]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc64-tdep.c
PR24435, buffer overflow reading dynamic entries
[thirdparty/binutils-gdb.git] / gdb / sparc64-tdep.c
1 /* Target-dependent code for UltraSPARC.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dwarf2-frame.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbcore.h"
27 #include "gdbtypes.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "objfiles.h"
31 #include "osabi.h"
32 #include "regcache.h"
33 #include "target-descriptions.h"
34 #include "target.h"
35 #include "value.h"
36
37 #include "sparc64-tdep.h"
38
39 /* This file implements the SPARC 64-bit ABI as defined by the
40 section "Low-Level System Information" of the SPARC Compliance
41 Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
42 SPARC. */
43
44 /* Please use the sparc32_-prefix for 32-bit specific code, the
45 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
46 code can handle both. */
47 \f
48 /* The M7 processor supports an Application Data Integrity (ADI) feature
49 that detects invalid data accesses. When software allocates memory and
50 enables ADI on the allocated memory, it chooses a 4-bit version number,
51 sets the version in the upper 4 bits of the 64-bit pointer to that data,
52 and stores the 4-bit version in every cacheline of the object. Hardware
53 saves the latter in spare bits in the cache and memory hierarchy. On each
54 load and store, the processor compares the upper 4 VA (virtual address) bits
55 to the cacheline's version. If there is a mismatch, the processor generates
56 a version mismatch trap which can be either precise or disrupting.
57 The trap is an error condition which the kernel delivers to the process
58 as a SIGSEGV signal.
59
60 The upper 4 bits of the VA represent a version and are not part of the
61 true address. The processor clears these bits and sign extends bit 59
62 to generate the true address.
63
64 Note that 32-bit applications cannot use ADI. */
65
66
67 #include <algorithm>
68 #include "cli/cli-utils.h"
69 #include "gdbcmd.h"
70 #include "auxv.h"
71
72 #define MAX_PROC_NAME_SIZE sizeof("/proc/99999/lwp/9999/adi/lstatus")
73
74 /* ELF Auxiliary vectors */
75 #ifndef AT_ADI_BLKSZ
76 #define AT_ADI_BLKSZ 34
77 #endif
78 #ifndef AT_ADI_NBITS
79 #define AT_ADI_NBITS 35
80 #endif
81 #ifndef AT_ADI_UEONADI
82 #define AT_ADI_UEONADI 36
83 #endif
84
85 /* ADI command list. */
86 static struct cmd_list_element *sparc64adilist = NULL;
87
88 /* ADI stat settings. */
89 typedef struct
90 {
91 /* The ADI block size. */
92 unsigned long blksize;
93
94 /* Number of bits used for an ADI version tag which can be
95 used together with the shift value for an ADI version tag
96 to encode or extract the ADI version value in a pointer. */
97 unsigned long nbits;
98
99 /* The maximum ADI version tag value supported. */
100 int max_version;
101
102 /* ADI version tag file. */
103 int tag_fd = 0;
104
105 /* ADI availability check has been done. */
106 bool checked_avail = false;
107
108 /* ADI is available. */
109 bool is_avail = false;
110
111 } adi_stat_t;
112
113 /* Per-process ADI stat info. */
114
115 typedef struct sparc64_adi_info
116 {
117 sparc64_adi_info (pid_t pid_)
118 : pid (pid_)
119 {}
120
121 /* The process identifier. */
122 pid_t pid;
123
124 /* The ADI stat. */
125 adi_stat_t stat = {};
126
127 } sparc64_adi_info;
128
129 static std::forward_list<sparc64_adi_info> adi_proc_list;
130
131
132 /* Get ADI info for process PID, creating one if it doesn't exist. */
133
134 static sparc64_adi_info *
135 get_adi_info_proc (pid_t pid)
136 {
137 auto found = std::find_if (adi_proc_list.begin (), adi_proc_list.end (),
138 [&pid] (const sparc64_adi_info &info)
139 {
140 return info.pid == pid;
141 });
142
143 if (found == adi_proc_list.end ())
144 {
145 adi_proc_list.emplace_front (pid);
146 return &adi_proc_list.front ();
147 }
148 else
149 {
150 return &(*found);
151 }
152 }
153
154 static adi_stat_t
155 get_adi_info (pid_t pid)
156 {
157 sparc64_adi_info *proc;
158
159 proc = get_adi_info_proc (pid);
160 return proc->stat;
161 }
162
163 /* Is called when GDB is no longer debugging process PID. It
164 deletes data structure that keeps track of the ADI stat. */
165
166 void
167 sparc64_forget_process (pid_t pid)
168 {
169 int target_errno;
170
171 for (auto pit = adi_proc_list.before_begin (),
172 it = std::next (pit);
173 it != adi_proc_list.end ();
174 )
175 {
176 if ((*it).pid == pid)
177 {
178 if ((*it).stat.tag_fd > 0)
179 target_fileio_close ((*it).stat.tag_fd, &target_errno);
180 adi_proc_list.erase_after (pit);
181 break;
182 }
183 else
184 pit = it++;
185 }
186
187 }
188
189 static void
190 info_adi_command (const char *args, int from_tty)
191 {
192 printf_unfiltered ("\"adi\" must be followed by \"examine\" "
193 "or \"assign\".\n");
194 help_list (sparc64adilist, "adi ", all_commands, gdb_stdout);
195 }
196
197 /* Read attributes of a maps entry in /proc/[pid]/adi/maps. */
198
199 static void
200 read_maps_entry (const char *line,
201 ULONGEST *addr, ULONGEST *endaddr)
202 {
203 const char *p = line;
204
205 *addr = strtoulst (p, &p, 16);
206 if (*p == '-')
207 p++;
208
209 *endaddr = strtoulst (p, &p, 16);
210 }
211
212 /* Check if ADI is available. */
213
214 static bool
215 adi_available (void)
216 {
217 pid_t pid = inferior_ptid.pid ();
218 sparc64_adi_info *proc = get_adi_info_proc (pid);
219 CORE_ADDR value;
220
221 if (proc->stat.checked_avail)
222 return proc->stat.is_avail;
223
224 proc->stat.checked_avail = true;
225 if (target_auxv_search (current_top_target (), AT_ADI_BLKSZ, &value) <= 0)
226 return false;
227 proc->stat.blksize = value;
228 target_auxv_search (current_top_target (), AT_ADI_NBITS, &value);
229 proc->stat.nbits = value;
230 proc->stat.max_version = (1 << proc->stat.nbits) - 2;
231 proc->stat.is_avail = true;
232
233 return proc->stat.is_avail;
234 }
235
236 /* Normalize a versioned address - a VA with ADI bits (63-60) set. */
237
238 static CORE_ADDR
239 adi_normalize_address (CORE_ADDR addr)
240 {
241 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
242
243 if (ast.nbits)
244 {
245 /* Clear upper bits. */
246 addr &= ((uint64_t) -1) >> ast.nbits;
247
248 /* Sign extend. */
249 CORE_ADDR signbit = (uint64_t) 1 << (64 - ast.nbits - 1);
250 return (addr ^ signbit) - signbit;
251 }
252 return addr;
253 }
254
255 /* Align a normalized address - a VA with bit 59 sign extended into
256 ADI bits. */
257
258 static CORE_ADDR
259 adi_align_address (CORE_ADDR naddr)
260 {
261 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
262
263 return (naddr - (naddr % ast.blksize)) / ast.blksize;
264 }
265
266 /* Convert a byte count to count at a ratio of 1:adi_blksz. */
267
268 static int
269 adi_convert_byte_count (CORE_ADDR naddr, int nbytes, CORE_ADDR locl)
270 {
271 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
272
273 return ((naddr + nbytes + ast.blksize - 1) / ast.blksize) - locl;
274 }
275
276 /* The /proc/[pid]/adi/tags file, which allows gdb to get/set ADI
277 version in a target process, maps linearly to the address space
278 of the target process at a ratio of 1:adi_blksz.
