]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valarith.c
Fix TID parser bug
[thirdparty/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "common/byte-vector.h"
30
31 /* Define whether or not the C operator '/' truncates towards zero for
32 differently signed operands (truncation direction is undefined in C). */
33
34 #ifndef TRUNCATION_TOWARDS_ZERO
35 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
36 #endif
37
38 /* Given a pointer, return the size of its target.
39 If the pointer type is void *, then return 1.
40 If the target type is incomplete, then error out.
41 This isn't a general purpose function, but just a
42 helper for value_ptradd. */
43
44 static LONGEST
45 find_size_for_pointer_math (struct type *ptr_type)
46 {
47 LONGEST sz = -1;
48 struct type *ptr_target;
49
50 gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
51 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
52
53 sz = type_length_units (ptr_target);
54 if (sz == 0)
55 {
56 if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
57 sz = 1;
58 else
59 {
60 const char *name;
61
62 name = TYPE_NAME (ptr_target);
63 if (name == NULL)
64 error (_("Cannot perform pointer math on incomplete types, "
65 "try casting to a known type, or void *."));
66 else
67 error (_("Cannot perform pointer math on incomplete type \"%s\", "
68 "try casting to a known type, or void *."), name);
69 }
70 }
71 return sz;
72 }
73
74 /* Given a pointer ARG1 and an integral value ARG2, return the
75 result of C-style pointer arithmetic ARG1 + ARG2. */
76
77 struct value *
78 value_ptradd (struct value *arg1, LONGEST arg2)
79 {
80 struct type *valptrtype;
81 LONGEST sz;
82 struct value *result;
83
84 arg1 = coerce_array (arg1);
85 valptrtype = check_typedef (value_type (arg1));
86 sz = find_size_for_pointer_math (valptrtype);
87
88 result = value_from_pointer (valptrtype,
89 value_as_address (arg1) + sz * arg2);
90 if (VALUE_LVAL (result) != lval_internalvar)
91 set_value_component_location (result, arg1);
92 return result;
93 }
94
95 /* Given two compatible pointer values ARG1 and ARG2, return the
96 result of C-style pointer arithmetic ARG1 - ARG2. */
97
98 LONGEST
99 value_ptrdiff (struct value *arg1, struct value *arg2)
100 {
101 struct type *type1, *type2;
102 LONGEST sz;
103
104 arg1 = coerce_array (arg1);
105 arg2 = coerce_array (arg2);
106 type1 = check_typedef (value_type (arg1));
107 type2 = check_typedef (value_type (arg2));
108
109 gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
110 gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
111
112 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
113 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
114 error (_("First argument of `-' is a pointer and "
115 "second argument is neither\n"
116 "an integer nor a pointer of the same type."));
117
118 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
119 if (sz == 0)
120 {
121 warning (_("Type size unknown, assuming 1. "
122 "Try casting to a known type, or void *."));
123 sz = 1;
124 }
125
126 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
127 }
128
129 /* Return the value of ARRAY[IDX].
130
131 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
132 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
133
134 See comments in value_coerce_array() for rationale for reason for
135 doing lower bounds adjustment here rather than there.
136 FIXME: Perhaps we should validate that the index is valid and if
137 verbosity is set, warn about invalid indices (but still use them). */
138
139 struct value *
140 value_subscript (struct value *array, LONGEST index)
141 {
142 int c_style = current_language->c_style_arrays;
143 struct type *tarray;
144
145 array = coerce_ref (array);
146 tarray = check_typedef (value_type (array));
147
148 if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
149 || TYPE_CODE (tarray) == TYPE_CODE_STRING)
150 {
151 struct type *range_type = TYPE_INDEX_TYPE (tarray);
152 LONGEST lowerbound, upperbound;
153
154 get_discrete_bounds (range_type, &lowerbound, &upperbound);
155 if (VALUE_LVAL (array) != lval_memory)
156 return value_subscripted_rvalue (array, index, lowerbound);
157
158 if (c_style == 0)
159 {
160 if (index >= lowerbound && index <= upperbound)
161 return value_subscripted_rvalue (array, index, lowerbound);
162 /* Emit warning unless we have an array of unknown size.
163 An array of unknown size has lowerbound 0 and upperbound -1. */
164 if (upperbound > -1)
165 warning (_("array or string index out of range"));
166 /* fall doing C stuff */
167 c_style = 1;
168 }
169
170 index -= lowerbound;
171 array = value_coerce_array (array);
172 }
173
174 if (c_style)
175 return value_ind (value_ptradd (array, index));
176 else
177 error (_("not an array or string"));
178 }
179
180 /* Return the value of EXPR[IDX], expr an aggregate rvalue
181 (eg, a vector register). This routine used to promote floats
182 to doubles, but no longer does. */
183
184 struct value *
185 value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
186 {
187 struct type *array_type = check_typedef (value_type (array));
188 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
189 ULONGEST elt_size = type_length_units (elt_type);
190 ULONGEST elt_offs = elt_size * (index - lowerbound);
191
192 if (index < lowerbound
193 || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
194 && elt_offs >= type_length_units (array_type))
195 || (VALUE_LVAL (array) != lval_memory
196 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)))
197 {
198 if (type_not_associated (array_type))
199 error (_("no such vector element (vector not associated)"));
200 else if (type_not_allocated (array_type))
201 error (_("no such vector element (vector not allocated)"));
202 else
203 error (_("no such vector element"));
204 }
205
206 if (is_dynamic_type (elt_type))
207 {
208 CORE_ADDR address;
209
210 address = value_address (array) + elt_offs;
211 elt_type = resolve_dynamic_type (elt_type, NULL, address);
212 }
213
214 return value_from_component (array, elt_type, elt_offs);
215 }
216
217 \f
218 /* Check to see if either argument is a structure, or a reference to
219 one. This is called so we know whether to go ahead with the normal
220 binop or look for a user defined function instead.
221
222 For now, we do not overload the `=' operator. */
223
224 int
225 binop_types_user_defined_p (enum exp_opcode op,
226 struct type *type1, struct type *type2)
227 {
228 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
229 return 0;
230
231 type1 = check_typedef (type1);
232 if (TYPE_IS_REFERENCE (type1))
233 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
234
235 type2 = check_typedef (type2);
236 if (TYPE_IS_REFERENCE (type2))
237 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
238
239 return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
240 || TYPE_CODE (type2) == TYPE_CODE_STRUCT);
241 }
242
243 /* Check to see if either argument is a structure, or a reference to
244 one. This is called so we know whether to go ahead with the normal
245 binop or look for a user defined function instead.
