436
437 enable_break2 ();
438
439 return sos_head;
440 }
441
442
443 /* Return 1 if PC lies in the dynamic symbol resolution code of the
444 run time loader. */
445
446 static CORE_ADDR interp_text_sect_low;
447 static CORE_ADDR interp_text_sect_high;
448 static CORE_ADDR interp_plt_sect_low;
449 static CORE_ADDR interp_plt_sect_high;
450
451 static int
452 frv_in_dynsym_resolve_code (CORE_ADDR pc)
453 {
454 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
455 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
456 || in_plt_section (pc));
457 }
458
459 /* Given a loadmap and an address, return the displacement needed
460 to relocate the address. */
461
462 static CORE_ADDR
463 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
464 CORE_ADDR addr)
465 {
466 int seg;
467
468 for (seg = 0; seg < map->nsegs; seg++)
469 {
470 if (map->segs[seg].p_vaddr <= addr
471 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
472 {
473 return map->segs[seg].addr - map->segs[seg].p_vaddr;
474 }
475 }
476
477 return 0;
478 }
479
480 /* Print a warning about being unable to set the dynamic linker
481 breakpoint. */
482
483 static void
484 enable_break_failure_warning (void)
485 {
486 warning (_("Unable to find dynamic linker breakpoint function.\n"
487 "GDB will be unable to debug shared library initializers\n"
488 "and track explicitly loaded dynamic code."));
489 }
490
491 /* Helper function for gdb_bfd_lookup_symbol. */
492
493 static int
494 cmp_name (const asymbol *sym, const void *data)
495 {
496 return (strcmp (sym->name, (const char *) data) == 0);
497 }
498
499 /* Arrange for dynamic linker to hit breakpoint.
500
501 The dynamic linkers has, as part of its debugger interface, support
502 for arranging for the inferior to hit a breakpoint after mapping in
503 the shared libraries. This function enables that breakpoint.
504
505 On the FR-V, using the shared library (FDPIC) ABI, the symbol
506 _dl_debug_addr points to the r_debug struct which contains
507 a field called r_brk. r_brk is the address of the function
508 descriptor upon which a breakpoint must be placed. Being a
509 function descriptor, we must extract the entry point in order
510 to set the breakpoint.
511
512 Our strategy will be to get the .interp section from the
513 executable. This section will provide us with the name of the
514 interpreter. We'll open the interpreter and then look up
515 the address of _dl_debug_addr. We then relocate this address
516 using the interpreter's loadmap. Once the relocated address
517 is known, we fetch the value (address) corresponding to r_brk
518 and then use that value to fetch the entry point of the function
519 we're interested in. */
520
521 static int enable_break2_done = 0;
522
523 static int
524 enable_break2 (void)
525 {
526 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
527 asection *interp_sect;
528
529 if (enable_break2_done)
530 return 1;
531
532 interp_text_sect_low = interp_text_sect_high = 0;
533 interp_plt_sect_low = interp_plt_sect_high = 0;
534
535 /* Find the .interp section; if not found, warn the user and drop
536 into the old breakpoint at symbol code. */
537 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
538 if (interp_sect)
539 {
540 unsigned int interp_sect_size;
541 char *buf;
542 int status;
543 CORE_ADDR addr, interp_loadmap_addr;
544 gdb_byte addr_buf[FRV_PTR_SIZE];
545 struct int_elf32_fdpic_loadmap *ldm;
546
547 /* Read the contents of the .interp section into a local buffer;
548 the contents specify the dynamic linker this program uses. */
549 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
550 buf = (char *) alloca (interp_sect_size);
551 bfd_get_section_contents (exec_bfd, interp_sect,
552 buf, 0, interp_sect_size);
553
554 /* Now we need to figure out where the dynamic linker was
555 loaded so that we can load its symbols and place a breakpoint
556 in the dynamic linker itself.