279
280 A read (or write) at offset K in the file returns (or modifies)
281 the ADI version tag stored in the cacheline containing address
282 K * adi_blksz, encoded as 1 version tag per byte. The allowed
283 version tag values are between 0 and adi_stat.max_version. */
284
285 static int
286 adi_tag_fd (void)
287 {
288 pid_t pid = inferior_ptid.pid ();
289 sparc64_adi_info *proc = get_adi_info_proc (pid);
290
291 if (proc->stat.tag_fd != 0)
292 return proc->stat.tag_fd;
293
294 char cl_name[MAX_PROC_NAME_SIZE];
295 snprintf (cl_name, sizeof(cl_name), "/proc/%ld/adi/tags", (long) pid);
296 int target_errno;
297 proc->stat.tag_fd = target_fileio_open (NULL, cl_name, O_RDWR|O_EXCL,
298 0, &target_errno);
299 return proc->stat.tag_fd;
300 }
301
302 /* Check if an address set is ADI enabled, using /proc/[pid]/adi/maps
303 which was exported by the kernel and contains the currently ADI
304 mapped memory regions and their access permissions. */
305
306 static bool
307 adi_is_addr_mapped (CORE_ADDR vaddr, size_t cnt)
308 {
309 char filename[MAX_PROC_NAME_SIZE];
310 size_t i = 0;
311
312 pid_t pid = inferior_ptid.pid ();
313 snprintf (filename, sizeof filename, "/proc/%ld/adi/maps", (long) pid);
314 gdb::unique_xmalloc_ptr<char> data
315 = target_fileio_read_stralloc (NULL, filename);
316 if (data)
317 {
318 adi_stat_t adi_stat = get_adi_info (pid);
319 char *line;
320 for (line = strtok (data.get (), "\n"); line; line = strtok (NULL, "\n"))
321 {
322 ULONGEST addr, endaddr;
323
324 read_maps_entry (line, &addr, &endaddr);
325
326 while (((vaddr + i) * adi_stat.blksize) >= addr
327 && ((vaddr + i) * adi_stat.blksize) < endaddr)
328 {
329 if (++i == cnt)
330 return true;
331 }
332 }
333 }
334 else
335 warning (_("unable to open /proc file '%s'"), filename);
336
337 return false;
338 }
339
340 /* Read ADI version tag value for memory locations starting at "VADDR"
341 for "SIZE" number of bytes. */
342
343 static int
344 adi_read_versions (CORE_ADDR vaddr, size_t size, gdb_byte *tags)
345 {
346 int fd = adi_tag_fd ();
347 if (fd == -1)
348 return -1;
349
350 if (!adi_is_addr_mapped (vaddr, size))
351 {
352 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
353 error(_("Address at %s is not in ADI maps"),
354 paddress (target_gdbarch (), vaddr * ast.blksize));
355 }
356
357 int target_errno;
358 return target_fileio_pread (fd, tags, size, vaddr, &target_errno);
359 }
360
361 /* Write ADI version tag for memory locations starting at "VADDR" for
362 "SIZE" number of bytes to "TAGS". */
363
364 static int
365 adi_write_versions (CORE_ADDR vaddr, size_t size, unsigned char *tags)
366 {
367 int fd = adi_tag_fd ();
368 if (fd == -1)
369 return -1;
370
371 if (!adi_is_addr_mapped (vaddr, size))
372 {
373 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
374 error(_("Address at %s is not in ADI maps"),
375 paddress (target_gdbarch (), vaddr * ast.blksize));
376 }
377
378 int target_errno;
379 return target_fileio_pwrite (fd, tags, size, vaddr, &target_errno);
380 }
381
382 /* Print ADI version tag value in "TAGS" for memory locations starting
383 at "VADDR" with number of "CNT". */
384
385 static void
386 adi_print_versions (CORE_ADDR vaddr, size_t cnt, gdb_byte *tags)
387 {
388 int v_idx = 0;
389 const int maxelts = 8; /* # of elements per line */
390
391 adi_stat_t adi_stat = get_adi_info (inferior_ptid.pid ());
392
393 while (cnt > 0)
394 {
395 QUIT;
396 printf_filtered ("%s:\t",
397 paddress (target_gdbarch (), vaddr * adi_stat.blksize));
398 for (int i = maxelts; i > 0 && cnt > 0; i--, cnt--)
399 {
400 if (tags[v_idx] == 0xff) /* no version tag */
401 printf_filtered ("-");
402 else
403 printf_filtered ("%1X", tags[v_idx]);
404 if (cnt > 1)
405 printf_filtered (" ");
406 ++v_idx;
407 }
408 printf_filtered ("\n");
409 vaddr += maxelts;
410 }
411 }
412
413 static void
414 do_examine (CORE_ADDR start, int bcnt)
415 {
416 CORE_ADDR vaddr = adi_normalize_address (start);
417
418 CORE_ADDR vstart = adi_align_address (vaddr);
419 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
420 gdb::def_vector<gdb_byte> buf (cnt);
421 int read_cnt = adi_read_versions (vstart, cnt, buf.data ());
422 if (read_cnt == -1)
423 error (_("No ADI information"));
424 else if (read_cnt < cnt)
425 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
426
427 adi_print_versions (vstart, cnt, buf.data ());
428 }
429
430 static void
431 do_assign (CORE_ADDR start, size_t bcnt, int version)
432 {
433 CORE_ADDR vaddr = adi_normalize_address (start);
434
435 CORE_ADDR vstart = adi_align_address (vaddr);
436 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
437 std::vector<unsigned char> buf (cnt, version);
438 int set_cnt = adi_write_versions (vstart, cnt, buf.data ());
439
440 if (set_cnt == -1)
441 error (_("No ADI information"));
442 else if (set_cnt < cnt)
443 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
444
445 }
446
447 /* ADI examine version tag command.
448
449 Command syntax:
450
451 adi (examine|x)[/COUNT] [ADDR] */
452
453 static void
454 adi_examine_command (const char *args, int from_tty)
455 {
456 /* make sure program is active and adi is available */
457 if (!target_has_execution)
458 error (_("ADI command requires a live process/thread"));
459
460 if (!adi_available ())
461 error (_("No ADI information"));
462
463 int cnt = 1;
464 const char *p = args;
465 if (p && *p == '/')
466 {
467 p++;
468 cnt = get_number (&p);
469 }
470
471 CORE_ADDR next_address = 0;
472 if (p != 0 && *p != 0)
473 next_address = parse_and_eval_address (p);
474 if (!cnt || !next_address)
475 error (_("Usage: adi examine|x[/COUNT] [ADDR]"));
476
477 do_examine (next_address, cnt);
478 }
479
480 /* ADI assign version tag command.
481
482 Command syntax:
483
484 adi (assign|a)[/COUNT] ADDR = VERSION */
485
486 static void
487 adi_assign_command (const char *args, int from_tty)
488 {
489 static const char *adi_usage
490 = N_("Usage: adi assign|a[/COUNT] ADDR = VERSION");
491
492 /* make sure program is active and adi is available */
493 if (!target_has_execution)
494 error (_("ADI command requires a live process/thread"));
495
496 if (!adi_available ())
497 error (_("No ADI information"));
498
499 const char *exp = args;
500 if (exp == 0)
501 error_no_arg (_(adi_usage));
502
503 char *q = (char *) strchr (exp, '=');
504 if (q)
505 *q++ = 0;
506 else
507 error ("%s", _(adi_usage));
508
509 size_t cnt = 1;
510 const char *p = args;
511 if (exp && *exp == '/')
512 {
513 p = exp + 1;
514 cnt = get_number (&p);
515 }
516
517 CORE_ADDR next_address = 0;
518 if (p != 0 && *p != 0)
519 next_address = parse_and_eval_address (p);
520 else
521 error ("%s", _(adi_usage));
522
523 int version = 0;
524 if (q != NULL) /* parse version tag */
525 {
526 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
527 version = parse_and_eval_long (q);
528 if (version < 0 || version > ast.max_version)
529 error (_("Invalid ADI version tag %d"), version);
530 }
531
532 do_assign (next_address, cnt, version);
533 }
534
535 void
536 _initialize_sparc64_adi_tdep (void)
537 {
538
539 add_prefix_cmd ("adi", class_support, info_adi_command,
540 _("ADI version related commands."),
541 &sparc64adilist, "adi ", 0, &cmdlist);
542 add_cmd ("examine", class_support, adi_examine_command,
543 _("Examine ADI versions."), &sparc64adilist);
544 add_alias_cmd ("x", "examine", no_class, 1, &sparc64adilist);
545 add_cmd ("assign", class_support, adi_assign_command,
546 _("Assign ADI versions."), &sparc64adilist);
547
548 }
549 \f
550
551 /* The functions on this page are intended to be used to classify
552 function arguments. */
553
554 /* Check whether TYPE is "Integral or Pointer". */
555
556 static int
557 sparc64_integral_or_pointer_p (const struct type *type)
558 {
559 switch (TYPE_CODE (type))
560 {
561 case TYPE_CODE_INT:
562 case TYPE_CODE_BOOL:
563 case TYPE_CODE_CHAR:
564 case TYPE_CODE_ENUM:
565 case TYPE_CODE_RANGE:
566 {
567 int len = TYPE_LENGTH (type);
568 gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
569 }
570 return 1;
571 case TYPE_CODE_PTR:
572 case TYPE_CODE_REF:
573 case TYPE_CODE_RVALUE_REF:
574 {
575 int len = TYPE_LENGTH (type);
576 gdb_assert (len == 8);
577 }
578 return 1;
579 default:
580 break;
581 }
582
583 return 0;
584 }
585
586 /* Check whether TYPE is "Floating". */
587
588 static int
589 sparc64_floating_p (const struct type *type)
590 {
591 switch (TYPE_CODE (type))
592 {
593 case TYPE_CODE_FLT:
594 {
595 int len = TYPE_LENGTH (type);
596 gdb_assert (len == 4 || len == 8 || len == 16);
597 }
598 return 1;
599 default:
600 break;
601 }
602
603 return 0;
604 }
605
606 /* Check whether TYPE is "Complex Floating". */
607
608 static int
609 sparc64_complex_floating_p (const struct type *type)
610 {
611 switch (TYPE_CODE (type))
612 {
613 case TYPE_CODE_COMPLEX:
614 {
615 int len = TYPE_LENGTH (type);
616 gdb_assert (len == 8 || len == 16 || len == 32);
617 }
618 return 1;
619 default:
620 break;
621 }
622
623 return 0;
624 }
625
626 /* Check whether TYPE is "Structure or Union".
