]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib-svr4.c
Add R_AARCH64_P32_MOVW_PREL_* ELF32 relocs
[thirdparty/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 static void probes_table_remove_objfile_probes (struct objfile *objfile);
54
55 /* On SVR4 systems, a list of symbols in the dynamic linker where
56 GDB can try to place a breakpoint to monitor shared library
57 events.
58
59 If none of these symbols are found, or other errors occur, then
60 SVR4 systems will fall back to using a symbol as the "startup
61 mapping complete" breakpoint address. */
62
63 static const char * const solib_break_names[] =
64 {
65 "r_debug_state",
66 "_r_debug_state",
67 "_dl_debug_state",
68 "rtld_db_dlactivity",
69 "__dl_rtld_db_dlactivity",
70 "_rtld_debug_state",
71
72 NULL
73 };
74
75 static const char * const bkpt_names[] =
76 {
77 "_start",
78 "__start",
79 "main",
80 NULL
81 };
82
83 static const char * const main_name_list[] =
84 {
85 "main_$main",
86 NULL
87 };
88
89 /* What to do when a probe stop occurs. */
90
91 enum probe_action
92 {
93 /* Something went seriously wrong. Stop using probes and
94 revert to using the older interface. */
95 PROBES_INTERFACE_FAILED,
96
97 /* No action is required. The shared object list is still
98 valid. */
99 DO_NOTHING,
100
101 /* The shared object list should be reloaded entirely. */
102 FULL_RELOAD,
103
104 /* Attempt to incrementally update the shared object list. If
105 the update fails or is not possible, fall back to reloading
106 the list in full. */
107 UPDATE_OR_RELOAD,
108 };
109
110 /* A probe's name and its associated action. */
111
112 struct probe_info
113 {
114 /* The name of the probe. */
115 const char *name;
116
117 /* What to do when a probe stop occurs. */
118 enum probe_action action;
119 };
120
121 /* A list of named probes and their associated actions. If all
122 probes are present in the dynamic linker then the probes-based
123 interface will be used. */
124
125 static const struct probe_info probe_info[] =
126 {
127 { "init_start", DO_NOTHING },
128 { "init_complete", FULL_RELOAD },
129 { "map_start", DO_NOTHING },
130 { "map_failed", DO_NOTHING },
131 { "reloc_complete", UPDATE_OR_RELOAD },
132 { "unmap_start", DO_NOTHING },
133 { "unmap_complete", FULL_RELOAD },
134 };
135
136 #define NUM_PROBES ARRAY_SIZE (probe_info)
137
138 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
139 the same shared library. */
140
141 static int
142 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
143 {
144 if (strcmp (gdb_so_name, inferior_so_name) == 0)
145 return 1;
146
147 /* On Solaris, when starting inferior we think that dynamic linker is
148 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
149 contains /lib/ld.so.1. Sometimes one file is a link to another, but
150 sometimes they have identical content, but are not linked to each
151 other. We don't restrict this check for Solaris, but the chances
152 of running into this situation elsewhere are very low. */
153 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
154 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
155 return 1;
156
157 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
158 different locations. */
159 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
160 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
161 return 1;
162
163 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
165 return 1;
166
167 return 0;
168 }
169
170 static int
171 svr4_same (struct so_list *gdb, struct so_list *inferior)
172 {
173 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
174 }
175
176 static std::unique_ptr<lm_info_svr4>
177 lm_info_read (CORE_ADDR lm_addr)
178 {
179 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
180 std::unique_ptr<lm_info_svr4> lm_info;
181
182 gdb::byte_vector lm (lmo->link_map_size);
183
184 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
185 warning (_("Error reading shared library list entry at %s"),
186 paddress (target_gdbarch (), lm_addr));
187 else
188 {
189 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
190
191 lm_info.reset (new lm_info_svr4);
192 lm_info->lm_addr = lm_addr;
193
194 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
195 ptr_type);
196 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
197 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
198 ptr_type);
199 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
200 ptr_type);
201 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
202 ptr_type);
203 }
204
205 return lm_info;
206 }
207
208 static int
209 has_lm_dynamic_from_link_map (void)
210 {
211 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
212
213 return lmo->l_ld_offset >= 0;
214 }
215
216 static CORE_ADDR
217 lm_addr_check (const struct so_list *so, bfd *abfd)
218 {
219 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
220
221 if (!li->l_addr_p)
222 {
223 struct bfd_section *dyninfo_sect;
224 CORE_ADDR l_addr, l_dynaddr, dynaddr;
225
226 l_addr = li->l_addr_inferior;
227
228 if (! abfd || ! has_lm_dynamic_from_link_map ())
229 goto set_addr;
230
231 l_dynaddr = li->l_ld;
232
233 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
234 if (dyninfo_sect == NULL)
235 goto set_addr;
236
237 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
238
239 if (dynaddr + l_addr != l_dynaddr)
240 {
241 CORE_ADDR align = 0x1000;
242 CORE_ADDR minpagesize = align;
243
244 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
245 {
246 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
247 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
248 int i;
249
250 align = 1;
251
252 for (i = 0; i < ehdr->e_phnum; i++)
253 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
254 align = phdr[i].p_align;
255
256 minpagesize = get_elf_backend_data (abfd)->minpagesize;
257 }
258
259 /* Turn it into a mask. */
260 align--;
261
262 /* If the changes match the alignment requirements, we
263 assume we're using a core file that was generated by the
264 same binary, just prelinked with a different base offset.
265 If it doesn't match, we may have a different binary, the
266 same binary with the dynamic table loaded at an unrelated
267 location, or anything, really. To avoid regressions,
268 don't adjust the base offset in the latter case, although
269 odds are that, if things really changed, debugging won't
270 quite work.
271
272 One could expect more the condition
273 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
274 but the one below is relaxed for PPC. The PPC kernel supports
275 either 4k or 64k page sizes. To be prepared for 64k pages,
276 PPC ELF files are built using an alignment requirement of 64k.
277 However, when running on a kernel supporting 4k pages, the memory
278 mapping of the library may not actually happen on a 64k boundary!
279
280 (In the usual case where (l_addr & align) == 0, this check is
281 equivalent to the possibly expected check above.)
282
283 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
284
285 l_addr = l_dynaddr - dynaddr;
286
287 if ((l_addr & (minpagesize - 1)) == 0
288 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
289 {
290 if (info_verbose)
291 printf_unfiltered (_("Using PIC (Position Independent Code) "
292 "prelink displacement %s for \"%s\".\n"),
293 paddress (target_gdbarch (), l_addr),
294 so->so_name);
295 }
296 else
297 {
298 /* There is no way to verify the library file matches. prelink
299 can during prelinking of an unprelinked file (or unprelinking
300 of a prelinked file) shift the DYNAMIC segment by arbitrary
301 offset without any page size alignment. There is no way to
302 find out the ELF header and/or Program Headers for a limited
303 verification if it they match. One could do a verification
304 of the DYNAMIC segment. Still the found address is the best
305 one GDB could find. */
306
307 warning (_(".dynamic section for \"%s\" "
308 "is not at the expected address "
309 "(wrong library or version mismatch?)"), so->so_name);
310 }
311 }
312
313 set_addr:
314 li->l_addr = l_addr;
315 li->l_addr_p = 1;
316 }
317
318 return li->l_addr;
319 }
320
321 /* Per pspace SVR4 specific data. */
322
323 struct svr4_info
324 {
325 svr4_info () = default;
326 ~svr4_info ();
327
328 /* Base of dynamic linker structures. */
329 CORE_ADDR debug_base = 0;
330
331 /* Validity flag for debug_loader_offset. */
332 int debug_loader_offset_p = 0;
333
334 /* Load address for the dynamic linker, inferred. */
335 CORE_ADDR debug_loader_offset = 0;
336
337 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
338 char *debug_loader_name = nullptr;
339
340 /* Load map address for the main executable. */
341 CORE_ADDR main_lm_addr = 0;
342
343 CORE_ADDR interp_text_sect_low = 0;
344 CORE_ADDR interp_text_sect_high = 0;
345 CORE_ADDR interp_plt_sect_low = 0;
346 CORE_ADDR interp_plt_sect_high = 0;
347
348 /* Nonzero if the list of objects was last obtained from the target
349 via qXfer:libraries-svr4:read. */
350 int using_xfer = 0;
351
352 /* Table of struct probe_and_action instances, used by the
353 probes-based interface to map breakpoint addresses to probes
354 and their associated actions. Lookup is performed using
355 probe_and_action->prob->address. */
356 htab_up probes_table;
357
358 /* List of objects loaded into the inferior, used by the probes-
359 based interface. */
360 struct so_list *solib_list = nullptr;
361 };
362
363 /* Per-program-space data key. */
364 static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
365
366 /* Free the probes table. */
367
368 static void
369 free_probes_table (struct svr4_info *info)
370 {
371 info->probes_table.reset (nullptr);
372 }
373
374 /* Free the solib list. */
375
376 static void
377 free_solib_list (struct svr4_info *info)
378 {
379 svr4_free_library_list (&info->solib_list);
380 info->solib_list = NULL;
381 }
382
383 svr4_info::~svr4_info ()
384 {
385 free_solib_list (this);
386 }
387
388 /* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
389 This function always returns a valid object. */
390
391 static struct svr4_info *
392 get_svr4_info (program_space *pspace)
393 {
394 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
395
396 if (info == NULL)
397 info = solib_svr4_pspace_data.emplace (pspace);
398
399 return info;
400 }
401
402 /* Local function prototypes */
403
404 static int match_main (const char *);
405
406 /* Read program header TYPE from inferior memory. The header is found
407 by scanning the OS auxiliary vector.
408
409 If TYPE == -1, return the program headers instead of the contents of
410 one program header.
