]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #include "python/py-ref.h"
38 #else
39 typedef int PyObject;
40 #endif
41
42 /* Non-zero if we want to see trace of varobj level stuff. */
43
44 unsigned int varobjdebug = 0;
45 static void
46 show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48 {
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50 }
51
52 /* String representations of gdb's format codes. */
53 const char *varobj_format_string[] =
54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
55
56 /* True if we want to allow Python-based pretty-printing. */
57 static bool pretty_printing = false;
58
59 void
60 varobj_enable_pretty_printing (void)
61 {
62 pretty_printing = true;
63 }
64
65 /* Data structures */
66
67 /* Every root variable has one of these structures saved in its
68 varobj. */
69 struct varobj_root
70 {
71 /* The expression for this parent. */
72 expression_up exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block = NULL;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame = null_frame_id;
80
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id = 0;
87
88 /* If true, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 bool floating = false;
92
93 /* Flag that indicates validity: set to false when this varobj_root refers
94 to symbols that do not exist anymore. */
95 bool is_valid = true;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops = NULL;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar = NULL;
103
104 /* Next root variable */
105 struct varobj_root *next = NULL;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 bool children_requested = false;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor = NULL;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer = NULL;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter = NULL;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item = NULL;
137 };
138
139 /* A list of varobjs */
140
141 struct vlist
142 {
143 struct varobj *var;
144 struct vlist *next;
145 };
146
147 /* Private function prototypes */
148
149 /* Helper functions for the above subcommands. */
150
151 static int delete_variable (struct varobj *, bool);
152
153 static void delete_variable_1 (int *, struct varobj *, bool, bool);
154
155 static bool install_variable (struct varobj *);
156
157 static void uninstall_variable (struct varobj *);
158
159 static struct varobj *create_child (struct varobj *, int, std::string &);
160
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
164
165 /* Utility routines */
166
167 static enum varobj_display_formats variable_default_display (struct varobj *);
168
169 static bool update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
171
172 static bool install_new_value (struct varobj *var, struct value *value,
173 bool initial);
174
175 /* Language-specific routines. */
176
177 static int number_of_children (const struct varobj *);
178
179 static std::string name_of_variable (const struct varobj *);
180
181 static std::string name_of_child (struct varobj *, int);
182
183 static struct value *value_of_root (struct varobj **var_handle, bool *);
184
185 static struct value *value_of_child (const struct varobj *parent, int index);
186
187 static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
189
190 static bool is_root_p (const struct varobj *var);
191
192 static struct varobj *varobj_add_child (struct varobj *var,
193 struct varobj_item *item);
194
195 /* Private data */
196
197 /* Mappings of varobj_display_formats enums to gdb's format codes. */
198 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
199
200 /* Header of the list of root variable objects. */
201 static struct varobj_root *rootlist;
202
203 /* Prime number indicating the number of buckets in the hash table. */
204 /* A prime large enough to avoid too many collisions. */
205 #define VAROBJ_TABLE_SIZE 227
206
207 /* Pointer to the varobj hash table (built at run time). */
208 static struct vlist **varobj_table;
209
210 \f
211
212 /* API Implementation */
213 static bool
214 is_root_p (const struct varobj *var)
215 {
216 return (var->root->rootvar == var);
217 }
218
219 #ifdef HAVE_PYTHON
220
221 /* See python-internal.h. */
222 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223 : gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224 {
225 }
226
227 #endif
228
229 /* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232 static struct frame_info *
233 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234 {
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
243 {
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
250
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
255 return frame;
256 }
257
258 return NULL;
259 }
260
261 /* Creates a varobj (not its children). */
262
263 struct varobj *
264 varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
266 {
267 /* Fill out a varobj structure for the (root) variable being constructed. */
268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
269
270 if (expression != NULL)
271 {
272 struct frame_info *fi;
273 struct frame_id old_id = null_frame_id;
274 const struct block *block;
275 const char *p;
276 struct value *value = NULL;
277 CORE_ADDR pc;
278
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
284 /* Allow creator to specify context of variable. */
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
297 else
298 fi = NULL;
299
300 /* frame = -2 means always use selected frame. */
301 if (type == USE_SELECTED_FRAME)
302 var->root->floating = true;
303
304 pc = 0;
305 block = NULL;
306 if (fi != NULL)
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
311
312 p = expression;
313 innermost_block = NULL;
314 /* Wrap the call to parse expression, so we can
315 return a sensible error. */
316 TRY
317 {
318 var->root->exp = parse_exp_1 (&p, pc, block, 0);
319 }
320
321 CATCH (except, RETURN_MASK_ERROR)
322 {
323 return NULL;
324 }
325 END_CATCH
326
327 /* Don't allow variables to be created for types. */
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
331 {
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
334 return NULL;
335 }
336
337 var->format = variable_default_display (var.get ());
338 var->root->valid_block = innermost_block;
339 var->name = expression;
340 /* For a root var, the name and the expr are the same. */
341 var->path_expr = expression;
342
343 /* When the frame is different from the current frame,
344 we must select the appropriate frame before parsing
345 the expression, otherwise the value will not be current.