627
628 In terms of Ada subprogram calls, arrays are treated the same as
629 struct and union types. So this function also returns non-zero
630 for array types. */
631
632 static int
633 sparc64_structure_or_union_p (const struct type *type)
634 {
635 switch (TYPE_CODE (type))
636 {
637 case TYPE_CODE_STRUCT:
638 case TYPE_CODE_UNION:
639 case TYPE_CODE_ARRAY:
640 return 1;
641 default:
642 break;
643 }
644
645 return 0;
646 }
647 \f
648
649 /* Construct types for ISA-specific registers. */
650
651 static struct type *
652 sparc64_pstate_type (struct gdbarch *gdbarch)
653 {
654 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
655
656 if (!tdep->sparc64_pstate_type)
657 {
658 struct type *type;
659
660 type = arch_flags_type (gdbarch, "builtin_type_sparc64_pstate", 64);
661 append_flags_type_flag (type, 0, "AG");
662 append_flags_type_flag (type, 1, "IE");
663 append_flags_type_flag (type, 2, "PRIV");
664 append_flags_type_flag (type, 3, "AM");
665 append_flags_type_flag (type, 4, "PEF");
666 append_flags_type_flag (type, 5, "RED");
667 append_flags_type_flag (type, 8, "TLE");
668 append_flags_type_flag (type, 9, "CLE");
669 append_flags_type_flag (type, 10, "PID0");
670 append_flags_type_flag (type, 11, "PID1");
671
672 tdep->sparc64_pstate_type = type;
673 }
674
675 return tdep->sparc64_pstate_type;
676 }
677
678 static struct type *
679 sparc64_ccr_type (struct gdbarch *gdbarch)
680 {
681 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
682
683 if (tdep->sparc64_ccr_type == NULL)
684 {
685 struct type *type;
686
687 type = arch_flags_type (gdbarch, "builtin_type_sparc64_ccr", 64);
688 append_flags_type_flag (type, 0, "icc.c");
689 append_flags_type_flag (type, 1, "icc.v");
690 append_flags_type_flag (type, 2, "icc.z");
691 append_flags_type_flag (type, 3, "icc.n");
692 append_flags_type_flag (type, 4, "xcc.c");
693 append_flags_type_flag (type, 5, "xcc.v");
694 append_flags_type_flag (type, 6, "xcc.z");
695 append_flags_type_flag (type, 7, "xcc.n");
696
697 tdep->sparc64_ccr_type = type;
698 }
699
700 return tdep->sparc64_ccr_type;
701 }
702
703 static struct type *
704 sparc64_fsr_type (struct gdbarch *gdbarch)
705 {
706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
707
708 if (!tdep->sparc64_fsr_type)
709 {
710 struct type *type;
711
712 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fsr", 64);
713 append_flags_type_flag (type, 0, "NXC");
714 append_flags_type_flag (type, 1, "DZC");
715 append_flags_type_flag (type, 2, "UFC");
716 append_flags_type_flag (type, 3, "OFC");
717 append_flags_type_flag (type, 4, "NVC");
718 append_flags_type_flag (type, 5, "NXA");
719 append_flags_type_flag (type, 6, "DZA");
720 append_flags_type_flag (type, 7, "UFA");
721 append_flags_type_flag (type, 8, "OFA");
722 append_flags_type_flag (type, 9, "NVA");
723 append_flags_type_flag (type, 22, "NS");
724 append_flags_type_flag (type, 23, "NXM");
725 append_flags_type_flag (type, 24, "DZM");
726 append_flags_type_flag (type, 25, "UFM");
727 append_flags_type_flag (type, 26, "OFM");
728 append_flags_type_flag (type, 27, "NVM");
729
730 tdep->sparc64_fsr_type = type;
731 }
732
733 return tdep->sparc64_fsr_type;
734 }
735
736 static struct type *
737 sparc64_fprs_type (struct gdbarch *gdbarch)
738 {
739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
740
741 if (!tdep->sparc64_fprs_type)
742 {
743 struct type *type;
744
745 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fprs", 64);
746 append_flags_type_flag (type, 0, "DL");
747 append_flags_type_flag (type, 1, "DU");
748 append_flags_type_flag (type, 2, "FEF");
749
750 tdep->sparc64_fprs_type = type;
751 }
752
753 return tdep->sparc64_fprs_type;
754 }
755
756
757 /* Register information. */
758 #define SPARC64_FPU_REGISTERS \
759 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
760 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
761 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
762 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
763 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
764 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62"
765 #define SPARC64_CP0_REGISTERS \
766 "pc", "npc", \
767 /* FIXME: Give "state" a name until we start using register groups. */ \
768 "state", \
769 "fsr", \
770 "fprs", \
771 "y"
772
773 static const char *sparc64_fpu_register_names[] = { SPARC64_FPU_REGISTERS };
774 static const char *sparc64_cp0_register_names[] = { SPARC64_CP0_REGISTERS };
775
776 static const char *sparc64_register_names[] =
777 {
778 SPARC_CORE_REGISTERS,
779 SPARC64_FPU_REGISTERS,
780 SPARC64_CP0_REGISTERS
781 };
782
783 /* Total number of registers. */
784 #define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_names)
785
786 /* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
787 registers as "psuedo" registers. */
788
789 static const char *sparc64_pseudo_register_names[] =
790 {
791 "cwp", "pstate", "asi", "ccr",
792
793 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
794 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30",
795 "d32", "d34", "d36", "d38", "d40", "d42", "d44", "d46",
796 "d48", "d50", "d52", "d54", "d56", "d58", "d60", "d62",
797
798 "q0", "q4", "q8", "q12", "q16", "q20", "q24", "q28",
799 "q32", "q36", "q40", "q44", "q48", "q52", "q56", "q60",
800 };
801
802 /* Total number of pseudo registers. */
803 #define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_names)
804
805 /* Return the name of pseudo register REGNUM. */
806
807 static const char *
808 sparc64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
809 {
810 regnum -= gdbarch_num_regs (gdbarch);
811
812 if (regnum < SPARC64_NUM_PSEUDO_REGS)
813 return sparc64_pseudo_register_names[regnum];
814
815 internal_error (__FILE__, __LINE__,
816 _("sparc64_pseudo_register_name: bad register number %d"),
817 regnum);
818 }
819
820 /* Return the name of register REGNUM. */
821
822 static const char *
823 sparc64_register_name (struct gdbarch *gdbarch, int regnum)
824 {
825 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
826 return tdesc_register_name (gdbarch, regnum);
827
828 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
829 return sparc64_register_names[regnum];
830
831 return sparc64_pseudo_register_name (gdbarch, regnum);
832 }
833
834 /* Return the GDB type object for the "standard" data type of data in
835 pseudo register REGNUM. */
836
837 static struct type *
838 sparc64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
839 {
840 regnum -= gdbarch_num_regs (gdbarch);
841
842 if (regnum == SPARC64_CWP_REGNUM)
843 return builtin_type (gdbarch)->builtin_int64;
844 if (regnum == SPARC64_PSTATE_REGNUM)
845 return sparc64_pstate_type (gdbarch);
846 if (regnum == SPARC64_ASI_REGNUM)
847 return builtin_type (gdbarch)->builtin_int64;
848 if (regnum == SPARC64_CCR_REGNUM)
849 return sparc64_ccr_type (gdbarch);
850 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D62_REGNUM)
851 return builtin_type (gdbarch)->builtin_double;
852 if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q60_REGNUM)
853 return builtin_type (gdbarch)->builtin_long_double;
854
855 internal_error (__FILE__, __LINE__,
856 _("sparc64_pseudo_register_type: bad register number %d"),
857 regnum);
858 }
859
860 /* Return the GDB type object for the "standard" data type of data in
861 register REGNUM. */
862
863 static struct type *
864 sparc64_register_type (struct gdbarch *gdbarch, int regnum)
865 {
866 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
867 return tdesc_register_type (gdbarch, regnum);
868
869 /* Raw registers. */
870 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
871 return builtin_type (gdbarch)->builtin_data_ptr;
872 if (regnum >= SPARC_G0_REGNUM && regnum <= SPARC_I7_REGNUM)
873 return builtin_type (gdbarch)->builtin_int64;
874 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
875 return builtin_type (gdbarch)->builtin_float;
876 if (regnum >= SPARC64_F32_REGNUM && regnum <= SPARC64_F62_REGNUM)
877 return builtin_type (gdbarch)->builtin_double;
878 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