411
412 Return vector of bytes holding the program header contents, or an empty
413 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
414 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
415 the base address of the section is returned in *BASE_ADDR. */
416
417 static gdb::optional<gdb::byte_vector>
418 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
419 {
420 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
421 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
422 int arch_size, sect_size;
423 CORE_ADDR sect_addr;
424 int pt_phdr_p = 0;
425
426 /* Get required auxv elements from target. */
427 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
428 return {};
429 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
430 return {};
431 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
432 return {};
433 if (!at_phdr || !at_phnum)
434 return {};
435
436 /* Determine ELF architecture type. */
437 if (at_phent == sizeof (Elf32_External_Phdr))
438 arch_size = 32;
439 else if (at_phent == sizeof (Elf64_External_Phdr))
440 arch_size = 64;
441 else
442 return {};
443
444 /* Find the requested segment. */
445 if (type == -1)
446 {
447 sect_addr = at_phdr;
448 sect_size = at_phent * at_phnum;
449 }
450 else if (arch_size == 32)
451 {
452 Elf32_External_Phdr phdr;
453 int i;
454
455 /* Search for requested PHDR. */
456 for (i = 0; i < at_phnum; i++)
457 {
458 int p_type;
459
460 if (target_read_memory (at_phdr + i * sizeof (phdr),
461 (gdb_byte *)&phdr, sizeof (phdr)))
462 return {};
463
464 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
465 4, byte_order);
466
467 if (p_type == PT_PHDR)
468 {
469 pt_phdr_p = 1;
470 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
471 4, byte_order);
472 }
473
474 if (p_type == type)
475 break;
476 }
477
478 if (i == at_phnum)
479 return {};
480
481 /* Retrieve address and size. */
482 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
483 4, byte_order);
484 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
485 4, byte_order);
486 }
487 else
488 {
489 Elf64_External_Phdr phdr;
490 int i;
491
492 /* Search for requested PHDR. */
493 for (i = 0; i < at_phnum; i++)
494 {
495 int p_type;
496
497 if (target_read_memory (at_phdr + i * sizeof (phdr),
498 (gdb_byte *)&phdr, sizeof (phdr)))
499 return {};
500
501 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
502 4, byte_order);
503
504 if (p_type == PT_PHDR)
505 {
506 pt_phdr_p = 1;
507 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
508 8, byte_order);
509 }
510
511 if (p_type == type)
512 break;
513 }
514
515 if (i == at_phnum)
516 return {};
517
518 /* Retrieve address and size. */
519 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
520 8, byte_order);
521 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
522 8, byte_order);
523 }
524
525 /* PT_PHDR is optional, but we really need it
526 for PIE to make this work in general. */
527
528 if (pt_phdr_p)
529 {
530 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
531 Relocation offset is the difference between the two. */
532 sect_addr = sect_addr + (at_phdr - pt_phdr);
533 }
534
535 /* Read in requested program header. */
536 gdb::byte_vector buf (sect_size);
537 if (target_read_memory (sect_addr, buf.data (), sect_size))
538 return {};
539
540 if (p_arch_size)
541 *p_arch_size = arch_size;
542 if (base_addr)
543 *base_addr = sect_addr;
544
545 return buf;
546 }
547
548
549 /* Return program interpreter string. */
550 static gdb::optional<gdb::byte_vector>
551 find_program_interpreter (void)
552 {
553 /* If we have an exec_bfd, use its section table. */
554 if (exec_bfd
555 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
556 {
557 struct bfd_section *interp_sect;
558
559 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
560 if (interp_sect != NULL)
561 {
562 int sect_size = bfd_section_size (exec_bfd, interp_sect);
563
564 gdb::byte_vector buf (sect_size);
565 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
566 sect_size);
567 return buf;
568 }
569 }
570
571 /* If we didn't find it, use the target auxiliary vector. */
572 return read_program_header (PT_INTERP, NULL, NULL);
573 }
574
575
576 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
577 found, 1 is returned and the corresponding PTR is set. */
578
579 static int
580 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
581 CORE_ADDR *ptr_addr)
582 {
583 int arch_size, step, sect_size;
584 long current_dyntag;
585 CORE_ADDR dyn_ptr, dyn_addr;
586 gdb_byte *bufend, *bufstart, *buf;
587 Elf32_External_Dyn *x_dynp_32;
588 Elf64_External_Dyn *x_dynp_64;
589 struct bfd_section *sect;
590 struct target_section *target_section;
591
592 if (abfd == NULL)
593 return 0;
594
595 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
596 return 0;
597
598 arch_size = bfd_get_arch_size (abfd);
599 if (arch_size == -1)
600 return 0;
601
602 /* Find the start address of the .dynamic section. */
603 sect = bfd_get_section_by_name (abfd, ".dynamic");
604 if (sect == NULL)
605 return 0;
606
607 for (target_section = current_target_sections->sections;
608 target_section < current_target_sections->sections_end;
609 target_section++)
610 if (sect == target_section->the_bfd_section)
611 break;
612 if (target_section < current_target_sections->sections_end)
613 dyn_addr = target_section->addr;
614 else
615 {
616 /* ABFD may come from OBJFILE acting only as a symbol file without being
617 loaded into the target (see add_symbol_file_command). This case is
618 such fallback to the file VMA address without the possibility of
619 having the section relocated to its actual in-memory address. */
620
621 dyn_addr = bfd_section_vma (abfd, sect);
622 }
623
624 /* Read in .dynamic from the BFD. We will get the actual value
625 from memory later. */
626 sect_size = bfd_section_size (abfd, sect);
627 buf = bufstart = (gdb_byte *) alloca (sect_size);
628 if (!bfd_get_section_contents (abfd, sect,
629 buf, 0, sect_size))
630 return 0;
631
632 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
633 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
634 : sizeof (Elf64_External_Dyn);
635 for (bufend = buf + sect_size;
636 buf < bufend;
637 buf += step)
638 {
639 if (arch_size == 32)
640 {
641 x_dynp_32 = (Elf32_External_Dyn *) buf;
642 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
643 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
644 }
645 else
646 {
647 x_dynp_64 = (Elf64_External_Dyn *) buf;
648 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
649 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
650 }
651 if (current_dyntag == DT_NULL)
652 return 0;
653 if (current_dyntag == desired_dyntag)
654 {
655 /* If requested, try to read the runtime value of this .dynamic
656 entry. */
657 if (ptr)
658 {
659 struct type *ptr_type;
660 gdb_byte ptr_buf[8];
661 CORE_ADDR ptr_addr_1;
662
663 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
664 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
665 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
666 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
667 *ptr = dyn_ptr;
668 if (ptr_addr)
669 *ptr_addr = dyn_addr + (buf - bufstart);
670 }
671 return 1;
672 }
673 }
674
675 return 0;
676 }
677
678 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
679 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
680 is returned and the corresponding PTR is set. */
681
682 static int
683 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
684 CORE_ADDR *ptr_addr)
685 {
686 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
687 int arch_size, step;
688 long current_dyntag;
689 CORE_ADDR dyn_ptr;
690 CORE_ADDR base_addr;
691
692 /* Read in .dynamic section. */
693 gdb::optional<gdb::byte_vector> ph_data
694 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
695 if (!ph_data)
696 return 0;
697
698 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
699 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
700 : sizeof (Elf64_External_Dyn);
701 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
702 buf < bufend; buf += step)
703 {
704 if (arch_size == 32)
705 {
706 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
707
708 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
709 4, byte_order);
710 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
711 4, byte_order);
712 }
713 else
714 {
715 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
716
717 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
718 8, byte_order);
719 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 8, byte_order);
721 }
722 if (current_dyntag == DT_NULL)
723 break;
724
725 if (current_dyntag == desired_dyntag)
726 {
727 if (ptr)
728 *ptr = dyn_ptr;
729
730 if (ptr_addr)
731 *ptr_addr = base_addr + buf - ph_data->data ();
732
733 return 1;
734 }
735 }
736
737 return 0;
738 }
739
740 /* Locate the base address of dynamic linker structs for SVR4 elf
741 targets.
742
743 For SVR4 elf targets the address of the dynamic linker's runtime
744 structure is contained within the dynamic info section in the
745 executable file. The dynamic section is also mapped into the
746 inferior address space. Because the runtime loader fills in the
747 real address before starting the inferior, we have to read in the
748 dynamic info section from the inferior address space.
749 If there are any errors while trying to find the address, we
750 silently return 0, otherwise the found address is returned. */
751
752 static CORE_ADDR
753 elf_locate_base (void)
754 {
755 struct bound_minimal_symbol msymbol;
756 CORE_ADDR dyn_ptr, dyn_ptr_addr;
757
758 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
759 instead of DT_DEBUG, although they sometimes contain an unused
760 DT_DEBUG. */
761 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
762 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
763 {
764 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
765 gdb_byte *pbuf;
766 int pbuf_size = TYPE_LENGTH (ptr_type);
767
768 pbuf = (gdb_byte *) alloca (pbuf_size);
769 /* DT_MIPS_RLD_MAP contains a pointer to the address
770 of the dynamic link structure. */
771 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
772 return 0;
773 return extract_typed_address (pbuf, ptr_type);
774 }
775
776 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
777 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
778 in non-PIE. */
779 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
780 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
781 {
782 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
783 gdb_byte *pbuf;
784 int pbuf_size = TYPE_LENGTH (ptr_type);
785
786 pbuf = (gdb_byte *) alloca (pbuf_size);
787 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
788 DT slot to the address of the dynamic link structure. */
789 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
790 return 0;
791 return extract_typed_address (pbuf, ptr_type);
792 }
793
794 /* Find DT_DEBUG. */
795 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
796 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
797 return dyn_ptr;
798
799 /* This may be a static executable. Look for the symbol
800 conventionally named _r_debug, as a last resort. */
801 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
802 if (msymbol.minsym != NULL)
803 return BMSYMBOL_VALUE_ADDRESS (msymbol);
804
805 /* DT_DEBUG entry not found. */
806 return 0;
807 }
808
809 /* Locate the base address of dynamic linker structs.
810
811 For both the SunOS and SVR4 shared library implementations, if the
812 inferior executable has been linked dynamically, there is a single
813 address somewhere in the inferior's data space which is the key to
814 locating all of the dynamic linker's runtime structures. This
815 address is the value of the debug base symbol. The job of this
816 function is to find and return that address, or to return 0 if there
817 is no such address (the executable is statically linked for example).
818
819 For SunOS, the job is almost trivial, since the dynamic linker and
820 all of it's structures are statically linked to the executable at
821 link time. Thus the symbol for the address we are looking for has
822 already been added to the minimal symbol table for the executable's
823 objfile at the time the symbol file's symbols were read, and all we
824 have to do is look it up there. Note that we explicitly do NOT want
825 to find the copies in the shared library.
826
827 The SVR4 version is a bit more complicated because the address
828 is contained somewhere in the dynamic info section. We have to go
829 to a lot more work to discover the address of the debug base symbol.
830 Because of this complexity, we cache the value we find and return that
831 value on subsequent invocations. Note there is no copy in the
832 executable symbol tables. */
833
834 static CORE_ADDR
835 locate_base (struct svr4_info *info)
836 {
837 /* Check to see if we have a currently valid address, and if so, avoid
838 doing all this work again and just return the cached address. If
839 we have no cached address, try to locate it in the dynamic info
840 section for ELF executables. There's no point in doing any of this
841 though if we don't have some link map offsets to work with. */
842
843 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
844 info->debug_base = elf_locate_base ();
845 return info->debug_base;
846 }
847
848 /* Find the first element in the inferior's dynamic link map, and
849 return its address in the inferior. Return zero if the address
850 could not be determined.
