]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stap-probe.c
"backtrace full/no-filters/hide" completer
[thirdparty/binutils-gdb.git] / gdb / stap-probe.c
1 /* SystemTap probe support for GDB.
2
3 Copyright (C) 2012-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "common/vec.h"
24 #include "ui-out.h"
25 #include "objfiles.h"
26 #include "arch-utils.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "filenames.h"
30 #include "value.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "complaints.h"
34 #include "cli/cli-utils.h"
35 #include "linespec.h"
36 #include "user-regs.h"
37 #include "parser-defs.h"
38 #include "language.h"
39 #include "elf-bfd.h"
40
41 #include <ctype.h>
42
43 /* The name of the SystemTap section where we will find information about
44 the probes. */
45
46 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
47
48 /* Should we display debug information for the probe's argument expression
49 parsing? */
50
51 static unsigned int stap_expression_debug = 0;
52
53 /* The various possibilities of bitness defined for a probe's argument.
54
55 The relationship is:
56
57 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
58 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'.
59 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'.
60 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'.
61 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'.
62 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
63 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
64 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
65 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
66
67 enum stap_arg_bitness
68 {
69 STAP_ARG_BITNESS_UNDEFINED,
70 STAP_ARG_BITNESS_8BIT_UNSIGNED,
71 STAP_ARG_BITNESS_8BIT_SIGNED,
72 STAP_ARG_BITNESS_16BIT_UNSIGNED,
73 STAP_ARG_BITNESS_16BIT_SIGNED,
74 STAP_ARG_BITNESS_32BIT_UNSIGNED,
75 STAP_ARG_BITNESS_32BIT_SIGNED,
76 STAP_ARG_BITNESS_64BIT_UNSIGNED,
77 STAP_ARG_BITNESS_64BIT_SIGNED,
78 };
79
80 /* The following structure represents a single argument for the probe. */
81
82 struct stap_probe_arg
83 {
84 /* Constructor for stap_probe_arg. */
85 stap_probe_arg (enum stap_arg_bitness bitness_, struct type *atype_,
86 expression_up &&aexpr_)
87 : bitness (bitness_), atype (atype_), aexpr (std::move (aexpr_))
88 {}
89
90 /* The bitness of this argument. */
91 enum stap_arg_bitness bitness;
92
93 /* The corresponding `struct type *' to the bitness. */
94 struct type *atype;
95
96 /* The argument converted to an internal GDB expression. */
97 expression_up aexpr;
98 };
99
100 /* Class that implements the static probe methods for "stap" probes. */
101
102 class stap_static_probe_ops : public static_probe_ops
103 {
104 public:
105 /* See probe.h. */
106 bool is_linespec (const char **linespecp) const override;
107
108 /* See probe.h. */
109 void get_probes (std::vector<std::unique_ptr<probe>> *probesp,
110 struct objfile *objfile) const override;
111
112 /* See probe.h. */
113 const char *type_name () const override;
114
115 /* See probe.h. */
116 std::vector<struct info_probe_column> gen_info_probes_table_header
117 () const override;
118 };
119
120 /* SystemTap static_probe_ops. */
121
122 const stap_static_probe_ops stap_static_probe_ops {};
123
124 class stap_probe : public probe
125 {
126 public:
127 /* Constructor for stap_probe. */
128 stap_probe (std::string &&name_, std::string &&provider_, CORE_ADDR address_,
129 struct gdbarch *arch_, CORE_ADDR sem_addr, const char *args_text)
130 : probe (std::move (name_), std::move (provider_), address_, arch_),
131 m_sem_addr (sem_addr),
132 m_have_parsed_args (false), m_unparsed_args_text (args_text)
133 {}
134
135 /* See probe.h. */
136 CORE_ADDR get_relocated_address (struct objfile *objfile) override;
137
138 /* See probe.h. */
139 unsigned get_argument_count (struct frame_info *frame) override;
140
141 /* See probe.h. */
142 bool can_evaluate_arguments () const override;
143
144 /* See probe.h. */
145 struct value *evaluate_argument (unsigned n,
146 struct frame_info *frame) override;
147
148 /* See probe.h. */
149 void compile_to_ax (struct agent_expr *aexpr,
150 struct axs_value *axs_value,
151 unsigned n) override;
152
153 /* See probe.h. */
154 void set_semaphore (struct objfile *objfile,
155 struct gdbarch *gdbarch) override;
156
157 /* See probe.h. */
158 void clear_semaphore (struct objfile *objfile,
159 struct gdbarch *gdbarch) override;
160
161 /* See probe.h. */
162 const static_probe_ops *get_static_ops () const override;
163
164 /* See probe.h. */
165 std::vector<const char *> gen_info_probes_table_values () const override;
166
167 /* Return argument N of probe.
168
169 If the probe's arguments have not been parsed yet, parse them. If
170 there are no arguments, throw an exception (error). Otherwise,
171 return the requested argument. */
172 struct stap_probe_arg *get_arg_by_number (unsigned n,
173 struct gdbarch *gdbarch)
174 {
175 if (!m_have_parsed_args)
176 this->parse_arguments (gdbarch);
177
178 gdb_assert (m_have_parsed_args);
179 if (m_parsed_args.empty ())
180 internal_error (__FILE__, __LINE__,
181 _("Probe '%s' apparently does not have arguments, but \n"
182 "GDB is requesting its argument number %u anyway. "
183 "This should not happen. Please report this bug."),
184 this->get_name ().c_str (), n);
185
186 if (n > m_parsed_args.size ())
187 internal_error (__FILE__, __LINE__,
188 _("Probe '%s' has %d arguments, but GDB is requesting\n"
189 "argument %u. This should not happen. Please\n"
190 "report this bug."),
191 this->get_name ().c_str (),
192 (int) m_parsed_args.size (), n);
193
194 return &m_parsed_args[n];
195 }
196
197 /* Function which parses an argument string from the probe,
198 correctly splitting the arguments and storing their information
199 in properly ways.
