]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-tdep.c
This commit was manufactured by cvs2svn to create branch 'csl-
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
38
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
41
42 #include "sparc-tdep.h"
43
44 struct regset;
45
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformat_sparc_quad floatformat_ia64_quad_big
68
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
74
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
89
90 /* Fetch the instruction at PC. Instructions are always big-endian
91 even if the processor operates in little-endian mode. */
92
93 unsigned long
94 sparc_fetch_instruction (CORE_ADDR pc)
95 {
96 unsigned char buf[4];
97 unsigned long insn;
98 int i;
99
100 /* If we can't read the instruction at PC, return zero. */
101 if (target_read_memory (pc, buf, sizeof (buf)))
102 return 0;
103
104 insn = 0;
105 for (i = 0; i < sizeof (buf); i++)
106 insn = (insn << 8) | buf[i];
107 return insn;
108 }
109 \f
110
111 /* Return non-zero if the instruction corresponding to PC is an "unimp"
112 instruction. */
113
114 static int
115 sparc_is_unimp_insn (CORE_ADDR pc)
116 {
117 const unsigned long insn = sparc_fetch_instruction (pc);
118
119 return ((insn & 0xc1c00000) == 0);
120 }
121
122 /* OpenBSD/sparc includes StackGhost, which according to the author's
123 website http://stackghost.cerias.purdue.edu "... transparently and
124 automatically protects applications' stack frames; more
125 specifically, it guards the return pointers. The protection
126 mechanisms require no application source or binary modification and
127 imposes only a negligible performance penalty."
128
129 The same website provides the following description of how
130 StackGhost works:
131
132 "StackGhost interfaces with the kernel trap handler that would
133 normally write out registers to the stack and the handler that
134 would read them back in. By XORing a cookie into the
135 return-address saved in the user stack when it is actually written
136 to the stack, and then XOR it out when the return-address is pulled
137 from the stack, StackGhost can cause attacker corrupted return
138 pointers to behave in a manner the attacker cannot predict.
139 StackGhost can also use several unused bits in the return pointer
140 to detect a smashed return pointer and abort the process."
141
142 For GDB this means that whenever we're reading %i7 from a stack
143 frame's window save area, we'll have to XOR the cookie.
144
145 More information on StackGuard can be found on in:
146
147 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
148 Stack Protection." 2001. Published in USENIX Security Symposium
149 '01. */
150
151 /* Fetch StackGhost Per-Process XOR cookie. */
152
153 ULONGEST
154 sparc_fetch_wcookie (void)
155 {
156 struct target_ops *ops = &current_target;
157 char buf[8];
158 int len;
159
160 len = target_read_partial (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
161 if (len == -1)
162 return 0;
163
164 /* We should have either an 32-bit or an 64-bit cookie. */
165 gdb_assert (len == 4 || len == 8);
166
167 return extract_unsigned_integer (buf, len);
168 }
169 \f
170
171 /* Return the contents if register REGNUM as an address. */
172
173 static CORE_ADDR
174 sparc_address_from_register (int regnum)
175 {
176 ULONGEST addr;
177
178 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
179 return addr;
180 }
181 \f
182
183 /* The functions on this page are intended to be used to classify
184 function arguments. */
185
186 /* Check whether TYPE is "Integral or Pointer". */
187
188 static int
189 sparc_integral_or_pointer_p (const struct type *type)
190 {
191 int len = TYPE_LENGTH (type);
192
193 switch (TYPE_CODE (type))
194 {
195 case TYPE_CODE_INT:
196 case TYPE_CODE_BOOL:
197 case TYPE_CODE_CHAR:
198 case TYPE_CODE_ENUM:
199 case TYPE_CODE_RANGE:
200 /* We have byte, half-word, word and extended-word/doubleword
201 integral types. The doubleword is an extension to the
202 original 32-bit ABI by the SCD 2.4.x. */
203 return (len == 1 || len == 2 || len == 4 || len == 8);
204 case TYPE_CODE_PTR:
205 case TYPE_CODE_REF:
206 /* Allow either 32-bit or 64-bit pointers. */
207 return (len == 4 || len == 8);
208 default:
209 break;
210 }
211
212 return 0;
213 }
214
215 /* Check whether TYPE is "Floating". */
216
217 static int
218 sparc_floating_p (const struct type *type)
219 {
220 switch (TYPE_CODE (type))
221 {
222 case TYPE_CODE_FLT:
223 {
224 int len = TYPE_LENGTH (type);
225 return (len == 4 || len == 8 || len == 16);
226 }
227 default:
228 break;
229 }
230
231 return 0;
232 }
233
234 /* Check whether TYPE is "Structure or Union". */
235
236 static int
237 sparc_structure_or_union_p (const struct type *type)
238 {
239 switch (TYPE_CODE (type))
240 {
241 case TYPE_CODE_STRUCT:
242 case TYPE_CODE_UNION:
243 return 1;
244 default:
245 break;
246 }
247
248 return 0;
249 }
250
251 /* Register information. */
252
253 static const char *sparc32_register_names[] =
254 {
255 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
256 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
