]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-frv.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "solib.h"
25 #include "solist.h"
26 #include "frv-tdep.h"
27 #include "objfiles.h"
28 #include "symtab.h"
29 #include "language.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "elf/frv.h"
33 #include "exceptions.h"
34
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
37
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
40
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
42
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
49
50 struct ext_elf32_fdpic_loadseg
51 {
52 /* Core address to which the segment is mapped. */
53 ext_Elf32_Addr addr;
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
58 };
59
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
64 ext_Elf32_Half nsegs;
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
67 };
68
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
73 {
74 /* Core address to which the segment is mapped. */
75 CORE_ADDR addr;
76 /* VMA recorded in the program header. */
77 CORE_ADDR p_vaddr;
78 /* Size of this segment in memory. */
79 long p_memsz;
80 };
81
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
84 int version;
85 /* Number of segments in this map. */
86 int nsegs;
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
89 };
90
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
96
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
99 {
100 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
102 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
103 struct int_elf32_fdpic_loadmap *int_ldmbuf;
104 int ext_ldmbuf_size, int_ldmbuf_size;
105 int version, seg, nsegs;
106
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
109 sizeof ext_ldmbuf_partial))
110 {
111 /* Problem reading the target's memory. */
112 return NULL;
113 }
114
115 /* Extract the version. */
116 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
117 sizeof ext_ldmbuf_partial.version,
118 byte_order);
119 if (version != 0)
120 {
121 /* We only handle version 0. */
122 return NULL;
123 }
124
125 /* Extract the number of segments. */
126 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
127 sizeof ext_ldmbuf_partial.nsegs,
128 byte_order);
129
130 if (nsegs <= 0)
131 return NULL;
132
133 /* Allocate space for the complete (external) loadmap. */
134 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
135 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
136 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
137
138 /* Copy over the portion of the loadmap that's already been read. */
139 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
140
141 /* Read the rest of the loadmap from the target. */
142 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
143 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
144 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
145 {
146 /* Couldn't read rest of the loadmap. */
147 xfree (ext_ldmbuf);
148 return NULL;
149 }
150
151 /* Allocate space into which to put information extract from the
152 external loadsegs. I.e, allocate the internal loadsegs. */
153 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
154 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
155 int_ldmbuf = xmalloc (int_ldmbuf_size);
156
157 /* Place extracted information in internal structs. */
158 int_ldmbuf->version = version;
159 int_ldmbuf->nsegs = nsegs;
160 for (seg = 0; seg < nsegs; seg++)
161 {
162 int_ldmbuf->segs[seg].addr
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
164 sizeof (ext_ldmbuf->segs[seg].addr),
165 byte_order);
166 int_ldmbuf->segs[seg].p_vaddr
167 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
168 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
169 byte_order);
170 int_ldmbuf->segs[seg].p_memsz
171 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
172 sizeof (ext_ldmbuf->segs[seg].p_memsz),
173 byte_order);
174 }
175
176 xfree (ext_ldmbuf);
177 return int_ldmbuf;
178 }
179
180 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
181
182 typedef gdb_byte ext_ptr[4];
183
184 struct ext_elf32_fdpic_loadaddr
185 {
186 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
187 ext_ptr got_value; /* void *got_value; */
188 };
189
190 struct ext_link_map
191 {
192 struct ext_elf32_fdpic_loadaddr l_addr;
193
194 /* Absolute file name object was found in. */
195 ext_ptr l_name; /* char *l_name; */
196
197 /* Dynamic section of the shared object. */
198 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
199
200 /* Chain of loaded objects. */
201 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
202 };
203
204 /* Link map info to include in an allocated so_list entry */
205
206 struct lm_info
207 {
208 /* The loadmap, digested into an easier to use form. */
209 struct int_elf32_fdpic_loadmap *map;
210 /* The GOT address for this link map entry. */
211 CORE_ADDR got_value;
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
213 CORE_ADDR lm_addr;
214
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
217
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
225 asymbol **dyn_syms;
226 arelent **dyn_relocs;
227 int dyn_reloc_count; /* number of dynamic relocs. */
228
229 };
230
231 /* The load map, got value, etc. are not available from the chain
232 of loaded shared objects. ``main_executable_lm_info'' provides
233 a way to get at this information so that it doesn't need to be
234 frequently recomputed. Initialized by frv_relocate_main_executable(). */
235 static struct lm_info *main_executable_lm_info;
236
237 static void frv_relocate_main_executable (void);
238 static CORE_ADDR main_got (void);
239 static int enable_break2 (void);
240
241 /*
242
243 LOCAL FUNCTION
244
245 bfd_lookup_symbol -- lookup the value for a specific symbol
246
247 SYNOPSIS
248
249 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
250
251 DESCRIPTION
252
253 An expensive way to lookup the value of a single symbol for
254 bfd's that are only temporary anyway. This is used by the
255 shared library support to find the address of the debugger
256 interface structures in the shared library.