200
201 Consider the following argument string (x86 syntax):
202
203 `4@%eax 4@$10'
204
205 We have two arguments, `%eax' and `$10', both with 32-bit
206 unsigned bitness. This function basically handles them, properly
207 filling some structures with this information. */
208 void parse_arguments (struct gdbarch *gdbarch);
209
210 private:
211 /* If the probe has a semaphore associated, then this is the value of
212 it, relative to SECT_OFF_DATA. */
213 CORE_ADDR m_sem_addr;
214
215 /* True if the arguments have been parsed. */
216 bool m_have_parsed_args;
217
218 /* The text version of the probe's arguments, unparsed. */
219 const char *m_unparsed_args_text;
220
221 /* Information about each argument. This is an array of `stap_probe_arg',
222 with each entry representing one argument. This is only valid if
223 M_ARGS_PARSED is true. */
224 std::vector<struct stap_probe_arg> m_parsed_args;
225 };
226
227 /* When parsing the arguments, we have to establish different precedences
228 for the various kinds of asm operators. This enumeration represents those
229 precedences.
230
231 This logic behind this is available at
232 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
233 the command "info '(as)Infix Ops'". */
234
235 enum stap_operand_prec
236 {
237 /* Lowest precedence, used for non-recognized operands or for the beginning
238 of the parsing process. */
239 STAP_OPERAND_PREC_NONE = 0,
240
241 /* Precedence of logical OR. */
242 STAP_OPERAND_PREC_LOGICAL_OR,
243
244 /* Precedence of logical AND. */
245 STAP_OPERAND_PREC_LOGICAL_AND,
246
247 /* Precedence of additive (plus, minus) and comparative (equal, less,
248 greater-than, etc) operands. */
249 STAP_OPERAND_PREC_ADD_CMP,
250
251 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
252 logical NOT). */
253 STAP_OPERAND_PREC_BITWISE,
254
255 /* Precedence of multiplicative operands (multiplication, division,
256 remainder, left shift and right shift). */
257 STAP_OPERAND_PREC_MUL
258 };
259
260 static void stap_parse_argument_1 (struct stap_parse_info *p, bool has_lhs,
261 enum stap_operand_prec prec);
262
263 static void stap_parse_argument_conditionally (struct stap_parse_info *p);
264
265 /* Returns true if *S is an operator, false otherwise. */
266
267 static bool stap_is_operator (const char *op);
268
269 static void
270 show_stapexpressiondebug (struct ui_file *file, int from_tty,
271 struct cmd_list_element *c, const char *value)
272 {
273 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
274 value);
275 }
276
277 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
278 if the operator code was not recognized. */
279
280 static enum stap_operand_prec
281 stap_get_operator_prec (enum exp_opcode op)
282 {
283 switch (op)
284 {
285 case BINOP_LOGICAL_OR:
286 return STAP_OPERAND_PREC_LOGICAL_OR;
287
288 case BINOP_LOGICAL_AND:
289 return STAP_OPERAND_PREC_LOGICAL_AND;
290
291 case BINOP_ADD:
292 case BINOP_SUB:
293 case BINOP_EQUAL:
294 case BINOP_NOTEQUAL:
295 case BINOP_LESS:
296 case BINOP_LEQ:
297 case BINOP_GTR:
298 case BINOP_GEQ:
299 return STAP_OPERAND_PREC_ADD_CMP;
300
301 case BINOP_BITWISE_IOR:
302 case BINOP_BITWISE_AND:
303 case BINOP_BITWISE_XOR:
304 case UNOP_LOGICAL_NOT:
305 return STAP_OPERAND_PREC_BITWISE;
306
307 case BINOP_MUL:
308 case BINOP_DIV:
309 case BINOP_REM:
310 case BINOP_LSH:
311 case BINOP_RSH:
312 return STAP_OPERAND_PREC_MUL;
313
314 default:
315 return STAP_OPERAND_PREC_NONE;
316 }
317 }
318
319 /* Given S, read the operator in it. Return the EXP_OPCODE which
320 represents the operator detected, or throw an error if no operator
321 was found. */
322
323 static enum exp_opcode
324 stap_get_opcode (const char **s)
325 {
326 const char c = **s;
327 enum exp_opcode op;
328
329 *s += 1;
330
331 switch (c)
332 {
333 case '*':
334 op = BINOP_MUL;
335 break;
336
337 case '/':
338 op = BINOP_DIV;
339 break;
340
341 case '%':
342 op = BINOP_REM;
343 break;
344
345 case '<':
346 op = BINOP_LESS;
347 if (**s == '<')
348 {
349 *s += 1;
350 op = BINOP_LSH;
351 }
352 else if (**s == '=')
353 {
354 *s += 1;
355 op = BINOP_LEQ;
356 }
357 else if (**s == '>')
358 {
359 *s += 1;
360 op = BINOP_NOTEQUAL;
361 }
362 break;
363
364 case '>':
365 op = BINOP_GTR;
366 if (**s == '>')
367 {
368 *s += 1;
369 op = BINOP_RSH;
370 }
371 else if (**s == '=')
372 {
373 *s += 1;
374 op = BINOP_GEQ;
375 }
376 break;
377
378 case '|':
379 op = BINOP_BITWISE_IOR;
380 if (**s == '|')
381 {
382 *s += 1;
383 op = BINOP_LOGICAL_OR;
384 }
385 break;
386
387 case '&':
388 op = BINOP_BITWISE_AND;
389 if (**s == '&')
390 {
391 *s += 1;
392 op = BINOP_LOGICAL_AND;
393 }
394 break;
395
396 case '^':
397 op = BINOP_BITWISE_XOR;
398 break;
399
400 case '!':
401 op = UNOP_LOGICAL_NOT;
402 break;
403
404 case '+':
405 op = BINOP_ADD;
406 break;
407
408 case '-':
409 op = BINOP_SUB;
410 break;
411
412 case '=':
413 gdb_assert (**s == '=');
414 op = BINOP_EQUAL;
415 break;
416
417 default:
418 error (_("Invalid opcode in expression `%s' for SystemTap"
419 "probe"), *s);
420 }
421
422 return op;
423 }
424
425 /* Given the bitness of the argument, represented by B, return the
426 corresponding `struct type *', or throw an error if B is
427 unknown. */
428
429 static struct type *
430 stap_get_expected_argument_type (struct gdbarch *gdbarch,
431 enum stap_arg_bitness b,
432 const char *probe_name)
433 {
434 switch (b)
435 {
436 case STAP_ARG_BITNESS_UNDEFINED:
437 if (gdbarch_addr_bit (gdbarch) == 32)
438 return builtin_type (gdbarch)->builtin_uint32;
439 else
440 return builtin_type (gdbarch)->builtin_uint64;
441
442 case STAP_ARG_BITNESS_8BIT_UNSIGNED:
443 return builtin_type (gdbarch)->builtin_uint8;
444
445 case STAP_ARG_BITNESS_8BIT_SIGNED:
446 return builtin_type (gdbarch)->builtin_int8;
447
448 case STAP_ARG_BITNESS_16BIT_UNSIGNED:
449 return builtin_type (gdbarch)->builtin_uint16;
450
451 case STAP_ARG_BITNESS_16BIT_SIGNED:
452 return builtin_type (gdbarch)->builtin_int16;
453
454 case STAP_ARG_BITNESS_32BIT_SIGNED:
455 return builtin_type (gdbarch)->builtin_int32;
456
457 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
458 return builtin_type (gdbarch)->builtin_uint32;
459
460 case STAP_ARG_BITNESS_64BIT_SIGNED:
461 return builtin_type (gdbarch)->builtin_int64;
462
463 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
464 return builtin_type (gdbarch)->builtin_uint64;
465
466 default:
467 error (_("Undefined bitness for probe '%s'."), probe_name);
468 break;
469 }
470 }
471
472 /* Helper function to check for a generic list of prefixes. GDBARCH
473 is the current gdbarch being used. S is the expression being
474 analyzed. If R is not NULL, it will be used to return the found
475 prefix. PREFIXES is the list of expected prefixes.
