]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
[binutils, ARM, 4/16] BF insns infrastructure with array of relocs in struct arm_it
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "common/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "common/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
96 const char *name, const domain_enum domain);
97
98 /* Program space key for finding name and language of "main". */
99
100 static const struct program_space_data *main_progspace_key;
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 /* Name of "main". */
107
108 char *name_of_main;
109
110 /* Language of "main". */
111
112 enum language language_of_main;
113 };
114
115 /* Program space key for finding its symbol cache. */
116
117 static const struct program_space_data *symbol_cache_key;
118
119 /* The default symbol cache size.
120 There is no extra cpu cost for large N (except when flushing the cache,
121 which is rare). The value here is just a first attempt. A better default
122 value may be higher or lower. A prime number can make up for a bad hash
123 computation, so that's why the number is what it is. */
124 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
125
126 /* The maximum symbol cache size.
127 There's no method to the decision of what value to use here, other than
128 there's no point in allowing a user typo to make gdb consume all memory. */
129 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
130
131 /* symbol_cache_lookup returns this if a previous lookup failed to find the
132 symbol in any objfile. */
133 #define SYMBOL_LOOKUP_FAILED \
134 ((struct block_symbol) {(struct symbol *) 1, NULL})
135 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
136
137 /* Recording lookups that don't find the symbol is just as important, if not
138 more so, than recording found symbols. */
139
140 enum symbol_cache_slot_state
141 {
142 SYMBOL_SLOT_UNUSED,
143 SYMBOL_SLOT_NOT_FOUND,
144 SYMBOL_SLOT_FOUND
145 };
146
147 struct symbol_cache_slot
148 {
149 enum symbol_cache_slot_state state;
150
151 /* The objfile that was current when the symbol was looked up.
152 This is only needed for global blocks, but for simplicity's sake
153 we allocate the space for both. If data shows the extra space used
154 for static blocks is a problem, we can split things up then.
155
156 Global blocks need cache lookup to include the objfile context because
157 we need to account for gdbarch_iterate_over_objfiles_in_search_order
158 which can traverse objfiles in, effectively, any order, depending on
159 the current objfile, thus affecting which symbol is found. Normally,
160 only the current objfile is searched first, and then the rest are
161 searched in recorded order; but putting cache lookup inside
162 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
163 Instead we just make the current objfile part of the context of
164 cache lookup. This means we can record the same symbol multiple times,
165 each with a different "current objfile" that was in effect when the
166 lookup was saved in the cache, but cache space is pretty cheap. */
167 const struct objfile *objfile_context;
168
169 union
170 {
171 struct block_symbol found;
172 struct
173 {
174 char *name;
175 domain_enum domain;
176 } not_found;
177 } value;
178 };
179
180 /* Symbols don't specify global vs static block.
181 So keep them in separate caches. */
182
183 struct block_symbol_cache
184 {
185 unsigned int hits;
186 unsigned int misses;
187 unsigned int collisions;
188
189 /* SYMBOLS is a variable length array of this size.
190 One can imagine that in general one cache (global/static) should be a
191 fraction of the size of the other, but there's no data at the moment
192 on which to decide. */
193 unsigned int size;
194
195 struct symbol_cache_slot symbols[1];
196 };
197
198 /* The symbol cache.
199
200 Searching for symbols in the static and global blocks over multiple objfiles
201 again and again can be slow, as can searching very big objfiles. This is a
202 simple cache to improve symbol lookup performance, which is critical to
203 overall gdb performance.
204
205 Symbols are hashed on the name, its domain, and block.
206 They are also hashed on their objfile for objfile-specific lookups. */
207
208 struct symbol_cache
209 {
210 struct block_symbol_cache *global_symbols;
211 struct block_symbol_cache *static_symbols;
212 };
213
214 /* When non-zero, print debugging messages related to symtab creation. */
215 unsigned int symtab_create_debug = 0;
216
217 /* When non-zero, print debugging messages related to symbol lookup. */
218 unsigned int symbol_lookup_debug = 0;
219
220 /* The size of the cache is staged here. */
221 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* The current value of the symbol cache size.
224 This is saved so that if the user enters a value too big we can restore
225 the original value from here. */
226 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
227
228 /* Non-zero if a file may be known by two different basenames.
229 This is the uncommon case, and significantly slows down gdb.
230 Default set to "off" to not slow down the common case. */
231 int basenames_may_differ = 0;
232
233 /* Allow the user to configure the debugger behavior with respect
234 to multiple-choice menus when more than one symbol matches during
235 a symbol lookup. */
236
237 const char multiple_symbols_ask[] = "ask";
238 const char multiple_symbols_all[] = "all";
239 const char multiple_symbols_cancel[] = "cancel";
240 static const char *const multiple_symbols_modes[] =
241 {
242 multiple_symbols_ask,
243 multiple_symbols_all,
244 multiple_symbols_cancel,
245 NULL
246 };
247 static const char *multiple_symbols_mode = multiple_symbols_all;
248
249 /* Read-only accessor to AUTO_SELECT_MODE. */
250
251 const char *
252 multiple_symbols_select_mode (void)
253 {
254 return multiple_symbols_mode;
255 }
256
257 /* Return the name of a domain_enum. */
258
259 const char *
260 domain_name (domain_enum e)
261 {
262 switch (e)
263 {
264 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
265 case VAR_DOMAIN: return "VAR_DOMAIN";
266 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
267 case MODULE_DOMAIN: return "MODULE_DOMAIN";
268 case LABEL_DOMAIN: return "LABEL_DOMAIN";
269 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
270 default: gdb_assert_not_reached ("bad domain_enum");
271 }
272 }
273
274 /* Return the name of a search_domain . */
275
276 const char *
277 search_domain_name (enum search_domain e)
278 {
279 switch (e)
280 {
281 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
282 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
283 case TYPES_DOMAIN: return "TYPES_DOMAIN";
284 case ALL_DOMAIN: return "ALL_DOMAIN";
285 default: gdb_assert_not_reached ("bad search_domain");
286 }
287 }
288
289 /* See symtab.h. */
290
291 struct symtab *
292 compunit_primary_filetab (const struct compunit_symtab *cust)
293 {
294 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
295
296 /* The primary file symtab is the first one in the list. */
297 return COMPUNIT_FILETABS (cust);
298 }
299
300 /* See symtab.h. */
301
302 enum language
303 compunit_language (const struct compunit_symtab *cust)
304 {
305 struct symtab *symtab = compunit_primary_filetab (cust);
306
307 /* The language of the compunit symtab is the language of its primary
308 source file. */
309 return SYMTAB_LANGUAGE (symtab);
310 }
311
312 /* See symtab.h. */
313
314 bool
315 minimal_symbol::data_p () const
316 {
317 return type == mst_data
318 || type == mst_bss
319 || type == mst_abs
320 || type == mst_file_data
321 || type == mst_file_bss;
322 }
323
324 /* See symtab.h. */
325
326 bool
327 minimal_symbol::text_p () const
328 {
329 return type == mst_text
330 || type == mst_text_gnu_ifunc
331 || type == mst_data_gnu_ifunc
332 || type == mst_slot_got_plt
333 || type == mst_solib_trampoline
334 || type == mst_file_text;
335 }
336
337 /* See whether FILENAME matches SEARCH_NAME using the rule that we
338 advertise to the user. (The manual's description of linespecs
339 describes what we advertise). Returns true if they match, false
340 otherwise. */
341
342 int
343 compare_filenames_for_search (const char *filename, const char *search_name)
344 {
345 int len = strlen (filename);
346 size_t search_len = strlen (search_name);
347
348 if (len < search_len)
349 return 0;
350
351 /* The tail of FILENAME must match. */
352 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
353 return 0;
354
355 /* Either the names must completely match, or the character
356 preceding the trailing SEARCH_NAME segment of FILENAME must be a
357 directory separator.
358
359 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
360 cannot match FILENAME "/path//dir/file.c" - as user has requested
361 absolute path. The sama applies for "c:\file.c" possibly
362 incorrectly hypothetically matching "d:\dir\c:\file.c".
363
364 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
365 compatible with SEARCH_NAME "file.c". In such case a compiler had
366 to put the "c:file.c" name into debug info. Such compatibility
367 works only on GDB built for DOS host. */
368 return (len == search_len
369 || (!IS_ABSOLUTE_PATH (search_name)
370 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
371 || (HAS_DRIVE_SPEC (filename)
372 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
373 }
374
375 /* Same as compare_filenames_for_search, but for glob-style patterns.
376 Heads up on the order of the arguments. They match the order of
377 compare_filenames_for_search, but it's the opposite of the order of
378 arguments to gdb_filename_fnmatch. */
379
380 int
381 compare_glob_filenames_for_search (const char *filename,
382 const char *search_name)
383 {
384 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
385 all /s have to be explicitly specified. */
386 int file_path_elements = count_path_elements (filename);
387 int search_path_elements = count_path_elements (search_name);
388
389 if (search_path_elements > file_path_elements)
390 return 0;
391
392 if (IS_ABSOLUTE_PATH (search_name))
393 {
394 return (search_path_elements == file_path_elements
395 && gdb_filename_fnmatch (search_name, filename,
396 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
397 }
398
399 {
400 const char *file_to_compare
401 = strip_leading_path_elements (filename,
402 file_path_elements - search_path_elements);
403
404 return gdb_filename_fnmatch (search_name, file_to_compare,
405 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
406 }
407 }
408
409 /* Check for a symtab of a specific name by searching some symtabs.
410 This is a helper function for callbacks of iterate_over_symtabs.
411
412 If NAME is not absolute, then REAL_PATH is NULL
413 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
414
415 The return value, NAME, REAL_PATH and CALLBACK are identical to the
416 `map_symtabs_matching_filename' method of quick_symbol_functions.
417
418 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
419 Each symtab within the specified compunit symtab is also searched.
420 AFTER_LAST is one past the last compunit symtab to search; NULL means to
421 search until the end of the list. */
422
423 bool
424 iterate_over_some_symtabs (const char *name,
425 const char *real_path,
426 struct compunit_symtab *first,
427 struct compunit_symtab *after_last,
428 gdb::function_view<bool (symtab *)> callback)
429 {
430 struct compunit_symtab *cust;
431 const char* base_name = lbasename (name);
432
433 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
434 {
435 for (symtab *s : compunit_filetabs (cust))
436 {
437 if (compare_filenames_for_search (s->filename, name))
438 {
439 if (callback (s))
440 return true;
441 continue;
442 }
443
444 /* Before we invoke realpath, which can get expensive when many
445 files are involved, do a quick comparison of the basenames. */
446 if (! basenames_may_differ
447 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
448 continue;
449
450 if (compare_filenames_for_search (symtab_to_fullname (s), name))
451 {
452 if (callback (s))
453 return true;
454 continue;
455 }
456
457 /* If the user gave us an absolute path, try to find the file in
458 this symtab and use its absolute path. */
459 if (real_path != NULL)
460 {
461 const char *fullname = symtab_to_fullname (s);
462
463 gdb_assert (IS_ABSOLUTE_PATH (real_path));
464 gdb_assert (IS_ABSOLUTE_PATH (name));
465 if (FILENAME_CMP (real_path, fullname) == 0)
466 {
467 if (callback (s))
468 return true;
469 continue;
470 }
471 }
472 }
473 }
474
475 return false;
476 }
477
478 /* Check for a symtab of a specific name; first in symtabs, then in
479 psymtabs. *If* there is no '/' in the name, a match after a '/'
480 in the symtab filename will also work.
481
482 Calls CALLBACK with each symtab that is found. If CALLBACK returns
483 true, the search stops. */
484
485 void
486 iterate_over_symtabs (const char *name,
487 gdb::function_view<bool (symtab *)> callback)
488 {
489 gdb::unique_xmalloc_ptr<char> real_path;
490
491 /* Here we are interested in canonicalizing an absolute path, not
492 absolutizing a relative path. */
493 if (IS_ABSOLUTE_PATH (name))
494 {
495 real_path = gdb_realpath (name);
496 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
497 }
498
499 for (objfile *objfile : current_program_space->objfiles ())
500 {
501 if (iterate_over_some_symtabs (name, real_path.get (),
502 objfile->compunit_symtabs, NULL,
503 callback))
504 return;
505 }
506
507 /* Same search rules as above apply here, but now we look thru the
508 psymtabs. */
509
510 for (objfile *objfile : current_program_space->objfiles ())
511 {
512 if (objfile->sf
513 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
514 name,
515 real_path.get (),
516 callback))
517 return;
518 }
519 }
520
521 /* A wrapper for iterate_over_symtabs that returns the first matching
522 symtab, or NULL. */
523
524 struct symtab *
525 lookup_symtab (const char *name)
526 {
527 struct symtab *result = NULL;
528
529 iterate_over_symtabs (name, [&] (symtab *symtab)
530 {
531 result = symtab;
532 return true;
533 });
534
535 return result;
536 }
537
538 \f
539 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
540 full method name, which consist of the class name (from T), the unadorned
541 method name from METHOD_ID, and the signature for the specific overload,
542 specified by SIGNATURE_ID. Note that this function is g++ specific. */
543
544 char *
545 gdb_mangle_name (struct type *type, int method_id, int signature_id)
546 {
547 int mangled_name_len;
548 char *mangled_name;
549 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
550 struct fn_field *method = &f[signature_id];
551 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
552 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
553 const char *newname = TYPE_NAME (type);
554
555 /* Does the form of physname indicate that it is the full mangled name
556 of a constructor (not just the args)? */
557 int is_full_physname_constructor;
558
559 int is_constructor;
560 int is_destructor = is_destructor_name (physname);
561 /* Need a new type prefix. */
562 const char *const_prefix = method->is_const ? "C" : "";
563 const char *volatile_prefix = method->is_volatile ? "V" : "";
564 char buf[20];
565 int len = (newname == NULL ? 0 : strlen (newname));
566
567 /* Nothing to do if physname already contains a fully mangled v3 abi name
568 or an operator name. */
569 if ((physname[0] == '_' && physname[1] == 'Z')
570 || is_operator_name (field_name))
571 return xstrdup (physname);
572
573 is_full_physname_constructor = is_constructor_name (physname);
574
575 is_constructor = is_full_physname_constructor
576 || (newname && strcmp (field_name, newname) == 0);
577
578 if (!is_destructor)
579 is_destructor = (startswith (physname, "__dt"));
580
581 if (is_destructor || is_full_physname_constructor)
582 {
583 mangled_name = (char *) xmalloc (strlen (physname) + 1);
584 strcpy (mangled_name, physname);
585 return mangled_name;
586 }
587
588 if (len == 0)
589 {
590 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
591 }
592 else if (physname[0] == 't' || physname[0] == 'Q')
593 {
594 /* The physname for template and qualified methods already includes
595 the class name. */
596 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
597 newname = NULL;
598 len = 0;
599 }
600 else
601 {
602 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
603 volatile_prefix, len);
604 }
605 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
606 + strlen (buf) + len + strlen (physname) + 1);
607
608 mangled_name = (char *) xmalloc (mangled_name_len);
609 if (is_constructor)
610 mangled_name[0] = '\0';
611 else
612 strcpy (mangled_name, field_name);
613
614 strcat (mangled_name, buf);
615 /* If the class doesn't have a name, i.e. newname NULL, then we just
616 mangle it using 0 for the length of the class. Thus it gets mangled
617 as something starting with `::' rather than `classname::'. */
618 if (newname != NULL)
619 strcat (mangled_name, newname);
620
621 strcat (mangled_name, physname);
622 return (mangled_name);
623 }
624
625 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
626 correctly allocated. */
627
628 void
629 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
630 const char *name,
631 struct obstack *obstack)
632 {
633 if (gsymbol->language == language_ada)
634 {
635 if (name == NULL)
636 {
637 gsymbol->ada_mangled = 0;
638 gsymbol->language_specific.obstack = obstack;
639 }
640 else
641 {
642 gsymbol->ada_mangled = 1;
643 gsymbol->language_specific.demangled_name = name;
644 }
645 }
646 else
647 gsymbol->language_specific.demangled_name = name;
648 }
649
650 /* Return the demangled name of GSYMBOL. */
651
652 const char *
653 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
654 {
655 if (gsymbol->language == language_ada)
656 {
657 if (!gsymbol->ada_mangled)
658 return NULL;
659 /* Fall through. */
660 }
661
662 return gsymbol->language_specific.demangled_name;
663 }
664
665 \f
666 /* Initialize the language dependent portion of a symbol
667 depending upon the language for the symbol. */
668
669 void
670 symbol_set_language (struct general_symbol_info *gsymbol,
671 enum language language,
672 struct obstack *obstack)
673 {
674 gsymbol->language = language;
675 if (gsymbol->language == language_cplus
676 || gsymbol->language == language_d
677 || gsymbol->language == language_go
678 || gsymbol->language == language_objc
679 || gsymbol->language == language_fortran)
680 {
681 symbol_set_demangled_name (gsymbol, NULL, obstack);
682 }
683 else if (gsymbol->language == language_ada)
684 {
685 gdb_assert (gsymbol->ada_mangled == 0);
686 gsymbol->language_specific.obstack = obstack;
687 }
688 else
689 {
690 memset (&gsymbol->language_specific, 0,
691 sizeof (gsymbol->language_specific));
692 }
693 }
694
695 /* Functions to initialize a symbol's mangled name. */
696
697 /* Objects of this type are stored in the demangled name hash table. */
698 struct demangled_name_entry
699 {
700 const char *mangled;
701 char demangled[1];
702 };
703
704 /* Hash function for the demangled name hash. */
705
706 static hashval_t
707 hash_demangled_name_entry (const void *data)
708 {
709 const struct demangled_name_entry *e
710 = (const struct demangled_name_entry *) data;
711
712 return htab_hash_string (e->mangled);
713 }
714
715 /* Equality function for the demangled name hash. */
716
717 static int
718 eq_demangled_name_entry (const void *a, const void *b)
719 {
720 const struct demangled_name_entry *da
721 = (const struct demangled_name_entry *) a;
722 const struct demangled_name_entry *db
723 = (const struct demangled_name_entry *) b;
724
725 return strcmp (da->mangled, db->mangled) == 0;
726 }
727
728 /* Create the hash table used for demangled names. Each hash entry is
729 a pair of strings; one for the mangled name and one for the demangled
730 name. The entry is hashed via just the mangled name. */
731
732 static void
733 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
734 {
735 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
736 The hash table code will round this up to the next prime number.
737 Choosing a much larger table size wastes memory, and saves only about
738 1% in symbol reading. */
739
740 per_bfd->demangled_names_hash.reset (htab_create_alloc
741 (256, hash_demangled_name_entry, eq_demangled_name_entry,
742 NULL, xcalloc, xfree));
743 }
744
745 /* Try to determine the demangled name for a symbol, based on the
746 language of that symbol. If the language is set to language_auto,
747 it will attempt to find any demangling algorithm that works and
748 then set the language appropriately. The returned name is allocated
749 by the demangler and should be xfree'd. */
750
751 static char *
752 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
753 const char *mangled)
754 {
755 char *demangled = NULL;
756 int i;
757
758 if (gsymbol->language == language_unknown)
759 gsymbol->language = language_auto;
760
761 if (gsymbol->language != language_auto)
762 {
763 const struct language_defn *lang = language_def (gsymbol->language);
764
765 language_sniff_from_mangled_name (lang, mangled, &demangled);
766 return demangled;
767 }
768
769 for (i = language_unknown; i < nr_languages; ++i)
770 {
771 enum language l = (enum language) i;
772 const struct language_defn *lang = language_def (l);
773
774 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
775 {
776 gsymbol->language = l;
777 return demangled;
778 }
779 }
780
781 return NULL;
782 }
783
784 /* Set both the mangled and demangled (if any) names for GSYMBOL based
785 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
786 objfile's obstack; but if COPY_NAME is 0 and if NAME is
787 NUL-terminated, then this function assumes that NAME is already
788 correctly saved (either permanently or with a lifetime tied to the
789 objfile), and it will not be copied.
790
791 The hash table corresponding to OBJFILE is used, and the memory
792 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
793 so the pointer can be discarded after calling this function. */
794
795 void
796 symbol_set_names (struct general_symbol_info *gsymbol,
797 const char *linkage_name, int len, int copy_name,
798 struct objfile_per_bfd_storage *per_bfd)
799 {
800 struct demangled_name_entry **slot;
801 /* A 0-terminated copy of the linkage name. */
802 const char *linkage_name_copy;
803 struct demangled_name_entry entry;
804
805 if (gsymbol->language == language_ada)
806 {
807 /* In Ada, we do the symbol lookups using the mangled name, so
808 we can save some space by not storing the demangled name. */
809 if (!copy_name)
810 gsymbol->name = linkage_name;
811 else
812 {
813 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
814 len + 1);
815
816 memcpy (name, linkage_name, len);
817 name[len] = '\0';
818 gsymbol->name = name;
819 }
820 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
821
822 return;
823 }
824
825 if (per_bfd->demangled_names_hash == NULL)
826 create_demangled_names_hash (per_bfd);
827
828 if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 alloc_name = (char *) alloca (len + 1);
833 memcpy (alloc_name, linkage_name, len);
834 alloc_name[len] = '\0';
835
836 linkage_name_copy = alloc_name;
837 }
838 else
839 linkage_name_copy = linkage_name;
840
841 /* Set the symbol language. */
842 char *demangled_name_ptr
843 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
844 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
845
846 entry.mangled = linkage_name_copy;
847 slot = ((struct demangled_name_entry **)
848 htab_find_slot (per_bfd->demangled_names_hash.get (),
849 &entry, INSERT));
850
851 /* If this name is not in the hash table, add it. */
852 if (*slot == NULL
853 /* A C version of the symbol may have already snuck into the table.
854 This happens to, e.g., main.init (__go_init_main). Cope. */
855 || (gsymbol->language == language_go
856 && (*slot)->demangled[0] == '\0'))
857 {
858 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
859
860 /* Suppose we have demangled_name==NULL, copy_name==0, and
861 linkage_name_copy==linkage_name. In this case, we already have the
862 mangled name saved, and we don't have a demangled name. So,
863 you might think we could save a little space by not recording
864 this in the hash table at all.