246
247 For now, we do not overload the `=' operator. */
248
249 int
250 binop_user_defined_p (enum exp_opcode op,
251 struct value *arg1, struct value *arg2)
252 {
253 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
254 }
255
256 /* Check to see if argument is a structure. This is called so
257 we know whether to go ahead with the normal unop or look for a
258 user defined function instead.
259
260 For now, we do not overload the `&' operator. */
261
262 int
263 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
264 {
265 struct type *type1;
266
267 if (op == UNOP_ADDR)
268 return 0;
269 type1 = check_typedef (value_type (arg1));
270 if (TYPE_IS_REFERENCE (type1))
271 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
272 return TYPE_CODE (type1) == TYPE_CODE_STRUCT;
273 }
274
275 /* Try to find an operator named OPERATOR which takes NARGS arguments
276 specified in ARGS. If the operator found is a static member operator
277 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
278 The search if performed through find_overload_match which will handle
279 member operators, non member operators, operators imported implicitly or
280 explicitly, and perform correct overload resolution in all of the above
281 situations or combinations thereof. */
282
283 static struct value *
284 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
285 int *static_memfuncp, enum noside noside)
286 {
287
288 struct symbol *symp = NULL;
289 struct value *valp = NULL;
290
291 find_overload_match (args, oper, BOTH /* could be method */,
292 &args[0] /* objp */,
293 NULL /* pass NULL symbol since symbol is unknown */,
294 &valp, &symp, static_memfuncp, 0, noside);
295
296 if (valp)
297 return valp;
298
299 if (symp)
300 {
301 /* This is a non member function and does not
302 expect a reference as its first argument
303 rather the explicit structure. */
304 args[0] = value_ind (args[0]);
305 return value_of_variable (symp, 0);
306 }
307
308 error (_("Could not find %s."), oper);
309 }
310
311 /* Lookup user defined operator NAME. Return a value representing the
312 function, otherwise return NULL. */
313
314 static struct value *
315 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
316 char *name, int *static_memfuncp, enum noside noside)
317 {
318 struct value *result = NULL;
319
320 if (current_language->la_language == language_cplus)
321 {
322 result = value_user_defined_cpp_op (args, name, static_memfuncp,
323 noside);
324 }
325 else
326 result = value_struct_elt (argp, args.data (), name, static_memfuncp,
327 "structure");
328
329 return result;
330 }
331
332 /* We know either arg1 or arg2 is a structure, so try to find the right
333 user defined function. Create an argument vector that calls
334 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
335 binary operator which is legal for GNU C++).
336
337 OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
338 is the opcode saying how to modify it. Otherwise, OTHEROP is
339 unused. */
340
341 struct value *
342 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
343 enum exp_opcode otherop, enum noside noside)
344 {
345 char *ptr;
346 char tstr[13];
347 int static_memfuncp;
348
349 arg1 = coerce_ref (arg1);
350 arg2 = coerce_ref (arg2);
351
352 /* now we know that what we have to do is construct our
353 arg vector and find the right function to call it with. */
354
355 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
356 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
357
358 value *argvec_storage[3];
359 gdb::array_view<value *> argvec = argvec_storage;
360
361 argvec[1] = value_addr (arg1);
362 argvec[2] = arg2;
363
364 /* Make the right function name up. */
365 strcpy (tstr, "operator__");
366 ptr = tstr + 8;
367 switch (op)
368 {
369 case BINOP_ADD:
370 strcpy (ptr, "+");
371 break;
372 case BINOP_SUB:
373 strcpy (ptr, "-");
374 break;
375 case BINOP_MUL:
376 strcpy (ptr, "*");
377 break;
378 case BINOP_DIV:
379 strcpy (ptr, "/");
380 break;
381 case BINOP_REM:
382 strcpy (ptr, "%");
383 break;
384 case BINOP_LSH:
385 strcpy (ptr, "<<");
386 break;
387 case BINOP_RSH:
388 strcpy (ptr, ">>");
389 break;
390 case BINOP_BITWISE_AND:
391 strcpy (ptr, "&");
392 break;
393 case BINOP_BITWISE_IOR:
394 strcpy (ptr, "|");
395 break;
396 case BINOP_BITWISE_XOR:
397 strcpy (ptr, "^");
398 break;
399 case BINOP_LOGICAL_AND:
400 strcpy (ptr, "&&");
401 break;
402 case BINOP_LOGICAL_OR:
403 strcpy (ptr, "||");
404 break;
405 case BINOP_MIN:
406 strcpy (ptr, "<?");
407 break;
408 case BINOP_MAX:
409 strcpy (ptr, ">?");
410 break;
411 case BINOP_ASSIGN:
412 strcpy (ptr, "=");
413 break;
414 case BINOP_ASSIGN_MODIFY:
415 switch (otherop)
416 {
417 case BINOP_ADD:
418 strcpy (ptr, "+=");
419 break;
420 case BINOP_SUB:
421 strcpy (ptr, "-=");
422 break;
423 case BINOP_MUL:
424 strcpy (ptr, "*=");
425 break;
426 case BINOP_DIV:
427 strcpy (ptr, "/=");
428 break;
429 case BINOP_REM:
430 strcpy (ptr, "%=");
431 break;
432 case BINOP_BITWISE_AND:
433 strcpy (ptr, "&=");
434 break;
435 case BINOP_BITWISE_IOR:
436 strcpy (ptr, "|=");
437 break;
438 case BINOP_BITWISE_XOR:
439 strcpy (ptr, "^=");
440 break;
441 case BINOP_MOD: /* invalid */
442 default:
443 error (_("Invalid binary operation specified."));
444 }
445 break;
446 case BINOP_SUBSCRIPT:
447 strcpy (ptr, "[]");
448 break;
449 case BINOP_EQUAL:
450 strcpy (ptr, "==");
451 break;
452 case BINOP_NOTEQUAL:
453 strcpy (ptr, "!=");
454 break;
455 case BINOP_LESS:
456 strcpy (ptr, "<");
457 break;
458 case BINOP_GTR:
459 strcpy (ptr, ">");
460 break;
461 case BINOP_GEQ:
462 strcpy (ptr, ">=");
463 break;
464 case BINOP_LEQ:
465 strcpy (ptr, "<=");
466 break;
467 case BINOP_MOD: /* invalid */
468 default:
469 error (_("Invalid binary operation specified."));
470 }
471
472 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
473 &static_memfuncp, noside);
474
475 if (argvec[0])
476 {
477 if (static_memfuncp)
478 {
479 argvec[1] = argvec[0];
480 argvec = argvec.slice (1);
481 }
482 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
483 {
484 /* Static xmethods are not supported yet. */
485 gdb_assert (static_memfuncp == 0);
486 if (noside == EVAL_AVOID_SIDE_EFFECTS)
487 {
488 struct type *return_type
489 = result_type_of_xmethod (argvec[0], argvec.slice (1));
490
491 if (return_type == NULL)
492 error (_("Xmethod is missing return type."));
493 return value_zero (return_type, VALUE_LVAL (arg1));
494 }
495 return call_xmethod (argvec[0], argvec.slice (1));
496 }
497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
498 {
499 struct type *return_type;
500
501 return_type
502 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
503 return value_zero (return_type, VALUE_LVAL (arg1));
504 }
505 return call_function_by_hand (argvec[0], NULL,
506 argvec.slice (1, 2 - static_memfuncp));
507 }
508 throw_error (NOT_FOUND_ERROR,
509 _("member function %s not found"), tstr);
510 }
511
512 /* We know that arg1 is a structure, so try to find a unary user
513 defined operator that matches the operator in question.