476
477 This function does a case-insensitive match.
478
479 Return true if any prefix has been found, false otherwise. */
480
481 static bool
482 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
483 const char **r, const char *const *prefixes)
484 {
485 const char *const *p;
486
487 if (prefixes == NULL)
488 {
489 if (r != NULL)
490 *r = "";
491
492 return true;
493 }
494
495 for (p = prefixes; *p != NULL; ++p)
496 if (strncasecmp (s, *p, strlen (*p)) == 0)
497 {
498 if (r != NULL)
499 *r = *p;
500
501 return true;
502 }
503
504 return false;
505 }
506
507 /* Return true if S points to a register prefix, false otherwise. For
508 a description of the arguments, look at stap_is_generic_prefix. */
509
510 static bool
511 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
512 const char **r)
513 {
514 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
515
516 return stap_is_generic_prefix (gdbarch, s, r, t);
517 }
518
519 /* Return true if S points to a register indirection prefix, false
520 otherwise. For a description of the arguments, look at
521 stap_is_generic_prefix. */
522
523 static bool
524 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
525 const char **r)
526 {
527 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
528
529 return stap_is_generic_prefix (gdbarch, s, r, t);
530 }
531
532 /* Return true if S points to an integer prefix, false otherwise. For
533 a description of the arguments, look at stap_is_generic_prefix.
534
535 This function takes care of analyzing whether we are dealing with
536 an expected integer prefix, or, if there is no integer prefix to be
537 expected, whether we are dealing with a digit. It does a
538 case-insensitive match. */
539
540 static bool
541 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
542 const char **r)
543 {
544 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
545 const char *const *p;
546
547 if (t == NULL)
548 {
549 /* A NULL value here means that integers do not have a prefix.
550 We just check for a digit then. */
551 if (r != NULL)
552 *r = "";
553
554 return isdigit (*s) > 0;
555 }
556
557 for (p = t; *p != NULL; ++p)
558 {
559 size_t len = strlen (*p);
560
561 if ((len == 0 && isdigit (*s))
562 || (len > 0 && strncasecmp (s, *p, len) == 0))
563 {
564 /* Integers may or may not have a prefix. The "len == 0"
565 check covers the case when integers do not have a prefix
566 (therefore, we just check if we have a digit). The call
567 to "strncasecmp" covers the case when they have a
568 prefix. */
569 if (r != NULL)
570 *r = *p;
571
572 return true;
573 }
574 }
575
576 return false;
577 }
578
579 /* Helper function to check for a generic list of suffixes. If we are
580 not expecting any suffixes, then it just returns 1. If we are
581 expecting at least one suffix, then it returns true if a suffix has
582 been found, false otherwise. GDBARCH is the current gdbarch being
583 used. S is the expression being analyzed. If R is not NULL, it
584 will be used to return the found suffix. SUFFIXES is the list of
585 expected suffixes. This function does a case-insensitive
586 match. */
587
588 static bool
589 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
590 const char **r, const char *const *suffixes)
591 {
592 const char *const *p;
593 bool found = false;
594
595 if (suffixes == NULL)
596 {
597 if (r != NULL)
598 *r = "";
599
600 return true;
601 }
602
603 for (p = suffixes; *p != NULL; ++p)
604 if (strncasecmp (s, *p, strlen (*p)) == 0)
605 {
606 if (r != NULL)
607 *r = *p;
608
609 found = true;
610 break;
611 }
612
613 return found;
614 }
615
616 /* Return true if S points to an integer suffix, false otherwise. For
617 a description of the arguments, look at
618 stap_generic_check_suffix. */
619
620 static bool
621 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
622 const char **r)
623 {
624 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
625
626 return stap_generic_check_suffix (gdbarch, s, r, p);
627 }
628
629 /* Return true if S points to a register suffix, false otherwise. For
630 a description of the arguments, look at
631 stap_generic_check_suffix. */
632
633 static bool
634 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
635 const char **r)
636 {
637 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
638
639 return stap_generic_check_suffix (gdbarch, s, r, p);
640 }
641
642 /* Return true if S points to a register indirection suffix, false
643 otherwise. For a description of the arguments, look at
644 stap_generic_check_suffix. */
645
646 static bool
647 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
648 const char **r)
649 {
650 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
651
652 return stap_generic_check_suffix (gdbarch, s, r, p);
653 }
654
655 /* Function responsible for parsing a register operand according to
656 SystemTap parlance. Assuming:
657
658 RP = register prefix
659 RS = register suffix
660 RIP = register indirection prefix
661 RIS = register indirection suffix
662
663 Then a register operand can be:
664
665 [RIP] [RP] REGISTER [RS] [RIS]
666
667 This function takes care of a register's indirection, displacement and
668 direct access. It also takes into consideration the fact that some
669 registers are named differently inside and outside GDB, e.g., PPC's
