]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/solib.c
Fix AMD64 return value ABI in expression evaluation
[thirdparty/binutils-gdb.git] / gdb / solib.c
1 /* Handle shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <sys/types.h>
23 #include <fcntl.h>
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "target.h"
31 #include "frame.h"
32 #include "gdb_regex.h"
33 #include "inferior.h"
34 #include "common/environ.h"
35 #include "language.h"
36 #include "gdbcmd.h"
37 #include "completer.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "exec.h"
40 #include "solist.h"
41 #include "observable.h"
42 #include "readline/readline.h"
43 #include "remote.h"
44 #include "solib.h"
45 #include "interps.h"
46 #include "filesystem.h"
47 #include "gdb_bfd.h"
48 #include "common/filestuff.h"
49 #include "source.h"
50
51 /* Architecture-specific operations. */
52
53 /* Per-architecture data key. */
54 static struct gdbarch_data *solib_data;
55
56 static void *
57 solib_init (struct obstack *obstack)
58 {
59 struct target_so_ops **ops;
60
61 ops = OBSTACK_ZALLOC (obstack, struct target_so_ops *);
62 *ops = current_target_so_ops;
63 return ops;
64 }
65
66 static const struct target_so_ops *
67 solib_ops (struct gdbarch *gdbarch)
68 {
69 const struct target_so_ops **ops
70 = (const struct target_so_ops **) gdbarch_data (gdbarch, solib_data);
71
72 return *ops;
73 }
74
75 /* Set the solib operations for GDBARCH to NEW_OPS. */
76
77 void
78 set_solib_ops (struct gdbarch *gdbarch, const struct target_so_ops *new_ops)
79 {
80 const struct target_so_ops **ops
81 = (const struct target_so_ops **) gdbarch_data (gdbarch, solib_data);
82
83 *ops = new_ops;
84 }
85 \f
86
87 /* external data declarations */
88
89 /* FIXME: gdbarch needs to control this variable, or else every
90 configuration needs to call set_solib_ops. */
91 struct target_so_ops *current_target_so_ops;
92
93 /* Local function prototypes */
94
95 /* If non-empty, this is a search path for loading non-absolute shared library
96 symbol files. This takes precedence over the environment variables PATH
97 and LD_LIBRARY_PATH. */
98 static char *solib_search_path = NULL;
99 static void
100 show_solib_search_path (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102 {
103 fprintf_filtered (file, _("The search path for loading non-absolute "
104 "shared library symbol files is %s.\n"),
105 value);
106 }
107
108 /* Same as HAVE_DOS_BASED_FILE_SYSTEM, but useable as an rvalue. */
109 #if (HAVE_DOS_BASED_FILE_SYSTEM)
110 # define DOS_BASED_FILE_SYSTEM 1
111 #else
112 # define DOS_BASED_FILE_SYSTEM 0
113 #endif
114
115 /* Return the full pathname of a binary file (the main executable or a
116 shared library file), or NULL if not found. If FD is non-NULL, *FD
117 is set to either -1 or an open file handle for the binary file.
118
119 Global variable GDB_SYSROOT is used as a prefix directory
120 to search for binary files if they have an absolute path.
121 If GDB_SYSROOT starts with "target:" and target filesystem
122 is the local filesystem then the "target:" prefix will be
123 stripped before the search starts. This ensures that the
124 same search algorithm is used for local files regardless of
125 whether a "target:" prefix was used.
126
127 Global variable SOLIB_SEARCH_PATH is used as a prefix directory
128 (or set of directories, as in LD_LIBRARY_PATH) to search for all
129 shared libraries if not found in either the sysroot (if set) or
130 the local filesystem. SOLIB_SEARCH_PATH is not used when searching
131 for the main executable.
132
133 Search algorithm:
134 * If a sysroot is set and path is absolute:
135 * Search for sysroot/path.
136 * else
137 * Look for it literally (unmodified).
138 * If IS_SOLIB is non-zero:
139 * Look in SOLIB_SEARCH_PATH.
140 * If available, use target defined search function.
141 * If NO sysroot is set, perform the following two searches:
142 * Look in inferior's $PATH.
143 * If IS_SOLIB is non-zero:
144 * Look in inferior's $LD_LIBRARY_PATH.
145 *
146 * The last check avoids doing this search when targetting remote
147 * machines since a sysroot will almost always be set.
148 */
149
150 static gdb::unique_xmalloc_ptr<char>
151 solib_find_1 (const char *in_pathname, int *fd, int is_solib)
152 {
153 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
154 int found_file = -1;
155 gdb::unique_xmalloc_ptr<char> temp_pathname;
156 const char *fskind = effective_target_file_system_kind ();
157 const char *sysroot = gdb_sysroot;
158 int prefix_len, orig_prefix_len;
159
160 /* If the absolute prefix starts with "target:" but the filesystem
161 accessed by the target_fileio_* methods is the local filesystem
162 then we strip the "target:" prefix now and work with the local
163 filesystem. This ensures that the same search algorithm is used
164 for all local files regardless of whether a "target:" prefix was
165 used. */
166 if (is_target_filename (sysroot) && target_filesystem_is_local ())
167 sysroot += strlen (TARGET_SYSROOT_PREFIX);
168
169 /* Strip any trailing slashes from the absolute prefix. */
170 prefix_len = orig_prefix_len = strlen (sysroot);
171
172 while (prefix_len > 0 && IS_DIR_SEPARATOR (sysroot[prefix_len - 1]))
173 prefix_len--;
174
175 std::string sysroot_holder;
176 if (prefix_len == 0)
177 sysroot = NULL;
178 else if (prefix_len != orig_prefix_len)
179 {
180 sysroot_holder = std::string (sysroot, prefix_len);
181 sysroot = sysroot_holder.c_str ();
182 }
183
184 /* If we're on a non-DOS-based system, backslashes won't be
185 understood as directory separator, so, convert them to forward
186 slashes, iff we're supposed to handle DOS-based file system
187 semantics for target paths. */
188 if (!DOS_BASED_FILE_SYSTEM && fskind == file_system_kind_dos_based)
189 {
190 char *p;
191
192 /* Avoid clobbering our input. */
193 p = (char *) alloca (strlen (in_pathname) + 1);
194 strcpy (p, in_pathname);
195 in_pathname = p;
196
197 for (; *p; p++)
198 {
199 if (*p == '\\')
200 *p = '/';
201 }
202 }
203
204 /* Note, we're interested in IS_TARGET_ABSOLUTE_PATH, not
205 IS_ABSOLUTE_PATH. The latter is for host paths only, while
206 IN_PATHNAME is a target path. For example, if we're supposed to
207 be handling DOS-like semantics we want to consider a
208 'c:/foo/bar.dll' path as an absolute path, even on a Unix box.