851
852 FIXME: Perhaps we should validate the info somehow, perhaps by
853 checking r_version for a known version number, or r_state for
854 RT_CONSISTENT. */
855
856 static CORE_ADDR
857 solib_svr4_r_map (struct svr4_info *info)
858 {
859 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
860 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
861 CORE_ADDR addr = 0;
862
863 try
864 {
865 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
866 ptr_type);
867 }
868 catch (const gdb_exception_error &ex)
869 {
870 exception_print (gdb_stderr, ex);
871 }
872
873 return addr;
874 }
875
876 /* Find r_brk from the inferior's debug base. */
877
878 static CORE_ADDR
879 solib_svr4_r_brk (struct svr4_info *info)
880 {
881 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
882 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
883
884 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
885 ptr_type);
886 }
887
888 /* Find the link map for the dynamic linker (if it is not in the
889 normal list of loaded shared objects). */
890
891 static CORE_ADDR
892 solib_svr4_r_ldsomap (struct svr4_info *info)
893 {
894 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
895 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
896 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
897 ULONGEST version = 0;
898
899 try
900 {
901 /* Check version, and return zero if `struct r_debug' doesn't have
902 the r_ldsomap member. */
903 version
904 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
905 lmo->r_version_size, byte_order);
906 }
907 catch (const gdb_exception_error &ex)
908 {
909 exception_print (gdb_stderr, ex);
910 }
911
912 if (version < 2 || lmo->r_ldsomap_offset == -1)
913 return 0;
914
915 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
916 ptr_type);
917 }
918
919 /* On Solaris systems with some versions of the dynamic linker,
920 ld.so's l_name pointer points to the SONAME in the string table
921 rather than into writable memory. So that GDB can find shared
922 libraries when loading a core file generated by gcore, ensure that
923 memory areas containing the l_name string are saved in the core
924 file. */
925
926 static int
927 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
928 {
929 struct svr4_info *info;
930 CORE_ADDR ldsomap;
931 CORE_ADDR name_lm;
932
933 info = get_svr4_info (current_program_space);
934
935 info->debug_base = 0;
936 locate_base (info);
937 if (!info->debug_base)
938 return 0;
939
940 ldsomap = solib_svr4_r_ldsomap (info);
941 if (!ldsomap)
942 return 0;
943
944 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
945 name_lm = li != NULL ? li->l_name : 0;
946
947 return (name_lm >= vaddr && name_lm < vaddr + size);
948 }
949
950 /* See solist.h. */
951
952 static int
953 open_symbol_file_object (int from_tty)
954 {
955 CORE_ADDR lm, l_name;
956 gdb::unique_xmalloc_ptr<char> filename;
957 int errcode;
958 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
959 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
960 int l_name_size = TYPE_LENGTH (ptr_type);
961 gdb::byte_vector l_name_buf (l_name_size);
962 struct svr4_info *info = get_svr4_info (current_program_space);
963 symfile_add_flags add_flags = 0;
964
965 if (from_tty)
966 add_flags |= SYMFILE_VERBOSE;
967
968 if (symfile_objfile)
969 if (!query (_("Attempt to reload symbols from process? ")))
970 return 0;
971
972 /* Always locate the debug struct, in case it has moved. */
973 info->debug_base = 0;
974 if (locate_base (info) == 0)
975 return 0; /* failed somehow... */
976
977 /* First link map member should be the executable. */
978 lm = solib_svr4_r_map (info);
979 if (lm == 0)
980 return 0; /* failed somehow... */
981
982 /* Read address of name from target memory to GDB. */
983 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
984
985 /* Convert the address to host format. */
986 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
987
988 if (l_name == 0)
989 return 0; /* No filename. */
990
991 /* Now fetch the filename from target memory. */
992 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
993
994 if (errcode)
995 {
996 warning (_("failed to read exec filename from attached file: %s"),
997 safe_strerror (errcode));
998 return 0;
999 }
1000
1001 /* Have a pathname: read the symbol file. */
1002 symbol_file_add_main (filename.get (), add_flags);
1003
1004 return 1;
1005 }
1006
1007 /* Data exchange structure for the XML parser as returned by
1008 svr4_current_sos_via_xfer_libraries. */
1009
1010 struct svr4_library_list
1011 {
1012 struct so_list *head, **tailp;
1013
1014 /* Inferior address of struct link_map used for the main executable. It is
1015 NULL if not known. */
1016 CORE_ADDR main_lm;
1017 };
1018
1019 /* This module's 'free_objfile' observer. */
1020
1021 static void
1022 svr4_free_objfile_observer (struct objfile *objfile)
1023 {
1024 probes_table_remove_objfile_probes (objfile);
1025 }
1026
1027 /* Implementation for target_so_ops.free_so. */
1028
1029 static void
1030 svr4_free_so (struct so_list *so)
1031 {
1032 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1033
1034 delete li;
1035 }
1036
1037 /* Implement target_so_ops.clear_so. */
1038
1039 static void
1040 svr4_clear_so (struct so_list *so)
1041 {
1042 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1043
1044 if (li != NULL)
1045 li->l_addr_p = 0;
1046 }
1047
1048 /* Free so_list built so far (called via cleanup). */
1049
1050 static void
1051 svr4_free_library_list (void *p_list)
1052 {
1053 struct so_list *list = *(struct so_list **) p_list;
1054
1055 while (list != NULL)
1056 {
1057 struct so_list *next = list->next;
1058
1059 free_so (list);
1060 list = next;
1061 }
1062 }
1063
1064 /* Copy library list. */
1065
1066 static struct so_list *
1067 svr4_copy_library_list (struct so_list *src)
1068 {
1069 struct so_list *dst = NULL;
1070 struct so_list **link = &dst;
1071
1072 while (src != NULL)
1073 {
1074 struct so_list *newobj;
1075
1076 newobj = XNEW (struct so_list);
1077 memcpy (newobj, src, sizeof (struct so_list));
1078
1079 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1080 newobj->lm_info = new lm_info_svr4 (*src_li);
1081
1082 newobj->next = NULL;
1083 *link = newobj;
1084 link = &newobj->next;
1085
1086 src = src->next;
1087 }
1088
1089 return dst;
1090 }
1091
1092 #ifdef HAVE_LIBEXPAT
1093
1094 #include "xml-support.h"
1095
1096 /* Handle the start of a <library> element. Note: new elements are added
1097 at the tail of the list, keeping the list in order. */
1098
1099 static void
1100 library_list_start_library (struct gdb_xml_parser *parser,
1101 const struct gdb_xml_element *element,
1102 void *user_data,
1103 std::vector<gdb_xml_value> &attributes)
1104 {
1105 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1106 const char *name
1107 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1108 ULONGEST *lmp
1109 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1110 ULONGEST *l_addrp
1111 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1112 ULONGEST *l_ldp
1113 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1114 struct so_list *new_elem;
1115
1116 new_elem = XCNEW (struct so_list);
1117 lm_info_svr4 *li = new lm_info_svr4;
1118 new_elem->lm_info = li;
1119 li->lm_addr = *lmp;
1120 li->l_addr_inferior = *l_addrp;
1121 li->l_ld = *l_ldp;
1122
1123 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1124 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1125 strcpy (new_elem->so_original_name, new_elem->so_name);
1126
1127 *list->tailp = new_elem;
1128 list->tailp = &new_elem->next;
1129 }
1130
1131 /* Handle the start of a <library-list-svr4> element. */
1132
1133 static void
1134 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1135 const struct gdb_xml_element *element,
1136 void *user_data,
1137 std::vector<gdb_xml_value> &attributes)
1138 {
1139 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1140 const char *version
1141 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1142 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1143
1144 if (strcmp (version, "1.0") != 0)
1145 gdb_xml_error (parser,
1146 _("SVR4 Library list has unsupported version \"%s\""),
1147 version);
1148
1149 if (main_lm)
1150 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1151 }
1152
1153 /* The allowed elements and attributes for an XML library list.
1154 The root element is a <library-list>. */
1155
1156 static const struct gdb_xml_attribute svr4_library_attributes[] =
1157 {
1158 { "name", GDB_XML_AF_NONE, NULL, NULL },
1159 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1160 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1161 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1162 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1163 };
1164
1165 static const struct gdb_xml_element svr4_library_list_children[] =
1166 {
1167 {
1168 "library", svr4_library_attributes, NULL,
1169 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1170 library_list_start_library, NULL
1171 },
1172 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1173 };
1174
1175 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1176 {
1177 { "version", GDB_XML_AF_NONE, NULL, NULL },
1178 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1179 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1180 };
1181
1182 static const struct gdb_xml_element svr4_library_list_elements[] =
1183 {
1184 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1185 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1186 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1187 };
1188
1189 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1190
1191 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1192 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1193 empty, caller is responsible for freeing all its entries. */
1194
1195 static int
1196 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1197 {
1198 auto cleanup = make_scope_exit ([&] ()
1199 {
1200 svr4_free_library_list (&list->head);
1201 });
1202
1203 memset (list, 0, sizeof (*list));
1204 list->tailp = &list->head;
1205 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1206 svr4_library_list_elements, document, list) == 0)
1207 {
1208 /* Parsed successfully, keep the result. */
1209 cleanup.release ();
1210 return 1;
1211 }
1212
1213 return 0;
1214 }
1215
1216 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1217
1218 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1219 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1220 empty, caller is responsible for freeing all its entries.
1221
1222 Note that ANNEX must be NULL if the remote does not explicitly allow
1223 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1224 this can be checked using target_augmented_libraries_svr4_read (). */
1225
1226 static int
1227 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1228 const char *annex)
1229 {
1230 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1231
1232 /* Fetch the list of shared libraries. */
1233 gdb::optional<gdb::char_vector> svr4_library_document
1234 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1235 annex);
1236 if (!svr4_library_document)
1237 return 0;
1238
1239 return svr4_parse_libraries (svr4_library_document->data (), list);
1240 }
1241
1242 #else
1243
1244 static int
1245 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1246 const char *annex)
1247 {
1248 return 0;
1249 }
1250
1251 #endif
1252
1253 /* If no shared library information is available from the dynamic
1254 linker, build a fallback list from other sources. */
1255
1256 static struct so_list *
1257 svr4_default_sos (svr4_info *info)
1258 {
1259 struct so_list *newobj;
1260
1261 if (!info->debug_loader_offset_p)
1262 return NULL;
1263
1264 newobj = XCNEW (struct so_list);
1265 lm_info_svr4 *li = new lm_info_svr4;
1266 newobj->lm_info = li;
1267
1268 /* Nothing will ever check the other fields if we set l_addr_p. */
1269 li->l_addr = info->debug_loader_offset;
1270 li->l_addr_p = 1;
1271
1272 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1273 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1274 strcpy (newobj->so_original_name, newobj->so_name);
1275
1276 return newobj;
1277 }
1278
1279 /* Read the whole inferior libraries chain starting at address LM.
1280 Expect the first entry in the chain's previous entry to be PREV_LM.
1281 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1282 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1283 to it. Returns nonzero upon success. If zero is returned the
1284 entries stored to LINK_PTR_PTR are still valid although they may
1285 represent only part of the inferior library list. */
1286
1287 static int
1288 svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
1289 struct so_list ***link_ptr_ptr, int ignore_first)
1290 {
1291 CORE_ADDR first_l_name = 0;
1292 CORE_ADDR next_lm;
1293
1294 for (; lm != 0; prev_lm = lm, lm = next_lm)
1295 {
1296 int errcode;
1297 gdb::unique_xmalloc_ptr<char> buffer;
1298
1299 so_list_up newobj (XCNEW (struct so_list));
1300
1301 lm_info_svr4 *li = lm_info_read (lm).release ();
1302 newobj->lm_info = li;
1303 if (li == NULL)
1304 return 0;
1305
1306 next_lm = li->l_next;
1307
1308 if (li->l_prev != prev_lm)
1309 {
1310 warning (_("Corrupted shared library list: %s != %s"),
1311 paddress (target_gdbarch (), prev_lm),
1312 paddress (target_gdbarch (), li->l_prev));
1313 return 0;
1314 }
1315
1316 /* For SVR4 versions, the first entry in the link map is for the
1317 inferior executable, so we must ignore it. For some versions of
1318 SVR4, it has no name. For others (Solaris 2.3 for example), it
1319 does have a name, so we can no longer use a missing name to
1320 decide when to ignore it. */
1321 if (ignore_first && li->l_prev == 0)
1322 {
1323 first_l_name = li->l_name;
1324 info->main_lm_addr = li->lm_addr;
1325 continue;
1326 }
1327
1328 /* Extract this shared object's name. */
1329 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1330 &errcode);
1331 if (errcode != 0)
1332 {
1333 /* If this entry's l_name address matches that of the
1334 inferior executable, then this is not a normal shared
1335 object, but (most likely) a vDSO. In this case, silently
1336 skip it; otherwise emit a warning. */
1337 if (first_l_name == 0 || li->l_name != first_l_name)
1338 warning (_("Can't read pathname for load map: %s."),
1339 safe_strerror (errcode));
1340 continue;
1341 }
1342
1343 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1344 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1345 strcpy (newobj->so_original_name, newobj->so_name);
1346
1347 /* If this entry has no name, or its name matches the name
1348 for the main executable, don't include it in the list. */
1349 if (! newobj->so_name[0] || match_main (newobj->so_name))
1350 continue;
1351
1352 newobj->next = 0;
1353 /* Don't free it now. */
1354 **link_ptr_ptr = newobj.release ();
1355 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1356 }
1357
1358 return 1;
1359 }
1360
1361 /* Read the full list of currently loaded shared objects directly
1362 from the inferior, without referring to any libraries read and
1363 stored by the probes interface. Handle special cases relating
1364 to the first elements of the list. */
1365
1366 static struct so_list *
1367 svr4_current_sos_direct (struct svr4_info *info)
1368 {
1369 CORE_ADDR lm;
1370 struct so_list *head = NULL;
1371 struct so_list **link_ptr = &head;
1372 int ignore_first;
1373 struct svr4_library_list library_list;
1374
1375 /* Fall back to manual examination of the target if the packet is not
1376 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1377 tests a case where gdbserver cannot find the shared libraries list while