670 general-purpose registers are represented by integers in the assembly
671 language (e.g., `15' is the 15th general-purpose register), but inside
672 GDB they have a prefix (the letter `r') appended. */
673
674 static void
675 stap_parse_register_operand (struct stap_parse_info *p)
676 {
677 /* Simple flag to indicate whether we have seen a minus signal before
678 certain number. */
679 bool got_minus = false;
680 /* Flags to indicate whether this register access is being displaced and/or
681 indirected. */
682 bool disp_p = false;
683 bool indirect_p = false;
684 struct gdbarch *gdbarch = p->gdbarch;
685 /* Needed to generate the register name as a part of an expression. */
686 struct stoken str;
687 /* Variables used to extract the register name from the probe's
688 argument. */
689 const char *start;
690 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
691 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
692 const char *reg_prefix;
693 const char *reg_ind_prefix;
694 const char *reg_suffix;
695 const char *reg_ind_suffix;
696
697 /* Checking for a displacement argument. */
698 if (*p->arg == '+')
699 {
700 /* If it's a plus sign, we don't need to do anything, just advance the
701 pointer. */
702 ++p->arg;
703 }
704 else if (*p->arg == '-')
705 {
706 got_minus = true;
707 ++p->arg;
708 }
709
710 if (isdigit (*p->arg))
711 {
712 /* The value of the displacement. */
713 long displacement;
714 char *endp;
715
716 disp_p = true;
717 displacement = strtol (p->arg, &endp, 10);
718 p->arg = endp;
719
720 /* Generating the expression for the displacement. */
721 write_exp_elt_opcode (&p->pstate, OP_LONG);
722 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
723 write_exp_elt_longcst (&p->pstate, displacement);
724 write_exp_elt_opcode (&p->pstate, OP_LONG);
725 if (got_minus)
726 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
727 }
728
729 /* Getting rid of register indirection prefix. */
730 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
731 {
732 indirect_p = true;
733 p->arg += strlen (reg_ind_prefix);
734 }
735
736 if (disp_p && !indirect_p)
737 error (_("Invalid register displacement syntax on expression `%s'."),
738 p->saved_arg);
739
740 /* Getting rid of register prefix. */
741 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
742 p->arg += strlen (reg_prefix);
743
744 /* Now we should have only the register name. Let's extract it and get
745 the associated number. */
746 start = p->arg;
747
748 /* We assume the register name is composed by letters and numbers. */
749 while (isalnum (*p->arg))
750 ++p->arg;
751
752 std::string regname (start, p->arg - start);
753
754 /* We only add the GDB's register prefix/suffix if we are dealing with
755 a numeric register. */
756 if (isdigit (*start))
757 {
758 if (gdb_reg_prefix != NULL)
759 regname = gdb_reg_prefix + regname;
760
761 if (gdb_reg_suffix != NULL)
762 regname += gdb_reg_suffix;
763 }
764
765 /* Is this a valid register name? */
766 if (user_reg_map_name_to_regnum (gdbarch,
767 regname.c_str (),
768 regname.size ()) == -1)
769 error (_("Invalid register name `%s' on expression `%s'."),
770 regname.c_str (), p->saved_arg);
771
772 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
773 str.ptr = regname.c_str ();
774 str.length = regname.size ();
775 write_exp_string (&p->pstate, str);
776 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
777
778 if (indirect_p)
779 {
780 if (disp_p)
781 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
782
783 /* Casting to the expected type. */
784 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
785 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
786 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
787
788 write_exp_elt_opcode (&p->pstate, UNOP_IND);
789 }
790
791 /* Getting rid of the register name suffix. */
792 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
793 p->arg += strlen (reg_suffix);
794 else
795 error (_("Missing register name suffix on expression `%s'."),
796 p->saved_arg);
797
798 /* Getting rid of the register indirection suffix. */
799 if (indirect_p)
800 {
801 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
802 &reg_ind_suffix))
803 p->arg += strlen (reg_ind_suffix);
804 else
805 error (_("Missing indirection suffix on expression `%s'."),
806 p->saved_arg);
807 }
808 }
809
810 /* This function is responsible for parsing a single operand.
811
812 A single operand can be:
813
814 - an unary operation (e.g., `-5', `~2', or even with subexpressions
815 like `-(2 + 1)')
816 - a register displacement, which will be treated as a register
817 operand (e.g., `-4(%eax)' on x86)
818 - a numeric constant, or
819 - a register operand (see function `stap_parse_register_operand')
820
821 The function also calls special-handling functions to deal with
822 unrecognized operands, allowing arch-specific parsers to be
823 created. */
824
825 static void
826 stap_parse_single_operand (struct stap_parse_info *p)
827 {
828 struct gdbarch *gdbarch = p->gdbarch;
829 const char *int_prefix = NULL;
830
831 /* We first try to parse this token as a "special token". */
832 if (gdbarch_stap_parse_special_token_p (gdbarch)
833 && (gdbarch_stap_parse_special_token (gdbarch, p) != 0))
834 {
835 /* If the return value of the above function is not zero,
836 it means it successfully parsed the special token.
