]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Warn if add-symbol-file does not provide any symbols
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "common/pathstuff.h"
61 #include "common/selftest.h"
62 #include "cli/cli-style.h"
63 #include "common/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* If non-zero, shared library symbols will be added automatically
145 when the inferior is created, new libraries are loaded, or when
146 attaching to the inferior. This is almost always what users will
147 want to have happen; but for very large programs, the startup time
148 will be excessive, and so if this is a problem, the user can clear
149 this flag and then add the shared library symbols as needed. Note
150 that there is a potential for confusion, since if the shared
151 library symbols are not loaded, commands like "info fun" will *not*
152 report all the functions that are actually present. */
153
154 int auto_solib_add = 1;
155 \f
156
157 /* Return non-zero if symbol-loading messages should be printed.
158 FROM_TTY is the standard from_tty argument to gdb commands.
159 If EXEC is non-zero the messages are for the executable.
160 Otherwise, messages are for shared libraries.
161 If FULL is non-zero then the caller is printing a detailed message.
162 E.g., the message includes the shared library name.
163 Otherwise, the caller is printing a brief "summary" message. */
164
165 int
166 print_symbol_loading_p (int from_tty, int exec, int full)
167 {
168 if (!from_tty && !info_verbose)
169 return 0;
170
171 if (exec)
172 {
173 /* We don't check FULL for executables, there are few such
174 messages, therefore brief == full. */
175 return print_symbol_loading != print_symbol_loading_off;
176 }
177 if (full)
178 return print_symbol_loading == print_symbol_loading_full;
179 return print_symbol_loading == print_symbol_loading_brief;
180 }
181
182 /* True if we are reading a symbol table. */
183
184 int currently_reading_symtab = 0;
185
186 /* Increment currently_reading_symtab and return a cleanup that can be
187 used to decrement it. */
188
189 scoped_restore_tmpl<int>
190 increment_reading_symtab (void)
191 {
192 gdb_assert (currently_reading_symtab >= 0);
193 return make_scoped_restore (&currently_reading_symtab,
194 currently_reading_symtab + 1);
195 }
196
197 /* Remember the lowest-addressed loadable section we've seen.
198 This function is called via bfd_map_over_sections.
199
200 In case of equal vmas, the section with the largest size becomes the
201 lowest-addressed loadable section.
202
203 If the vmas and sizes are equal, the last section is considered the
204 lowest-addressed loadable section. */
205
206 void
207 find_lowest_section (bfd *abfd, asection *sect, void *obj)
208 {
209 asection **lowest = (asection **) obj;
210
211 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
212 return;
213 if (!*lowest)
214 *lowest = sect; /* First loadable section */
215 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
216 *lowest = sect; /* A lower loadable section */
217 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
218 && (bfd_section_size (abfd, (*lowest))
219 <= bfd_section_size (abfd, sect)))
220 *lowest = sect;
221 }
222
223 /* Build (allocate and populate) a section_addr_info struct from
224 an existing section table. */
225
226 section_addr_info
227 build_section_addr_info_from_section_table (const struct target_section *start,
228 const struct target_section *end)
229 {
230 const struct target_section *stp;
231
232 section_addr_info sap;
233
234 for (stp = start; stp != end; stp++)
235 {
236 struct bfd_section *asect = stp->the_bfd_section;
237 bfd *abfd = asect->owner;
238
239 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
240 && sap.size () < end - start)
241 sap.emplace_back (stp->addr,
242 bfd_section_name (abfd, asect),
243 gdb_bfd_section_index (abfd, asect));
244 }
245
246 return sap;
247 }
248
249 /* Create a section_addr_info from section offsets in ABFD. */
250
251 static section_addr_info
252 build_section_addr_info_from_bfd (bfd *abfd)
253 {
254 struct bfd_section *sec;
255
256 section_addr_info sap;
257 for (sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 sap.emplace_back (bfd_get_section_vma (abfd, sec),
260 bfd_get_section_name (abfd, sec),
261 gdb_bfd_section_index (abfd, sec));
262
263 return sap;
264 }
265
266 /* Create a section_addr_info from section offsets in OBJFILE. */
267
268 section_addr_info
269 build_section_addr_info_from_objfile (const struct objfile *objfile)
270 {
271 int i;
272
273 /* Before reread_symbols gets rewritten it is not safe to call:
274 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
275 */
276 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
277 for (i = 0; i < sap.size (); i++)
278 {
279 int sectindex = sap[i].sectindex;
280
281 sap[i].addr += objfile->section_offsets->offsets[sectindex];
282 }
283 return sap;
284 }
285
286 /* Initialize OBJFILE's sect_index_* members. */
287
288 static void
289 init_objfile_sect_indices (struct objfile *objfile)
290 {
291 asection *sect;
292 int i;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".text");
295 if (sect)
296 objfile->sect_index_text = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".data");
299 if (sect)
300 objfile->sect_index_data = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
303 if (sect)
304 objfile->sect_index_bss = sect->index;
305
306 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
307 if (sect)
308 objfile->sect_index_rodata = sect->index;
309
310 /* This is where things get really weird... We MUST have valid
311 indices for the various sect_index_* members or gdb will abort.
312 So if for example, there is no ".text" section, we have to
313 accomodate that. First, check for a file with the standard
314 one or two segments. */
315
316 symfile_find_segment_sections (objfile);
317
318 /* Except when explicitly adding symbol files at some address,
319 section_offsets contains nothing but zeros, so it doesn't matter
320 which slot in section_offsets the individual sect_index_* members
321 index into. So if they are all zero, it is safe to just point
322 all the currently uninitialized indices to the first slot. But
323 beware: if this is the main executable, it may be relocated
324 later, e.g. by the remote qOffsets packet, and then this will
325 be wrong! That's why we try segments first. */
326
327 for (i = 0; i < objfile->num_sections; i++)
328 {
329 if (ANOFFSET (objfile->section_offsets, i) != 0)
330 {
331 break;
332 }
333 }
334 if (i == objfile->num_sections)
335 {
336 if (objfile->sect_index_text == -1)
337 objfile->sect_index_text = 0;
338 if (objfile->sect_index_data == -1)
339 objfile->sect_index_data = 0;
340 if (objfile->sect_index_bss == -1)
341 objfile->sect_index_bss = 0;
342 if (objfile->sect_index_rodata == -1)
343 objfile->sect_index_rodata = 0;
344 }
345 }
346
347 /* The arguments to place_section. */
348
349 struct place_section_arg
350 {
351 struct section_offsets *offsets;
352 CORE_ADDR lowest;
353 };
354
355 /* Find a unique offset to use for loadable section SECT if
356 the user did not provide an offset. */
357
358 static void
359 place_section (bfd *abfd, asection *sect, void *obj)
360 {
361 struct place_section_arg *arg = (struct place_section_arg *) obj;
362 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
363 int done;
364 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
365
366 /* We are only interested in allocated sections. */
367 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
368 return;
369
370 /* If the user specified an offset, honor it. */
371 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
372 return;
373
374 /* Otherwise, let's try to find a place for the section. */
375 start_addr = (arg->lowest + align - 1) & -align;
376
377 do {
378 asection *cur_sec;
379
380 done = 1;
381
382 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
383 {
384 int indx = cur_sec->index;
385
386 /* We don't need to compare against ourself. */
387 if (cur_sec == sect)
388 continue;
389
390 /* We can only conflict with allocated sections. */
391 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
392 continue;
393
394 /* If the section offset is 0, either the section has not been placed
395 yet, or it was the lowest section placed (in which case LOWEST
396 will be past its end). */
397 if (offsets[indx] == 0)
398 continue;
399
400 /* If this section would overlap us, then we must move up. */
401 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
402 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
403 {
404 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
405 start_addr = (start_addr + align - 1) & -align;
406 done = 0;
407 break;
408 }
409
410 /* Otherwise, we appear to be OK. So far. */
411 }
412 }
413 while (!done);
414
415 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
416 arg->lowest = start_addr + bfd_get_section_size (sect);
417 }
418
419 /* Store section_addr_info as prepared (made relative and with SECTINDEX
420 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
421 entries. */
422
423 void
424 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
425 int num_sections,
426 const section_addr_info &addrs)
427 {
428 int i;
429
430 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
431
432 /* Now calculate offsets for section that were specified by the caller. */
433 for (i = 0; i < addrs.size (); i++)
434 {
435 const struct other_sections *osp;
436
437 osp = &addrs[i];
438 if (osp->sectindex == -1)
439 continue;
440
441 /* Record all sections in offsets. */
442 /* The section_offsets in the objfile are here filled in using
443 the BFD index. */
444 section_offsets->offsets[osp->sectindex] = osp->addr;
445 }
446 }
447
448 /* Transform section name S for a name comparison. prelink can split section
449 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
450 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
451 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
452 (`.sbss') section has invalid (increased) virtual address. */
453
454 static const char *
455 addr_section_name (const char *s)
456 {
457 if (strcmp (s, ".dynbss") == 0)
458 return ".bss";
459 if (strcmp (s, ".sdynbss") == 0)
460 return ".sbss";
461
462 return s;
463 }
464
465 /* std::sort comparator for addrs_section_sort. Sort entries in
466 ascending order by their (name, sectindex) pair. sectindex makes
467 the sort by name stable. */
468
469 static bool
470 addrs_section_compar (const struct other_sections *a,
471 const struct other_sections *b)
472 {
473 int retval;
474
475 retval = strcmp (addr_section_name (a->name.c_str ()),
476 addr_section_name (b->name.c_str ()));
477 if (retval != 0)
478 return retval < 0;
479
480 return a->sectindex < b->sectindex;
481 }
482
483 /* Provide sorted array of pointers to sections of ADDRS. */
484
485 static std::vector<const struct other_sections *>
486 addrs_section_sort (const section_addr_info &addrs)
487 {
488 int i;
489
490 std::vector<const struct other_sections *> array (addrs.size ());
491 for (i = 0; i < addrs.size (); i++)
492 array[i] = &addrs[i];
493
494 std::sort (array.begin (), array.end (), addrs_section_compar);
495
496 return array;
497 }
498
499 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
500 also SECTINDEXes specific to ABFD there. This function can be used to
501 rebase ADDRS to start referencing different BFD than before. */
502
503 void
504 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
505 {
506 asection *lower_sect;
507 CORE_ADDR lower_offset;
508 int i;
509
510 /* Find lowest loadable section to be used as starting point for
511 continguous sections. */
512 lower_sect = NULL;
513 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
514 if (lower_sect == NULL)
515 {
516 warning (_("no loadable sections found in added symbol-file %s"),
517 bfd_get_filename (abfd));
518 lower_offset = 0;
519 }
520 else
521 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
522
523 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
524 in ABFD. Section names are not unique - there can be multiple sections of
525 the same name. Also the sections of the same name do not have to be
526 adjacent to each other. Some sections may be present only in one of the
527 files. Even sections present in both files do not have to be in the same
528 order.
529
530 Use stable sort by name for the sections in both files. Then linearly
531 scan both lists matching as most of the entries as possible. */
532
533 std::vector<const struct other_sections *> addrs_sorted
534 = addrs_section_sort (*addrs);
535
536 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
537 std::vector<const struct other_sections *> abfd_addrs_sorted
538 = addrs_section_sort (abfd_addrs);
539
540 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
541 ABFD_ADDRS_SORTED. */
542
543 std::vector<const struct other_sections *>
544 addrs_to_abfd_addrs (addrs->size (), nullptr);
545
546 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
547 = abfd_addrs_sorted.begin ();
548 for (const other_sections *sect : addrs_sorted)
549 {
550 const char *sect_name = addr_section_name (sect->name.c_str ());
551
552 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
553 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
554 sect_name) < 0)
555 abfd_sorted_iter++;
556
557 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
558 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
559 sect_name) == 0)
560 {
561 int index_in_addrs;
562
563 /* Make the found item directly addressable from ADDRS. */
564 index_in_addrs = sect - addrs->data ();
565 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
566 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
567
568 /* Never use the same ABFD entry twice. */
569 abfd_sorted_iter++;
570 }
571 }
572
573 /* Calculate offsets for the loadable sections.
574 FIXME! Sections must be in order of increasing loadable section
575 so that contiguous sections can use the lower-offset!!!
576
577 Adjust offsets if the segments are not contiguous.
578 If the section is contiguous, its offset should be set to
579 the offset of the highest loadable section lower than it
580 (the loadable section directly below it in memory).
581 this_offset = lower_offset = lower_addr - lower_orig_addr */
582
583 for (i = 0; i < addrs->size (); i++)
584 {
585 const struct other_sections *sect = addrs_to_abfd_addrs[i];
586
587 if (sect)
588 {
589 /* This is the index used by BFD. */
590 (*addrs)[i].sectindex = sect->sectindex;
591
592 if ((*addrs)[i].addr != 0)
593 {
594 (*addrs)[i].addr -= sect->addr;
595 lower_offset = (*addrs)[i].addr;
596 }
597 else
598 (*addrs)[i].addr = lower_offset;
599 }
600 else
601 {
602 /* addr_section_name transformation is not used for SECT_NAME. */
603 const std::string &sect_name = (*addrs)[i].name;
604
605 /* This section does not exist in ABFD, which is normally
606 unexpected and we want to issue a warning.
607
608 However, the ELF prelinker does create a few sections which are
609 marked in the main executable as loadable (they are loaded in
610 memory from the DYNAMIC segment) and yet are not present in
611 separate debug info files. This is fine, and should not cause
612 a warning. Shared libraries contain just the section
613 ".gnu.liblist" but it is not marked as loadable there. There is
614 no other way to identify them than by their name as the sections
615 created by prelink have no special flags.
616
617 For the sections `.bss' and `.sbss' see addr_section_name. */
618
619 if (!(sect_name == ".gnu.liblist"
620 || sect_name == ".gnu.conflict"
621 || (sect_name == ".bss"
622 && i > 0
623 && (*addrs)[i - 1].name == ".dynbss"
624 && addrs_to_abfd_addrs[i - 1] != NULL)
625 || (sect_name == ".sbss"
626 && i > 0
627 && (*addrs)[i - 1].name == ".sdynbss"
628 && addrs_to_abfd_addrs[i - 1] != NULL)))
629 warning (_("section %s not found in %s"), sect_name.c_str (),
630 bfd_get_filename (abfd));
631
632 (*addrs)[i].addr = 0;
633 (*addrs)[i].sectindex = -1;
634 }
635 }
636 }
637
638 /* Parse the user's idea of an offset for dynamic linking, into our idea
639 of how to represent it for fast symbol reading. This is the default
640 version of the sym_fns.sym_offsets function for symbol readers that
641 don't need to do anything special. It allocates a section_offsets table
642 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
643
644 void
645 default_symfile_offsets (struct objfile *objfile,
646 const section_addr_info &addrs)
647 {
648 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
649 objfile->section_offsets = (struct section_offsets *)
650 obstack_alloc (&objfile->objfile_obstack,
651 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
652 relative_addr_info_to_section_offsets (objfile->section_offsets,
653 objfile->num_sections, addrs);
654
655 /* For relocatable files, all loadable sections will start at zero.