557
558 This address is stored on the stack. However, I've been unable
559 to find any magic formula to find it for Solaris (appears to
560 be trivial on GNU/Linux). Therefore, we have to try an alternate
561 mechanism to find the dynamic linker's base address. */
562
563 gdb_bfd_ref_ptr tmp_bfd;
564 try
565 {
566 tmp_bfd = solib_bfd_open (buf);
567 }
568 catch (const gdb_exception &ex)
569 {
570 }
571
572 if (tmp_bfd == NULL)
573 {
574 enable_break_failure_warning ();
575 return 0;
576 }
577
578 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
579 &interp_loadmap_addr, 0);
580 if (status < 0)
581 {
582 warning (_("Unable to determine dynamic linker loadmap address."));
583 enable_break_failure_warning ();
584 return 0;
585 }
586
587 if (solib_frv_debug)
588 fprintf_unfiltered (gdb_stdlog,
589 "enable_break: interp_loadmap_addr = %s\n",
590 hex_string_custom (interp_loadmap_addr, 8));
591
592 ldm = fetch_loadmap (interp_loadmap_addr);
593 if (ldm == NULL)
594 {
595 warning (_("Unable to load dynamic linker loadmap at address %s."),
596 hex_string_custom (interp_loadmap_addr, 8));
597 enable_break_failure_warning ();
598 return 0;
599 }
600
601 /* Record the relocated start and end address of the dynamic linker
602 text and plt section for svr4_in_dynsym_resolve_code. */
603 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
604 if (interp_sect)
605 {
606 interp_text_sect_low
607 = bfd_section_vma (tmp_bfd.get (), interp_sect);
608 interp_text_sect_low
609 += displacement_from_map (ldm, interp_text_sect_low);
610 interp_text_sect_high
611 = interp_text_sect_low + bfd_section_size (tmp_bfd.get (),
612 interp_sect);
613 }
614 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
615 if (interp_sect)
616 {
617 interp_plt_sect_low =
618 bfd_section_vma (tmp_bfd.get (), interp_sect);
619 interp_plt_sect_low
620 += displacement_from_map (ldm, interp_plt_sect_low);
621 interp_plt_sect_high =
622 interp_plt_sect_low + bfd_section_size (tmp_bfd.get (),
623 interp_sect);
624 }
625
626 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
627
628 if (addr == 0)
629 {
630 warning (_("Could not find symbol _dl_debug_addr "
631 "in dynamic linker"));
632 enable_break_failure_warning ();
633 return 0;
634 }
635
636 if (solib_frv_debug)
637 fprintf_unfiltered (gdb_stdlog,
638 "enable_break: _dl_debug_addr "
639 "(prior to relocation) = %s\n",
640 hex_string_custom (addr, 8));
641
642 addr += displacement_from_map (ldm, addr);
643
644 if (solib_frv_debug)
645 fprintf_unfiltered (gdb_stdlog,
646 "enable_break: _dl_debug_addr "
647 "(after relocation) = %s\n",
648 hex_string_custom (addr, 8));
649
650 /* Fetch the address of the r_debug struct. */
651 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
652 {
653 warning (_("Unable to fetch contents of _dl_debug_addr "
654 "(at address %s) from dynamic linker"),
655 hex_string_custom (addr, 8));
656 }
657 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
658
659 if (solib_frv_debug)
660 fprintf_unfiltered (gdb_stdlog,
661 "enable_break: _dl_debug_addr[0..3] = %s\n",
662 hex_string_custom (addr, 8));
663
664 /* If it's zero, then the ldso hasn't initialized yet, and so
665 there are no shared libs yet loaded. */
666 if (addr == 0)
667 {
668 if (solib_frv_debug)
669 fprintf_unfiltered (gdb_stdlog,
670 "enable_break: ldso not yet initialized\n");
671 /* Do not warn, but mark to run again. */
672 return 0;
673 }
674
675 /* Fetch the r_brk field. It's 8 bytes from the start of
676 _dl_debug_addr. */
677 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
678 {
679 warning (_("Unable to fetch _dl_debug_addr->r_brk "
680 "(at address %s) from dynamic linker"),
681 hex_string_custom (addr + 8, 8));
682 enable_break_failure_warning ();
683 return 0;
684 }
685 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
686
687 /* Now fetch the function entry point. */
688 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
689 {