837
838 If it is NULL, we try to parse it using our method. */
839 return;
840 }
841
842 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
843 {
844 char c = *p->arg;
845 /* We use this variable to do a lookahead. */
846 const char *tmp = p->arg;
847 bool has_digit = false;
848
849 /* Skipping signal. */
850 ++tmp;
851
852 /* This is an unary operation. Here is a list of allowed tokens
853 here:
854
855 - numeric literal;
856 - number (from register displacement)
857 - subexpression (beginning with `(')
858
859 We handle the register displacement here, and the other cases
860 recursively. */
861 if (p->inside_paren_p)
862 tmp = skip_spaces (tmp);
863
864 while (isdigit (*tmp))
865 {
866 /* We skip the digit here because we are only interested in
867 knowing what kind of unary operation this is. The digit
868 will be handled by one of the functions that will be
869 called below ('stap_parse_argument_conditionally' or
870 'stap_parse_register_operand'). */
871 ++tmp;
872 has_digit = true;
873 }
874
875 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
876 NULL))
877 {
878 /* If we are here, it means it is a displacement. The only
879 operations allowed here are `-' and `+'. */
880 if (c != '-' && c != '+')
881 error (_("Invalid operator `%c' for register displacement "
882 "on expression `%s'."), c, p->saved_arg);
883
884 stap_parse_register_operand (p);
885 }
886 else
887 {
888 /* This is not a displacement. We skip the operator, and
889 deal with it when the recursion returns. */
890 ++p->arg;
891 stap_parse_argument_conditionally (p);
892 if (c == '-')
893 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
894 else if (c == '~')
895 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
896 }
897 }
898 else if (isdigit (*p->arg))
899 {
900 /* A temporary variable, needed for lookahead. */
901 const char *tmp = p->arg;
902 char *endp;
903 long number;
904
905 /* We can be dealing with a numeric constant, or with a register
906 displacement. */
907 number = strtol (tmp, &endp, 10);
908 tmp = endp;
909
910 if (p->inside_paren_p)
911 tmp = skip_spaces (tmp);
912
913 /* If "stap_is_integer_prefix" returns true, it means we can
914 accept integers without a prefix here. But we also need to
915 check whether the next token (i.e., "tmp") is not a register
916 indirection prefix. */
917 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
918 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
919 {
920 const char *int_suffix;
921
922 /* We are dealing with a numeric constant. */
923 write_exp_elt_opcode (&p->pstate, OP_LONG);
924 write_exp_elt_type (&p->pstate,
925 builtin_type (gdbarch)->builtin_long);
926 write_exp_elt_longcst (&p->pstate, number);
927 write_exp_elt_opcode (&p->pstate, OP_LONG);
928
929 p->arg = tmp;
930
931 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
932 p->arg += strlen (int_suffix);
933 else
934 error (_("Invalid constant suffix on expression `%s'."),
935 p->saved_arg);
936 }
937 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
938 stap_parse_register_operand (p);
939 else
940 error (_("Unknown numeric token on expression `%s'."),
941 p->saved_arg);
942 }
943 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
944 {
945 /* We are dealing with a numeric constant. */
946 long number;
947 char *endp;
948 const char *int_suffix;
949
950 p->arg += strlen (int_prefix);
951 number = strtol (p->arg, &endp, 10);
952 p->arg = endp;
953
954 write_exp_elt_opcode (&p->pstate, OP_LONG);
955 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
956 write_exp_elt_longcst (&p->pstate, number);
957 write_exp_elt_opcode (&p->pstate, OP_LONG);
958
959 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
960 p->arg += strlen (int_suffix);
961 else
962 error (_("Invalid constant suffix on expression `%s'."),
963 p->saved_arg);
964 }
965 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
966 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
967 stap_parse_register_operand (p);
968 else
969 error (_("Operator `%c' not recognized on expression `%s'."),
970 *p->arg, p->saved_arg);
971 }
972
973 /* This function parses an argument conditionally, based on single or
974 non-single operands. A non-single operand would be a parenthesized
975 expression (e.g., `(2 + 1)'), and a single operand is anything that
976 starts with `-', `~', `+' (i.e., unary operators), a digit, or
977 something recognized by `gdbarch_stap_is_single_operand'. */
978
979 static void
980 stap_parse_argument_conditionally (struct stap_parse_info *p)
981 {
982 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
983
984 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
985 || isdigit (*p->arg)
986 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
987 stap_parse_single_operand (p);
988 else if (*p->arg == '(')
989 {
990 /* We are dealing with a parenthesized operand. It means we
991 have to parse it as it was a separate expression, without
992 left-side or precedence. */
993 ++p->arg;
994 p->arg = skip_spaces (p->arg);
995 ++p->inside_paren_p;
996
997 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
998
999 --p->inside_paren_p;
1000 if (*p->arg != ')')
1001 error (_("Missign close-paren on expression `%s'."),
1002 p->saved_arg);
1003
1004 ++p->arg;
1005 if (p->inside_paren_p)
1006 p->arg = skip_spaces (p->arg);
1007 }
1008 else
1009 error (_("Cannot parse expression `%s'."), p->saved_arg);
1010 }
1011
1012 /* Helper function for `stap_parse_argument'. Please, see its comments to
1013 better understand what this function does. */
1014
1015 static void
1016 stap_parse_argument_1 (struct stap_parse_info *p, bool has_lhs,
1017 enum stap_operand_prec prec)
1018 {
1019 /* This is an operator-precedence parser.
1020
1021 We work with left- and right-sides of expressions, and
1022 parse them depending on the precedence of the operators
1023 we find. */
1024
1025 gdb_assert (p->arg != NULL);
1026
1027 if (p->inside_paren_p)
1028 p->arg = skip_spaces (p->arg);
1029
1030 if (!has_lhs)
1031 {
1032 /* We were called without a left-side, either because this is the
1033 first call, or because we were called to parse a parenthesized
1034 expression. It doesn't really matter; we have to parse the
1035 left-side in order to continue the process. */
1036 stap_parse_argument_conditionally (p);
1037 }
1038
1039 /* Start to parse the right-side, and to "join" left and right sides
1040 depending on the operation specified.
1041
1042 This loop shall continue until we run out of characters in the input,
1043 or until we find a close-parenthesis, which means that we've reached
1044 the end of a sub-expression. */
1045 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
1046 {
1047 const char *tmp_exp_buf;
1048 enum exp_opcode opcode;
1049 enum stap_operand_prec cur_prec;
1050
1051 if (!stap_is_operator (p->arg))
1052 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
1053 p->saved_arg);
1054
1055 /* We have to save the current value of the expression buffer because
1056 the `stap_get_opcode' modifies it in order to get the current
1057 operator. If this operator's precedence is lower than PREC, we
1058 should return and not advance the expression buffer pointer. */
1059 tmp_exp_buf = p->arg;
1060 opcode = stap_get_opcode (&tmp_exp_buf);
1061
1062 cur_prec = stap_get_operator_prec (opcode);
1063 if (cur_prec < prec)
1064 {
1065 /* If the precedence of the operator that we are seeing now is
1066 lower than the precedence of the first operator seen before
1067 this parsing process began, it means we should stop parsing
1068 and return. */
1069 break;
1070 }
1071
1072 p->arg = tmp_exp_buf;
1073 if (p->inside_paren_p)
1074 p->arg = skip_spaces (p->arg);
1075
1076 /* Parse the right-side of the expression. */
1077 stap_parse_argument_conditionally (p);
1078
1079 /* While we still have operators, try to parse another
1080 right-side, but using the current right-side as a left-side. */
1081 while (*p->arg != '\0' && stap_is_operator (p->arg))
1082 {
1083 enum exp_opcode lookahead_opcode;
1084 enum stap_operand_prec lookahead_prec;
1085
1086 /* Saving the current expression buffer position. The explanation
1087 is the same as above. */
1088 tmp_exp_buf = p->arg;
1089 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
1090 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1091
1092 if (lookahead_prec <= prec)
1093 {
1094 /* If we are dealing with an operator whose precedence is lower
1095 than the first one, just abandon the attempt. */
1096 break;
1097 }
1098
1099 /* Parse the right-side of the expression, but since we already
1100 have a left-side at this point, set `has_lhs' to 1. */
1101 stap_parse_argument_1 (p, 1, lookahead_prec);
1102 }
1103
1104 write_exp_elt_opcode (&p->pstate, opcode);
1105 }
1106 }
1107
1108 /* Parse a probe's argument.