257 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
258 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
259
260 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
261 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
262 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
263 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
264
265 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
266 };
267
268 /* Total number of registers. */
269 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
270
271 /* We provide the aliases %d0..%d30 for the floating registers as
272 "psuedo" registers. */
273
274 static const char *sparc32_pseudo_register_names[] =
275 {
276 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
277 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
278 };
279
280 /* Total number of pseudo registers. */
281 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
282
283 /* Return the name of register REGNUM. */
284
285 static const char *
286 sparc32_register_name (int regnum)
287 {
288 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
289 return sparc32_register_names[regnum];
290
291 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
292 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
293
294 return NULL;
295 }
296
297 /* Return the GDB type object for the "standard" data type of data in
298 register REGNUM. */
299
300 static struct type *
301 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
302 {
303 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
304 return builtin_type_float;
305
306 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
307 return builtin_type_double;
308
309 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
310 return builtin_type_void_data_ptr;
311
312 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
313 return builtin_type_void_func_ptr;
314
315 return builtin_type_int32;
316 }
317
318 static void
319 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
320 struct regcache *regcache,
321 int regnum, void *buf)
322 {
323 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
324
325 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
326 regcache_raw_read (regcache, regnum, buf);
327 regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
328 }
329
330 static void
331 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
332 struct regcache *regcache,
333 int regnum, const void *buf)
334 {
335 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
336
337 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
338 regcache_raw_write (regcache, regnum, buf);
339 regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
340 }
341 \f
342
343 static CORE_ADDR
344 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
345 CORE_ADDR funcaddr, int using_gcc,
346 struct value **args, int nargs,
347 struct type *value_type,
348 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
349 {
350 *bp_addr = sp - 4;
351 *real_pc = funcaddr;
352
353 if (using_struct_return (value_type, using_gcc))
354 {
355 char buf[4];
356
357 /* This is an UNIMP instruction. */
358 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
359 write_memory (sp - 8, buf, 4);
360 return sp - 8;
361 }
362
363 return sp - 4;
364 }
365
366 static CORE_ADDR
367 sparc32_store_arguments (struct regcache *regcache, int nargs,
368 struct value **args, CORE_ADDR sp,
369 int struct_return, CORE_ADDR struct_addr)
370 {
371 /* Number of words in the "parameter array". */
372 int num_elements = 0;
373 int element = 0;
374 int i;
375
376 for (i = 0; i < nargs; i++)
377 {
378 struct type *type = value_type (args[i]);
379 int len = TYPE_LENGTH (type);
380
381 if (sparc_structure_or_union_p (type)
382 || (sparc_floating_p (type) && len == 16))
383 {
384 /* Structure, Union and Quad-Precision Arguments. */
385 sp -= len;
386
387 /* Use doubleword alignment for these values. That's always
388 correct, and wasting a few bytes shouldn't be a problem. */
389 sp &= ~0x7;
390
391 write_memory (sp, value_contents (args[i]), len);
392 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
393 num_elements++;
394 }
395 else if (sparc_floating_p (type))
396 {
397 /* Floating arguments. */
398 gdb_assert (len == 4 || len == 8);
399 num_elements += (len / 4);
400 }
401 else
402 {
403 /* Integral and pointer arguments. */
404 gdb_assert (sparc_integral_or_pointer_p (type));
405
406 if (len < 4)
407 args[i] = value_cast (builtin_type_int32, args[i]);
408 num_elements += ((len + 3) / 4);
409 }
410 }
411
412 /* Always allocate at least six words. */
413 sp -= max (6, num_elements) * 4;
414
415 /* The psABI says that "Software convention requires space for the
416 struct/union return value pointer, even if the word is unused." */
417 sp -= 4;
418
419 /* The psABI says that "Although software convention and the
420 operating system require every stack frame to be doubleword
421 aligned." */
422 sp &= ~0x7;
423
424 for (i = 0; i < nargs; i++)
425 {
426 const bfd_byte *valbuf = value_contents (args[i]);
427 struct type *type = value_type (args[i]);
428 int len = TYPE_LENGTH (type);
429
430 gdb_assert (len == 4 || len == 8);
431
432 if (element < 6)
433 {