656 The zero is meaningless, so try to pick arbitrary addresses such
657 that no loadable sections overlap. This algorithm is quadratic,
658 but the number of sections in a single object file is generally
659 small. */
660 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
661 {
662 struct place_section_arg arg;
663 bfd *abfd = objfile->obfd;
664 asection *cur_sec;
665
666 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
667 /* We do not expect this to happen; just skip this step if the
668 relocatable file has a section with an assigned VMA. */
669 if (bfd_section_vma (abfd, cur_sec) != 0)
670 break;
671
672 if (cur_sec == NULL)
673 {
674 CORE_ADDR *offsets = objfile->section_offsets->offsets;
675
676 /* Pick non-overlapping offsets for sections the user did not
677 place explicitly. */
678 arg.offsets = objfile->section_offsets;
679 arg.lowest = 0;
680 bfd_map_over_sections (objfile->obfd, place_section, &arg);
681
682 /* Correctly filling in the section offsets is not quite
683 enough. Relocatable files have two properties that
684 (most) shared objects do not:
685
686 - Their debug information will contain relocations. Some
687 shared libraries do also, but many do not, so this can not
688 be assumed.
689
690 - If there are multiple code sections they will be loaded
691 at different relative addresses in memory than they are
692 in the objfile, since all sections in the file will start
693 at address zero.
694
695 Because GDB has very limited ability to map from an
696 address in debug info to the correct code section,
697 it relies on adding SECT_OFF_TEXT to things which might be
698 code. If we clear all the section offsets, and set the
699 section VMAs instead, then symfile_relocate_debug_section
700 will return meaningful debug information pointing at the
701 correct sections.
702
703 GDB has too many different data structures for section
704 addresses - a bfd, objfile, and so_list all have section
705 tables, as does exec_ops. Some of these could probably
706 be eliminated. */
707
708 for (cur_sec = abfd->sections; cur_sec != NULL;
709 cur_sec = cur_sec->next)
710 {
711 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
712 continue;
713
714 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
715 exec_set_section_address (bfd_get_filename (abfd),
716 cur_sec->index,
717 offsets[cur_sec->index]);
718 offsets[cur_sec->index] = 0;
719 }
720 }
721 }
722
723 /* Remember the bfd indexes for the .text, .data, .bss and
724 .rodata sections. */
725 init_objfile_sect_indices (objfile);
726 }
727
728 /* Divide the file into segments, which are individual relocatable units.
729 This is the default version of the sym_fns.sym_segments function for
730 symbol readers that do not have an explicit representation of segments.
731 It assumes that object files do not have segments, and fully linked
732 files have a single segment. */
733
734 struct symfile_segment_data *
735 default_symfile_segments (bfd *abfd)
736 {
737 int num_sections, i;
738 asection *sect;
739 struct symfile_segment_data *data;
740 CORE_ADDR low, high;
741
742 /* Relocatable files contain enough information to position each
743 loadable section independently; they should not be relocated
744 in segments. */
745 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
746 return NULL;
747
748 /* Make sure there is at least one loadable section in the file. */
749 for (sect = abfd->sections; sect != NULL; sect = sect->next)
750 {
751 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
752 continue;
753
754 break;
755 }
756 if (sect == NULL)
757 return NULL;
758
759 low = bfd_get_section_vma (abfd, sect);
760 high = low + bfd_get_section_size (sect);
761
762 data = XCNEW (struct symfile_segment_data);
763 data->num_segments = 1;
764 data->segment_bases = XCNEW (CORE_ADDR);
765 data->segment_sizes = XCNEW (CORE_ADDR);
766
767 num_sections = bfd_count_sections (abfd);
768 data->segment_info = XCNEWVEC (int, num_sections);
769
770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
771 {
772 CORE_ADDR vma;
773
774 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
775 continue;
776
777 vma = bfd_get_section_vma (abfd, sect);
778 if (vma < low)
779 low = vma;
780 if (vma + bfd_get_section_size (sect) > high)
781 high = vma + bfd_get_section_size (sect);
782
783 data->segment_info[i] = 1;
784 }
785
786 data->segment_bases[0] = low;
787 data->segment_sizes[0] = high - low;
788
789 return data;
790 }
791
792 /* This is a convenience function to call sym_read for OBJFILE and
793 possibly force the partial symbols to be read. */
794
795 static void
796 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
797 {
798 (*objfile->sf->sym_read) (objfile, add_flags);
799 objfile->per_bfd->minsyms_read = true;
800
801 /* find_separate_debug_file_in_section should be called only if there is
802 single binary with no existing separate debug info file. */
803 if (!objfile_has_partial_symbols (objfile)
804 && objfile->separate_debug_objfile == NULL
805 && objfile->separate_debug_objfile_backlink == NULL)
806 {
807 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
808
809 if (abfd != NULL)
810 {
811 /* find_separate_debug_file_in_section uses the same filename for the
812 virtual section-as-bfd like the bfd filename containing the
813 section. Therefore use also non-canonical name form for the same
814 file containing the section. */
815 symbol_file_add_separate (abfd.get (),
816 bfd_get_filename (abfd.get ()),
817 add_flags | SYMFILE_NOT_FILENAME, objfile);
818 }
819 }
820 if ((add_flags & SYMFILE_NO_READ) == 0)
821 require_partial_symbols (objfile, 0);
822 }
823
824 /* Initialize entry point information for this objfile. */
825
826 static void
827 init_entry_point_info (struct objfile *objfile)
828 {
829 struct entry_info *ei = &objfile->per_bfd->ei;
830
831 if (ei->initialized)
832 return;
833 ei->initialized = 1;
834
835 /* Save startup file's range of PC addresses to help blockframe.c
836 decide where the bottom of the stack is. */
837
838 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
839 {
840 /* Executable file -- record its entry point so we'll recognize
841 the startup file because it contains the entry point. */
842 ei->entry_point = bfd_get_start_address (objfile->obfd);
843 ei->entry_point_p = 1;
844 }
845 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
846 && bfd_get_start_address (objfile->obfd) != 0)
847 {
848 /* Some shared libraries may have entry points set and be
849 runnable. There's no clear way to indicate this, so just check
850 for values other than zero. */
851 ei->entry_point = bfd_get_start_address (objfile->obfd);
852 ei->entry_point_p = 1;
853 }
854 else
855 {
856 /* Examination of non-executable.o files. Short-circuit this stuff. */
857 ei->entry_point_p = 0;
858 }
859
860 if (ei->entry_point_p)
861 {
862 struct obj_section *osect;
863 CORE_ADDR entry_point = ei->entry_point;
864 int found;
865
866 /* Make certain that the address points at real code, and not a
867 function descriptor. */
868 entry_point
869 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
870 entry_point,
871 current_top_target ());
872
873 /* Remove any ISA markers, so that this matches entries in the
874 symbol table. */
875 ei->entry_point
876 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
877
878 found = 0;
879 ALL_OBJFILE_OSECTIONS (objfile, osect)
880 {
881 struct bfd_section *sect = osect->the_bfd_section;
882
883 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
884 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
885 + bfd_get_section_size (sect)))
886 {
887 ei->the_bfd_section_index
888 = gdb_bfd_section_index (objfile->obfd, sect);
889 found = 1;
890 break;
891 }
892 }
893
894 if (!found)
895 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
896 }
897 }
898
899 /* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
902 This function does not set the OBJFILE's entry-point info.
903
904 OBJFILE is where the symbols are to be read from.
905
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 The sectindex field is used to control the ordering of sections
916 with the same name. Upon return, it is updated to contain the
917 correspondig BFD section index, or -1 if the section was not found.
918
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
922
923 static void
924 syms_from_objfile_1 (struct objfile *objfile,
925 section_addr_info *addrs,
926 symfile_add_flags add_flags)
927 {
928 section_addr_info local_addr;
929 const int mainline = add_flags & SYMFILE_MAINLINE;
930
931 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
932
933 if (objfile->sf == NULL)
934 {
935 /* No symbols to load, but we still need to make sure
936 that the section_offsets table is allocated. */
937 int num_sections = gdb_bfd_count_sections (objfile->obfd);
938 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
939
940 objfile->num_sections = num_sections;
941 objfile->section_offsets
942 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
943 size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
947
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
950 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
951
952 std::unique_ptr<struct objfile> objfile_holder (objfile);
953
954 /* If ADDRS is NULL, put together a dummy address list.
955 We now establish the convention that an addr of zero means
956 no load address was specified. */
957 if (! addrs)
958 addrs = &local_addr;
959
960 if (mainline)
961 {
962 /* We will modify the main symbol table, make sure that all its users
963 will be cleaned up if an error occurs during symbol reading. */
964 defer_clear_users.emplace ((symfile_add_flag) 0);
965
966 /* Since no error yet, throw away the old symbol table. */
967
968 if (symfile_objfile != NULL)
969 {
970 delete symfile_objfile;
971 gdb_assert (symfile_objfile == NULL);
972 }
973
974 /* Currently we keep symbols from the add-symbol-file command.
975 If the user wants to get rid of them, they should do "symbol-file"
976 without arguments first. Not sure this is the best behavior
977 (PR 2207). */
978
979 (*objfile->sf->sym_new_init) (objfile);
980 }
981
982 /* Convert addr into an offset rather than an absolute address.
983 We find the lowest address of a loaded segment in the objfile,
984 and assume that <addr> is where that got loaded.
985
986 We no longer warn if the lowest section is not a text segment (as
987 happens for the PA64 port. */
988 if (addrs->size () > 0)
989 addr_info_make_relative (addrs, objfile->obfd);
990
991 /* Initialize symbol reading routines for this objfile, allow complaints to
992 appear for this new file, and record how verbose to be, then do the
993 initial symbol reading for this file. */
994
995 (*objfile->sf->sym_init) (objfile);
996 clear_complaints ();
997
998 (*objfile->sf->sym_offsets) (objfile, *addrs);
999
1000 read_symbols (objfile, add_flags);
1001
1002 /* Discard cleanups as symbol reading was successful. */
1003
1004 objfile_holder.release ();
1005 if (defer_clear_users)
1006 defer_clear_users->release ();
1007 }
1008
1009 /* Same as syms_from_objfile_1, but also initializes the objfile
1010 entry-point info. */
1011
1012 static void
1013 syms_from_objfile (struct objfile *objfile,
1014 section_addr_info *addrs,
1015 symfile_add_flags add_flags)
1016 {
1017 syms_from_objfile_1 (objfile, addrs, add_flags);
1018 init_entry_point_info (objfile);
1019 }
1020
1021 /* Perform required actions after either reading in the initial
1022 symbols for a new objfile, or mapping in the symbols from a reusable
1023 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1024
1025 static void
1026 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1027 {
1028 /* If this is the main symbol file we have to clean up all users of the
1029 old main symbol file. Otherwise it is sufficient to fixup all the
1030 breakpoints that may have been redefined by this symbol file. */
1031 if (add_flags & SYMFILE_MAINLINE)
1032 {
1033 /* OK, make it the "real" symbol file. */
1034 symfile_objfile = objfile;
1035
1036 clear_symtab_users (add_flags);
1037 }
1038 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1039 {
1040 breakpoint_re_set ();
1041 }
1042
1043 /* We're done reading the symbol file; finish off complaints. */
1044 clear_complaints ();
1045 }
1046
1047 /* Process a symbol file, as either the main file or as a dynamically
1048 loaded file.
1049
1050 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1051 A new reference is acquired by this function.
1052
1053 For NAME description see the objfile constructor.
1054
1055 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1056 extra, such as dynamically loaded code, and what to do with breakpoins.