257
258 Note that 0 is specifically allowed as an error return (no
259 such symbol).
260 */
261
262 static CORE_ADDR
263 bfd_lookup_symbol (bfd *abfd, char *symname)
264 {
265 long storage_needed;
266 asymbol *sym;
267 asymbol **symbol_table;
268 unsigned int number_of_symbols;
269 unsigned int i;
270 struct cleanup *back_to;
271 CORE_ADDR symaddr = 0;
272
273 storage_needed = bfd_get_symtab_upper_bound (abfd);
274
275 if (storage_needed > 0)
276 {
277 symbol_table = (asymbol **) xmalloc (storage_needed);
278 back_to = make_cleanup (xfree, symbol_table);
279 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
280
281 for (i = 0; i < number_of_symbols; i++)
282 {
283 sym = *symbol_table++;
284 if (strcmp (sym->name, symname) == 0)
285 {
286 /* Bfd symbols are section relative. */
287 symaddr = sym->value + sym->section->vma;
288 break;
289 }
290 }
291 do_cleanups (back_to);
292 }
293
294 if (symaddr)
295 return symaddr;
296
297 /* Look for the symbol in the dynamic string table too. */
298
299 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
300
301 if (storage_needed > 0)
302 {
303 symbol_table = (asymbol **) xmalloc (storage_needed);
304 back_to = make_cleanup (xfree, symbol_table);
305 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
306
307 for (i = 0; i < number_of_symbols; i++)
308 {
309 sym = *symbol_table++;
310 if (strcmp (sym->name, symname) == 0)
311 {
312 /* Bfd symbols are section relative. */
313 symaddr = sym->value + sym->section->vma;
314 break;
315 }
316 }
317 do_cleanups (back_to);
318 }
319
320 return symaddr;
321 }
322
323
324 /*
325
326 LOCAL FUNCTION
327
328 open_symbol_file_object
329
330 SYNOPSIS
331
332 void open_symbol_file_object (void *from_tty)
333
334 DESCRIPTION
335
336 If no open symbol file, attempt to locate and open the main symbol
337 file.
338
339 If FROM_TTYP dereferences to a non-zero integer, allow messages to
340 be printed. This parameter is a pointer rather than an int because
341 open_symbol_file_object() is called via catch_errors() and
342 catch_errors() requires a pointer argument. */
343
344 static int
345 open_symbol_file_object (void *from_ttyp)
346 {
347 /* Unimplemented. */
348 return 0;
349 }
350
351 /* Cached value for lm_base(), below. */
352 static CORE_ADDR lm_base_cache = 0;
353
354 /* Link map address for main module. */
355 static CORE_ADDR main_lm_addr = 0;
356
357 /* Return the address from which the link map chain may be found. On
358 the FR-V, this may be found in a number of ways. Assuming that the
359 main executable has already been relocated, the easiest way to find
360 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
361 pointer to the start of the link map will be located at the word found
362 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
363 reserve area mandated by the ABI.) */
364
365 static CORE_ADDR
366 lm_base (void)
367 {
368 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
369 struct minimal_symbol *got_sym;
370 CORE_ADDR addr;
371 gdb_byte buf[FRV_PTR_SIZE];
372
373 /* One of our assumptions is that the main executable has been relocated.
374 Bail out if this has not happened. (Note that post_create_inferior()
375 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
376 If we allow this to happen, lm_base_cache will be initialized with
377 a bogus value. */
378 if (main_executable_lm_info == 0)
379 return 0;
380
381 /* If we already have a cached value, return it. */
382 if (lm_base_cache)
383 return lm_base_cache;
384
385 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
386 symfile_objfile);
387 if (got_sym == 0)
388 {
389 if (solib_frv_debug)
390 fprintf_unfiltered (gdb_stdlog,
391 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
392 return 0;
393 }
394
395 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
396
397 if (solib_frv_debug)
398 fprintf_unfiltered (gdb_stdlog,
399 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
400 hex_string_custom (addr, 8));
401
402 if (target_read_memory (addr, buf, sizeof buf) != 0)
403 return 0;
404 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
405
406 if (solib_frv_debug)
407 fprintf_unfiltered (gdb_stdlog,
408 "lm_base: lm_base_cache = %s\n",
409 hex_string_custom (lm_base_cache, 8));
410
411 return lm_base_cache;
412 }
413
414
415 /* LOCAL FUNCTION
416
417 frv_current_sos -- build a list of currently loaded shared objects
418
419 SYNOPSIS
420
421 struct so_list *frv_current_sos ()
422
423 DESCRIPTION
424
425 Build a list of `struct so_list' objects describing the shared
426 objects currently loaded in the inferior. This list does not
427 include an entry for the main executable file.