865
866 It turns out that it is actually important to still save such
867 an entry in the hash table, because storing this name gives
868 us better bcache hit rates for partial symbols. */
869 if (!copy_name && linkage_name_copy == linkage_name)
870 {
871 *slot
872 = ((struct demangled_name_entry *)
873 obstack_alloc (&per_bfd->storage_obstack,
874 offsetof (struct demangled_name_entry, demangled)
875 + demangled_len + 1));
876 (*slot)->mangled = linkage_name;
877 }
878 else
879 {
880 char *mangled_ptr;
881
882 /* If we must copy the mangled name, put it directly after
883 the demangled name so we can have a single
884 allocation. */
885 *slot
886 = ((struct demangled_name_entry *)
887 obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry, demangled)
889 + len + demangled_len + 2));
890 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
891 strcpy (mangled_ptr, linkage_name_copy);
892 (*slot)->mangled = mangled_ptr;
893 }
894
895 if (demangled_name != NULL)
896 strcpy ((*slot)->demangled, demangled_name.get());
897 else
898 (*slot)->demangled[0] = '\0';
899 }
900
901 gsymbol->name = (*slot)->mangled;
902 if ((*slot)->demangled[0] != '\0')
903 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
904 &per_bfd->storage_obstack);
905 else
906 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
907 }
908
909 /* Return the source code name of a symbol. In languages where
910 demangling is necessary, this is the demangled name. */
911
912 const char *
913 symbol_natural_name (const struct general_symbol_info *gsymbol)
914 {
915 switch (gsymbol->language)
916 {
917 case language_cplus:
918 case language_d:
919 case language_go:
920 case language_objc:
921 case language_fortran:
922 if (symbol_get_demangled_name (gsymbol) != NULL)
923 return symbol_get_demangled_name (gsymbol);
924 break;
925 case language_ada:
926 return ada_decode_symbol (gsymbol);
927 default:
928 break;
929 }
930 return gsymbol->name;
931 }
932
933 /* Return the demangled name for a symbol based on the language for
934 that symbol. If no demangled name exists, return NULL. */
935
936 const char *
937 symbol_demangled_name (const struct general_symbol_info *gsymbol)
938 {
939 const char *dem_name = NULL;
940
941 switch (gsymbol->language)
942 {
943 case language_cplus:
944 case language_d:
945 case language_go:
946 case language_objc:
947 case language_fortran:
948 dem_name = symbol_get_demangled_name (gsymbol);
949 break;
950 case language_ada:
951 dem_name = ada_decode_symbol (gsymbol);
952 break;
953 default:
954 break;
955 }
956 return dem_name;
957 }
958
959 /* Return the search name of a symbol---generally the demangled or
960 linkage name of the symbol, depending on how it will be searched for.
961 If there is no distinct demangled name, then returns the same value
962 (same pointer) as SYMBOL_LINKAGE_NAME. */
963
964 const char *
965 symbol_search_name (const struct general_symbol_info *gsymbol)
966 {
967 if (gsymbol->language == language_ada)
968 return gsymbol->name;
969 else
970 return symbol_natural_name (gsymbol);
971 }
972
973 /* See symtab.h. */
974
975 bool
976 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
977 const lookup_name_info &name)
978 {
979 symbol_name_matcher_ftype *name_match
980 = get_symbol_name_matcher (language_def (gsymbol->language), name);
981 return name_match (symbol_search_name (gsymbol), name, NULL);
982 }
983
984 \f
985
986 /* Return 1 if the two sections are the same, or if they could
987 plausibly be copies of each other, one in an original object
988 file and another in a separated debug file. */
989
990 int
991 matching_obj_sections (struct obj_section *obj_first,
992 struct obj_section *obj_second)
993 {
994 asection *first = obj_first? obj_first->the_bfd_section : NULL;
995 asection *second = obj_second? obj_second->the_bfd_section : NULL;
996
997 /* If they're the same section, then they match. */
998 if (first == second)
999 return 1;
1000
1001 /* If either is NULL, give up. */
1002 if (first == NULL || second == NULL)
1003 return 0;
1004
1005 /* This doesn't apply to absolute symbols. */
1006 if (first->owner == NULL || second->owner == NULL)
1007 return 0;
1008
1009 /* If they're in the same object file, they must be different sections. */
1010 if (first->owner == second->owner)
1011 return 0;
1012
1013 /* Check whether the two sections are potentially corresponding. They must
1014 have the same size, address, and name. We can't compare section indexes,
1015 which would be more reliable, because some sections may have been
1016 stripped. */
1017 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1018 return 0;
1019
1020 /* In-memory addresses may start at a different offset, relativize them. */
1021 if (bfd_get_section_vma (first->owner, first)
1022 - bfd_get_start_address (first->owner)
1023 != bfd_get_section_vma (second->owner, second)
1024 - bfd_get_start_address (second->owner))
1025 return 0;
1026
1027 if (bfd_get_section_name (first->owner, first) == NULL
1028 || bfd_get_section_name (second->owner, second) == NULL
1029 || strcmp (bfd_get_section_name (first->owner, first),
1030 bfd_get_section_name (second->owner, second)) != 0)
1031 return 0;
1032
1033 /* Otherwise check that they are in corresponding objfiles. */
1034
1035 struct objfile *obj = NULL;
1036 for (objfile *objfile : current_program_space->objfiles ())
1037 if (objfile->obfd == first->owner)
1038 {
1039 obj = objfile;
1040 break;
1041 }
1042 gdb_assert (obj != NULL);
1043
1044 if (obj->separate_debug_objfile != NULL
1045 && obj->separate_debug_objfile->obfd == second->owner)
1046 return 1;
1047 if (obj->separate_debug_objfile_backlink != NULL
1048 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1049 return 1;
1050
1051 return 0;
1052 }
1053
1054 /* See symtab.h. */
1055
1056 void
1057 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1058 {
1059 struct bound_minimal_symbol msymbol;
1060
1061 /* If we know that this is not a text address, return failure. This is
1062 necessary because we loop based on texthigh and textlow, which do
1063 not include the data ranges. */
1064 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1065 if (msymbol.minsym && msymbol.minsym->data_p ())
1066 return;
1067
1068 for (objfile *objfile : current_program_space->objfiles ())
1069 {
1070 struct compunit_symtab *cust = NULL;
1071
1072 if (objfile->sf)
1073 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1074 pc, section, 0);
1075 if (cust)
1076 return;
1077 }
1078 }
1079 \f
1080 /* Hash function for the symbol cache. */
1081
1082 static unsigned int
1083 hash_symbol_entry (const struct objfile *objfile_context,
1084 const char *name, domain_enum domain)
1085 {
1086 unsigned int hash = (uintptr_t) objfile_context;
1087
1088 if (name != NULL)
1089 hash += htab_hash_string (name);
1090
1091 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1092 to map to the same slot. */
1093 if (domain == STRUCT_DOMAIN)
1094 hash += VAR_DOMAIN * 7;
1095 else
1096 hash += domain * 7;
1097
1098 return hash;
1099 }
1100
1101 /* Equality function for the symbol cache. */
1102
1103 static int
1104 eq_symbol_entry (const struct symbol_cache_slot *slot,
1105 const struct objfile *objfile_context,
1106 const char *name, domain_enum domain)
1107 {
1108 const char *slot_name;
1109 domain_enum slot_domain;
1110
1111 if (slot->state == SYMBOL_SLOT_UNUSED)
1112 return 0;
1113
1114 if (slot->objfile_context != objfile_context)
1115 return 0;
1116
1117 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1118 {
1119 slot_name = slot->value.not_found.name;
1120 slot_domain = slot->value.not_found.domain;
1121 }
1122 else
1123 {
1124 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1125 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1126 }
1127
1128 /* NULL names match. */
1129 if (slot_name == NULL && name == NULL)
1130 {
1131 /* But there's no point in calling symbol_matches_domain in the
1132 SYMBOL_SLOT_FOUND case. */
1133 if (slot_domain != domain)
1134 return 0;
1135 }
1136 else if (slot_name != NULL && name != NULL)
1137 {
1138 /* It's important that we use the same comparison that was done
1139 the first time through. If the slot records a found symbol,
1140 then this means using the symbol name comparison function of
1141 the symbol's language with SYMBOL_SEARCH_NAME. See
1142 dictionary.c. It also means using symbol_matches_domain for
1143 found symbols. See block.c.
1144
1145 If the slot records a not-found symbol, then require a precise match.
1146 We could still be lax with whitespace like strcmp_iw though. */
1147
1148 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1149 {
1150 if (strcmp (slot_name, name) != 0)
1151 return 0;
1152 if (slot_domain != domain)
1153 return 0;
1154 }
1155 else
1156 {
1157 struct symbol *sym = slot->value.found.symbol;
1158 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1159
1160 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1161 return 0;
1162
1163 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1164 slot_domain, domain))
1165 return 0;
1166 }
1167 }
1168 else
1169 {
1170 /* Only one name is NULL. */
1171 return 0;
1172 }
1173
1174 return 1;
1175 }
1176
1177 /* Given a cache of size SIZE, return the size of the struct (with variable
1178 length array) in bytes. */
1179
1180 static size_t
1181 symbol_cache_byte_size (unsigned int size)
1182 {
1183 return (sizeof (struct block_symbol_cache)
1184 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1185 }
1186
1187 /* Resize CACHE. */
1188
1189 static void
1190 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1191 {
1192 /* If there's no change in size, don't do anything.
1193 All caches have the same size, so we can just compare with the size
1194 of the global symbols cache. */
1195 if ((cache->global_symbols != NULL
1196 && cache->global_symbols->size == new_size)
1197 || (cache->global_symbols == NULL
1198 && new_size == 0))
1199 return;
1200
1201 xfree (cache->global_symbols);
1202 xfree (cache->static_symbols);
1203
1204 if (new_size == 0)
1205 {
1206 cache->global_symbols = NULL;
1207 cache->static_symbols = NULL;
1208 }
1209 else
1210 {
1211 size_t total_size = symbol_cache_byte_size (new_size);
1212
1213 cache->global_symbols
1214 = (struct block_symbol_cache *) xcalloc (1, total_size);
1215 cache->static_symbols
1216 = (struct block_symbol_cache *) xcalloc (1, total_size);
1217 cache->global_symbols->size = new_size;
1218 cache->static_symbols->size = new_size;
1219 }
1220 }
1221
1222 /* Make a symbol cache of size SIZE. */
1223
1224 static struct symbol_cache *
1225 make_symbol_cache (unsigned int size)
1226 {
1227 struct symbol_cache *cache;
1228
1229 cache = XCNEW (struct symbol_cache);
1230 resize_symbol_cache (cache, symbol_cache_size);
1231 return cache;
1232 }
1233
1234 /* Free the space used by CACHE. */
1235
1236 static void
1237 free_symbol_cache (struct symbol_cache *cache)
1238 {
1239 xfree (cache->global_symbols);
1240 xfree (cache->static_symbols);
1241 xfree (cache);
1242 }
1243
1244 /* Return the symbol cache of PSPACE.
1245 Create one if it doesn't exist yet. */
1246
1247 static struct symbol_cache *
1248 get_symbol_cache (struct program_space *pspace)
1249 {
1250 struct symbol_cache *cache
1251 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1252
1253 if (cache == NULL)
1254 {
1255 cache = make_symbol_cache (symbol_cache_size);
1256 set_program_space_data (pspace, symbol_cache_key, cache);
1257 }
1258
1259 return cache;
1260 }
1261
1262 /* Delete the symbol cache of PSPACE.
1263 Called when PSPACE is destroyed. */
1264
1265 static void
1266 symbol_cache_cleanup (struct program_space *pspace, void *data)
1267 {
1268 struct symbol_cache *cache = (struct symbol_cache *) data;
1269
1270 free_symbol_cache (cache);
1271 }
1272
1273 /* Set the size of the symbol cache in all program spaces. */
1274
1275 static void
1276 set_symbol_cache_size (unsigned int new_size)
1277 {
1278 struct program_space *pspace;
1279
1280 ALL_PSPACES (pspace)
1281 {
1282 struct symbol_cache *cache
1283 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1284
1285 /* The pspace could have been created but not have a cache yet. */
1286 if (cache != NULL)
1287 resize_symbol_cache (cache, new_size);
1288 }
1289 }
1290
1291 /* Called when symbol-cache-size is set. */
1292
1293 static void
1294 set_symbol_cache_size_handler (const char *args, int from_tty,
1295 struct cmd_list_element *c)
1296 {
1297 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1298 {
1299 /* Restore the previous value.
1300 This is the value the "show" command prints. */
1301 new_symbol_cache_size = symbol_cache_size;
1302
1303 error (_("Symbol cache size is too large, max is %u."),
1304 MAX_SYMBOL_CACHE_SIZE);
1305 }
1306 symbol_cache_size = new_symbol_cache_size;
1307
1308 set_symbol_cache_size (symbol_cache_size);
1309 }
1310
1311 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1312 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1313 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1314 failed (and thus this one will too), or NULL if the symbol is not present
1315 in the cache.
1316 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1317 set to the cache and slot of the symbol to save the result of a full lookup
1318 attempt. */
1319
1320 static struct block_symbol
1321 symbol_cache_lookup (struct symbol_cache *cache,
1322 struct objfile *objfile_context, int block,
1323 const char *name, domain_enum domain,
1324 struct block_symbol_cache **bsc_ptr,
1325 struct symbol_cache_slot **slot_ptr)
1326 {
1327 struct block_symbol_cache *bsc;
1328 unsigned int hash;
1329 struct symbol_cache_slot *slot;
1330
1331 if (block == GLOBAL_BLOCK)
1332 bsc = cache->global_symbols;
1333 else
1334 bsc = cache->static_symbols;
1335 if (bsc == NULL)
1336 {
1337 *bsc_ptr = NULL;
1338 *slot_ptr = NULL;
1339 return {};
1340 }
1341
1342 hash = hash_symbol_entry (objfile_context, name, domain);
1343 slot = bsc->symbols + hash % bsc->size;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 *bsc_ptr = bsc;
1363 *slot_ptr = slot;
1364
1365 if (symbol_lookup_debug)
1366 {
1367 fprintf_unfiltered (gdb_stdlog,
1368 "%s block symbol cache miss for %s, %s\n",
1369 block == GLOBAL_BLOCK ? "Global" : "Static",
1370 name, domain_name (domain));
1371 }
1372 ++bsc->misses;
1373 return {};
1374 }
1375
1376 /* Clear out SLOT. */
1377
1378 static void
1379 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1380 {
1381 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1382 xfree (slot->value.not_found.name);
1383 slot->state = SYMBOL_SLOT_UNUSED;
1384 }
1385
1386 /* Mark SYMBOL as found in SLOT.
1387 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1388 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1389 necessarily the objfile the symbol was found in. */
1390
1391 static void
1392 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1393 struct symbol_cache_slot *slot,
1394 struct objfile *objfile_context,
1395 struct symbol *symbol,
1396 const struct block *block)
1397 {
1398 if (bsc == NULL)
1399 return;
1400 if (slot->state != SYMBOL_SLOT_UNUSED)
1401 {
1402 ++bsc->collisions;
1403 symbol_cache_clear_slot (slot);
1404 }
1405 slot->state = SYMBOL_SLOT_FOUND;
1406 slot->objfile_context = objfile_context;
1407 slot->value.found.symbol = symbol;
1408 slot->value.found.block = block;
1409 }
1410
1411 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1412 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1413 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1414
1415 static void
1416 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1417 struct symbol_cache_slot *slot,
1418 struct objfile *objfile_context,
1419 const char *name, domain_enum domain)
1420 {
1421 if (bsc == NULL)
1422 return;
1423 if (slot->state != SYMBOL_SLOT_UNUSED)
1424 {
1425 ++bsc->collisions;
1426 symbol_cache_clear_slot (slot);
1427 }
1428 slot->state = SYMBOL_SLOT_NOT_FOUND;
1429 slot->objfile_context = objfile_context;
1430 slot->value.not_found.name = xstrdup (name);
1431 slot->value.not_found.domain = domain;
1432 }
1433
1434 /* Flush the symbol cache of PSPACE. */
1435
1436 static void
1437 symbol_cache_flush (struct program_space *pspace)
1438 {
1439 struct symbol_cache *cache
1440 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1441 int pass;
1442
1443 if (cache == NULL)
1444 return;
1445 if (cache->global_symbols == NULL)
1446 {
1447 gdb_assert (symbol_cache_size == 0);
1448 gdb_assert (cache->static_symbols == NULL);
1449 return;
1450 }
1451
1452 /* If the cache is untouched since the last flush, early exit.
1453 This is important for performance during the startup of a program linked
1454 with 100s (or 1000s) of shared libraries. */
1455 if (cache->global_symbols->misses == 0
1456 && cache->static_symbols->misses == 0)
1457 return;
1458
1459 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1460 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1461
1462 for (pass = 0; pass < 2; ++pass)
1463 {
1464 struct block_symbol_cache *bsc
1465 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1466 unsigned int i;
1467
1468 for (i = 0; i < bsc->size; ++i)
1469 symbol_cache_clear_slot (&bsc->symbols[i]);
1470 }
1471
1472 cache->global_symbols->hits = 0;
1473 cache->global_symbols->misses = 0;
1474 cache->global_symbols->collisions = 0;
1475 cache->static_symbols->hits = 0;
1476 cache->static_symbols->misses = 0;
1477 cache->static_symbols->collisions = 0;
1478 }
1479
1480 /* Dump CACHE. */
1481
1482 static void
1483 symbol_cache_dump (const struct symbol_cache *cache)
1484 {
1485 int pass;
1486
1487 if (cache->global_symbols == NULL)
1488 {
1489 printf_filtered (" <disabled>\n");
1490 return;
1491 }
1492
1493 for (pass = 0; pass < 2; ++pass)
1494 {
1495 const struct block_symbol_cache *bsc
1496 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1497 unsigned int i;
1498
1499 if (pass == 0)
1500 printf_filtered ("Global symbols:\n");
1501 else
1502 printf_filtered ("Static symbols:\n");
1503
1504 for (i = 0; i < bsc->size; ++i)
1505 {
1506 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1507
1508 QUIT;
1509
1510 switch (slot->state)
1511 {
1512 case SYMBOL_SLOT_UNUSED:
1513 break;
1514 case SYMBOL_SLOT_NOT_FOUND:
1515 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1516 host_address_to_string (slot->objfile_context),
1517 slot->value.not_found.name,
1518 domain_name (slot->value.not_found.domain));
1519 break;
1520 case SYMBOL_SLOT_FOUND:
1521 {
1522 struct symbol *found = slot->value.found.symbol;
1523 const struct objfile *context = slot->objfile_context;
1524
1525 printf_filtered (" [%4u] = %s, %s %s\n", i,
1526 host_address_to_string (context),
1527 SYMBOL_PRINT_NAME (found),
1528 domain_name (SYMBOL_DOMAIN (found)));
1529 break;
1530 }
1531 }
1532 }
1533 }
1534 }
1535
1536 /* The "mt print symbol-cache" command. */
1537
1538 static void
1539 maintenance_print_symbol_cache (const char *args, int from_tty)
1540 {
1541 struct program_space *pspace;
1542
1543 ALL_PSPACES (pspace)
1544 {
1545 struct symbol_cache *cache;
1546
1547 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1548 pspace->num,
1549 pspace->symfile_object_file != NULL
1550 ? objfile_name (pspace->symfile_object_file)
1551 : "(no object file)");
1552
1553 /* If the cache hasn't been created yet, avoid creating one. */
1554 cache
1555 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1556 if (cache == NULL)
1557 printf_filtered (" <empty>\n");
1558 else
1559 symbol_cache_dump (cache);
1560 }
1561 }
1562
1563 /* The "mt flush-symbol-cache" command. */
1564
1565 static void
1566 maintenance_flush_symbol_cache (const char *args, int from_tty)
1567 {
1568 struct program_space *pspace;
1569
1570 ALL_PSPACES (pspace)
1571 {
1572 symbol_cache_flush (pspace);
1573 }
1574 }
1575
1576 /* Print usage statistics of CACHE. */
1577
1578 static void
1579 symbol_cache_stats (struct symbol_cache *cache)
1580 {
1581 int pass;
1582
1583 if (cache->global_symbols == NULL)
1584 {
1585 printf_filtered (" <disabled>\n");
1586 return;
1587 }
1588
1589 for (pass = 0; pass < 2; ++pass)
1590 {
1591 const struct block_symbol_cache *bsc
1592 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1593
1594 QUIT;
1595
1596 if (pass == 0)
1597 printf_filtered ("Global block cache stats:\n");
1598 else
1599 printf_filtered ("Static block cache stats:\n");
1600
1601 printf_filtered (" size: %u\n", bsc->size);
1602 printf_filtered (" hits: %u\n", bsc->hits);
1603 printf_filtered (" misses: %u\n", bsc->misses);
1604 printf_filtered (" collisions: %u\n", bsc->collisions);
1605 }
1606 }
1607
1608 /* The "mt print symbol-cache-statistics" command. */
1609
1610 static void
1611 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1612 {
1613 struct program_space *pspace;
1614
1615 ALL_PSPACES (pspace)
1616 {
1617 struct symbol_cache *cache;
1618
1619 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1620 pspace->num,
1621 pspace->symfile_object_file != NULL
1622 ? objfile_name (pspace->symfile_object_file)
1623 : "(no object file)");
1624
1625 /* If the cache hasn't been created yet, avoid creating one. */
1626 cache
1627 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1628 if (cache == NULL)
1629 printf_filtered (" empty, no stats available\n");
1630 else
1631 symbol_cache_stats (cache);
1632 }
1633 }
1634
1635 /* This module's 'new_objfile' observer. */
1636
1637 static void
1638 symtab_new_objfile_observer (struct objfile *objfile)
1639 {
1640 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1641 symbol_cache_flush (current_program_space);
1642 }
1643
1644 /* This module's 'free_objfile' observer. */
1645
1646 static void
1647 symtab_free_objfile_observer (struct objfile *objfile)
1648 {
1649 symbol_cache_flush (objfile->pspace);
1650 }
1651 \f
1652 /* Debug symbols usually don't have section information. We need to dig that
1653 out of the minimal symbols and stash that in the debug symbol. */
1654
1655 void
1656 fixup_section (struct general_symbol_info *ginfo,
1657 CORE_ADDR addr, struct objfile *objfile)
1658 {
1659 struct minimal_symbol *msym;
1660
1661 /* First, check whether a minimal symbol with the same name exists
1662 and points to the same address. The address check is required
1663 e.g. on PowerPC64, where the minimal symbol for a function will
1664 point to the function descriptor, while the debug symbol will
1665 point to the actual function code. */
1666 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1667 if (msym)
1668 ginfo->section = MSYMBOL_SECTION (msym);
1669 else
1670 {
1671 /* Static, function-local variables do appear in the linker
1672 (minimal) symbols, but are frequently given names that won't
1673 be found via lookup_minimal_symbol(). E.g., it has been
1674 observed in frv-uclinux (ELF) executables that a static,
1675 function-local variable named "foo" might appear in the
1676 linker symbols as "foo.6" or "foo.3". Thus, there is no
1677 point in attempting to extend the lookup-by-name mechanism to
1678 handle this case due to the fact that there can be multiple
1679 names.