209 With such a path, before giving up on the sysroot, we'll try:
210
211 1st attempt, c:/foo/bar.dll ==> /sysroot/c:/foo/bar.dll
212 2nd attempt, c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll
213 3rd attempt, c:/foo/bar.dll ==> /sysroot/foo/bar.dll
214 */
215
216 if (!IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname) || sysroot == NULL)
217 temp_pathname.reset (xstrdup (in_pathname));
218 else
219 {
220 int need_dir_separator;
221
222 /* Concatenate the sysroot and the target reported filename. We
223 may need to glue them with a directory separator. Cases to
224 consider:
225
226 | sysroot | separator | in_pathname |
227 |-----------------+-----------+----------------|
228 | /some/dir | / | c:/foo/bar.dll |
229 | /some/dir | | /foo/bar.dll |
230 | target: | | c:/foo/bar.dll |
231 | target: | | /foo/bar.dll |
232 | target:some/dir | / | c:/foo/bar.dll |
233 | target:some/dir | | /foo/bar.dll |
234
235 IOW, we don't need to add a separator if IN_PATHNAME already
236 has one, or when the sysroot is exactly "target:".
237 There's no need to check for drive spec explicitly, as we only
238 get here if IN_PATHNAME is considered an absolute path. */
239 need_dir_separator = !(IS_DIR_SEPARATOR (in_pathname[0])
240 || strcmp (TARGET_SYSROOT_PREFIX, sysroot) == 0);
241
242 /* Cat the prefixed pathname together. */
243 temp_pathname.reset (concat (sysroot,
244 need_dir_separator ? SLASH_STRING : "",
245 in_pathname, (char *) NULL));
246 }
247
248 /* Handle files to be accessed via the target. */
249 if (is_target_filename (temp_pathname.get ()))
250 {
251 if (fd != NULL)
252 *fd = -1;
253 return temp_pathname;
254 }
255
256 /* Now see if we can open it. */
257 found_file = gdb_open_cloexec (temp_pathname.get (), O_RDONLY | O_BINARY, 0);
258
259 /* If the search in gdb_sysroot failed, and the path name has a
260 drive spec (e.g, c:/foo), try stripping ':' from the drive spec,
261 and retrying in the sysroot:
262 c:/foo/bar.dll ==> /sysroot/c/foo/bar.dll. */
263
264 if (found_file < 0
265 && sysroot != NULL
266 && HAS_TARGET_DRIVE_SPEC (fskind, in_pathname))
267 {
268 int need_dir_separator = !IS_DIR_SEPARATOR (in_pathname[2]);
269 char drive[2] = { in_pathname[0], '\0' };
270
271 temp_pathname.reset (concat (sysroot,
272 SLASH_STRING,
273 drive,
274 need_dir_separator ? SLASH_STRING : "",
275 in_pathname + 2, (char *) NULL));
276
277 found_file = gdb_open_cloexec (temp_pathname.get (),
278 O_RDONLY | O_BINARY, 0);
279 if (found_file < 0)
280 {
281 /* If the search in gdb_sysroot still failed, try fully
282 stripping the drive spec, and trying once more in the
283 sysroot before giving up.
284
285 c:/foo/bar.dll ==> /sysroot/foo/bar.dll. */
286
287 temp_pathname.reset (concat (sysroot,
288 need_dir_separator ? SLASH_STRING : "",
289 in_pathname + 2, (char *) NULL));
290
291 found_file = gdb_open_cloexec (temp_pathname.get (),
292 O_RDONLY | O_BINARY, 0);
293 }
294 }
295
296 /* We try to find the library in various ways. After each attempt,
297 either found_file >= 0 and temp_pathname is a malloc'd string, or
298 found_file < 0 and temp_pathname does not point to storage that
299 needs to be freed. */
300
301 if (found_file < 0)
302 temp_pathname.reset (NULL);
303
304 /* If the search in gdb_sysroot failed, and the path name is
305 absolute at this point, make it relative. (openp will try and open the
306 file according to its absolute path otherwise, which is not what we want.)
307 Affects subsequent searches for this solib. */
308 if (found_file < 0 && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
309 {
310 /* First, get rid of any drive letters etc. */
311 while (!IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
312 in_pathname++;
313
314 /* Next, get rid of all leading dir separators. */
315 while (IS_TARGET_DIR_SEPARATOR (fskind, *in_pathname))
316 in_pathname++;
317 }
318
319 /* If not found, and we're looking for a solib, search the
320 solib_search_path (if any). */
321 if (is_solib && found_file < 0 && solib_search_path != NULL)
322 found_file = openp (solib_search_path,
323 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
324 in_pathname, O_RDONLY | O_BINARY, &temp_pathname);
325
326 /* If not found, and we're looking for a solib, next search the
327 solib_search_path (if any) for the basename only (ignoring the
328 path). This is to allow reading solibs from a path that differs
329 from the opened path. */
330 if (is_solib && found_file < 0 && solib_search_path != NULL)
331 found_file = openp (solib_search_path,
332 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
333 target_lbasename (fskind, in_pathname),
334 O_RDONLY | O_BINARY, &temp_pathname);
335
336 /* If not found, and we're looking for a solib, try to use target
337 supplied solib search method. */
338 if (is_solib && found_file < 0 && ops->find_and_open_solib)
339 found_file = ops->find_and_open_solib (in_pathname, O_RDONLY | O_BINARY,
340 &temp_pathname);
341
342 /* If not found, next search the inferior's $PATH environment variable. */
343 if (found_file < 0 && sysroot == NULL)
344 found_file = openp (current_inferior ()->environment.get ("PATH"),
345 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
346 O_RDONLY | O_BINARY, &temp_pathname);
347
348 /* If not found, and we're looking for a solib, next search the
349 inferior's $LD_LIBRARY_PATH environment variable. */
350 if (is_solib && found_file < 0 && sysroot == NULL)
351 found_file = openp (current_inferior ()->environment.get
352 ("LD_LIBRARY_PATH"),
353 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, in_pathname,
354 O_RDONLY | O_BINARY, &temp_pathname);
355
356 if (fd == NULL)
357 {
358 if (found_file >= 0)
359 close (found_file);
360 }
361 else
362 *fd = found_file;
363
364 return temp_pathname;
365 }
366
367 /* Return the full pathname of the main executable, or NULL if not
368 found. If FD is non-NULL, *FD is set to either -1 or an open file
369 handle for the main executable. */
370
371 gdb::unique_xmalloc_ptr<char>
372 exec_file_find (const char *in_pathname, int *fd)
373 {
374 gdb::unique_xmalloc_ptr<char> result;
375 const char *fskind = effective_target_file_system_kind ();
376
377 if (in_pathname == NULL)
378 return NULL;
379
380 if (*gdb_sysroot != '\0' && IS_TARGET_ABSOLUTE_PATH (fskind, in_pathname))
381 {
382 result = solib_find_1 (in_pathname, fd, 0);
383
384 if (result == NULL && fskind == file_system_kind_dos_based)
385 {
386 char *new_pathname;
387
388 new_pathname = (char *) alloca (strlen (in_pathname) + 5);
389 strcpy (new_pathname, in_pathname);
390 strcat (new_pathname, ".exe");
391
392 result = solib_find_1 (new_pathname, fd, 0);
393 }
394 }
395 else
396 {
397 /* It's possible we don't have a full path, but rather just a
398 filename. Some targets, such as HP-UX, don't provide the
399 full path, sigh.