879 return builtin_type (gdbarch)->builtin_func_ptr;
880 /* This raw register contains the contents of %cwp, %pstate, %asi
881 and %ccr as laid out in a %tstate register. */
882 if (regnum == SPARC64_STATE_REGNUM)
883 return builtin_type (gdbarch)->builtin_int64;
884 if (regnum == SPARC64_FSR_REGNUM)
885 return sparc64_fsr_type (gdbarch);
886 if (regnum == SPARC64_FPRS_REGNUM)
887 return sparc64_fprs_type (gdbarch);
888 /* "Although Y is a 64-bit register, its high-order 32 bits are
889 reserved and always read as 0." */
890 if (regnum == SPARC64_Y_REGNUM)
891 return builtin_type (gdbarch)->builtin_int64;
892
893 /* Pseudo registers. */
894 if (regnum >= gdbarch_num_regs (gdbarch))
895 return sparc64_pseudo_register_type (gdbarch, regnum);
896
897 internal_error (__FILE__, __LINE__, _("invalid regnum"));
898 }
899
900 static enum register_status
901 sparc64_pseudo_register_read (struct gdbarch *gdbarch,
902 readable_regcache *regcache,
903 int regnum, gdb_byte *buf)
904 {
905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
906 enum register_status status;
907
908 regnum -= gdbarch_num_regs (gdbarch);
909
910 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
911 {
912 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
913 status = regcache->raw_read (regnum, buf);
914 if (status == REG_VALID)
915 status = regcache->raw_read (regnum + 1, buf + 4);
916 return status;
917 }
918 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
919 {
920 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
921 return regcache->raw_read (regnum, buf);
922 }
923 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
924 {
925 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
926
927 status = regcache->raw_read (regnum, buf);
928 if (status == REG_VALID)
929 status = regcache->raw_read (regnum + 1, buf + 4);
930 if (status == REG_VALID)
931 status = regcache->raw_read (regnum + 2, buf + 8);
932 if (status == REG_VALID)
933 status = regcache->raw_read (regnum + 3, buf + 12);
934
935 return status;
936 }
937 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
938 {
939 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
940
941 status = regcache->raw_read (regnum, buf);
942 if (status == REG_VALID)
943 status = regcache->raw_read (regnum + 1, buf + 8);
944
945 return status;
946 }
947 else if (regnum == SPARC64_CWP_REGNUM
948 || regnum == SPARC64_PSTATE_REGNUM
949 || regnum == SPARC64_ASI_REGNUM
950 || regnum == SPARC64_CCR_REGNUM)
951 {
952 ULONGEST state;
953
954 status = regcache->raw_read (SPARC64_STATE_REGNUM, &state);
955 if (status != REG_VALID)
956 return status;
957
958 switch (regnum)
959 {
960 case SPARC64_CWP_REGNUM:
961 state = (state >> 0) & ((1 << 5) - 1);
962 break;
963 case SPARC64_PSTATE_REGNUM:
964 state = (state >> 8) & ((1 << 12) - 1);
965 break;
966 case SPARC64_ASI_REGNUM:
967 state = (state >> 24) & ((1 << 8) - 1);
968 break;
969 case SPARC64_CCR_REGNUM:
970 state = (state >> 32) & ((1 << 8) - 1);
971 break;
972 }
973 store_unsigned_integer (buf, 8, byte_order, state);
974 }
975
976 return REG_VALID;
977 }
978
979 static void
980 sparc64_pseudo_register_write (struct gdbarch *gdbarch,
981 struct regcache *regcache,
982 int regnum, const gdb_byte *buf)
983 {
984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
985
986 regnum -= gdbarch_num_regs (gdbarch);
987
988 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
989 {
990 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
991 regcache->raw_write (regnum, buf);
992 regcache->raw_write (regnum + 1, buf + 4);
993 }
994 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
995 {
996 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
997 regcache->raw_write (regnum, buf);
998 }
999 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
1000 {
1001 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
1002 regcache->raw_write (regnum, buf);
1003 regcache->raw_write (regnum + 1, buf + 4);
1004 regcache->raw_write (regnum + 2, buf + 8);
1005 regcache->raw_write (regnum + 3, buf + 12);
1006 }
1007 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
1008 {
1009 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
1010 regcache->raw_write (regnum, buf);
1011 regcache->raw_write (regnum + 1, buf + 8);
1012 }
1013 else if (regnum == SPARC64_CWP_REGNUM
1014 || regnum == SPARC64_PSTATE_REGNUM
1015 || regnum == SPARC64_ASI_REGNUM
1016 || regnum == SPARC64_CCR_REGNUM)
1017 {
1018 ULONGEST state, bits;
1019
1020 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
1021 bits = extract_unsigned_integer (buf, 8, byte_order);
1022 switch (regnum)
1023 {
1024 case SPARC64_CWP_REGNUM:
1025 state |= ((bits & ((1 << 5) - 1)) << 0);
1026 break;
1027 case SPARC64_PSTATE_REGNUM:
1028 state |= ((bits & ((1 << 12) - 1)) << 8);
1029 break;
1030 case SPARC64_ASI_REGNUM:
1031 state |= ((bits & ((1 << 8) - 1)) << 24);
1032 break;
1033 case SPARC64_CCR_REGNUM:
1034 state |= ((bits & ((1 << 8) - 1)) << 32);
1035 break;
1036 }
1037 regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
1038 }
1039 }
1040 \f
1041
1042 /* Return PC of first real instruction of the function starting at
1043 START_PC. */
1044
1045 static CORE_ADDR
1046 sparc64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1047 {
1048 struct symtab_and_line sal;
1049 CORE_ADDR func_start, func_end;
1050 struct sparc_frame_cache cache;
1051
1052 /* This is the preferred method, find the end of the prologue by
1053 using the debugging information. */
1054 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1055 {
1056 sal = find_pc_line (func_start, 0);
1057
1058 if (sal.end < func_end
1059 && start_pc <= sal.end)
1060 return sal.end;
1061 }
1062
1063 return sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffULL,
1064 &cache);
1065 }
1066
1067 /* Normal frames. */
1068
1069 static struct sparc_frame_cache *
1070 sparc64_frame_cache (struct frame_info *this_frame, void **this_cache)
1071 {
1072 return sparc_frame_cache (this_frame, this_cache);
1073 }
1074
1075 static void
1076 sparc64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1077 struct frame_id *this_id)
1078 {
1079 struct sparc_frame_cache *cache =
1080 sparc64_frame_cache (this_frame, this_cache);
1081
1082 /* This marks the outermost frame. */
1083 if (cache->base == 0)
1084 return;
1085
1086 (*this_id) = frame_id_build (cache->base, cache->pc);
1087 }
1088
1089 static struct value *
1090 sparc64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1091 int regnum)
1092 {
1093 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1094 struct sparc_frame_cache *cache =
1095 sparc64_frame_cache (this_frame, this_cache);
1096
1097 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
1098 {
1099 CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
1100
1101 regnum =
1102 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1103 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1104 return frame_unwind_got_constant (this_frame, regnum, pc);
1105 }
1106
1107 /* Handle StackGhost. */
1108 {
1109 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1110
1111 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1112 {
1113 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
1114 ULONGEST i7;
1115
1116 /* Read the value in from memory. */
1117 i7 = get_frame_memory_unsigned (this_frame, addr, 8);
1118 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1119 }
1120 }
1121
1122 /* The previous frame's `local' and `in' registers may have been saved
1123 in the register save area. */
1124 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1125 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1126 {
1127 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
1128
1129 return frame_unwind_got_memory (this_frame, regnum, addr);
1130 }
1131
1132 /* The previous frame's `out' registers may be accessible as the current
1133 frame's `in' registers. */
1134 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1135 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1136 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1137