1680
1681 So, instead, search the section table when lookup by name has
1682 failed. The ``addr'' and ``endaddr'' fields may have already
1683 been relocated. If so, the relocation offset (i.e. the
1684 ANOFFSET value) needs to be subtracted from these values when
1685 performing the comparison. We unconditionally subtract it,
1686 because, when no relocation has been performed, the ANOFFSET
1687 value will simply be zero.
1688
1689 The address of the symbol whose section we're fixing up HAS
1690 NOT BEEN adjusted (relocated) yet. It can't have been since
1691 the section isn't yet known and knowing the section is
1692 necessary in order to add the correct relocation value. In
1693 other words, we wouldn't even be in this function (attempting
1694 to compute the section) if it were already known.
1695
1696 Note that it is possible to search the minimal symbols
1697 (subtracting the relocation value if necessary) to find the
1698 matching minimal symbol, but this is overkill and much less
1699 efficient. It is not necessary to find the matching minimal
1700 symbol, only its section.
1701
1702 Note that this technique (of doing a section table search)
1703 can fail when unrelocated section addresses overlap. For
1704 this reason, we still attempt a lookup by name prior to doing
1705 a search of the section table. */
1706
1707 struct obj_section *s;
1708 int fallback = -1;
1709
1710 ALL_OBJFILE_OSECTIONS (objfile, s)
1711 {
1712 int idx = s - objfile->sections;
1713 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1714
1715 if (fallback == -1)
1716 fallback = idx;
1717
1718 if (obj_section_addr (s) - offset <= addr
1719 && addr < obj_section_endaddr (s) - offset)
1720 {
1721 ginfo->section = idx;
1722 return;
1723 }
1724 }
1725
1726 /* If we didn't find the section, assume it is in the first
1727 section. If there is no allocated section, then it hardly
1728 matters what we pick, so just pick zero. */
1729 if (fallback == -1)
1730 ginfo->section = 0;
1731 else
1732 ginfo->section = fallback;
1733 }
1734 }
1735
1736 struct symbol *
1737 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1738 {
1739 CORE_ADDR addr;
1740
1741 if (!sym)
1742 return NULL;
1743
1744 if (!SYMBOL_OBJFILE_OWNED (sym))
1745 return sym;
1746
1747 /* We either have an OBJFILE, or we can get at it from the sym's
1748 symtab. Anything else is a bug. */
1749 gdb_assert (objfile || symbol_symtab (sym));
1750
1751 if (objfile == NULL)
1752 objfile = symbol_objfile (sym);
1753
1754 if (SYMBOL_OBJ_SECTION (objfile, sym))
1755 return sym;
1756
1757 /* We should have an objfile by now. */
1758 gdb_assert (objfile);
1759
1760 switch (SYMBOL_CLASS (sym))
1761 {
1762 case LOC_STATIC:
1763 case LOC_LABEL:
1764 addr = SYMBOL_VALUE_ADDRESS (sym);
1765 break;
1766 case LOC_BLOCK:
1767 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1768 break;
1769
1770 default:
1771 /* Nothing else will be listed in the minsyms -- no use looking
1772 it up. */
1773 return sym;
1774 }
1775
1776 fixup_section (&sym->ginfo, addr, objfile);
1777
1778 return sym;
1779 }
1780
1781 /* See symtab.h. */
1782
1783 demangle_for_lookup_info::demangle_for_lookup_info
1784 (const lookup_name_info &lookup_name, language lang)
1785 {
1786 demangle_result_storage storage;
1787
1788 if (lookup_name.ignore_parameters () && lang == language_cplus)
1789 {
1790 gdb::unique_xmalloc_ptr<char> without_params
1791 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1792 lookup_name.completion_mode ());
1793
1794 if (without_params != NULL)
1795 {
1796 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1797 m_demangled_name = demangle_for_lookup (without_params.get (),
1798 lang, storage);
1799 return;
1800 }
1801 }
1802
1803 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1804 m_demangled_name = lookup_name.name ();
1805 else
1806 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1807 lang, storage);
1808 }
1809
1810 /* See symtab.h. */
1811
1812 const lookup_name_info &
1813 lookup_name_info::match_any ()
1814 {
1815 /* Lookup any symbol that "" would complete. I.e., this matches all
1816 symbol names. */
1817 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1818 true);
1819
1820 return lookup_name;
1821 }
1822
1823 /* Compute the demangled form of NAME as used by the various symbol
1824 lookup functions. The result can either be the input NAME
1825 directly, or a pointer to a buffer owned by the STORAGE object.
1826
1827 For Ada, this function just returns NAME, unmodified.
1828 Normally, Ada symbol lookups are performed using the encoded name
1829 rather than the demangled name, and so it might seem to make sense
1830 for this function to return an encoded version of NAME.
1831 Unfortunately, we cannot do this, because this function is used in
1832 circumstances where it is not appropriate to try to encode NAME.
1833 For instance, when displaying the frame info, we demangle the name
1834 of each parameter, and then perform a symbol lookup inside our
1835 function using that demangled name. In Ada, certain functions
1836 have internally-generated parameters whose name contain uppercase
1837 characters. Encoding those name would result in those uppercase
1838 characters to become lowercase, and thus cause the symbol lookup
1839 to fail. */
1840
1841 const char *
1842 demangle_for_lookup (const char *name, enum language lang,
1843 demangle_result_storage &storage)
1844 {
1845 /* If we are using C++, D, or Go, demangle the name before doing a
1846 lookup, so we can always binary search. */
1847 if (lang == language_cplus)
1848 {
1849 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1850 if (demangled_name != NULL)
1851 return storage.set_malloc_ptr (demangled_name);
1852
1853 /* If we were given a non-mangled name, canonicalize it
1854 according to the language (so far only for C++). */
1855 std::string canon = cp_canonicalize_string (name);
1856 if (!canon.empty ())
1857 return storage.swap_string (canon);
1858 }
1859 else if (lang == language_d)
1860 {
1861 char *demangled_name = d_demangle (name, 0);
1862 if (demangled_name != NULL)
1863 return storage.set_malloc_ptr (demangled_name);
1864 }
1865 else if (lang == language_go)
1866 {
1867 char *demangled_name = go_demangle (name, 0);
1868 if (demangled_name != NULL)
1869 return storage.set_malloc_ptr (demangled_name);
1870 }
1871
1872 return name;
1873 }
1874
1875 /* See symtab.h. */
1876
1877 unsigned int
1878 search_name_hash (enum language language, const char *search_name)
1879 {
1880 return language_def (language)->la_search_name_hash (search_name);
1881 }
1882
1883 /* See symtab.h.
1884
1885 This function (or rather its subordinates) have a bunch of loops and
1886 it would seem to be attractive to put in some QUIT's (though I'm not really
1887 sure whether it can run long enough to be really important). But there
1888 are a few calls for which it would appear to be bad news to quit
1889 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1890 that there is C++ code below which can error(), but that probably
1891 doesn't affect these calls since they are looking for a known
1892 variable and thus can probably assume it will never hit the C++
1893 code). */
1894
1895 struct block_symbol
1896 lookup_symbol_in_language (const char *name, const struct block *block,
1897 const domain_enum domain, enum language lang,
1898 struct field_of_this_result *is_a_field_of_this)
1899 {
1900 demangle_result_storage storage;
1901 const char *modified_name = demangle_for_lookup (name, lang, storage);
1902
1903 return lookup_symbol_aux (modified_name,
1904 symbol_name_match_type::FULL,
1905 block, domain, lang,
1906 is_a_field_of_this);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_symbol (const char *name, const struct block *block,
1913 domain_enum domain,
1914 struct field_of_this_result *is_a_field_of_this)
1915 {
1916 return lookup_symbol_in_language (name, block, domain,
1917 current_language->la_language,
1918 is_a_field_of_this);
1919 }
1920
1921 /* See symtab.h. */
1922
1923 struct block_symbol
1924 lookup_symbol_search_name (const char *search_name, const struct block *block,
1925 domain_enum domain)
1926 {
1927 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1928 block, domain, language_asm, NULL);
1929 }
1930
1931 /* See symtab.h. */
1932
1933 struct block_symbol
1934 lookup_language_this (const struct language_defn *lang,
1935 const struct block *block)
1936 {
1937 if (lang->la_name_of_this == NULL || block == NULL)
1938 return {};
1939
1940 if (symbol_lookup_debug > 1)
1941 {
1942 struct objfile *objfile = lookup_objfile_from_block (block);
1943
1944 fprintf_unfiltered (gdb_stdlog,
1945 "lookup_language_this (%s, %s (objfile %s))",
1946 lang->la_name, host_address_to_string (block),
1947 objfile_debug_name (objfile));
1948 }
1949
1950 while (block)
1951 {
1952 struct symbol *sym;
1953
1954 sym = block_lookup_symbol (block, lang->la_name_of_this,
1955 symbol_name_match_type::SEARCH_NAME,
1956 VAR_DOMAIN);
1957 if (sym != NULL)
1958 {
1959 if (symbol_lookup_debug > 1)
1960 {
1961 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1962 SYMBOL_PRINT_NAME (sym),
1963 host_address_to_string (sym),
1964 host_address_to_string (block));
1965 }
1966 return (struct block_symbol) {sym, block};
1967 }
1968 if (BLOCK_FUNCTION (block))
1969 break;
1970 block = BLOCK_SUPERBLOCK (block);
1971 }
1972
1973 if (symbol_lookup_debug > 1)
1974 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1975 return {};
1976 }
1977
1978 /* Given TYPE, a structure/union,
1979 return 1 if the component named NAME from the ultimate target
1980 structure/union is defined, otherwise, return 0. */
1981
1982 static int
1983 check_field (struct type *type, const char *name,
1984 struct field_of_this_result *is_a_field_of_this)
1985 {
1986 int i;
1987
1988 /* The type may be a stub. */
1989 type = check_typedef (type);
1990
1991 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1992 {
1993 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1994
1995 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1996 {
1997 is_a_field_of_this->type = type;
1998 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1999 return 1;
2000 }
2001 }
2002
2003 /* C++: If it was not found as a data field, then try to return it
2004 as a pointer to a method. */
2005
2006 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2007 {
2008 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2009 {
2010 is_a_field_of_this->type = type;
2011 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2012 return 1;
2013 }
2014 }
2015
2016 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2017 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2018 return 1;
2019
2020 return 0;
2021 }
2022
2023 /* Behave like lookup_symbol except that NAME is the natural name
2024 (e.g., demangled name) of the symbol that we're looking for. */
2025
2026 static struct block_symbol
2027 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2028 const struct block *block,
2029 const domain_enum domain, enum language language,
2030 struct field_of_this_result *is_a_field_of_this)
2031 {
2032 struct block_symbol result;
2033 const struct language_defn *langdef;
2034
2035 if (symbol_lookup_debug)
2036 {
2037 struct objfile *objfile = lookup_objfile_from_block (block);
2038
2039 fprintf_unfiltered (gdb_stdlog,
2040 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2041 name, host_address_to_string (block),
2042 objfile != NULL
2043 ? objfile_debug_name (objfile) : "NULL",
2044 domain_name (domain), language_str (language));
2045 }
2046
2047 /* Make sure we do something sensible with is_a_field_of_this, since
2048 the callers that set this parameter to some non-null value will
2049 certainly use it later. If we don't set it, the contents of
2050 is_a_field_of_this are undefined. */
2051 if (is_a_field_of_this != NULL)
2052 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2053
2054 /* Search specified block and its superiors. Don't search
2055 STATIC_BLOCK or GLOBAL_BLOCK. */
2056
2057 result = lookup_local_symbol (name, match_type, block, domain, language);
2058 if (result.symbol != NULL)
2059 {
2060 if (symbol_lookup_debug)
2061 {
2062 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2063 host_address_to_string (result.symbol));
2064 }
2065 return result;
2066 }
2067
2068 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2069 check to see if NAME is a field of `this'. */
2070
2071 langdef = language_def (language);
2072
2073 /* Don't do this check if we are searching for a struct. It will
2074 not be found by check_field, but will be found by other
2075 means. */
2076 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2077 {
2078 result = lookup_language_this (langdef, block);
2079
2080 if (result.symbol)
2081 {
2082 struct type *t = result.symbol->type;
2083
2084 /* I'm not really sure that type of this can ever
2085 be typedefed; just be safe. */
2086 t = check_typedef (t);
2087 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2088 t = TYPE_TARGET_TYPE (t);
2089
2090 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2091 && TYPE_CODE (t) != TYPE_CODE_UNION)
2092 error (_("Internal error: `%s' is not an aggregate"),
2093 langdef->la_name_of_this);
2094
2095 if (check_field (t, name, is_a_field_of_this))
2096 {
2097 if (symbol_lookup_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog,
2100 "lookup_symbol_aux (...) = NULL\n");
2101 }
2102 return {};
2103 }
2104 }
2105 }
2106
2107 /* Now do whatever is appropriate for LANGUAGE to look
2108 up static and global variables. */
2109
2110 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2111 if (result.symbol != NULL)
2112 {
2113 if (symbol_lookup_debug)
2114 {
2115 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2116 host_address_to_string (result.symbol));
2117 }
2118 return result;
2119 }
2120
2121 /* Now search all static file-level symbols. Not strictly correct,
2122 but more useful than an error. */
2123
2124 result = lookup_static_symbol (name, domain);
2125 if (symbol_lookup_debug)
2126 {
2127 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2128 result.symbol != NULL
2129 ? host_address_to_string (result.symbol)
2130 : "NULL");
2131 }
2132 return result;
2133 }
2134
2135 /* Check to see if the symbol is defined in BLOCK or its superiors.
2136 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2137
2138 static struct block_symbol
2139 lookup_local_symbol (const char *name,
2140 symbol_name_match_type match_type,
2141 const struct block *block,
2142 const domain_enum domain,
2143 enum language language)
2144 {
2145 struct symbol *sym;
2146 const struct block *static_block = block_static_block (block);
2147 const char *scope = block_scope (block);
2148
2149 /* Check if either no block is specified or it's a global block. */
2150
2151 if (static_block == NULL)
2152 return {};
2153
2154 while (block != static_block)
2155 {
2156 sym = lookup_symbol_in_block (name, match_type, block, domain);
2157 if (sym != NULL)
2158 return (struct block_symbol) {sym, block};
2159
2160 if (language == language_cplus || language == language_fortran)
2161 {
2162 struct block_symbol blocksym
2163 = cp_lookup_symbol_imports_or_template (scope, name, block,
2164 domain);
2165
2166 if (blocksym.symbol != NULL)
2167 return blocksym;
2168 }
2169
2170 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2171 break;
2172 block = BLOCK_SUPERBLOCK (block);
2173 }
2174
2175 /* We've reached the end of the function without finding a result. */
2176
2177 return {};
2178 }
2179
2180 /* See symtab.h. */
2181
2182 struct objfile *
2183 lookup_objfile_from_block (const struct block *block)
2184 {
2185 if (block == NULL)
2186 return NULL;
2187
2188 block = block_global_block (block);
2189 /* Look through all blockvectors. */
2190 for (objfile *obj : current_program_space->objfiles ())
2191 {
2192 for (compunit_symtab *cust : obj->compunits ())
2193 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2194 GLOBAL_BLOCK))
2195 {
2196 if (obj->separate_debug_objfile_backlink)
2197 obj = obj->separate_debug_objfile_backlink;
2198
2199 return obj;
2200 }
2201 }
2202
2203 return NULL;
2204 }
2205
2206 /* See symtab.h. */
2207
2208 struct symbol *
2209 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2210 const struct block *block,
2211 const domain_enum domain)
2212 {
2213 struct symbol *sym;
2214
2215 if (symbol_lookup_debug > 1)
2216 {
2217 struct objfile *objfile = lookup_objfile_from_block (block);
2218
2219 fprintf_unfiltered (gdb_stdlog,
2220 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2221 name, host_address_to_string (block),
2222 objfile_debug_name (objfile),
2223 domain_name (domain));
2224 }
2225
2226 sym = block_lookup_symbol (block, name, match_type, domain);
2227 if (sym)
2228 {
2229 if (symbol_lookup_debug > 1)
2230 {
2231 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2232 host_address_to_string (sym));
2233 }
2234 return fixup_symbol_section (sym, NULL);
2235 }
2236
2237 if (symbol_lookup_debug > 1)
2238 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2239 return NULL;
2240 }
2241
2242 /* See symtab.h. */
2243
2244 struct block_symbol
2245 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2246 const char *name,
2247 const domain_enum domain)
2248 {
2249 for (struct objfile *objfile : main_objfile->separate_debug_objfiles ())
2250 {
2251 struct block_symbol result
2252 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2253
2254 if (result.symbol != NULL)
2255 return result;
2256 }
2257
2258 return {};
2259 }
2260
2261 /* Check to see if the symbol is defined in one of the OBJFILE's
2262 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2263 depending on whether or not we want to search global symbols or
2264 static symbols. */
2265
2266 static struct block_symbol
2267 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2268 const char *name, const domain_enum domain)
2269 {
2270 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2271
2272 if (symbol_lookup_debug > 1)
2273 {
2274 fprintf_unfiltered (gdb_stdlog,
2275 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2276 objfile_debug_name (objfile),
2277 block_index == GLOBAL_BLOCK
2278 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2279 name, domain_name (domain));
2280 }
2281
2282 for (compunit_symtab *cust : objfile->compunits ())
2283 {
2284 const struct blockvector *bv;
2285 const struct block *block;
2286 struct block_symbol result;
2287
2288 bv = COMPUNIT_BLOCKVECTOR (cust);
2289 block = BLOCKVECTOR_BLOCK (bv, block_index);
2290 result.symbol = block_lookup_symbol_primary (block, name, domain);
2291 result.block = block;
2292 if (result.symbol != NULL)
2293 {
2294 if (symbol_lookup_debug > 1)
2295 {
2296 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2297 host_address_to_string (result.symbol),
2298 host_address_to_string (block));
2299 }
2300 result.symbol = fixup_symbol_section (result.symbol, objfile);
2301 return result;
2302
2303 }
2304 }
2305
2306 if (symbol_lookup_debug > 1)
2307 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2308 return {};
2309 }
2310
2311 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2312 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2313 and all associated separate debug objfiles.
2314
2315 Normally we only look in OBJFILE, and not any separate debug objfiles
2316 because the outer loop will cause them to be searched too. This case is
2317 different. Here we're called from search_symbols where it will only
2318 call us for the objfile that contains a matching minsym. */
2319
2320 static struct block_symbol
2321 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2322 const char *linkage_name,
2323 domain_enum domain)
2324 {
2325 enum language lang = current_language->la_language;
2326 struct objfile *main_objfile;
2327
2328 demangle_result_storage storage;
2329 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2330
2331 if (objfile->separate_debug_objfile_backlink)
2332 main_objfile = objfile->separate_debug_objfile_backlink;
2333 else
2334 main_objfile = objfile;
2335
2336 for (struct objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2337 {
2338 struct block_symbol result;
2339
2340 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2341 modified_name, domain);
2342 if (result.symbol == NULL)
2343 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2344 modified_name, domain);
2345 if (result.symbol != NULL)
2346 return result;
2347 }
2348
2349 return {};
2350 }
2351
2352 /* A helper function that throws an exception when a symbol was found
2353 in a psymtab but not in a symtab. */
2354
2355 static void ATTRIBUTE_NORETURN
2356 error_in_psymtab_expansion (int block_index, const char *name,
2357 struct compunit_symtab *cust)
2358 {
2359 error (_("\
2360 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2361 %s may be an inlined function, or may be a template function\n \
2362 (if a template, try specifying an instantiation: %s<type>)."),
2363 block_index == GLOBAL_BLOCK ? "global" : "static",
2364 name,
2365 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2366 name, name);
2367 }
2368
2369 /* A helper function for various lookup routines that interfaces with
2370 the "quick" symbol table functions. */
2371
2372 static struct block_symbol
2373 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2374 const char *name, const domain_enum domain)
2375 {
2376 struct compunit_symtab *cust;
2377 const struct blockvector *bv;
2378 const struct block *block;
2379 struct block_symbol result;
2380
2381 if (!objfile->sf)
2382 return {};
2383
2384 if (symbol_lookup_debug > 1)
2385 {
2386 fprintf_unfiltered (gdb_stdlog,
2387 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2388 objfile_debug_name (objfile),
2389 block_index == GLOBAL_BLOCK
2390 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2391 name, domain_name (domain));
2392 }
2393
2394 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2395 if (cust == NULL)
2396 {
2397 if (symbol_lookup_debug > 1)
2398 {
2399 fprintf_unfiltered (gdb_stdlog,
2400 "lookup_symbol_via_quick_fns (...) = NULL\n");
2401 }
2402 return {};
2403 }
2404
2405 bv = COMPUNIT_BLOCKVECTOR (cust);
2406 block = BLOCKVECTOR_BLOCK (bv, block_index);
2407 result.symbol = block_lookup_symbol (block, name,
2408 symbol_name_match_type::FULL, domain);
2409 if (result.symbol == NULL)
2410 error_in_psymtab_expansion (block_index, name, cust);
2411
2412 if (symbol_lookup_debug > 1)
2413 {
2414 fprintf_unfiltered (gdb_stdlog,
2415 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2416 host_address_to_string (result.symbol),
2417 host_address_to_string (block));
2418 }
2419
2420 result.symbol = fixup_symbol_section (result.symbol, objfile);
2421 result.block = block;
2422 return result;
2423 }
2424
2425 /* See symtab.h. */
2426
2427 struct block_symbol
2428 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2429 const char *name,
2430 const struct block *block,
2431 const domain_enum domain)
2432 {
2433 struct block_symbol result;
2434
2435 /* NOTE: carlton/2003-05-19: The comments below were written when
2436 this (or what turned into this) was part of lookup_symbol_aux;
2437 I'm much less worried about these questions now, since these
2438 decisions have turned out well, but I leave these comments here
2439 for posterity. */
2440
2441 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2442 not it would be appropriate to search the current global block
2443 here as well. (That's what this code used to do before the
2444 is_a_field_of_this check was moved up.) On the one hand, it's
2445 redundant with the lookup in all objfiles search that happens
2446 next. On the other hand, if decode_line_1 is passed an argument
2447 like filename:var, then the user presumably wants 'var' to be
2448 searched for in filename. On the third hand, there shouldn't be
2449 multiple global variables all of which are named 'var', and it's
2450 not like decode_line_1 has ever restricted its search to only
2451 global variables in a single filename. All in all, only
2452 searching the static block here seems best: it's correct and it's
2453 cleanest. */
2454
2455 /* NOTE: carlton/2002-12-05: There's also a possible performance
2456 issue here: if you usually search for global symbols in the
2457 current file, then it would be slightly better to search the
2458 current global block before searching all the symtabs. But there
2459 are other factors that have a much greater effect on performance
2460 than that one, so I don't think we should worry about that for
2461 now. */
2462
2463 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2464 the current objfile. Searching the current objfile first is useful
2465 for both matching user expectations as well as performance. */
2466
2467 result = lookup_symbol_in_static_block (name, block, domain);
2468 if (result.symbol != NULL)
2469 return result;
2470
2471 /* If we didn't find a definition for a builtin type in the static block,
2472 search for it now. This is actually the right thing to do and can be
2473 a massive performance win. E.g., when debugging a program with lots of
2474 shared libraries we could search all of them only to find out the
2475 builtin type isn't defined in any of them. This is common for types
2476 like "void". */
2477 if (domain == VAR_DOMAIN)
2478 {
2479 struct gdbarch *gdbarch;
2480
2481 if (block == NULL)
2482 gdbarch = target_gdbarch ();
2483 else
2484 gdbarch = block_gdbarch (block);
2485 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2486 gdbarch, name);
2487 result.block = NULL;
2488 if (result.symbol != NULL)
2489 return result;
2490 }
2491
2492 return lookup_global_symbol (name, block, domain);
2493 }
2494
2495 /* See symtab.h. */
2496
2497 struct block_symbol
2498 lookup_symbol_in_static_block (const char *name,
2499 const struct block *block,
2500 const domain_enum domain)
2501 {
2502 const struct block *static_block = block_static_block (block);
2503 struct symbol *sym;
2504
2505 if (static_block == NULL)
2506 return {};
2507
2508 if (symbol_lookup_debug)
2509 {
2510 struct objfile *objfile = lookup_objfile_from_block (static_block);
2511
2512 fprintf_unfiltered (gdb_stdlog,
2513 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2514 " %s)\n",
2515 name,
2516 host_address_to_string (block),
2517 objfile_debug_name (objfile),
2518 domain_name (domain));
2519 }
2520
2521 sym = lookup_symbol_in_block (name,
2522 symbol_name_match_type::FULL,
2523 static_block, domain);
2524 if (symbol_lookup_debug)
2525 {
2526 fprintf_unfiltered (gdb_stdlog,
2527 "lookup_symbol_in_static_block (...) = %s\n",
2528 sym != NULL ? host_address_to_string (sym) : "NULL");
2529 }
2530 return (struct block_symbol) {sym, static_block};
2531 }
2532
2533 /* Perform the standard symbol lookup of NAME in OBJFILE:
2534 1) First search expanded symtabs, and if not found
2535 2) Search the "quick" symtabs (partial or .gdb_index).