1057
1058 ADDRS is as described for syms_from_objfile_1, above.
1059 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1060
1061 PARENT is the original objfile if ABFD is a separate debug info file.
1062 Otherwise PARENT is NULL.
1063
1064 Upon success, returns a pointer to the objfile that was added.
1065 Upon failure, jumps back to command level (never returns). */
1066
1067 static struct objfile *
1068 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1069 symfile_add_flags add_flags,
1070 section_addr_info *addrs,
1071 objfile_flags flags, struct objfile *parent)
1072 {
1073 struct objfile *objfile;
1074 const int from_tty = add_flags & SYMFILE_VERBOSE;
1075 const int mainline = add_flags & SYMFILE_MAINLINE;
1076 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1077 && (readnow_symbol_files
1078 || (add_flags & SYMFILE_NO_READ) == 0));
1079
1080 if (readnow_symbol_files)
1081 {
1082 flags |= OBJF_READNOW;
1083 add_flags &= ~SYMFILE_NO_READ;
1084 }
1085 else if (readnever_symbol_files
1086 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1087 {
1088 flags |= OBJF_READNEVER;
1089 add_flags |= SYMFILE_NO_READ;
1090 }
1091 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1092 flags |= OBJF_NOT_FILENAME;
1093
1094 /* Give user a chance to burp if we'd be
1095 interactively wiping out any existing symbols. */
1096
1097 if ((have_full_symbols () || have_partial_symbols ())
1098 && mainline
1099 && from_tty
1100 && !query (_("Load new symbol table from \"%s\"? "), name))
1101 error (_("Not confirmed."));
1102
1103 if (mainline)
1104 flags |= OBJF_MAINLINE;
1105 objfile = new struct objfile (abfd, name, flags);
1106
1107 if (parent)
1108 add_separate_debug_objfile (objfile, parent);
1109
1110 /* We either created a new mapped symbol table, mapped an existing
1111 symbol table file which has not had initial symbol reading
1112 performed, or need to read an unmapped symbol table. */
1113 if (should_print)
1114 {
1115 if (deprecated_pre_add_symbol_hook)
1116 deprecated_pre_add_symbol_hook (name);
1117 else
1118 {
1119 puts_filtered (_("Reading symbols from "));
1120 fputs_styled (name, file_name_style.style (), gdb_stdout);
1121 puts_filtered ("...\n");
1122 }
1123 }
1124 syms_from_objfile (objfile, addrs, add_flags);
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
1129 all partial symbol tables for this objfile if so. */
1130
1131 if ((flags & OBJF_READNOW))
1132 {
1133 if (should_print)
1134 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1135
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
1138 }
1139
1140 /* Note that we only print a message if we have no symbols and have
1141 no separate debug file. If there is a separate debug file which
1142 does not have symbols, we'll have emitted this message for that
1143 file, and so printing it twice is just redundant. */
1144 if (should_print && !objfile_has_symbols (objfile)
1145 && objfile->separate_debug_objfile == nullptr)
1146 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1147
1148 if (should_print)
1149 {
1150 if (deprecated_post_add_symbol_hook)
1151 deprecated_post_add_symbol_hook ();
1152 }
1153
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
1159 if (objfile->sf == NULL)
1160 {
1161 gdb::observers::new_objfile.notify (objfile);
1162 return objfile; /* No symbols. */
1163 }
1164
1165 finish_new_objfile (objfile, add_flags);
1166
1167 gdb::observers::new_objfile.notify (objfile);
1168
1169 bfd_cache_close_all ();
1170 return (objfile);
1171 }
1172
1173 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1174 see the objfile constructor. */
1175
1176 void
1177 symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
1179 struct objfile *objfile)
1180 {
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1185
1186 symbol_file_add_with_addrs
1187 (bfd, name, symfile_flags, &sap,
1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1189 | OBJF_USERLOADED),
1190 objfile);
1191 }
1192
1193 /* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
1195 See symbol_file_add_with_addrs's comments for details. */
1196
1197 struct objfile *
1198 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
1200 section_addr_info *addrs,
1201 objfile_flags flags, struct objfile *parent)
1202 {
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
1205 }
1206
1207 /* Process a symbol file, as either the main file or as a dynamically
1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add (const char *name, symfile_add_flags add_flags,
1212 section_addr_info *addrs, objfile_flags flags)
1213 {
1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1215
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
1218 }
1219
1220 /* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
1227
1228 void
1229 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1230 {
1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
1232 }
1233
1234 static void
1235 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1236 objfile_flags flags, CORE_ADDR reloff)
1237 {
1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1239
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
1243
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
1248 if ((add_flags & SYMFILE_NO_READ) == 0)
1249 set_initial_language ();
1250 }
1251
1252 void
1253 symbol_file_clear (int from_tty)
1254 {
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
1259 objfile_name (symfile_objfile))
1260 : !query (_("Discard symbol table? "))))
1261 error (_("Not confirmed."));
1262
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
1265 no_shared_libraries (NULL, from_tty);
1266
1267 free_all_objfiles ();
1268
1269 gdb_assert (symfile_objfile == NULL);
1270 if (from_tty)
1271 printf_filtered (_("No symbol file now.\n"));
1272 }
1273
1274 /* See symfile.h. */
1275
1276 int separate_debug_file_debug = 0;
1277
1278 static int
1279 separate_debug_file_exists (const std::string &name, unsigned long crc,
1280 struct objfile *parent_objfile)
1281 {
1282 unsigned long file_crc;
1283 int file_crc_p;
1284 struct stat parent_stat, abfd_stat;
1285 int verified_as_different;
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1291 the separate debug infos with the same basename can exist. */
1292
1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1294 return 0;
1295
1296 if (separate_debug_file_debug)
1297 {
1298 printf_filtered (_(" Trying %s..."), name.c_str ());
1299 gdb_flush (gdb_stdout);
1300 }
1301
1302 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1303
1304 if (abfd == NULL)
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, unable to open.\n"));
1308
1309 return 0;
1310 }
1311
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Files accessed from gdbservers that do not
1317 support the vFile:fstat packet will also have st_ino set to zero.
1318 Do not indicate a duplicate library in either case. While there
1319 is no guarantee that a system that provides meaningful inode
1320 numbers will never set st_ino to zero, this is merely an
1321 optimization, so we do not need to worry about false negatives. */
1322
1323 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1324 && abfd_stat.st_ino != 0
1325 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1326 {
1327 if (abfd_stat.st_dev == parent_stat.st_dev
1328 && abfd_stat.st_ino == parent_stat.st_ino)
1329 {
1330 if (separate_debug_file_debug)
1331 printf_filtered (_(" no, same file as the objfile.\n"));
1332
1333 return 0;
1334 }
1335 verified_as_different = 1;
1336 }
1337 else
1338 verified_as_different = 0;
1339
1340 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1341
1342 if (!file_crc_p)
1343 {
1344 if (separate_debug_file_debug)
1345 printf_filtered (_(" no, error computing CRC.\n"));
1346
1347 return 0;
1348 }
1349
1350 if (crc != file_crc)
1351 {
1352 unsigned long parent_crc;
1353
1354 /* If the files could not be verified as different with
1355 bfd_stat then we need to calculate the parent's CRC
1356 to verify whether the files are different or not. */
1357
1358 if (!verified_as_different)
1359 {
1360 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1361 {
1362 if (separate_debug_file_debug)
1363 printf_filtered (_(" no, error computing CRC.\n"));
1364
1365 return 0;
1366 }
1367 }
1368
1369 if (verified_as_different || parent_crc != file_crc)
1370 warning (_("the debug information found in \"%s\""
1371 " does not match \"%s\" (CRC mismatch).\n"),
1372 name.c_str (), objfile_name (parent_objfile));
1373
1374 if (separate_debug_file_debug)
1375 printf_filtered (_(" no, CRC doesn't match.\n"));
1376
1377 return 0;
1378 }
1379
1380 if (separate_debug_file_debug)
1381 printf_filtered (_(" yes!\n"));
1382
1383 return 1;
1384 }
1385
1386 char *debug_file_directory = NULL;
1387 static void
1388 show_debug_file_directory (struct ui_file *file, int from_tty,
1389 struct cmd_list_element *c, const char *value)
1390 {
1391 fprintf_filtered (file,
1392 _("The directory where separate debug "
1393 "symbols are searched for is \"%s\".\n"),
1394 value);
1395 }
1396
1397 #if ! defined (DEBUG_SUBDIRECTORY)
1398 #define DEBUG_SUBDIRECTORY ".debug"
1399 #endif
1400
1401 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1402 where the original file resides (may not be the same as
1403 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1404 looking for. CANON_DIR is the "realpath" form of DIR.
1405 DIR must contain a trailing '/'.
1406 Returns the path of the file with separate debug info, or an empty
1407 string. */
1408
1409 static std::string
1410 find_separate_debug_file (const char *dir,
1411 const char *canon_dir,
1412 const char *debuglink,
1413 unsigned long crc32, struct objfile *objfile)
1414 {
1415 if (separate_debug_file_debug)
1416 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1417 "%s\n"), objfile_name (objfile));
1418
1419 /* First try in the same directory as the original file. */
1420 std::string debugfile = dir;
1421 debugfile += debuglink;
1422
1423 if (separate_debug_file_exists (debugfile, crc32, objfile))
1424 return debugfile;
1425
1426 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1427 debugfile = dir;
1428 debugfile += DEBUG_SUBDIRECTORY;
1429 debugfile += "/";
1430 debugfile += debuglink;
1431
1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
1433 return debugfile;
1434
1435 /* Then try in the global debugfile directories.
1436
1437 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1438 cause "/..." lookups. */
1439
1440 bool target_prefix = startswith (dir, "target:");
1441 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1442 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1443 = dirnames_to_char_ptr_vec (debug_file_directory);
1444 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1445
1446 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1447 convert the drive letter into a one-letter directory, so that the
1448 file name resulting from splicing below will be valid.
1449
1450 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1451 There are various remote-debugging scenarios where such a
1452 transformation of the drive letter might be required when GDB runs
1453 on a Posix host, see
1454
1455 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1456
1457 If some of those scenarions need to be supported, we will need to
1458 use a different condition for HAS_DRIVE_SPEC and a different macro
1459 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1460 std::string drive;
1461 if (HAS_DRIVE_SPEC (dir_notarget))
1462 {
1463 drive = dir_notarget[0];
1464 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1465 }
1466
1467 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1468 {
1469 debugfile = target_prefix ? "target:" : "";
1470 debugfile += debugdir.get ();
1471 debugfile += "/";
1472 debugfile += drive;
1473 debugfile += dir_notarget;
1474 debugfile += debuglink;
1475
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 const char *base_path = NULL;
1480 if (canon_dir != NULL)
1481 {
1482 if (canon_sysroot.get () != NULL)
1483 base_path = child_path (canon_sysroot.get (), canon_dir);
1484 else
1485 base_path = child_path (gdb_sysroot, canon_dir);
1486 }
1487 if (base_path != NULL)
1488 {
1489 /* If the file is in the sysroot, try using its base path in
1490 the global debugfile directory. */
1491 debugfile = target_prefix ? "target:" : "";
1492 debugfile += debugdir.get ();
1493 debugfile += "/";
1494 debugfile += base_path;
1495 debugfile += "/";
1496 debugfile += debuglink;
1497
1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1499 return debugfile;
1500
1501 /* If the file is in the sysroot, try using its base path in
1502 the sysroot's global debugfile directory. */
1503 debugfile = target_prefix ? "target:" : "";
1504 debugfile += gdb_sysroot;
1505 debugfile += debugdir.get ();
1506 debugfile += "/";
1507 debugfile += base_path;
1508 debugfile += "/";
1509 debugfile += debuglink;
1510
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 return debugfile;
1513 }
1514
1515 }
1516
1517 return std::string ();
1518 }
1519
1520 /* Modify PATH to contain only "[/]directory/" part of PATH.
1521 If there were no directory separators in PATH, PATH will be empty
1522 string on return. */
1523
1524 static void
1525 terminate_after_last_dir_separator (char *path)
1526 {
1527 int i;
1528
1529 /* Strip off the final filename part, leaving the directory name,
1530 followed by a slash. The directory can be relative or absolute. */
1531 for (i = strlen(path) - 1; i >= 0; i--)
1532 if (IS_DIR_SEPARATOR (path[i]))
1533 break;
1534
1535 /* If I is -1 then no directory is present there and DIR will be "". */
1536 path[i + 1] = '\0';
1537 }
1538
1539 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1540 Returns pathname, or an empty string. */
1541
1542 std::string
1543 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1544 {
1545 unsigned long crc32;
1546
1547 gdb::unique_xmalloc_ptr<char> debuglink
1548 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return std::string ();
1555 }
1556
1557 std::string dir = objfile_name (objfile);
1558 terminate_after_last_dir_separator (&dir[0]);
1559 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1560
1561 std::string debugfile
1562 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1563 debuglink.get (), crc32, objfile);
1564
1565 if (debugfile.empty ())
1566 {
1567 /* For PR gdb/9538, try again with realpath (if different from the
1568 original). */
1569
1570 struct stat st_buf;
1571
1572 if (lstat (objfile_name (objfile), &st_buf) == 0
1573 && S_ISLNK (st_buf.st_mode))
1574 {
1575 gdb::unique_xmalloc_ptr<char> symlink_dir
1576 (lrealpath (objfile_name (objfile)));
1577 if (symlink_dir != NULL)
1578 {
1579 terminate_after_last_dir_separator (symlink_dir.get ());
1580 if (dir != symlink_dir.get ())
1581 {
1582 /* Different directory, so try using it. */
1583 debugfile = find_separate_debug_file (symlink_dir.get (),
1584 symlink_dir.get (),
1585 debuglink.get (),
1586 crc32,
1587 objfile);
1588 }
1589 }
1590 }
1591 }
1592
1593 return debugfile;
1594 }
1595
1596 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1597 simultaneously. */
1598
1599 static void
1600 validate_readnow_readnever (objfile_flags flags)
1601 {
1602 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1603 error (_("-readnow and -readnever cannot be used simultaneously"));
1604 }
1605
1606 /* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
1618 conventions (because it is confusing and inconvenient). */
1619
1620 void
1621 symbol_file_command (const char *args, int from_tty)
1622 {
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1627 symbol_file_clear (from_tty);
1628 }
1629 else
1630 {
1631 objfile_flags flags = OBJF_USERLOADED;
1632 symfile_add_flags add_flags = 0;
1633 char *name = NULL;
1634 bool stop_processing_options = false;
1635 CORE_ADDR offset = 0;
1636 int idx;
1637 char *arg;
1638
1639 if (from_tty)
1640 add_flags |= SYMFILE_VERBOSE;
1641
1642 gdb_argv built_argv (args);
1643 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1644 {
1645 if (stop_processing_options || *arg != '-')
1646 {
1647 if (name == NULL)
1648 name = arg;
1649 else
1650 error (_("Unrecognized argument \"%s\""), arg);
1651 }
1652 else if (strcmp (arg, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (strcmp (arg, "-readnever") == 0)
1655 flags |= OBJF_READNEVER;
1656 else if (strcmp (arg, "-o") == 0)
1657 {
1658 arg = built_argv[++idx];
1659 if (arg == NULL)
1660 error (_("Missing argument to -o"));
1661
1662 offset = parse_and_eval_address (arg);
1663 }
1664 else if (strcmp (arg, "--") == 0)
1665 stop_processing_options = true;
1666 else
1667 error (_("Unrecognized argument \"%s\""), arg);
1668 }
1669
1670 if (name == NULL)
1671 error (_("no symbol file name was specified"));
1672
1673 validate_readnow_readnever (flags);
1674
1675 symbol_file_add_main_1 (name, add_flags, flags, offset);
1676 }
1677 }
1678
1679 /* Set the initial language.
1680
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1688 full symbols. */
1689
1690 void
1691 set_initial_language (void)
1692 {
1693 enum language lang = main_language ();
1694
1695 if (lang == language_unknown)
1696 {
1697 char *name = main_name ();
1698 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1699
1700 if (sym != NULL)
1701 lang = SYMBOL_LANGUAGE (sym);
1702 }
1703
1704 if (lang == language_unknown)
1705 {
1706 /* Make C the default language */
1707 lang = language_c;
1708 }
1709
1710 set_language (lang);
1711 expected_language = current_language; /* Don't warn the user. */
1712 }
1713
1714 /* Open the file specified by NAME and hand it off to BFD for
1715 preliminary analysis. Return a newly initialized bfd *, which
1716 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1717 absolute). In case of trouble, error() is called. */
1718
1719 gdb_bfd_ref_ptr
1720 symfile_bfd_open (const char *name)
1721 {
1722 int desc = -1;
1723
1724 gdb::unique_xmalloc_ptr<char> absolute_name;
1725 if (!is_target_filename (name))
1726 {
1727 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1728
1729 /* Look down path for it, allocate 2nd new malloc'd copy. */
1730 desc = openp (getenv ("PATH"),
1731 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1732 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1733 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1734 if (desc < 0)
1735 {
1736 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1737
1738 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1739 desc = openp (getenv ("PATH"),
1740 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1741 exename, O_RDONLY | O_BINARY, &absolute_name);
1742 }
1743 #endif
1744 if (desc < 0)
1745 perror_with_name (expanded_name.get ());
1746
1747 name = absolute_name.get ();
1748 }
1749
1750 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1751 if (sym_bfd == NULL)
1752 error (_("`%s': can't open to read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
1754
1755 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1756 bfd_set_cacheable (sym_bfd.get (), 1);
1757
1758 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1759 error (_("`%s': can't read symbols: %s."), name,
1760 bfd_errmsg (bfd_get_error ()));
1761
1762 return sym_bfd;
1763 }
1764
1765 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1766 the section was not found. */
1767
1768 int
1769 get_section_index (struct objfile *objfile, const char *section_name)
1770 {
1771 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1772
1773 if (sect)
1774 return sect->index;
1775 else
1776 return -1;
1777 }
1778
1779 /* Link SF into the global symtab_fns list.