514 Create an argument vector that calls arg1.operator @ (arg1)
515 and return that value (where '@' is (almost) any unary operator which
516 is legal for GNU C++). */
517
518 struct value *
519 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
520 {
521 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
522 char *ptr;
523 char tstr[13], mangle_tstr[13];
524 int static_memfuncp, nargs;
525
526 arg1 = coerce_ref (arg1);
527
528 /* now we know that what we have to do is construct our
529 arg vector and find the right function to call it with. */
530
531 if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
532 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
533
534 value *argvec_storage[3];
535 gdb::array_view<value *> argvec = argvec_storage;
536
537 argvec[1] = value_addr (arg1);
538 argvec[2] = 0;
539
540 nargs = 1;
541
542 /* Make the right function name up. */
543 strcpy (tstr, "operator__");
544 ptr = tstr + 8;
545 strcpy (mangle_tstr, "__");
546 switch (op)
547 {
548 case UNOP_PREINCREMENT:
549 strcpy (ptr, "++");
550 break;
551 case UNOP_PREDECREMENT:
552 strcpy (ptr, "--");
553 break;
554 case UNOP_POSTINCREMENT:
555 strcpy (ptr, "++");
556 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
557 nargs ++;
558 break;
559 case UNOP_POSTDECREMENT:
560 strcpy (ptr, "--");
561 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
562 nargs ++;
563 break;
564 case UNOP_LOGICAL_NOT:
565 strcpy (ptr, "!");
566 break;
567 case UNOP_COMPLEMENT:
568 strcpy (ptr, "~");
569 break;
570 case UNOP_NEG:
571 strcpy (ptr, "-");
572 break;
573 case UNOP_PLUS:
574 strcpy (ptr, "+");
575 break;
576 case UNOP_IND:
577 strcpy (ptr, "*");
578 break;
579 case STRUCTOP_PTR:
580 strcpy (ptr, "->");
581 break;
582 default:
583 error (_("Invalid unary operation specified."));
584 }
585
586 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
587 &static_memfuncp, noside);
588
589 if (argvec[0])
590 {
591 if (static_memfuncp)
592 {
593 argvec[1] = argvec[0];
594 argvec = argvec.slice (1);
595 }
596 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_XMETHOD)
597 {
598 /* Static xmethods are not supported yet. */
599 gdb_assert (static_memfuncp == 0);
600 if (noside == EVAL_AVOID_SIDE_EFFECTS)
601 {
602 struct type *return_type
603 = result_type_of_xmethod (argvec[0], argvec[1]);
604
605 if (return_type == NULL)
606 error (_("Xmethod is missing return type."));
607 return value_zero (return_type, VALUE_LVAL (arg1));
608 }
609 return call_xmethod (argvec[0], argvec[1]);
610 }
611 if (noside == EVAL_AVOID_SIDE_EFFECTS)
612 {
613 struct type *return_type;
614
615 return_type
616 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
617 return value_zero (return_type, VALUE_LVAL (arg1));
618 }
619 return call_function_by_hand (argvec[0], NULL,
620 argvec.slice (1, nargs));
621 }
622 throw_error (NOT_FOUND_ERROR,
623 _("member function %s not found"), tstr);
624 }
625 \f
626
627 /* Concatenate two values with the following conditions:
628
629 (1) Both values must be either bitstring values or character string
630 values and the resulting value consists of the concatenation of
631 ARG1 followed by ARG2.
632
633 or
634
635 One value must be an integer value and the other value must be
636 either a bitstring value or character string value, which is
637 to be repeated by the number of times specified by the integer
638 value.
639
640
641 (2) Boolean values are also allowed and are treated as bit string
642 values of length 1.