2536 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2537
2538 static struct block_symbol
2539 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2540 const char *name, const domain_enum domain)
2541 {
2542 struct block_symbol result;
2543
2544 if (symbol_lookup_debug)
2545 {
2546 fprintf_unfiltered (gdb_stdlog,
2547 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2548 objfile_debug_name (objfile),
2549 block_index == GLOBAL_BLOCK
2550 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2551 name, domain_name (domain));
2552 }
2553
2554 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2555 name, domain);
2556 if (result.symbol != NULL)
2557 {
2558 if (symbol_lookup_debug)
2559 {
2560 fprintf_unfiltered (gdb_stdlog,
2561 "lookup_symbol_in_objfile (...) = %s"
2562 " (in symtabs)\n",
2563 host_address_to_string (result.symbol));
2564 }
2565 return result;
2566 }
2567
2568 result = lookup_symbol_via_quick_fns (objfile, block_index,
2569 name, domain);
2570 if (symbol_lookup_debug)
2571 {
2572 fprintf_unfiltered (gdb_stdlog,
2573 "lookup_symbol_in_objfile (...) = %s%s\n",
2574 result.symbol != NULL
2575 ? host_address_to_string (result.symbol)
2576 : "NULL",
2577 result.symbol != NULL ? " (via quick fns)" : "");
2578 }
2579 return result;
2580 }
2581
2582 /* See symtab.h. */
2583
2584 struct block_symbol
2585 lookup_static_symbol (const char *name, const domain_enum domain)
2586 {
2587 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2588 struct block_symbol result;
2589 struct block_symbol_cache *bsc;
2590 struct symbol_cache_slot *slot;
2591
2592 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2593 NULL for OBJFILE_CONTEXT. */
2594 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2595 &bsc, &slot);
2596 if (result.symbol != NULL)
2597 {
2598 if (SYMBOL_LOOKUP_FAILED_P (result))
2599 return {};
2600 return result;
2601 }
2602
2603 for (objfile *objfile : current_program_space->objfiles ())
2604 {
2605 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2606 if (result.symbol != NULL)
2607 {
2608 /* Still pass NULL for OBJFILE_CONTEXT here. */
2609 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2610 result.block);
2611 return result;
2612 }
2613 }
2614
2615 /* Still pass NULL for OBJFILE_CONTEXT here. */
2616 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2617 return {};
2618 }
2619
2620 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2621
2622 struct global_sym_lookup_data
2623 {
2624 /* The name of the symbol we are searching for. */
2625 const char *name;
2626
2627 /* The domain to use for our search. */
2628 domain_enum domain;
2629
2630 /* The field where the callback should store the symbol if found.
2631 It should be initialized to {NULL, NULL} before the search is started. */
2632 struct block_symbol result;
2633 };
2634
2635 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2636 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2637 OBJFILE. The arguments for the search are passed via CB_DATA,
2638 which in reality is a pointer to struct global_sym_lookup_data. */
2639
2640 static int
2641 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2642 void *cb_data)
2643 {
2644 struct global_sym_lookup_data *data =
2645 (struct global_sym_lookup_data *) cb_data;
2646
2647 gdb_assert (data->result.symbol == NULL
2648 && data->result.block == NULL);
2649
2650 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2651 data->name, data->domain);
2652
2653 /* If we found a match, tell the iterator to stop. Otherwise,
2654 keep going. */
2655 return (data->result.symbol != NULL);
2656 }
2657
2658 /* See symtab.h. */
2659
2660 struct block_symbol
2661 lookup_global_symbol (const char *name,
2662 const struct block *block,
2663 const domain_enum domain)
2664 {
2665 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2666 struct block_symbol result;
2667 struct objfile *objfile;
2668 struct global_sym_lookup_data lookup_data;
2669 struct block_symbol_cache *bsc;
2670 struct symbol_cache_slot *slot;
2671
2672 objfile = lookup_objfile_from_block (block);
2673
2674 /* First see if we can find the symbol in the cache.
2675 This works because we use the current objfile to qualify the lookup. */
2676 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2677 &bsc, &slot);
2678 if (result.symbol != NULL)
2679 {
2680 if (SYMBOL_LOOKUP_FAILED_P (result))
2681 return {};
2682 return result;
2683 }
2684
2685 /* Call library-specific lookup procedure. */
2686 if (objfile != NULL)
2687 result = solib_global_lookup (objfile, name, domain);
2688
2689 /* If that didn't work go a global search (of global blocks, heh). */
2690 if (result.symbol == NULL)
2691 {
2692 memset (&lookup_data, 0, sizeof (lookup_data));
2693 lookup_data.name = name;
2694 lookup_data.domain = domain;
2695 gdbarch_iterate_over_objfiles_in_search_order
2696 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2697 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2698 result = lookup_data.result;
2699 }
2700
2701 if (result.symbol != NULL)
2702 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2703 else
2704 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2705
2706 return result;
2707 }
2708
2709 int
2710 symbol_matches_domain (enum language symbol_language,
2711 domain_enum symbol_domain,
2712 domain_enum domain)
2713 {
2714 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2715 Similarly, any Ada type declaration implicitly defines a typedef. */
2716 if (symbol_language == language_cplus
2717 || symbol_language == language_d
2718 || symbol_language == language_ada
2719 || symbol_language == language_rust)
2720 {
2721 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2722 && symbol_domain == STRUCT_DOMAIN)
2723 return 1;
2724 }
2725 /* For all other languages, strict match is required. */
2726 return (symbol_domain == domain);
2727 }
2728
2729 /* See symtab.h. */
2730
2731 struct type *
2732 lookup_transparent_type (const char *name)
2733 {
2734 return current_language->la_lookup_transparent_type (name);
2735 }
2736
2737 /* A helper for basic_lookup_transparent_type that interfaces with the
2738 "quick" symbol table functions. */
2739
2740 static struct type *
2741 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2742 const char *name)
2743 {
2744 struct compunit_symtab *cust;
2745 const struct blockvector *bv;
2746 const struct block *block;
2747 struct symbol *sym;
2748
2749 if (!objfile->sf)
2750 return NULL;
2751 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2752 STRUCT_DOMAIN);
2753 if (cust == NULL)
2754 return NULL;
2755
2756 bv = COMPUNIT_BLOCKVECTOR (cust);
2757 block = BLOCKVECTOR_BLOCK (bv, block_index);
2758 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2759 block_find_non_opaque_type, NULL);
2760 if (sym == NULL)
2761 error_in_psymtab_expansion (block_index, name, cust);
2762 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2763 return SYMBOL_TYPE (sym);
2764 }
2765
2766 /* Subroutine of basic_lookup_transparent_type to simplify it.
2767 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2768 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2769
2770 static struct type *
2771 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2772 const char *name)
2773 {
2774 const struct blockvector *bv;
2775 const struct block *block;
2776 const struct symbol *sym;
2777
2778 for (compunit_symtab *cust : objfile->compunits ())
2779 {
2780 bv = COMPUNIT_BLOCKVECTOR (cust);
2781 block = BLOCKVECTOR_BLOCK (bv, block_index);
2782 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2783 block_find_non_opaque_type, NULL);
2784 if (sym != NULL)
2785 {
2786 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2787 return SYMBOL_TYPE (sym);
2788 }
2789 }
2790
2791 return NULL;
2792 }
2793
2794 /* The standard implementation of lookup_transparent_type. This code
2795 was modeled on lookup_symbol -- the parts not relevant to looking
2796 up types were just left out. In particular it's assumed here that
2797 types are available in STRUCT_DOMAIN and only in file-static or
2798 global blocks. */
2799
2800 struct type *
2801 basic_lookup_transparent_type (const char *name)
2802 {
2803 struct type *t;
2804
2805 /* Now search all the global symbols. Do the symtab's first, then
2806 check the psymtab's. If a psymtab indicates the existence
2807 of the desired name as a global, then do psymtab-to-symtab
2808 conversion on the fly and return the found symbol. */
2809
2810 for (objfile *objfile : current_program_space->objfiles ())
2811 {
2812 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2813 if (t)
2814 return t;
2815 }
2816
2817 for (objfile *objfile : current_program_space->objfiles ())
2818 {
2819 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2820 if (t)
2821 return t;
2822 }
2823
2824 /* Now search the static file-level symbols.
2825 Not strictly correct, but more useful than an error.
2826 Do the symtab's first, then
2827 check the psymtab's. If a psymtab indicates the existence
2828 of the desired name as a file-level static, then do psymtab-to-symtab
2829 conversion on the fly and return the found symbol. */
2830
2831 for (objfile *objfile : current_program_space->objfiles ())
2832 {
2833 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2834 if (t)
2835 return t;
2836 }
2837
2838 for (objfile *objfile : current_program_space->objfiles ())
2839 {
2840 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2841 if (t)
2842 return t;
2843 }
2844
2845 return (struct type *) 0;
2846 }
2847
2848 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2849
2850 For each symbol that matches, CALLBACK is called. The symbol is
2851 passed to the callback.
2852
2853 If CALLBACK returns false, the iteration ends. Otherwise, the
2854 search continues. */
2855
2856 void
2857 iterate_over_symbols (const struct block *block,
2858 const lookup_name_info &name,
2859 const domain_enum domain,
2860 gdb::function_view<symbol_found_callback_ftype> callback)
2861 {
2862 struct block_iterator iter;
2863 struct symbol *sym;
2864
2865 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2866 {
2867 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2868 SYMBOL_DOMAIN (sym), domain))
2869 {
2870 struct block_symbol block_sym = {sym, block};
2871
2872 if (!callback (&block_sym))
2873 return;
2874 }
2875 }
2876 }
2877
2878 /* Find the compunit symtab associated with PC and SECTION.
2879 This will read in debug info as necessary. */
2880
2881 struct compunit_symtab *
2882 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2883 {
2884 struct compunit_symtab *best_cust = NULL;
2885 CORE_ADDR distance = 0;
2886 struct bound_minimal_symbol msymbol;
2887
2888 /* If we know that this is not a text address, return failure. This is
2889 necessary because we loop based on the block's high and low code
2890 addresses, which do not include the data ranges, and because
2891 we call find_pc_sect_psymtab which has a similar restriction based
2892 on the partial_symtab's texthigh and textlow. */
2893 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2894 if (msymbol.minsym && msymbol.minsym->data_p ())
2895 return NULL;
2896
2897 /* Search all symtabs for the one whose file contains our address, and which
2898 is the smallest of all the ones containing the address. This is designed
2899 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2900 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2901 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2902
2903 This happens for native ecoff format, where code from included files
2904 gets its own symtab. The symtab for the included file should have
2905 been read in already via the dependency mechanism.
2906 It might be swifter to create several symtabs with the same name
2907 like xcoff does (I'm not sure).
2908
2909 It also happens for objfiles that have their functions reordered.
2910 For these, the symtab we are looking for is not necessarily read in. */
2911
2912 for (objfile *obj_file : current_program_space->objfiles ())
2913 {
2914 for (compunit_symtab *cust : obj_file->compunits ())
2915 {
2916 const struct block *b;
2917 const struct blockvector *bv;
2918
2919 bv = COMPUNIT_BLOCKVECTOR (cust);
2920 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2921
2922 if (BLOCK_START (b) <= pc
2923 && BLOCK_END (b) > pc
2924 && (distance == 0
2925 || BLOCK_END (b) - BLOCK_START (b) < distance))
2926 {
2927 /* For an objfile that has its functions reordered,
2928 find_pc_psymtab will find the proper partial symbol table
2929 and we simply return its corresponding symtab. */
2930 /* In order to better support objfiles that contain both
2931 stabs and coff debugging info, we continue on if a psymtab
2932 can't be found. */
2933 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2934 {
2935 struct compunit_symtab *result;
2936
2937 result
2938 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2939 msymbol,
2940 pc,
2941 section,
2942 0);
2943 if (result != NULL)
2944 return result;
2945 }
2946 if (section != 0)
2947 {
2948 struct block_iterator iter;
2949 struct symbol *sym = NULL;
2950
2951 ALL_BLOCK_SYMBOLS (b, iter, sym)
2952 {
2953 fixup_symbol_section (sym, obj_file);
2954 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2955 sym),
2956 section))
2957 break;
2958 }
2959 if (sym == NULL)
2960 continue; /* No symbol in this symtab matches
2961 section. */
2962 }
2963 distance = BLOCK_END (b) - BLOCK_START (b);
2964 best_cust = cust;
2965 }
2966 }
2967 }
2968
2969 if (best_cust != NULL)
2970 return best_cust;
2971
2972 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2973
2974 for (objfile *objf : current_program_space->objfiles ())
2975 {
2976 struct compunit_symtab *result;
2977
2978 if (!objf->sf)
2979 continue;
2980 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2981 msymbol,
2982 pc, section,
2983 1);
2984 if (result != NULL)
2985 return result;
2986 }
2987
2988 return NULL;
2989 }
2990
2991 /* Find the compunit symtab associated with PC.
2992 This will read in debug info as necessary.
2993 Backward compatibility, no section. */
2994
2995 struct compunit_symtab *
2996 find_pc_compunit_symtab (CORE_ADDR pc)
2997 {
2998 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2999 }
3000
3001 /* See symtab.h. */
3002
3003 struct symbol *
3004 find_symbol_at_address (CORE_ADDR address)
3005 {
3006 for (objfile *objfile : current_program_space->objfiles ())
3007 {
3008 if (objfile->sf == NULL
3009 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3010 continue;
3011
3012 struct compunit_symtab *symtab
3013 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3014 if (symtab != NULL)
3015 {
3016 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3017
3018 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3019 {
3020 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3021 struct block_iterator iter;
3022 struct symbol *sym;
3023
3024 ALL_BLOCK_SYMBOLS (b, iter, sym)
3025 {
3026 if (SYMBOL_CLASS (sym) == LOC_STATIC
3027 && SYMBOL_VALUE_ADDRESS (sym) == address)
3028 return sym;
3029 }
3030 }
3031 }
3032 }
3033
3034 return NULL;
3035 }
3036
3037 \f
3038
3039 /* Find the source file and line number for a given PC value and SECTION.
3040 Return a structure containing a symtab pointer, a line number,
3041 and a pc range for the entire source line.
3042 The value's .pc field is NOT the specified pc.
3043 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3044 use the line that ends there. Otherwise, in that case, the line
3045 that begins there is used. */
3046
3047 /* The big complication here is that a line may start in one file, and end just
3048 before the start of another file. This usually occurs when you #include
3049 code in the middle of a subroutine. To properly find the end of a line's PC
3050 range, we must search all symtabs associated with this compilation unit, and
3051 find the one whose first PC is closer than that of the next line in this
3052 symtab. */
3053
3054 struct symtab_and_line
3055 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3056 {
3057 struct compunit_symtab *cust;
3058 struct linetable *l;
3059 int len;
3060 struct linetable_entry *item;
3061 const struct blockvector *bv;
3062 struct bound_minimal_symbol msymbol;
3063
3064 /* Info on best line seen so far, and where it starts, and its file. */
3065
3066 struct linetable_entry *best = NULL;
3067 CORE_ADDR best_end = 0;
3068 struct symtab *best_symtab = 0;
3069
3070 /* Store here the first line number
3071 of a file which contains the line at the smallest pc after PC.
3072 If we don't find a line whose range contains PC,
3073 we will use a line one less than this,
3074 with a range from the start of that file to the first line's pc. */
3075 struct linetable_entry *alt = NULL;
3076
3077 /* Info on best line seen in this file. */
3078
3079 struct linetable_entry *prev;
3080
3081 /* If this pc is not from the current frame,
3082 it is the address of the end of a call instruction.
3083 Quite likely that is the start of the following statement.
3084 But what we want is the statement containing the instruction.
3085 Fudge the pc to make sure we get that. */
3086
3087 /* It's tempting to assume that, if we can't find debugging info for
3088 any function enclosing PC, that we shouldn't search for line
3089 number info, either. However, GAS can emit line number info for
3090 assembly files --- very helpful when debugging hand-written
3091 assembly code. In such a case, we'd have no debug info for the
3092 function, but we would have line info. */
3093
3094 if (notcurrent)
3095 pc -= 1;
3096
3097 /* elz: added this because this function returned the wrong
3098 information if the pc belongs to a stub (import/export)
3099 to call a shlib function. This stub would be anywhere between
3100 two functions in the target, and the line info was erroneously
3101 taken to be the one of the line before the pc. */
3102
3103 /* RT: Further explanation:
3104
3105 * We have stubs (trampolines) inserted between procedures.
3106 *
3107 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3108 * exists in the main image.
3109 *
3110 * In the minimal symbol table, we have a bunch of symbols
3111 * sorted by start address. The stubs are marked as "trampoline",
3112 * the others appear as text. E.g.:
3113 *
3114 * Minimal symbol table for main image
3115 * main: code for main (text symbol)
3116 * shr1: stub (trampoline symbol)
3117 * foo: code for foo (text symbol)
3118 * ...
3119 * Minimal symbol table for "shr1" image:
3120 * ...
3121 * shr1: code for shr1 (text symbol)
3122 * ...
3123 *
3124 * So the code below is trying to detect if we are in the stub
3125 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3126 * and if found, do the symbolization from the real-code address
3127 * rather than the stub address.
3128 *
3129 * Assumptions being made about the minimal symbol table:
3130 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3131 * if we're really in the trampoline.s If we're beyond it (say
3132 * we're in "foo" in the above example), it'll have a closer
3133 * symbol (the "foo" text symbol for example) and will not
3134 * return the trampoline.
3135 * 2. lookup_minimal_symbol_text() will find a real text symbol
3136 * corresponding to the trampoline, and whose address will
3137 * be different than the trampoline address. I put in a sanity
3138 * check for the address being the same, to avoid an
3139 * infinite recursion.
3140 */
3141 msymbol = lookup_minimal_symbol_by_pc (pc);
3142 if (msymbol.minsym != NULL)
3143 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3144 {
3145 struct bound_minimal_symbol mfunsym
3146 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3147 NULL);
3148
3149 if (mfunsym.minsym == NULL)
3150 /* I eliminated this warning since it is coming out
3151 * in the following situation:
3152 * gdb shmain // test program with shared libraries
3153 * (gdb) break shr1 // function in shared lib
3154 * Warning: In stub for ...
3155 * In the above situation, the shared lib is not loaded yet,
3156 * so of course we can't find the real func/line info,
3157 * but the "break" still works, and the warning is annoying.
3158 * So I commented out the warning. RT */
3159 /* warning ("In stub for %s; unable to find real function/line info",
3160 SYMBOL_LINKAGE_NAME (msymbol)); */
3161 ;
3162 /* fall through */
3163 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3164 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3165 /* Avoid infinite recursion */
3166 /* See above comment about why warning is commented out. */
3167 /* warning ("In stub for %s; unable to find real function/line info",
3168 SYMBOL_LINKAGE_NAME (msymbol)); */
3169 ;
3170 /* fall through */
3171 else
3172 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3173 }
3174
3175 symtab_and_line val;
3176 val.pspace = current_program_space;
3177
3178 cust = find_pc_sect_compunit_symtab (pc, section);
3179 if (cust == NULL)
3180 {
3181 /* If no symbol information, return previous pc. */
3182 if (notcurrent)
3183 pc++;
3184 val.pc = pc;
3185 return val;
3186 }
3187
3188 bv = COMPUNIT_BLOCKVECTOR (cust);
3189
3190 /* Look at all the symtabs that share this blockvector.