400
401 Attempt to qualify the filename against the source path.
402 (If that fails, we'll just fall back on the original
403 filename. Not much more we can do...) */
404
405 if (!source_full_path_of (in_pathname, &result))
406 result.reset (xstrdup (in_pathname));
407 if (fd != NULL)
408 *fd = -1;
409 }
410
411 return result;
412 }
413
414 /* Return the full pathname of a shared library file, or NULL if not
415 found. If FD is non-NULL, *FD is set to either -1 or an open file
416 handle for the shared library.
417
418 The search algorithm used is described in solib_find_1's comment
419 above. */
420
421 gdb::unique_xmalloc_ptr<char>
422 solib_find (const char *in_pathname, int *fd)
423 {
424 const char *solib_symbols_extension
425 = gdbarch_solib_symbols_extension (target_gdbarch ());
426
427 /* If solib_symbols_extension is set, replace the file's
428 extension. */
429 if (solib_symbols_extension != NULL)
430 {
431 const char *p = in_pathname + strlen (in_pathname);
432
433 while (p > in_pathname && *p != '.')
434 p--;
435
436 if (*p == '.')
437 {
438 char *new_pathname;
439
440 new_pathname
441 = (char *) alloca (p - in_pathname + 1
442 + strlen (solib_symbols_extension) + 1);
443 memcpy (new_pathname, in_pathname, p - in_pathname + 1);
444 strcpy (new_pathname + (p - in_pathname) + 1,
445 solib_symbols_extension);
446
447 in_pathname = new_pathname;
448 }
449 }
450
451 return solib_find_1 (in_pathname, fd, 1);
452 }
453
454 /* Open and return a BFD for the shared library PATHNAME. If FD is not -1,
455 it is used as file handle to open the file. Throws an error if the file
456 could not be opened. Handles both local and remote file access.
457
458 If unsuccessful, the FD will be closed (unless FD was -1). */
459
460 gdb_bfd_ref_ptr
461 solib_bfd_fopen (const char *pathname, int fd)
462 {
463 gdb_bfd_ref_ptr abfd (gdb_bfd_open (pathname, gnutarget, fd));
464
465 if (abfd != NULL && !gdb_bfd_has_target_filename (abfd.get ()))
466 bfd_set_cacheable (abfd.get (), 1);
467
468 if (abfd == NULL)
469 {
470 /* Arrange to free PATHNAME when the error is thrown. */
471 error (_("Could not open `%s' as an executable file: %s"),
472 pathname, bfd_errmsg (bfd_get_error ()));
473 }
474
475 return abfd;
476 }
477
478 /* Find shared library PATHNAME and open a BFD for it. */
479
480 gdb_bfd_ref_ptr
481 solib_bfd_open (const char *pathname)
482 {
483 int found_file;
484 const struct bfd_arch_info *b;
485
486 /* Search for shared library file. */
487 gdb::unique_xmalloc_ptr<char> found_pathname
488 = solib_find (pathname, &found_file);
489 if (found_pathname == NULL)
490 {
491 /* Return failure if the file could not be found, so that we can
492 accumulate messages about missing libraries. */
493 if (errno == ENOENT)
494 return NULL;
495
496 perror_with_name (pathname);
497 }
498
499 /* Open bfd for shared library. */
500 gdb_bfd_ref_ptr abfd (solib_bfd_fopen (found_pathname.get (), found_file));
501
502 /* Check bfd format. */
503 if (!bfd_check_format (abfd.get (), bfd_object))
504 error (_("`%s': not in executable format: %s"),
505 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
506
507 /* Check bfd arch. */
508 b = gdbarch_bfd_arch_info (target_gdbarch ());
509 if (!b->compatible (b, bfd_get_arch_info (abfd.get ())))
510 warning (_("`%s': Shared library architecture %s is not compatible "
511 "with target architecture %s."), bfd_get_filename (abfd),
512 bfd_get_arch_info (abfd.get ())->printable_name,
513 b->printable_name);
514
515 return abfd;
516 }
517
518 /* Given a pointer to one of the shared objects in our list of mapped
519 objects, use the recorded name to open a bfd descriptor for the
520 object, build a section table, relocate all the section addresses
521 by the base address at which the shared object was mapped, and then
522 add the sections to the target's section table.
523
524 FIXME: In most (all?) cases the shared object file name recorded in
525 the dynamic linkage tables will be a fully qualified pathname. For
526 cases where it isn't, do we really mimic the systems search
527 mechanism correctly in the below code (particularly the tilde
528 expansion stuff?). */
529
530 static int
531 solib_map_sections (struct so_list *so)
532 {
533 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
534 struct target_section *p;
535
536 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (so->so_name));
537 gdb_bfd_ref_ptr abfd (ops->bfd_open (filename.get ()));
538
539 if (abfd == NULL)
540 return 0;
541
542 /* Leave bfd open, core_xfer_memory and "info files" need it. */
543 so->abfd = abfd.release ();
544
545 /* Copy the full path name into so_name, allowing symbol_file_add
546 to find it later. This also affects the =library-loaded GDB/MI
547 event, and in particular the part of that notification providing
548 the library's host-side path. If we let the target dictate
549 that objfile's path, and the target is different from the host,
550 GDB/MI will not provide the correct host-side path. */
551 if (strlen (bfd_get_filename (so->abfd)) >= SO_NAME_MAX_PATH_SIZE)
552 error (_("Shared library file name is too long."));
553 strcpy (so->so_name, bfd_get_filename (so->abfd));
554
555 if (build_section_table (so->abfd, &so->sections, &so->sections_end))
556 {
557 error (_("Can't find the file sections in `%s': %s"),
558 bfd_get_filename (so->abfd), bfd_errmsg (bfd_get_error ()));
559 }
560
561 for (p = so->sections; p < so->sections_end; p++)
562 {
563 /* Relocate the section binding addresses as recorded in the shared
564 object's file by the base address to which the object was actually
565 mapped. */
566 ops->relocate_section_addresses (so, p);
567
568 /* If the target didn't provide information about the address
569 range of the shared object, assume we want the location of
570 the .text section. */
571 if (so->addr_low == 0 && so->addr_high == 0
572 && strcmp (p->the_bfd_section->name, ".text") == 0)
573 {
574 so->addr_low = p->addr;
575 so->addr_high = p->endaddr;
576 }
577 }
578
579 /* Add the shared object's sections to the current set of file
580 section tables. Do this immediately after mapping the object so
581 that later nodes in the list can query this object, as is needed
582 in solib-osf.c. */
583 add_target_sections (so, so->sections, so->sections_end);
584
585 return 1;
586 }
587
588 /* Free symbol-file related contents of SO and reset for possible reloading
589 of SO. If we have opened a BFD for SO, close it. If we have placed SO's
590 sections in some target's section table, the caller is responsible for
591 removing them.