690 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
691 "(at address %s) from dynamic linker"),
692 hex_string_custom (addr, 8));
693 enable_break_failure_warning ();
694 return 0;
695 }
696 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
697
698 /* We're done with the loadmap. */
699 xfree (ldm);
700
701 /* Remove all the solib event breakpoints. Their addresses
702 may have changed since the last time we ran the program. */
703 remove_solib_event_breakpoints ();
704
705 /* Now (finally!) create the solib breakpoint. */
706 create_solib_event_breakpoint (target_gdbarch (), addr);
707
708 enable_break2_done = 1;
709
710 return 1;
711 }
712
713 /* Tell the user we couldn't set a dynamic linker breakpoint. */
714 enable_break_failure_warning ();
715
716 /* Failure return. */
717 return 0;
718 }
719
720 static int
721 enable_break (void)
722 {
723 asection *interp_sect;
724 CORE_ADDR entry_point;
725
726 if (symfile_objfile == NULL)
727 {
728 if (solib_frv_debug)
729 fprintf_unfiltered (gdb_stdlog,
730 "enable_break: No symbol file found.\n");
731 return 0;
732 }
733
734 if (!entry_point_address_query (&entry_point))
735 {
736 if (solib_frv_debug)
737 fprintf_unfiltered (gdb_stdlog,
738 "enable_break: Symbol file has no entry point.\n");
739 return 0;
740 }
741
742 /* Check for the presence of a .interp section. If there is no
743 such section, the executable is statically linked. */
744
745 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
746
747 if (interp_sect == NULL)
748 {
749 if (solib_frv_debug)
750 fprintf_unfiltered (gdb_stdlog,
751 "enable_break: No .interp section found.\n");
752 return 0;
753 }
754
755 create_solib_event_breakpoint (target_gdbarch (), entry_point);
756
757 if (solib_frv_debug)
758 fprintf_unfiltered (gdb_stdlog,
759 "enable_break: solib event breakpoint "
760 "placed at entry point: %s\n",
761 hex_string_custom (entry_point, 8));
762 return 1;
763 }
764
765 static void
766 frv_relocate_main_executable (void)
767 {
768 int status;
769 CORE_ADDR exec_addr, interp_addr;
770 struct int_elf32_fdpic_loadmap *ldm;
771 int changed;
772 struct obj_section *osect;
773
774 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
775 &interp_addr, &exec_addr);
776
777 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
778 {
779 /* Not using FDPIC ABI, so do nothing. */
780 return;
781 }
782
783 /* Fetch the loadmap located at ``exec_addr''. */
784 ldm = fetch_loadmap (exec_addr);
785 if (ldm == NULL)
786 error (_("Unable to load the executable's loadmap."));
787
788 delete main_executable_lm_info;
789 main_executable_lm_info = new lm_info_frv;
790 main_executable_lm_info->map = ldm;
791
792 gdb::unique_xmalloc_ptr<struct section_offsets> new_offsets
793 (XCNEWVEC (struct section_offsets, symfile_objfile->num_sections));
794 changed = 0;
795
796 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
797 {
798 CORE_ADDR orig_addr, addr, offset;
799 int osect_idx;
800 int seg;
801
802 osect_idx = osect - symfile_objfile->sections;
803
804 /* Current address of section. */
805 addr = obj_section_addr (osect);
806 /* Offset from where this section started. */
807 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
808 /* Original address prior to any past relocations. */
809 orig_addr = addr - offset;
810
811 for (seg = 0; seg < ldm->nsegs; seg++)
812 {
813 if (ldm->segs[seg].p_vaddr <= orig_addr
814 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
815 {
816 new_offsets->offsets[osect_idx]
817 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
818
819 if (new_offsets->offsets[osect_idx] != offset)
820 changed = 1;
821 break;
822 }
823 }
824 }
825
826 if (changed)
827 objfile_relocate (symfile_objfile, new_offsets.get ());
828
829 /* Now that symfile_objfile has been relocated, we can compute the
830 GOT value and stash it away. */
831 main_executable_lm_info->got_value = main_got ();
832 }
833
834 /* Implement the "create_inferior_hook" target_solib_ops method.