428
429 Note that we only gather information directly available from the
430 inferior --- we don't examine any of the shared library files
431 themselves. The declaration of `struct so_list' says which fields
432 we provide values for. */
433
434 static struct so_list *
435 frv_current_sos (void)
436 {
437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
438 CORE_ADDR lm_addr, mgot;
439 struct so_list *sos_head = NULL;
440 struct so_list **sos_next_ptr = &sos_head;
441
442 /* Make sure that the main executable has been relocated. This is
443 required in order to find the address of the global offset table,
444 which in turn is used to find the link map info. (See lm_base()
445 for details.)
446
447 Note that the relocation of the main executable is also performed
448 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
449 files, this hook is called too late in order to be of benefit to
450 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
451 frv_current_sos, and also precedes the call to
452 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
453 infcmd.c.) */
454 if (main_executable_lm_info == 0 && core_bfd != NULL)
455 frv_relocate_main_executable ();
456
457 /* Fetch the GOT corresponding to the main executable. */
458 mgot = main_got ();
459
460 /* Locate the address of the first link map struct. */
461 lm_addr = lm_base ();
462
463 /* We have at least one link map entry. Fetch the the lot of them,
464 building the solist chain. */
465 while (lm_addr)
466 {
467 struct ext_link_map lm_buf;
468 CORE_ADDR got_addr;
469
470 if (solib_frv_debug)
471 fprintf_unfiltered (gdb_stdlog,
472 "current_sos: reading link_map entry at %s\n",
473 hex_string_custom (lm_addr, 8));
474
475 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
476 {
477 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
478 break;
479 }
480
481 got_addr
482 = extract_unsigned_integer (lm_buf.l_addr.got_value,
483 sizeof (lm_buf.l_addr.got_value),
484 byte_order);
485 /* If the got_addr is the same as mgotr, then we're looking at the
486 entry for the main executable. By convention, we don't include
487 this in the list of shared objects. */
488 if (got_addr != mgot)
489 {
490 int errcode;
491 char *name_buf;
492 struct int_elf32_fdpic_loadmap *loadmap;
493 struct so_list *sop;
494 CORE_ADDR addr;
495
496 /* Fetch the load map address. */
497 addr = extract_unsigned_integer (lm_buf.l_addr.map,
498 sizeof lm_buf.l_addr.map,
499 byte_order);
500 loadmap = fetch_loadmap (addr);
501 if (loadmap == NULL)
502 {
503 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
504 break;
505 }
506
507 sop = xcalloc (1, sizeof (struct so_list));
508 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
509 sop->lm_info->map = loadmap;
510 sop->lm_info->got_value = got_addr;
511 sop->lm_info->lm_addr = lm_addr;
512 /* Fetch the name. */
513 addr = extract_unsigned_integer (lm_buf.l_name,
514 sizeof (lm_buf.l_name),
515 byte_order);
516 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
517 &errcode);
518
519 if (solib_frv_debug)
520 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
521 name_buf);
522
523 if (errcode != 0)
524 warning (_("Can't read pathname for link map entry: %s."),
525 safe_strerror (errcode));
526 else
527 {
528 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
529 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
530 xfree (name_buf);
531 strcpy (sop->so_original_name, sop->so_name);
532 }
533
534 *sos_next_ptr = sop;
535 sos_next_ptr = &sop->next;
536 }
537 else
538 {
539 main_lm_addr = lm_addr;
540 }
541
542 lm_addr = extract_unsigned_integer (lm_buf.l_next,
543 sizeof (lm_buf.l_next), byte_order);
544 }
545
546 enable_break2 ();
547
548 return sos_head;
549 }
550
551
552 /* Return 1 if PC lies in the dynamic symbol resolution code of the
553 run time loader. */
554
555 static CORE_ADDR interp_text_sect_low;
556 static CORE_ADDR interp_text_sect_high;
557 static CORE_ADDR interp_plt_sect_low;
558 static CORE_ADDR interp_plt_sect_high;
559
560 static int
561 frv_in_dynsym_resolve_code (CORE_ADDR pc)
562 {
563 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
564 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
565 || in_plt_section (pc, NULL));
566 }
567
568 /* Given a loadmap and an address, return the displacement needed
569 to relocate the address. */
570
571 static CORE_ADDR
572 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
573 CORE_ADDR addr)
574 {
575 int seg;
576
577 for (seg = 0; seg < map->nsegs; seg++)
578 {
579 if (map->segs[seg].p_vaddr <= addr
580 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
581 {
582 return map->segs[seg].addr - map->segs[seg].p_vaddr;
583 }
584 }
585
586 return 0;
587 }
588
589 /* Print a warning about being unable to set the dynamic linker
590 breakpoint. */
591
592 static void
593 enable_break_failure_warning (void)
594 {
595 warning (_("Unable to find dynamic linker breakpoint function.\n"
596 "GDB will be unable to debug shared library initializers\n"
597 "and track explicitly loaded dynamic code."));
598 }
599
600 /*
601
602 LOCAL FUNCTION
603
604 enable_break -- arrange for dynamic linker to hit breakpoint
605
606 SYNOPSIS
607
608 int enable_break (void)
609
610 DESCRIPTION
611
612 The dynamic linkers has, as part of its debugger interface, support
613 for arranging for the inferior to hit a breakpoint after mapping in
614 the shared libraries. This function enables that breakpoint.