592
593 This function doesn't mess with objfiles at all. If there is an
594 objfile associated with SO that needs to be removed, the caller is
595 responsible for taking care of that. */
596
597 static void
598 clear_so (struct so_list *so)
599 {
600 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
601
602 if (so->sections)
603 {
604 xfree (so->sections);
605 so->sections = so->sections_end = NULL;
606 }
607
608 gdb_bfd_unref (so->abfd);
609 so->abfd = NULL;
610
611 /* Our caller closed the objfile, possibly via objfile_purge_solibs. */
612 so->symbols_loaded = 0;
613 so->objfile = NULL;
614
615 so->addr_low = so->addr_high = 0;
616
617 /* Restore the target-supplied file name. SO_NAME may be the path
618 of the symbol file. */
619 strcpy (so->so_name, so->so_original_name);
620
621 /* Do the same for target-specific data. */
622 if (ops->clear_so != NULL)
623 ops->clear_so (so);
624 }
625
626 /* Free the storage associated with the `struct so_list' object SO.
627 If we have opened a BFD for SO, close it.
628
629 The caller is responsible for removing SO from whatever list it is
630 a member of. If we have placed SO's sections in some target's
631 section table, the caller is responsible for removing them.
632
633 This function doesn't mess with objfiles at all. If there is an
634 objfile associated with SO that needs to be removed, the caller is
635 responsible for taking care of that. */
636
637 void
638 free_so (struct so_list *so)
639 {
640 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
641
642 clear_so (so);
643 ops->free_so (so);
644
645 xfree (so);
646 }
647
648
649 /* Return address of first so_list entry in master shared object list. */
650 struct so_list *
651 master_so_list (void)
652 {
653 return so_list_head;
654 }
655
656 /* Read in symbols for shared object SO. If SYMFILE_VERBOSE is set in FLAGS,
657 be chatty about it. Return non-zero if any symbols were actually
658 loaded. */
659
660 int
661 solib_read_symbols (struct so_list *so, symfile_add_flags flags)
662 {
663 if (so->symbols_loaded)
664 {
665 /* If needed, we've already warned in our caller. */
666 }
667 else if (so->abfd == NULL)
668 {
669 /* We've already warned about this library, when trying to open
670 it. */
671 }
672 else
673 {
674
675 flags |= current_inferior ()->symfile_flags;
676
677 try
678 {
679 /* Have we already loaded this shared object? */
680 so->objfile = nullptr;
681 for (objfile *objfile : current_program_space->objfiles ())
682 {
683 if (filename_cmp (objfile_name (objfile), so->so_name) == 0
684 && objfile->addr_low == so->addr_low)
685 {
686 so->objfile = objfile;
687 break;
688 }
689 }
690 if (so->objfile == NULL)
691 {
692 section_addr_info sap
693 = build_section_addr_info_from_section_table (so->sections,
694 so->sections_end);
695 so->objfile = symbol_file_add_from_bfd (so->abfd, so->so_name,
696 flags, &sap,
697 OBJF_SHARED, NULL);
698 so->objfile->addr_low = so->addr_low;
699 }
700
701 so->symbols_loaded = 1;
702 }
703 catch (const gdb_exception_error &e)
704 {
705 exception_fprintf (gdb_stderr, e, _("Error while reading shared"
706 " library symbols for %s:\n"),
707 so->so_name);
708 }
709
710 return 1;
711 }
712
713 return 0;
714 }
715
716 /* Return 1 if KNOWN->objfile is used by any other so_list object in the
717 SO_LIST_HEAD list. Return 0 otherwise. */
718
719 static int
720 solib_used (const struct so_list *const known)
721 {
722 const struct so_list *pivot;
723
724 for (pivot = so_list_head; pivot != NULL; pivot = pivot->next)
725 if (pivot != known && pivot->objfile == known->objfile)
726 return 1;
727 return 0;
728 }
729
730 /* See solib.h. */
731
732 void
733 update_solib_list (int from_tty)
734 {
735 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
736 struct so_list *inferior = ops->current_sos();
737 struct so_list *gdb, **gdb_link;
738
739 /* We can reach here due to changing solib-search-path or the
740 sysroot, before having any inferior. */
741 if (target_has_execution && inferior_ptid != null_ptid)
742 {
743 struct inferior *inf = current_inferior ();
744
745 /* If we are attaching to a running process for which we
746 have not opened a symbol file, we may be able to get its
747 symbols now! */
748 if (inf->attach_flag && symfile_objfile == NULL)
749 {
750 try
751 {
752 ops->open_symbol_file_object (from_tty);
753 }
754 catch (const gdb_exception &ex)
755 {
756 exception_fprintf (gdb_stderr, ex,
757 "Error reading attached "
758 "process's symbol file.\n");
759 }
760 }
761 }
762
763 /* GDB and the inferior's dynamic linker each maintain their own
764 list of currently loaded shared objects; we want to bring the
765 former in sync with the latter. Scan both lists, seeing which
766 shared objects appear where. There are three cases:
767
768 - A shared object appears on both lists. This means that GDB
769 knows about it already, and it's still loaded in the inferior.
770 Nothing needs to happen.
771
772 - A shared object appears only on GDB's list. This means that
773 the inferior has unloaded it. We should remove the shared
774 object from GDB's tables.
775
776 - A shared object appears only on the inferior's list. This
777 means that it's just been loaded. We should add it to GDB's
778 tables.