1780 FLAVOUR is the file format that SF handles.
1781 Called on startup by the _initialize routine in each object file format
1782 reader, to register information about each format the reader is prepared
1783 to handle. */
1784
1785 void
1786 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1787 {
1788 symtab_fns.emplace_back (flavour, sf);
1789 }
1790
1791 /* Initialize OBJFILE to read symbols from its associated BFD. It
1792 either returns or calls error(). The result is an initialized
1793 struct sym_fns in the objfile structure, that contains cached
1794 information about the symbol file. */
1795
1796 static const struct sym_fns *
1797 find_sym_fns (bfd *abfd)
1798 {
1799 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1800
1801 if (our_flavour == bfd_target_srec_flavour
1802 || our_flavour == bfd_target_ihex_flavour
1803 || our_flavour == bfd_target_tekhex_flavour)
1804 return NULL; /* No symbols. */
1805
1806 for (const registered_sym_fns &rsf : symtab_fns)
1807 if (our_flavour == rsf.sym_flavour)
1808 return rsf.sym_fns;
1809
1810 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1811 bfd_get_target (abfd));
1812 }
1813 \f
1814
1815 /* This function runs the load command of our current target. */
1816
1817 static void
1818 load_command (const char *arg, int from_tty)
1819 {
1820 dont_repeat ();
1821
1822 /* The user might be reloading because the binary has changed. Take
1823 this opportunity to check. */
1824 reopen_exec_file ();
1825 reread_symbols ();
1826
1827 std::string temp;
1828 if (arg == NULL)
1829 {
1830 const char *parg, *prev;
1831
1832 arg = get_exec_file (1);
1833
1834 /* We may need to quote this string so buildargv can pull it
1835 apart. */
1836 prev = parg = arg;
1837 while ((parg = strpbrk (parg, "\\\"'\t ")))
1838 {
1839 temp.append (prev, parg - prev);
1840 prev = parg++;
1841 temp.push_back ('\\');
1842 }
1843 /* If we have not copied anything yet, then we didn't see a
1844 character to quote, and we can just leave ARG unchanged. */
1845 if (!temp.empty ())
1846 {
1847 temp.append (prev);
1848 arg = temp.c_str ();
1849 }
1850 }
1851
1852 target_load (arg, from_tty);
1853
1854 /* After re-loading the executable, we don't really know which
1855 overlays are mapped any more. */
1856 overlay_cache_invalid = 1;
1857 }
1858
1859 /* This version of "load" should be usable for any target. Currently
1860 it is just used for remote targets, not inftarg.c or core files,
1861 on the theory that only in that case is it useful.
1862
1863 Avoiding xmodem and the like seems like a win (a) because we don't have
1864 to worry about finding it, and (b) On VMS, fork() is very slow and so
1865 we don't want to run a subprocess. On the other hand, I'm not sure how
1866 performance compares. */
1867
1868 static int validate_download = 0;
1869
1870 /* Callback service function for generic_load (bfd_map_over_sections). */
1871
1872 static void
1873 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1874 {
1875 bfd_size_type *sum = (bfd_size_type *) data;
1876
1877 *sum += bfd_get_section_size (asec);
1878 }
1879
1880 /* Opaque data for load_progress. */
1881 struct load_progress_data
1882 {
1883 /* Cumulative data. */
1884 unsigned long write_count = 0;
1885 unsigned long data_count = 0;
1886 bfd_size_type total_size = 0;
1887 };
1888
1889 /* Opaque data for load_progress for a single section. */
1890 struct load_progress_section_data
1891 {
1892 load_progress_section_data (load_progress_data *cumulative_,
1893 const char *section_name_, ULONGEST section_size_,
1894 CORE_ADDR lma_, gdb_byte *buffer_)
1895 : cumulative (cumulative_), section_name (section_name_),
1896 section_size (section_size_), lma (lma_), buffer (buffer_)
1897 {}
1898
1899 struct load_progress_data *cumulative;
1900
1901 /* Per-section data. */
1902 const char *section_name;
1903 ULONGEST section_sent = 0;
1904 ULONGEST section_size;
1905 CORE_ADDR lma;
1906 gdb_byte *buffer;
1907 };
1908
1909 /* Opaque data for load_section_callback. */
1910 struct load_section_data
1911 {
1912 load_section_data (load_progress_data *progress_data_)
1913 : progress_data (progress_data_)
1914 {}
1915
1916 ~load_section_data ()
1917 {
1918 for (auto &&request : requests)
1919 {
1920 xfree (request.data);
1921 delete ((load_progress_section_data *) request.baton);
1922 }
1923 }
1924
1925 CORE_ADDR load_offset = 0;
1926 struct load_progress_data *progress_data;
1927 std::vector<struct memory_write_request> requests;
1928 };
1929
1930 /* Target write callback routine for progress reporting. */
1931
1932 static void
1933 load_progress (ULONGEST bytes, void *untyped_arg)
1934 {
1935 struct load_progress_section_data *args
1936 = (struct load_progress_section_data *) untyped_arg;
1937 struct load_progress_data *totals;
1938
1939 if (args == NULL)
1940 /* Writing padding data. No easy way to get at the cumulative
1941 stats, so just ignore this. */
1942 return;
1943
1944 totals = args->cumulative;
1945
1946 if (bytes == 0 && args->section_sent == 0)
1947 {
1948 /* The write is just starting. Let the user know we've started
1949 this section. */
1950 current_uiout->message ("Loading section %s, size %s lma %s\n",
1951 args->section_name,
1952 hex_string (args->section_size),
1953 paddress (target_gdbarch (), args->lma));
1954 return;
1955 }
1956
1957 if (validate_download)
1958 {
1959 /* Broken memories and broken monitors manifest themselves here
1960 when bring new computers to life. This doubles already slow
1961 downloads. */
1962 /* NOTE: cagney/1999-10-18: A more efficient implementation
1963 might add a verify_memory() method to the target vector and
1964 then use that. remote.c could implement that method using
1965 the ``qCRC'' packet. */
1966 gdb::byte_vector check (bytes);
1967
1968 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1969 error (_("Download verify read failed at %s"),
1970 paddress (target_gdbarch (), args->lma));
1971 if (memcmp (args->buffer, check.data (), bytes) != 0)
1972 error (_("Download verify compare failed at %s"),
1973 paddress (target_gdbarch (), args->lma));
1974 }
1975 totals->data_count += bytes;
1976 args->lma += bytes;
1977 args->buffer += bytes;
1978 totals->write_count += 1;
1979 args->section_sent += bytes;
1980 if (check_quit_flag ()
1981 || (deprecated_ui_load_progress_hook != NULL
1982 && deprecated_ui_load_progress_hook (args->section_name,
1983 args->section_sent)))
1984 error (_("Canceled the download"));
1985
1986 if (deprecated_show_load_progress != NULL)
1987 deprecated_show_load_progress (args->section_name,
1988 args->section_sent,
1989 args->section_size,
1990 totals->data_count,
1991 totals->total_size);
1992 }
1993
1994 /* Callback service function for generic_load (bfd_map_over_sections). */
1995
1996 static void
1997 load_section_callback (bfd *abfd, asection *asec, void *data)
1998 {
1999 struct load_section_data *args = (struct load_section_data *) data;
2000 bfd_size_type size = bfd_get_section_size (asec);
2001 const char *sect_name = bfd_get_section_name (abfd, asec);
2002
2003 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2004 return;
2005
2006 if (size == 0)
2007 return;
2008
2009 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
2010 ULONGEST end = begin + size;
2011 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2012 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2013
2014 load_progress_section_data *section_data
2015 = new load_progress_section_data (args->progress_data, sect_name, size,
2016 begin, buffer);
2017
2018 args->requests.emplace_back (begin, end, buffer, section_data);
2019 }
2020
2021 static void print_transfer_performance (struct ui_file *stream,
2022 unsigned long data_count,
2023 unsigned long write_count,
2024 std::chrono::steady_clock::duration d);
2025
2026 void
2027 generic_load (const char *args, int from_tty)
2028 {
2029 struct load_progress_data total_progress;
2030 struct load_section_data cbdata (&total_progress);
2031 struct ui_out *uiout = current_uiout;
2032
2033 if (args == NULL)
2034 error_no_arg (_("file to load"));
2035
2036 gdb_argv argv (args);
2037
2038 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2039
2040 if (argv[1] != NULL)
2041 {
2042 const char *endptr;
2043
2044 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2045
2046 /* If the last word was not a valid number then
2047 treat it as a file name with spaces in. */
2048 if (argv[1] == endptr)
2049 error (_("Invalid download offset:%s."), argv[1]);
2050
2051 if (argv[2] != NULL)
2052 error (_("Too many parameters."));
2053 }
2054
2055 /* Open the file for loading. */
2056 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2057 if (loadfile_bfd == NULL)
2058 perror_with_name (filename.get ());
2059
2060 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2061 {
2062 error (_("\"%s\" is not an object file: %s"), filename.get (),
2063 bfd_errmsg (bfd_get_error ()));
2064 }
2065
2066 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2067 (void *) &total_progress.total_size);
2068
2069 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2070
2071 using namespace std::chrono;
2072
2073 steady_clock::time_point start_time = steady_clock::now ();
2074
2075 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2076 load_progress) != 0)
2077 error (_("Load failed"));
2078
2079 steady_clock::time_point end_time = steady_clock::now ();
2080
2081 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2082 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2083 uiout->text ("Start address ");
2084 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2085 uiout->text (", load size ");
2086 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2087 uiout->text ("\n");
2088 regcache_write_pc (get_current_regcache (), entry);
2089
2090 /* Reset breakpoints, now that we have changed the load image. For
2091 instance, breakpoints may have been set (or reset, by
2092 post_create_inferior) while connected to the target but before we
2093 loaded the program. In that case, the prologue analyzer could
2094 have read instructions from the target to find the right
2095 breakpoint locations. Loading has changed the contents of that
2096 memory. */
2097
2098 breakpoint_re_set ();
2099
2100 print_transfer_performance (gdb_stdout, total_progress.data_count,
2101 total_progress.write_count,
2102 end_time - start_time);
2103 }
2104
2105 /* Report on STREAM the performance of a memory transfer operation,
2106 such as 'load'. DATA_COUNT is the number of bytes transferred.
2107 WRITE_COUNT is the number of separate write operations, or 0, if
2108 that information is not available. TIME is how long the operation
2109 lasted. */
2110
2111 static void
2112 print_transfer_performance (struct ui_file *stream,
2113 unsigned long data_count,
2114 unsigned long write_count,
2115 std::chrono::steady_clock::duration time)
2116 {
2117 using namespace std::chrono;
2118 struct ui_out *uiout = current_uiout;
2119
2120 milliseconds ms = duration_cast<milliseconds> (time);
2121
2122 uiout->text ("Transfer rate: ");
2123 if (ms.count () > 0)
2124 {
2125 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2126
2127 if (uiout->is_mi_like_p ())
2128 {
2129 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2130 uiout->text (" bits/sec");
2131 }
2132 else if (rate < 1024)
2133 {
2134 uiout->field_fmt ("transfer-rate", "%lu", rate);
2135 uiout->text (" bytes/sec");
2136 }
2137 else
2138 {
2139 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2140 uiout->text (" KB/sec");
2141 }
2142 }
2143 else
2144 {
2145 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2146 uiout->text (" bits in <1 sec");
2147 }
2148 if (write_count > 0)
2149 {
2150 uiout->text (", ");
2151 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2152 uiout->text (" bytes/write");
2153 }
2154 uiout->text (".\n");
2155 }
2156
2157 /* Add an OFFSET to the start address of each section in OBJF, except
2158 sections that were specified in ADDRS. */
2159
2160 static void
2161 set_objfile_default_section_offset (struct objfile *objf,
2162 const section_addr_info &addrs,
2163 CORE_ADDR offset)
2164 {
2165 /* Add OFFSET to all sections by default. */
2166 std::vector<struct section_offsets> offsets (objf->num_sections,
2167 { { offset } });
2168
2169 /* Create sorted lists of all sections in ADDRS as well as all
2170 sections in OBJF. */
2171
2172 std::vector<const struct other_sections *> addrs_sorted
2173 = addrs_section_sort (addrs);
2174
2175 section_addr_info objf_addrs
2176 = build_section_addr_info_from_objfile (objf);
2177 std::vector<const struct other_sections *> objf_addrs_sorted
2178 = addrs_section_sort (objf_addrs);
2179
2180 /* Walk the BFD section list, and if a matching section is found in
2181 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2182 unchanged.
2183
2184 Note that both lists may contain multiple sections with the same
2185 name, and then the sections from ADDRS are matched in BFD order
2186 (thanks to sectindex). */
2187
2188 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2189 = addrs_sorted.begin ();
2190 for (const other_sections *objf_sect : objf_addrs_sorted)
2191 {
2192 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2193 int cmp = -1;
2194
2195 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2196 {
2197 const struct other_sections *sect = *addrs_sorted_iter;
2198 const char *sect_name = addr_section_name (sect->name.c_str ());
2199 cmp = strcmp (sect_name, objf_name);
2200 if (cmp <= 0)
2201 ++addrs_sorted_iter;
2202 }
2203
2204 if (cmp == 0)
2205 offsets[objf_sect->sectindex].offsets[0] = 0;
2206 }
2207
2208 /* Apply the new section offsets. */
2209 objfile_relocate (objf, offsets.data ());
2210 }
2211
2212 /* This function allows the addition of incrementally linked object files.