434 int regnum = SPARC_O0_REGNUM + element;
435
436 regcache_cooked_write (regcache, regnum, valbuf);
437 if (len > 4 && element < 5)
438 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
439 }
440
441 /* Always store the argument in memory. */
442 write_memory (sp + 4 + element * 4, valbuf, len);
443 element += len / 4;
444 }
445
446 gdb_assert (element == num_elements);
447
448 if (struct_return)
449 {
450 char buf[4];
451
452 store_unsigned_integer (buf, 4, struct_addr);
453 write_memory (sp, buf, 4);
454 }
455
456 return sp;
457 }
458
459 static CORE_ADDR
460 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
461 struct regcache *regcache, CORE_ADDR bp_addr,
462 int nargs, struct value **args, CORE_ADDR sp,
463 int struct_return, CORE_ADDR struct_addr)
464 {
465 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
466
467 /* Set return address. */
468 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
469
470 /* Set up function arguments. */
471 sp = sparc32_store_arguments (regcache, nargs, args, sp,
472 struct_return, struct_addr);
473
474 /* Allocate the 16-word window save area. */
475 sp -= 16 * 4;
476
477 /* Stack should be doubleword aligned at this point. */
478 gdb_assert (sp % 8 == 0);
479
480 /* Finally, update the stack pointer. */
481 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
482
483 return sp;
484 }
485 \f
486
487 /* Use the program counter to determine the contents and size of a
488 breakpoint instruction. Return a pointer to a string of bytes that
489 encode a breakpoint instruction, store the length of the string in
490 *LEN and optionally adjust *PC to point to the correct memory
491 location for inserting the breakpoint. */
492
493 static const unsigned char *
494 sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
495 {
496 static unsigned char break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
497
498 *len = sizeof (break_insn);
499 return break_insn;
500 }
501 \f
502
503 /* Allocate and initialize a frame cache. */
504
505 static struct sparc_frame_cache *
506 sparc_alloc_frame_cache (void)
507 {
508 struct sparc_frame_cache *cache;
509 int i;
510
511 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
512
513 /* Base address. */
514 cache->base = 0;
515 cache->pc = 0;
516
517 /* Frameless until proven otherwise. */
518 cache->frameless_p = 1;
519
520 cache->struct_return_p = 0;
521
522 return cache;
523 }
524
525 CORE_ADDR
526 sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
527 struct sparc_frame_cache *cache)
528 {
529 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
530 unsigned long insn;
531 int offset = 0;
532 int dest = -1;
533
534 if (current_pc <= pc)
535 return current_pc;
536
537 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
538 SPARC the linker usually defines a symbol (typically
539 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
540 This symbol makes us end up here with PC pointing at the start of
541 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
542 would do our normal prologue analysis, we would probably conclude
543 that we've got a frame when in reality we don't, since the
544 dynamic linker patches up the first PLT with some code that
545 starts with a SAVE instruction. Patch up PC such that it points
546 at the start of our PLT entry. */
547 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
548 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
549
550 insn = sparc_fetch_instruction (pc);
551
552 /* Recognize a SETHI insn and record its destination. */
553 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
554 {
555 dest = X_RD (insn);
556 offset += 4;
557
558 insn = sparc_fetch_instruction (pc + 4);
559 }
560
561 /* Allow for an arithmetic operation on DEST or %g1. */
562 if (X_OP (insn) == 2 && X_I (insn)
563 && (X_RD (insn) == 1 || X_RD (insn) == dest))
564 {
565 offset += 4;
566
567 insn = sparc_fetch_instruction (pc + 8);
568 }
569
570 /* Check for the SAVE instruction that sets up the frame. */
571 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
572 {
573 cache->frameless_p = 0;
574 return pc + offset + 4;
575 }
576
577 return pc;
578 }
579
580 static CORE_ADDR
581 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
582 {
583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
584 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
585 }
586
587 /* Return PC of first real instruction of the function starting at
588 START_PC. */
589
590 static CORE_ADDR
591 sparc32_skip_prologue (CORE_ADDR start_pc)
592 {
593 struct symtab_and_line sal;
594 CORE_ADDR func_start, func_end;
595 struct sparc_frame_cache cache;
596
597 /* This is the preferred method, find the end of the prologue by
598 using the debugging information. */
599 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
600 {
601 sal = find_pc_line (func_start, 0);
602
603 if (sal.end < func_end
604 && start_pc <= sal.end)
605 return sal.end;
606 }
607
608 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
609
610 /* The psABI says that "Although the first 6 words of arguments
611 reside in registers, the standard stack frame reserves space for