3191 They all have the same apriori range, that we found was right;
3192 but they have different line tables. */
3193
3194 for (symtab *iter_s : compunit_filetabs (cust))
3195 {
3196 /* Find the best line in this symtab. */
3197 l = SYMTAB_LINETABLE (iter_s);
3198 if (!l)
3199 continue;
3200 len = l->nitems;
3201 if (len <= 0)
3202 {
3203 /* I think len can be zero if the symtab lacks line numbers
3204 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3205 I'm not sure which, and maybe it depends on the symbol
3206 reader). */
3207 continue;
3208 }
3209
3210 prev = NULL;
3211 item = l->item; /* Get first line info. */
3212
3213 /* Is this file's first line closer than the first lines of other files?
3214 If so, record this file, and its first line, as best alternate. */
3215 if (item->pc > pc && (!alt || item->pc < alt->pc))
3216 alt = item;
3217
3218 auto pc_compare = [](const CORE_ADDR & comp_pc,
3219 const struct linetable_entry & lhs)->bool
3220 {
3221 return comp_pc < lhs.pc;
3222 };
3223
3224 struct linetable_entry *first = item;
3225 struct linetable_entry *last = item + len;
3226 item = std::upper_bound (first, last, pc, pc_compare);
3227 if (item != first)
3228 prev = item - 1; /* Found a matching item. */
3229
3230 /* At this point, prev points at the line whose start addr is <= pc, and
3231 item points at the next line. If we ran off the end of the linetable
3232 (pc >= start of the last line), then prev == item. If pc < start of
3233 the first line, prev will not be set. */
3234
3235 /* Is this file's best line closer than the best in the other files?
3236 If so, record this file, and its best line, as best so far. Don't
3237 save prev if it represents the end of a function (i.e. line number
3238 0) instead of a real line. */
3239
3240 if (prev && prev->line && (!best || prev->pc > best->pc))
3241 {
3242 best = prev;
3243 best_symtab = iter_s;
3244
3245 /* Discard BEST_END if it's before the PC of the current BEST. */
3246 if (best_end <= best->pc)
3247 best_end = 0;
3248 }
3249
3250 /* If another line (denoted by ITEM) is in the linetable and its
3251 PC is after BEST's PC, but before the current BEST_END, then
3252 use ITEM's PC as the new best_end. */
3253 if (best && item < last && item->pc > best->pc
3254 && (best_end == 0 || best_end > item->pc))
3255 best_end = item->pc;
3256 }
3257
3258 if (!best_symtab)
3259 {
3260 /* If we didn't find any line number info, just return zeros.
3261 We used to return alt->line - 1 here, but that could be
3262 anywhere; if we don't have line number info for this PC,
3263 don't make some up. */
3264 val.pc = pc;
3265 }
3266 else if (best->line == 0)
3267 {
3268 /* If our best fit is in a range of PC's for which no line
3269 number info is available (line number is zero) then we didn't
3270 find any valid line information. */
3271 val.pc = pc;
3272 }
3273 else
3274 {
3275 val.symtab = best_symtab;
3276 val.line = best->line;
3277 val.pc = best->pc;
3278 if (best_end && (!alt || best_end < alt->pc))
3279 val.end = best_end;
3280 else if (alt)
3281 val.end = alt->pc;
3282 else
3283 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3284 }
3285 val.section = section;
3286 return val;
3287 }
3288
3289 /* Backward compatibility (no section). */
3290
3291 struct symtab_and_line
3292 find_pc_line (CORE_ADDR pc, int notcurrent)
3293 {
3294 struct obj_section *section;
3295
3296 section = find_pc_overlay (pc);
3297 if (pc_in_unmapped_range (pc, section))
3298 pc = overlay_mapped_address (pc, section);
3299 return find_pc_sect_line (pc, section, notcurrent);
3300 }
3301
3302 /* See symtab.h. */
3303
3304 struct symtab *
3305 find_pc_line_symtab (CORE_ADDR pc)
3306 {
3307 struct symtab_and_line sal;
3308
3309 /* This always passes zero for NOTCURRENT to find_pc_line.
3310 There are currently no callers that ever pass non-zero. */
3311 sal = find_pc_line (pc, 0);
3312 return sal.symtab;
3313 }
3314 \f
3315 /* Find line number LINE in any symtab whose name is the same as
3316 SYMTAB.
3317
3318 If found, return the symtab that contains the linetable in which it was
3319 found, set *INDEX to the index in the linetable of the best entry
3320 found, and set *EXACT_MATCH nonzero if the value returned is an
3321 exact match.
3322
3323 If not found, return NULL. */
3324
3325 struct symtab *
3326 find_line_symtab (struct symtab *sym_tab, int line,
3327 int *index, int *exact_match)
3328 {
3329 int exact = 0; /* Initialized here to avoid a compiler warning. */
3330
3331 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3332 so far seen. */
3333
3334 int best_index;
3335 struct linetable *best_linetable;
3336 struct symtab *best_symtab;
3337
3338 /* First try looking it up in the given symtab. */
3339 best_linetable = SYMTAB_LINETABLE (sym_tab);
3340 best_symtab = sym_tab;
3341 best_index = find_line_common (best_linetable, line, &exact, 0);
3342 if (best_index < 0 || !exact)
3343 {
3344 /* Didn't find an exact match. So we better keep looking for
3345 another symtab with the same name. In the case of xcoff,
3346 multiple csects for one source file (produced by IBM's FORTRAN
3347 compiler) produce multiple symtabs (this is unavoidable
3348 assuming csects can be at arbitrary places in memory and that
3349 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3350
3351 /* BEST is the smallest linenumber > LINE so far seen,
3352 or 0 if none has been seen so far.
3353 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3354 int best;
3355
3356 if (best_index >= 0)
3357 best = best_linetable->item[best_index].line;
3358 else
3359 best = 0;
3360
3361 for (objfile *objfile : current_program_space->objfiles ())
3362 {
3363 if (objfile->sf)
3364 objfile->sf->qf->expand_symtabs_with_fullname
3365 (objfile, symtab_to_fullname (sym_tab));
3366 }
3367
3368 for (objfile *objfile : current_program_space->objfiles ())
3369 {
3370 for (compunit_symtab *cu : objfile->compunits ())
3371 {
3372 for (symtab *s : compunit_filetabs (cu))
3373 {
3374 struct linetable *l;
3375 int ind;
3376
3377 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3378 continue;
3379 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3380 symtab_to_fullname (s)) != 0)
3381 continue;
3382 l = SYMTAB_LINETABLE (s);
3383 ind = find_line_common (l, line, &exact, 0);
3384 if (ind >= 0)
3385 {
3386 if (exact)
3387 {
3388 best_index = ind;
3389 best_linetable = l;
3390 best_symtab = s;
3391 goto done;
3392 }
3393 if (best == 0 || l->item[ind].line < best)
3394 {
3395 best = l->item[ind].line;
3396 best_index = ind;
3397 best_linetable = l;
3398 best_symtab = s;
3399 }
3400 }
3401 }
3402 }
3403 }
3404 }
3405 done:
3406 if (best_index < 0)
3407 return NULL;
3408
3409 if (index)
3410 *index = best_index;
3411 if (exact_match)
3412 *exact_match = exact;
3413
3414 return best_symtab;
3415 }
3416
3417 /* Given SYMTAB, returns all the PCs function in the symtab that
3418 exactly match LINE. Returns an empty vector if there are no exact
3419 matches, but updates BEST_ITEM in this case. */
3420
3421 std::vector<CORE_ADDR>
3422 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3423 struct linetable_entry **best_item)
3424 {
3425 int start = 0;
3426 std::vector<CORE_ADDR> result;
3427
3428 /* First, collect all the PCs that are at this line. */
3429 while (1)
3430 {
3431 int was_exact;
3432 int idx;
3433
3434 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3435 start);
3436 if (idx < 0)
3437 break;
3438
3439 if (!was_exact)
3440 {
3441 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3442
3443 if (*best_item == NULL || item->line < (*best_item)->line)
3444 *best_item = item;
3445
3446 break;
3447 }
3448
3449 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3450 start = idx + 1;
3451 }
3452
3453 return result;
3454 }
3455
3456 \f
3457 /* Set the PC value for a given source file and line number and return true.
3458 Returns zero for invalid line number (and sets the PC to 0).
3459 The source file is specified with a struct symtab. */
3460
3461 int
3462 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3463 {
3464 struct linetable *l;
3465 int ind;
3466
3467 *pc = 0;
3468 if (symtab == 0)
3469 return 0;
3470
3471 symtab = find_line_symtab (symtab, line, &ind, NULL);
3472 if (symtab != NULL)
3473 {
3474 l = SYMTAB_LINETABLE (symtab);
3475 *pc = l->item[ind].pc;
3476 return 1;
3477 }
3478 else
3479 return 0;
3480 }
3481
3482 /* Find the range of pc values in a line.
3483 Store the starting pc of the line into *STARTPTR
3484 and the ending pc (start of next line) into *ENDPTR.
3485 Returns 1 to indicate success.
3486 Returns 0 if could not find the specified line. */
3487
3488 int
3489 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3490 CORE_ADDR *endptr)
3491 {
3492 CORE_ADDR startaddr;
3493 struct symtab_and_line found_sal;
3494
3495 startaddr = sal.pc;
3496 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3497 return 0;
3498
3499 /* This whole function is based on address. For example, if line 10 has
3500 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3501 "info line *0x123" should say the line goes from 0x100 to 0x200
3502 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3503 This also insures that we never give a range like "starts at 0x134
3504 and ends at 0x12c". */
3505
3506 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3507 if (found_sal.line != sal.line)
3508 {
3509 /* The specified line (sal) has zero bytes. */
3510 *startptr = found_sal.pc;
3511 *endptr = found_sal.pc;
3512 }
3513 else
3514 {
3515 *startptr = found_sal.pc;
3516 *endptr = found_sal.end;
3517 }
3518 return 1;
3519 }
3520
3521 /* Given a line table and a line number, return the index into the line
3522 table for the pc of the nearest line whose number is >= the specified one.
3523 Return -1 if none is found. The value is >= 0 if it is an index.
3524 START is the index at which to start searching the line table.
3525
3526 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3527
3528 static int
3529 find_line_common (struct linetable *l, int lineno,
3530 int *exact_match, int start)
3531 {
3532 int i;
3533 int len;
3534
3535 /* BEST is the smallest linenumber > LINENO so far seen,
3536 or 0 if none has been seen so far.
3537 BEST_INDEX identifies the item for it. */
3538
3539 int best_index = -1;
3540 int best = 0;
3541
3542 *exact_match = 0;
3543
3544 if (lineno <= 0)
3545 return -1;
3546 if (l == 0)
3547 return -1;
3548
3549 len = l->nitems;
3550 for (i = start; i < len; i++)
3551 {
3552 struct linetable_entry *item = &(l->item[i]);
3553
3554 if (item->line == lineno)
3555 {
3556 /* Return the first (lowest address) entry which matches. */
3557 *exact_match = 1;
3558 return i;
3559 }
3560
3561 if (item->line > lineno && (best == 0 || item->line < best))
3562 {
3563 best = item->line;
3564 best_index = i;
3565 }
3566 }
3567
3568 /* If we got here, we didn't get an exact match. */
3569 return best_index;
3570 }
3571
3572 int
3573 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3574 {
3575 struct symtab_and_line sal;
3576
3577 sal = find_pc_line (pc, 0);
3578 *startptr = sal.pc;
3579 *endptr = sal.end;
3580 return sal.symtab != 0;
3581 }
3582
3583 /* Helper for find_function_start_sal. Does most of the work, except
3584 setting the sal's symbol. */
3585
3586 static symtab_and_line
3587 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3588 bool funfirstline)
3589 {
3590 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3591
3592 if (funfirstline && sal.symtab != NULL
3593 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3594 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3595 {
3596 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3597
3598 sal.pc = func_addr;
3599 if (gdbarch_skip_entrypoint_p (gdbarch))
3600 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3601 return sal;
3602 }
3603
3604 /* We always should have a line for the function start address.
3605 If we don't, something is odd. Create a plain SAL referring
3606 just the PC and hope that skip_prologue_sal (if requested)
3607 can find a line number for after the prologue. */
3608 if (sal.pc < func_addr)
3609 {
3610 sal = {};
3611 sal.pspace = current_program_space;
3612 sal.pc = func_addr;
3613 sal.section = section;
3614 }
3615
3616 if (funfirstline)
3617 skip_prologue_sal (&sal);
3618
3619 return sal;
3620 }
3621
3622 /* See symtab.h. */
3623
3624 symtab_and_line
3625 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3626 bool funfirstline)
3627 {
3628 symtab_and_line sal
3629 = find_function_start_sal_1 (func_addr, section, funfirstline);
3630
3631 /* find_function_start_sal_1 does a linetable search, so it finds
3632 the symtab and linenumber, but not a symbol. Fill in the
3633 function symbol too. */
3634 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3635
3636 return sal;
3637 }
3638
3639 /* See symtab.h. */
3640
3641 symtab_and_line
3642 find_function_start_sal (symbol *sym, bool funfirstline)
3643 {
3644 fixup_symbol_section (sym, NULL);
3645 symtab_and_line sal
3646 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3647 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3648 funfirstline);
3649 sal.symbol = sym;
3650 return sal;
3651 }
3652
3653
3654 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3655 address for that function that has an entry in SYMTAB's line info
3656 table. If such an entry cannot be found, return FUNC_ADDR
3657 unaltered. */
3658
3659 static CORE_ADDR
3660 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3661 {
3662 CORE_ADDR func_start, func_end;
3663 struct linetable *l;
3664 int i;
3665
3666 /* Give up if this symbol has no lineinfo table. */
3667 l = SYMTAB_LINETABLE (symtab);
3668 if (l == NULL)
3669 return func_addr;
3670
3671 /* Get the range for the function's PC values, or give up if we
3672 cannot, for some reason. */
3673 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3674 return func_addr;
3675
3676 /* Linetable entries are ordered by PC values, see the commentary in
3677 symtab.h where `struct linetable' is defined. Thus, the first
3678 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3679 address we are looking for. */
3680 for (i = 0; i < l->nitems; i++)
3681 {
3682 struct linetable_entry *item = &(l->item[i]);
3683
3684 /* Don't use line numbers of zero, they mark special entries in
3685 the table. See the commentary on symtab.h before the
3686 definition of struct linetable. */
3687 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3688 return item->pc;
3689 }
3690
3691 return func_addr;
3692 }
3693
3694 /* Adjust SAL to the first instruction past the function prologue.
3695 If the PC was explicitly specified, the SAL is not changed.
3696 If the line number was explicitly specified, at most the SAL's PC
3697 is updated. If SAL is already past the prologue, then do nothing. */
3698
3699 void
3700 skip_prologue_sal (struct symtab_and_line *sal)
3701 {
3702 struct symbol *sym;
3703 struct symtab_and_line start_sal;
3704 CORE_ADDR pc, saved_pc;
3705 struct obj_section *section;
3706 const char *name;
3707 struct objfile *objfile;
3708 struct gdbarch *gdbarch;
3709 const struct block *b, *function_block;
3710 int force_skip, skip;
3711
3712 /* Do not change the SAL if PC was specified explicitly. */
3713 if (sal->explicit_pc)
3714 return;
3715
3716 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3717
3718 switch_to_program_space_and_thread (sal->pspace);
3719
3720 sym = find_pc_sect_function (sal->pc, sal->section);
3721 if (sym != NULL)
3722 {
3723 fixup_symbol_section (sym, NULL);
3724
3725 objfile = symbol_objfile (sym);
3726 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3727 section = SYMBOL_OBJ_SECTION (objfile, sym);
3728 name = SYMBOL_LINKAGE_NAME (sym);
3729 }
3730 else
3731 {
3732 struct bound_minimal_symbol msymbol
3733 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3734
3735 if (msymbol.minsym == NULL)
3736 return;
3737
3738 objfile = msymbol.objfile;
3739 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3740 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3741 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3742 }
3743
3744 gdbarch = get_objfile_arch (objfile);
3745
3746 /* Process the prologue in two passes. In the first pass try to skip the
3747 prologue (SKIP is true) and verify there is a real need for it (indicated
3748 by FORCE_SKIP). If no such reason was found run a second pass where the
3749 prologue is not skipped (SKIP is false). */
3750
3751 skip = 1;
3752 force_skip = 1;
3753
3754 /* Be conservative - allow direct PC (without skipping prologue) only if we
3755 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3756 have to be set by the caller so we use SYM instead. */
3757 if (sym != NULL
3758 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3759 force_skip = 0;
3760
3761 saved_pc = pc;
3762 do
3763 {
3764 pc = saved_pc;
3765
3766 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3767 so that gdbarch_skip_prologue has something unique to work on. */
3768 if (section_is_overlay (section) && !section_is_mapped (section))
3769 pc = overlay_unmapped_address (pc, section);
3770
3771 /* Skip "first line" of function (which is actually its prologue). */
3772 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3773 if (gdbarch_skip_entrypoint_p (gdbarch))
3774 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3775 if (skip)
3776 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3777
3778 /* For overlays, map pc back into its mapped VMA range. */
3779 pc = overlay_mapped_address (pc, section);
3780
3781 /* Calculate line number. */
3782 start_sal = find_pc_sect_line (pc, section, 0);
3783
3784 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3785 line is still part of the same function. */
3786 if (skip && start_sal.pc != pc
3787 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3788 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3789 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3790 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3791 {
3792 /* First pc of next line */
3793 pc = start_sal.end;
3794 /* Recalculate the line number (might not be N+1). */
3795 start_sal = find_pc_sect_line (pc, section, 0);
3796 }
3797
3798 /* On targets with executable formats that don't have a concept of
3799 constructors (ELF with .init has, PE doesn't), gcc emits a call
3800 to `__main' in `main' between the prologue and before user
3801 code. */
3802 if (gdbarch_skip_main_prologue_p (gdbarch)
3803 && name && strcmp_iw (name, "main") == 0)
3804 {
3805 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3806 /* Recalculate the line number (might not be N+1). */
3807 start_sal = find_pc_sect_line (pc, section, 0);
3808 force_skip = 1;
3809 }
3810 }
3811 while (!force_skip && skip--);
3812
3813 /* If we still don't have a valid source line, try to find the first
3814 PC in the lineinfo table that belongs to the same function. This
3815 happens with COFF debug info, which does not seem to have an
3816 entry in lineinfo table for the code after the prologue which has
3817 no direct relation to source. For example, this was found to be
3818 the case with the DJGPP target using "gcc -gcoff" when the
3819 compiler inserted code after the prologue to make sure the stack
3820 is aligned. */
3821 if (!force_skip && sym && start_sal.symtab == NULL)
3822 {
3823 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3824 /* Recalculate the line number. */
3825 start_sal = find_pc_sect_line (pc, section, 0);
3826 }
3827
3828 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3829 forward SAL to the end of the prologue. */
3830 if (sal->pc >= pc)
3831 return;
3832
3833 sal->pc = pc;
3834 sal->section = section;
3835
3836 /* Unless the explicit_line flag was set, update the SAL line
3837 and symtab to correspond to the modified PC location. */
3838 if (sal->explicit_line)
3839 return;
3840
3841 sal->symtab = start_sal.symtab;
3842 sal->line = start_sal.line;
3843 sal->end = start_sal.end;
3844
3845 /* Check if we are now inside an inlined function. If we can,
3846 use the call site of the function instead. */
3847 b = block_for_pc_sect (sal->pc, sal->section);
3848 function_block = NULL;
3849 while (b != NULL)
3850 {
3851 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3852 function_block = b;
3853 else if (BLOCK_FUNCTION (b) != NULL)
3854 break;
3855 b = BLOCK_SUPERBLOCK (b);
3856 }
3857 if (function_block != NULL
3858 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3859 {
3860 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3861 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3862 }
3863 }
3864
3865 /* Given PC at the function's start address, attempt to find the
3866 prologue end using SAL information. Return zero if the skip fails.
3867
3868 A non-optimized prologue traditionally has one SAL for the function
3869 and a second for the function body. A single line function has
3870 them both pointing at the same line.
3871
3872 An optimized prologue is similar but the prologue may contain
3873 instructions (SALs) from the instruction body. Need to skip those
3874 while not getting into the function body.
3875
3876 The functions end point and an increasing SAL line are used as
3877 indicators of the prologue's endpoint.
3878
3879 This code is based on the function refine_prologue_limit
3880 (found in ia64). */
3881
3882 CORE_ADDR
3883 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3884 {
3885 struct symtab_and_line prologue_sal;
3886 CORE_ADDR start_pc;
3887 CORE_ADDR end_pc;
3888 const struct block *bl;
3889
3890 /* Get an initial range for the function. */
3891 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3892 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3893
3894 prologue_sal = find_pc_line (start_pc, 0);
3895 if (prologue_sal.line != 0)
3896 {
3897 /* For languages other than assembly, treat two consecutive line
3898 entries at the same address as a zero-instruction prologue.