615
616 On the FR-V, using the shared library (FDPIC) ABI, the symbol
617 _dl_debug_addr points to the r_debug struct which contains
618 a field called r_brk. r_brk is the address of the function
619 descriptor upon which a breakpoint must be placed. Being a
620 function descriptor, we must extract the entry point in order
621 to set the breakpoint.
622
623 Our strategy will be to get the .interp section from the
624 executable. This section will provide us with the name of the
625 interpreter. We'll open the interpreter and then look up
626 the address of _dl_debug_addr. We then relocate this address
627 using the interpreter's loadmap. Once the relocated address
628 is known, we fetch the value (address) corresponding to r_brk
629 and then use that value to fetch the entry point of the function
630 we're interested in.
631
632 */
633
634 static int enable_break1_done = 0;
635 static int enable_break2_done = 0;
636
637 static int
638 enable_break2 (void)
639 {
640 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
641 int success = 0;
642 char **bkpt_namep;
643 asection *interp_sect;
644
645 if (!enable_break1_done || enable_break2_done)
646 return 1;
647
648 enable_break2_done = 1;
649
650 /* First, remove all the solib event breakpoints. Their addresses
651 may have changed since the last time we ran the program. */
652 remove_solib_event_breakpoints ();
653
654 interp_text_sect_low = interp_text_sect_high = 0;
655 interp_plt_sect_low = interp_plt_sect_high = 0;
656
657 /* Find the .interp section; if not found, warn the user and drop
658 into the old breakpoint at symbol code. */
659 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
660 if (interp_sect)
661 {
662 unsigned int interp_sect_size;
663 gdb_byte *buf;
664 bfd *tmp_bfd = NULL;
665 int status;
666 CORE_ADDR addr, interp_loadmap_addr;
667 gdb_byte addr_buf[FRV_PTR_SIZE];
668 struct int_elf32_fdpic_loadmap *ldm;
669 volatile struct gdb_exception ex;
670
671 /* Read the contents of the .interp section into a local buffer;
672 the contents specify the dynamic linker this program uses. */
673 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
674 buf = alloca (interp_sect_size);
675 bfd_get_section_contents (exec_bfd, interp_sect,
676 buf, 0, interp_sect_size);
677
678 /* Now we need to figure out where the dynamic linker was
679 loaded so that we can load its symbols and place a breakpoint
680 in the dynamic linker itself.