779
780 So we walk GDB's list, checking each entry to see if it appears
781 in the inferior's list too. If it does, no action is needed, and
782 we remove it from the inferior's list. If it doesn't, the
783 inferior has unloaded it, and we remove it from GDB's list. By
784 the time we're done walking GDB's list, the inferior's list
785 contains only the new shared objects, which we then add. */
786
787 gdb = so_list_head;
788 gdb_link = &so_list_head;
789 while (gdb)
790 {
791 struct so_list *i = inferior;
792 struct so_list **i_link = &inferior;
793
794 /* Check to see whether the shared object *gdb also appears in
795 the inferior's current list. */
796 while (i)
797 {
798 if (ops->same)
799 {
800 if (ops->same (gdb, i))
801 break;
802 }
803 else
804 {
805 if (! filename_cmp (gdb->so_original_name, i->so_original_name))
806 break;
807 }
808
809 i_link = &i->next;
810 i = *i_link;
811 }
812
813 /* If the shared object appears on the inferior's list too, then
814 it's still loaded, so we don't need to do anything. Delete
815 it from the inferior's list, and leave it on GDB's list. */
816 if (i)
817 {
818 *i_link = i->next;
819 free_so (i);
820 gdb_link = &gdb->next;
821 gdb = *gdb_link;
822 }
823
824 /* If it's not on the inferior's list, remove it from GDB's tables. */
825 else
826 {
827 /* Notify any observer that the shared object has been
828 unloaded before we remove it from GDB's tables. */
829 gdb::observers::solib_unloaded.notify (gdb);
830
831 current_program_space->deleted_solibs.push_back (gdb->so_name);
832
833 *gdb_link = gdb->next;
834
835 /* Unless the user loaded it explicitly, free SO's objfile. */
836 if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED)
837 && !solib_used (gdb))
838 delete gdb->objfile;
839
840 /* Some targets' section tables might be referring to
841 sections from so->abfd; remove them. */
842 remove_target_sections (gdb);
843
844 free_so (gdb);
845 gdb = *gdb_link;
846 }
847 }
848
849 /* Now the inferior's list contains only shared objects that don't
850 appear in GDB's list --- those that are newly loaded. Add them
851 to GDB's shared object list. */
852 if (inferior)
853 {
854 int not_found = 0;
855 const char *not_found_filename = NULL;
856
857 struct so_list *i;
858
859 /* Add the new shared objects to GDB's list. */
860 *gdb_link = inferior;
861
862 /* Fill in the rest of each of the `struct so_list' nodes. */
863 for (i = inferior; i; i = i->next)
864 {
865
866 i->pspace = current_program_space;
867 current_program_space->added_solibs.push_back (i);
868
869 try
870 {
871 /* Fill in the rest of the `struct so_list' node. */
872 if (!solib_map_sections (i))
873 {
874 not_found++;
875 if (not_found_filename == NULL)
876 not_found_filename = i->so_original_name;
877 }
878 }
879
880 catch (const gdb_exception_error &e)
881 {
882 exception_fprintf (gdb_stderr, e,
883 _("Error while mapping shared "
884 "library sections:\n"));
885 }
886
887 /* Notify any observer that the shared object has been
888 loaded now that we've added it to GDB's tables. */
889 gdb::observers::solib_loaded.notify (i);
890 }
891
892 /* If a library was not found, issue an appropriate warning
893 message. We have to use a single call to warning in case the
894 front end does something special with warnings, e.g., pop up
895 a dialog box. It Would Be Nice if we could get a "warning: "
896 prefix on each line in the CLI front end, though - it doesn't
897 stand out well. */
898
899 if (not_found == 1)
900 warning (_("Could not load shared library symbols for %s.\n"
901 "Do you need \"set solib-search-path\" "
902 "or \"set sysroot\"?"),
903 not_found_filename);
904 else if (not_found > 1)
905 warning (_("\
906 Could not load shared library symbols for %d libraries, e.g. %s.\n\
907 Use the \"info sharedlibrary\" command to see the complete listing.\n\
908 Do you need \"set solib-search-path\" or \"set sysroot\"?"),
909 not_found, not_found_filename);
910 }
911 }
912
913
914 /* Return non-zero if NAME is the libpthread shared library.
915
916 Uses a fairly simplistic heuristic approach where we check
917 the file name against "/libpthread". This can lead to false
918 positives, but this should be good enough in practice. */
919
920 int
921 libpthread_name_p (const char *name)
922 {
923 return (strstr (name, "/libpthread") != NULL);
924 }
925
926 /* Return non-zero if SO is the libpthread shared library. */
927
928 static int
929 libpthread_solib_p (struct so_list *so)
930 {
931 return libpthread_name_p (so->so_name);
932 }
933
934 /* Read in symbolic information for any shared objects whose names
935 match PATTERN. (If we've already read a shared object's symbol
936 info, leave it alone.) If PATTERN is zero, read them all.
937
938 If READSYMS is 0, defer reading symbolic information until later
939 but still do any needed low level processing.
940
941 FROM_TTY is described for update_solib_list, above. */
942
943 void
944 solib_add (const char *pattern, int from_tty, int readsyms)
945 {
946 struct so_list *gdb;
947
948 if (print_symbol_loading_p (from_tty, 0, 0))
949 {
950 if (pattern != NULL)
951 {
952 printf_unfiltered (_("Loading symbols for shared libraries: %s\n"),
953 pattern);
954 }
955 else
956 printf_unfiltered (_("Loading symbols for shared libraries.\n"));
957 }
958
959 current_program_space->solib_add_generation++;
960
961 if (pattern)
962 {
963 char *re_err = re_comp (pattern);
964
965 if (re_err)
966 error (_("Invalid regexp: %s"), re_err);
967 }
968
969 update_solib_list (from_tty);
970
971 /* Walk the list of currently loaded shared libraries, and read
972 symbols for any that match the pattern --- or any whose symbols
973 aren't already loaded, if no pattern was given. */
974 {
975 int any_matches = 0;
976 int loaded_any_symbols = 0;
977 symfile_add_flags add_flags = SYMFILE_DEFER_BP_RESET;
978
979 if (from_tty)
980 add_flags |= SYMFILE_VERBOSE;
981
982 for (gdb = so_list_head; gdb; gdb = gdb->next)
983 if (! pattern || re_exec (gdb->so_name))
984 {
985 /* Normally, we would read the symbols from that library
986 only if READSYMS is set. However, we're making a small
987 exception for the pthread library, because we sometimes
988 need the library symbols to be loaded in order to provide
989 thread support (x86-linux for instance). */
990 const int add_this_solib =
991 (readsyms || libpthread_solib_p (gdb));
992
993 any_matches = 1;
994 if (add_this_solib)
995 {
996 if (gdb->symbols_loaded)
997 {
998 /* If no pattern was given, be quiet for shared
999 libraries we have already loaded. */
1000 if (pattern && (from_tty || info_verbose))
1001 printf_unfiltered (_("Symbols already loaded for %s\n"),
1002 gdb->so_name);
1003 }
1004 else if (solib_read_symbols (gdb, add_flags))