612 them.". It also suggests that a function may use that space to
613 "write incoming arguments 0 to 5" into that space, and that's
614 indeed what GCC seems to be doing. In that case GCC will
615 generate debug information that points to the stack slots instead
616 of the registers, so we should consider the instructions that
617 write out these incoming arguments onto the stack. Of course we
618 only need to do this if we have a stack frame. */
619
620 while (!cache.frameless_p)
621 {
622 unsigned long insn = sparc_fetch_instruction (start_pc);
623
624 /* Recognize instructions that store incoming arguments in
625 %i0...%i5 into the corresponding stack slot. */
626 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
627 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
628 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
629 {
630 start_pc += 4;
631 continue;
632 }
633
634 break;
635 }
636
637 return start_pc;
638 }
639
640 /* Normal frames. */
641
642 struct sparc_frame_cache *
643 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
644 {
645 struct sparc_frame_cache *cache;
646
647 if (*this_cache)
648 return *this_cache;
649
650 cache = sparc_alloc_frame_cache ();
651 *this_cache = cache;
652
653 cache->pc = frame_func_unwind (next_frame);
654 if (cache->pc != 0)
655 {
656 CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
657 sparc_analyze_prologue (cache->pc, addr_in_block, cache);
658 }
659
660 if (cache->frameless_p)
661 {
662 /* This function is frameless, so %fp (%i6) holds the frame
663 pointer for our calling frame. Use %sp (%o6) as this frame's
664 base address. */
665 cache->base =
666 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
667 }
668 else
669 {
670 /* For normal frames, %fp (%i6) holds the frame pointer, the
671 base address for the current stack frame. */
672 cache->base =
673 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
674 }
675
676 if (cache->base & 1)
677 cache->base += BIAS;
678
679 return cache;
680 }
681
682 struct sparc_frame_cache *
683 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
684 {
685 struct sparc_frame_cache *cache;
686 struct symbol *sym;
687
688 if (*this_cache)
689 return *this_cache;
690
691 cache = sparc_frame_cache (next_frame, this_cache);
692
693 sym = find_pc_function (cache->pc);
694 if (sym)
695 {
696 struct type *type = check_typedef (SYMBOL_TYPE (sym));
697 enum type_code code = TYPE_CODE (type);
698
699 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
700 {
701 type = check_typedef (TYPE_TARGET_TYPE (type));
702 if (sparc_structure_or_union_p (type)
703 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
704 cache->struct_return_p = 1;
705 }
706 }
707 else
708 {
709 /* There is no debugging information for this function to
710 help us determine whether this function returns a struct
711 or not. So we rely on another heuristic which is to check
712 the instruction at the return address and see if this is
713 an "unimp" instruction. If it is, then it is a struct-return
714 function. */
715 CORE_ADDR pc;
716 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
717
718 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
719 if (sparc_is_unimp_insn (pc))
720 cache->struct_return_p = 1;
721 }
722
723 return cache;
724 }
725
726 static void
727 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
728 struct frame_id *this_id)
729 {
730 struct sparc_frame_cache *cache =
731 sparc32_frame_cache (next_frame, this_cache);
732
733 /* This marks the outermost frame. */
734 if (cache->base == 0)
735 return;
736
737 (*this_id) = frame_id_build (cache->base, cache->pc);
738 }
739
740 static void
741 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
742 int regnum, int *optimizedp,
743 enum lval_type *lvalp, CORE_ADDR *addrp,
744 int *realnump, void *valuep)
745 {
746 struct sparc_frame_cache *cache =
747 sparc32_frame_cache (next_frame, this_cache);
748
749 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
750 {
751 *optimizedp = 0;
752 *lvalp = not_lval;
753 *addrp = 0;
754 *realnump = -1;
755 if (valuep)
756 {
757 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
758
759 /* If this functions has a Structure, Union or
760 Quad-Precision return value, we have to skip the UNIMP
761 instruction that encodes the size of the structure. */
762 if (cache->struct_return_p)
763 pc += 4;
764
765 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
766 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
767 store_unsigned_integer (valuep, 4, pc);
768 }
769 return;
770 }
771
772 /* Handle StackGhost. */
773 {
774 ULONGEST wcookie = sparc_fetch_wcookie ();
775
776 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
777 {
778 *optimizedp = 0;
779 *lvalp = not_lval;
780 *addrp = 0;
781 *realnump = -1;
782 if (valuep)
783 {
784 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
785 ULONGEST i7;
786
787 /* Read the value in from memory. */
788 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
789 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
790 }
791 return;
792 }
793 }
794
795 /* The previous frame's `local' and `in' registers have been saved
796 in the register save area. */