1138 return frame_unwind_got_register (this_frame, regnum, regnum);
1139 }
1140
1141 static const struct frame_unwind sparc64_frame_unwind =
1142 {
1143 NORMAL_FRAME,
1144 default_frame_unwind_stop_reason,
1145 sparc64_frame_this_id,
1146 sparc64_frame_prev_register,
1147 NULL,
1148 default_frame_sniffer
1149 };
1150 \f
1151
1152 static CORE_ADDR
1153 sparc64_frame_base_address (struct frame_info *this_frame, void **this_cache)
1154 {
1155 struct sparc_frame_cache *cache =
1156 sparc64_frame_cache (this_frame, this_cache);
1157
1158 return cache->base;
1159 }
1160
1161 static const struct frame_base sparc64_frame_base =
1162 {
1163 &sparc64_frame_unwind,
1164 sparc64_frame_base_address,
1165 sparc64_frame_base_address,
1166 sparc64_frame_base_address
1167 };
1168 \f
1169 /* Check whether TYPE must be 16-byte aligned. */
1170
1171 static int
1172 sparc64_16_byte_align_p (struct type *type)
1173 {
1174 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1175 {
1176 struct type *t = check_typedef (TYPE_TARGET_TYPE (type));
1177
1178 if (sparc64_floating_p (t))
1179 return 1;
1180 }
1181 if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
1182 return 1;
1183
1184 if (sparc64_structure_or_union_p (type))
1185 {
1186 int i;
1187
1188 for (i = 0; i < TYPE_NFIELDS (type); i++)
1189 {
1190 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1191
1192 if (sparc64_16_byte_align_p (subtype))
1193 return 1;
1194 }
1195 }
1196
1197 return 0;
1198 }
1199
1200 /* Store floating fields of element ELEMENT of an "parameter array"
1201 that has type TYPE and is stored at BITPOS in VALBUF in the
1202 apropriate registers of REGCACHE. This function can be called
1203 recursively and therefore handles floating types in addition to
1204 structures. */
1205
1206 static void
1207 sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
1208 const gdb_byte *valbuf, int element, int bitpos)
1209 {
1210 struct gdbarch *gdbarch = regcache->arch ();
1211 int len = TYPE_LENGTH (type);
1212
1213 gdb_assert (element < 16);
1214
1215 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1216 {
1217 gdb_byte buf[8];
1218 int regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
1219
1220 valbuf += bitpos / 8;
1221 if (len < 8)
1222 {
1223 memset (buf, 0, 8 - len);
1224 memcpy (buf + 8 - len, valbuf, len);
1225 valbuf = buf;
1226 len = 8;
1227 }
1228 for (int n = 0; n < (len + 3) / 4; n++)
1229 regcache->cooked_write (regnum + n, valbuf + n * 4);
1230 }
1231 else if (sparc64_floating_p (type)
1232 || (sparc64_complex_floating_p (type) && len <= 16))
1233 {
1234 int regnum;
1235
1236 if (len == 16)
1237 {
1238 gdb_assert (bitpos == 0);
1239 gdb_assert ((element % 2) == 0);
1240
1241 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM + element / 2;
1242 regcache->cooked_write (regnum, valbuf);
1243 }
1244 else if (len == 8)
1245 {
1246 gdb_assert (bitpos == 0 || bitpos == 64);
1247
1248 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1249 + element + bitpos / 64;
1250 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
1251 }
1252 else
1253 {
1254 gdb_assert (len == 4);
1255 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
1256
1257 regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
1258 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
1259 }
1260 }
1261 else if (sparc64_structure_or_union_p (type))
1262 {
1263 int i;
1264
1265 for (i = 0; i < TYPE_NFIELDS (type); i++)
1266 {
1267 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1268 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
1269
1270 sparc64_store_floating_fields (regcache, subtype, valbuf,
1271 element, subpos);
1272 }
1273
1274 /* GCC has an interesting bug. If TYPE is a structure that has
1275 a single `float' member, GCC doesn't treat it as a structure
1276 at all, but rather as an ordinary `float' argument. This
1277 argument will be stored in %f1, as required by the psABI.
1278 However, as a member of a structure the psABI requires it to
1279 be stored in %f0. This bug is present in GCC 3.3.2, but
1280 probably in older releases to. To appease GCC, if a
1281 structure has only a single `float' member, we store its
1282 value in %f1 too (we already have stored in %f0). */
1283 if (TYPE_NFIELDS (type) == 1)
1284 {
1285 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, 0));
1286
1287 if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
1288 regcache->cooked_write (SPARC_F1_REGNUM, valbuf);
1289 }
1290 }
1291 }
1292
1293 /* Fetch floating fields from a variable of type TYPE from the
1294 appropriate registers for BITPOS in REGCACHE and store it at BITPOS
1295 in VALBUF. This function can be called recursively and therefore
1296 handles floating types in addition to structures. */
1297
1298 static void
1299 sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
1300 gdb_byte *valbuf, int bitpos)
1301 {
1302 struct gdbarch *gdbarch = regcache->arch ();
1303
1304 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1305 {
1306 int len = TYPE_LENGTH (type);
1307 int regnum = SPARC_F0_REGNUM + bitpos / 32;
1308
1309 valbuf += bitpos / 8;
1310 if (len < 4)
1311 {
1312 gdb_byte buf[4];
1313 regcache->cooked_read (regnum, buf);
1314 memcpy (valbuf, buf + 4 - len, len);
1315 }
1316 else
1317 for (int i = 0; i < (len + 3) / 4; i++)
1318 regcache->cooked_read (regnum + i, valbuf + i * 4);
1319 }
1320 else if (sparc64_floating_p (type))
1321 {
1322 int len = TYPE_LENGTH (type);
1323 int regnum;
1324
1325 if (len == 16)
1326 {
1327 gdb_assert (bitpos == 0 || bitpos == 128);
1328
1329 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1330 + bitpos / 128;
1331 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1332 }
1333 else if (len == 8)
1334 {
1335 gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
1336
1337 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + bitpos / 64;
1338 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1339 }
1340 else
1341 {
1342 gdb_assert (len == 4);
1343 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
1344
1345 regnum = SPARC_F0_REGNUM + bitpos / 32;
1346 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
1347 }
1348 }
1349 else if (sparc64_structure_or_union_p (type))
1350 {
1351 int i;
1352
1353 for (i = 0; i < TYPE_NFIELDS (type); i++)
1354 {
1355 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1356 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
1357
1358 sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
1359 }
1360 }
1361 }
1362
1363 /* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
1364 non-zero) in REGCACHE and on the stack (starting from address SP). */
1365
1366 static CORE_ADDR
1367 sparc64_store_arguments (struct regcache *regcache, int nargs,
1368 struct value **args, CORE_ADDR sp,
1369 function_call_return_method return_method,
1370 CORE_ADDR struct_addr)
1371 {
1372 struct gdbarch *gdbarch = regcache->arch ();
1373 /* Number of extended words in the "parameter array". */
1374 int num_elements = 0;
1375 int element = 0;
1376 int i;
1377
1378 /* Take BIAS into account. */
1379 sp += BIAS;
1380
1381 /* First we calculate the number of extended words in the "parameter
1382 array". While doing so we also convert some of the arguments. */
1383
1384 if (return_method == return_method_struct)
1385 num_elements++;
1386
1387 for (i = 0; i < nargs; i++)
1388 {
1389 struct type *type = value_type (args[i]);
1390 int len = TYPE_LENGTH (type);
1391
1392 if (sparc64_structure_or_union_p (type)
1393 || (sparc64_complex_floating_p (type) && len == 32))
1394 {
1395 /* Structure or Union arguments. */
1396 if (len <= 16)
1397 {
1398 if (num_elements % 2 && sparc64_16_byte_align_p (type))
1399 num_elements++;
1400 num_elements += ((len + 7) / 8);
1401 }
1402 else
1403 {
1404 /* The psABI says that "Structures or unions larger than
1405 sixteen bytes are copied by the caller and passed
1406 indirectly; the caller will pass the address of a
1407 correctly aligned structure value. This sixty-four
1408 bit address will occupy one word in the parameter