681
682 This address is stored on the stack. However, I've been unable
683 to find any magic formula to find it for Solaris (appears to
684 be trivial on GNU/Linux). Therefore, we have to try an alternate
685 mechanism to find the dynamic linker's base address. */
686
687 TRY_CATCH (ex, RETURN_MASK_ALL)
688 {
689 tmp_bfd = solib_bfd_open (buf);
690 }
691 if (tmp_bfd == NULL)
692 {
693 enable_break_failure_warning ();
694 return 0;
695 }
696
697 status = frv_fdpic_loadmap_addresses (target_gdbarch,
698 &interp_loadmap_addr, 0);
699 if (status < 0)
700 {
701 warning (_("Unable to determine dynamic linker loadmap address."));
702 enable_break_failure_warning ();
703 bfd_close (tmp_bfd);
704 return 0;
705 }
706
707 if (solib_frv_debug)
708 fprintf_unfiltered (gdb_stdlog,
709 "enable_break: interp_loadmap_addr = %s\n",
710 hex_string_custom (interp_loadmap_addr, 8));
711
712 ldm = fetch_loadmap (interp_loadmap_addr);
713 if (ldm == NULL)
714 {
715 warning (_("Unable to load dynamic linker loadmap at address %s."),
716 hex_string_custom (interp_loadmap_addr, 8));
717 enable_break_failure_warning ();
718 bfd_close (tmp_bfd);
719 return 0;
720 }
721
722 /* Record the relocated start and end address of the dynamic linker
723 text and plt section for svr4_in_dynsym_resolve_code. */
724 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
725 if (interp_sect)
726 {
727 interp_text_sect_low
728 = bfd_section_vma (tmp_bfd, interp_sect);
729 interp_text_sect_low
730 += displacement_from_map (ldm, interp_text_sect_low);
731 interp_text_sect_high
732 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
733 }
734 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
735 if (interp_sect)
736 {
737 interp_plt_sect_low =
738 bfd_section_vma (tmp_bfd, interp_sect);
739 interp_plt_sect_low
740 += displacement_from_map (ldm, interp_plt_sect_low);
741 interp_plt_sect_high =
742 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
743 }
744
745 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
746 if (addr == 0)
747 {
748 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
749 enable_break_failure_warning ();
750 bfd_close (tmp_bfd);
751 return 0;
752 }
753
754 if (solib_frv_debug)
755 fprintf_unfiltered (gdb_stdlog,
756 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
757 hex_string_custom (addr, 8));
758
759 addr += displacement_from_map (ldm, addr);
760
761 if (solib_frv_debug)
762 fprintf_unfiltered (gdb_stdlog,
763 "enable_break: _dl_debug_addr (after relocation) = %s\n",
764 hex_string_custom (addr, 8));
765
766 /* Fetch the address of the r_debug struct. */
767 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
768 {
769 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
770 hex_string_custom (addr, 8));
771 }
772 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
773
774 /* Fetch the r_brk field. It's 8 bytes from the start of
775 _dl_debug_addr. */
776 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
777 {
778 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
779 hex_string_custom (addr + 8, 8));
780 enable_break_failure_warning ();
781 bfd_close (tmp_bfd);
782 return 0;
783 }
784 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
785
786 /* Now fetch the function entry point. */
787 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
788 {
789 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
790 hex_string_custom (addr, 8));
791 enable_break_failure_warning ();
792 bfd_close (tmp_bfd);
793 return 0;
794 }
795 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
796
797 /* We're done with the temporary bfd. */
798 bfd_close (tmp_bfd);
799
800 /* We're also done with the loadmap. */
801 xfree (ldm);
802
803 /* Now (finally!) create the solib breakpoint. */
804 create_solib_event_breakpoint (target_gdbarch, addr);
805
806 return 1;
807 }
808
809 /* Tell the user we couldn't set a dynamic linker breakpoint. */
810 enable_break_failure_warning ();
811
812 /* Failure return. */
813 return 0;
814 }
815
816 static int
817 enable_break (void)
818 {
819 asection *interp_sect;
820
821 /* Remove all the solib event breakpoints. Their addresses
822 may have changed since the last time we ran the program. */
823 remove_solib_event_breakpoints ();
824
825 if (symfile_objfile == NULL)
826 {
827 if (solib_frv_debug)
828 fprintf_unfiltered (gdb_stdlog,
829 "enable_break: No symbol file found.\n");
830 return 0;
831 }
832
833 if (!symfile_objfile->ei.entry_point_p)
834 {
835 if (solib_frv_debug)
836 fprintf_unfiltered (gdb_stdlog,
837 "enable_break: Symbol file has no entry point.\n");
838 return 0;
839 }
840
841 /* Check for the presence of a .interp section. If there is no
842 such section, the executable is statically linked. */
843
844 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
845
846 if (interp_sect == NULL)
847 {
848 if (solib_frv_debug)
849 fprintf_unfiltered (gdb_stdlog,
850 "enable_break: No .interp section found.\n");
851 return 0;
852 }
853
854 enable_break1_done = 1;
855 create_solib_event_breakpoint (target_gdbarch,
856 symfile_objfile->ei.entry_point);
857
858 if (solib_frv_debug)
859 fprintf_unfiltered (gdb_stdlog,
860 "enable_break: solib event breakpoint placed at entry point: %s\n",
861 hex_string_custom (symfile_objfile->ei.entry_point, 8));
862 return 1;
863 }
864
865 /*
866
867 LOCAL FUNCTION
868
869 special_symbol_handling -- additional shared library symbol handling
870
871 SYNOPSIS
872
873 void special_symbol_handling ()
874
875 DESCRIPTION
876
877 Once the symbols from a shared object have been loaded in the usual
878 way, we are called to do any system specific symbol handling that
879 is needed.