797 if (!cache->frameless_p
798 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
799 {
800 *optimizedp = 0;
801 *lvalp = lval_memory;
802 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
803 *realnump = -1;
804 if (valuep)
805 {
806 struct gdbarch *gdbarch = get_frame_arch (next_frame);
807
808 /* Read the value in from memory. */
809 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
810 }
811 return;
812 }
813
814 /* The previous frame's `out' registers are accessable as the
815 current frame's `in' registers. */
816 if (!cache->frameless_p
817 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
818 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
819
820 *optimizedp = 0;
821 *lvalp = lval_register;
822 *addrp = 0;
823 *realnump = regnum;
824 if (valuep)
825 frame_unwind_register (next_frame, (*realnump), valuep);
826 }
827
828 static const struct frame_unwind sparc32_frame_unwind =
829 {
830 NORMAL_FRAME,
831 sparc32_frame_this_id,
832 sparc32_frame_prev_register
833 };
834
835 static const struct frame_unwind *
836 sparc32_frame_sniffer (struct frame_info *next_frame)
837 {
838 return &sparc32_frame_unwind;
839 }
840 \f
841
842 static CORE_ADDR
843 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
844 {
845 struct sparc_frame_cache *cache =
846 sparc32_frame_cache (next_frame, this_cache);
847
848 return cache->base;
849 }
850
851 static const struct frame_base sparc32_frame_base =
852 {
853 &sparc32_frame_unwind,
854 sparc32_frame_base_address,
855 sparc32_frame_base_address,
856 sparc32_frame_base_address
857 };
858
859 static struct frame_id
860 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
861 {
862 CORE_ADDR sp;
863
864 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
865 if (sp & 1)
866 sp += BIAS;
867 return frame_id_build (sp, frame_pc_unwind (next_frame));
868 }
869 \f
870
871 /* Extract from an array REGBUF containing the (raw) register state, a
872 function return value of TYPE, and copy that into VALBUF. */
873
874 static void
875 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
876 void *valbuf)
877 {
878 int len = TYPE_LENGTH (type);
879 char buf[8];
880
881 gdb_assert (!sparc_structure_or_union_p (type));
882 gdb_assert (!(sparc_floating_p (type) && len == 16));
883
884 if (sparc_floating_p (type))
885 {
886 /* Floating return values. */
887 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
888 if (len > 4)
889 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
890 memcpy (valbuf, buf, len);
891 }
892 else
893 {
894 /* Integral and pointer return values. */
895 gdb_assert (sparc_integral_or_pointer_p (type));
896
897 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
898 if (len > 4)
899 {
900 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
901 gdb_assert (len == 8);
902 memcpy (valbuf, buf, 8);
903 }
904 else
905 {
906 /* Just stripping off any unused bytes should preserve the
907 signed-ness just fine. */
908 memcpy (valbuf, buf + 4 - len, len);
909 }
910 }
911 }
912
913 /* Write into the appropriate registers a function return value stored
914 in VALBUF of type TYPE. */
915
916 static void
917 sparc32_store_return_value (struct type *type, struct regcache *regcache,
918 const void *valbuf)
919 {
920 int len = TYPE_LENGTH (type);
921 char buf[8];
922
923 gdb_assert (!sparc_structure_or_union_p (type));
924 gdb_assert (!(sparc_floating_p (type) && len == 16));
925
926 if (sparc_floating_p (type))
927 {
928 /* Floating return values. */
929 memcpy (buf, valbuf, len);
930 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
931 if (len > 4)
932 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
933 }
934 else
935 {
936 /* Integral and pointer return values. */
937 gdb_assert (sparc_integral_or_pointer_p (type));
938
939 if (len > 4)
940 {
941 gdb_assert (len == 8);
942 memcpy (buf, valbuf, 8);
943 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
944 }
945 else
946 {
947 /* ??? Do we need to do any sign-extension here? */
948 memcpy (buf + 4 - len, valbuf, len);
949 }
950 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
951 }
952 }
953
954 static enum return_value_convention
955 sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
956 struct regcache *regcache, void *readbuf,
957 const void *writebuf)
958 {
959 if (sparc_structure_or_union_p (type)
960 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
961 return RETURN_VALUE_STRUCT_CONVENTION;
962
963 if (readbuf)
964 sparc32_extract_return_value (type, regcache, readbuf);
965 if (writebuf)
966 sparc32_store_return_value (type, regcache, writebuf);
967
968 return RETURN_VALUE_REGISTER_CONVENTION;
969 }
970
971 #if 0
972 /* NOTE: cagney/2004-01-17: For the moment disable this method. The
973 architecture and CORE-gdb will need new code (and a replacement for
974 DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS) before this can be made to
975 work robustly. Here is a possible function signature: */
976 /* NOTE: cagney/2004-01-17: So far only the 32-bit SPARC ABI has been
977 identifed as having a way to robustly recover the address of a
978 struct-convention return-value (after the function has returned).