3899 The GNU assembler emits separate line notes for each instruction
3900 in a multi-instruction macro, but compilers generally will not
3901 do this. */
3902 if (prologue_sal.symtab->language != language_asm)
3903 {
3904 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3905 int idx = 0;
3906
3907 /* Skip any earlier lines, and any end-of-sequence marker
3908 from a previous function. */
3909 while (linetable->item[idx].pc != prologue_sal.pc
3910 || linetable->item[idx].line == 0)
3911 idx++;
3912
3913 if (idx+1 < linetable->nitems
3914 && linetable->item[idx+1].line != 0
3915 && linetable->item[idx+1].pc == start_pc)
3916 return start_pc;
3917 }
3918
3919 /* If there is only one sal that covers the entire function,
3920 then it is probably a single line function, like
3921 "foo(){}". */
3922 if (prologue_sal.end >= end_pc)
3923 return 0;
3924
3925 while (prologue_sal.end < end_pc)
3926 {
3927 struct symtab_and_line sal;
3928
3929 sal = find_pc_line (prologue_sal.end, 0);
3930 if (sal.line == 0)
3931 break;
3932 /* Assume that a consecutive SAL for the same (or larger)
3933 line mark the prologue -> body transition. */
3934 if (sal.line >= prologue_sal.line)
3935 break;
3936 /* Likewise if we are in a different symtab altogether
3937 (e.g. within a file included via #include).  */
3938 if (sal.symtab != prologue_sal.symtab)
3939 break;
3940
3941 /* The line number is smaller. Check that it's from the
3942 same function, not something inlined. If it's inlined,
3943 then there is no point comparing the line numbers. */
3944 bl = block_for_pc (prologue_sal.end);
3945 while (bl)
3946 {
3947 if (block_inlined_p (bl))
3948 break;
3949 if (BLOCK_FUNCTION (bl))
3950 {
3951 bl = NULL;
3952 break;
3953 }
3954 bl = BLOCK_SUPERBLOCK (bl);
3955 }
3956 if (bl != NULL)
3957 break;
3958
3959 /* The case in which compiler's optimizer/scheduler has
3960 moved instructions into the prologue. We look ahead in
3961 the function looking for address ranges whose
3962 corresponding line number is less the first one that we
3963 found for the function. This is more conservative then
3964 refine_prologue_limit which scans a large number of SALs
3965 looking for any in the prologue. */
3966 prologue_sal = sal;
3967 }
3968 }
3969
3970 if (prologue_sal.end < end_pc)
3971 /* Return the end of this line, or zero if we could not find a
3972 line. */
3973 return prologue_sal.end;
3974 else
3975 /* Don't return END_PC, which is past the end of the function. */
3976 return prologue_sal.pc;
3977 }
3978
3979 /* See symtab.h. */
3980
3981 symbol *
3982 find_function_alias_target (bound_minimal_symbol msymbol)
3983 {
3984 CORE_ADDR func_addr;
3985 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3986 return NULL;
3987
3988 symbol *sym = find_pc_function (func_addr);
3989 if (sym != NULL
3990 && SYMBOL_CLASS (sym) == LOC_BLOCK
3991 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3992 return sym;
3993
3994 return NULL;
3995 }
3996
3997 \f
3998 /* If P is of the form "operator[ \t]+..." where `...' is
3999 some legitimate operator text, return a pointer to the
4000 beginning of the substring of the operator text.
4001 Otherwise, return "". */
4002
4003 static const char *
4004 operator_chars (const char *p, const char **end)
4005 {
4006 *end = "";
4007 if (!startswith (p, CP_OPERATOR_STR))
4008 return *end;
4009 p += CP_OPERATOR_LEN;
4010
4011 /* Don't get faked out by `operator' being part of a longer
4012 identifier. */
4013 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4014 return *end;
4015
4016 /* Allow some whitespace between `operator' and the operator symbol. */
4017 while (*p == ' ' || *p == '\t')
4018 p++;
4019
4020 /* Recognize 'operator TYPENAME'. */
4021
4022 if (isalpha (*p) || *p == '_' || *p == '$')
4023 {
4024 const char *q = p + 1;
4025
4026 while (isalnum (*q) || *q == '_' || *q == '$')
4027 q++;
4028 *end = q;
4029 return p;
4030 }
4031
4032 while (*p)
4033 switch (*p)
4034 {
4035 case '\\': /* regexp quoting */
4036 if (p[1] == '*')
4037 {
4038 if (p[2] == '=') /* 'operator\*=' */
4039 *end = p + 3;
4040 else /* 'operator\*' */
4041 *end = p + 2;
4042 return p;
4043 }
4044 else if (p[1] == '[')
4045 {
4046 if (p[2] == ']')
4047 error (_("mismatched quoting on brackets, "
4048 "try 'operator\\[\\]'"));
4049 else if (p[2] == '\\' && p[3] == ']')
4050 {
4051 *end = p + 4; /* 'operator\[\]' */
4052 return p;
4053 }
4054 else
4055 error (_("nothing is allowed between '[' and ']'"));
4056 }
4057 else
4058 {
4059 /* Gratuitous qoute: skip it and move on. */
4060 p++;
4061 continue;
4062 }
4063 break;
4064 case '!':
4065 case '=':
4066 case '*':
4067 case '/':
4068 case '%':
4069 case '^':
4070 if (p[1] == '=')
4071 *end = p + 2;
4072 else
4073 *end = p + 1;
4074 return p;
4075 case '<':
4076 case '>':
4077 case '+':
4078 case '-':
4079 case '&':
4080 case '|':
4081 if (p[0] == '-' && p[1] == '>')
4082 {
4083 /* Struct pointer member operator 'operator->'. */
4084 if (p[2] == '*')
4085 {
4086 *end = p + 3; /* 'operator->*' */
4087 return p;
4088 }
4089 else if (p[2] == '\\')
4090 {
4091 *end = p + 4; /* Hopefully 'operator->\*' */
4092 return p;
4093 }
4094 else
4095 {
4096 *end = p + 2; /* 'operator->' */
4097 return p;
4098 }
4099 }
4100 if (p[1] == '=' || p[1] == p[0])
4101 *end = p + 2;
4102 else
4103 *end = p + 1;
4104 return p;
4105 case '~':
4106 case ',':
4107 *end = p + 1;
4108 return p;
4109 case '(':
4110 if (p[1] != ')')
4111 error (_("`operator ()' must be specified "
4112 "without whitespace in `()'"));
4113 *end = p + 2;
4114 return p;
4115 case '?':
4116 if (p[1] != ':')
4117 error (_("`operator ?:' must be specified "
4118 "without whitespace in `?:'"));
4119 *end = p + 2;
4120 return p;
4121 case '[':
4122 if (p[1] != ']')
4123 error (_("`operator []' must be specified "
4124 "without whitespace in `[]'"));
4125 *end = p + 2;
4126 return p;
4127 default:
4128 error (_("`operator %s' not supported"), p);
4129 break;
4130 }
4131
4132 *end = "";
4133 return *end;
4134 }
4135 \f
4136
4137 /* Data structure to maintain printing state for output_source_filename. */
4138
4139 struct output_source_filename_data
4140 {
4141 /* Cache of what we've seen so far. */
4142 struct filename_seen_cache *filename_seen_cache;
4143
4144 /* Flag of whether we're printing the first one. */
4145 int first;
4146 };
4147
4148 /* Slave routine for sources_info. Force line breaks at ,'s.
4149 NAME is the name to print.
4150 DATA contains the state for printing and watching for duplicates. */
4151
4152 static void
4153 output_source_filename (const char *name,
4154 struct output_source_filename_data *data)
4155 {
4156 /* Since a single source file can result in several partial symbol
4157 tables, we need to avoid printing it more than once. Note: if
4158 some of the psymtabs are read in and some are not, it gets
4159 printed both under "Source files for which symbols have been
4160 read" and "Source files for which symbols will be read in on
4161 demand". I consider this a reasonable way to deal with the
4162 situation. I'm not sure whether this can also happen for
4163 symtabs; it doesn't hurt to check. */
4164
4165 /* Was NAME already seen? */
4166 if (data->filename_seen_cache->seen (name))
4167 {
4168 /* Yes; don't print it again. */
4169 return;
4170 }
4171
4172 /* No; print it and reset *FIRST. */
4173 if (! data->first)
4174 printf_filtered (", ");
4175 data->first = 0;
4176
4177 wrap_here ("");
4178 fputs_styled (name, file_name_style.style (), gdb_stdout);
4179 }
4180
4181 /* A callback for map_partial_symbol_filenames. */
4182
4183 static void
4184 output_partial_symbol_filename (const char *filename, const char *fullname,
4185 void *data)
4186 {
4187 output_source_filename (fullname ? fullname : filename,
4188 (struct output_source_filename_data *) data);
4189 }
4190
4191 static void
4192 info_sources_command (const char *ignore, int from_tty)
4193 {
4194 struct output_source_filename_data data;
4195
4196 if (!have_full_symbols () && !have_partial_symbols ())
4197 {
4198 error (_("No symbol table is loaded. Use the \"file\" command."));
4199 }
4200
4201 filename_seen_cache filenames_seen;
4202
4203 data.filename_seen_cache = &filenames_seen;
4204
4205 printf_filtered ("Source files for which symbols have been read in:\n\n");
4206
4207 data.first = 1;
4208 for (objfile *objfile : current_program_space->objfiles ())
4209 {
4210 for (compunit_symtab *cu : objfile->compunits ())
4211 {
4212 for (symtab *s : compunit_filetabs (cu))
4213 {
4214 const char *fullname = symtab_to_fullname (s);
4215
4216 output_source_filename (fullname, &data);
4217 }
4218 }
4219 }
4220 printf_filtered ("\n\n");
4221
4222 printf_filtered ("Source files for which symbols "
4223 "will be read in on demand:\n\n");
4224
4225 filenames_seen.clear ();
4226 data.first = 1;
4227 map_symbol_filenames (output_partial_symbol_filename, &data,
4228 1 /*need_fullname*/);
4229 printf_filtered ("\n");
4230 }
4231
4232 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4233 non-zero compare only lbasename of FILES. */
4234
4235 static int
4236 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4237 {
4238 int i;
4239
4240 if (file != NULL && nfiles != 0)
4241 {
4242 for (i = 0; i < nfiles; i++)
4243 {
4244 if (compare_filenames_for_search (file, (basenames
4245 ? lbasename (files[i])
4246 : files[i])))
4247 return 1;
4248 }
4249 }
4250 else if (nfiles == 0)
4251 return 1;
4252 return 0;
4253 }
4254
4255 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4256 sort symbols, not minimal symbols. */
4257
4258 int
4259 symbol_search::compare_search_syms (const symbol_search &sym_a,
4260 const symbol_search &sym_b)
4261 {
4262 int c;
4263
4264 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4265 symbol_symtab (sym_b.symbol)->filename);
4266 if (c != 0)
4267 return c;
4268
4269 if (sym_a.block != sym_b.block)
4270 return sym_a.block - sym_b.block;
4271
4272 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4273 SYMBOL_PRINT_NAME (sym_b.symbol));
4274 }
4275
4276 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4277 If SYM has no symbol_type or symbol_name, returns false. */
4278
4279 bool
4280 treg_matches_sym_type_name (const compiled_regex &treg,
4281 const struct symbol *sym)
4282 {
4283 struct type *sym_type;
4284 std::string printed_sym_type_name;
4285
4286 if (symbol_lookup_debug > 1)
4287 {
4288 fprintf_unfiltered (gdb_stdlog,
4289 "treg_matches_sym_type_name\n sym %s\n",
4290 SYMBOL_NATURAL_NAME (sym));
4291 }
4292
4293 sym_type = SYMBOL_TYPE (sym);
4294 if (sym_type == NULL)
4295 return false;
4296
4297 {
4298 scoped_switch_to_sym_language_if_auto l (sym);
4299
4300 printed_sym_type_name = type_to_string (sym_type);
4301 }
4302
4303
4304 if (symbol_lookup_debug > 1)
4305 {
4306 fprintf_unfiltered (gdb_stdlog,
4307 " sym_type_name %s\n",
4308 printed_sym_type_name.c_str ());
4309 }
4310
4311
4312 if (printed_sym_type_name.empty ())
4313 return false;
4314
4315 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4316 }
4317
4318
4319 /* Sort the symbols in RESULT and remove duplicates. */
4320
4321 static void
4322 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4323 {
4324 std::sort (result->begin (), result->end ());
4325 result->erase (std::unique (result->begin (), result->end ()),
4326 result->end ());
4327 }
4328
4329 /* Search the symbol table for matches to the regular expression REGEXP,
4330 returning the results.
4331
4332 Only symbols of KIND are searched:
4333 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4334 and constants (enums).
4335 if T_REGEXP is not NULL, only returns var that have
4336 a type matching regular expression T_REGEXP.
4337 FUNCTIONS_DOMAIN - search all functions
4338 TYPES_DOMAIN - search all type names
4339 ALL_DOMAIN - an internal error for this function
4340
4341 Within each file the results are sorted locally; each symtab's global and
4342 static blocks are separately alphabetized.
4343 Duplicate entries are removed. */
4344
4345 std::vector<symbol_search>
4346 search_symbols (const char *regexp, enum search_domain kind,
4347 const char *t_regexp,
4348 int nfiles, const char *files[])
4349 {
4350 const struct blockvector *bv;
4351 const struct block *b;
4352 int i = 0;
4353 struct block_iterator iter;
4354 struct symbol *sym;
4355 int found_misc = 0;
4356 static const enum minimal_symbol_type types[]
4357 = {mst_data, mst_text, mst_abs};
4358 static const enum minimal_symbol_type types2[]
4359 = {mst_bss, mst_file_text, mst_abs};
4360 static const enum minimal_symbol_type types3[]
4361 = {mst_file_data, mst_solib_trampoline, mst_abs};
4362 static const enum minimal_symbol_type types4[]
4363 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4364 enum minimal_symbol_type ourtype;
4365 enum minimal_symbol_type ourtype2;
4366 enum minimal_symbol_type ourtype3;
4367 enum minimal_symbol_type ourtype4;
4368 std::vector<symbol_search> result;
4369 gdb::optional<compiled_regex> preg;
4370 gdb::optional<compiled_regex> treg;
4371
4372 gdb_assert (kind <= TYPES_DOMAIN);
4373
4374 ourtype = types[kind];
4375 ourtype2 = types2[kind];
4376 ourtype3 = types3[kind];
4377 ourtype4 = types4[kind];
4378
4379 if (regexp != NULL)
4380 {
4381 /* Make sure spacing is right for C++ operators.
4382 This is just a courtesy to make the matching less sensitive
4383 to how many spaces the user leaves between 'operator'
4384 and <TYPENAME> or <OPERATOR>. */
4385 const char *opend;
4386 const char *opname = operator_chars (regexp, &opend);
4387
4388 if (*opname)
4389 {
4390 int fix = -1; /* -1 means ok; otherwise number of
4391 spaces needed. */
4392
4393 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4394 {
4395 /* There should 1 space between 'operator' and 'TYPENAME'. */
4396 if (opname[-1] != ' ' || opname[-2] == ' ')
4397 fix = 1;
4398 }
4399 else
4400 {
4401 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4402 if (opname[-1] == ' ')
4403 fix = 0;
4404 }
4405 /* If wrong number of spaces, fix it. */
4406 if (fix >= 0)
4407 {
4408 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4409
4410 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4411 regexp = tmp;
4412 }
4413 }
4414
4415 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4416 ? REG_ICASE : 0);
4417 preg.emplace (regexp, cflags, _("Invalid regexp"));
4418 }
4419
4420 if (t_regexp != NULL)
4421 {
4422 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4423 ? REG_ICASE : 0);
4424 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4425 }
4426
4427 /* Search through the partial symtabs *first* for all symbols
4428 matching the regexp. That way we don't have to reproduce all of
4429 the machinery below. */
4430 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4431 {
4432 return file_matches (filename, files, nfiles,
4433 basenames);
4434 },
4435 lookup_name_info::match_any (),
4436 [&] (const char *symname)
4437 {
4438 return (!preg.has_value ()
4439 || preg->exec (symname,
4440 0, NULL, 0) == 0);
4441 },
4442 NULL,
4443 kind);
4444
4445 /* Here, we search through the minimal symbol tables for functions
4446 and variables that match, and force their symbols to be read.
4447 This is in particular necessary for demangled variable names,
4448 which are no longer put into the partial symbol tables.
4449 The symbol will then be found during the scan of symtabs below.
4450
4451 For functions, find_pc_symtab should succeed if we have debug info
4452 for the function, for variables we have to call
4453 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4454 has debug info.
4455 If the lookup fails, set found_misc so that we will rescan to print
4456 any matching symbols without debug info.