1005 loaded_any_symbols = 1;
1006 }
1007 }
1008
1009 if (loaded_any_symbols)
1010 breakpoint_re_set ();
1011
1012 if (from_tty && pattern && ! any_matches)
1013 printf_unfiltered
1014 ("No loaded shared libraries match the pattern `%s'.\n", pattern);
1015
1016 if (loaded_any_symbols)
1017 {
1018 /* Getting new symbols may change our opinion about what is
1019 frameless. */
1020 reinit_frame_cache ();
1021 }
1022 }
1023 }
1024
1025 /* Implement the "info sharedlibrary" command. Walk through the
1026 shared library list and print information about each attached
1027 library matching PATTERN. If PATTERN is elided, print them
1028 all. */
1029
1030 static void
1031 info_sharedlibrary_command (const char *pattern, int from_tty)
1032 {
1033 struct so_list *so = NULL; /* link map state variable */
1034 int so_missing_debug_info = 0;
1035 int addr_width;
1036 int nr_libs;
1037 struct gdbarch *gdbarch = target_gdbarch ();
1038 struct ui_out *uiout = current_uiout;
1039
1040 if (pattern)
1041 {
1042 char *re_err = re_comp (pattern);
1043
1044 if (re_err)
1045 error (_("Invalid regexp: %s"), re_err);
1046 }
1047
1048 /* "0x", a little whitespace, and two hex digits per byte of pointers. */
1049 addr_width = 4 + (gdbarch_ptr_bit (gdbarch) / 4);
1050
1051 update_solib_list (from_tty);
1052
1053 /* ui_out_emit_table table_emitter needs to know the number of rows,
1054 so we need to make two passes over the libs. */
1055
1056 for (nr_libs = 0, so = so_list_head; so; so = so->next)
1057 {
1058 if (so->so_name[0])
1059 {
1060 if (pattern && ! re_exec (so->so_name))
1061 continue;
1062 ++nr_libs;
1063 }
1064 }
1065
1066 {
1067 ui_out_emit_table table_emitter (uiout, 4, nr_libs, "SharedLibraryTable");
1068
1069 /* The "- 1" is because ui_out adds one space between columns. */
1070 uiout->table_header (addr_width - 1, ui_left, "from", "From");
1071 uiout->table_header (addr_width - 1, ui_left, "to", "To");
1072 uiout->table_header (12 - 1, ui_left, "syms-read", "Syms Read");
1073 uiout->table_header (0, ui_noalign, "name", "Shared Object Library");
1074
1075 uiout->table_body ();
1076
1077 ALL_SO_LIBS (so)
1078 {
1079 if (! so->so_name[0])
1080 continue;
1081 if (pattern && ! re_exec (so->so_name))
1082 continue;
1083
1084 ui_out_emit_tuple tuple_emitter (uiout, "lib");
1085
1086 if (so->addr_high != 0)
1087 {
1088 uiout->field_core_addr ("from", gdbarch, so->addr_low);
1089 uiout->field_core_addr ("to", gdbarch, so->addr_high);
1090 }
1091 else
1092 {
1093 uiout->field_skip ("from");
1094 uiout->field_skip ("to");
1095 }
1096
1097 if (! top_level_interpreter ()->interp_ui_out ()->is_mi_like_p ()
1098 && so->symbols_loaded
1099 && !objfile_has_symbols (so->objfile))
1100 {
1101 so_missing_debug_info = 1;
1102 uiout->field_string ("syms-read", "Yes (*)");
1103 }
1104 else
1105 uiout->field_string ("syms-read", so->symbols_loaded ? "Yes" : "No");
1106
1107 uiout->field_string ("name", so->so_name);
1108
1109 uiout->text ("\n");
1110 }
1111 }
1112
1113 if (nr_libs == 0)
1114 {
1115 if (pattern)
1116 uiout->message (_("No shared libraries matched.\n"));
1117 else
1118 uiout->message (_("No shared libraries loaded at this time.\n"));
1119 }
1120 else
1121 {
1122 if (so_missing_debug_info)
1123 uiout->message (_("(*): Shared library is missing "
1124 "debugging information.\n"));
1125 }
1126 }
1127
1128 /* Return 1 if ADDRESS lies within SOLIB. */
1129
1130 int
1131 solib_contains_address_p (const struct so_list *const solib,
1132 CORE_ADDR address)
1133 {
1134 struct target_section *p;
1135
1136 for (p = solib->sections; p < solib->sections_end; p++)
1137 if (p->addr <= address && address < p->endaddr)
1138 return 1;
1139
1140 return 0;
1141 }
1142
1143 /* If ADDRESS is in a shared lib in program space PSPACE, return its
1144 name.
1145
1146 Provides a hook for other gdb routines to discover whether or not a
1147 particular address is within the mapped address space of a shared
1148 library.
1149
1150 For example, this routine is called at one point to disable
1151 breakpoints which are in shared libraries that are not currently
1152 mapped in. */
1153
1154 char *
1155 solib_name_from_address (struct program_space *pspace, CORE_ADDR address)
1156 {
1157 struct so_list *so = NULL;
1158
1159 for (so = pspace->so_list; so; so = so->next)
1160 if (solib_contains_address_p (so, address))
1161 return (so->so_name);
1162
1163 return (0);
1164 }
1165
1166 /* Return whether the data starting at VADDR, size SIZE, must be kept
1167 in a core file for shared libraries loaded before "gcore" is used
1168 to be handled correctly when the core file is loaded. This only
1169 applies when the section would otherwise not be kept in the core
1170 file (in particular, for readonly sections). */
1171
1172 int
1173 solib_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
1174 {
1175 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1176
1177 if (ops->keep_data_in_core)
1178 return ops->keep_data_in_core (vaddr, size);
1179 else
1180 return 0;
1181 }
1182
1183 /* Called by free_all_symtabs */
1184
1185 void
1186 clear_solib (void)
1187 {
1188 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1189
1190 disable_breakpoints_in_shlibs ();
1191
1192 while (so_list_head)
1193 {
1194 struct so_list *so = so_list_head;
1195
1196 so_list_head = so->next;
1197 gdb::observers::solib_unloaded.notify (so);
1198 remove_target_sections (so);
1199 free_so (so);
1200 }
1201
1202 ops->clear_solib ();
1203 }
1204
1205 /* Shared library startup support. When GDB starts up the inferior,
1206 it nurses it along (through the shell) until it is ready to execute
1207 its first instruction. At this point, this function gets
1208 called. */
1209
1210 void
1211 solib_create_inferior_hook (int from_tty)
1212 {
1213 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1214
1215 ops->solib_create_inferior_hook (from_tty);
1216 }
1217
1218 /* Check to see if an address is in the dynamic loader's dynamic
1219 symbol resolution code. Return 1 if so, 0 otherwise. */
1220
1221 int
1222 in_solib_dynsym_resolve_code (CORE_ADDR pc)
1223 {
1224 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1225
1226 return ops->in_dynsym_resolve_code (pc);
1227 }
1228
1229 /* Implements the "sharedlibrary" command. */
1230
1231 static void
1232 sharedlibrary_command (const char *args, int from_tty)
1233 {
1234 dont_repeat ();
1235 solib_add (args, from_tty, 1);
1236 }
1237
1238 /* Implements the command "nosharedlibrary", which discards symbols
1239 that have been auto-loaded from shared libraries. Symbols from
1240 shared libraries that were added by explicit request of the user
1241 are not discarded. Also called from remote.c. */
1242
1243 void