835
836 For the FR-V shared library ABI (FDPIC), the main executable needs
837 to be relocated. The shared library breakpoints also need to be
838 enabled. */
839
840 static void
841 frv_solib_create_inferior_hook (int from_tty)
842 {
843 /* Relocate main executable. */
844 frv_relocate_main_executable ();
845
846 /* Enable shared library breakpoints. */
847 if (!enable_break ())
848 {
849 warning (_("shared library handler failed to enable breakpoint"));
850 return;
851 }
852 }
853
854 static void
855 frv_clear_solib (void)
856 {
857 lm_base_cache = 0;
858 enable_break2_done = 0;
859 main_lm_addr = 0;
860
861 delete main_executable_lm_info;
862 main_executable_lm_info = NULL;
863 }
864
865 static void
866 frv_free_so (struct so_list *so)
867 {
868 lm_info_frv *li = (lm_info_frv *) so->lm_info;
869
870 delete li;
871 }
872
873 static void
874 frv_relocate_section_addresses (struct so_list *so,
875 struct target_section *sec)
876 {
877 int seg;
878 lm_info_frv *li = (lm_info_frv *) so->lm_info;
879 int_elf32_fdpic_loadmap *map = li->map;
880
881 for (seg = 0; seg < map->nsegs; seg++)
882 {
883 if (map->segs[seg].p_vaddr <= sec->addr
884 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
885 {
886 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
887
888 sec->addr += displ;
889 sec->endaddr += displ;
890 break;
891 }
892 }
893 }
894
895 /* Return the GOT address associated with the main executable. Return
896 0 if it can't be found. */
897
898 static CORE_ADDR
899 main_got (void)
900 {
901 struct bound_minimal_symbol got_sym;
902
903 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
904 NULL, symfile_objfile);
905 if (got_sym.minsym == 0)
906 return 0;
907
908 return BMSYMBOL_VALUE_ADDRESS (got_sym);
909 }
910
911 /* Find the global pointer for the given function address ADDR. */
912
913 CORE_ADDR
914 frv_fdpic_find_global_pointer (CORE_ADDR addr)
915 {
916 struct so_list *so;
917
918 so = master_so_list ();
919 while (so)
920 {
921 int seg;
922 lm_info_frv *li = (lm_info_frv *) so->lm_info;
923 int_elf32_fdpic_loadmap *map = li->map;
924
925 for (seg = 0; seg < map->nsegs; seg++)
926 {
927 if (map->segs[seg].addr <= addr
928 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
929 return li->got_value;
930 }
931
932 so = so->next;
933 }
934
935 /* Didn't find it in any of the shared objects. So assume it's in the
936 main executable. */
937 return main_got ();
938 }
939
940 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
941 static CORE_ADDR find_canonical_descriptor_in_load_object
942 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
943
944 /* Given a function entry point, attempt to find the canonical descriptor
945 associated with that entry point. Return 0 if no canonical descriptor
946 could be found. */
947
948 CORE_ADDR
949 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
950 {
951 const char *name;
952 CORE_ADDR addr;
953 CORE_ADDR got_value;
954 struct symbol *sym;
955
956 /* Fetch the corresponding global pointer for the entry point. */
957 got_value = frv_fdpic_find_global_pointer (entry_point);
958
959 /* Attempt to find the name of the function. If the name is available,
960 it'll be used as an aid in finding matching functions in the dynamic
961 symbol table. */
962 sym = find_pc_function (entry_point);
963 if (sym == 0)
964 name = 0;
965 else
966 name = SYMBOL_LINKAGE_NAME (sym);
967
968 /* Check the main executable. */
969 addr = find_canonical_descriptor_in_load_object
970 (entry_point, got_value, name, symfile_objfile->obfd,
971 main_executable_lm_info);
972
973 /* If descriptor not found via main executable, check each load object
974 in list of shared objects. */
975 if (addr == 0)
976 {
977 struct so_list *so;
978
979 so = master_so_list ();
980 while (so)
981 {
982 lm_info_frv *li = (lm_info_frv *) so->lm_info;
983
984 addr = find_canonical_descriptor_in_load_object
985 (entry_point, got_value, name, so->abfd, li);
986
987 if (addr != 0)
988 break;
989
990 so = so->next;
991 }
992 }
993
994 return addr;
995 }
996
997 static CORE_ADDR
998 find_canonical_descriptor_in_load_object
999 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1000 lm_info_frv *lm)
1001 {
1002 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1003 arelent *rel;
1004 unsigned int i;
1005 CORE_ADDR addr = 0;
1006
1007 /* Nothing to do if no bfd. */
1008 if (abfd == 0)
1009 return 0;
1010
1011 /* Nothing to do if no link map. */
1012 if (lm == 0)
1013 return 0;
1014
1015 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1016 (More about this later.) But in order to fetch the relocs, we
1017 need to first fetch the dynamic symbols. These symbols need to
1018 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1019 works. (See the comments in the declaration of struct lm_info
1020 for more information.) */
1021 if (lm->dyn_syms == NULL)
1022 {
1023 long storage_needed;
1024 unsigned int number_of_symbols;
1025
1026 /* Determine amount of space needed to hold the dynamic symbol table. */
1027 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1028
1029 /* If there are no dynamic symbols, there's nothing to do. */
1030 if (storage_needed <= 0)
1031 return 0;
1032
1033 /* Allocate space for the dynamic symbol table. */
1034 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1035
1036 /* Fetch the dynamic symbol table. */
1037 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1038
1039 if (number_of_symbols == 0)
1040 return 0;
1041 }
1042
1043 /* Fetch the dynamic relocations if not already cached. */
1044 if (lm->dyn_relocs == NULL)
1045 {
1046 long storage_needed;
1047
1048 /* Determine amount of space needed to hold the dynamic relocs. */
1049 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1050
1051 /* Bail out if there are no dynamic relocs. */
1052 if (storage_needed <= 0)
1053 return 0;
1054
1055 /* Allocate space for the relocs. */
1056 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1057
1058 /* Fetch the dynamic relocs. */
1059 lm->dyn_reloc_count
1060 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1061 }
1062
1063 /* Search the dynamic relocs. */
1064 for (i = 0; i < lm->dyn_reloc_count; i++)
1065 {
1066 rel = lm->dyn_relocs[i];
1067
1068 /* Relocs of interest are those which meet the following
1069 criteria:
1070
1071 - the names match (assuming the caller could provide
1072 a name which matches ``entry_point'').