1378 GDB itself is able to find it via SYMFILE_OBJFILE.
1379
1380 Unfortunately statically linked inferiors will also fall back through this
1381 suboptimal code path. */
1382
1383 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1384 NULL);
1385 if (info->using_xfer)
1386 {
1387 if (library_list.main_lm)
1388 info->main_lm_addr = library_list.main_lm;
1389
1390 return library_list.head ? library_list.head : svr4_default_sos (info);
1391 }
1392
1393 /* Always locate the debug struct, in case it has moved. */
1394 info->debug_base = 0;
1395 locate_base (info);
1396
1397 /* If we can't find the dynamic linker's base structure, this
1398 must not be a dynamically linked executable. Hmm. */
1399 if (! info->debug_base)
1400 return svr4_default_sos (info);
1401
1402 /* Assume that everything is a library if the dynamic loader was loaded
1403 late by a static executable. */
1404 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1405 ignore_first = 0;
1406 else
1407 ignore_first = 1;
1408
1409 auto cleanup = make_scope_exit ([&] ()
1410 {
1411 svr4_free_library_list (&head);
1412 });
1413
1414 /* Walk the inferior's link map list, and build our list of
1415 `struct so_list' nodes. */
1416 lm = solib_svr4_r_map (info);
1417 if (lm)
1418 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
1419
1420 /* On Solaris, the dynamic linker is not in the normal list of
1421 shared objects, so make sure we pick it up too. Having
1422 symbol information for the dynamic linker is quite crucial
1423 for skipping dynamic linker resolver code. */
1424 lm = solib_svr4_r_ldsomap (info);
1425 if (lm)
1426 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
1427
1428 cleanup.release ();
1429
1430 if (head == NULL)
1431 return svr4_default_sos (info);
1432
1433 return head;
1434 }
1435
1436 /* Implement the main part of the "current_sos" target_so_ops
1437 method. */
1438
1439 static struct so_list *
1440 svr4_current_sos_1 (svr4_info *info)
1441 {
1442 /* If the solib list has been read and stored by the probes
1443 interface then we return a copy of the stored list. */
1444 if (info->solib_list != NULL)
1445 return svr4_copy_library_list (info->solib_list);
1446
1447 /* Otherwise obtain the solib list directly from the inferior. */
1448 return svr4_current_sos_direct (info);
1449 }
1450
1451 /* Implement the "current_sos" target_so_ops method. */
1452
1453 static struct so_list *
1454 svr4_current_sos (void)
1455 {
1456 svr4_info *info = get_svr4_info (current_program_space);
1457 struct so_list *so_head = svr4_current_sos_1 (info);
1458 struct mem_range vsyscall_range;
1459
1460 /* Filter out the vDSO module, if present. Its symbol file would
1461 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1462 managed by symfile-mem.c:add_vsyscall_page. */
1463 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1464 && vsyscall_range.length != 0)
1465 {
1466 struct so_list **sop;
1467
1468 sop = &so_head;
1469 while (*sop != NULL)
1470 {
1471 struct so_list *so = *sop;
1472
1473 /* We can't simply match the vDSO by starting address alone,
1474 because lm_info->l_addr_inferior (and also l_addr) do not
1475 necessarily represent the real starting address of the
1476 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1477 field (the ".dynamic" section of the shared object)
1478 always points at the absolute/resolved address though.
1479 So check whether that address is inside the vDSO's
1480 mapping instead.
1481
1482 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1483 0-based ELF, and we see:
1484
1485 (gdb) info auxv
1486 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1487 (gdb) p/x *_r_debug.r_map.l_next
1488 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1489
1490 And on Linux 2.6.32 (x86_64) we see:
1491
1492 (gdb) info auxv
1493 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1494 (gdb) p/x *_r_debug.r_map.l_next
1495 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1496
1497 Dumping that vDSO shows:
1498
1499 (gdb) info proc mappings
1500 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1501 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1502 # readelf -Wa vdso.bin
1503 [...]
1504 Entry point address: 0xffffffffff700700
1505 [...]
1506 Section Headers:
1507 [Nr] Name Type Address Off Size
1508 [ 0] NULL 0000000000000000 000000 000000
1509 [ 1] .hash HASH ffffffffff700120 000120 000038
1510 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1511 [...]
1512 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1513 */
1514
1515 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1516
1517 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1518 {
1519 *sop = so->next;
1520 free_so (so);
1521 break;
1522 }
1523
1524 sop = &so->next;
1525 }
1526 }
1527
1528 return so_head;
1529 }
1530
1531 /* Get the address of the link_map for a given OBJFILE. */
1532
1533 CORE_ADDR
1534 svr4_fetch_objfile_link_map (struct objfile *objfile)
1535 {
1536 struct so_list *so;
1537 struct svr4_info *info = get_svr4_info (objfile->pspace);
1538
1539 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1540 if (info->main_lm_addr == 0)
1541 solib_add (NULL, 0, auto_solib_add);
1542
1543 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1544 if (objfile == symfile_objfile)
1545 return info->main_lm_addr;
1546
1547 /* If OBJFILE is a separate debug object file, look for the
1548 original object file. */
1549 if (objfile->separate_debug_objfile_backlink != NULL)
1550 objfile = objfile->separate_debug_objfile_backlink;
1551
1552 /* The other link map addresses may be found by examining the list
1553 of shared libraries. */
1554 for (so = master_so_list (); so; so = so->next)
1555 if (so->objfile == objfile)
1556 {
1557 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1558
1559 return li->lm_addr;
1560 }
1561
1562 /* Not found! */
1563 return 0;
1564 }
1565
1566 /* On some systems, the only way to recognize the link map entry for
1567 the main executable file is by looking at its name. Return
1568 non-zero iff SONAME matches one of the known main executable names. */
1569
1570 static int
1571 match_main (const char *soname)
1572 {
1573 const char * const *mainp;
1574
1575 for (mainp = main_name_list; *mainp != NULL; mainp++)
1576 {
1577 if (strcmp (soname, *mainp) == 0)
1578 return (1);
1579 }
1580
1581 return (0);
1582 }
1583
1584 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1585 SVR4 run time loader. */
1586
1587 int
1588 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1589 {
1590 struct svr4_info *info = get_svr4_info (current_program_space);
1591
1592 return ((pc >= info->interp_text_sect_low
1593 && pc < info->interp_text_sect_high)
1594 || (pc >= info->interp_plt_sect_low
1595 && pc < info->interp_plt_sect_high)
1596 || in_plt_section (pc)
1597 || in_gnu_ifunc_stub (pc));
1598 }
1599
1600 /* Given an executable's ABFD and target, compute the entry-point
1601 address. */
1602
1603 static CORE_ADDR
1604 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1605 {
1606 CORE_ADDR addr;
1607
1608 /* KevinB wrote ... for most targets, the address returned by
1609 bfd_get_start_address() is the entry point for the start
1610 function. But, for some targets, bfd_get_start_address() returns
1611 the address of a function descriptor from which the entry point
1612 address may be extracted. This address is extracted by
1613 gdbarch_convert_from_func_ptr_addr(). The method
1614 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1615 function for targets which don't use function descriptors. */
1616 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1617 bfd_get_start_address (abfd),
1618 targ);
1619 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1620 }
1621
1622 /* A probe and its associated action. */
1623
1624 struct probe_and_action
1625 {
1626 /* The probe. */
1627 probe *prob;
1628
1629 /* The relocated address of the probe. */
1630 CORE_ADDR address;
1631
1632 /* The action. */
1633 enum probe_action action;
1634
1635 /* The objfile where this probe was found. */
1636 struct objfile *objfile;
1637 };
1638
1639 /* Returns a hash code for the probe_and_action referenced by p. */
1640
1641 static hashval_t
1642 hash_probe_and_action (const void *p)
1643 {
1644 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1645
1646 return (hashval_t) pa->address;
1647 }
1648
1649 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1650 are equal. */
1651
1652 static int
1653 equal_probe_and_action (const void *p1, const void *p2)
1654 {
1655 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1656 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1657
1658 return pa1->address == pa2->address;
1659 }
1660
1661 /* Traversal function for probes_table_remove_objfile_probes. */
1662
1663 static int
1664 probes_table_htab_remove_objfile_probes (void **slot, void *info)
1665 {
1666 probe_and_action *pa = (probe_and_action *) *slot;
1667 struct objfile *objfile = (struct objfile *) info;
1668
1669 if (pa->objfile == objfile)
1670 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1671 slot);
1672
1673 return 1;
1674 }
1675
1676 /* Remove all probes that belong to OBJFILE from the probes table. */
1677
1678 static void
1679 probes_table_remove_objfile_probes (struct objfile *objfile)
1680 {
1681 svr4_info *info = get_svr4_info (objfile->pspace);
1682 if (info->probes_table != nullptr)
1683 htab_traverse_noresize (info->probes_table.get (),
1684 probes_table_htab_remove_objfile_probes, objfile);
1685 }
1686
1687 /* Register a solib event probe and its associated action in the
1688 probes table. */
1689
1690 static void
1691 register_solib_event_probe (svr4_info *info, struct objfile *objfile,
1692 probe *prob, CORE_ADDR address,
1693 enum probe_action action)
1694 {
1695 struct probe_and_action lookup, *pa;
1696 void **slot;
1697
1698 /* Create the probes table, if necessary. */
1699 if (info->probes_table == NULL)
1700 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1701 equal_probe_and_action,
1702 xfree, xcalloc, xfree));
1703
1704 lookup.address = address;
1705 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
1706 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1707
1708 pa = XCNEW (struct probe_and_action);
1709 pa->prob = prob;
1710 pa->address = address;
1711 pa->action = action;
1712 pa->objfile = objfile;
1713
1714 *slot = pa;
1715 }
1716
1717 /* Get the solib event probe at the specified location, and the
1718 action associated with it. Returns NULL if no solib event probe
1719 was found. */
1720
1721 static struct probe_and_action *
1722 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1723 {
1724 struct probe_and_action lookup;
1725 void **slot;
1726
1727 lookup.address = address;
1728 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
1729
1730 if (slot == NULL)
1731 return NULL;
1732
1733 return (struct probe_and_action *) *slot;
1734 }
1735
1736 /* Decide what action to take when the specified solib event probe is
1737 hit. */
1738
1739 static enum probe_action
1740 solib_event_probe_action (struct probe_and_action *pa)
1741 {
1742 enum probe_action action;
1743 unsigned probe_argc = 0;
1744 struct frame_info *frame = get_current_frame ();
1745
1746 action = pa->action;
1747 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1748 return action;
1749
1750 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1751
1752 /* Check that an appropriate number of arguments has been supplied.