1409 array, and may be promoted to an %o register like any
1410 other pointer value." Allocate memory for these
1411 values on the stack. */
1412 sp -= len;
1413
1414 /* Use 16-byte alignment for these values. That's
1415 always correct, and wasting a few bytes shouldn't be
1416 a problem. */
1417 sp &= ~0xf;
1418
1419 write_memory (sp, value_contents (args[i]), len);
1420 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
1421 num_elements++;
1422 }
1423 }
1424 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1425 {
1426 /* Floating arguments. */
1427 if (len == 16)
1428 {
1429 /* The psABI says that "Each quad-precision parameter
1430 value will be assigned to two extended words in the
1431 parameter array. */
1432 num_elements += 2;
1433
1434 /* The psABI says that "Long doubles must be
1435 quad-aligned, and thus a hole might be introduced
1436 into the parameter array to force alignment." Skip
1437 an element if necessary. */
1438 if ((num_elements % 2) && sparc64_16_byte_align_p (type))
1439 num_elements++;
1440 }
1441 else
1442 num_elements++;
1443 }
1444 else
1445 {
1446 /* Integral and pointer arguments. */
1447 gdb_assert (sparc64_integral_or_pointer_p (type));
1448
1449 /* The psABI says that "Each argument value of integral type
1450 smaller than an extended word will be widened by the
1451 caller to an extended word according to the signed-ness
1452 of the argument type." */
1453 if (len < 8)
1454 args[i] = value_cast (builtin_type (gdbarch)->builtin_int64,
1455 args[i]);
1456 num_elements++;
1457 }
1458 }
1459
1460 /* Allocate the "parameter array". */
1461 sp -= num_elements * 8;
1462
1463 /* The psABI says that "Every stack frame must be 16-byte aligned." */
1464 sp &= ~0xf;
1465
1466 /* Now we store the arguments in to the "paramater array". Some
1467 Integer or Pointer arguments and Structure or Union arguments
1468 will be passed in %o registers. Some Floating arguments and
1469 floating members of structures are passed in floating-point
1470 registers. However, for functions with variable arguments,
1471 floating arguments are stored in an %0 register, and for
1472 functions without a prototype floating arguments are stored in
1473 both a floating-point and an %o registers, or a floating-point
1474 register and memory. To simplify the logic here we always pass
1475 arguments in memory, an %o register, and a floating-point
1476 register if appropriate. This should be no problem since the
1477 contents of any unused memory or registers in the "parameter
1478 array" are undefined. */
1479
1480 if (return_method == return_method_struct)
1481 {
1482 regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
1483 element++;
1484 }
1485
1486 for (i = 0; i < nargs; i++)
1487 {
1488 const gdb_byte *valbuf = value_contents (args[i]);
1489 struct type *type = value_type (args[i]);
1490 int len = TYPE_LENGTH (type);
1491 int regnum = -1;
1492 gdb_byte buf[16];
1493
1494 if (sparc64_structure_or_union_p (type)
1495 || (sparc64_complex_floating_p (type) && len == 32))
1496 {
1497 /* Structure, Union or long double Complex arguments. */
1498 gdb_assert (len <= 16);
1499 memset (buf, 0, sizeof (buf));
1500 memcpy (buf, valbuf, len);
1501 valbuf = buf;
1502
1503 if (element % 2 && sparc64_16_byte_align_p (type))
1504 element++;
1505
1506 if (element < 6)
1507 {
1508 regnum = SPARC_O0_REGNUM + element;
1509 if (len > 8 && element < 5)
1510 regcache->cooked_write (regnum + 1, valbuf + 8);
1511 }
1512
1513 if (element < 16)
1514 sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
1515 }
1516 else if (sparc64_complex_floating_p (type))
1517 {
1518 /* Float Complex or double Complex arguments. */
1519 if (element < 16)
1520 {
1521 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + element;
1522
1523 if (len == 16)
1524 {
1525 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D30_REGNUM)
1526 regcache->cooked_write (regnum + 1, valbuf + 8);
1527 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D10_REGNUM)
1528 regcache->cooked_write (SPARC_O0_REGNUM + element + 1,
1529 valbuf + 8);
1530 }
1531 }
1532 }
1533 else if (sparc64_floating_p (type))
1534 {
1535 /* Floating arguments. */
1536 if (len == 16)
1537 {
1538 if (element % 2)
1539 element++;
1540 if (element < 16)
1541 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1542 + element / 2;
1543 }
1544 else if (len == 8)
1545 {
1546 if (element < 16)
1547 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1548 + element;
1549 }
1550 else if (len == 4)
1551 {
1552 /* The psABI says "Each single-precision parameter value
1553 will be assigned to one extended word in the
1554 parameter array, and right-justified within that
1555 word; the left half (even float register) is
1556 undefined." Even though the psABI says that "the
1557 left half is undefined", set it to zero here. */
1558 memset (buf, 0, 4);
1559 memcpy (buf + 4, valbuf, 4);
1560 valbuf = buf;
1561 len = 8;
1562 if (element < 16)
1563 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1564 + element;
1565 }
1566 }
1567 else
1568 {
1569 /* Integral and pointer arguments. */
1570 gdb_assert (len == 8);
1571 if (element < 6)
1572 regnum = SPARC_O0_REGNUM + element;
1573 }
1574
1575 if (regnum != -1)
1576 {
1577 regcache->cooked_write (regnum, valbuf);
1578
1579 /* If we're storing the value in a floating-point register,
1580 also store it in the corresponding %0 register(s). */
1581 if (regnum >= gdbarch_num_regs (gdbarch))
1582 {
1583 regnum -= gdbarch_num_regs (gdbarch);
1584
1585 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
1586 {
1587 gdb_assert (element < 6);
1588 regnum = SPARC_O0_REGNUM + element;
1589 regcache->cooked_write (regnum, valbuf);
1590 }
1591 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
1592 {
1593 gdb_assert (element < 5);
1594 regnum = SPARC_O0_REGNUM + element;
1595 regcache->cooked_write (regnum, valbuf);
1596 regcache->cooked_write (regnum + 1, valbuf + 8);
1597 }
1598 }
1599 }
1600
1601 /* Always store the argument in memory. */
1602 write_memory (sp + element * 8, valbuf, len);
1603 element += ((len + 7) / 8);
1604 }
1605
1606 gdb_assert (element == num_elements);
1607
1608 /* Take BIAS into account. */
1609 sp -= BIAS;
1610 return sp;
1611 }
1612
1613 static CORE_ADDR
1614 sparc64_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1615 {
1616 /* The ABI requires 16-byte alignment. */
1617 return address & ~0xf;
1618 }
1619
1620 static CORE_ADDR
1621 sparc64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1622 struct regcache *regcache, CORE_ADDR bp_addr,
1623 int nargs, struct value **args, CORE_ADDR sp,
1624 function_call_return_method return_method,
1625 CORE_ADDR struct_addr)
1626 {
1627 /* Set return address. */
1628 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
1629
1630 /* Set up function arguments. */
1631 sp = sparc64_store_arguments (regcache, nargs, args, sp, return_method,
1632 struct_addr);
1633
1634 /* Allocate the register save area. */
1635 sp -= 16 * 8;
1636
1637 /* Stack should be 16-byte aligned at this point. */
1638 gdb_assert ((sp + BIAS) % 16 == 0);
1639
1640 /* Finally, update the stack pointer. */
1641 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
1642
1643 return sp + BIAS;
1644 }
1645 \f
1646
1647 /* Extract from an array REGBUF containing the (raw) register state, a
1648 function return value of TYPE, and copy that into VALBUF. */
1649
1650 static void
1651 sparc64_extract_return_value (struct type *type, struct regcache *regcache,
1652 gdb_byte *valbuf)
1653 {
1654 int len = TYPE_LENGTH (type);
1655 gdb_byte buf[32];
1656 int i;
1657
1658 if (sparc64_structure_or_union_p (type))
1659 {
1660 /* Structure or Union return values. */
1661 gdb_assert (len <= 32);
1662
1663 for (i = 0; i < ((len + 7) / 8); i++)
1664 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
1665 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1666 sparc64_extract_floating_fields (regcache, type, buf, 0);
1667 memcpy (valbuf, buf, len);
1668 }
1669 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1670 {
1671 /* Floating return values. */