346 Since select_frame is so benign, just call it for all cases. */
347 if (innermost_block)
348 {
349 /* User could specify explicit FRAME-ADDR which was not found but
350 EXPRESSION is frame specific and we would not be able to evaluate
351 it correctly next time. With VALID_BLOCK set we must also set
352 FRAME and THREAD_ID. */
353 if (fi == NULL)
354 error (_("Failed to find the specified frame"));
355
356 var->root->frame = get_frame_id (fi);
357 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
358 old_id = get_frame_id (get_selected_frame (NULL));
359 select_frame (fi);
360 }
361
362 /* We definitely need to catch errors here.
363 If evaluate_expression succeeds we got the value we wanted.
364 But if it fails, we still go on with a call to evaluate_type(). */
365 TRY
366 {
367 value = evaluate_expression (var->root->exp.get ());
368 }
369 CATCH (except, RETURN_MASK_ERROR)
370 {
371 /* Error getting the value. Try to at least get the
372 right type. */
373 struct value *type_only_value = evaluate_type (var->root->exp.get ());
374
375 var->type = value_type (type_only_value);
376 }
377 END_CATCH
378
379 if (value != NULL)
380 {
381 int real_type_found = 0;
382
383 var->type = value_actual_type (value, 0, &real_type_found);
384 if (real_type_found)
385 value = value_cast (var->type, value);
386 }
387
388 /* Set language info */
389 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
390
391 install_new_value (var.get (), value, 1 /* Initial assignment */);
392
393 /* Set ourselves as our root. */
394 var->root->rootvar = var.get ();
395
396 /* Reset the selected frame. */
397 if (frame_id_p (old_id))
398 select_frame (frame_find_by_id (old_id));
399 }
400
401 /* If the variable object name is null, that means this
402 is a temporary variable, so don't install it. */
403
404 if ((var != NULL) && (objname != NULL))
405 {
406 var->obj_name = objname;
407
408 /* If a varobj name is duplicated, the install will fail so
409 we must cleanup. */
410 if (!install_variable (var.get ()))
411 return NULL;
412 }
413
414 return var.release ();
415 }
416
417 /* Generates an unique name that can be used for a varobj. */
418
419 std::string
420 varobj_gen_name (void)
421 {
422 static int id = 0;
423
424 /* Generate a name for this object. */
425 id++;
426 return string_printf ("var%d", id);
427 }
428
429 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
430 error if OBJNAME cannot be found. */
431
432 struct varobj *
433 varobj_get_handle (const char *objname)
434 {
435 struct vlist *cv;
436 const char *chp;
437 unsigned int index = 0;
438 unsigned int i = 1;
439
440 for (chp = objname; *chp; chp++)
441 {
442 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443 }
444
445 cv = *(varobj_table + index);
446 while (cv != NULL && cv->var->obj_name != objname)
447 cv = cv->next;
448
449 if (cv == NULL)
450 error (_("Variable object not found"));
451
452 return cv->var;
453 }
454
455 /* Given the handle, return the name of the object. */
456
457 const char *
458 varobj_get_objname (const struct varobj *var)
459 {
460 return var->obj_name.c_str ();
461 }
462
463 /* Given the handle, return the expression represented by the
464 object. */
465
466 std::string
467 varobj_get_expression (const struct varobj *var)
468 {
469 return name_of_variable (var);
470 }
471
472 /* See varobj.h. */
473
474 int
475 varobj_delete (struct varobj *var, bool only_children)
476 {
477 return delete_variable (var, only_children);
478 }
479
480 #if HAVE_PYTHON
481
482 /* Convenience function for varobj_set_visualizer. Instantiate a
483 pretty-printer for a given value. */
484 static PyObject *
485 instantiate_pretty_printer (PyObject *constructor, struct value *value)
486 {
487 PyObject *val_obj = NULL;
488 PyObject *printer;
489
490 val_obj = value_to_value_object (value);
491 if (! val_obj)
492 return NULL;
493
494 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495 Py_DECREF (val_obj);
496 return printer;
497 }
498
499 #endif
500
501 /* Set/Get variable object display format. */
502
503 enum varobj_display_formats
504 varobj_set_display_format (struct varobj *var,
505 enum varobj_display_formats format)
506 {
507 switch (format)
508 {
509 case FORMAT_NATURAL:
510 case FORMAT_BINARY:
511 case FORMAT_DECIMAL:
512 case FORMAT_HEXADECIMAL:
513 case FORMAT_OCTAL:
514 case FORMAT_ZHEXADECIMAL:
515 var->format = format;
516 break;
517
518 default:
519 var->format = variable_default_display (var);
520 }
521
522 if (varobj_value_is_changeable_p (var)