880
881 */
882
883 static void
884 frv_special_symbol_handling (void)
885 {
886 /* Nothing needed (yet) for FRV. */
887 }
888
889 static void
890 frv_relocate_main_executable (void)
891 {
892 int status;
893 CORE_ADDR exec_addr, interp_addr;
894 struct int_elf32_fdpic_loadmap *ldm;
895 struct cleanup *old_chain;
896 struct section_offsets *new_offsets;
897 int changed;
898 struct obj_section *osect;
899
900 status = frv_fdpic_loadmap_addresses (target_gdbarch,
901 &interp_addr, &exec_addr);
902
903 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
904 {
905 /* Not using FDPIC ABI, so do nothing. */
906 return;
907 }
908
909 /* Fetch the loadmap located at ``exec_addr''. */
910 ldm = fetch_loadmap (exec_addr);
911 if (ldm == NULL)
912 error (_("Unable to load the executable's loadmap."));
913
914 if (main_executable_lm_info)
915 xfree (main_executable_lm_info);
916 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
917 main_executable_lm_info->map = ldm;
918
919 new_offsets = xcalloc (symfile_objfile->num_sections,
920 sizeof (struct section_offsets));
921 old_chain = make_cleanup (xfree, new_offsets);
922 changed = 0;
923
924 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
925 {
926 CORE_ADDR orig_addr, addr, offset;
927 int osect_idx;
928 int seg;
929
930 osect_idx = osect->the_bfd_section->index;
931
932 /* Current address of section. */
933 addr = obj_section_addr (osect);
934 /* Offset from where this section started. */
935 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
936 /* Original address prior to any past relocations. */
937 orig_addr = addr - offset;
938
939 for (seg = 0; seg < ldm->nsegs; seg++)
940 {
941 if (ldm->segs[seg].p_vaddr <= orig_addr
942 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
943 {
944 new_offsets->offsets[osect_idx]
945 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
946
947 if (new_offsets->offsets[osect_idx] != offset)
948 changed = 1;
949 break;
950 }
951 }
952 }
953
954 if (changed)
955 objfile_relocate (symfile_objfile, new_offsets);
956
957 do_cleanups (old_chain);
958
959 /* Now that symfile_objfile has been relocated, we can compute the
960 GOT value and stash it away. */
961 main_executable_lm_info->got_value = main_got ();
962 }
963
964 /*
965
966 GLOBAL FUNCTION
967
968 frv_solib_create_inferior_hook -- shared library startup support
969
970 SYNOPSIS
971
972 void frv_solib_create_inferior_hook ()
973
974 DESCRIPTION
975
976 When gdb starts up the inferior, it nurses it along (through the
977 shell) until it is ready to execute it's first instruction. At this
978 point, this function gets called via expansion of the macro
979 SOLIB_CREATE_INFERIOR_HOOK.
980
981 For the FR-V shared library ABI (FDPIC), the main executable
982 needs to be relocated. The shared library breakpoints also need
983 to be enabled.