1672 for (i = 0; i < len / 4; i++)
1673 regcache->cooked_read (SPARC_F0_REGNUM + i, buf + i * 4);
1674 memcpy (valbuf, buf, len);
1675 }
1676 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1677 {
1678 /* Small arrays are returned the same way as small structures. */
1679 gdb_assert (len <= 32);
1680
1681 for (i = 0; i < ((len + 7) / 8); i++)
1682 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
1683 memcpy (valbuf, buf, len);
1684 }
1685 else
1686 {
1687 /* Integral and pointer return values. */
1688 gdb_assert (sparc64_integral_or_pointer_p (type));
1689
1690 /* Just stripping off any unused bytes should preserve the
1691 signed-ness just fine. */
1692 regcache->cooked_read (SPARC_O0_REGNUM, buf);
1693 memcpy (valbuf, buf + 8 - len, len);
1694 }
1695 }
1696
1697 /* Write into the appropriate registers a function return value stored
1698 in VALBUF of type TYPE. */
1699
1700 static void
1701 sparc64_store_return_value (struct type *type, struct regcache *regcache,
1702 const gdb_byte *valbuf)
1703 {
1704 int len = TYPE_LENGTH (type);
1705 gdb_byte buf[16];
1706 int i;
1707
1708 if (sparc64_structure_or_union_p (type))
1709 {
1710 /* Structure or Union return values. */
1711 gdb_assert (len <= 32);
1712
1713 /* Simplify matters by storing the complete value (including
1714 floating members) into %o0 and %o1. Floating members are
1715 also store in the appropriate floating-point registers. */
1716 memset (buf, 0, sizeof (buf));
1717 memcpy (buf, valbuf, len);
1718 for (i = 0; i < ((len + 7) / 8); i++)
1719 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
1720 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1721 sparc64_store_floating_fields (regcache, type, buf, 0, 0);
1722 }
1723 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
1724 {
1725 /* Floating return values. */
1726 memcpy (buf, valbuf, len);
1727 for (i = 0; i < len / 4; i++)
1728 regcache->cooked_write (SPARC_F0_REGNUM + i, buf + i * 4);
1729 }
1730 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1731 {
1732 /* Small arrays are returned the same way as small structures. */
1733 gdb_assert (len <= 32);
1734
1735 memset (buf, 0, sizeof (buf));
1736 memcpy (buf, valbuf, len);
1737 for (i = 0; i < ((len + 7) / 8); i++)
1738 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
1739 }
1740 else
1741 {
1742 /* Integral and pointer return values. */
1743 gdb_assert (sparc64_integral_or_pointer_p (type));
1744
1745 /* ??? Do we need to do any sign-extension here? */
1746 memset (buf, 0, 8);
1747 memcpy (buf + 8 - len, valbuf, len);
1748 regcache->cooked_write (SPARC_O0_REGNUM, buf);
1749 }
1750 }
1751
1752 static enum return_value_convention
1753 sparc64_return_value (struct gdbarch *gdbarch, struct value *function,
1754 struct type *type, struct regcache *regcache,
1755 gdb_byte *readbuf, const gdb_byte *writebuf)
1756 {
1757 if (TYPE_LENGTH (type) > 32)
1758 return RETURN_VALUE_STRUCT_CONVENTION;
1759
1760 if (readbuf)
1761 sparc64_extract_return_value (type, regcache, readbuf);
1762 if (writebuf)
1763 sparc64_store_return_value (type, regcache, writebuf);
1764
1765 return RETURN_VALUE_REGISTER_CONVENTION;
1766 }
1767 \f
1768
1769 static void
1770 sparc64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1771 struct dwarf2_frame_state_reg *reg,
1772 struct frame_info *this_frame)
1773 {
1774 switch (regnum)
1775 {
1776 case SPARC_G0_REGNUM:
1777 /* Since %g0 is always zero, there is no point in saving it, and
1778 people will be inclined omit it from the CFI. Make sure we
1779 don't warn about that. */
1780 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1781 break;
1782 case SPARC_SP_REGNUM:
1783 reg->how = DWARF2_FRAME_REG_CFA;
1784 break;
1785 case SPARC64_PC_REGNUM:
1786 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1787 reg->loc.offset = 8;
1788 break;
1789 case SPARC64_NPC_REGNUM:
1790 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1791 reg->loc.offset = 12;
1792 break;
1793 }
1794 }
1795
1796 /* sparc64_addr_bits_remove - remove useless address bits */
1797
1798 static CORE_ADDR
1799 sparc64_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1800 {
1801 return adi_normalize_address (addr);
1802 }
1803
1804 void
1805 sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1806 {
1807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1808
1809 tdep->pc_regnum = SPARC64_PC_REGNUM;
1810 tdep->npc_regnum = SPARC64_NPC_REGNUM;
1811 tdep->fpu_register_names = sparc64_fpu_register_names;
1812 tdep->fpu_registers_num = ARRAY_SIZE (sparc64_fpu_register_names);
1813 tdep->cp0_register_names = sparc64_cp0_register_names;
1814 tdep->cp0_registers_num = ARRAY_SIZE (sparc64_cp0_register_names);
1815
1816 /* This is what all the fuss is about. */
1817 set_gdbarch_long_bit (gdbarch, 64);
1818 set_gdbarch_long_long_bit (gdbarch, 64);
1819 set_gdbarch_ptr_bit (gdbarch, 64);
1820
1821 set_gdbarch_wchar_bit (gdbarch, 16);
1822 set_gdbarch_wchar_signed (gdbarch, 0);
1823
1824 set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
1825 set_gdbarch_register_name (gdbarch, sparc64_register_name);
1826 set_gdbarch_register_type (gdbarch, sparc64_register_type);
1827 set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
1828 set_tdesc_pseudo_register_name (gdbarch, sparc64_pseudo_register_name);
1829 set_tdesc_pseudo_register_type (gdbarch, sparc64_pseudo_register_type);
1830 set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
1831 set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
1832
1833 /* Register numbers of various important registers. */
1834 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
1835
1836 /* Call dummy code. */
1837 set_gdbarch_frame_align (gdbarch, sparc64_frame_align);
1838 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1839 set_gdbarch_push_dummy_code (gdbarch, NULL);
1840 set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
1841
1842 set_gdbarch_return_value (gdbarch, sparc64_return_value);
1843 set_gdbarch_stabs_argument_has_addr
1844 (gdbarch, default_stabs_argument_has_addr);
1845
1846 set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
1847 set_gdbarch_stack_frame_destroyed_p (gdbarch, sparc_stack_frame_destroyed_p);
1848
1849 /* Hook in the DWARF CFI frame unwinder. */
1850 dwarf2_frame_set_init_reg (gdbarch, sparc64_dwarf2_frame_init_reg);
1851 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1852 StackGhost issues have been resolved. */
1853
1854 frame_unwind_append_unwinder (gdbarch, &sparc64_frame_unwind);
1855 frame_base_set_default (gdbarch, &sparc64_frame_base);
1856
1857 set_gdbarch_addr_bits_remove (gdbarch, sparc64_addr_bits_remove);
1858 }
1859 \f
1860
1861 /* Helper functions for dealing with register sets. */
1862
1863 #define TSTATE_CWP 0x000000000000001fULL
1864 #define TSTATE_ICC 0x0000000f00000000ULL
1865 #define TSTATE_XCC 0x000000f000000000ULL
1866
1867 #define PSR_S 0x00000080
1868 #ifndef PSR_ICC
1869 #define PSR_ICC 0x00f00000
1870 #endif
1871 #define PSR_VERS 0x0f000000
1872 #ifndef PSR_IMPL
1873 #define PSR_IMPL 0xf0000000
1874 #endif
1875 #define PSR_V8PLUS 0xff000000
1876 #define PSR_XCC 0x000f0000
1877
1878 void
1879 sparc64_supply_gregset (const struct sparc_gregmap *gregmap,
1880 struct regcache *regcache,
1881 int regnum, const void *gregs)
1882 {
1883 struct gdbarch *gdbarch = regcache->arch ();
1884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1885 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
1886 const gdb_byte *regs = (const gdb_byte *) gregs;
1887 gdb_byte zero[8] = { 0 };
1888 int i;
1889
1890 if (sparc32)
1891 {
1892 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1893 {
1894 int offset = gregmap->r_tstate_offset;
1895 ULONGEST tstate, psr;
1896 gdb_byte buf[4];
1897
1898 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
1899 psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
1900 | ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
1901 store_unsigned_integer (buf, 4, byte_order, psr);
1902 regcache->raw_supply (SPARC32_PSR_REGNUM, buf);
1903 }
1904