1753 We expect:
1754 arg0: Lmid_t lmid (mandatory)
1755 arg1: struct r_debug *debug_base (mandatory)
1756 arg2: struct link_map *new (optional, for incremental updates) */
1757 try
1758 {
1759 probe_argc = pa->prob->get_argument_count (frame);
1760 }
1761 catch (const gdb_exception_error &ex)
1762 {
1763 exception_print (gdb_stderr, ex);
1764 probe_argc = 0;
1765 }
1766
1767 /* If get_argument_count throws an exception, probe_argc will be set
1768 to zero. However, if pa->prob does not have arguments, then
1769 get_argument_count will succeed but probe_argc will also be zero.
1770 Both cases happen because of different things, but they are
1771 treated equally here: action will be set to
1772 PROBES_INTERFACE_FAILED. */
1773 if (probe_argc == 2)
1774 action = FULL_RELOAD;
1775 else if (probe_argc < 2)
1776 action = PROBES_INTERFACE_FAILED;
1777
1778 return action;
1779 }
1780
1781 /* Populate the shared object list by reading the entire list of
1782 shared objects from the inferior. Handle special cases relating
1783 to the first elements of the list. Returns nonzero on success. */
1784
1785 static int
1786 solist_update_full (struct svr4_info *info)
1787 {
1788 free_solib_list (info);
1789 info->solib_list = svr4_current_sos_direct (info);
1790
1791 return 1;
1792 }
1793
1794 /* Update the shared object list starting from the link-map entry
1795 passed by the linker in the probe's third argument. Returns
1796 nonzero if the list was successfully updated, or zero to indicate
1797 failure. */
1798
1799 static int
1800 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1801 {
1802 struct so_list *tail;
1803 CORE_ADDR prev_lm;
1804
1805 /* svr4_current_sos_direct contains logic to handle a number of
1806 special cases relating to the first elements of the list. To
1807 avoid duplicating this logic we defer to solist_update_full
1808 if the list is empty. */
1809 if (info->solib_list == NULL)
1810 return 0;
1811
1812 /* Fall back to a full update if we are using a remote target
1813 that does not support incremental transfers. */
1814 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1815 return 0;
1816
1817 /* Walk to the end of the list. */
1818 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1819 /* Nothing. */;
1820
1821 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1822 prev_lm = li->lm_addr;
1823
1824 /* Read the new objects. */
1825 if (info->using_xfer)
1826 {
1827 struct svr4_library_list library_list;
1828 char annex[64];
1829
1830 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1831 phex_nz (lm, sizeof (lm)),
1832 phex_nz (prev_lm, sizeof (prev_lm)));
1833 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1834 return 0;
1835
1836 tail->next = library_list.head;
1837 }
1838 else
1839 {
1840 struct so_list **link = &tail->next;
1841
1842 /* IGNORE_FIRST may safely be set to zero here because the
1843 above check and deferral to solist_update_full ensures
1844 that this call to svr4_read_so_list will never see the
1845 first element. */
1846 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
1847 return 0;
1848 }
1849
1850 return 1;
1851 }
1852
1853 /* Disable the probes-based linker interface and revert to the
1854 original interface. We don't reset the breakpoints as the
1855 ones set up for the probes-based interface are adequate. */
1856
1857 static void
1858 disable_probes_interface (svr4_info *info)
1859 {
1860 warning (_("Probes-based dynamic linker interface failed.\n"
1861 "Reverting to original interface."));
1862
1863 free_probes_table (info);
1864 free_solib_list (info);
1865 }
1866
1867 /* Update the solib list as appropriate when using the
1868 probes-based linker interface. Do nothing if using the
1869 standard interface. */
1870
1871 static void
1872 svr4_handle_solib_event (void)
1873 {
1874 struct svr4_info *info = get_svr4_info (current_program_space);
1875 struct probe_and_action *pa;
1876 enum probe_action action;
1877 struct value *val = NULL;
1878 CORE_ADDR pc, debug_base, lm = 0;
1879 struct frame_info *frame = get_current_frame ();
1880
1881 /* Do nothing if not using the probes interface. */
1882 if (info->probes_table == NULL)
1883 return;
1884
1885 /* If anything goes wrong we revert to the original linker
1886 interface. */
1887 auto cleanup = make_scope_exit ([info] ()
1888 {
1889 disable_probes_interface (info);
1890 });
1891
1892 pc = regcache_read_pc (get_current_regcache ());
1893 pa = solib_event_probe_at (info, pc);
1894 if (pa == NULL)
1895 return;
1896
1897 action = solib_event_probe_action (pa);
1898 if (action == PROBES_INTERFACE_FAILED)
1899 return;
1900
1901 if (action == DO_NOTHING)
1902 {
1903 cleanup.release ();
1904 return;
1905 }
1906
1907 /* evaluate_argument looks up symbols in the dynamic linker
1908 using find_pc_section. find_pc_section is accelerated by a cache
1909 called the section map. The section map is invalidated every
1910 time a shared library is loaded or unloaded, and if the inferior
1911 is generating a lot of shared library events then the section map
1912 will be updated every time svr4_handle_solib_event is called.
1913 We called find_pc_section in svr4_create_solib_event_breakpoints,
1914 so we can guarantee that the dynamic linker's sections are in the
1915 section map. We can therefore inhibit section map updates across
1916 these calls to evaluate_argument and save a lot of time. */
1917 {
1918 scoped_restore inhibit_updates
1919 = inhibit_section_map_updates (current_program_space);
1920
1921 try
1922 {
1923 val = pa->prob->evaluate_argument (1, frame);
1924 }
1925 catch (const gdb_exception_error &ex)
1926 {
1927 exception_print (gdb_stderr, ex);
1928 val = NULL;
1929 }
1930
1931 if (val == NULL)
1932 return;
1933
1934 debug_base = value_as_address (val);
1935 if (debug_base == 0)
1936 return;
1937
1938 /* Always locate the debug struct, in case it moved. */
1939 info->debug_base = 0;
1940 if (locate_base (info) == 0)
1941 return;
1942
1943 /* GDB does not currently support libraries loaded via dlmopen
1944 into namespaces other than the initial one. We must ignore
1945 any namespace other than the initial namespace here until
1946 support for this is added to GDB. */
1947 if (debug_base != info->debug_base)
1948 action = DO_NOTHING;
1949
1950 if (action == UPDATE_OR_RELOAD)
1951 {
1952 try
1953 {
1954 val = pa->prob->evaluate_argument (2, frame);
1955 }
1956 catch (const gdb_exception_error &ex)
1957 {
1958 exception_print (gdb_stderr, ex);
1959 return;
1960 }
1961
1962 if (val != NULL)
1963 lm = value_as_address (val);
1964
1965 if (lm == 0)
1966 action = FULL_RELOAD;
1967 }
1968
1969 /* Resume section map updates. Closing the scope is
1970 sufficient. */
1971 }
1972
1973 if (action == UPDATE_OR_RELOAD)
1974 {
1975 if (!solist_update_incremental (info, lm))
1976 action = FULL_RELOAD;
1977 }
1978
1979 if (action == FULL_RELOAD)
1980 {
1981 if (!solist_update_full (info))
1982 return;
1983 }
1984
1985 cleanup.release ();
1986 }
1987
1988 /* Helper function for svr4_update_solib_event_breakpoints. */
1989
1990 static int
1991 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1992 {
1993 struct bp_location *loc;
1994
1995 if (b->type != bp_shlib_event)
1996 {
1997 /* Continue iterating. */
1998 return 0;
1999 }
2000
2001 for (loc = b->loc; loc != NULL; loc = loc->next)
2002 {
2003 struct svr4_info *info;
2004 struct probe_and_action *pa;
2005
2006 info = solib_svr4_pspace_data.get (loc->pspace);
2007 if (info == NULL || info->probes_table == NULL)
2008 continue;
2009
2010 pa = solib_event_probe_at (info, loc->address);
2011 if (pa == NULL)
2012 continue;
2013
2014 if (pa->action == DO_NOTHING)
2015 {
2016 if (b->enable_state == bp_disabled && stop_on_solib_events)
2017 enable_breakpoint (b);
2018 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2019 disable_breakpoint (b);
2020 }
2021
2022 break;
2023 }
2024
2025 /* Continue iterating. */
2026 return 0;
2027 }
2028
2029 /* Enable or disable optional solib event breakpoints as appropriate.
2030 Called whenever stop_on_solib_events is changed. */
2031
2032 static void
2033 svr4_update_solib_event_breakpoints (void)
2034 {
2035 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2036 }
2037
2038 /* Create and register solib event breakpoints. PROBES is an array
2039 of NUM_PROBES elements, each of which is vector of probes. A
2040 solib event breakpoint will be created and registered for each
2041 probe. */
2042
2043 static void
2044 svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2045 const std::vector<probe *> *probes,
2046 struct objfile *objfile)
2047 {
2048 for (int i = 0; i < NUM_PROBES; i++)
2049 {
2050 enum probe_action action = probe_info[i].action;
2051
2052 for (probe *p : probes[i])
2053 {
2054 CORE_ADDR address = p->get_relocated_address (objfile);
2055
2056 create_solib_event_breakpoint (gdbarch, address);
2057 register_solib_event_probe (info, objfile, p, address, action);
2058 }
2059 }
2060
2061 svr4_update_solib_event_breakpoints ();
2062 }
2063
2064 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2065 before and after mapping and unmapping shared libraries. The sole
2066 purpose of this method is to allow debuggers to set a breakpoint so
2067 they can track these changes.