979 For all other ABIs so far examined, the calling convention makes no
980 guarenteed that the register containing the return-value will be
981 preserved and hence that the return-value's address can be
982 recovered. */
983 /* Extract from REGCACHE, which contains the (raw) register state, the
984 address in which a function should return its structure value, as a
985 CORE_ADDR. */
986
987 static CORE_ADDR
988 sparc32_extract_struct_value_address (struct regcache *regcache)
989 {
990 ULONGEST sp;
991
992 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
993 return read_memory_unsigned_integer (sp + 64, 4);
994 }
995 #endif
996
997 static int
998 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
999 {
1000 return (sparc_structure_or_union_p (type)
1001 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1002 }
1003
1004 \f
1005 /* The SPARC Architecture doesn't have hardware single-step support,
1006 and most operating systems don't implement it either, so we provide
1007 software single-step mechanism. */
1008
1009 static CORE_ADDR
1010 sparc_analyze_control_transfer (CORE_ADDR pc, CORE_ADDR *npc)
1011 {
1012 unsigned long insn = sparc_fetch_instruction (pc);
1013 int conditional_p = X_COND (insn) & 0x7;
1014 int branch_p = 0;
1015 long offset = 0; /* Must be signed for sign-extend. */
1016
1017 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1018 {
1019 /* Branch on Integer Register with Prediction (BPr). */
1020 branch_p = 1;
1021 conditional_p = 1;
1022 }
1023 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1024 {
1025 /* Branch on Floating-Point Condition Codes (FBfcc). */
1026 branch_p = 1;
1027 offset = 4 * X_DISP22 (insn);
1028 }
1029 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1030 {
1031 /* Branch on Floating-Point Condition Codes with Prediction
1032 (FBPfcc). */
1033 branch_p = 1;
1034 offset = 4 * X_DISP19 (insn);
1035 }
1036 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1037 {
1038 /* Branch on Integer Condition Codes (Bicc). */
1039 branch_p = 1;
1040 offset = 4 * X_DISP22 (insn);
1041 }
1042 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1043 {
1044 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1045 branch_p = 1;
1046 offset = 4 * X_DISP19 (insn);
1047 }
1048
1049 /* FIXME: Handle DONE and RETRY instructions. */
1050
1051 /* FIXME: Handle the Trap instruction. */
1052
1053 if (branch_p)
1054 {
1055 if (conditional_p)
1056 {
1057 /* For conditional branches, return nPC + 4 iff the annul
1058 bit is 1. */
1059 return (X_A (insn) ? *npc + 4 : 0);
1060 }
1061 else
1062 {
1063 /* For unconditional branches, return the target if its
1064 specified condition is "always" and return nPC + 4 if the
1065 condition is "never". If the annul bit is 1, set *NPC to
1066 zero. */
1067 if (X_COND (insn) == 0x0)
1068 pc = *npc, offset = 4;
1069 if (X_A (insn))
1070 *npc = 0;
1071
1072 gdb_assert (offset != 0);
1073 return pc + offset;
1074 }
1075 }
1076
1077 return 0;
1078 }
1079
1080 void
1081 sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1082 {
1083 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1084 static CORE_ADDR npc, nnpc;
1085 static char npc_save[4], nnpc_save[4];
1086
1087 if (insert_breakpoints_p)
1088 {
1089 CORE_ADDR pc, orig_npc;
1090
1091 pc = sparc_address_from_register (tdep->pc_regnum);
1092 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
1093
1094 /* Analyze the instruction at PC. */
1095 nnpc = sparc_analyze_control_transfer (pc, &npc);
1096 if (npc != 0)
1097 target_insert_breakpoint (npc, npc_save);
1098 if (nnpc != 0)
1099 target_insert_breakpoint (nnpc, nnpc_save);
1100
1101 /* Assert that we have set at least one breakpoint, and that
1102 they're not set at the same spot - unless we're going
1103 from here straight to NULL, i.e. a call or jump to 0. */
1104 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1105 gdb_assert (nnpc != npc || orig_npc == 0);
1106 }
1107 else
1108 {
1109 if (npc != 0)
1110 target_remove_breakpoint (npc, npc_save);
1111 if (nnpc != 0)
1112 target_remove_breakpoint (nnpc, nnpc_save);
1113 }
1114 }
1115
1116 static void
1117 sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1118 {
1119 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1120
1121 write_register_pid (tdep->pc_regnum, pc, ptid);
1122 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1123 }
1124 \f
1125 /* Unglobalize NAME. */
1126
1127 char *
1128 sparc_stabs_unglobalize_name (char *name)
1129 {
1130 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1131 SunPRO) convert file static variables into global values, a
1132 process known as globalization. In order to do this, the
1133 compiler will create a unique prefix and prepend it to each file
1134 static variable. For static variables within a function, this
1135 globalization prefix is followed by the function name (nested
1136 static variables within a function are supposed to generate a
1137 warning message, and are left alone). The procedure is
1138 documented in the Stabs Interface Manual, which is distrubuted
1139 with the compilers, although version 4.0 of the manual seems to
1140 be incorrect in some places, at least for SPARC. The
1141 globalization prefix is encoded into an N_OPT stab, with the form
1142 "G=<prefix>". The globalization prefix always seems to start
1143 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1144 simply strip everything up until the last dot. */
1145
1146 if (name[0] == '$')
1147 {
1148 char *p = strrchr (name, '.');
1149 if (p)
1150 return p + 1;
1151 }
1152
1153 return name;
1154 }
1155 \f
1156