1109
1110 Assuming that:
1111
1112 LP = literal integer prefix
1113 LS = literal integer suffix
1114
1115 RP = register prefix
1116 RS = register suffix
1117
1118 RIP = register indirection prefix
1119 RIS = register indirection suffix
1120
1121 This routine assumes that arguments' tokens are of the form:
1122
1123 - [LP] NUMBER [LS]
1124 - [RP] REGISTER [RS]
1125 - [RIP] [RP] REGISTER [RS] [RIS]
1126 - If we find a number without LP, we try to parse it as a literal integer
1127 constant (if LP == NULL), or as a register displacement.
1128 - We count parenthesis, and only skip whitespaces if we are inside them.
1129 - If we find an operator, we skip it.
1130
1131 This function can also call a special function that will try to match
1132 unknown tokens. It will return the expression_up generated from
1133 parsing the argument. */
1134
1135 static expression_up
1136 stap_parse_argument (const char **arg, struct type *atype,
1137 struct gdbarch *gdbarch)
1138 {
1139 /* We need to initialize the expression buffer, in order to begin
1140 our parsing efforts. We use language_c here because we may need
1141 to do pointer arithmetics. */
1142 struct stap_parse_info p (*arg, atype, language_def (language_c),
1143 gdbarch);
1144
1145 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1146
1147 gdb_assert (p.inside_paren_p == 0);
1148
1149 /* Casting the final expression to the appropriate type. */
1150 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1151 write_exp_elt_type (&p.pstate, atype);
1152 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1153
1154 p.arg = skip_spaces (p.arg);
1155 *arg = p.arg;
1156
1157 return p.pstate.release ();
1158 }
1159
1160 /* Implementation of 'parse_arguments' method. */
1161
1162 void
1163 stap_probe::parse_arguments (struct gdbarch *gdbarch)
1164 {
1165 const char *cur;
1166
1167 gdb_assert (!m_have_parsed_args);
1168 cur = m_unparsed_args_text;
1169 m_have_parsed_args = true;
1170
1171 if (cur == NULL || *cur == '\0' || *cur == ':')
1172 return;
1173
1174 while (*cur != '\0')
1175 {
1176 enum stap_arg_bitness bitness;
1177 bool got_minus = false;
1178
1179 /* We expect to find something like:
1180
1181 N@OP
1182
1183 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so
1184 we check it here. If we don't find it, go to the next
1185 state. */
1186 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1187 || (isdigit (cur[0]) && cur[1] == '@'))
1188 {
1189 if (*cur == '-')
1190 {
1191 /* Discard the `-'. */
1192 ++cur;
1193 got_minus = true;
1194 }
1195
1196 /* Defining the bitness. */
1197 switch (*cur)
1198 {
1199 case '1':
1200 bitness = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1201 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1202 break;
1203
1204 case '2':
1205 bitness = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1206 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1207 break;
1208
1209 case '4':
1210 bitness = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1211 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1212 break;
1213
1214 case '8':
1215 bitness = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1216 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1217 break;
1218
1219 default:
1220 {
1221 /* We have an error, because we don't expect anything
1222 except 1, 2, 4 and 8. */
1223 warning (_("unrecognized bitness %s%c' for probe `%s'"),
1224 got_minus ? "`-" : "`", *cur,
1225 this->get_name ().c_str ());
1226 return;
1227 }
1228 }
1229 /* Discard the number and the `@' sign. */
1230 cur += 2;
1231 }
1232 else
1233 bitness = STAP_ARG_BITNESS_UNDEFINED;
1234
1235 struct type *atype
1236 = stap_get_expected_argument_type (gdbarch, bitness,
1237 this->get_name ().c_str ());
1238
1239 expression_up expr = stap_parse_argument (&cur, atype, gdbarch);
1240
1241 if (stap_expression_debug)
1242 dump_raw_expression (expr.get (), gdb_stdlog,
1243 "before conversion to prefix form");
1244
1245 prefixify_expression (expr.get ());
1246
1247 if (stap_expression_debug)
1248 dump_prefix_expression (expr.get (), gdb_stdlog);
1249
1250 m_parsed_args.emplace_back (bitness, atype, std::move (expr));
1251
1252 /* Start it over again. */
1253 cur = skip_spaces (cur);
1254 }
1255 }
1256
1257 /* Helper function to relocate an address. */
1258
1259 static CORE_ADDR
1260 relocate_address (CORE_ADDR address, struct objfile *objfile)
1261 {
1262 return address + ANOFFSET (objfile->section_offsets,
1263 SECT_OFF_DATA (objfile));
1264 }
1265
1266 /* Implementation of the get_relocated_address method. */
1267
1268 CORE_ADDR
1269 stap_probe::get_relocated_address (struct objfile *objfile)
1270 {
1271 return relocate_address (this->get_address (), objfile);
1272 }
1273
1274 /* Given PROBE, returns the number of arguments present in that probe's
1275 argument string. */
1276
1277 unsigned
1278 stap_probe::get_argument_count (struct frame_info *frame)
1279 {
1280 struct gdbarch *gdbarch = get_frame_arch (frame);
1281
1282 if (!m_have_parsed_args)
1283 {
1284 if (this->can_evaluate_arguments ())
1285 this->parse_arguments (gdbarch);
1286 else
1287 {
1288 static bool have_warned_stap_incomplete = false;
1289
1290 if (!have_warned_stap_incomplete)
1291 {
1292 warning (_(
1293 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1294 "you will not be able to inspect the arguments of the probes.\n"
1295 "Please report a bug against GDB requesting a port to this target."));
1296 have_warned_stap_incomplete = true;
1297 }
1298
1299 /* Marking the arguments as "already parsed". */
1300 m_have_parsed_args = true;
1301 }
1302 }
1303
1304 gdb_assert (m_have_parsed_args);
1305 return m_parsed_args.size ();
1306 }
1307
1308 /* Return true if OP is a valid operator inside a probe argument, or
1309 false otherwise. */
1310
1311 static bool
1312 stap_is_operator (const char *op)
1313 {
1314 bool ret = true;
1315
1316 switch (*op)