643
644 (3) Character values are also allowed and are treated as character
645 string values of length 1. */
646
647 struct value *
648 value_concat (struct value *arg1, struct value *arg2)
649 {
650 struct value *inval1;
651 struct value *inval2;
652 struct value *outval = NULL;
653 int inval1len, inval2len;
654 int count, idx;
655 char inchar;
656 struct type *type1 = check_typedef (value_type (arg1));
657 struct type *type2 = check_typedef (value_type (arg2));
658 struct type *char_type;
659
660 /* First figure out if we are dealing with two values to be concatenated
661 or a repeat count and a value to be repeated. INVAL1 is set to the
662 first of two concatenated values, or the repeat count. INVAL2 is set
663 to the second of the two concatenated values or the value to be
664 repeated. */
665
666 if (TYPE_CODE (type2) == TYPE_CODE_INT)
667 {
668 struct type *tmp = type1;
669
670 type1 = tmp;
671 tmp = type2;
672 inval1 = arg2;
673 inval2 = arg1;
674 }
675 else
676 {
677 inval1 = arg1;
678 inval2 = arg2;
679 }
680
681 /* Now process the input values. */
682
683 if (TYPE_CODE (type1) == TYPE_CODE_INT)
684 {
685 /* We have a repeat count. Validate the second value and then
686 construct a value repeated that many times. */
687 if (TYPE_CODE (type2) == TYPE_CODE_STRING
688 || TYPE_CODE (type2) == TYPE_CODE_CHAR)
689 {
690 count = longest_to_int (value_as_long (inval1));
691 inval2len = TYPE_LENGTH (type2);
692 std::vector<char> ptr (count * inval2len);
693 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
694 {
695 char_type = type2;
696
697 inchar = (char) unpack_long (type2,
698 value_contents (inval2));
699 for (idx = 0; idx < count; idx++)
700 {
701 ptr[idx] = inchar;
702 }
703 }
704 else
705 {
706 char_type = TYPE_TARGET_TYPE (type2);
707
708 for (idx = 0; idx < count; idx++)
709 {
710 memcpy (&ptr[idx * inval2len], value_contents (inval2),
711 inval2len);
712 }
713 }
714 outval = value_string (ptr.data (), count * inval2len, char_type);
715 }
716 else if (TYPE_CODE (type2) == TYPE_CODE_BOOL)
717 {
718 error (_("unimplemented support for boolean repeats"));
719 }
720 else
721 {
722 error (_("can't repeat values of that type"));
723 }
724 }
725 else if (TYPE_CODE (type1) == TYPE_CODE_STRING
726 || TYPE_CODE (type1) == TYPE_CODE_CHAR)
727 {
728 /* We have two character strings to concatenate. */
729 if (TYPE_CODE (type2) != TYPE_CODE_STRING
730 && TYPE_CODE (type2) != TYPE_CODE_CHAR)
731 {
732 error (_("Strings can only be concatenated with other strings."));
733 }
734 inval1len = TYPE_LENGTH (type1);
735 inval2len = TYPE_LENGTH (type2);
736 std::vector<char> ptr (inval1len + inval2len);
737 if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
738 {
739 char_type = type1;
740
741 ptr[0] = (char) unpack_long (type1, value_contents (inval1));
742 }
743 else
744 {
745 char_type = TYPE_TARGET_TYPE (type1);
746
747 memcpy (ptr.data (), value_contents (inval1), inval1len);
748 }
749 if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
750 {
751 ptr[inval1len] =
752 (char) unpack_long (type2, value_contents (inval2));
753 }
754 else
755 {
756 memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
757 }
758 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
759 }
760 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL)
761 {
762 /* We have two bitstrings to concatenate. */
763 if (TYPE_CODE (type2) != TYPE_CODE_BOOL)
764 {
765 error (_("Booleans can only be concatenated "
766 "with other bitstrings or booleans."));
767 }
768 error (_("unimplemented support for boolean concatenation."));
769 }
770 else
771 {
772 /* We don't know how to concatenate these operands. */
773 error (_("illegal operands for concatenation."));
774 }
775 return (outval);
776 }
777 \f
778 /* Integer exponentiation: V1**V2, where both arguments are
779 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
780
781 static LONGEST
782 integer_pow (LONGEST v1, LONGEST v2)
783 {
784 if (v2 < 0)
785 {
786 if (v1 == 0)
787 error (_("Attempt to raise 0 to negative power."));
788 else
789 return 0;
790 }
791 else
792 {
793 /* The Russian Peasant's Algorithm. */
794 LONGEST v;
795
796 v = 1;
797 for (;;)
798 {
799 if (v2 & 1L)
800 v *= v1;
801 v2 >>= 1;
802 if (v2 == 0)
803 return v;
804 v1 *= v1;
805 }
806 }
807 }
808
809 /* Integer exponentiation: V1**V2, where both arguments are
810 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
811
812 static ULONGEST
813 uinteger_pow (ULONGEST v1, LONGEST v2)
814 {
815 if (v2 < 0)
816 {
817 if (v1 == 0)
818 error (_("Attempt to raise 0 to negative power."));
819 else
820 return 0;
821 }
822 else
823 {
824 /* The Russian Peasant's Algorithm. */
825 ULONGEST v;
826
827 v = 1;
828 for (;;)
829 {
830 if (v2 & 1L)
831 v *= v1;
832 v2 >>= 1;
833 if (v2 == 0)
834 return v;
835 v1 *= v1;
836 }
837 }
838 }
839
840 /* Obtain argument values for binary operation, converting from
841 other types if one of them is not floating point. */
842 static void
843 value_args_as_target_float (struct value *arg1, struct value *arg2,
844 gdb_byte *x, struct type **eff_type_x,
845 gdb_byte *y, struct type **eff_type_y)
846 {
847 struct type *type1, *type2;
848
849 type1 = check_typedef (value_type (arg1));
850 type2 = check_typedef (value_type (arg2));
851
852 /* At least one of the arguments must be of floating-point type. */
853 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
854
855 if (is_floating_type (type1) && is_floating_type (type2)
856 && TYPE_CODE (type1) != TYPE_CODE (type2))
857 /* The DFP extension to the C language does not allow mixing of
858 * decimal float types with other float types in expressions
859 * (see WDTR 24732, page 12). */
860 error (_("Mixing decimal floating types with "
861 "other floating types is not allowed."));
862
863 /* Obtain value of arg1, converting from other types if necessary. */
864
865 if (is_floating_type (type1))
866 {
867 *eff_type_x = type1;
868 memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
869 }
870 else if (is_integral_type (type1))
871 {
872 *eff_type_x = type2;
873 if (TYPE_UNSIGNED (type1))
874 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
875 else
876 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
877 }
878 else
879 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
880 TYPE_NAME (type2));
881
882 /* Obtain value of arg2, converting from other types if necessary. */
883
884 if (is_floating_type (type2))
885 {
886 *eff_type_y = type2;
887 memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
888 }
889 else if (is_integral_type (type2))
890 {
891 *eff_type_y = type1;
892 if (TYPE_UNSIGNED (type2))
893 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
894 else
895 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
896 }
897 else
898 error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
899 TYPE_NAME (type2));
900 }
901
902 /* Perform a binary operation on two operands which have reasonable
903 representations as integers or floats. This includes booleans,
904 characters, integers, or floats.