1244 no_shared_libraries (const char *ignored, int from_tty)
1245 {
1246 /* The order of the two routines below is important: clear_solib notifies
1247 the solib_unloaded observers, and some of these observers might need
1248 access to their associated objfiles. Therefore, we can not purge the
1249 solibs' objfiles before clear_solib has been called. */
1250
1251 clear_solib ();
1252 objfile_purge_solibs ();
1253 }
1254
1255 /* See solib.h. */
1256
1257 void
1258 update_solib_breakpoints (void)
1259 {
1260 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1261
1262 if (ops->update_breakpoints != NULL)
1263 ops->update_breakpoints ();
1264 }
1265
1266 /* See solib.h. */
1267
1268 void
1269 handle_solib_event (void)
1270 {
1271 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1272
1273 if (ops->handle_event != NULL)
1274 ops->handle_event ();
1275
1276 clear_program_space_solib_cache (current_inferior ()->pspace);
1277
1278 /* Check for any newly added shared libraries if we're supposed to
1279 be adding them automatically. Switch terminal for any messages
1280 produced by breakpoint_re_set. */
1281 target_terminal::ours_for_output ();
1282 solib_add (NULL, 0, auto_solib_add);
1283 target_terminal::inferior ();
1284 }
1285
1286 /* Reload shared libraries, but avoid reloading the same symbol file
1287 we already have loaded. */
1288
1289 static void
1290 reload_shared_libraries_1 (int from_tty)
1291 {
1292 struct so_list *so;
1293
1294 if (print_symbol_loading_p (from_tty, 0, 0))
1295 printf_unfiltered (_("Loading symbols for shared libraries.\n"));
1296
1297 for (so = so_list_head; so != NULL; so = so->next)
1298 {
1299 char *found_pathname = NULL;
1300 int was_loaded = so->symbols_loaded;
1301 symfile_add_flags add_flags = SYMFILE_DEFER_BP_RESET;
1302
1303 if (from_tty)
1304 add_flags |= SYMFILE_VERBOSE;
1305
1306 gdb::unique_xmalloc_ptr<char> filename
1307 (tilde_expand (so->so_original_name));
1308 gdb_bfd_ref_ptr abfd (solib_bfd_open (filename.get ()));
1309 if (abfd != NULL)
1310 found_pathname = bfd_get_filename (abfd.get ());
1311
1312 /* If this shared library is no longer associated with its previous
1313 symbol file, close that. */
1314 if ((found_pathname == NULL && was_loaded)
1315 || (found_pathname != NULL
1316 && filename_cmp (found_pathname, so->so_name) != 0))
1317 {
1318 if (so->objfile && ! (so->objfile->flags & OBJF_USERLOADED)
1319 && !solib_used (so))
1320 delete so->objfile;
1321 remove_target_sections (so);
1322 clear_so (so);
1323 }
1324
1325 /* If this shared library is now associated with a new symbol
1326 file, open it. */
1327 if (found_pathname != NULL
1328 && (!was_loaded
1329 || filename_cmp (found_pathname, so->so_name) != 0))
1330 {
1331 int got_error = 0;
1332
1333 try
1334 {
1335 solib_map_sections (so);
1336 }
1337
1338 catch (const gdb_exception_error &e)
1339 {
1340 exception_fprintf (gdb_stderr, e,
1341 _("Error while mapping "
1342 "shared library sections:\n"));
1343 got_error = 1;
1344 }
1345
1346 if (!got_error
1347 && (auto_solib_add || was_loaded || libpthread_solib_p (so)))
1348 solib_read_symbols (so, add_flags);
1349 }
1350 }
1351 }
1352
1353 static void
1354 reload_shared_libraries (const char *ignored, int from_tty,
1355 struct cmd_list_element *e)
1356 {
1357 const struct target_so_ops *ops;
1358
1359 reload_shared_libraries_1 (from_tty);
1360
1361 ops = solib_ops (target_gdbarch ());
1362
1363 /* Creating inferior hooks here has two purposes. First, if we reload
1364 shared libraries then the address of solib breakpoint we've computed
1365 previously might be no longer valid. For example, if we forgot to set
1366 solib-absolute-prefix and are setting it right now, then the previous
1367 breakpoint address is plain wrong. Second, installing solib hooks
1368 also implicitly figures were ld.so is and loads symbols for it.
1369 Absent this call, if we've just connected to a target and set
1370 solib-absolute-prefix or solib-search-path, we'll lose all information
1371 about ld.so. */
1372 if (target_has_execution)
1373 {
1374 /* Reset or free private data structures not associated with
1375 so_list entries. */
1376 ops->clear_solib ();
1377
1378 /* Remove any previous solib event breakpoint. This is usually
1379 done in common code, at breakpoint_init_inferior time, but
1380 we're not really starting up the inferior here. */
1381 remove_solib_event_breakpoints ();
1382
1383 solib_create_inferior_hook (from_tty);
1384 }
1385
1386 /* Sometimes the platform-specific hook loads initial shared
1387 libraries, and sometimes it doesn't. If it doesn't FROM_TTY will be
1388 incorrectly 0 but such solib targets should be fixed anyway. If we
1389 made all the inferior hook methods consistent, this call could be
1390 removed. Call it only after the solib target has been initialized by
1391 solib_create_inferior_hook. */
1392
1393 solib_add (NULL, 0, auto_solib_add);
1394
1395 breakpoint_re_set ();
1396
1397 /* We may have loaded or unloaded debug info for some (or all)
1398 shared libraries. However, frames may still reference them. For
1399 example, a frame's unwinder might still point at DWARF FDE
1400 structures that are now freed. Also, getting new symbols may
1401 change our opinion about what is frameless. */
1402 reinit_frame_cache ();
1403 }
1404
1405 /* Wrapper for reload_shared_libraries that replaces "remote:"
1406 at the start of gdb_sysroot with "target:". */
1407
1408 static void
1409 gdb_sysroot_changed (const char *ignored, int from_tty,
1410 struct cmd_list_element *e)
1411 {
1412 const char *old_prefix = "remote:";
1413 const char *new_prefix = TARGET_SYSROOT_PREFIX;
1414
1415 if (startswith (gdb_sysroot, old_prefix))
1416 {
1417 static int warning_issued = 0;
1418
1419 gdb_assert (strlen (old_prefix) == strlen (new_prefix));
1420 memcpy (gdb_sysroot, new_prefix, strlen (new_prefix));
1421
1422 if (!warning_issued)
1423 {
1424 warning (_("\"%s\" is deprecated, use \"%s\" instead."),
1425 old_prefix, new_prefix);
1426 warning (_("sysroot set to \"%s\"."), gdb_sysroot);
1427
1428 warning_issued = 1;
1429 }
1430 }
1431
1432 reload_shared_libraries (ignored, from_tty, e);
1433 }
1434
1435 static void
1436 show_auto_solib_add (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file, _("Autoloading of shared library symbols is %s.\n"),
1440 value);
1441 }
1442
1443
1444 /* Handler for library-specific lookup of global symbol NAME in OBJFILE. Call
1445 the library-specific handler if it is installed for the current target. */
1446
1447 struct block_symbol
1448 solib_global_lookup (struct objfile *objfile,
1449 const char *name,
1450 const domain_enum domain)
1451 {
1452 const struct target_so_ops *ops = solib_ops (target_gdbarch ());