1317 {
1318 case '*':
1319 case '/':
1320 case '%':
1321 case '^':
1322 case '!':
1323 case '+':
1324 case '-':
1325 case '<':
1326 case '>':
1327 case '|':
1328 case '&':
1329 break;
1330
1331 case '=':
1332 if (op[1] != '=')
1333 ret = false;
1334 break;
1335
1336 default:
1337 /* We didn't find any operator. */
1338 ret = false;
1339 }
1340
1341 return ret;
1342 }
1343
1344 /* Implement the `can_evaluate_arguments' method. */
1345
1346 bool
1347 stap_probe::can_evaluate_arguments () const
1348 {
1349 struct gdbarch *gdbarch = this->get_gdbarch ();
1350
1351 /* For SystemTap probes, we have to guarantee that the method
1352 stap_is_single_operand is defined on gdbarch. If it is not, then it
1353 means that argument evaluation is not implemented on this target. */
1354 return gdbarch_stap_is_single_operand_p (gdbarch);
1355 }
1356
1357 /* Evaluate the probe's argument N (indexed from 0), returning a value
1358 corresponding to it. Assertion is thrown if N does not exist. */
1359
1360 struct value *
1361 stap_probe::evaluate_argument (unsigned n, struct frame_info *frame)
1362 {
1363 struct stap_probe_arg *arg;
1364 int pos = 0;
1365 struct gdbarch *gdbarch = get_frame_arch (frame);
1366
1367 arg = this->get_arg_by_number (n, gdbarch);
1368 return evaluate_subexp_standard (arg->atype, arg->aexpr.get (), &pos,
1369 EVAL_NORMAL);
1370 }
1371
1372 /* Compile the probe's argument N (indexed from 0) to agent expression.
1373 Assertion is thrown if N does not exist. */
1374
1375 void
1376 stap_probe::compile_to_ax (struct agent_expr *expr, struct axs_value *value,
1377 unsigned n)
1378 {
1379 struct stap_probe_arg *arg;
1380 union exp_element *pc;
1381
1382 arg = this->get_arg_by_number (n, expr->gdbarch);
1383
1384 pc = arg->aexpr->elts;
1385 gen_expr (arg->aexpr.get (), &pc, expr, value);
1386
1387 require_rvalue (expr, value);
1388 value->type = arg->atype;
1389 }
1390 \f
1391
1392 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1393 address. SET is zero if the semaphore should be cleared, or one if
1394 it should be set. This is a helper function for
1395 'stap_probe::set_semaphore' and 'stap_probe::clear_semaphore'. */
1396
1397 static void
1398 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1399 {
1400 gdb_byte bytes[sizeof (LONGEST)];
1401 /* The ABI specifies "unsigned short". */
1402 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1403 ULONGEST value;
1404
1405 if (address == 0)
1406 return;
1407
1408 /* Swallow errors. */
1409 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1410 {
1411 warning (_("Could not read the value of a SystemTap semaphore."));
1412 return;
1413 }
1414
1415 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1416 gdbarch_byte_order (gdbarch));
1417 /* Note that we explicitly don't worry about overflow or
1418 underflow. */
1419 if (set)
1420 ++value;
1421 else
1422 --value;
1423
1424 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1425 gdbarch_byte_order (gdbarch), value);
1426
1427 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1428 warning (_("Could not write the value of a SystemTap semaphore."));
1429 }
1430
1431 /* Implementation of the 'set_semaphore' method.
1432
1433 SystemTap semaphores act as reference counters, so calls to this
1434 function must be paired with calls to 'clear_semaphore'.
1435
1436 This function and 'clear_semaphore' race with another tool
1437 changing the probes, but that is too rare to care. */
1438
1439 void
1440 stap_probe::set_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1441 {
1442 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 1, gdbarch);
1443 }
1444
1445 /* Implementation of the 'clear_semaphore' method. */
1446
1447 void
1448 stap_probe::clear_semaphore (struct objfile *objfile, struct gdbarch *gdbarch)
1449 {
1450 stap_modify_semaphore (relocate_address (m_sem_addr, objfile), 0, gdbarch);
1451 }
1452
1453 /* Implementation of the 'get_static_ops' method. */
1454
1455 const static_probe_ops *
1456 stap_probe::get_static_ops () const
1457 {
1458 return &stap_static_probe_ops;
1459 }
1460
1461 /* Implementation of the 'gen_info_probes_table_values' method. */
1462
1463 std::vector<const char *>
1464 stap_probe::gen_info_probes_table_values () const
1465 {
1466 const char *val = NULL;
1467
1468 if (m_sem_addr != 0)
1469 val = print_core_address (this->get_gdbarch (), m_sem_addr);
1470
1471 return std::vector<const char *> { val };
1472 }
1473
1474 /* Helper function that parses the information contained in a
1475 SystemTap's probe. Basically, the information consists in:
1476
1477 - Probe's PC address;
1478 - Link-time section address of `.stapsdt.base' section;
1479 - Link-time address of the semaphore variable, or ZERO if the
1480 probe doesn't have an associated semaphore;
1481 - Probe's provider name;
1482 - Probe's name;
1483 - Probe's argument format. */
1484
1485 static void
1486 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1487 std::vector<std::unique_ptr<probe>> *probesp,
1488 CORE_ADDR base)
1489 {
1490 bfd *abfd = objfile->obfd;
1491 int size = bfd_get_arch_size (abfd) / 8;
1492 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1493 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1494
1495 /* Provider and the name of the probe. */
1496 const char *provider = (const char *) &el->data[3 * size];
1497 const char *name = ((const char *)
1498 memchr (provider, '\0',
1499 (char *) el->data + el->size - provider));
1500 /* Making sure there is a name. */
1501 if (name == NULL)
1502 {
1503 complaint (_("corrupt probe name when reading `%s'"),
1504 objfile_name (objfile));
1505
1506 /* There is no way to use a probe without a name or a provider, so
1507 returning here makes sense. */
1508 return;
1509 }
1510 else
1511 ++name;
1512
1513 /* Retrieving the probe's address. */
1514 CORE_ADDR address = extract_typed_address (&el->data[0], ptr_type);