905 Does not support addition and subtraction on pointers;
906 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
907
908 static struct value *
909 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
910 {
911 struct value *val;
912 struct type *type1, *type2, *result_type;
913
914 arg1 = coerce_ref (arg1);
915 arg2 = coerce_ref (arg2);
916
917 type1 = check_typedef (value_type (arg1));
918 type2 = check_typedef (value_type (arg2));
919
920 if ((!is_floating_value (arg1) && !is_integral_type (type1))
921 || (!is_floating_value (arg2) && !is_integral_type (type2)))
922 error (_("Argument to arithmetic operation not a number or boolean."));
923
924 if (is_floating_type (type1) || is_floating_type (type2))
925 {
926 /* If only one type is floating-point, use its type.
927 Otherwise use the bigger type. */
928 if (!is_floating_type (type1))
929 result_type = type2;
930 else if (!is_floating_type (type2))
931 result_type = type1;
932 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
933 result_type = type2;
934 else
935 result_type = type1;
936
937 val = allocate_value (result_type);
938
939 struct type *eff_type_v1, *eff_type_v2;
940 gdb::byte_vector v1, v2;
941 v1.resize (TYPE_LENGTH (result_type));
942 v2.resize (TYPE_LENGTH (result_type));
943
944 value_args_as_target_float (arg1, arg2,
945 v1.data (), &eff_type_v1,
946 v2.data (), &eff_type_v2);
947 target_float_binop (op, v1.data (), eff_type_v1,
948 v2.data (), eff_type_v2,
949 value_contents_raw (val), result_type);
950 }
951 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
952 || TYPE_CODE (type2) == TYPE_CODE_BOOL)
953 {
954 LONGEST v1, v2, v = 0;
955
956 v1 = value_as_long (arg1);
957 v2 = value_as_long (arg2);
958
959 switch (op)
960 {
961 case BINOP_BITWISE_AND:
962 v = v1 & v2;
963 break;
964
965 case BINOP_BITWISE_IOR:
966 v = v1 | v2;
967 break;
968
969 case BINOP_BITWISE_XOR:
970 v = v1 ^ v2;
971 break;
972
973 case BINOP_EQUAL:
974 v = v1 == v2;
975 break;
976
977 case BINOP_NOTEQUAL:
978 v = v1 != v2;
979 break;
980
981 default:
982 error (_("Invalid operation on booleans."));
983 }
984
985 result_type = type1;
986
987 val = allocate_value (result_type);
988 store_signed_integer (value_contents_raw (val),
989 TYPE_LENGTH (result_type),
990 gdbarch_byte_order (get_type_arch (result_type)),
991 v);
992 }
993 else
994 /* Integral operations here. */
995 {
996 /* Determine type length of the result, and if the operation should
997 be done unsigned. For exponentiation and shift operators,
998 use the length and type of the left operand. Otherwise,
999 use the signedness of the operand with the greater length.
1000 If both operands are of equal length, use unsigned operation
1001 if one of the operands is unsigned. */
1002 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1003 result_type = type1;
1004 else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1005 result_type = type1;
1006 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1007 result_type = type2;
1008 else if (TYPE_UNSIGNED (type1))
1009 result_type = type1;
1010 else if (TYPE_UNSIGNED (type2))
1011 result_type = type2;
1012 else
1013 result_type = type1;
1014
1015 if (TYPE_UNSIGNED (result_type))
1016 {
1017 LONGEST v2_signed = value_as_long (arg2);
1018 ULONGEST v1, v2, v = 0;
1019
1020 v1 = (ULONGEST) value_as_long (arg1);
1021 v2 = (ULONGEST) v2_signed;
1022
1023 switch (op)
1024 {
1025 case BINOP_ADD:
1026 v = v1 + v2;
1027 break;
1028
1029 case BINOP_SUB:
1030 v = v1 - v2;
1031 break;
1032
1033 case BINOP_MUL:
1034 v = v1 * v2;
1035 break;
1036
1037 case BINOP_DIV:
1038 case BINOP_INTDIV:
1039 if (v2 != 0)
1040 v = v1 / v2;
1041 else
1042 error (_("Division by zero"));
1043 break;
1044
1045 case BINOP_EXP:
1046 v = uinteger_pow (v1, v2_signed);
1047 break;
1048
1049 case BINOP_REM:
1050 if (v2 != 0)
1051 v = v1 % v2;
1052 else
1053 error (_("Division by zero"));
1054 break;
1055
1056 case BINOP_MOD:
1057 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1058 v1 mod 0 has a defined value, v1. */
1059 if (v2 == 0)
1060 {
1061 v = v1;
1062 }
1063 else
1064 {
1065 v = v1 / v2;
1066 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1067 v = v1 - (v2 * v);
1068 }
1069 break;
1070
1071 case BINOP_LSH:
1072 v = v1 << v2;
1073 break;
1074
1075 case BINOP_RSH:
1076 v = v1 >> v2;
1077 break;
1078
1079 case BINOP_BITWISE_AND:
1080 v = v1 & v2;
1081 break;
1082
1083 case BINOP_BITWISE_IOR:
1084 v = v1 | v2;
1085 break;
1086
1087 case BINOP_BITWISE_XOR:
1088 v = v1 ^ v2;
1089 break;
1090
1091 case BINOP_LOGICAL_AND:
1092 v = v1 && v2;
1093 break;
1094
1095 case BINOP_LOGICAL_OR:
1096 v = v1 || v2;
1097 break;
1098
1099 case BINOP_MIN:
1100 v = v1 < v2 ? v1 : v2;
1101 break;
1102
1103 case BINOP_MAX:
1104 v = v1 > v2 ? v1 : v2;
1105 break;
1106
1107 case BINOP_EQUAL:
1108 v = v1 == v2;
1109 break;
1110
1111 case BINOP_NOTEQUAL:
1112 v = v1 != v2;
1113 break;
1114
1115 case BINOP_LESS:
1116 v = v1 < v2;
1117 break;
1118
1119 case BINOP_GTR:
1120 v = v1 > v2;
1121 break;
1122
1123 case BINOP_LEQ:
1124 v = v1 <= v2;
1125 break;
1126
1127 case BINOP_GEQ:
1128 v = v1 >= v2;
1129 break;
1130
1131 default:
1132 error (_("Invalid binary operation on numbers."));
1133 }
1134
1135 val = allocate_value (result_type);
1136 store_unsigned_integer (value_contents_raw (val),
1137 TYPE_LENGTH (value_type (val)),
1138 gdbarch_byte_order
1139 (get_type_arch (result_type)),
1140 v);
1141 }
1142 else
1143 {
1144 LONGEST v1, v2, v = 0;
1145
1146 v1 = value_as_long (arg1);
1147 v2 = value_as_long (arg2);
1148
1149 switch (op)
1150 {
1151 case BINOP_ADD:
1152 v = v1 + v2;
1153 break;
1154
1155 case BINOP_SUB:
1156 v = v1 - v2;
1157 break;
1158
1159 case BINOP_MUL:
1160 v = v1 * v2;
1161 break;
1162
1163 case BINOP_DIV:
1164 case BINOP_INTDIV:
1165 if (v2 != 0)
1166 v = v1 / v2;
1167 else
1168 error (_("Division by zero"));
1169 break;
1170
1171 case BINOP_EXP:
1172 v = integer_pow (v1, v2);
1173 break;
1174
1175 case BINOP_REM:
1176 if (v2 != 0)
1177 v = v1 % v2;
1178 else
1179 error (_("Division by zero"));
1180 break;
1181
1182 case BINOP_MOD:
1183 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1184 X mod 0 has a defined value, X. */
1185 if (v2 == 0)
1186 {
1187 v = v1;
1188 }
1189 else
1190 {
1191 v = v1 / v2;
1192 /* Compute floor. */
1193 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1194 {
1195 v--;
1196 }
1197 v = v1 - (v2 * v);
1198 }
1199 break;
1200
1201 case BINOP_LSH:
1202 v = v1 << v2;
1203 break;
1204
1205 case BINOP_RSH:
1206 v = v1 >> v2;
1207 break;
1208
1209 case BINOP_BITWISE_AND:
1210 v = v1 & v2;
1211 break;
1212
1213 case BINOP_BITWISE_IOR:
1214 v = v1 | v2;
1215 break;
1216
1217 case BINOP_BITWISE_XOR:
1218 v = v1 ^ v2;
1219 break;
1220
1221 case BINOP_LOGICAL_AND:
1222 v = v1 && v2;
1223 break;
1224
1225 case BINOP_LOGICAL_OR:
1226 v = v1 || v2;
1227 break;
1228
1229 case BINOP_MIN:
1230 v = v1 < v2 ? v1 : v2;
1231 break;
1232
1233 case BINOP_MAX:
1234 v = v1 > v2 ? v1 : v2;
1235 break;
1236
1237 case BINOP_EQUAL:
1238 v = v1 == v2;
1239 break;
1240
1241 case BINOP_NOTEQUAL:
1242 v = v1 != v2;
1243 break;
1244
1245 case BINOP_LESS:
1246 v = v1 < v2;
1247 break;
1248
1249 case BINOP_GTR:
1250 v = v1 > v2;
1251 break;
1252
1253 case BINOP_LEQ:
1254 v = v1 <= v2;
1255 break;
1256
1257 case BINOP_GEQ:
1258 v = v1 >= v2;
1259 break;
1260
1261 default:
1262 error (_("Invalid binary operation on numbers."));
1263 }
1264
1265 val = allocate_value (result_type);
1266 store_signed_integer (value_contents_raw (val),
1267 TYPE_LENGTH (value_type (val)),
1268 gdbarch_byte_order
1269 (get_type_arch (result_type)),
1270 v);
1271 }
1272 }
1273
1274 return val;
1275 }
1276
1277 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1278 replicating SCALAR_VALUE for each element of the vector. Only scalar
1279 types that can be cast to the type of one element of the vector are
1280 acceptable. The newly created vector value is returned upon success,
1281 otherwise an error is thrown. */
1282
1283 struct value *
1284 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1285 {
1286 /* Widen the scalar to a vector. */
1287 struct type *eltype, *scalar_type;
1288 struct value *val, *elval;
1289 LONGEST low_bound, high_bound;
1290 int i;
1291
1292 vector_type = check_typedef (vector_type);
1293
1294 gdb_assert (TYPE_CODE (vector_type) == TYPE_CODE_ARRAY
1295 && TYPE_VECTOR (vector_type));
1296
1297 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1298 error (_("Could not determine the vector bounds"));
1299
1300 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1301 elval = value_cast (eltype, scalar_value);
1302
1303 scalar_type = check_typedef (value_type (scalar_value));
1304
1305 /* If we reduced the length of the scalar then check we didn't loose any
1306 important bits. */
1307 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1308 && !value_equal (elval, scalar_value))
1309 error (_("conversion of scalar to vector involves truncation"));
1310
1311 val = allocate_value (vector_type);
1312 for (i = 0; i < high_bound - low_bound + 1; i++)
1313 /* Duplicate the contents of elval into the destination vector. */
1314 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1315 value_contents_all (elval), TYPE_LENGTH (eltype));
1316
1317 return val;
1318 }
1319
1320 /* Performs a binary operation on two vector operands by calling scalar_binop
1321 for each pair of vector components. */
1322
1323 static struct value *
1324 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1325 {
1326 struct value *val, *tmp, *mark;
1327 struct type *type1, *type2, *eltype1, *eltype2;
1328 int t1_is_vec, t2_is_vec, elsize, i;
1329 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1330
1331 type1 = check_typedef (value_type (val1));
1332 type2 = check_typedef (value_type (val2));
1333
1334 t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1335 && TYPE_VECTOR (type1)) ? 1 : 0;
1336 t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1337 && TYPE_VECTOR (type2)) ? 1 : 0;
1338
1339 if (!t1_is_vec || !t2_is_vec)
1340 error (_("Vector operations are only supported among vectors"));
1341
1342 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1343 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1344 error (_("Could not determine the vector bounds"));
1345
1346 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1347 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1348 elsize = TYPE_LENGTH (eltype1);
1349
1350 if (TYPE_CODE (eltype1) != TYPE_CODE (eltype2)
1351 || elsize != TYPE_LENGTH (eltype2)
1352 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1353 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1354 error (_("Cannot perform operation on vectors with different types"));
1355
1356 val = allocate_value (type1);
1357 mark = value_mark ();
1358 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1359 {
1360 tmp = value_binop (value_subscript (val1, i),
1361 value_subscript (val2, i), op);
1362 memcpy (value_contents_writeable (val) + i * elsize,
1363 value_contents_all (tmp),
1364 elsize);
1365 }
1366 value_free_to_mark (mark);
1367
1368 return val;
1369 }
1370
1371 /* Perform a binary operation on two operands. */
1372
1373 struct value *
1374 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1375 {