2068
2069 Some versions of the glibc dynamic linker contain named probes
2070 to allow more fine grained stopping. Given the address of the
2071 original marker function, this function attempts to find these
2072 probes, and if found, sets breakpoints on those instead. If the
2073 probes aren't found, a single breakpoint is set on the original
2074 marker function. */
2075
2076 static void
2077 svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2078 CORE_ADDR address)
2079 {
2080 struct obj_section *os;
2081
2082 os = find_pc_section (address);
2083 if (os != NULL)
2084 {
2085 int with_prefix;
2086
2087 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2088 {
2089 std::vector<probe *> probes[NUM_PROBES];
2090 int all_probes_found = 1;
2091 int checked_can_use_probe_arguments = 0;
2092
2093 for (int i = 0; i < NUM_PROBES; i++)
2094 {
2095 const char *name = probe_info[i].name;
2096 probe *p;
2097 char buf[32];
2098
2099 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2100 shipped with an early version of the probes code in
2101 which the probes' names were prefixed with "rtld_"
2102 and the "map_failed" probe did not exist. The
2103 locations of the probes are otherwise the same, so
2104 we check for probes with prefixed names if probes
2105 with unprefixed names are not present. */
2106 if (with_prefix)
2107 {
2108 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2109 name = buf;
2110 }
2111
2112 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2113
2114 /* The "map_failed" probe did not exist in early
2115 versions of the probes code in which the probes'
2116 names were prefixed with "rtld_". */
2117 if (strcmp (name, "rtld_map_failed") == 0)
2118 continue;
2119
2120 if (probes[i].empty ())
2121 {
2122 all_probes_found = 0;
2123 break;
2124 }
2125
2126 /* Ensure probe arguments can be evaluated. */
2127 if (!checked_can_use_probe_arguments)
2128 {
2129 p = probes[i][0];
2130 if (!p->can_evaluate_arguments ())
2131 {
2132 all_probes_found = 0;
2133 break;
2134 }
2135 checked_can_use_probe_arguments = 1;
2136 }
2137 }
2138
2139 if (all_probes_found)
2140 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2141
2142 if (all_probes_found)
2143 return;
2144 }
2145 }
2146
2147 create_solib_event_breakpoint (gdbarch, address);
2148 }
2149
2150 /* Helper function for gdb_bfd_lookup_symbol. */
2151
2152 static int
2153 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2154 {
2155 return (strcmp (sym->name, (const char *) data) == 0
2156 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2157 }
2158 /* Arrange for dynamic linker to hit breakpoint.
2159
2160 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2161 debugger interface, support for arranging for the inferior to hit
2162 a breakpoint after mapping in the shared libraries. This function
2163 enables that breakpoint.
2164
2165 For SunOS, there is a special flag location (in_debugger) which we
2166 set to 1. When the dynamic linker sees this flag set, it will set
2167 a breakpoint at a location known only to itself, after saving the
2168 original contents of that place and the breakpoint address itself,
2169 in it's own internal structures. When we resume the inferior, it
2170 will eventually take a SIGTRAP when it runs into the breakpoint.
2171 We handle this (in a different place) by restoring the contents of
2172 the breakpointed location (which is only known after it stops),
2173 chasing around to locate the shared libraries that have been
2174 loaded, then resuming.
2175
2176 For SVR4, the debugger interface structure contains a member (r_brk)
2177 which is statically initialized at the time the shared library is
2178 built, to the offset of a function (_r_debug_state) which is guaran-
2179 teed to be called once before mapping in a library, and again when
2180 the mapping is complete. At the time we are examining this member,
2181 it contains only the unrelocated offset of the function, so we have
2182 to do our own relocation. Later, when the dynamic linker actually
2183 runs, it relocates r_brk to be the actual address of _r_debug_state().
2184
2185 The debugger interface structure also contains an enumeration which
2186 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2187 depending upon whether or not the library is being mapped or unmapped,
2188 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2189
2190 static int
2191 enable_break (struct svr4_info *info, int from_tty)
2192 {
2193 struct bound_minimal_symbol msymbol;
2194 const char * const *bkpt_namep;
2195 asection *interp_sect;
2196 CORE_ADDR sym_addr;
2197
2198 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2199 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2200
2201 /* If we already have a shared library list in the target, and
2202 r_debug contains r_brk, set the breakpoint there - this should
2203 mean r_brk has already been relocated. Assume the dynamic linker
2204 is the object containing r_brk. */
2205
2206 solib_add (NULL, from_tty, auto_solib_add);
2207 sym_addr = 0;
2208 if (info->debug_base && solib_svr4_r_map (info) != 0)
2209 sym_addr = solib_svr4_r_brk (info);
2210
2211 if (sym_addr != 0)
2212 {
2213 struct obj_section *os;
2214
2215 sym_addr = gdbarch_addr_bits_remove
2216 (target_gdbarch (),
2217 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2218 sym_addr,
2219 current_top_target ()));
2220
2221 /* On at least some versions of Solaris there's a dynamic relocation
2222 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2223 we get control before the dynamic linker has self-relocated.
2224 Check if SYM_ADDR is in a known section, if it is assume we can
2225 trust its value. This is just a heuristic though, it could go away
2226 or be replaced if it's getting in the way.
2227
2228 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2229 however it's spelled in your particular system) is ARM or Thumb.
2230 That knowledge is encoded in the address, if it's Thumb the low bit
2231 is 1. However, we've stripped that info above and it's not clear
2232 what all the consequences are of passing a non-addr_bits_remove'd
2233 address to svr4_create_solib_event_breakpoints. The call to
2234 find_pc_section verifies we know about the address and have some
2235 hope of computing the right kind of breakpoint to use (via
2236 symbol info). It does mean that GDB needs to be pointed at a
2237 non-stripped version of the dynamic linker in order to obtain
2238 information it already knows about. Sigh. */
2239
2240 os = find_pc_section (sym_addr);
2241 if (os != NULL)
2242 {
2243 /* Record the relocated start and end address of the dynamic linker
2244 text and plt section for svr4_in_dynsym_resolve_code. */
2245 bfd *tmp_bfd;
2246 CORE_ADDR load_addr;
2247
2248 tmp_bfd = os->objfile->obfd;
2249 load_addr = ANOFFSET (os->objfile->section_offsets,
2250 SECT_OFF_TEXT (os->objfile));
2251
2252 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2253 if (interp_sect)
2254 {
2255 info->interp_text_sect_low =
2256 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2257 info->interp_text_sect_high =
2258 info->interp_text_sect_low
2259 + bfd_section_size (tmp_bfd, interp_sect);
2260 }
2261 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2262 if (interp_sect)
2263 {
2264 info->interp_plt_sect_low =
2265 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2266 info->interp_plt_sect_high =
2267 info->interp_plt_sect_low
2268 + bfd_section_size (tmp_bfd, interp_sect);
2269 }
2270
2271 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
2272 return 1;
2273 }
2274 }
2275
2276 /* Find the program interpreter; if not found, warn the user and drop
2277 into the old breakpoint at symbol code. */
2278 gdb::optional<gdb::byte_vector> interp_name_holder
2279 = find_program_interpreter ();
2280 if (interp_name_holder)
2281 {
2282 const char *interp_name = (const char *) interp_name_holder->data ();
2283 CORE_ADDR load_addr = 0;
2284 int load_addr_found = 0;
2285 int loader_found_in_list = 0;
2286 struct so_list *so;
2287 struct target_ops *tmp_bfd_target;
2288
2289 sym_addr = 0;
2290
2291 /* Now we need to figure out where the dynamic linker was
2292 loaded so that we can load its symbols and place a breakpoint
2293 in the dynamic linker itself.
2294
2295 This address is stored on the stack. However, I've been unable
2296 to find any magic formula to find it for Solaris (appears to
2297 be trivial on GNU/Linux). Therefore, we have to try an alternate
2298 mechanism to find the dynamic linker's base address. */
2299
2300 gdb_bfd_ref_ptr tmp_bfd;
2301 try
2302 {
2303 tmp_bfd = solib_bfd_open (interp_name);
2304 }
2305 catch (const gdb_exception &ex)
2306 {
2307 }
2308
2309 if (tmp_bfd == NULL)
2310 goto bkpt_at_symbol;
2311
2312 /* Now convert the TMP_BFD into a target. That way target, as
2313 well as BFD operations can be used. target_bfd_reopen
2314 acquires its own reference. */
2315 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2316
2317 /* On a running target, we can get the dynamic linker's base
2318 address from the shared library table. */
2319 so = master_so_list ();
2320 while (so)
2321 {
2322 if (svr4_same_1 (interp_name, so->so_original_name))
2323 {
2324 load_addr_found = 1;
2325 loader_found_in_list = 1;
2326 load_addr = lm_addr_check (so, tmp_bfd.get ());
2327 break;
2328 }
2329 so = so->next;
2330 }
2331
2332 /* If we were not able to find the base address of the loader
2333 from our so_list, then try using the AT_BASE auxilliary entry. */
2334 if (!load_addr_found)
2335 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2336 {
2337 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2338
2339 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2340 that `+ load_addr' will overflow CORE_ADDR width not creating
2341 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2342 GDB. */
2343
2344 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2345 {
2346 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2347 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2348 tmp_bfd_target);
2349
2350 gdb_assert (load_addr < space_size);
2351
2352 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2353 64bit ld.so with 32bit executable, it should not happen. */
2354
2355 if (tmp_entry_point < space_size
2356 && tmp_entry_point + load_addr >= space_size)
2357 load_addr -= space_size;
2358 }
2359
2360 load_addr_found = 1;
2361 }
2362
2363 /* Otherwise we find the dynamic linker's base address by examining
2364 the current pc (which should point at the entry point for the
2365 dynamic linker) and subtracting the offset of the entry point.
2366
2367 This is more fragile than the previous approaches, but is a good
2368 fallback method because it has actually been working well in
2369 most cases. */
2370 if (!load_addr_found)
2371 {
2372 struct regcache *regcache
2373 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2374
2375 load_addr = (regcache_read_pc (regcache)
2376 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2377 }
2378
2379 if (!loader_found_in_list)
2380 {
2381 info->debug_loader_name = xstrdup (interp_name);
2382 info->debug_loader_offset_p = 1;
2383 info->debug_loader_offset = load_addr;
2384 solib_add (NULL, from_tty, auto_solib_add);
2385 }
2386
2387 /* Record the relocated start and end address of the dynamic linker
2388 text and plt section for svr4_in_dynsym_resolve_code. */
2389 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2390 if (interp_sect)
2391 {
2392 info->interp_text_sect_low =
2393 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2394 info->interp_text_sect_high =
2395 info->interp_text_sect_low
2396 + bfd_section_size (tmp_bfd.get (), interp_sect);
2397 }
2398 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2399 if (interp_sect)
2400 {
2401 info->interp_plt_sect_low =
2402 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2403 info->interp_plt_sect_high =
2404 info->interp_plt_sect_low
2405 + bfd_section_size (tmp_bfd.get (), interp_sect);
2406 }
2407
2408 /* Now try to set a breakpoint in the dynamic linker. */
2409 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2410 {
2411 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2412 cmp_name_and_sec_flags,
2413 *bkpt_namep);
2414 if (sym_addr != 0)
2415 break;
2416 }
2417
2418 if (sym_addr != 0)
2419 /* Convert 'sym_addr' from a function pointer to an address.
2420 Because we pass tmp_bfd_target instead of the current
2421 target, this will always produce an unrelocated value. */
2422 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2423 sym_addr,
2424 tmp_bfd_target);
2425
2426 /* We're done with both the temporary bfd and target. Closing
2427 the target closes the underlying bfd, because it holds the
2428 only remaining reference. */
2429 target_close (tmp_bfd_target);
2430
2431 if (sym_addr != 0)
2432 {
2433 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2434 load_addr + sym_addr);
2435 return 1;
2436 }
2437
2438 /* For whatever reason we couldn't set a breakpoint in the dynamic
2439 linker. Warn and drop into the old code. */
2440 bkpt_at_symbol:
2441 warning (_("Unable to find dynamic linker breakpoint function.\n"
2442 "GDB will be unable to debug shared library initializers\n"
2443 "and track explicitly loaded dynamic code."));
2444 }
2445
2446 /* Scan through the lists of symbols, trying to look up the symbol and
2447 set a breakpoint there. Terminate loop when we/if we succeed. */
2448
2449 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2450 {
2451 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2452 if ((msymbol.minsym != NULL)
2453 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2454 {
2455 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2456 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2457 sym_addr,
2458 current_top_target ());
2459 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2460 sym_addr);
2461 return 1;
2462 }
2463 }
2464
2465 if (interp_name_holder && !current_inferior ()->attach_flag)
2466 {
2467 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2468 {
2469 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2470 if ((msymbol.minsym != NULL)
2471 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2472 {
2473 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2474 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2475 sym_addr,
2476 current_top_target ());
2477 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2478 sym_addr);
2479 return 1;
2480 }
2481 }
2482 }
2483 return 0;
2484 }
2485
2486 /* Read the ELF program headers from ABFD. */
2487
2488 static gdb::optional<gdb::byte_vector>
2489 read_program_headers_from_bfd (bfd *abfd)
2490 {
2491 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2492 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2493 if (phdrs_size == 0)
2494 return {};
2495
2496 gdb::byte_vector buf (phdrs_size);
2497 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2498 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2499 return {};
2500
2501 return buf;
2502 }
2503
2504 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2505 exec_bfd. Otherwise return 0.