2213 It does not modify any state in the target, only in the debugger. */
2214
2215 static void
2216 add_symbol_file_command (const char *args, int from_tty)
2217 {
2218 struct gdbarch *gdbarch = get_current_arch ();
2219 gdb::unique_xmalloc_ptr<char> filename;
2220 char *arg;
2221 int argcnt = 0;
2222 struct objfile *objf;
2223 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2224 symfile_add_flags add_flags = 0;
2225
2226 if (from_tty)
2227 add_flags |= SYMFILE_VERBOSE;
2228
2229 struct sect_opt
2230 {
2231 const char *name;
2232 const char *value;
2233 };
2234
2235 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2236 bool stop_processing_options = false;
2237 CORE_ADDR offset = 0;
2238
2239 dont_repeat ();
2240
2241 if (args == NULL)
2242 error (_("add-symbol-file takes a file name and an address"));
2243
2244 bool seen_addr = false;
2245 bool seen_offset = false;
2246 gdb_argv argv (args);
2247
2248 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2249 {
2250 if (stop_processing_options || *arg != '-')
2251 {
2252 if (filename == NULL)
2253 {
2254 /* First non-option argument is always the filename. */
2255 filename.reset (tilde_expand (arg));
2256 }
2257 else if (!seen_addr)
2258 {
2259 /* The second non-option argument is always the text
2260 address at which to load the program. */
2261 sect_opts[0].value = arg;
2262 seen_addr = true;
2263 }
2264 else
2265 error (_("Unrecognized argument \"%s\""), arg);
2266 }
2267 else if (strcmp (arg, "-readnow") == 0)
2268 flags |= OBJF_READNOW;
2269 else if (strcmp (arg, "-readnever") == 0)
2270 flags |= OBJF_READNEVER;
2271 else if (strcmp (arg, "-s") == 0)
2272 {
2273 if (argv[argcnt + 1] == NULL)
2274 error (_("Missing section name after \"-s\""));
2275 else if (argv[argcnt + 2] == NULL)
2276 error (_("Missing section address after \"-s\""));
2277
2278 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2279
2280 sect_opts.push_back (sect);
2281 argcnt += 2;
2282 }
2283 else if (strcmp (arg, "-o") == 0)
2284 {
2285 arg = argv[++argcnt];
2286 if (arg == NULL)
2287 error (_("Missing argument to -o"));
2288
2289 offset = parse_and_eval_address (arg);
2290 seen_offset = true;
2291 }
2292 else if (strcmp (arg, "--") == 0)
2293 stop_processing_options = true;
2294 else
2295 error (_("Unrecognized argument \"%s\""), arg);
2296 }
2297
2298 if (filename == NULL)
2299 error (_("You must provide a filename to be loaded."));
2300
2301 validate_readnow_readnever (flags);
2302
2303 /* Print the prompt for the query below. And save the arguments into
2304 a sect_addr_info structure to be passed around to other
2305 functions. We have to split this up into separate print
2306 statements because hex_string returns a local static
2307 string. */
2308
2309 printf_unfiltered (_("add symbol table from file \"%s\""),
2310 filename.get ());
2311 section_addr_info section_addrs;
2312 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2313 if (!seen_addr)
2314 ++it;
2315 for (; it != sect_opts.end (); ++it)
2316 {
2317 CORE_ADDR addr;
2318 const char *val = it->value;
2319 const char *sec = it->name;
2320
2321 if (section_addrs.empty ())
2322 printf_unfiltered (_(" at\n"));
2323 addr = parse_and_eval_address (val);
2324
2325 /* Here we store the section offsets in the order they were
2326 entered on the command line. Every array element is
2327 assigned an ascending section index to preserve the above
2328 order over an unstable sorting algorithm. This dummy
2329 index is not used for any other purpose.
2330 */
2331 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2332 printf_filtered ("\t%s_addr = %s\n", sec,
2333 paddress (gdbarch, addr));
2334
2335 /* The object's sections are initialized when a
2336 call is made to build_objfile_section_table (objfile).
2337 This happens in reread_symbols.
2338 At this point, we don't know what file type this is,
2339 so we can't determine what section names are valid. */
2340 }
2341 if (seen_offset)
2342 printf_unfiltered (_("%s offset by %s\n"),
2343 (section_addrs.empty ()
2344 ? _(" with all sections")
2345 : _("with other sections")),
2346 paddress (gdbarch, offset));
2347 else if (section_addrs.empty ())
2348 printf_unfiltered ("\n");
2349
2350 if (from_tty && (!query ("%s", "")))
2351 error (_("Not confirmed."));
2352
2353 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2354 flags);
2355 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2356 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2357 filename.get ());
2358
2359 if (seen_offset)
2360 set_objfile_default_section_offset (objf, section_addrs, offset);
2361
2362 add_target_sections_of_objfile (objf);
2363
2364 /* Getting new symbols may change our opinion about what is
2365 frameless. */
2366 reinit_frame_cache ();
2367 }
2368 \f
2369
2370 /* This function removes a symbol file that was added via add-symbol-file. */
2371
2372 static void
2373 remove_symbol_file_command (const char *args, int from_tty)
2374 {
2375 struct objfile *objf = NULL;
2376 struct program_space *pspace = current_program_space;
2377
2378 dont_repeat ();
2379
2380 if (args == NULL)
2381 error (_("remove-symbol-file: no symbol file provided"));
2382
2383 gdb_argv argv (args);
2384
2385 if (strcmp (argv[0], "-a") == 0)
2386 {
2387 /* Interpret the next argument as an address. */
2388 CORE_ADDR addr;
2389
2390 if (argv[1] == NULL)
2391 error (_("Missing address argument"));
2392
2393 if (argv[2] != NULL)
2394 error (_("Junk after %s"), argv[1]);
2395
2396 addr = parse_and_eval_address (argv[1]);
2397
2398 for (objfile *objfile : current_program_space->objfiles ())
2399 {
2400 if ((objfile->flags & OBJF_USERLOADED) != 0
2401 && (objfile->flags & OBJF_SHARED) != 0
2402 && objfile->pspace == pspace
2403 && is_addr_in_objfile (addr, objfile))
2404 {
2405 objf = objfile;
2406 break;
2407 }
2408 }
2409 }
2410 else if (argv[0] != NULL)
2411 {
2412 /* Interpret the current argument as a file name. */
2413
2414 if (argv[1] != NULL)
2415 error (_("Junk after %s"), argv[0]);
2416
2417 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2418
2419 for (objfile *objfile : current_program_space->objfiles ())
2420 {
2421 if ((objfile->flags & OBJF_USERLOADED) != 0
2422 && (objfile->flags & OBJF_SHARED) != 0
2423 && objfile->pspace == pspace
2424 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2425 {
2426 objf = objfile;
2427 break;
2428 }
2429 }
2430 }
2431
2432 if (objf == NULL)
2433 error (_("No symbol file found"));
2434
2435 if (from_tty
2436 && !query (_("Remove symbol table from file \"%s\"? "),
2437 objfile_name (objf)))
2438 error (_("Not confirmed."));
2439
2440 delete objf;
2441 clear_symtab_users (0);
2442 }
2443
2444 /* Re-read symbols if a symbol-file has changed. */
2445
2446 void
2447 reread_symbols (void)
2448 {
2449 long new_modtime;
2450 struct stat new_statbuf;
2451 int res;
2452 std::vector<struct objfile *> new_objfiles;
2453
2454 for (objfile *objfile : current_program_space->objfiles ())
2455 {
2456 if (objfile->obfd == NULL)
2457 continue;
2458
2459 /* Separate debug objfiles are handled in the main objfile. */
2460 if (objfile->separate_debug_objfile_backlink)
2461 continue;
2462
2463 /* If this object is from an archive (what you usually create with
2464 `ar', often called a `static library' on most systems, though
2465 a `shared library' on AIX is also an archive), then you should
2466 stat on the archive name, not member name. */
2467 if (objfile->obfd->my_archive)
2468 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2469 else
2470 res = stat (objfile_name (objfile), &new_statbuf);
2471 if (res != 0)
2472 {
2473 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2474 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2475 objfile_name (objfile));
2476 continue;
2477 }
2478 new_modtime = new_statbuf.st_mtime;
2479 if (new_modtime != objfile->mtime)
2480 {
2481 struct section_offsets *offsets;
2482 int num_offsets;
2483
2484 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2485 objfile_name (objfile));
2486
2487 /* There are various functions like symbol_file_add,
2488 symfile_bfd_open, syms_from_objfile, etc., which might
2489 appear to do what we want. But they have various other
2490 effects which we *don't* want. So we just do stuff
2491 ourselves. We don't worry about mapped files (for one thing,
2492 any mapped file will be out of date). */
2493
2494 /* If we get an error, blow away this objfile (not sure if
2495 that is the correct response for things like shared
2496 libraries). */
2497 std::unique_ptr<struct objfile> objfile_holder (objfile);
2498
2499 /* We need to do this whenever any symbols go away. */
2500 clear_symtab_users_cleanup defer_clear_users (0);
2501
2502 if (exec_bfd != NULL
2503 && filename_cmp (bfd_get_filename (objfile->obfd),
2504 bfd_get_filename (exec_bfd)) == 0)
2505 {
2506 /* Reload EXEC_BFD without asking anything. */
2507
2508 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2509 }
2510
2511 /* Keep the calls order approx. the same as in free_objfile. */
2512
2513 /* Free the separate debug objfiles. It will be
2514 automatically recreated by sym_read. */
2515 free_objfile_separate_debug (objfile);
2516
2517 /* Remove any references to this objfile in the global
2518 value lists. */
2519 preserve_values (objfile);
2520
2521 /* Nuke all the state that we will re-read. Much of the following
2522 code which sets things to NULL really is necessary to tell
2523 other parts of GDB that there is nothing currently there.
2524
2525 Try to keep the freeing order compatible with free_objfile. */
2526
2527 if (objfile->sf != NULL)
2528 {
2529 (*objfile->sf->sym_finish) (objfile);
2530 }
2531
2532 clear_objfile_data (objfile);
2533
2534 /* Clean up any state BFD has sitting around. */
2535 {
2536 gdb_bfd_ref_ptr obfd (objfile->obfd);
2537 char *obfd_filename;
2538
2539 obfd_filename = bfd_get_filename (objfile->obfd);
2540 /* Open the new BFD before freeing the old one, so that
2541 the filename remains live. */
2542 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2543 objfile->obfd = temp.release ();
2544 if (objfile->obfd == NULL)
2545 error (_("Can't open %s to read symbols."), obfd_filename);
2546 }
2547
2548 std::string original_name = objfile->original_name;
2549
2550 /* bfd_openr sets cacheable to true, which is what we want. */
2551 if (!bfd_check_format (objfile->obfd, bfd_object))
2552 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2553 bfd_errmsg (bfd_get_error ()));
2554
2555 /* Save the offsets, we will nuke them with the rest of the
2556 objfile_obstack. */
2557 num_offsets = objfile->num_sections;
2558 offsets = ((struct section_offsets *)
2559 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2560 memcpy (offsets, objfile->section_offsets,
2561 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2562
2563 objfile->reset_psymtabs ();
2564
2565 /* NB: after this call to obstack_free, objfiles_changed
2566 will need to be called (see discussion below). */
2567 obstack_free (&objfile->objfile_obstack, 0);
2568 objfile->sections = NULL;
2569 objfile->compunit_symtabs = NULL;
2570 objfile->template_symbols = NULL;
2571 objfile->static_links.reset (nullptr);
2572
2573 /* obstack_init also initializes the obstack so it is
2574 empty. We could use obstack_specify_allocation but
2575 gdb_obstack.h specifies the alloc/dealloc functions. */
2576 obstack_init (&objfile->objfile_obstack);
2577
2578 /* set_objfile_per_bfd potentially allocates the per-bfd
2579 data on the objfile's obstack (if sharing data across
2580 multiple users is not possible), so it's important to
2581 do it *after* the obstack has been initialized. */
2582 set_objfile_per_bfd (objfile);
2583
2584 objfile->original_name
2585 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2586 original_name.c_str (),
2587 original_name.size ());
2588
2589 /* Reset the sym_fns pointer. The ELF reader can change it
2590 based on whether .gdb_index is present, and we need it to
2591 start over. PR symtab/15885 */
2592 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2593
2594 build_objfile_section_table (objfile);
2595
2596 /* We use the same section offsets as from last time. I'm not
2597 sure whether that is always correct for shared libraries. */
2598 objfile->section_offsets = (struct section_offsets *)
2599 obstack_alloc (&objfile->objfile_obstack,
2600 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2601 memcpy (objfile->section_offsets, offsets,
2602 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2603 objfile->num_sections = num_offsets;
2604
2605 /* What the hell is sym_new_init for, anyway? The concept of
2606 distinguishing between the main file and additional files
2607 in this way seems rather dubious. */
2608 if (objfile == symfile_objfile)
2609 {
2610 (*objfile->sf->sym_new_init) (objfile);
2611 }
2612
2613 (*objfile->sf->sym_init) (objfile);
2614 clear_complaints ();
2615
2616 objfile->flags &= ~OBJF_PSYMTABS_READ;
2617
2618 /* We are about to read new symbols and potentially also
2619 DWARF information. Some targets may want to pass addresses
2620 read from DWARF DIE's through an adjustment function before
2621 saving them, like MIPS, which may call into
2622 "find_pc_section". When called, that function will make
2623 use of per-objfile program space data.
2624
2625 Since we discarded our section information above, we have
2626 dangling pointers in the per-objfile program space data
2627 structure. Force GDB to update the section mapping
2628 information by letting it know the objfile has changed,
2629 making the dangling pointers point to correct data
2630 again. */
2631
2632 objfiles_changed ();
2633
2634 read_symbols (objfile, 0);
2635
2636 if (!objfile_has_symbols (objfile))
2637 {
2638 wrap_here ("");
2639 printf_filtered (_("(no debugging symbols found)\n"));
2640 wrap_here ("");
2641 }
2642
2643 /* We're done reading the symbol file; finish off complaints. */
2644 clear_complaints ();
2645
2646 /* Getting new symbols may change our opinion about what is
2647 frameless. */
2648
2649 reinit_frame_cache ();
2650
2651 /* Discard cleanups as symbol reading was successful. */
2652 objfile_holder.release ();
2653 defer_clear_users.release ();
2654
2655 /* If the mtime has changed between the time we set new_modtime
2656 and now, we *want* this to be out of date, so don't call stat
2657 again now. */
2658 objfile->mtime = new_modtime;
2659 init_entry_point_info (objfile);
2660
2661 new_objfiles.push_back (objfile);
2662 }
2663 }
2664
2665 if (!new_objfiles.empty ())
2666 {
2667 clear_symtab_users (0);
2668
2669 /* clear_objfile_data for each objfile was called before freeing it and
2670 gdb::observers::new_objfile.notify (NULL) has been called by
2671 clear_symtab_users above. Notify the new files now. */
2672 for (auto iter : new_objfiles)
2673 gdb::observers::new_objfile.notify (iter);
2674
2675 /* At least one objfile has changed, so we can consider that
2676 the executable we're debugging has changed too. */
2677 gdb::observers::executable_changed.notify ();
2678 }
2679 }
2680 \f
2681
2682 struct filename_language
2683 {
2684 filename_language (const std::string &ext_, enum language lang_)
2685 : ext (ext_), lang (lang_)
2686 {}
2687
2688 std::string ext;
2689 enum language lang;
2690 };
2691
2692 static std::vector<filename_language> filename_language_table;
2693
2694 /* See symfile.h. */
2695
2696 void
2697 add_filename_language (const char *ext, enum language lang)
2698 {
2699 filename_language_table.emplace_back (ext, lang);
2700 }
2701
2702 static char *ext_args;
2703 static void
2704 show_ext_args (struct ui_file *file, int from_tty,
2705 struct cmd_list_element *c, const char *value)
2706 {
2707 fprintf_filtered (file,
2708 _("Mapping between filename extension "
2709 "and source language is \"%s\".\n"),
2710 value);
2711 }
2712
2713 static void
2714 set_ext_lang_command (const char *args,
2715 int from_tty, struct cmd_list_element *e)
2716 {
2717 char *cp = ext_args;
2718 enum language lang;
2719
2720 /* First arg is filename extension, starting with '.' */
2721 if (*cp != '.')