1073 - the relocation type must be R_FRV_FUNCDESC. Relocs
1074 of this type are used (by the dynamic linker) to
1075 look up the address of a canonical descriptor (allocating
1076 it if need be) and initializing the GOT entry referred
1077 to by the offset to the address of the descriptor.
1078
1079 These relocs of interest may be used to obtain a
1080 candidate descriptor by first adjusting the reloc's
1081 address according to the link map and then dereferencing
1082 this address (which is a GOT entry) to obtain a descriptor
1083 address. */
1084 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1085 && rel->howto->type == R_FRV_FUNCDESC)
1086 {
1087 gdb_byte buf [FRV_PTR_SIZE];
1088
1089 /* Compute address of address of candidate descriptor. */
1090 addr = rel->address + displacement_from_map (lm->map, rel->address);
1091
1092 /* Fetch address of candidate descriptor. */
1093 if (target_read_memory (addr, buf, sizeof buf) != 0)
1094 continue;
1095 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1096
1097 /* Check for matching entry point. */
1098 if (target_read_memory (addr, buf, sizeof buf) != 0)
1099 continue;
1100 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1101 != entry_point)
1102 continue;
1103
1104 /* Check for matching got value. */
1105 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1106 continue;
1107 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1108 != got_value)
1109 continue;
1110
1111 /* Match was successful! Exit loop. */
1112 break;
1113 }
1114 }
1115
1116 return addr;
1117 }
1118
1119 /* Given an objfile, return the address of its link map. This value is
1120 needed for TLS support. */
1121 CORE_ADDR
1122 frv_fetch_objfile_link_map (struct objfile *objfile)
1123 {
1124 struct so_list *so;
1125
1126 /* Cause frv_current_sos() to be run if it hasn't been already. */
1127 if (main_lm_addr == 0)
1128 solib_add (0, 0, 1);
1129
1130 /* frv_current_sos() will set main_lm_addr for the main executable. */
1131 if (objfile == symfile_objfile)
1132 return main_lm_addr;
1133
1134 /* The other link map addresses may be found by examining the list
1135 of shared libraries. */
1136 for (so = master_so_list (); so; so = so->next)
1137 {
1138 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1139
1140 if (so->objfile == objfile)
1141 return li->lm_addr;
1142 }
1143
1144 /* Not found! */
1145 return 0;
1146 }
1147
1148 struct target_so_ops frv_so_ops;
1149
1150 void
1151 _initialize_frv_solib (void)
1152 {
1153 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1154 frv_so_ops.free_so = frv_free_so;
1155 frv_so_ops.clear_solib = frv_clear_solib;
1156 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1157 frv_so_ops.current_sos = frv_current_sos;
1158 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1159 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1160 frv_so_ops.bfd_open = solib_bfd_open;
1161
1162 /* Debug this file's internals. */
1163 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1164 &solib_frv_debug, _("\
1165 Set internal debugging of shared library code for FR-V."), _("\
1166 Show internal debugging of shared library code for FR-V."), _("\
1167 When non-zero, FR-V solib specific internal debugging is enabled."),
1168 NULL,
1169 NULL, /* FIXME: i18n: */
1170 &setdebuglist, &showdebuglist);
1171 }