2506
2507 We relocate all of the sections by the same amount. This
2508 behavior is mandated by recent editions of the System V ABI.
2509 According to the System V Application Binary Interface,
2510 Edition 4.1, page 5-5:
2511
2512 ... Though the system chooses virtual addresses for
2513 individual processes, it maintains the segments' relative
2514 positions. Because position-independent code uses relative
2515 addressesing between segments, the difference between
2516 virtual addresses in memory must match the difference
2517 between virtual addresses in the file. The difference
2518 between the virtual address of any segment in memory and
2519 the corresponding virtual address in the file is thus a
2520 single constant value for any one executable or shared
2521 object in a given process. This difference is the base
2522 address. One use of the base address is to relocate the
2523 memory image of the program during dynamic linking.
2524
2525 The same language also appears in Edition 4.0 of the System V
2526 ABI and is left unspecified in some of the earlier editions.
2527
2528 Decide if the objfile needs to be relocated. As indicated above, we will
2529 only be here when execution is stopped. But during attachment PC can be at
2530 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2531 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2532 regcache_read_pc would point to the interpreter and not the main executable.
2533
2534 So, to summarize, relocations are necessary when the start address obtained
2535 from the executable is different from the address in auxv AT_ENTRY entry.
2536
2537 [ The astute reader will note that we also test to make sure that
2538 the executable in question has the DYNAMIC flag set. It is my
2539 opinion that this test is unnecessary (undesirable even). It
2540 was added to avoid inadvertent relocation of an executable
2541 whose e_type member in the ELF header is not ET_DYN. There may
2542 be a time in the future when it is desirable to do relocations
2543 on other types of files as well in which case this condition
2544 should either be removed or modified to accomodate the new file
2545 type. - Kevin, Nov 2000. ] */
2546
2547 static int
2548 svr4_exec_displacement (CORE_ADDR *displacementp)
2549 {
2550 /* ENTRY_POINT is a possible function descriptor - before
2551 a call to gdbarch_convert_from_func_ptr_addr. */
2552 CORE_ADDR entry_point, exec_displacement;
2553
2554 if (exec_bfd == NULL)
2555 return 0;
2556
2557 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2558 being executed themselves and PIE (Position Independent Executable)
2559 executables are ET_DYN. */
2560
2561 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2562 return 0;
2563
2564 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2565 return 0;
2566
2567 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2568
2569 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2570 alignment. It is cheaper than the program headers comparison below. */
2571
2572 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2573 {
2574 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2575
2576 /* p_align of PT_LOAD segments does not specify any alignment but
2577 only congruency of addresses:
2578 p_offset % p_align == p_vaddr % p_align
2579 Kernel is free to load the executable with lower alignment. */
2580
2581 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2582 return 0;
2583 }
2584
2585 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2586 comparing their program headers. If the program headers in the auxilliary
2587 vector do not match the program headers in the executable, then we are
2588 looking at a different file than the one used by the kernel - for
2589 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2590
2591 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2592 {
2593 /* Be optimistic and return 0 only if GDB was able to verify the headers
2594 really do not match. */
2595 int arch_size;
2596
2597 gdb::optional<gdb::byte_vector> phdrs_target
2598 = read_program_header (-1, &arch_size, NULL);
2599 gdb::optional<gdb::byte_vector> phdrs_binary
2600 = read_program_headers_from_bfd (exec_bfd);
2601 if (phdrs_target && phdrs_binary)
2602 {
2603 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2604
2605 /* We are dealing with three different addresses. EXEC_BFD
2606 represents current address in on-disk file. target memory content
2607 may be different from EXEC_BFD as the file may have been prelinked
2608 to a different address after the executable has been loaded.
2609 Moreover the address of placement in target memory can be
2610 different from what the program headers in target memory say -
2611 this is the goal of PIE.
2612
2613 Detected DISPLACEMENT covers both the offsets of PIE placement and
2614 possible new prelink performed after start of the program. Here
2615 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2616 content offset for the verification purpose. */
2617
2618 if (phdrs_target->size () != phdrs_binary->size ()
2619 || bfd_get_arch_size (exec_bfd) != arch_size)
2620 return 0;
2621 else if (arch_size == 32
2622 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2623 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2624 {
2625 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2626 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2627 CORE_ADDR displacement = 0;
2628 int i;
2629
2630 /* DISPLACEMENT could be found more easily by the difference of
2631 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2632 already have enough information to compute that displacement
2633 with what we've read. */
2634
2635 for (i = 0; i < ehdr2->e_phnum; i++)
2636 if (phdr2[i].p_type == PT_LOAD)
2637 {
2638 Elf32_External_Phdr *phdrp;
2639 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2640 CORE_ADDR vaddr, paddr;
2641 CORE_ADDR displacement_vaddr = 0;
2642 CORE_ADDR displacement_paddr = 0;
2643
2644 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2645 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2646 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2647
2648 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2649 byte_order);
2650 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2651
2652 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2653 byte_order);
2654 displacement_paddr = paddr - phdr2[i].p_paddr;
2655
2656 if (displacement_vaddr == displacement_paddr)
2657 displacement = displacement_vaddr;
2658
2659 break;
2660 }
2661
2662 /* Now compare program headers from the target and the binary
2663 with optional DISPLACEMENT. */
2664
2665 for (i = 0;
2666 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2667 i++)
2668 {
2669 Elf32_External_Phdr *phdrp;
2670 Elf32_External_Phdr *phdr2p;
2671 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2672 CORE_ADDR vaddr, paddr;
2673 asection *plt2_asect;
2674
2675 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2676 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2677 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2678 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2679
2680 /* PT_GNU_STACK is an exception by being never relocated by
2681 prelink as its addresses are always zero. */
2682
2683 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2684 continue;
2685
2686 /* Check also other adjustment combinations - PR 11786. */
2687
2688 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2689 byte_order);
2690 vaddr -= displacement;
2691 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2692
2693 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2694 byte_order);
2695 paddr -= displacement;
2696 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2697
2698 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2699 continue;
2700
2701 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2702 CentOS-5 has problems with filesz, memsz as well.
2703 Strip also modifies memsz of PT_TLS.
2704 See PR 11786. */
2705 if (phdr2[i].p_type == PT_GNU_RELRO
2706 || phdr2[i].p_type == PT_TLS)
2707 {
2708 Elf32_External_Phdr tmp_phdr = *phdrp;
2709 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2710
2711 memset (tmp_phdr.p_filesz, 0, 4);
2712 memset (tmp_phdr.p_memsz, 0, 4);
2713 memset (tmp_phdr.p_flags, 0, 4);
2714 memset (tmp_phdr.p_align, 0, 4);
2715 memset (tmp_phdr2.p_filesz, 0, 4);
2716 memset (tmp_phdr2.p_memsz, 0, 4);
2717 memset (tmp_phdr2.p_flags, 0, 4);
2718 memset (tmp_phdr2.p_align, 0, 4);
2719
2720 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2721 == 0)
2722 continue;
2723 }
2724
2725 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2726 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2727 if (plt2_asect)
2728 {
2729 int content2;
2730 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2731 CORE_ADDR filesz;
2732
2733 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2734 & SEC_HAS_CONTENTS) != 0;
2735
2736 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2737 byte_order);
2738
2739 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2740 FILESZ is from the in-memory image. */
2741 if (content2)
2742 filesz += bfd_get_section_size (plt2_asect);
2743 else
2744 filesz -= bfd_get_section_size (plt2_asect);
2745
2746 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2747 filesz);
2748
2749 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2750 continue;
2751 }
2752
2753 return 0;
2754 }
2755 }
2756 else if (arch_size == 64
2757 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2758 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2759 {
2760 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2761 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2762 CORE_ADDR displacement = 0;
2763 int i;
2764
2765 /* DISPLACEMENT could be found more easily by the difference of
2766 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2767 already have enough information to compute that displacement
2768 with what we've read. */
2769
2770 for (i = 0; i < ehdr2->e_phnum; i++)
2771 if (phdr2[i].p_type == PT_LOAD)
2772 {
2773 Elf64_External_Phdr *phdrp;
2774 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2775 CORE_ADDR vaddr, paddr;
2776 CORE_ADDR displacement_vaddr = 0;
2777 CORE_ADDR displacement_paddr = 0;
2778
2779 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2780 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2781 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2782
2783 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2784 byte_order);
2785 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2786
2787 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2788 byte_order);
2789 displacement_paddr = paddr - phdr2[i].p_paddr;
2790
2791 if (displacement_vaddr == displacement_paddr)
2792 displacement = displacement_vaddr;
2793
2794 break;
2795 }
2796
2797 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2798
2799 for (i = 0;
2800 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2801 i++)
2802 {
2803 Elf64_External_Phdr *phdrp;
2804 Elf64_External_Phdr *phdr2p;
2805 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2806 CORE_ADDR vaddr, paddr;
2807 asection *plt2_asect;
2808
2809 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2810 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2811 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2812 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2813
2814 /* PT_GNU_STACK is an exception by being never relocated by
2815 prelink as its addresses are always zero. */
2816
2817 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2818 continue;
2819
2820 /* Check also other adjustment combinations - PR 11786. */
2821
2822 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2823 byte_order);
2824 vaddr -= displacement;
2825 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2826
2827 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2828 byte_order);
2829 paddr -= displacement;
2830 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2831
2832 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2833 continue;
2834
2835 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2836 CentOS-5 has problems with filesz, memsz as well.