2722 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2723
2724 /* Find end of first arg. */
2725 while (*cp && !isspace (*cp))
2726 cp++;
2727
2728 if (*cp == '\0')
2729 error (_("'%s': two arguments required -- "
2730 "filename extension and language"),
2731 ext_args);
2732
2733 /* Null-terminate first arg. */
2734 *cp++ = '\0';
2735
2736 /* Find beginning of second arg, which should be a source language. */
2737 cp = skip_spaces (cp);
2738
2739 if (*cp == '\0')
2740 error (_("'%s': two arguments required -- "
2741 "filename extension and language"),
2742 ext_args);
2743
2744 /* Lookup the language from among those we know. */
2745 lang = language_enum (cp);
2746
2747 auto it = filename_language_table.begin ();
2748 /* Now lookup the filename extension: do we already know it? */
2749 for (; it != filename_language_table.end (); it++)
2750 {
2751 if (it->ext == ext_args)
2752 break;
2753 }
2754
2755 if (it == filename_language_table.end ())
2756 {
2757 /* New file extension. */
2758 add_filename_language (ext_args, lang);
2759 }
2760 else
2761 {
2762 /* Redefining a previously known filename extension. */
2763
2764 /* if (from_tty) */
2765 /* query ("Really make files of type %s '%s'?", */
2766 /* ext_args, language_str (lang)); */
2767
2768 it->lang = lang;
2769 }
2770 }
2771
2772 static void
2773 info_ext_lang_command (const char *args, int from_tty)
2774 {
2775 printf_filtered (_("Filename extensions and the languages they represent:"));
2776 printf_filtered ("\n\n");
2777 for (const filename_language &entry : filename_language_table)
2778 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2779 language_str (entry.lang));
2780 }
2781
2782 enum language
2783 deduce_language_from_filename (const char *filename)
2784 {
2785 const char *cp;
2786
2787 if (filename != NULL)
2788 if ((cp = strrchr (filename, '.')) != NULL)
2789 {
2790 for (const filename_language &entry : filename_language_table)
2791 if (entry.ext == cp)
2792 return entry.lang;
2793 }
2794
2795 return language_unknown;
2796 }
2797 \f
2798 /* Allocate and initialize a new symbol table.
2799 CUST is from the result of allocate_compunit_symtab. */
2800
2801 struct symtab *
2802 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2803 {
2804 struct objfile *objfile = cust->objfile;
2805 struct symtab *symtab
2806 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2807
2808 symtab->filename
2809 = ((const char *) objfile->per_bfd->filename_cache.insert
2810 (filename, strlen (filename) + 1));
2811 symtab->fullname = NULL;
2812 symtab->language = deduce_language_from_filename (filename);
2813
2814 /* This can be very verbose with lots of headers.
2815 Only print at higher debug levels. */
2816 if (symtab_create_debug >= 2)
2817 {
2818 /* Be a bit clever with debugging messages, and don't print objfile
2819 every time, only when it changes. */
2820 static char *last_objfile_name = NULL;
2821
2822 if (last_objfile_name == NULL
2823 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2824 {
2825 xfree (last_objfile_name);
2826 last_objfile_name = xstrdup (objfile_name (objfile));
2827 fprintf_filtered (gdb_stdlog,
2828 "Creating one or more symtabs for objfile %s ...\n",
2829 last_objfile_name);
2830 }
2831 fprintf_filtered (gdb_stdlog,
2832 "Created symtab %s for module %s.\n",
2833 host_address_to_string (symtab), filename);
2834 }
2835
2836 /* Add it to CUST's list of symtabs. */
2837 if (cust->filetabs == NULL)
2838 {
2839 cust->filetabs = symtab;
2840 cust->last_filetab = symtab;
2841 }
2842 else
2843 {
2844 cust->last_filetab->next = symtab;
2845 cust->last_filetab = symtab;
2846 }
2847
2848 /* Backlink to the containing compunit symtab. */
2849 symtab->compunit_symtab = cust;
2850
2851 return symtab;
2852 }
2853
2854 /* Allocate and initialize a new compunit.
2855 NAME is the name of the main source file, if there is one, or some
2856 descriptive text if there are no source files. */
2857
2858 struct compunit_symtab *
2859 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2860 {
2861 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2862 struct compunit_symtab);
2863 const char *saved_name;
2864
2865 cu->objfile = objfile;
2866
2867 /* The name we record here is only for display/debugging purposes.
2868 Just save the basename to avoid path issues (too long for display,
2869 relative vs absolute, etc.). */
2870 saved_name = lbasename (name);
2871 cu->name
2872 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2873 strlen (saved_name));
2874
2875 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2876
2877 if (symtab_create_debug)
2878 {
2879 fprintf_filtered (gdb_stdlog,
2880 "Created compunit symtab %s for %s.\n",
2881 host_address_to_string (cu),
2882 cu->name);
2883 }
2884
2885 return cu;
2886 }
2887
2888 /* Hook CU to the objfile it comes from. */
2889
2890 void
2891 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2892 {
2893 cu->next = cu->objfile->compunit_symtabs;
2894 cu->objfile->compunit_symtabs = cu;
2895 }
2896 \f
2897
2898 /* Reset all data structures in gdb which may contain references to
2899 symbol table data. */
2900
2901 void
2902 clear_symtab_users (symfile_add_flags add_flags)
2903 {
2904 /* Someday, we should do better than this, by only blowing away
2905 the things that really need to be blown. */
2906
2907 /* Clear the "current" symtab first, because it is no longer valid.
2908 breakpoint_re_set may try to access the current symtab. */
2909 clear_current_source_symtab_and_line ();
2910
2911 clear_displays ();
2912 clear_last_displayed_sal ();
2913 clear_pc_function_cache ();
2914 gdb::observers::new_objfile.notify (NULL);
2915
2916 /* Varobj may refer to old symbols, perform a cleanup. */
2917 varobj_invalidate ();
2918
2919 /* Now that the various caches have been cleared, we can re_set
2920 our breakpoints without risking it using stale data. */
2921 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2922 breakpoint_re_set ();
2923 }
2924 \f
2925 /* OVERLAYS:
2926 The following code implements an abstraction for debugging overlay sections.
2927
2928 The target model is as follows:
2929 1) The gnu linker will permit multiple sections to be mapped into the
2930 same VMA, each with its own unique LMA (or load address).
2931 2) It is assumed that some runtime mechanism exists for mapping the
2932 sections, one by one, from the load address into the VMA address.
2933 3) This code provides a mechanism for gdb to keep track of which
2934 sections should be considered to be mapped from the VMA to the LMA.
2935 This information is used for symbol lookup, and memory read/write.
2936 For instance, if a section has been mapped then its contents
2937 should be read from the VMA, otherwise from the LMA.
2938
2939 Two levels of debugger support for overlays are available. One is
2940 "manual", in which the debugger relies on the user to tell it which
2941 overlays are currently mapped. This level of support is
2942 implemented entirely in the core debugger, and the information about
2943 whether a section is mapped is kept in the objfile->obj_section table.
2944
2945 The second level of support is "automatic", and is only available if
2946 the target-specific code provides functionality to read the target's
2947 overlay mapping table, and translate its contents for the debugger
2948 (by updating the mapped state information in the obj_section tables).
2949
2950 The interface is as follows:
2951 User commands:
2952 overlay map <name> -- tell gdb to consider this section mapped
2953 overlay unmap <name> -- tell gdb to consider this section unmapped
2954 overlay list -- list the sections that GDB thinks are mapped
2955 overlay read-target -- get the target's state of what's mapped
2956 overlay off/manual/auto -- set overlay debugging state
2957 Functional interface:
2958 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2959 section, return that section.
2960 find_pc_overlay(pc): find any overlay section that contains
2961 the pc, either in its VMA or its LMA
2962 section_is_mapped(sect): true if overlay is marked as mapped
2963 section_is_overlay(sect): true if section's VMA != LMA
2964 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2965 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2966 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2967 overlay_mapped_address(...): map an address from section's LMA to VMA
2968 overlay_unmapped_address(...): map an address from section's VMA to LMA
2969 symbol_overlayed_address(...): Return a "current" address for symbol:
2970 either in VMA or LMA depending on whether
2971 the symbol's section is currently mapped. */
2972
2973 /* Overlay debugging state: */
2974
2975 enum overlay_debugging_state overlay_debugging = ovly_off;
2976 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2977
2978 /* Function: section_is_overlay (SECTION)
2979 Returns true if SECTION has VMA not equal to LMA, ie.
2980 SECTION is loaded at an address different from where it will "run". */
2981
2982 int
2983 section_is_overlay (struct obj_section *section)
2984 {
2985 if (overlay_debugging && section)
2986 {
2987 asection *bfd_section = section->the_bfd_section;
2988
2989 if (bfd_section_lma (abfd, bfd_section) != 0
2990 && bfd_section_lma (abfd, bfd_section)
2991 != bfd_section_vma (abfd, bfd_section))
2992 return 1;
2993 }
2994
2995 return 0;
2996 }
2997
2998 /* Function: overlay_invalidate_all (void)
2999 Invalidate the mapped state of all overlay sections (mark it as stale). */
3000
3001 static void
3002 overlay_invalidate_all (void)
3003 {
3004 struct obj_section *sect;
3005
3006 for (objfile *objfile : current_program_space->objfiles ())
3007 ALL_OBJFILE_OSECTIONS (objfile, sect)
3008 if (section_is_overlay (sect))
3009 sect->ovly_mapped = -1;
3010 }
3011
3012 /* Function: section_is_mapped (SECTION)
3013 Returns true if section is an overlay, and is currently mapped.
3014
3015 Access to the ovly_mapped flag is restricted to this function, so
3016 that we can do automatic update. If the global flag
3017 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3018 overlay_invalidate_all. If the mapped state of the particular
3019 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3020
3021 int
3022 section_is_mapped (struct obj_section *osect)
3023 {
3024 struct gdbarch *gdbarch;
3025
3026 if (osect == 0 || !section_is_overlay (osect))
3027 return 0;
3028
3029 switch (overlay_debugging)
3030 {
3031 default:
3032 case ovly_off:
3033 return 0; /* overlay debugging off */
3034 case ovly_auto: /* overlay debugging automatic */
3035 /* Unles there is a gdbarch_overlay_update function,
3036 there's really nothing useful to do here (can't really go auto). */
3037 gdbarch = get_objfile_arch (osect->objfile);
3038 if (gdbarch_overlay_update_p (gdbarch))
3039 {
3040 if (overlay_cache_invalid)
3041 {
3042 overlay_invalidate_all ();
3043 overlay_cache_invalid = 0;
3044 }
3045 if (osect->ovly_mapped == -1)
3046 gdbarch_overlay_update (gdbarch, osect);
3047 }
3048 /* fall thru */
3049 case ovly_on: /* overlay debugging manual */
3050 return osect->ovly_mapped == 1;
3051 }
3052 }
3053
3054 /* Function: pc_in_unmapped_range
3055 If PC falls into the lma range of SECTION, return true, else false. */
3056
3057 CORE_ADDR
3058 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3059 {
3060 if (section_is_overlay (section))
3061 {
3062 bfd *abfd = section->objfile->obfd;
3063 asection *bfd_section = section->the_bfd_section;
3064
3065 /* We assume the LMA is relocated by the same offset as the VMA. */
3066 bfd_vma size = bfd_get_section_size (bfd_section);
3067 CORE_ADDR offset = obj_section_offset (section);
3068
3069 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3070 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3071 return 1;
3072 }
3073
3074 return 0;
3075 }
3076
3077 /* Function: pc_in_mapped_range
3078 If PC falls into the vma range of SECTION, return true, else false. */
3079
3080 CORE_ADDR
3081 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3082 {
3083 if (section_is_overlay (section))
3084 {
3085 if (obj_section_addr (section) <= pc
3086 && pc < obj_section_endaddr (section))
3087 return 1;
3088 }
3089
3090 return 0;
3091 }
3092
3093 /* Return true if the mapped ranges of sections A and B overlap, false
3094 otherwise. */
3095
3096 static int
3097 sections_overlap (struct obj_section *a, struct obj_section *b)
3098 {
3099 CORE_ADDR a_start = obj_section_addr (a);
3100 CORE_ADDR a_end = obj_section_endaddr (a);
3101 CORE_ADDR b_start = obj_section_addr (b);
3102 CORE_ADDR b_end = obj_section_endaddr (b);
3103
3104 return (a_start < b_end && b_start < a_end);
3105 }
3106
3107 /* Function: overlay_unmapped_address (PC, SECTION)
3108 Returns the address corresponding to PC in the unmapped (load) range.
3109 May be the same as PC. */
3110
3111 CORE_ADDR
3112 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3113 {
3114 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3115 {
3116 asection *bfd_section = section->the_bfd_section;
3117
3118 return pc + bfd_section_lma (abfd, bfd_section)
3119 - bfd_section_vma (abfd, bfd_section);
3120 }
3121
3122 return pc;
3123 }
3124
3125 /* Function: overlay_mapped_address (PC, SECTION)
3126 Returns the address corresponding to PC in the mapped (runtime) range.
3127 May be the same as PC. */
3128
3129 CORE_ADDR
3130 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3131 {
3132 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3133 {
3134 asection *bfd_section = section->the_bfd_section;
3135
3136 return pc + bfd_section_vma (abfd, bfd_section)
3137 - bfd_section_lma (abfd, bfd_section);
3138 }
3139
3140 return pc;
3141 }
3142
3143 /* Function: symbol_overlayed_address
3144 Return one of two addresses (relative to the VMA or to the LMA),
3145 depending on whether the section is mapped or not. */
3146
3147 CORE_ADDR
3148 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3149 {
3150 if (overlay_debugging)
3151 {
3152 /* If the symbol has no section, just return its regular address. */
3153 if (section == 0)
3154 return address;
3155 /* If the symbol's section is not an overlay, just return its
3156 address. */
3157 if (!section_is_overlay (section))
3158 return address;
3159 /* If the symbol's section is mapped, just return its address. */
3160 if (section_is_mapped (section))
3161 return address;
3162 /*
3163 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3164 * then return its LOADED address rather than its vma address!!