1905 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1906 regcache->raw_supply (SPARC32_PC_REGNUM,
1907 regs + gregmap->r_pc_offset + 4);
1908
1909 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1910 regcache->raw_supply (SPARC32_NPC_REGNUM,
1911 regs + gregmap->r_npc_offset + 4);
1912
1913 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1914 {
1915 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
1916 regcache->raw_supply (SPARC32_Y_REGNUM, regs + offset);
1917 }
1918 }
1919 else
1920 {
1921 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1922 regcache->raw_supply (SPARC64_STATE_REGNUM,
1923 regs + gregmap->r_tstate_offset);
1924
1925 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1926 regcache->raw_supply (SPARC64_PC_REGNUM,
1927 regs + gregmap->r_pc_offset);
1928
1929 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1930 regcache->raw_supply (SPARC64_NPC_REGNUM,
1931 regs + gregmap->r_npc_offset);
1932
1933 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1934 {
1935 gdb_byte buf[8];
1936
1937 memset (buf, 0, 8);
1938 memcpy (buf + 8 - gregmap->r_y_size,
1939 regs + gregmap->r_y_offset, gregmap->r_y_size);
1940 regcache->raw_supply (SPARC64_Y_REGNUM, buf);
1941 }
1942
1943 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1944 && gregmap->r_fprs_offset != -1)
1945 regcache->raw_supply (SPARC64_FPRS_REGNUM,
1946 regs + gregmap->r_fprs_offset);
1947 }
1948
1949 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1950 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
1951
1952 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1953 {
1954 int offset = gregmap->r_g1_offset;
1955
1956 if (sparc32)
1957 offset += 4;
1958
1959 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1960 {
1961 if (regnum == i || regnum == -1)
1962 regcache->raw_supply (i, regs + offset);
1963 offset += 8;
1964 }
1965 }
1966
1967 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1968 {
1969 /* Not all of the register set variants include Locals and
1970 Inputs. For those that don't, we read them off the stack. */
1971 if (gregmap->r_l0_offset == -1)
1972 {
1973 ULONGEST sp;
1974
1975 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1976 sparc_supply_rwindow (regcache, sp, regnum);
1977 }
1978 else
1979 {
1980 int offset = gregmap->r_l0_offset;
1981
1982 if (sparc32)
1983 offset += 4;
1984
1985 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1986 {
1987 if (regnum == i || regnum == -1)
1988 regcache->raw_supply (i, regs + offset);
1989 offset += 8;
1990 }
1991 }
1992 }
1993 }
1994
1995 void
1996 sparc64_collect_gregset (const struct sparc_gregmap *gregmap,
1997 const struct regcache *regcache,
1998 int regnum, void *gregs)
1999 {
2000 struct gdbarch *gdbarch = regcache->arch ();
2001 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2002 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
2003 gdb_byte *regs = (gdb_byte *) gregs;
2004 int i;
2005
2006 if (sparc32)
2007 {
2008 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2009 {
2010 int offset = gregmap->r_tstate_offset;
2011 ULONGEST tstate, psr;
2012 gdb_byte buf[8];
2013
2014 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
2015 regcache->raw_collect (SPARC32_PSR_REGNUM, buf);
2016 psr = extract_unsigned_integer (buf, 4, byte_order);
2017 tstate |= (psr & PSR_ICC) << 12;
2018 if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
2019 tstate |= (psr & PSR_XCC) << 20;
2020 store_unsigned_integer (buf, 8, byte_order, tstate);
2021 memcpy (regs + offset, buf, 8);
2022 }
2023
2024 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
2025 regcache->raw_collect (SPARC32_PC_REGNUM,
2026 regs + gregmap->r_pc_offset + 4);
2027
2028 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
2029 regcache->raw_collect (SPARC32_NPC_REGNUM,
2030 regs + gregmap->r_npc_offset + 4);
2031
2032 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
2033 {
2034 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
2035 regcache->raw_collect (SPARC32_Y_REGNUM, regs + offset);
2036 }
2037 }
2038 else
2039 {
2040 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
2041 regcache->raw_collect (SPARC64_STATE_REGNUM,
2042 regs + gregmap->r_tstate_offset);
2043
2044 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
2045 regcache->raw_collect (SPARC64_PC_REGNUM,
2046 regs + gregmap->r_pc_offset);
2047
2048 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
2049 regcache->raw_collect (SPARC64_NPC_REGNUM,
2050 regs + gregmap->r_npc_offset);
2051
2052 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
2053 {
2054 gdb_byte buf[8];
2055
2056 regcache->raw_collect (SPARC64_Y_REGNUM, buf);
2057 memcpy (regs + gregmap->r_y_offset,
2058 buf + 8 - gregmap->r_y_size, gregmap->r_y_size);
2059 }
2060
2061 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
2062 && gregmap->r_fprs_offset != -1)
2063 regcache->raw_collect (SPARC64_FPRS_REGNUM,
2064 regs + gregmap->r_fprs_offset);
2065
2066 }
2067
2068 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2069 {
2070 int offset = gregmap->r_g1_offset;
2071
2072 if (sparc32)
2073 offset += 4;
2074
2075 /* %g0 is always zero. */
2076 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2077 {
2078 if (regnum == i || regnum == -1)
2079 regcache->raw_collect (i, regs + offset);
2080 offset += 8;
2081 }
2082 }
2083
2084 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2085 {
2086 /* Not all of the register set variants include Locals and
2087 Inputs. For those that don't, we read them off the stack. */
2088 if (gregmap->r_l0_offset != -1)
2089 {
2090 int offset = gregmap->r_l0_offset;
2091
2092 if (sparc32)
2093 offset += 4;
2094
2095 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2096 {
2097 if (regnum == i || regnum == -1)
2098 regcache->raw_collect (i, regs + offset);
2099 offset += 8;
2100 }
2101 }
2102 }
2103 }
2104
2105 void
2106 sparc64_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2107 struct regcache *regcache,
2108 int regnum, const void *fpregs)
2109 {
2110 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
2111 const gdb_byte *regs = (const gdb_byte *) fpregs;
2112 int i;
2113
2114 for (i = 0; i < 32; i++)
2115 {
2116 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2117 regcache->raw_supply (SPARC_F0_REGNUM + i,
2118 regs + fpregmap->r_f0_offset + (i * 4));
2119 }
2120
2121 if (sparc32)
2122 {
2123 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2124 regcache->raw_supply (SPARC32_FSR_REGNUM,
2125 regs + fpregmap->r_fsr_offset);
2126 }
2127 else
2128 {
2129 for (i = 0; i < 16; i++)
2130 {
2131 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
2132 regcache->raw_supply
2133 (SPARC64_F32_REGNUM + i,
2134 regs + fpregmap->r_f0_offset + (32 * 4) + (i * 8));
2135 }
2136
2137 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
2138 regcache->raw_supply (SPARC64_FSR_REGNUM,
2139 regs + fpregmap->r_fsr_offset);
2140 }
2141 }
2142
2143 void
2144 sparc64_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2145 const struct regcache *regcache,
2146 int regnum, void *fpregs)
2147 {
2148 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
2149 gdb_byte *regs = (gdb_byte *) fpregs;
2150 int i;
2151
2152 for (i = 0; i < 32; i++)
2153 {
2154 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2155 regcache->raw_collect (SPARC_F0_REGNUM + i,
2156 regs + fpregmap->r_f0_offset + (i * 4));
2157 }
2158
2159 if (sparc32)
2160 {
2161 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2162 regcache->raw_collect (SPARC32_FSR_REGNUM,
2163 regs + fpregmap->r_fsr_offset);
2164 }
2165 else
2166 {
2167 for (i = 0; i < 16; i++)
2168 {
2169 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
2170 regcache->raw_collect (SPARC64_F32_REGNUM + i,
2171 (regs + fpregmap->r_f0_offset
2172 + (32 * 4) + (i * 8)));
2173 }
2174
2175 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
2176 regcache->raw_collect (SPARC64_FSR_REGNUM,
2177 regs + fpregmap->r_fsr_offset);
2178 }
2179 }
2180
2181 const struct sparc_fpregmap sparc64_bsd_fpregmap =
2182 {
2183 0 * 8, /* %f0 */
2184 32 * 8, /* %fsr */
2185 };