4457 We only search the objfile the msymbol came from, we no longer search
4458 all objfiles. In large programs (1000s of shared libs) searching all
4459 objfiles is not worth the pain. */
4460
4461 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4462 {
4463 for (objfile *objfile : current_program_space->objfiles ())
4464 {
4465 for (minimal_symbol *msymbol : objfile->msymbols ())
4466 {
4467 QUIT;
4468
4469 if (msymbol->created_by_gdb)
4470 continue;
4471
4472 if (MSYMBOL_TYPE (msymbol) == ourtype
4473 || MSYMBOL_TYPE (msymbol) == ourtype2
4474 || MSYMBOL_TYPE (msymbol) == ourtype3
4475 || MSYMBOL_TYPE (msymbol) == ourtype4)
4476 {
4477 if (!preg.has_value ()
4478 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4479 NULL, 0) == 0)
4480 {
4481 /* Note: An important side-effect of these
4482 lookup functions is to expand the symbol
4483 table if msymbol is found, for the benefit of
4484 the next loop on compunits. */
4485 if (kind == FUNCTIONS_DOMAIN
4486 ? (find_pc_compunit_symtab
4487 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4488 == NULL)
4489 : (lookup_symbol_in_objfile_from_linkage_name
4490 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4491 VAR_DOMAIN)
4492 .symbol == NULL))
4493 found_misc = 1;
4494 }
4495 }
4496 }
4497 }
4498 }
4499
4500 for (objfile *objfile : current_program_space->objfiles ())
4501 {
4502 for (compunit_symtab *cust : objfile->compunits ())
4503 {
4504 bv = COMPUNIT_BLOCKVECTOR (cust);
4505 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4506 {
4507 b = BLOCKVECTOR_BLOCK (bv, i);
4508 ALL_BLOCK_SYMBOLS (b, iter, sym)
4509 {
4510 struct symtab *real_symtab = symbol_symtab (sym);
4511
4512 QUIT;
4513
4514 /* Check first sole REAL_SYMTAB->FILENAME. It does
4515 not need to be a substring of symtab_to_fullname as
4516 it may contain "./" etc. */
4517 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4518 || ((basenames_may_differ
4519 || file_matches (lbasename (real_symtab->filename),
4520 files, nfiles, 1))
4521 && file_matches (symtab_to_fullname (real_symtab),
4522 files, nfiles, 0)))
4523 && ((!preg.has_value ()
4524 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4525 NULL, 0) == 0)
4526 && ((kind == VARIABLES_DOMAIN
4527 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4528 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4529 && SYMBOL_CLASS (sym) != LOC_BLOCK
4530 /* LOC_CONST can be used for more than
4531 just enums, e.g., c++ static const
4532 members. We only want to skip enums
4533 here. */
4534 && !(SYMBOL_CLASS (sym) == LOC_CONST
4535 && (TYPE_CODE (SYMBOL_TYPE (sym))
4536 == TYPE_CODE_ENUM))
4537 && (!treg.has_value ()
4538 || treg_matches_sym_type_name (*treg, sym)))
4539 || (kind == FUNCTIONS_DOMAIN
4540 && SYMBOL_CLASS (sym) == LOC_BLOCK
4541 && (!treg.has_value ()
4542 || treg_matches_sym_type_name (*treg,
4543 sym)))
4544 || (kind == TYPES_DOMAIN
4545 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4546 {
4547 /* match */
4548 result.emplace_back (i, sym);
4549 }
4550 }
4551 }
4552 }
4553 }
4554
4555 if (!result.empty ())
4556 sort_search_symbols_remove_dups (&result);
4557
4558 /* If there are no eyes, avoid all contact. I mean, if there are
4559 no debug symbols, then add matching minsyms. But if the user wants
4560 to see symbols matching a type regexp, then never give a minimal symbol,
4561 as we assume that a minimal symbol does not have a type. */
4562
4563 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4564 && !treg.has_value ())
4565 {
4566 for (objfile *objfile : current_program_space->objfiles ())
4567 {
4568 for (minimal_symbol *msymbol : objfile->msymbols ())
4569 {
4570 QUIT;
4571
4572 if (msymbol->created_by_gdb)
4573 continue;
4574
4575 if (MSYMBOL_TYPE (msymbol) == ourtype
4576 || MSYMBOL_TYPE (msymbol) == ourtype2
4577 || MSYMBOL_TYPE (msymbol) == ourtype3
4578 || MSYMBOL_TYPE (msymbol) == ourtype4)
4579 {
4580 if (!preg.has_value ()
4581 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4582 NULL, 0) == 0)
4583 {
4584 /* For functions we can do a quick check of whether the
4585 symbol might be found via find_pc_symtab. */
4586 if (kind != FUNCTIONS_DOMAIN
4587 || (find_pc_compunit_symtab
4588 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4589 == NULL))
4590 {
4591 if (lookup_symbol_in_objfile_from_linkage_name
4592 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4593 VAR_DOMAIN)
4594 .symbol == NULL)
4595 {
4596 /* match */
4597 result.emplace_back (i, msymbol, objfile);
4598 }
4599 }
4600 }
4601 }
4602 }
4603 }
4604 }
4605
4606 return result;
4607 }
4608
4609 /* Helper function for symtab_symbol_info, this function uses
4610 the data returned from search_symbols() to print information
4611 regarding the match to gdb_stdout. If LAST is not NULL,
4612 print file and line number information for the symbol as
4613 well. Skip printing the filename if it matches LAST. */
4614
4615 static void
4616 print_symbol_info (enum search_domain kind,
4617 struct symbol *sym,
4618 int block, const char *last)
4619 {
4620 scoped_switch_to_sym_language_if_auto l (sym);
4621 struct symtab *s = symbol_symtab (sym);
4622
4623 if (last != NULL)
4624 {
4625 const char *s_filename = symtab_to_filename_for_display (s);
4626
4627 if (filename_cmp (last, s_filename) != 0)
4628 {
4629 fputs_filtered ("\nFile ", gdb_stdout);
4630 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4631 fputs_filtered (":\n", gdb_stdout);
4632 }
4633
4634 if (SYMBOL_LINE (sym) != 0)
4635 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4636 else
4637 puts_filtered ("\t");
4638 }
4639
4640 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4641 printf_filtered ("static ");
4642
4643 /* Typedef that is not a C++ class. */
4644 if (kind == TYPES_DOMAIN
4645 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4646 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4647 /* variable, func, or typedef-that-is-c++-class. */
4648 else if (kind < TYPES_DOMAIN
4649 || (kind == TYPES_DOMAIN
4650 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4651 {
4652 type_print (SYMBOL_TYPE (sym),
4653 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4654 ? "" : SYMBOL_PRINT_NAME (sym)),
4655 gdb_stdout, 0);
4656
4657 printf_filtered (";\n");
4658 }
4659 }
4660
4661 /* This help function for symtab_symbol_info() prints information
4662 for non-debugging symbols to gdb_stdout. */
4663
4664 static void
4665 print_msymbol_info (struct bound_minimal_symbol msymbol)
4666 {
4667 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4668 char *tmp;
4669
4670 if (gdbarch_addr_bit (gdbarch) <= 32)
4671 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4672 & (CORE_ADDR) 0xffffffff,
4673 8);
4674 else
4675 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4676 16);
4677 fputs_styled (tmp, address_style.style (), gdb_stdout);
4678 fputs_filtered (" ", gdb_stdout);
4679 if (msymbol.minsym->text_p ())
4680 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4681 function_name_style.style (),
4682 gdb_stdout);
4683 else
4684 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4685 fputs_filtered ("\n", gdb_stdout);
4686 }
4687
4688 /* This is the guts of the commands "info functions", "info types", and
4689 "info variables". It calls search_symbols to find all matches and then
4690 print_[m]symbol_info to print out some useful information about the
4691 matches. */
4692
4693 static void
4694 symtab_symbol_info (bool quiet,
4695 const char *regexp, enum search_domain kind,
4696 const char *t_regexp, int from_tty)
4697 {
4698 static const char * const classnames[] =
4699 {"variable", "function", "type"};
4700 const char *last_filename = "";
4701 int first = 1;
4702
4703 gdb_assert (kind <= TYPES_DOMAIN);
4704
4705 /* Must make sure that if we're interrupted, symbols gets freed. */
4706 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4707 t_regexp, 0, NULL);
4708
4709 if (!quiet)
4710 {
4711 if (regexp != NULL)
4712 {
4713 if (t_regexp != NULL)
4714 printf_filtered
4715 (_("All %ss matching regular expression \"%s\""
4716 " with type matching regular expression \"%s\":\n"),
4717 classnames[kind], regexp, t_regexp);
4718 else
4719 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4720 classnames[kind], regexp);
4721 }
4722 else
4723 {
4724 if (t_regexp != NULL)
4725 printf_filtered
4726 (_("All defined %ss"
4727 " with type matching regular expression \"%s\" :\n"),
4728 classnames[kind], t_regexp);
4729 else
4730 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4731 }
4732 }
4733
4734 for (const symbol_search &p : symbols)
4735 {
4736 QUIT;
4737
4738 if (p.msymbol.minsym != NULL)
4739 {
4740 if (first)
4741 {
4742 if (!quiet)
4743 printf_filtered (_("\nNon-debugging symbols:\n"));
4744 first = 0;
4745 }
4746 print_msymbol_info (p.msymbol);
4747 }
4748 else
4749 {
4750 print_symbol_info (kind,
4751 p.symbol,
4752 p.block,
4753 last_filename);
4754 last_filename
4755 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4756 }
4757 }
4758 }
4759
4760 static void
4761 info_variables_command (const char *args, int from_tty)
4762 {
4763 std::string regexp;
4764 std::string t_regexp;
4765 bool quiet = false;
4766
4767 while (args != NULL
4768 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4769 ;
4770
4771 if (args != NULL)
4772 report_unrecognized_option_error ("info variables", args);
4773
4774 symtab_symbol_info (quiet,
4775 regexp.empty () ? NULL : regexp.c_str (),
4776 VARIABLES_DOMAIN,
4777 t_regexp.empty () ? NULL : t_regexp.c_str (),
4778 from_tty);
4779 }
4780
4781
4782 static void
4783 info_functions_command (const char *args, int from_tty)
4784 {
4785 std::string regexp;
4786 std::string t_regexp;
4787 bool quiet = false;
4788
4789 while (args != NULL
4790 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4791 ;
4792
4793 if (args != NULL)
4794 report_unrecognized_option_error ("info functions", args);
4795
4796 symtab_symbol_info (quiet,
4797 regexp.empty () ? NULL : regexp.c_str (),
4798 FUNCTIONS_DOMAIN,
4799 t_regexp.empty () ? NULL : t_regexp.c_str (),
4800 from_tty);
4801 }
4802
4803
4804 static void
4805 info_types_command (const char *regexp, int from_tty)
4806 {
4807 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4808 }
4809
4810 /* Breakpoint all functions matching regular expression. */
4811
4812 void
4813 rbreak_command_wrapper (char *regexp, int from_tty)
4814 {
4815 rbreak_command (regexp, from_tty);
4816 }
4817
4818 static void
4819 rbreak_command (const char *regexp, int from_tty)
4820 {
4821 std::string string;
4822 const char **files = NULL;
4823 const char *file_name;
4824 int nfiles = 0;
4825
4826 if (regexp)
4827 {
4828 const char *colon = strchr (regexp, ':');
4829
4830 if (colon && *(colon + 1) != ':')
4831 {
4832 int colon_index;
4833 char *local_name;
4834
4835 colon_index = colon - regexp;
4836 local_name = (char *) alloca (colon_index + 1);
4837 memcpy (local_name, regexp, colon_index);
4838 local_name[colon_index--] = 0;
4839 while (isspace (local_name[colon_index]))
4840 local_name[colon_index--] = 0;
4841 file_name = local_name;
4842 files = &file_name;
4843 nfiles = 1;
4844 regexp = skip_spaces (colon + 1);
4845 }
4846 }
4847
4848 std::vector<symbol_search> symbols = search_symbols (regexp,
4849 FUNCTIONS_DOMAIN,
4850 NULL,
4851 nfiles, files);
4852
4853 scoped_rbreak_breakpoints finalize;
4854 for (const symbol_search &p : symbols)
4855 {
4856 if (p.msymbol.minsym == NULL)
4857 {
4858 struct symtab *symtab = symbol_symtab (p.symbol);
4859 const char *fullname = symtab_to_fullname (symtab);
4860
4861 string = string_printf ("%s:'%s'", fullname,
4862 SYMBOL_LINKAGE_NAME (p.symbol));
4863 break_command (&string[0], from_tty);
4864 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4865 }
4866 else
4867 {
4868 string = string_printf ("'%s'",
4869 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4870
4871 break_command (&string[0], from_tty);
4872 printf_filtered ("<function, no debug info> %s;\n",
4873 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4874 }
4875 }
4876 }
4877 \f
4878
4879 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4880
4881 static int
4882 compare_symbol_name (const char *symbol_name, language symbol_language,
4883 const lookup_name_info &lookup_name,
4884 completion_match_result &match_res)
4885 {
4886 const language_defn *lang = language_def (symbol_language);
4887
4888 symbol_name_matcher_ftype *name_match
4889 = get_symbol_name_matcher (lang, lookup_name);
4890
4891 return name_match (symbol_name, lookup_name, &match_res);
4892 }
4893
4894 /* See symtab.h. */
4895
4896 void
4897 completion_list_add_name (completion_tracker &tracker,
4898 language symbol_language,
4899 const char *symname,
4900 const lookup_name_info &lookup_name,
4901 const char *text, const char *word)
4902 {
4903 completion_match_result &match_res
4904 = tracker.reset_completion_match_result ();
4905
4906 /* Clip symbols that cannot match. */
4907 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4908 return;
4909
4910 /* Refresh SYMNAME from the match string. It's potentially
4911 different depending on language. (E.g., on Ada, the match may be
4912 the encoded symbol name wrapped in "<>"). */
4913 symname = match_res.match.match ();
4914 gdb_assert (symname != NULL);
4915
4916 /* We have a match for a completion, so add SYMNAME to the current list
4917 of matches. Note that the name is moved to freshly malloc'd space. */
4918
4919 {
4920 gdb::unique_xmalloc_ptr<char> completion
4921 = make_completion_match_str (symname, text, word);
4922
4923 /* Here we pass the match-for-lcd object to add_completion. Some
4924 languages match the user text against substrings of symbol
4925 names in some cases. E.g., in C++, "b push_ba" completes to
4926 "std::vector::push_back", "std::string::push_back", etc., and
4927 in this case we want the completion lowest common denominator
4928 to be "push_back" instead of "std::". */
4929 tracker.add_completion (std::move (completion),
4930 &match_res.match_for_lcd, text, word);
4931 }
4932 }
4933
4934 /* completion_list_add_name wrapper for struct symbol. */
4935
4936 static void
4937 completion_list_add_symbol (completion_tracker &tracker,
4938 symbol *sym,
4939 const lookup_name_info &lookup_name,
4940 const char *text, const char *word)
4941 {
4942 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4943 SYMBOL_NATURAL_NAME (sym),
4944 lookup_name, text, word);
4945 }
4946
4947 /* completion_list_add_name wrapper for struct minimal_symbol. */
4948
4949 static void
4950 completion_list_add_msymbol (completion_tracker &tracker,
4951 minimal_symbol *sym,
4952 const lookup_name_info &lookup_name,
4953 const char *text, const char *word)
4954 {
4955 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4956 MSYMBOL_NATURAL_NAME (sym),
4957 lookup_name, text, word);
4958 }
4959
4960
4961 /* ObjC: In case we are completing on a selector, look as the msymbol
4962 again and feed all the selectors into the mill. */
4963
4964 static void
4965 completion_list_objc_symbol (completion_tracker &tracker,
4966 struct minimal_symbol *msymbol,
4967 const lookup_name_info &lookup_name,
4968 const char *text, const char *word)
4969 {
4970 static char *tmp = NULL;
4971 static unsigned int tmplen = 0;
4972
4973 const char *method, *category, *selector;
4974 char *tmp2 = NULL;
4975
4976 method = MSYMBOL_NATURAL_NAME (msymbol);
4977
4978 /* Is it a method? */
4979 if ((method[0] != '-') && (method[0] != '+'))
4980 return;
4981
4982 if (text[0] == '[')
4983 /* Complete on shortened method method. */
4984 completion_list_add_name (tracker, language_objc,
4985 method + 1,
4986 lookup_name,
4987 text, word);
4988
4989 while ((strlen (method) + 1) >= tmplen)
4990 {
4991 if (tmplen == 0)
4992 tmplen = 1024;
4993 else
4994 tmplen *= 2;
4995 tmp = (char *) xrealloc (tmp, tmplen);
4996 }
4997 selector = strchr (method, ' ');
4998 if (selector != NULL)
4999 selector++;
5000
5001 category = strchr (method, '(');
5002
5003 if ((category != NULL) && (selector != NULL))
5004 {
5005 memcpy (tmp, method, (category - method));
5006 tmp[category - method] = ' ';
5007 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5008 completion_list_add_name (tracker, language_objc, tmp,
5009 lookup_name, text, word);
5010 if (text[0] == '[')
5011 completion_list_add_name (tracker, language_objc, tmp + 1,
5012 lookup_name, text, word);
5013 }
5014
5015 if (selector != NULL)
5016 {
5017 /* Complete on selector only. */
5018 strcpy (tmp, selector);
5019 tmp2 = strchr (tmp, ']');
5020 if (tmp2 != NULL)
5021 *tmp2 = '\0';
5022
5023 completion_list_add_name (tracker, language_objc, tmp,
5024 lookup_name, text, word);
5025 }
5026 }
5027
5028 /* Break the non-quoted text based on the characters which are in
5029 symbols. FIXME: This should probably be language-specific. */
5030
5031 static const char *
5032 language_search_unquoted_string (const char *text, const char *p)
5033 {
5034 for (; p > text; --p)
5035 {
5036 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5037 continue;
5038 else
5039 {
5040 if ((current_language->la_language == language_objc))
5041 {
5042 if (p[-1] == ':') /* Might be part of a method name. */
5043 continue;
5044 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5045 p -= 2; /* Beginning of a method name. */
5046 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5047 { /* Might be part of a method name. */
5048 const char *t = p;
5049
5050 /* Seeing a ' ' or a '(' is not conclusive evidence
5051 that we are in the middle of a method name. However,
5052 finding "-[" or "+[" should be pretty un-ambiguous.
5053 Unfortunately we have to find it now to decide. */
5054
5055 while (t > text)
5056 if (isalnum (t[-1]) || t[-1] == '_' ||
5057 t[-1] == ' ' || t[-1] == ':' ||
5058 t[-1] == '(' || t[-1] == ')')
5059 --t;
5060 else
5061 break;
5062
5063 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5064 p = t - 2; /* Method name detected. */
5065 /* Else we leave with p unchanged. */
5066 }
5067 }
5068 break;
5069 }
5070 }
5071 return p;
5072 }
5073
5074 static void
5075 completion_list_add_fields (completion_tracker &tracker,
5076 struct symbol *sym,
5077 const lookup_name_info &lookup_name,
5078 const char *text, const char *word)
5079 {
5080 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5081 {
5082 struct type *t = SYMBOL_TYPE (sym);
5083 enum type_code c = TYPE_CODE (t);
5084 int j;
5085
5086 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5087 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5088 if (TYPE_FIELD_NAME (t, j))
5089 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5090 TYPE_FIELD_NAME (t, j),
5091 lookup_name, text, word);
5092 }
5093 }
5094
5095 /* See symtab.h. */
5096
5097 bool
5098 symbol_is_function_or_method (symbol *sym)
5099 {
5100 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5101 {
5102 case TYPE_CODE_FUNC:
5103 case TYPE_CODE_METHOD:
5104 return true;
5105 default:
5106 return false;
5107 }
5108 }
5109
5110 /* See symtab.h. */
5111
5112 bool
5113 symbol_is_function_or_method (minimal_symbol *msymbol)
5114 {
5115 switch (MSYMBOL_TYPE (msymbol))
5116 {
5117 case mst_text:
5118 case mst_text_gnu_ifunc:
5119 case mst_solib_trampoline:
5120 case mst_file_text:
5121 return true;
5122 default:
5123 return false;
5124 }
5125 }
5126
5127 /* See symtab.h. */
5128
5129 bound_minimal_symbol
5130 find_gnu_ifunc (const symbol *sym)
5131 {
5132 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5133 return {};
5134
5135 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5136 symbol_name_match_type::SEARCH_NAME);
5137 struct objfile *objfile = symbol_objfile (sym);
5138
5139 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5140 minimal_symbol *ifunc = NULL;
5141
5142 iterate_over_minimal_symbols (objfile, lookup_name,
5143 [&] (minimal_symbol *minsym)
5144 {
5145 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5146 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5147 {
5148 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5149 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5150 {
5151 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5152 msym_addr
5153 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5154 msym_addr,
5155 current_top_target ());
5156 }
5157 if (msym_addr == address)
5158 {
5159 ifunc = minsym;
5160 return true;
5161 }
5162 }
5163 return false;
5164 });
5165
5166 if (ifunc != NULL)
5167 return {ifunc, objfile};
5168 return {};
5169 }
5170
5171 /* Add matching symbols from SYMTAB to the current completion list. */
5172
5173 static void
5174 add_symtab_completions (struct compunit_symtab *cust,
5175 completion_tracker &tracker,
5176 complete_symbol_mode mode,
5177 const lookup_name_info &lookup_name,
5178 const char *text, const char *word,
5179 enum type_code code)
5180 {
5181 struct symbol *sym;
5182 const struct block *b;
5183 struct block_iterator iter;
5184 int i;
5185
5186 if (cust == NULL)
5187 return;
5188
5189 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5190 {
5191 QUIT;
5192 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5193 ALL_BLOCK_SYMBOLS (b, iter, sym)
5194 {
5195 if (completion_skip_symbol (mode, sym))
5196 continue;
5197
5198 if (code == TYPE_CODE_UNDEF
5199 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5200 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5201 completion_list_add_symbol (tracker, sym,
5202 lookup_name,
5203 text, word);
5204 }
5205 }
5206 }
5207
5208 void
5209 default_collect_symbol_completion_matches_break_on
5210 (completion_tracker &tracker, complete_symbol_mode mode,
5211 symbol_name_match_type name_match_type,
5212 const char *text, const char *word,
5213 const char *break_on, enum type_code code)
5214 {
5215 /* Problem: All of the symbols have to be copied because readline
5216 frees them. I'm not going to worry about this; hopefully there
5217 won't be that many. */
5218
5219 struct symbol *sym;
5220 const struct block *b;
5221 const struct block *surrounding_static_block, *surrounding_global_block;
5222 struct block_iterator iter;
5223 /* The symbol we are completing on. Points in same buffer as text. */
5224 const char *sym_text;
5225
5226 /* Now look for the symbol we are supposed to complete on. */
5227 if (mode == complete_symbol_mode::LINESPEC)
5228 sym_text = text;
5229 else
5230 {
5231 const char *p;
5232 char quote_found;
5233 const char *quote_pos = NULL;
5234
5235 /* First see if this is a quoted string. */
5236 quote_found = '\0';
5237 for (p = text; *p != '\0'; ++p)
5238 {
5239 if (quote_found != '\0')
5240 {
5241 if (*p == quote_found)
5242 /* Found close quote. */
5243 quote_found = '\0';
5244 else if (*p == '\\' && p[1] == quote_found)
5245 /* A backslash followed by the quote character
5246 doesn't end the string. */
5247 ++p;
5248 }
5249 else if (*p == '\'' || *p == '"')
5250 {
5251 quote_found = *p;
5252 quote_pos = p;
5253 }
5254 }
5255 if (quote_found == '\'')
5256 /* A string within single quotes can be a symbol, so complete on it. */
5257 sym_text = quote_pos + 1;
5258 else if (quote_found == '"')
5259 /* A double-quoted string is never a symbol, nor does it make sense
5260 to complete it any other way. */
5261 {
5262 return;
5263 }
5264 else
5265 {
5266 /* It is not a quoted string. Break it based on the characters
5267 which are in symbols. */
5268 while (p > text)
5269 {
5270 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5271 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5272 --p;
5273 else
5274 break;
5275 }
5276 sym_text = p;
5277 }
5278 }
5279
5280 lookup_name_info lookup_name (sym_text, name_match_type, true);
5281
5282 /* At this point scan through the misc symbol vectors and add each
5283 symbol you find to the list. Eventually we want to ignore
5284 anything that isn't a text symbol (everything else will be
5285 handled by the psymtab code below). */
5286
5287 if (code == TYPE_CODE_UNDEF)
5288 {
5289 for (objfile *objfile : current_program_space->objfiles ())
5290 {
5291 for (minimal_symbol *msymbol : objfile->msymbols ())
5292 {
5293 QUIT;
5294
5295 if (completion_skip_symbol (mode, msymbol))
5296 continue;
5297
5298 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5299 sym_text, word);
5300
5301 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5302 sym_text, word);
5303 }
5304 }
5305 }
5306
5307 /* Add completions for all currently loaded symbol tables. */
5308 for (objfile *objfile : current_program_space->objfiles ())
5309 {
5310 for (compunit_symtab *cust : objfile->compunits ())
5311 add_symtab_completions (cust, tracker, mode, lookup_name,
5312 sym_text, word, code);
5313 }
5314
5315 /* Look through the partial symtabs for all symbols which begin by
5316 matching SYM_TEXT. Expand all CUs that you find to the list. */
5317 expand_symtabs_matching (NULL,
5318 lookup_name,
5319 NULL,
5320 [&] (compunit_symtab *symtab) /* expansion notify */
5321 {
5322 add_symtab_completions (symtab,
5323 tracker, mode, lookup_name,
5324 sym_text, word, code);
5325 },
5326 ALL_DOMAIN);
5327
5328 /* Search upwards from currently selected frame (so that we can
5329 complete on local vars). Also catch fields of types defined in
5330 this places which match our text string. Only complete on types
5331 visible from current context. */
5332
5333 b = get_selected_block (0);
5334 surrounding_static_block = block_static_block (b);
5335 surrounding_global_block = block_global_block (b);
5336 if (surrounding_static_block != NULL)
5337 while (b != surrounding_static_block)
5338 {
5339 QUIT;
5340
5341 ALL_BLOCK_SYMBOLS (b, iter, sym)
5342 {
5343 if (code == TYPE_CODE_UNDEF)
5344 {
5345 completion_list_add_symbol (tracker, sym, lookup_name,
5346 sym_text, word);
5347 completion_list_add_fields (tracker, sym, lookup_name,
5348 sym_text, word);
5349 }
5350 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5351 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5352 completion_list_add_symbol (tracker, sym, lookup_name,
5353 sym_text, word);
5354 }
5355
5356 /* Stop when we encounter an enclosing function. Do not stop for
5357 non-inlined functions - the locals of the enclosing function
5358 are in scope for a nested function. */
5359 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5360 break;
5361 b = BLOCK_SUPERBLOCK (b);
5362 }
5363
5364 /* Add fields from the file's types; symbols will be added below. */
5365
5366 if (code == TYPE_CODE_UNDEF)
5367 {
5368 if (surrounding_static_block != NULL)
5369 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5370 completion_list_add_fields (tracker, sym, lookup_name,
5371 sym_text, word);
5372
5373 if (surrounding_global_block != NULL)
5374 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5375 completion_list_add_fields (tracker, sym, lookup_name,
5376 sym_text, word);
5377 }
5378
5379 /* Skip macros if we are completing a struct tag -- arguable but
5380 usually what is expected. */
5381 if (current_language->la_macro_expansion == macro_expansion_c
5382 && code == TYPE_CODE_UNDEF)
5383 {
5384 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5385
5386 /* This adds a macro's name to the current completion list. */
5387 auto add_macro_name = [&] (const char *macro_name,
5388 const macro_definition *,
5389 macro_source_file *,
5390 int)
5391 {
5392 completion_list_add_name (tracker, language_c, macro_name,
5393 lookup_name, sym_text, word);
5394 };
5395
5396 /* Add any macros visible in the default scope. Note that this
5397 may yield the occasional wrong result, because an expression
5398 might be evaluated in a scope other than the default. For
5399 example, if the user types "break file:line if <TAB>", the
5400 resulting expression will be evaluated at "file:line" -- but
5401 at there does not seem to be a way to detect this at
5402 completion time. */
5403 scope = default_macro_scope ();
5404 if (scope)
5405 macro_for_each_in_scope (scope->file, scope->line,
5406 add_macro_name);
5407
5408 /* User-defined macros are always visible. */
5409 macro_for_each (macro_user_macros, add_macro_name);
5410 }
5411 }
5412
5413 void
5414 default_collect_symbol_completion_matches (completion_tracker &tracker,
5415 complete_symbol_mode mode,
5416 symbol_name_match_type name_match_type,
5417 const char *text, const char *word,
5418 enum type_code code)
5419 {
5420 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5421 name_match_type,
5422 text, word, "",
5423 code);
5424 }
5425
5426 /* Collect all symbols (regardless of class) which begin by matching
5427 TEXT. */
5428
5429 void
5430 collect_symbol_completion_matches (completion_tracker &tracker,
5431 complete_symbol_mode mode,
5432 symbol_name_match_type name_match_type,
5433 const char *text, const char *word)
5434 {
5435 current_language->la_collect_symbol_completion_matches (tracker, mode,
5436 name_match_type,
5437 text, word,
5438 TYPE_CODE_UNDEF);
5439 }
5440
5441 /* Like collect_symbol_completion_matches, but only collect
5442 STRUCT_DOMAIN symbols whose type code is CODE. */
5443
5444 void
5445 collect_symbol_completion_matches_type (completion_tracker &tracker,
5446 const char *text, const char *word,
5447 enum type_code code)
5448 {
5449 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5450 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5451
5452 gdb_assert (code == TYPE_CODE_UNION
5453 || code == TYPE_CODE_STRUCT
5454 || code == TYPE_CODE_ENUM);
5455 current_language->la_collect_symbol_completion_matches (tracker, mode,
5456 name_match_type,
5457 text, word, code);
5458 }
5459
5460 /* Like collect_symbol_completion_matches, but collects a list of
5461 symbols defined in all source files named SRCFILE. */
5462
5463 void
5464 collect_file_symbol_completion_matches (completion_tracker &tracker,
5465 complete_symbol_mode mode,
5466 symbol_name_match_type name_match_type,
5467 const char *text, const char *word,
5468 const char *srcfile)
5469 {
5470 /* The symbol we are completing on. Points in same buffer as text. */
5471 const char *sym_text;
5472
5473 /* Now look for the symbol we are supposed to complete on.