3165 */
3166 return overlay_unmapped_address (address, section);
3167 }
3168 return address;
3169 }
3170
3171 /* Function: find_pc_overlay (PC)
3172 Return the best-match overlay section for PC:
3173 If PC matches a mapped overlay section's VMA, return that section.
3174 Else if PC matches an unmapped section's VMA, return that section.
3175 Else if PC matches an unmapped section's LMA, return that section. */
3176
3177 struct obj_section *
3178 find_pc_overlay (CORE_ADDR pc)
3179 {
3180 struct obj_section *osect, *best_match = NULL;
3181
3182 if (overlay_debugging)
3183 {
3184 for (objfile *objfile : current_program_space->objfiles ())
3185 ALL_OBJFILE_OSECTIONS (objfile, osect)
3186 if (section_is_overlay (osect))
3187 {
3188 if (pc_in_mapped_range (pc, osect))
3189 {
3190 if (section_is_mapped (osect))
3191 return osect;
3192 else
3193 best_match = osect;
3194 }
3195 else if (pc_in_unmapped_range (pc, osect))
3196 best_match = osect;
3197 }
3198 }
3199 return best_match;
3200 }
3201
3202 /* Function: find_pc_mapped_section (PC)
3203 If PC falls into the VMA address range of an overlay section that is
3204 currently marked as MAPPED, return that section. Else return NULL. */
3205
3206 struct obj_section *
3207 find_pc_mapped_section (CORE_ADDR pc)
3208 {
3209 struct obj_section *osect;
3210
3211 if (overlay_debugging)
3212 {
3213 for (objfile *objfile : current_program_space->objfiles ())
3214 ALL_OBJFILE_OSECTIONS (objfile, osect)
3215 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3216 return osect;
3217 }
3218
3219 return NULL;
3220 }
3221
3222 /* Function: list_overlays_command
3223 Print a list of mapped sections and their PC ranges. */
3224
3225 static void
3226 list_overlays_command (const char *args, int from_tty)
3227 {
3228 int nmapped = 0;
3229 struct obj_section *osect;
3230
3231 if (overlay_debugging)
3232 {
3233 for (objfile *objfile : current_program_space->objfiles ())
3234 ALL_OBJFILE_OSECTIONS (objfile, osect)
3235 if (section_is_mapped (osect))
3236 {
3237 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3238 const char *name;
3239 bfd_vma lma, vma;
3240 int size;
3241
3242 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3243 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3244 size = bfd_get_section_size (osect->the_bfd_section);
3245 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3246
3247 printf_filtered ("Section %s, loaded at ", name);
3248 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3249 puts_filtered (" - ");
3250 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3251 printf_filtered (", mapped at ");
3252 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3253 puts_filtered (" - ");
3254 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3255 puts_filtered ("\n");
3256
3257 nmapped++;
3258 }
3259 }
3260 if (nmapped == 0)
3261 printf_filtered (_("No sections are mapped.\n"));
3262 }
3263
3264 /* Function: map_overlay_command
3265 Mark the named section as mapped (ie. residing at its VMA address). */
3266
3267 static void
3268 map_overlay_command (const char *args, int from_tty)
3269 {
3270 struct obj_section *sec, *sec2;
3271
3272 if (!overlay_debugging)
3273 error (_("Overlay debugging not enabled. Use "
3274 "either the 'overlay auto' or\n"
3275 "the 'overlay manual' command."));
3276
3277 if (args == 0 || *args == 0)
3278 error (_("Argument required: name of an overlay section"));
3279
3280 /* First, find a section matching the user supplied argument. */
3281 for (objfile *obj_file : current_program_space->objfiles ())
3282 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3283 if (!strcmp (bfd_section_name (obj_file->obfd, sec->the_bfd_section),
3284 args))
3285 {
3286 /* Now, check to see if the section is an overlay. */
3287 if (!section_is_overlay (sec))
3288 continue; /* not an overlay section */
3289
3290 /* Mark the overlay as "mapped". */
3291 sec->ovly_mapped = 1;
3292
3293 /* Next, make a pass and unmap any sections that are
3294 overlapped by this new section: */
3295 for (objfile *objfile2 : current_program_space->objfiles ())
3296 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3297 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3298 sec2))
3299 {
3300 if (info_verbose)
3301 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3302 bfd_section_name (obj_file->obfd,
3303 sec2->the_bfd_section));
3304 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3305 }
3306 return;
3307 }
3308 error (_("No overlay section called %s"), args);
3309 }
3310
3311 /* Function: unmap_overlay_command
3312 Mark the overlay section as unmapped
3313 (ie. resident in its LMA address range, rather than the VMA range). */
3314
3315 static void
3316 unmap_overlay_command (const char *args, int from_tty)
3317 {
3318 struct obj_section *sec = NULL;
3319
3320 if (!overlay_debugging)
3321 error (_("Overlay debugging not enabled. "
3322 "Use either the 'overlay auto' or\n"
3323 "the 'overlay manual' command."));
3324
3325 if (args == 0 || *args == 0)
3326 error (_("Argument required: name of an overlay section"));
3327
3328 /* First, find a section matching the user supplied argument. */
3329 for (objfile *objfile : current_program_space->objfiles ())
3330 ALL_OBJFILE_OSECTIONS (objfile, sec)
3331 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3332 {
3333 if (!sec->ovly_mapped)
3334 error (_("Section %s is not mapped"), args);
3335 sec->ovly_mapped = 0;
3336 return;
3337 }
3338 error (_("No overlay section called %s"), args);
3339 }
3340
3341 /* Function: overlay_auto_command
3342 A utility command to turn on overlay debugging.
3343 Possibly this should be done via a set/show command. */
3344
3345 static void
3346 overlay_auto_command (const char *args, int from_tty)
3347 {
3348 overlay_debugging = ovly_auto;
3349 enable_overlay_breakpoints ();
3350 if (info_verbose)
3351 printf_unfiltered (_("Automatic overlay debugging enabled."));
3352 }
3353
3354 /* Function: overlay_manual_command
3355 A utility command to turn on overlay debugging.
3356 Possibly this should be done via a set/show command. */
3357
3358 static void
3359 overlay_manual_command (const char *args, int from_tty)
3360 {
3361 overlay_debugging = ovly_on;
3362 disable_overlay_breakpoints ();
3363 if (info_verbose)
3364 printf_unfiltered (_("Overlay debugging enabled."));
3365 }
3366
3367 /* Function: overlay_off_command
3368 A utility command to turn on overlay debugging.
3369 Possibly this should be done via a set/show command. */
3370
3371 static void
3372 overlay_off_command (const char *args, int from_tty)
3373 {
3374 overlay_debugging = ovly_off;
3375 disable_overlay_breakpoints ();
3376 if (info_verbose)
3377 printf_unfiltered (_("Overlay debugging disabled."));
3378 }
3379
3380 static void
3381 overlay_load_command (const char *args, int from_tty)
3382 {
3383 struct gdbarch *gdbarch = get_current_arch ();
3384
3385 if (gdbarch_overlay_update_p (gdbarch))
3386 gdbarch_overlay_update (gdbarch, NULL);
3387 else
3388 error (_("This target does not know how to read its overlay state."));
3389 }
3390
3391 /* Function: overlay_command
3392 A place-holder for a mis-typed command. */
3393
3394 /* Command list chain containing all defined "overlay" subcommands. */
3395 static struct cmd_list_element *overlaylist;
3396
3397 static void
3398 overlay_command (const char *args, int from_tty)
3399 {
3400 printf_unfiltered
3401 ("\"overlay\" must be followed by the name of an overlay command.\n");
3402 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3403 }
3404
3405 /* Target Overlays for the "Simplest" overlay manager:
3406
3407 This is GDB's default target overlay layer. It works with the
3408 minimal overlay manager supplied as an example by Cygnus. The
3409 entry point is via a function pointer "gdbarch_overlay_update",
3410 so targets that use a different runtime overlay manager can
3411 substitute their own overlay_update function and take over the
3412 function pointer.
3413
3414 The overlay_update function pokes around in the target's data structures
3415 to see what overlays are mapped, and updates GDB's overlay mapping with
3416 this information.
3417
3418 In this simple implementation, the target data structures are as follows:
3419 unsigned _novlys; /# number of overlay sections #/
3420 unsigned _ovly_table[_novlys][4] = {
3421 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3422 {..., ..., ..., ...},
3423 }
3424 unsigned _novly_regions; /# number of overlay regions #/
3425 unsigned _ovly_region_table[_novly_regions][3] = {
3426 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3427 {..., ..., ...},
3428 }
3429 These functions will attempt to update GDB's mappedness state in the
3430 symbol section table, based on the target's mappedness state.
3431
3432 To do this, we keep a cached copy of the target's _ovly_table, and
3433 attempt to detect when the cached copy is invalidated. The main
3434 entry point is "simple_overlay_update(SECT), which looks up SECT in
3435 the cached table and re-reads only the entry for that section from
3436 the target (whenever possible). */
3437
3438 /* Cached, dynamically allocated copies of the target data structures: */
3439 static unsigned (*cache_ovly_table)[4] = 0;
3440 static unsigned cache_novlys = 0;
3441 static CORE_ADDR cache_ovly_table_base = 0;
3442 enum ovly_index
3443 {
3444 VMA, OSIZE, LMA, MAPPED
3445 };
3446
3447 /* Throw away the cached copy of _ovly_table. */
3448
3449 static void
3450 simple_free_overlay_table (void)
3451 {
3452 if (cache_ovly_table)
3453 xfree (cache_ovly_table);
3454 cache_novlys = 0;
3455 cache_ovly_table = NULL;
3456 cache_ovly_table_base = 0;
3457 }
3458
3459 /* Read an array of ints of size SIZE from the target into a local buffer.
3460 Convert to host order. int LEN is number of ints. */
3461
3462 static void
3463 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3464 int len, int size, enum bfd_endian byte_order)
3465 {
3466 /* FIXME (alloca): Not safe if array is very large. */
3467 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3468 int i;
3469
3470 read_memory (memaddr, buf, len * size);
3471 for (i = 0; i < len; i++)
3472 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3473 }
3474
3475 /* Find and grab a copy of the target _ovly_table
3476 (and _novlys, which is needed for the table's size). */
3477
3478 static int
3479 simple_read_overlay_table (void)
3480 {
3481 struct bound_minimal_symbol novlys_msym;
3482 struct bound_minimal_symbol ovly_table_msym;
3483 struct gdbarch *gdbarch;
3484 int word_size;
3485 enum bfd_endian byte_order;
3486
3487 simple_free_overlay_table ();
3488 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3489 if (! novlys_msym.minsym)
3490 {
3491 error (_("Error reading inferior's overlay table: "
3492 "couldn't find `_novlys' variable\n"
3493 "in inferior. Use `overlay manual' mode."));
3494 return 0;
3495 }
3496
3497 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3498 if (! ovly_table_msym.minsym)
3499 {
3500 error (_("Error reading inferior's overlay table: couldn't find "
3501 "`_ovly_table' array\n"
3502 "in inferior. Use `overlay manual' mode."));
3503 return 0;
3504 }
3505
3506 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3507 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3508 byte_order = gdbarch_byte_order (gdbarch);
3509
3510 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3511 4, byte_order);
3512 cache_ovly_table
3513 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3514 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3515 read_target_long_array (cache_ovly_table_base,
3516 (unsigned int *) cache_ovly_table,
3517 cache_novlys * 4, word_size, byte_order);
3518
3519 return 1; /* SUCCESS */
3520 }
3521
3522 /* Function: simple_overlay_update_1
3523 A helper function for simple_overlay_update. Assuming a cached copy
3524 of _ovly_table exists, look through it to find an entry whose vma,
3525 lma and size match those of OSECT. Re-read the entry and make sure
3526 it still matches OSECT (else the table may no longer be valid).
3527 Set OSECT's mapped state to match the entry. Return: 1 for
3528 success, 0 for failure. */
3529
3530 static int
3531 simple_overlay_update_1 (struct obj_section *osect)
3532 {
3533 int i;
3534 asection *bsect = osect->the_bfd_section;
3535 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3536 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3538
3539 for (i = 0; i < cache_novlys; i++)
3540 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3541 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3542 {
3543 read_target_long_array (cache_ovly_table_base + i * word_size,
3544 (unsigned int *) cache_ovly_table[i],
3545 4, word_size, byte_order);
3546 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3547 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3548 {
3549 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3550 return 1;
3551 }
3552 else /* Warning! Warning! Target's ovly table has changed! */
3553 return 0;
3554 }
3555 return 0;
3556 }
3557
3558 /* Function: simple_overlay_update
3559 If OSECT is NULL, then update all sections' mapped state
3560 (after re-reading the entire target _ovly_table).
3561 If OSECT is non-NULL, then try to find a matching entry in the
3562 cached ovly_table and update only OSECT's mapped state.
3563 If a cached entry can't be found or the cache isn't valid, then
3564 re-read the entire cache, and go ahead and update all sections. */
3565
3566 void
3567 simple_overlay_update (struct obj_section *osect)
3568 {
3569 /* Were we given an osect to look up? NULL means do all of them. */
3570 if (osect)
3571 /* Have we got a cached copy of the target's overlay table? */
3572 if (cache_ovly_table != NULL)
3573 {
3574 /* Does its cached location match what's currently in the
3575 symtab? */
3576 struct bound_minimal_symbol minsym
3577 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3578
3579 if (minsym.minsym == NULL)
3580 error (_("Error reading inferior's overlay table: couldn't "
3581 "find `_ovly_table' array\n"
3582 "in inferior. Use `overlay manual' mode."));
3583
3584 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3585 /* Then go ahead and try to look up this single section in
3586 the cache. */
3587 if (simple_overlay_update_1 (osect))
3588 /* Found it! We're done. */
3589 return;
3590 }
3591
3592 /* Cached table no good: need to read the entire table anew.