1515
1516 /* Link-time sh_addr of `.stapsdt.base' section. */
1517 CORE_ADDR base_ref = extract_typed_address (&el->data[size], ptr_type);
1518
1519 /* Semaphore address. */
1520 CORE_ADDR sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1521
1522 address += base - base_ref;
1523 if (sem_addr != 0)
1524 sem_addr += base - base_ref;
1525
1526 /* Arguments. We can only extract the argument format if there is a valid
1527 name for this probe. */
1528 const char *probe_args = ((const char*)
1529 memchr (name, '\0',
1530 (char *) el->data + el->size - name));
1531
1532 if (probe_args != NULL)
1533 ++probe_args;
1534
1535 if (probe_args == NULL
1536 || (memchr (probe_args, '\0', (char *) el->data + el->size - name)
1537 != el->data + el->size - 1))
1538 {
1539 complaint (_("corrupt probe argument when reading `%s'"),
1540 objfile_name (objfile));
1541 /* If the argument string is NULL, it means some problem happened with
1542 it. So we return. */
1543 return;
1544 }
1545
1546 stap_probe *ret = new stap_probe (std::string (name), std::string (provider),
1547 address, gdbarch, sem_addr, probe_args);
1548
1549 /* Successfully created probe. */
1550 probesp->emplace_back (ret);
1551 }
1552
1553 /* Helper function which tries to find the base address of the SystemTap
1554 base section named STAP_BASE_SECTION_NAME. */
1555
1556 static void
1557 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1558 {
1559 asection **ret = (asection **) obj;
1560
1561 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1562 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1563 *ret = sect;
1564 }
1565
1566 /* Helper function which iterates over every section in the BFD file,
1567 trying to find the base address of the SystemTap base section.
1568 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1569
1570 static int
1571 get_stap_base_address (bfd *obfd, bfd_vma *base)
1572 {
1573 asection *ret = NULL;
1574
1575 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1576
1577 if (ret == NULL)
1578 {
1579 complaint (_("could not obtain base address for "
1580 "SystemTap section on objfile `%s'."),
1581 obfd->filename);
1582 return 0;
1583 }
1584
1585 if (base != NULL)
1586 *base = ret->vma;
1587
1588 return 1;
1589 }
1590
1591 /* Implementation of the 'is_linespec' method. */
1592
1593 bool
1594 stap_static_probe_ops::is_linespec (const char **linespecp) const
1595 {
1596 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1597
1598 return probe_is_linespec_by_keyword (linespecp, keywords);
1599 }
1600
1601 /* Implementation of the 'get_probes' method. */
1602
1603 void
1604 stap_static_probe_ops::get_probes
1605 (std::vector<std::unique_ptr<probe>> *probesp,
1606 struct objfile *objfile) const
1607 {
1608 /* If we are here, then this is the first time we are parsing the
1609 SystemTap probe's information. We basically have to count how many
1610 probes the objfile has, and then fill in the necessary information
1611 for each one. */
1612 bfd *obfd = objfile->obfd;
1613 bfd_vma base;
1614 struct sdt_note *iter;
1615 unsigned save_probesp_len = probesp->size ();
1616
1617 if (objfile->separate_debug_objfile_backlink != NULL)
1618 {
1619 /* This is a .debug file, not the objfile itself. */
1620 return;
1621 }
1622
1623 if (elf_tdata (obfd)->sdt_note_head == NULL)
1624 {
1625 /* There isn't any probe here. */
1626 return;
1627 }
1628
1629 if (!get_stap_base_address (obfd, &base))
1630 {
1631 /* There was an error finding the base address for the section.
1632 Just return NULL. */
1633 return;
1634 }
1635
1636 /* Parsing each probe's information. */
1637 for (iter = elf_tdata (obfd)->sdt_note_head;
1638 iter != NULL;
1639 iter = iter->next)
1640 {
1641 /* We first have to handle all the information about the
1642 probe which is present in the section. */
1643 handle_stap_probe (objfile, iter, probesp, base);
1644 }
1645
1646 if (save_probesp_len == probesp->size ())
1647 {
1648 /* If we are here, it means we have failed to parse every known
1649 probe. */
1650 complaint (_("could not parse SystemTap probe(s) from inferior"));
1651 return;
1652 }
1653 }
1654
1655 /* Implementation of the type_name method. */
1656
1657 const char *
1658 stap_static_probe_ops::type_name () const
1659 {
1660 return "stap";
1661 }
1662
1663 /* Implementation of the 'gen_info_probes_table_header' method. */
1664
1665 std::vector<struct info_probe_column>
1666 stap_static_probe_ops::gen_info_probes_table_header () const
1667 {
1668 struct info_probe_column stap_probe_column;
1669
1670 stap_probe_column.field_name = "semaphore";
1671 stap_probe_column.print_name = _("Semaphore");
1672
1673 return std::vector<struct info_probe_column> { stap_probe_column };
1674 }
1675
1676 /* Implementation of the `info probes stap' command. */
1677
1678 static void
1679 info_probes_stap_command (const char *arg, int from_tty)
1680 {
1681 info_probes_for_spops (arg, from_tty, &stap_static_probe_ops);
1682 }
1683
1684 void
1685 _initialize_stap_probe (void)
1686 {
1687 all_static_probe_ops.push_back (&stap_static_probe_ops);
1688
1689 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1690 &stap_expression_debug,
1691 _("Set SystemTap expression debugging."),
1692 _("Show SystemTap expression debugging."),
1693 _("When non-zero, the internal representation "
1694 "of SystemTap expressions will be printed."),
1695 NULL,
1696 show_stapexpressiondebug,
1697 &setdebuglist, &showdebuglist);
1698
1699 add_cmd ("stap", class_info, info_probes_stap_command,
1700 _("\
1701 Show information about SystemTap static probes.\n\
1702 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1703 Each argument is a regular expression, used to select probes.\n\
1704 PROVIDER matches probe provider names.\n\
1705 NAME matches the probe names.\n\
1706 OBJECT matches the executable or shared library name."),
1707 info_probes_cmdlist_get ());
1708
1709 }