984 */
985
986 static void
987 frv_solib_create_inferior_hook (int from_tty)
988 {
989 /* Relocate main executable. */
990 frv_relocate_main_executable ();
991
992 /* Enable shared library breakpoints. */
993 if (!enable_break ())
994 {
995 warning (_("shared library handler failed to enable breakpoint"));
996 return;
997 }
998 }
999
1000 static void
1001 frv_clear_solib (void)
1002 {
1003 lm_base_cache = 0;
1004 enable_break1_done = 0;
1005 enable_break2_done = 0;
1006 main_lm_addr = 0;
1007 if (main_executable_lm_info != 0)
1008 {
1009 xfree (main_executable_lm_info->map);
1010 xfree (main_executable_lm_info->dyn_syms);
1011 xfree (main_executable_lm_info->dyn_relocs);
1012 xfree (main_executable_lm_info);
1013 main_executable_lm_info = 0;
1014 }
1015 }
1016
1017 static void
1018 frv_free_so (struct so_list *so)
1019 {
1020 xfree (so->lm_info->map);
1021 xfree (so->lm_info->dyn_syms);
1022 xfree (so->lm_info->dyn_relocs);
1023 xfree (so->lm_info);
1024 }
1025
1026 static void
1027 frv_relocate_section_addresses (struct so_list *so,
1028 struct target_section *sec)
1029 {
1030 int seg;
1031 struct int_elf32_fdpic_loadmap *map;
1032
1033 map = so->lm_info->map;
1034
1035 for (seg = 0; seg < map->nsegs; seg++)
1036 {
1037 if (map->segs[seg].p_vaddr <= sec->addr
1038 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1039 {
1040 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1041 sec->addr += displ;
1042 sec->endaddr += displ;
1043 break;
1044 }
1045 }
1046 }
1047
1048 /* Return the GOT address associated with the main executable. Return
1049 0 if it can't be found. */
1050
1051 static CORE_ADDR
1052 main_got (void)
1053 {
1054 struct minimal_symbol *got_sym;
1055
1056 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1057 if (got_sym == 0)
1058 return 0;
1059
1060 return SYMBOL_VALUE_ADDRESS (got_sym);
1061 }
1062
1063 /* Find the global pointer for the given function address ADDR. */
1064
1065 CORE_ADDR
1066 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1067 {
1068 struct so_list *so;
1069
1070 so = master_so_list ();
1071 while (so)
1072 {
1073 int seg;
1074 struct int_elf32_fdpic_loadmap *map;
1075
1076 map = so->lm_info->map;
1077
1078 for (seg = 0; seg < map->nsegs; seg++)
1079 {
1080 if (map->segs[seg].addr <= addr
1081 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1082 return so->lm_info->got_value;
1083 }
1084
1085 so = so->next;
1086 }
1087
1088 /* Didn't find it it any of the shared objects. So assume it's in the
1089 main executable. */
1090 return main_got ();
1091 }
1092
1093 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1094 static CORE_ADDR find_canonical_descriptor_in_load_object
1095 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1096
1097 /* Given a function entry point, attempt to find the canonical descriptor
1098 associated with that entry point. Return 0 if no canonical descriptor
1099 could be found. */
1100
1101 CORE_ADDR
1102 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1103 {
1104 char *name;
1105 CORE_ADDR addr;
1106 CORE_ADDR got_value;
1107 struct int_elf32_fdpic_loadmap *ldm = 0;
1108 struct symbol *sym;
1109 int status;
1110 CORE_ADDR exec_loadmap_addr;
1111
1112 /* Fetch the corresponding global pointer for the entry point. */
1113 got_value = frv_fdpic_find_global_pointer (entry_point);
1114
1115 /* Attempt to find the name of the function. If the name is available,
1116 it'll be used as an aid in finding matching functions in the dynamic
1117 symbol table. */
1118 sym = find_pc_function (entry_point);
1119 if (sym == 0)
1120 name = 0;
1121 else
1122 name = SYMBOL_LINKAGE_NAME (sym);
1123
1124 /* Check the main executable. */
1125 addr = find_canonical_descriptor_in_load_object
1126 (entry_point, got_value, name, symfile_objfile->obfd,
1127 main_executable_lm_info);
1128
1129 /* If descriptor not found via main executable, check each load object
1130 in list of shared objects. */
1131 if (addr == 0)
1132 {
1133 struct so_list *so;
1134
1135 so = master_so_list ();
1136 while (so)
1137 {
1138 addr = find_canonical_descriptor_in_load_object
1139 (entry_point, got_value, name, so->abfd, so->lm_info);
1140
1141 if (addr != 0)
1142 break;
1143
1144 so = so->next;
1145 }
1146 }
1147
1148 return addr;
1149 }
1150
1151 static CORE_ADDR
1152 find_canonical_descriptor_in_load_object
1153 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1154 struct lm_info *lm)
1155 {
1156 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1157 arelent *rel;
1158 unsigned int i;
1159 CORE_ADDR addr = 0;
1160
1161 /* Nothing to do if no bfd. */
1162 if (abfd == 0)
1163 return 0;
1164
1165 /* Nothing to do if no link map. */
1166 if (lm == 0)
1167 return 0;
1168
1169 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1170 (More about this later.) But in order to fetch the relocs, we
1171 need to first fetch the dynamic symbols. These symbols need to
1172 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1173 works. (See the comments in the declaration of struct lm_info
1174 for more information.) */
1175 if (lm->dyn_syms == NULL)
1176 {
1177 long storage_needed;
1178 unsigned int number_of_symbols;
1179
1180 /* Determine amount of space needed to hold the dynamic symbol table. */
1181 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1182
1183 /* If there are no dynamic symbols, there's nothing to do. */
1184 if (storage_needed <= 0)
1185 return 0;
1186
1187 /* Allocate space for the dynamic symbol table. */
1188 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1189
1190 /* Fetch the dynamic symbol table. */
1191 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1192
1193 if (number_of_symbols == 0)
1194 return 0;
1195 }
1196
1197 /* Fetch the dynamic relocations if not already cached. */
1198 if (lm->dyn_relocs == NULL)
1199 {
1200 long storage_needed;
1201
1202 /* Determine amount of space needed to hold the dynamic relocs. */
1203 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1204
1205 /* Bail out if there are no dynamic relocs. */
1206 if (storage_needed <= 0)
1207 return 0;
1208
1209 /* Allocate space for the relocs. */
1210 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1211
1212 /* Fetch the dynamic relocs. */
1213 lm->dyn_reloc_count
1214 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1215 }
1216
1217 /* Search the dynamic relocs. */
1218 for (i = 0; i < lm->dyn_reloc_count; i++)
1219 {
1220 rel = lm->dyn_relocs[i];
1221
1222 /* Relocs of interest are those which meet the following
1223 criteria:
1224
1225 - the names match (assuming the caller could provide
1226 a name which matches ``entry_point'').