1376 struct value *val;
1377 struct type *type1 = check_typedef (value_type (arg1));
1378 struct type *type2 = check_typedef (value_type (arg2));
1379 int t1_is_vec = (TYPE_CODE (type1) == TYPE_CODE_ARRAY
1380 && TYPE_VECTOR (type1));
1381 int t2_is_vec = (TYPE_CODE (type2) == TYPE_CODE_ARRAY
1382 && TYPE_VECTOR (type2));
1383
1384 if (!t1_is_vec && !t2_is_vec)
1385 val = scalar_binop (arg1, arg2, op);
1386 else if (t1_is_vec && t2_is_vec)
1387 val = vector_binop (arg1, arg2, op);
1388 else
1389 {
1390 /* Widen the scalar operand to a vector. */
1391 struct value **v = t1_is_vec ? &arg2 : &arg1;
1392 struct type *t = t1_is_vec ? type2 : type1;
1393
1394 if (TYPE_CODE (t) != TYPE_CODE_FLT
1395 && TYPE_CODE (t) != TYPE_CODE_DECFLOAT
1396 && !is_integral_type (t))
1397 error (_("Argument to operation not a number or boolean."));
1398
1399 /* Replicate the scalar value to make a vector value. */
1400 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1401
1402 val = vector_binop (arg1, arg2, op);
1403 }
1404
1405 return val;
1406 }
1407 \f
1408 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1409
1410 int
1411 value_logical_not (struct value *arg1)
1412 {
1413 int len;
1414 const gdb_byte *p;
1415 struct type *type1;
1416
1417 arg1 = coerce_array (arg1);
1418 type1 = check_typedef (value_type (arg1));
1419
1420 if (is_floating_value (arg1))
1421 return target_float_is_zero (value_contents (arg1), type1);
1422
1423 len = TYPE_LENGTH (type1);
1424 p = value_contents (arg1);
1425
1426 while (--len >= 0)
1427 {
1428 if (*p++)
1429 break;
1430 }
1431
1432 return len < 0;
1433 }
1434
1435 /* Perform a comparison on two string values (whose content are not
1436 necessarily null terminated) based on their length. */
1437
1438 static int
1439 value_strcmp (struct value *arg1, struct value *arg2)
1440 {
1441 int len1 = TYPE_LENGTH (value_type (arg1));
1442 int len2 = TYPE_LENGTH (value_type (arg2));
1443 const gdb_byte *s1 = value_contents (arg1);
1444 const gdb_byte *s2 = value_contents (arg2);
1445 int i, len = len1 < len2 ? len1 : len2;
1446
1447 for (i = 0; i < len; i++)
1448 {
1449 if (s1[i] < s2[i])
1450 return -1;
1451 else if (s1[i] > s2[i])
1452 return 1;
1453 else
1454 continue;
1455 }
1456
1457 if (len1 < len2)
1458 return -1;
1459 else if (len1 > len2)
1460 return 1;
1461 else
1462 return 0;
1463 }
1464
1465 /* Simulate the C operator == by returning a 1
1466 iff ARG1 and ARG2 have equal contents. */
1467
1468 int
1469 value_equal (struct value *arg1, struct value *arg2)
1470 {
1471 int len;
1472 const gdb_byte *p1;
1473 const gdb_byte *p2;
1474 struct type *type1, *type2;
1475 enum type_code code1;
1476 enum type_code code2;
1477 int is_int1, is_int2;
1478
1479 arg1 = coerce_array (arg1);
1480 arg2 = coerce_array (arg2);
1481
1482 type1 = check_typedef (value_type (arg1));
1483 type2 = check_typedef (value_type (arg2));
1484 code1 = TYPE_CODE (type1);
1485 code2 = TYPE_CODE (type2);
1486 is_int1 = is_integral_type (type1);
1487 is_int2 = is_integral_type (type2);
1488
1489 if (is_int1 && is_int2)
1490 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1491 BINOP_EQUAL)));
1492 else if ((is_floating_value (arg1) || is_int1)
1493 && (is_floating_value (arg2) || is_int2))
1494 {
1495 struct type *eff_type_v1, *eff_type_v2;
1496 gdb::byte_vector v1, v2;
1497 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1498 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1499
1500 value_args_as_target_float (arg1, arg2,
1501 v1.data (), &eff_type_v1,
1502 v2.data (), &eff_type_v2);
1503
1504 return target_float_compare (v1.data (), eff_type_v1,
1505 v2.data (), eff_type_v2) == 0;
1506 }
1507
1508 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1509 is bigger. */
1510 else if (code1 == TYPE_CODE_PTR && is_int2)
1511 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1512 else if (code2 == TYPE_CODE_PTR && is_int1)
1513 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1514
1515 else if (code1 == code2
1516 && ((len = (int) TYPE_LENGTH (type1))
1517 == (int) TYPE_LENGTH (type2)))
1518 {
1519 p1 = value_contents (arg1);
1520 p2 = value_contents (arg2);
1521 while (--len >= 0)
1522 {
1523 if (*p1++ != *p2++)
1524 break;
1525 }
1526 return len < 0;
1527 }
1528 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1529 {
1530 return value_strcmp (arg1, arg2) == 0;
1531 }
1532 else
1533 error (_("Invalid type combination in equality test."));
1534 }
1535
1536 /* Compare values based on their raw contents. Useful for arrays since
1537 value_equal coerces them to pointers, thus comparing just the address
1538 of the array instead of its contents. */
1539
1540 int
1541 value_equal_contents (struct value *arg1, struct value *arg2)
1542 {
1543 struct type *type1, *type2;
1544
1545 type1 = check_typedef (value_type (arg1));
1546 type2 = check_typedef (value_type (arg2));
1547
1548 return (TYPE_CODE (type1) == TYPE_CODE (type2)
1549 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1550 && memcmp (value_contents (arg1), value_contents (arg2),
1551 TYPE_LENGTH (type1)) == 0);
1552 }
1553
1554 /* Simulate the C operator < by returning 1
1555 iff ARG1's contents are less than ARG2's. */
1556
1557 int
1558 value_less (struct value *arg1, struct value *arg2)
1559 {
1560 enum type_code code1;
1561 enum type_code code2;
1562 struct type *type1, *type2;
1563 int is_int1, is_int2;
1564
1565 arg1 = coerce_array (arg1);
1566 arg2 = coerce_array (arg2);
1567
1568 type1 = check_typedef (value_type (arg1));
1569 type2 = check_typedef (value_type (arg2));
1570 code1 = TYPE_CODE (type1);
1571 code2 = TYPE_CODE (type2);