1157 /* Return the appropriate register set for the core section identified
1158 by SECT_NAME and SECT_SIZE. */
1159
1160 const struct regset *
1161 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1162 const char *sect_name, size_t sect_size)
1163 {
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165
1166 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1167 return tdep->gregset;
1168
1169 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1170 return tdep->fpregset;
1171
1172 return NULL;
1173 }
1174 \f
1175
1176 static struct gdbarch *
1177 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1178 {
1179 struct gdbarch_tdep *tdep;
1180 struct gdbarch *gdbarch;
1181
1182 /* If there is already a candidate, use it. */
1183 arches = gdbarch_list_lookup_by_info (arches, &info);
1184 if (arches != NULL)
1185 return arches->gdbarch;
1186
1187 /* Allocate space for the new architecture. */
1188 tdep = XMALLOC (struct gdbarch_tdep);
1189 gdbarch = gdbarch_alloc (&info, tdep);
1190
1191 tdep->pc_regnum = SPARC32_PC_REGNUM;
1192 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1193 tdep->gregset = NULL;
1194 tdep->sizeof_gregset = 0;
1195 tdep->fpregset = NULL;
1196 tdep->sizeof_fpregset = 0;
1197 tdep->plt_entry_size = 0;
1198
1199 set_gdbarch_long_double_bit (gdbarch, 128);
1200 set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad);
1201
1202 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1203 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1204 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1205 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1206 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1207 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1208
1209 /* Register numbers of various important registers. */
1210 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1211 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1212 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1213
1214 /* Call dummy code. */
1215 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1216 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1217 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1218
1219 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1220 set_gdbarch_stabs_argument_has_addr
1221 (gdbarch, sparc32_stabs_argument_has_addr);
1222
1223 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1224
1225 /* Stack grows downward. */
1226 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1227
1228 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1229
1230 set_gdbarch_frame_args_skip (gdbarch, 8);
1231
1232 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1233
1234 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1235 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1236
1237 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1238
1239 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1240
1241 frame_base_set_default (gdbarch, &sparc32_frame_base);
1242
1243 /* Hook in ABI-specific overrides, if they have been registered. */
1244 gdbarch_init_osabi (info, gdbarch);
1245
1246 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1247
1248 /* If we have register sets, enable the generic core file support. */
1249 if (tdep->gregset)
1250 set_gdbarch_regset_from_core_section (gdbarch,
1251 sparc_regset_from_core_section);
1252
1253 return gdbarch;
1254 }
1255 \f
1256 /* Helper functions for dealing with register windows. */
1257
1258 void
1259 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1260 {
1261 int offset = 0;
1262 char buf[8];
1263 int i;
1264
1265 if (sp & 1)
1266 {
1267 /* Registers are 64-bit. */
1268 sp += BIAS;
1269
1270 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1271 {
1272 if (regnum == i || regnum == -1)
1273 {
1274 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1275 regcache_raw_supply (regcache, i, buf);
1276 }
1277 }
1278 }
1279 else
1280 {
1281 /* Registers are 32-bit. Toss any sign-extension of the stack
1282 pointer. */
1283 sp &= 0xffffffffUL;
1284
1285 /* Clear out the top half of the temporary buffer, and put the
1286 register value in the bottom half if we're in 64-bit mode. */
1287 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1288 {
1289 memset (buf, 0, 4);
1290 offset = 4;
1291 }
1292
1293 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1294 {
1295 if (regnum == i || regnum == -1)
1296 {
1297 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1298 buf + offset, 4);
1299
1300 /* Handle StackGhost. */
1301 if (i == SPARC_I7_REGNUM)
1302 {
1303 ULONGEST wcookie = sparc_fetch_wcookie ();
1304 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1305
1306 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1307 }
1308
1309 regcache_raw_supply (regcache, i, buf);
1310 }
1311 }
1312 }
1313 }
1314
1315 void
1316 sparc_collect_rwindow (const struct regcache *regcache,
1317 CORE_ADDR sp, int regnum)
1318 {
1319 int offset = 0;
1320 char buf[8];
1321 int i;
1322
1323 if (sp & 1)
1324 {
1325 /* Registers are 64-bit. */
1326 sp += BIAS;
1327
1328 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1329 {
1330 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1331 {
1332 regcache_raw_collect (regcache, i, buf);
1333 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1334 }
1335 }
1336 }
1337 else
1338 {
1339 /* Registers are 32-bit. Toss any sign-extension of the stack
1340 pointer. */
1341 sp &= 0xffffffffUL;
1342
1343 /* Only use the bottom half if we're in 64-bit mode. */
1344 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1345 offset = 4;
1346