1227 - the relocation type must be R_FRV_FUNCDESC. Relocs
1228 of this type are used (by the dynamic linker) to
1229 look up the address of a canonical descriptor (allocating
1230 it if need be) and initializing the GOT entry referred
1231 to by the offset to the address of the descriptor.
1232
1233 These relocs of interest may be used to obtain a
1234 candidate descriptor by first adjusting the reloc's
1235 address according to the link map and then dereferencing
1236 this address (which is a GOT entry) to obtain a descriptor
1237 address. */
1238 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1239 && rel->howto->type == R_FRV_FUNCDESC)
1240 {
1241 gdb_byte buf [FRV_PTR_SIZE];
1242
1243 /* Compute address of address of candidate descriptor. */
1244 addr = rel->address + displacement_from_map (lm->map, rel->address);
1245
1246 /* Fetch address of candidate descriptor. */
1247 if (target_read_memory (addr, buf, sizeof buf) != 0)
1248 continue;
1249 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1250
1251 /* Check for matching entry point. */
1252 if (target_read_memory (addr, buf, sizeof buf) != 0)
1253 continue;
1254 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1255 != entry_point)
1256 continue;
1257
1258 /* Check for matching got value. */
1259 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1260 continue;
1261 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1262 != got_value)
1263 continue;
1264
1265 /* Match was successful! Exit loop. */
1266 break;
1267 }
1268 }
1269
1270 return addr;
1271 }
1272
1273 /* Given an objfile, return the address of its link map. This value is
1274 needed for TLS support. */
1275 CORE_ADDR
1276 frv_fetch_objfile_link_map (struct objfile *objfile)
1277 {
1278 struct so_list *so;
1279
1280 /* Cause frv_current_sos() to be run if it hasn't been already. */
1281 if (main_lm_addr == 0)
1282 solib_add (0, 0, 0, 1);
1283
1284 /* frv_current_sos() will set main_lm_addr for the main executable. */
1285 if (objfile == symfile_objfile)
1286 return main_lm_addr;
1287
1288 /* The other link map addresses may be found by examining the list
1289 of shared libraries. */
1290 for (so = master_so_list (); so; so = so->next)
1291 {
1292 if (so->objfile == objfile)
1293 return so->lm_info->lm_addr;
1294 }
1295
1296 /* Not found! */
1297 return 0;
1298 }
1299
1300 struct target_so_ops frv_so_ops;
1301
1302 /* Provide a prototype to silence -Wmissing-prototypes. */
1303 extern initialize_file_ftype _initialize_frv_solib;
1304
1305 void
1306 _initialize_frv_solib (void)
1307 {
1308 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1309 frv_so_ops.free_so = frv_free_so;
1310 frv_so_ops.clear_solib = frv_clear_solib;
1311 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1312 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1313 frv_so_ops.current_sos = frv_current_sos;
1314 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1315 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1316 frv_so_ops.bfd_open = solib_bfd_open;
1317
1318 /* Debug this file's internals. */
1319 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1320 &solib_frv_debug, _("\
1321 Set internal debugging of shared library code for FR-V."), _("\
1322 Show internal debugging of shared library code for FR-V."), _("\
1323 When non-zero, FR-V solib specific internal debugging is enabled."),
1324 NULL,
1325 NULL, /* FIXME: i18n: */
1326 &setdebuglist, &showdebuglist);
1327 }