5474 FIXME: This should be language-specific. */
5475 if (mode == complete_symbol_mode::LINESPEC)
5476 sym_text = text;
5477 else
5478 {
5479 const char *p;
5480 char quote_found;
5481 const char *quote_pos = NULL;
5482
5483 /* First see if this is a quoted string. */
5484 quote_found = '\0';
5485 for (p = text; *p != '\0'; ++p)
5486 {
5487 if (quote_found != '\0')
5488 {
5489 if (*p == quote_found)
5490 /* Found close quote. */
5491 quote_found = '\0';
5492 else if (*p == '\\' && p[1] == quote_found)
5493 /* A backslash followed by the quote character
5494 doesn't end the string. */
5495 ++p;
5496 }
5497 else if (*p == '\'' || *p == '"')
5498 {
5499 quote_found = *p;
5500 quote_pos = p;
5501 }
5502 }
5503 if (quote_found == '\'')
5504 /* A string within single quotes can be a symbol, so complete on it. */
5505 sym_text = quote_pos + 1;
5506 else if (quote_found == '"')
5507 /* A double-quoted string is never a symbol, nor does it make sense
5508 to complete it any other way. */
5509 {
5510 return;
5511 }
5512 else
5513 {
5514 /* Not a quoted string. */
5515 sym_text = language_search_unquoted_string (text, p);
5516 }
5517 }
5518
5519 lookup_name_info lookup_name (sym_text, name_match_type, true);
5520
5521 /* Go through symtabs for SRCFILE and check the externs and statics
5522 for symbols which match. */
5523 iterate_over_symtabs (srcfile, [&] (symtab *s)
5524 {
5525 add_symtab_completions (SYMTAB_COMPUNIT (s),
5526 tracker, mode, lookup_name,
5527 sym_text, word, TYPE_CODE_UNDEF);
5528 return false;
5529 });
5530 }
5531
5532 /* A helper function for make_source_files_completion_list. It adds
5533 another file name to a list of possible completions, growing the
5534 list as necessary. */
5535
5536 static void
5537 add_filename_to_list (const char *fname, const char *text, const char *word,
5538 completion_list *list)
5539 {
5540 list->emplace_back (make_completion_match_str (fname, text, word));
5541 }
5542
5543 static int
5544 not_interesting_fname (const char *fname)
5545 {
5546 static const char *illegal_aliens[] = {
5547 "_globals_", /* inserted by coff_symtab_read */
5548 NULL
5549 };
5550 int i;
5551
5552 for (i = 0; illegal_aliens[i]; i++)
5553 {
5554 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5555 return 1;
5556 }
5557 return 0;
5558 }
5559
5560 /* An object of this type is passed as the user_data argument to
5561 map_partial_symbol_filenames. */
5562 struct add_partial_filename_data
5563 {
5564 struct filename_seen_cache *filename_seen_cache;
5565 const char *text;
5566 const char *word;
5567 int text_len;
5568 completion_list *list;
5569 };
5570
5571 /* A callback for map_partial_symbol_filenames. */
5572
5573 static void
5574 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5575 void *user_data)
5576 {
5577 struct add_partial_filename_data *data
5578 = (struct add_partial_filename_data *) user_data;
5579
5580 if (not_interesting_fname (filename))
5581 return;
5582 if (!data->filename_seen_cache->seen (filename)
5583 && filename_ncmp (filename, data->text, data->text_len) == 0)
5584 {
5585 /* This file matches for a completion; add it to the
5586 current list of matches. */
5587 add_filename_to_list (filename, data->text, data->word, data->list);
5588 }
5589 else
5590 {
5591 const char *base_name = lbasename (filename);
5592
5593 if (base_name != filename
5594 && !data->filename_seen_cache->seen (base_name)
5595 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5596 add_filename_to_list (base_name, data->text, data->word, data->list);
5597 }
5598 }
5599
5600 /* Return a list of all source files whose names begin with matching
5601 TEXT. The file names are looked up in the symbol tables of this
5602 program. */
5603
5604 completion_list
5605 make_source_files_completion_list (const char *text, const char *word)
5606 {
5607 size_t text_len = strlen (text);
5608 completion_list list;
5609 const char *base_name;
5610 struct add_partial_filename_data datum;
5611
5612 if (!have_full_symbols () && !have_partial_symbols ())
5613 return list;
5614
5615 filename_seen_cache filenames_seen;
5616
5617 for (objfile *objfile : current_program_space->objfiles ())
5618 {
5619 for (compunit_symtab *cu : objfile->compunits ())
5620 {
5621 for (symtab *s : compunit_filetabs (cu))
5622 {
5623 if (not_interesting_fname (s->filename))
5624 continue;
5625 if (!filenames_seen.seen (s->filename)
5626 && filename_ncmp (s->filename, text, text_len) == 0)
5627 {
5628 /* This file matches for a completion; add it to the current
5629 list of matches. */
5630 add_filename_to_list (s->filename, text, word, &list);
5631 }
5632 else
5633 {
5634 /* NOTE: We allow the user to type a base name when the
5635 debug info records leading directories, but not the other
5636 way around. This is what subroutines of breakpoint
5637 command do when they parse file names. */
5638 base_name = lbasename (s->filename);
5639 if (base_name != s->filename
5640 && !filenames_seen.seen (base_name)
5641 && filename_ncmp (base_name, text, text_len) == 0)
5642 add_filename_to_list (base_name, text, word, &list);
5643 }
5644 }
5645 }
5646 }
5647
5648 datum.filename_seen_cache = &filenames_seen;
5649 datum.text = text;
5650 datum.word = word;
5651 datum.text_len = text_len;
5652 datum.list = &list;
5653 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5654 0 /*need_fullname*/);
5655
5656 return list;
5657 }
5658 \f
5659 /* Track MAIN */
5660
5661 /* Return the "main_info" object for the current program space. If
5662 the object has not yet been created, create it and fill in some
5663 default values. */
5664
5665 static struct main_info *
5666 get_main_info (void)
5667 {
5668 struct main_info *info
5669 = (struct main_info *) program_space_data (current_program_space,
5670 main_progspace_key);
5671
5672 if (info == NULL)
5673 {
5674 /* It may seem strange to store the main name in the progspace
5675 and also in whatever objfile happens to see a main name in
5676 its debug info. The reason for this is mainly historical:
5677 gdb returned "main" as the name even if no function named
5678 "main" was defined the program; and this approach lets us
5679 keep compatibility. */
5680 info = XCNEW (struct main_info);
5681 info->language_of_main = language_unknown;
5682 set_program_space_data (current_program_space, main_progspace_key,
5683 info);
5684 }
5685
5686 return info;
5687 }
5688
5689 /* A cleanup to destroy a struct main_info when a progspace is
5690 destroyed. */
5691
5692 static void
5693 main_info_cleanup (struct program_space *pspace, void *data)
5694 {
5695 struct main_info *info = (struct main_info *) data;
5696
5697 if (info != NULL)
5698 xfree (info->name_of_main);
5699 xfree (info);
5700 }
5701
5702 static void
5703 set_main_name (const char *name, enum language lang)
5704 {
5705 struct main_info *info = get_main_info ();
5706
5707 if (info->name_of_main != NULL)
5708 {
5709 xfree (info->name_of_main);
5710 info->name_of_main = NULL;
5711 info->language_of_main = language_unknown;
5712 }
5713 if (name != NULL)
5714 {
5715 info->name_of_main = xstrdup (name);
5716 info->language_of_main = lang;
5717 }
5718 }
5719
5720 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5721 accordingly. */
5722
5723 static void
5724 find_main_name (void)
5725 {
5726 const char *new_main_name;
5727
5728 /* First check the objfiles to see whether a debuginfo reader has
5729 picked up the appropriate main name. Historically the main name
5730 was found in a more or less random way; this approach instead
5731 relies on the order of objfile creation -- which still isn't
5732 guaranteed to get the correct answer, but is just probably more
5733 accurate. */
5734 for (objfile *objfile : current_program_space->objfiles ())
5735 {
5736 if (objfile->per_bfd->name_of_main != NULL)
5737 {
5738 set_main_name (objfile->per_bfd->name_of_main,
5739 objfile->per_bfd->language_of_main);
5740 return;
5741 }
5742 }
5743
5744 /* Try to see if the main procedure is in Ada. */
5745 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5746 be to add a new method in the language vector, and call this
5747 method for each language until one of them returns a non-empty
5748 name. This would allow us to remove this hard-coded call to
5749 an Ada function. It is not clear that this is a better approach
5750 at this point, because all methods need to be written in a way
5751 such that false positives never be returned. For instance, it is
5752 important that a method does not return a wrong name for the main
5753 procedure if the main procedure is actually written in a different
5754 language. It is easy to guaranty this with Ada, since we use a
5755 special symbol generated only when the main in Ada to find the name
5756 of the main procedure. It is difficult however to see how this can
5757 be guarantied for languages such as C, for instance. This suggests
5758 that order of call for these methods becomes important, which means
5759 a more complicated approach. */
5760 new_main_name = ada_main_name ();
5761 if (new_main_name != NULL)
5762 {
5763 set_main_name (new_main_name, language_ada);
5764 return;
5765 }
5766
5767 new_main_name = d_main_name ();
5768 if (new_main_name != NULL)
5769 {
5770 set_main_name (new_main_name, language_d);
5771 return;
5772 }
5773
5774 new_main_name = go_main_name ();
5775 if (new_main_name != NULL)
5776 {
5777 set_main_name (new_main_name, language_go);
5778 return;
5779 }
5780
5781 new_main_name = pascal_main_name ();
5782 if (new_main_name != NULL)
5783 {
5784 set_main_name (new_main_name, language_pascal);
5785 return;
5786 }
5787
5788 /* The languages above didn't identify the name of the main procedure.
5789 Fallback to "main". */
5790 set_main_name ("main", language_unknown);
5791 }
5792
5793 char *
5794 main_name (void)
5795 {
5796 struct main_info *info = get_main_info ();
5797
5798 if (info->name_of_main == NULL)
5799 find_main_name ();
5800
5801 return info->name_of_main;
5802 }
5803
5804 /* Return the language of the main function. If it is not known,
5805 return language_unknown. */
5806
5807 enum language
5808 main_language (void)
5809 {
5810 struct main_info *info = get_main_info ();
5811
5812 if (info->name_of_main == NULL)
5813 find_main_name ();
5814
5815 return info->language_of_main;
5816 }
5817
5818 /* Handle ``executable_changed'' events for the symtab module. */
5819
5820 static void
5821 symtab_observer_executable_changed (void)
5822 {
5823 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5824 set_main_name (NULL, language_unknown);
5825 }
5826
5827 /* Return 1 if the supplied producer string matches the ARM RealView
5828 compiler (armcc). */
5829
5830 int
5831 producer_is_realview (const char *producer)
5832 {
5833 static const char *const arm_idents[] = {
5834 "ARM C Compiler, ADS",
5835 "Thumb C Compiler, ADS",
5836 "ARM C++ Compiler, ADS",
5837 "Thumb C++ Compiler, ADS",
5838 "ARM/Thumb C/C++ Compiler, RVCT",
5839 "ARM C/C++ Compiler, RVCT"
5840 };
5841 int i;
5842
5843 if (producer == NULL)
5844 return 0;
5845
5846 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5847 if (startswith (producer, arm_idents[i]))
5848 return 1;
5849
5850 return 0;
5851 }
5852
5853 \f
5854
5855 /* The next index to hand out in response to a registration request. */
5856
5857 static int next_aclass_value = LOC_FINAL_VALUE;
5858
5859 /* The maximum number of "aclass" registrations we support. This is
5860 constant for convenience. */
5861 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5862
5863 /* The objects representing the various "aclass" values. The elements
5864 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5865 elements are those registered at gdb initialization time. */
5866
5867 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5868
5869 /* The globally visible pointer. This is separate from 'symbol_impl'
5870 so that it can be const. */
5871
5872 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5873
5874 /* Make sure we saved enough room in struct symbol. */
5875
5876 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5877
5878 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5879 is the ops vector associated with this index. This returns the new
5880 index, which should be used as the aclass_index field for symbols
5881 of this type. */
5882
5883 int
5884 register_symbol_computed_impl (enum address_class aclass,
5885 const struct symbol_computed_ops *ops)
5886 {
5887 int result = next_aclass_value++;
5888
5889 gdb_assert (aclass == LOC_COMPUTED);
5890 gdb_assert (result < MAX_SYMBOL_IMPLS);
5891 symbol_impl[result].aclass = aclass;
5892 symbol_impl[result].ops_computed = ops;
5893
5894 /* Sanity check OPS. */
5895 gdb_assert (ops != NULL);
5896 gdb_assert (ops->tracepoint_var_ref != NULL);
5897 gdb_assert (ops->describe_location != NULL);
5898 gdb_assert (ops->get_symbol_read_needs != NULL);
5899 gdb_assert (ops->read_variable != NULL);
5900
5901 return result;
5902 }
5903
5904 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5905 OPS is the ops vector associated with this index. This returns the
5906 new index, which should be used as the aclass_index field for symbols
5907 of this type. */
5908
5909 int
5910 register_symbol_block_impl (enum address_class aclass,
5911 const struct symbol_block_ops *ops)
5912 {
5913 int result = next_aclass_value++;
5914
5915 gdb_assert (aclass == LOC_BLOCK);
5916 gdb_assert (result < MAX_SYMBOL_IMPLS);
5917 symbol_impl[result].aclass = aclass;
5918 symbol_impl[result].ops_block = ops;
5919
5920 /* Sanity check OPS. */
5921 gdb_assert (ops != NULL);
5922 gdb_assert (ops->find_frame_base_location != NULL);
5923
5924 return result;
5925 }
5926
5927 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5928 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5929 this index. This returns the new index, which should be used as
5930 the aclass_index field for symbols of this type. */
5931
5932 int
5933 register_symbol_register_impl (enum address_class aclass,
5934 const struct symbol_register_ops *ops)
5935 {
5936 int result = next_aclass_value++;
5937
5938 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5939 gdb_assert (result < MAX_SYMBOL_IMPLS);
5940 symbol_impl[result].aclass = aclass;
5941 symbol_impl[result].ops_register = ops;
5942
5943 return result;
5944 }
5945
5946 /* Initialize elements of 'symbol_impl' for the constants in enum
5947 address_class. */
5948
5949 static void
5950 initialize_ordinary_address_classes (void)
5951 {
5952 int i;
5953
5954 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5955 symbol_impl[i].aclass = (enum address_class) i;
5956 }
5957
5958 \f
5959
5960 /* Helper function to initialize the fields of an objfile-owned symbol.
5961 It assumed that *SYM is already all zeroes. */
5962
5963 static void
5964 initialize_objfile_symbol_1 (struct symbol *sym)
5965 {
5966 SYMBOL_OBJFILE_OWNED (sym) = 1;
5967 SYMBOL_SECTION (sym) = -1;
5968 }
5969
5970 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5971
5972 void
5973 initialize_objfile_symbol (struct symbol *sym)
5974 {
5975 memset (sym, 0, sizeof (*sym));
5976 initialize_objfile_symbol_1 (sym);
5977 }
5978
5979 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5980 obstack. */
5981
5982 struct symbol *
5983 allocate_symbol (struct objfile *objfile)
5984 {
5985 struct symbol *result;
5986
5987 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5988 initialize_objfile_symbol_1 (result);
5989
5990 return result;
5991 }
5992
5993 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5994 obstack. */
5995
5996 struct template_symbol *
5997 allocate_template_symbol (struct objfile *objfile)
5998 {
5999 struct template_symbol *result;
6000
6001 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6002 initialize_objfile_symbol_1 (result);
6003
6004 return result;
6005 }
6006
6007 /* See symtab.h. */
6008
6009 struct objfile *
6010 symbol_objfile (const struct symbol *symbol)
6011 {
6012 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6013 return SYMTAB_OBJFILE (symbol->owner.symtab);
6014 }
6015
6016 /* See symtab.h. */
6017
6018 struct gdbarch *
6019 symbol_arch (const struct symbol *symbol)
6020 {
6021 if (!SYMBOL_OBJFILE_OWNED (symbol))
6022 return symbol->owner.arch;
6023 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6024 }
6025
6026 /* See symtab.h. */
6027
6028 struct symtab *
6029 symbol_symtab (const struct symbol *symbol)
6030 {
6031 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6032 return symbol->owner.symtab;
6033 }
6034
6035 /* See symtab.h. */
6036
6037 void
6038 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6039 {
6040 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6041 symbol->owner.symtab = symtab;
6042 }
6043
6044 \f
6045
6046 void
6047 _initialize_symtab (void)
6048 {
6049 initialize_ordinary_address_classes ();
6050
6051 main_progspace_key
6052 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6053
6054 symbol_cache_key
6055 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6056
6057 add_info ("variables", info_variables_command,
6058 info_print_args_help (_("\
6059 All global and static variable names or those matching REGEXPs.\n\
6060 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6061 Prints the global and static variables.\n"),
6062 _("global and static variables")));
6063 if (dbx_commands)
6064 add_com ("whereis", class_info, info_variables_command,
6065 info_print_args_help (_("\
6066 All global and static variable names, or those matching REGEXPs.\n\
6067 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6068 Prints the global and static variables.\n"),
6069 _("global and static variables")));
6070
6071 add_info ("functions", info_functions_command,
6072 info_print_args_help (_("\
6073 All function names or those matching REGEXPs.\n\
6074 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6075 Prints the functions.\n"),
6076 _("functions")));
6077
6078 /* FIXME: This command has at least the following problems:
6079 1. It prints builtin types (in a very strange and confusing fashion).
6080 2. It doesn't print right, e.g. with
6081 typedef struct foo *FOO
6082 type_print prints "FOO" when we want to make it (in this situation)
6083 print "struct foo *".
6084 I also think "ptype" or "whatis" is more likely to be useful (but if
6085 there is much disagreement "info types" can be fixed). */
6086 add_info ("types", info_types_command,
6087 _("All type names, or those matching REGEXP."));
6088
6089 add_info ("sources", info_sources_command,
6090 _("Source files in the program."));
6091
6092 add_com ("rbreak", class_breakpoint, rbreak_command,
6093 _("Set a breakpoint for all functions matching REGEXP."));
6094
6095 add_setshow_enum_cmd ("multiple-symbols", no_class,
6096 multiple_symbols_modes, &multiple_symbols_mode,
6097 _("\
6098 Set the debugger behavior when more than one symbol are possible matches\n\
6099 in an expression."), _("\
6100 Show how the debugger handles ambiguities in expressions."), _("\
6101 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6102 NULL, NULL, &setlist, &showlist);
6103
6104 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6105 &basenames_may_differ, _("\
6106 Set whether a source file may have multiple base names."), _("\
6107 Show whether a source file may have multiple base names."), _("\
6108 (A \"base name\" is the name of a file with the directory part removed.\n\
6109 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6110 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6111 before comparing them. Canonicalization is an expensive operation,\n\
6112 but it allows the same file be known by more than one base name.\n\
6113 If not set (the default), all source files are assumed to have just\n\
6114 one base name, and gdb will do file name comparisons more efficiently."),
6115 NULL, NULL,
6116 &setlist, &showlist);
6117
6118 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6119 _("Set debugging of symbol table creation."),
6120 _("Show debugging of symbol table creation."), _("\
6121 When enabled (non-zero), debugging messages are printed when building\n\
6122 symbol tables. A value of 1 (one) normally provides enough information.\n\
6123 A value greater than 1 provides more verbose information."),
6124 NULL,
6125 NULL,
6126 &setdebuglist, &showdebuglist);
6127
6128 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6129 _("\
6130 Set debugging of symbol lookup."), _("\
6131 Show debugging of symbol lookup."), _("\
6132 When enabled (non-zero), symbol lookups are logged."),
6133 NULL, NULL,
6134 &setdebuglist, &showdebuglist);
6135
6136 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6137 &new_symbol_cache_size,
6138 _("Set the size of the symbol cache."),
6139 _("Show the size of the symbol cache."), _("\
6140 The size of the symbol cache.\n\
6141 If zero then the symbol cache is disabled."),
6142 set_symbol_cache_size_handler, NULL,
6143 &maintenance_set_cmdlist,
6144 &maintenance_show_cmdlist);
6145
6146 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6147 _("Dump the symbol cache for each program space."),
6148 &maintenanceprintlist);
6149
6150 add_cmd ("symbol-cache-statistics", class_maintenance,
6151 maintenance_print_symbol_cache_statistics,
6152 _("Print symbol cache statistics for each program space."),
6153 &maintenanceprintlist);
6154
6155 add_cmd ("flush-symbol-cache", class_maintenance,
6156 maintenance_flush_symbol_cache,
6157 _("Flush the symbol cache for each program space."),
6158 &maintenancelist);
6159
6160 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6161 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6162 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6163 }