1572 is_int1 = is_integral_type (type1);
1573 is_int2 = is_integral_type (type2);
1574
1575 if (is_int1 && is_int2)
1576 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1577 BINOP_LESS)));
1578 else if ((is_floating_value (arg1) || is_int1)
1579 && (is_floating_value (arg2) || is_int2))
1580 {
1581 struct type *eff_type_v1, *eff_type_v2;
1582 gdb::byte_vector v1, v2;
1583 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1584 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1585
1586 value_args_as_target_float (arg1, arg2,
1587 v1.data (), &eff_type_v1,
1588 v2.data (), &eff_type_v2);
1589
1590 return target_float_compare (v1.data (), eff_type_v1,
1591 v2.data (), eff_type_v2) == -1;
1592 }
1593 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1594 return value_as_address (arg1) < value_as_address (arg2);
1595
1596 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1597 is bigger. */
1598 else if (code1 == TYPE_CODE_PTR && is_int2)
1599 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1600 else if (code2 == TYPE_CODE_PTR && is_int1)
1601 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1602 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1603 return value_strcmp (arg1, arg2) < 0;
1604 else
1605 {
1606 error (_("Invalid type combination in ordering comparison."));
1607 return 0;
1608 }
1609 }
1610 \f
1611 /* The unary operators +, - and ~. They free the argument ARG1. */
1612
1613 struct value *
1614 value_pos (struct value *arg1)
1615 {
1616 struct type *type;
1617
1618 arg1 = coerce_ref (arg1);
1619 type = check_typedef (value_type (arg1));
1620
1621 if (is_integral_type (type) || is_floating_value (arg1)
1622 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1623 return value_from_contents (type, value_contents (arg1));
1624 else
1625 error (_("Argument to positive operation not a number."));
1626 }
1627
1628 struct value *
1629 value_neg (struct value *arg1)
1630 {
1631 struct type *type;
1632
1633 arg1 = coerce_ref (arg1);
1634 type = check_typedef (value_type (arg1));
1635
1636 if (is_integral_type (type) || is_floating_type (type))
1637 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1638 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1639 {
1640 struct value *tmp, *val = allocate_value (type);
1641 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1642 int i;
1643 LONGEST low_bound, high_bound;
1644
1645 if (!get_array_bounds (type, &low_bound, &high_bound))
1646 error (_("Could not determine the vector bounds"));
1647
1648 for (i = 0; i < high_bound - low_bound + 1; i++)
1649 {
1650 tmp = value_neg (value_subscript (arg1, i));
1651 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1652 value_contents_all (tmp), TYPE_LENGTH (eltype));
1653 }
1654 return val;
1655 }
1656 else
1657 error (_("Argument to negate operation not a number."));
1658 }
1659
1660 struct value *
1661 value_complement (struct value *arg1)
1662 {
1663 struct type *type;
1664 struct value *val;
1665
1666 arg1 = coerce_ref (arg1);
1667 type = check_typedef (value_type (arg1));
1668
1669 if (is_integral_type (type))
1670 val = value_from_longest (type, ~value_as_long (arg1));
1671 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1672 {
1673 struct value *tmp;
1674 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1675 int i;
1676 LONGEST low_bound, high_bound;
1677
1678 if (!get_array_bounds (type, &low_bound, &high_bound))
1679 error (_("Could not determine the vector bounds"));
1680
1681 val = allocate_value (type);
1682 for (i = 0; i < high_bound - low_bound + 1; i++)
1683 {
1684 tmp = value_complement (value_subscript (arg1, i));
1685 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1686 value_contents_all (tmp), TYPE_LENGTH (eltype));
1687 }
1688 }
1689 else
1690 error (_("Argument to complement operation not an integer, boolean."));
1691
1692 return val;
1693 }
1694 \f
1695 /* The INDEX'th bit of SET value whose value_type is TYPE,
1696 and whose value_contents is valaddr.
1697 Return -1 if out of range, -2 other error. */
1698
1699 int
1700 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1701 {
1702 struct gdbarch *gdbarch = get_type_arch (type);
1703 LONGEST low_bound, high_bound;
1704 LONGEST word;
1705 unsigned rel_index;
1706 struct type *range = TYPE_INDEX_TYPE (type);
1707
1708 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1709 return -2;
1710 if (index < low_bound || index > high_bound)
1711 return -1;
1712 rel_index = index - low_bound;
1713 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1714 gdbarch_byte_order (gdbarch));
1715 rel_index %= TARGET_CHAR_BIT;
1716 if (gdbarch_bits_big_endian (gdbarch))
1717 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1718 return (word >> rel_index) & 1;
1719 }
1720
1721 int
1722 value_in (struct value *element, struct value *set)
1723 {
1724 int member;
1725 struct type *settype = check_typedef (value_type (set));
1726 struct type *eltype = check_typedef (value_type (element));
1727
1728 if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
1729 eltype = TYPE_TARGET_TYPE (eltype);
1730 if (TYPE_CODE (settype) != TYPE_CODE_SET)
1731 error (_("Second argument of 'IN' has wrong type"));
1732 if (TYPE_CODE (eltype) != TYPE_CODE_INT
1733 && TYPE_CODE (eltype) != TYPE_CODE_CHAR
1734 && TYPE_CODE (eltype) != TYPE_CODE_ENUM
1735 && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
1736 error (_("First argument of 'IN' has wrong type"));
1737 member = value_bit_index (settype, value_contents (set),
1738 value_as_long (element));
1739 if (member < 0)
1740 error (_("First argument of 'IN' not in range"));
1741 return member;
1742 }