3593 Or else we want all the sections, in which case it's actually
3594 more efficient to read the whole table in one block anyway. */
3595
3596 if (! simple_read_overlay_table ())
3597 return;
3598
3599 /* Now may as well update all sections, even if only one was requested. */
3600 for (objfile *objfile : current_program_space->objfiles ())
3601 ALL_OBJFILE_OSECTIONS (objfile, osect)
3602 if (section_is_overlay (osect))
3603 {
3604 int i;
3605 asection *bsect = osect->the_bfd_section;
3606
3607 for (i = 0; i < cache_novlys; i++)
3608 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3609 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3610 { /* obj_section matches i'th entry in ovly_table. */
3611 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3612 break; /* finished with inner for loop: break out. */
3613 }
3614 }
3615 }
3616
3617 /* Set the output sections and output offsets for section SECTP in
3618 ABFD. The relocation code in BFD will read these offsets, so we
3619 need to be sure they're initialized. We map each section to itself,
3620 with no offset; this means that SECTP->vma will be honored. */
3621
3622 static void
3623 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3624 {
3625 sectp->output_section = sectp;
3626 sectp->output_offset = 0;
3627 }
3628
3629 /* Default implementation for sym_relocate. */
3630
3631 bfd_byte *
3632 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3633 bfd_byte *buf)
3634 {
3635 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3636 DWO file. */
3637 bfd *abfd = sectp->owner;
3638
3639 /* We're only interested in sections with relocation
3640 information. */
3641 if ((sectp->flags & SEC_RELOC) == 0)
3642 return NULL;
3643
3644 /* We will handle section offsets properly elsewhere, so relocate as if
3645 all sections begin at 0. */
3646 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3647
3648 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3649 }
3650
3651 /* Relocate the contents of a debug section SECTP in ABFD. The
3652 contents are stored in BUF if it is non-NULL, or returned in a
3653 malloc'd buffer otherwise.
3654
3655 For some platforms and debug info formats, shared libraries contain
3656 relocations against the debug sections (particularly for DWARF-2;
3657 one affected platform is PowerPC GNU/Linux, although it depends on
3658 the version of the linker in use). Also, ELF object files naturally
3659 have unresolved relocations for their debug sections. We need to apply
3660 the relocations in order to get the locations of symbols correct.
3661 Another example that may require relocation processing, is the
3662 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3663 debug section. */
3664
3665 bfd_byte *
3666 symfile_relocate_debug_section (struct objfile *objfile,
3667 asection *sectp, bfd_byte *buf)
3668 {
3669 gdb_assert (objfile->sf->sym_relocate);
3670
3671 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3672 }
3673
3674 struct symfile_segment_data *
3675 get_symfile_segment_data (bfd *abfd)
3676 {
3677 const struct sym_fns *sf = find_sym_fns (abfd);
3678
3679 if (sf == NULL)
3680 return NULL;
3681
3682 return sf->sym_segments (abfd);
3683 }
3684
3685 void
3686 free_symfile_segment_data (struct symfile_segment_data *data)
3687 {
3688 xfree (data->segment_bases);
3689 xfree (data->segment_sizes);
3690 xfree (data->segment_info);
3691 xfree (data);
3692 }
3693
3694 /* Given:
3695 - DATA, containing segment addresses from the object file ABFD, and
3696 the mapping from ABFD's sections onto the segments that own them,
3697 and
3698 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3699 segment addresses reported by the target,
3700 store the appropriate offsets for each section in OFFSETS.
3701
3702 If there are fewer entries in SEGMENT_BASES than there are segments
3703 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3704
3705 If there are more entries, then ignore the extra. The target may
3706 not be able to distinguish between an empty data segment and a
3707 missing data segment; a missing text segment is less plausible. */
3708
3709 int
3710 symfile_map_offsets_to_segments (bfd *abfd,
3711 const struct symfile_segment_data *data,
3712 struct section_offsets *offsets,
3713 int num_segment_bases,
3714 const CORE_ADDR *segment_bases)
3715 {
3716 int i;
3717 asection *sect;
3718
3719 /* It doesn't make sense to call this function unless you have some
3720 segment base addresses. */
3721 gdb_assert (num_segment_bases > 0);
3722
3723 /* If we do not have segment mappings for the object file, we
3724 can not relocate it by segments. */
3725 gdb_assert (data != NULL);
3726 gdb_assert (data->num_segments > 0);
3727
3728 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3729 {
3730 int which = data->segment_info[i];
3731
3732 gdb_assert (0 <= which && which <= data->num_segments);
3733
3734 /* Don't bother computing offsets for sections that aren't
3735 loaded as part of any segment. */
3736 if (! which)
3737 continue;
3738
3739 /* Use the last SEGMENT_BASES entry as the address of any extra
3740 segments mentioned in DATA->segment_info. */
3741 if (which > num_segment_bases)
3742 which = num_segment_bases;
3743
3744 offsets->offsets[i] = (segment_bases[which - 1]
3745 - data->segment_bases[which - 1]);
3746 }
3747
3748 return 1;
3749 }
3750
3751 static void
3752 symfile_find_segment_sections (struct objfile *objfile)
3753 {
3754 bfd *abfd = objfile->obfd;
3755 int i;
3756 asection *sect;
3757 struct symfile_segment_data *data;
3758
3759 data = get_symfile_segment_data (objfile->obfd);
3760 if (data == NULL)
3761 return;
3762
3763 if (data->num_segments != 1 && data->num_segments != 2)
3764 {
3765 free_symfile_segment_data (data);
3766 return;
3767 }
3768
3769 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3770 {
3771 int which = data->segment_info[i];
3772
3773 if (which == 1)
3774 {
3775 if (objfile->sect_index_text == -1)
3776 objfile->sect_index_text = sect->index;
3777
3778 if (objfile->sect_index_rodata == -1)
3779 objfile->sect_index_rodata = sect->index;
3780 }
3781 else if (which == 2)
3782 {
3783 if (objfile->sect_index_data == -1)
3784 objfile->sect_index_data = sect->index;
3785
3786 if (objfile->sect_index_bss == -1)
3787 objfile->sect_index_bss = sect->index;
3788 }
3789 }
3790
3791 free_symfile_segment_data (data);
3792 }
3793
3794 /* Listen for free_objfile events. */
3795
3796 static void
3797 symfile_free_objfile (struct objfile *objfile)
3798 {
3799 /* Remove the target sections owned by this objfile. */
3800 if (objfile != NULL)
3801 remove_target_sections ((void *) objfile);
3802 }
3803
3804 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3805 Expand all symtabs that match the specified criteria.
3806 See quick_symbol_functions.expand_symtabs_matching for details. */
3807
3808 void
3809 expand_symtabs_matching
3810 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3811 const lookup_name_info &lookup_name,
3812 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3813 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3814 enum search_domain kind)
3815 {
3816 for (objfile *objfile : current_program_space->objfiles ())
3817 {
3818 if (objfile->sf)
3819 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3820 lookup_name,
3821 symbol_matcher,
3822 expansion_notify, kind);
3823 }
3824 }
3825
3826 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3827 Map function FUN over every file.
3828 See quick_symbol_functions.map_symbol_filenames for details. */
3829
3830 void
3831 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3832 int need_fullname)
3833 {
3834 for (objfile *objfile : current_program_space->objfiles ())
3835 {
3836 if (objfile->sf)
3837 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3838 need_fullname);
3839 }
3840 }
3841
3842 #if GDB_SELF_TEST
3843
3844 namespace selftests {
3845 namespace filename_language {
3846
3847 static void test_filename_language ()
3848 {
3849 /* This test messes up the filename_language_table global. */
3850 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3851
3852 /* Test deducing an unknown extension. */
3853 language lang = deduce_language_from_filename ("myfile.blah");
3854 SELF_CHECK (lang == language_unknown);
3855
3856 /* Test deducing a known extension. */
3857 lang = deduce_language_from_filename ("myfile.c");
3858 SELF_CHECK (lang == language_c);
3859
3860 /* Test adding a new extension using the internal API. */
3861 add_filename_language (".blah", language_pascal);
3862 lang = deduce_language_from_filename ("myfile.blah");
3863 SELF_CHECK (lang == language_pascal);
3864 }
3865
3866 static void
3867 test_set_ext_lang_command ()
3868 {
3869 /* This test messes up the filename_language_table global. */
3870 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3871
3872 /* Confirm that the .hello extension is not known. */
3873 language lang = deduce_language_from_filename ("cake.hello");
3874 SELF_CHECK (lang == language_unknown);
3875
3876 /* Test adding a new extension using the CLI command. */
3877 auto args_holder = make_unique_xstrdup (".hello rust");
3878 ext_args = args_holder.get ();
3879 set_ext_lang_command (NULL, 1, NULL);
3880
3881 lang = deduce_language_from_filename ("cake.hello");
3882 SELF_CHECK (lang == language_rust);
3883
3884 /* Test overriding an existing extension using the CLI command. */
3885 int size_before = filename_language_table.size ();
3886 args_holder.reset (xstrdup (".hello pascal"));
3887 ext_args = args_holder.get ();
3888 set_ext_lang_command (NULL, 1, NULL);
3889 int size_after = filename_language_table.size ();
3890
3891 lang = deduce_language_from_filename ("cake.hello");
3892 SELF_CHECK (lang == language_pascal);
3893 SELF_CHECK (size_before == size_after);
3894 }
3895
3896 } /* namespace filename_language */
3897 } /* namespace selftests */
3898
3899 #endif /* GDB_SELF_TEST */
3900
3901 void
3902 _initialize_symfile (void)
3903 {
3904 struct cmd_list_element *c;
3905
3906 gdb::observers::free_objfile.attach (symfile_free_objfile);
3907
3908 #define READNOW_READNEVER_HELP \
3909 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3910 immediately. This makes the command slower, but may make future operations\n\
3911 faster.\n\
3912 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3913 symbolic debug information."
3914
3915 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3916 Load symbol table from executable file FILE.\n\
3917 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3918 OFF is an optional offset which is added to each section address.\n\
3919 The `file' command can also load symbol tables, as well as setting the file\n\
3920 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3921 set_cmd_completer (c, filename_completer);
3922
3923 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3924 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3925 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3926 [-s SECT-NAME SECT-ADDR]...\n\
3927 ADDR is the starting address of the file's text.\n\
3928 Each '-s' argument provides a section name and address, and\n\
3929 should be specified if the data and bss segments are not contiguous\n\
3930 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3931 OFF is an optional offset which is added to the default load addresses\n\
3932 of all sections for which no other address was specified.\n"
3933 READNOW_READNEVER_HELP),
3934 &cmdlist);
3935 set_cmd_completer (c, filename_completer);
3936
3937 c = add_cmd ("remove-symbol-file", class_files,
3938 remove_symbol_file_command, _("\
3939 Remove a symbol file added via the add-symbol-file command.\n\
3940 Usage: remove-symbol-file FILENAME\n\
3941 remove-symbol-file -a ADDRESS\n\
3942 The file to remove can be identified by its filename or by an address\n\
3943 that lies within the boundaries of this symbol file in memory."),
3944 &cmdlist);
3945
3946 c = add_cmd ("load", class_files, load_command, _("\
3947 Dynamically load FILE into the running program, and record its symbols\n\
3948 for access from GDB.\n\
3949 Usage: load [FILE] [OFFSET]\n\
3950 An optional load OFFSET may also be given as a literal address.\n\
3951 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3952 on its own."), &cmdlist);
3953 set_cmd_completer (c, filename_completer);
3954
3955 add_prefix_cmd ("overlay", class_support, overlay_command,
3956 _("Commands for debugging overlays."), &overlaylist,
3957 "overlay ", 0, &cmdlist);
3958
3959 add_com_alias ("ovly", "overlay", class_alias, 1);
3960 add_com_alias ("ov", "overlay", class_alias, 1);
3961
3962 add_cmd ("map-overlay", class_support, map_overlay_command,
3963 _("Assert that an overlay section is mapped."), &overlaylist);
3964
3965 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3966 _("Assert that an overlay section is unmapped."), &overlaylist);
3967
3968 add_cmd ("list-overlays", class_support, list_overlays_command,
3969 _("List mappings of overlay sections."), &overlaylist);
3970
3971 add_cmd ("manual", class_support, overlay_manual_command,
3972 _("Enable overlay debugging."), &overlaylist);
3973 add_cmd ("off", class_support, overlay_off_command,
3974 _("Disable overlay debugging."), &overlaylist);
3975 add_cmd ("auto", class_support, overlay_auto_command,
3976 _("Enable automatic overlay debugging."), &overlaylist);
3977 add_cmd ("load-target", class_support, overlay_load_command,
3978 _("Read the overlay mapping state from the target."), &overlaylist);
3979
3980 /* Filename extension to source language lookup table: */
3981 add_setshow_string_noescape_cmd ("extension-language", class_files,
3982 &ext_args, _("\
3983 Set mapping between filename extension and source language."), _("\
3984 Show mapping between filename extension and source language."), _("\
3985 Usage: set extension-language .foo bar"),
3986 set_ext_lang_command,
3987 show_ext_args,
3988 &setlist, &showlist);
3989
3990 add_info ("extensions", info_ext_lang_command,
3991 _("All filename extensions associated with a source language."));
3992
3993 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3994 &debug_file_directory, _("\
3995 Set the directories where separate debug symbols are searched for."), _("\
3996 Show the directories where separate debug symbols are searched for."), _("\
3997 Separate debug symbols are first searched for in the same\n\
3998 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3999 and lastly at the path of the directory of the binary with\n\
4000 each global debug-file-directory component prepended."),
4001 NULL,
4002 show_debug_file_directory,
4003 &setlist, &showlist);
4004
4005 add_setshow_enum_cmd ("symbol-loading", no_class,
4006 print_symbol_loading_enums, &print_symbol_loading,
4007 _("\
4008 Set printing of symbol loading messages."), _("\
4009 Show printing of symbol loading messages."), _("\
4010 off == turn all messages off\n\
4011 brief == print messages for the executable,\n\
4012 and brief messages for shared libraries\n\
4013 full == print messages for the executable,\n\
4014 and messages for each shared library."),
4015 NULL,
4016 NULL,
4017 &setprintlist, &showprintlist);
4018
4019 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4020 &separate_debug_file_debug, _("\
4021 Set printing of separate debug info file search debug."), _("\
4022 Show printing of separate debug info file search debug."), _("\
4023 When on, GDB prints the searched locations while looking for separate debug \
4024 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4025
4026 #if GDB_SELF_TEST
4027 selftests::register_test
4028 ("filename_language", selftests::filename_language::test_filename_language);
4029 selftests::register_test
4030 ("set_ext_lang_command",
4031 selftests::filename_language::test_set_ext_lang_command);
4032 #endif
4033 }