1347 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1348 {
1349 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1350 {
1351 regcache_raw_collect (regcache, i, buf);
1352
1353 /* Handle StackGhost. */
1354 if (i == SPARC_I7_REGNUM)
1355 {
1356 ULONGEST wcookie = sparc_fetch_wcookie ();
1357 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1358
1359 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1360 }
1361
1362 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1363 buf + offset, 4);
1364 }
1365 }
1366 }
1367 }
1368
1369 /* Helper functions for dealing with register sets. */
1370
1371 void
1372 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1373 struct regcache *regcache,
1374 int regnum, const void *gregs)
1375 {
1376 const char *regs = gregs;
1377 int i;
1378
1379 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1380 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1381 regs + gregset->r_psr_offset);
1382
1383 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1384 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1385 regs + gregset->r_pc_offset);
1386
1387 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1388 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1389 regs + gregset->r_npc_offset);
1390
1391 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1392 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1393 regs + gregset->r_y_offset);
1394
1395 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1396 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1397
1398 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1399 {
1400 int offset = gregset->r_g1_offset;
1401
1402 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1403 {
1404 if (regnum == i || regnum == -1)
1405 regcache_raw_supply (regcache, i, regs + offset);
1406 offset += 4;
1407 }
1408 }
1409
1410 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1411 {
1412 /* Not all of the register set variants include Locals and
1413 Inputs. For those that don't, we read them off the stack. */
1414 if (gregset->r_l0_offset == -1)
1415 {
1416 ULONGEST sp;
1417
1418 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1419 sparc_supply_rwindow (regcache, sp, regnum);
1420 }
1421 else
1422 {
1423 int offset = gregset->r_l0_offset;
1424
1425 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1426 {
1427 if (regnum == i || regnum == -1)
1428 regcache_raw_supply (regcache, i, regs + offset);
1429 offset += 4;
1430 }
1431 }
1432 }
1433 }
1434
1435 void
1436 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1437 const struct regcache *regcache,
1438 int regnum, void *gregs)
1439 {
1440 char *regs = gregs;
1441 int i;
1442
1443 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1444 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1445 regs + gregset->r_psr_offset);
1446
1447 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1448 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1449 regs + gregset->r_pc_offset);
1450
1451 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1452 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1453 regs + gregset->r_npc_offset);
1454
1455 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1456 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1457 regs + gregset->r_y_offset);
1458
1459 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1460 {
1461 int offset = gregset->r_g1_offset;
1462
1463 /* %g0 is always zero. */
1464 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1465 {
1466 if (regnum == i || regnum == -1)
1467 regcache_raw_collect (regcache, i, regs + offset);
1468 offset += 4;
1469 }
1470 }
1471
1472 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1473 {
1474 /* Not all of the register set variants include Locals and
1475 Inputs. For those that don't, we read them off the stack. */
1476 if (gregset->r_l0_offset != -1)
1477 {
1478 int offset = gregset->r_l0_offset;
1479
1480 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1481 {
1482 if (regnum == i || regnum == -1)
1483 regcache_raw_collect (regcache, i, regs + offset);
1484 offset += 4;
1485 }
1486 }
1487 }
1488 }
1489
1490 void
1491 sparc32_supply_fpregset (struct regcache *regcache,
1492 int regnum, const void *fpregs)
1493 {
1494 const char *regs = fpregs;
1495 int i;
1496
1497 for (i = 0; i < 32; i++)
1498 {
1499 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1500 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1501 }
1502
1503 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1504 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1505 }
1506
1507 void
1508 sparc32_collect_fpregset (const struct regcache *regcache,
1509 int regnum, void *fpregs)
1510 {
1511 char *regs = fpregs;
1512 int i;
1513
1514 for (i = 0; i < 32; i++)
1515 {
1516 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1517 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1518 }
1519
1520 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1521 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1522 }
1523 \f
1524
1525 /* SunOS 4. */
1526
1527 /* From <machine/reg.h>. */
1528 const struct sparc_gregset sparc32_sunos4_gregset =
1529 {
1530 0 * 4, /* %psr */
1531 1 * 4, /* %pc */
1532 2 * 4, /* %npc */
1533 3 * 4, /* %y */
1534 -1, /* %wim */
1535 -1, /* %tbr */
1536 4 * 4, /* %g1 */
1537 -1 /* %l0 */
1538 };
1539 \f
1540
1541 /* Provide a prototype to silence -Wmissing-prototypes. */
1542 void _initialize_sparc_tdep (void);
1543
1544 void
1545 _initialize_sparc_tdep (void)
1546 {
1547 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1548 }