2837 Strip also modifies memsz of PT_TLS.
2838 See PR 11786. */
2839 if (phdr2[i].p_type == PT_GNU_RELRO
2840 || phdr2[i].p_type == PT_TLS)
2841 {
2842 Elf64_External_Phdr tmp_phdr = *phdrp;
2843 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2844
2845 memset (tmp_phdr.p_filesz, 0, 8);
2846 memset (tmp_phdr.p_memsz, 0, 8);
2847 memset (tmp_phdr.p_flags, 0, 4);
2848 memset (tmp_phdr.p_align, 0, 8);
2849 memset (tmp_phdr2.p_filesz, 0, 8);
2850 memset (tmp_phdr2.p_memsz, 0, 8);
2851 memset (tmp_phdr2.p_flags, 0, 4);
2852 memset (tmp_phdr2.p_align, 0, 8);
2853
2854 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2855 == 0)
2856 continue;
2857 }
2858
2859 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2860 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2861 if (plt2_asect)
2862 {
2863 int content2;
2864 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2865 CORE_ADDR filesz;
2866
2867 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2868 & SEC_HAS_CONTENTS) != 0;
2869
2870 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2871 byte_order);
2872
2873 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2874 FILESZ is from the in-memory image. */
2875 if (content2)
2876 filesz += bfd_get_section_size (plt2_asect);
2877 else
2878 filesz -= bfd_get_section_size (plt2_asect);
2879
2880 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2881 filesz);
2882
2883 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2884 continue;
2885 }
2886
2887 return 0;
2888 }
2889 }
2890 else
2891 return 0;
2892 }
2893 }
2894
2895 if (info_verbose)
2896 {
2897 /* It can be printed repeatedly as there is no easy way to check
2898 the executable symbols/file has been already relocated to
2899 displacement. */
2900
2901 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2902 "displacement %s for \"%s\".\n"),
2903 paddress (target_gdbarch (), exec_displacement),
2904 bfd_get_filename (exec_bfd));
2905 }
2906
2907 *displacementp = exec_displacement;
2908 return 1;
2909 }
2910
2911 /* Relocate the main executable. This function should be called upon
2912 stopping the inferior process at the entry point to the program.
2913 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2914 different, the main executable is relocated by the proper amount. */
2915
2916 static void
2917 svr4_relocate_main_executable (void)
2918 {
2919 CORE_ADDR displacement;
2920
2921 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2922 probably contains the offsets computed using the PIE displacement
2923 from the previous run, which of course are irrelevant for this run.
2924 So we need to determine the new PIE displacement and recompute the
2925 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2926 already contains pre-computed offsets.
2927
2928 If we cannot compute the PIE displacement, either:
2929
2930 - The executable is not PIE.
2931
2932 - SYMFILE_OBJFILE does not match the executable started in the target.
2933 This can happen for main executable symbols loaded at the host while
2934 `ld.so --ld-args main-executable' is loaded in the target.
2935
2936 Then we leave the section offsets untouched and use them as is for
2937 this run. Either:
2938
2939 - These section offsets were properly reset earlier, and thus
2940 already contain the correct values. This can happen for instance
2941 when reconnecting via the remote protocol to a target that supports
2942 the `qOffsets' packet.
2943
2944 - The section offsets were not reset earlier, and the best we can
2945 hope is that the old offsets are still applicable to the new run. */
2946
2947 if (! svr4_exec_displacement (&displacement))
2948 return;
2949
2950 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2951 addresses. */
2952
2953 if (symfile_objfile)
2954 {
2955 struct section_offsets *new_offsets;
2956 int i;
2957
2958 new_offsets = XALLOCAVEC (struct section_offsets,
2959 symfile_objfile->num_sections);
2960
2961 for (i = 0; i < symfile_objfile->num_sections; i++)
2962 new_offsets->offsets[i] = displacement;
2963
2964 objfile_relocate (symfile_objfile, new_offsets);
2965 }
2966 else if (exec_bfd)
2967 {
2968 asection *asect;
2969
2970 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2971 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2972 (bfd_section_vma (exec_bfd, asect)
2973 + displacement));
2974 }
2975 }
2976
2977 /* Implement the "create_inferior_hook" target_solib_ops method.
2978
2979 For SVR4 executables, this first instruction is either the first
2980 instruction in the dynamic linker (for dynamically linked
2981 executables) or the instruction at "start" for statically linked
2982 executables. For dynamically linked executables, the system
2983 first exec's /lib/libc.so.N, which contains the dynamic linker,
2984 and starts it running. The dynamic linker maps in any needed
2985 shared libraries, maps in the actual user executable, and then
2986 jumps to "start" in the user executable.
2987
2988 We can arrange to cooperate with the dynamic linker to discover the
2989 names of shared libraries that are dynamically linked, and the base
2990 addresses to which they are linked.
2991
2992 This function is responsible for discovering those names and
2993 addresses, and saving sufficient information about them to allow
2994 their symbols to be read at a later time. */
2995
2996 static void
2997 svr4_solib_create_inferior_hook (int from_tty)
2998 {
2999 struct svr4_info *info;
3000
3001 info = get_svr4_info (current_program_space);
3002
3003 /* Clear the probes-based interface's state. */
3004 free_probes_table (info);
3005 free_solib_list (info);
3006
3007 /* Relocate the main executable if necessary. */
3008 svr4_relocate_main_executable ();
3009
3010 /* No point setting a breakpoint in the dynamic linker if we can't
3011 hit it (e.g., a core file, or a trace file). */
3012 if (!target_has_execution)
3013 return;
3014
3015 if (!svr4_have_link_map_offsets ())
3016 return;
3017
3018 if (!enable_break (info, from_tty))
3019 return;
3020 }
3021
3022 static void
3023 svr4_clear_solib (void)
3024 {
3025 struct svr4_info *info;
3026
3027 info = get_svr4_info (current_program_space);
3028 info->debug_base = 0;
3029 info->debug_loader_offset_p = 0;
3030 info->debug_loader_offset = 0;
3031 xfree (info->debug_loader_name);
3032 info->debug_loader_name = NULL;
3033 }
3034
3035 /* Clear any bits of ADDR that wouldn't fit in a target-format
3036 data pointer. "Data pointer" here refers to whatever sort of
3037 address the dynamic linker uses to manage its sections. At the
3038 moment, we don't support shared libraries on any processors where
3039 code and data pointers are different sizes.
3040
3041 This isn't really the right solution. What we really need here is
3042 a way to do arithmetic on CORE_ADDR values that respects the
3043 natural pointer/address correspondence. (For example, on the MIPS,
3044 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3045 sign-extend the value. There, simply truncating the bits above
3046 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3047 be a new gdbarch method or something. */
3048 static CORE_ADDR
3049 svr4_truncate_ptr (CORE_ADDR addr)
3050 {
3051 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3052 /* We don't need to truncate anything, and the bit twiddling below
3053 will fail due to overflow problems. */
3054 return addr;
3055 else
3056 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3057 }
3058
3059
3060 static void
3061 svr4_relocate_section_addresses (struct so_list *so,
3062 struct target_section *sec)
3063 {
3064 bfd *abfd = sec->the_bfd_section->owner;
3065
3066 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3067 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3068 }
3069 \f
3070
3071 /* Architecture-specific operations. */
3072
3073 /* Per-architecture data key. */
3074 static struct gdbarch_data *solib_svr4_data;
3075
3076 struct solib_svr4_ops
3077 {
3078 /* Return a description of the layout of `struct link_map'. */
3079 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3080 };
3081
3082 /* Return a default for the architecture-specific operations. */
3083
3084 static void *
3085 solib_svr4_init (struct obstack *obstack)
3086 {
3087 struct solib_svr4_ops *ops;
3088
3089 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3090 ops->fetch_link_map_offsets = NULL;
3091 return ops;
3092 }
3093
3094 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3095 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3096
3097 void
3098 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3099 struct link_map_offsets *(*flmo) (void))
3100 {
3101 struct solib_svr4_ops *ops
3102 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3103
3104 ops->fetch_link_map_offsets = flmo;
3105
3106 set_solib_ops (gdbarch, &svr4_so_ops);
3107 }
3108
3109 /* Fetch a link_map_offsets structure using the architecture-specific
3110 `struct link_map_offsets' fetcher. */
3111
3112 static struct link_map_offsets *
3113 svr4_fetch_link_map_offsets (void)
3114 {
3115 struct solib_svr4_ops *ops
3116 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3117 solib_svr4_data);
3118
3119 gdb_assert (ops->fetch_link_map_offsets);
3120 return ops->fetch_link_map_offsets ();
3121 }
3122
3123 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3124
3125 static int
3126 svr4_have_link_map_offsets (void)
3127 {
3128 struct solib_svr4_ops *ops
3129 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3130 solib_svr4_data);
3131
3132 return (ops->fetch_link_map_offsets != NULL);
3133 }
3134 \f
3135
3136 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3137 `struct r_debug' and a `struct link_map' that are binary compatible
3138 with the origional SVR4 implementation. */
3139
3140 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3141 for an ILP32 SVR4 system. */
3142
3143 struct link_map_offsets *
3144 svr4_ilp32_fetch_link_map_offsets (void)
3145 {
3146 static struct link_map_offsets lmo;
3147 static struct link_map_offsets *lmp = NULL;
3148
3149 if (lmp == NULL)
3150 {
3151 lmp = &lmo;
3152
3153 lmo.r_version_offset = 0;
3154 lmo.r_version_size = 4;
3155 lmo.r_map_offset = 4;
3156 lmo.r_brk_offset = 8;
3157 lmo.r_ldsomap_offset = 20;
3158
3159 /* Everything we need is in the first 20 bytes. */
3160 lmo.link_map_size = 20;
3161 lmo.l_addr_offset = 0;
3162 lmo.l_name_offset = 4;
3163 lmo.l_ld_offset = 8;
3164 lmo.l_next_offset = 12;
3165 lmo.l_prev_offset = 16;
3166 }
3167
3168 return lmp;
3169 }
3170
3171 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3172 for an LP64 SVR4 system. */
3173
3174 struct link_map_offsets *
3175 svr4_lp64_fetch_link_map_offsets (void)
3176 {
3177 static struct link_map_offsets lmo;
3178 static struct link_map_offsets *lmp = NULL;
3179
3180 if (lmp == NULL)
3181 {
3182 lmp = &lmo;
3183
3184 lmo.r_version_offset = 0;
3185 lmo.r_version_size = 4;
3186 lmo.r_map_offset = 8;
3187 lmo.r_brk_offset = 16;
3188 lmo.r_ldsomap_offset = 40;
3189
3190 /* Everything we need is in the first 40 bytes. */
3191 lmo.link_map_size = 40;
3192 lmo.l_addr_offset = 0;
3193 lmo.l_name_offset = 8;
3194 lmo.l_ld_offset = 16;
3195 lmo.l_next_offset = 24;
3196 lmo.l_prev_offset = 32;
3197 }
3198
3199 return lmp;
3200 }
3201 \f
3202
3203 struct target_so_ops svr4_so_ops;
3204
3205 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3206 different rule for symbol lookup. The lookup begins here in the DSO, not in
3207 the main executable. */
3208
3209 static struct block_symbol
3210 elf_lookup_lib_symbol (struct objfile *objfile,
3211 const char *name,
3212 const domain_enum domain)
3213 {
3214 bfd *abfd;
3215
3216 if (objfile == symfile_objfile)
3217 abfd = exec_bfd;
3218 else
3219 {
3220 /* OBJFILE should have been passed as the non-debug one. */
3221 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3222
3223 abfd = objfile->obfd;
3224 }
3225
3226 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3227 return {};
3228
3229 return lookup_global_symbol_from_objfile (objfile, name, domain);
3230 }
3231
3232 void
3233 _initialize_svr4_solib (void)
3234 {
3235 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3236
3237 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3238 svr4_so_ops.free_so = svr4_free_so;
3239 svr4_so_ops.clear_so = svr4_clear_so;
3240 svr4_so_ops.clear_solib = svr4_clear_solib;
3241 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3242 svr4_so_ops.current_sos = svr4_current_sos;
3243 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3244 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3245 svr4_so_ops.bfd_open = solib_bfd_open;
3246 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3247 svr4_so_ops.same = svr4_same;
3248 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3249 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3250 svr4_so_ops.handle_event = svr4_handle_solib_event;
3251
3252 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
3253 }