1453
1454 if (ops->lookup_lib_global_symbol != NULL)
1455 return ops->lookup_lib_global_symbol (objfile, name, domain);
1456 return {};
1457 }
1458
1459 /* Lookup the value for a specific symbol from dynamic symbol table. Look
1460 up symbol from ABFD. MATCH_SYM is a callback function to determine
1461 whether to pick up a symbol. DATA is the input of this callback
1462 function. Return NULL if symbol is not found. */
1463
1464 CORE_ADDR
1465 gdb_bfd_lookup_symbol_from_symtab (bfd *abfd,
1466 int (*match_sym) (const asymbol *,
1467 const void *),
1468 const void *data)
1469 {
1470 long storage_needed = bfd_get_symtab_upper_bound (abfd);
1471 CORE_ADDR symaddr = 0;
1472
1473 if (storage_needed > 0)
1474 {
1475 unsigned int i;
1476
1477 gdb::def_vector<asymbol *> storage (storage_needed / sizeof (asymbol *));
1478 asymbol **symbol_table = storage.data ();
1479 unsigned int number_of_symbols =
1480 bfd_canonicalize_symtab (abfd, symbol_table);
1481
1482 for (i = 0; i < number_of_symbols; i++)
1483 {
1484 asymbol *sym = *symbol_table++;
1485
1486 if (match_sym (sym, data))
1487 {
1488 struct gdbarch *gdbarch = target_gdbarch ();
1489 symaddr = sym->value;
1490
1491 /* Some ELF targets fiddle with addresses of symbols they
1492 consider special. They use minimal symbols to do that
1493 and this is needed for correct breakpoint placement,
1494 but we do not have full data here to build a complete
1495 minimal symbol, so just set the address and let the
1496 targets cope with that. */
1497 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1498 && gdbarch_elf_make_msymbol_special_p (gdbarch))
1499 {
1500 struct minimal_symbol msym {};
1501
1502 SET_MSYMBOL_VALUE_ADDRESS (&msym, symaddr);
1503 gdbarch_elf_make_msymbol_special (gdbarch, sym, &msym);
1504 symaddr = MSYMBOL_VALUE_RAW_ADDRESS (&msym);
1505 }
1506
1507 /* BFD symbols are section relative. */
1508 symaddr += sym->section->vma;
1509 break;
1510 }
1511 }
1512 }
1513
1514 return symaddr;
1515 }
1516
1517 /* Lookup the value for a specific symbol from symbol table. Look up symbol
1518 from ABFD. MATCH_SYM is a callback function to determine whether to pick
1519 up a symbol. DATA is the input of this callback function. Return NULL
1520 if symbol is not found. */
1521
1522 static CORE_ADDR
1523 bfd_lookup_symbol_from_dyn_symtab (bfd *abfd,
1524 int (*match_sym) (const asymbol *,
1525 const void *),
1526 const void *data)
1527 {
1528 long storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1529 CORE_ADDR symaddr = 0;
1530
1531 if (storage_needed > 0)
1532 {
1533 unsigned int i;
1534 gdb::def_vector<asymbol *> storage (storage_needed / sizeof (asymbol *));
1535 asymbol **symbol_table = storage.data ();
1536 unsigned int number_of_symbols =
1537 bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
1538
1539 for (i = 0; i < number_of_symbols; i++)
1540 {
1541 asymbol *sym = *symbol_table++;
1542
1543 if (match_sym (sym, data))
1544 {
1545 /* BFD symbols are section relative. */
1546 symaddr = sym->value + sym->section->vma;
1547 break;
1548 }
1549 }
1550 }
1551 return symaddr;
1552 }
1553
1554 /* Lookup the value for a specific symbol from symbol table and dynamic
1555 symbol table. Look up symbol from ABFD. MATCH_SYM is a callback
1556 function to determine whether to pick up a symbol. DATA is the
1557 input of this callback function. Return NULL if symbol is not
1558 found. */
1559
1560 CORE_ADDR
1561 gdb_bfd_lookup_symbol (bfd *abfd,
1562 int (*match_sym) (const asymbol *, const void *),
1563 const void *data)
1564 {
1565 CORE_ADDR symaddr = gdb_bfd_lookup_symbol_from_symtab (abfd, match_sym, data);
1566
1567 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
1568 have to check the dynamic string table too. */
1569 if (symaddr == 0)
1570 symaddr = bfd_lookup_symbol_from_dyn_symtab (abfd, match_sym, data);
1571
1572 return symaddr;
1573 }
1574
1575 /* SO_LIST_HEAD may contain user-loaded object files that can be removed
1576 out-of-band by the user. So upon notification of free_objfile remove
1577 all references to any user-loaded file that is about to be freed. */
1578
1579 static void
1580 remove_user_added_objfile (struct objfile *objfile)
1581 {
1582 struct so_list *so;
1583
1584 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
1585 {
1586 for (so = so_list_head; so != NULL; so = so->next)
1587 if (so->objfile == objfile)
1588 so->objfile = NULL;
1589 }
1590 }
1591
1592 void
1593 _initialize_solib (void)
1594 {
1595 solib_data = gdbarch_data_register_pre_init (solib_init);
1596
1597 gdb::observers::free_objfile.attach (remove_user_added_objfile);
1598
1599 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1600 _("Load shared object library symbols for files matching REGEXP."));
1601 add_info ("sharedlibrary", info_sharedlibrary_command,
1602 _("Status of loaded shared object libraries."));
1603 add_info_alias ("dll", "sharedlibrary", 1);
1604 add_com ("nosharedlibrary", class_files, no_shared_libraries,
1605 _("Unload all shared object library symbols."));
1606
1607 add_setshow_boolean_cmd ("auto-solib-add", class_support,
1608 &auto_solib_add, _("\
1609 Set autoloading of shared library symbols."), _("\
1610 Show autoloading of shared library symbols."), _("\
1611 If \"on\", symbols from all shared object libraries will be loaded\n\
1612 automatically when the inferior begins execution, when the dynamic linker\n\
1613 informs gdb that a new library has been loaded, or when attaching to the\n\
1614 inferior. Otherwise, symbols must be loaded manually, using \
1615 `sharedlibrary'."),
1616 NULL,
1617 show_auto_solib_add,
1618 &setlist, &showlist);
1619
1620 add_setshow_optional_filename_cmd ("sysroot", class_support,
1621 &gdb_sysroot, _("\
1622 Set an alternate system root."), _("\
1623 Show the current system root."), _("\
1624 The system root is used to load absolute shared library symbol files.\n\
1625 For other (relative) files, you can add directories using\n\
1626 `set solib-search-path'."),
1627 gdb_sysroot_changed,
1628 NULL,
1629 &setlist, &showlist);
1630
1631 add_alias_cmd ("solib-absolute-prefix", "sysroot", class_support, 0,
1632 &setlist);
1633 add_alias_cmd ("solib-absolute-prefix", "sysroot", class_support, 0,
1634 &showlist);
1635
1636 add_setshow_optional_filename_cmd ("solib-search-path", class_support,
1637 &solib_search_path, _("\
1638 Set the search path for loading non-absolute shared library symbol files."),
1639 _("\
1640 Show the search path for loading non-absolute shared library symbol files."),
1641 _("\
1642 This takes precedence over the environment variables \
1643 PATH and LD_LIBRARY_PATH."),
1644 reload_shared_libraries,
1645 show_solib_search_path,
1646 &setlist, &showlist);
1647 }