523 && var->value && !value_lazy (var->value))
524 {
525 var->print_value = varobj_value_get_print_value (var->value,
526 var->format, var);
527 }
528
529 return var->format;
530 }
531
532 enum varobj_display_formats
533 varobj_get_display_format (const struct varobj *var)
534 {
535 return var->format;
536 }
537
538 gdb::unique_xmalloc_ptr<char>
539 varobj_get_display_hint (const struct varobj *var)
540 {
541 gdb::unique_xmalloc_ptr<char> result;
542
543 #if HAVE_PYTHON
544 if (!gdb_python_initialized)
545 return NULL;
546
547 gdbpy_enter_varobj enter_py (var);
548
549 if (var->dynamic->pretty_printer != NULL)
550 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
551 #endif
552
553 return result;
554 }
555
556 /* Return true if the varobj has items after TO, false otherwise. */
557
558 bool
559 varobj_has_more (const struct varobj *var, int to)
560 {
561 if (var->children.size () > to)
562 return true;
563
564 return ((to == -1 || var->children.size () == to)
565 && (var->dynamic->saved_item != NULL));
566 }
567
568 /* If the variable object is bound to a specific thread, that
569 is its evaluation can always be done in context of a frame
570 inside that thread, returns GDB id of the thread -- which
571 is always positive. Otherwise, returns -1. */
572 int
573 varobj_get_thread_id (const struct varobj *var)
574 {
575 if (var->root->valid_block && var->root->thread_id > 0)
576 return var->root->thread_id;
577 else
578 return -1;
579 }
580
581 void
582 varobj_set_frozen (struct varobj *var, bool frozen)
583 {
584 /* When a variable is unfrozen, we don't fetch its value.
585 The 'not_fetched' flag remains set, so next -var-update
586 won't complain.
587
588 We don't fetch the value, because for structures the client
589 should do -var-update anyway. It would be bad to have different
590 client-size logic for structure and other types. */
591 var->frozen = frozen;
592 }
593
594 bool
595 varobj_get_frozen (const struct varobj *var)
596 {
597 return var->frozen;
598 }
599
600 /* A helper function that restricts a range to what is actually
601 available in a VEC. This follows the usual rules for the meaning
602 of FROM and TO -- if either is negative, the entire range is
603 used. */
604
605 void
606 varobj_restrict_range (const std::vector<varobj *> &children,
607 int *from, int *to)
608 {
609 int len = children.size ();
610
611 if (*from < 0 || *to < 0)
612 {
613 *from = 0;
614 *to = len;
615 }
616 else
617 {
618 if (*from > len)
619 *from = len;
620 if (*to > len)
621 *to = len;
622 if (*from > *to)
623 *from = *to;
624 }
625 }
626
627 /* A helper for update_dynamic_varobj_children that installs a new
628 child when needed. */
629
630 static void
631 install_dynamic_child (struct varobj *var,
632 std::vector<varobj *> *changed,
633 std::vector<varobj *> *type_changed,
634 std::vector<varobj *> *newobj,
635 std::vector<varobj *> *unchanged,
636 bool *cchanged,
637 int index,
638 struct varobj_item *item)
639 {
640 if (var->children.size () < index + 1)
641 {
642 /* There's no child yet. */
643 struct varobj *child = varobj_add_child (var, item);
644
645 if (newobj != NULL)
646 {
647 newobj->push_back (child);
648 *cchanged = true;
649 }
650 }
651 else
652 {
653 varobj *existing = var->children[index];
654 bool type_updated = update_type_if_necessary (existing, item->value);
655
656 if (type_updated)
657 {
658 if (type_changed != NULL)
659 type_changed->push_back (existing);
660 }
661 if (install_new_value (existing, item->value, 0))
662 {
663 if (!type_updated && changed != NULL)
664 changed->push_back (existing);
665 }
666 else if (!type_updated && unchanged != NULL)
667 unchanged->push_back (existing);
668 }
669 }
670
671 #if HAVE_PYTHON
672
673 static bool
674 dynamic_varobj_has_child_method (const struct varobj *var)
675 {
676 PyObject *printer = var->dynamic->pretty_printer;
677
678 if (!gdb_python_initialized)
679 return false;
680
681 gdbpy_enter_varobj enter_py (var);
682 return PyObject_HasAttr (printer, gdbpy_children_cst);
683 }
684 #endif
685
686 /* A factory for creating dynamic varobj's iterators. Returns an
687 iterator object suitable for iterating over VAR's children. */
688
689 static struct varobj_iter *
690 varobj_get_iterator (struct varobj *var)
691 {
692 #if HAVE_PYTHON
693 if (var->dynamic->pretty_printer)
694 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
695 #endif
696
697 gdb_assert_not_reached (_("\
698 requested an iterator from a non-dynamic varobj"));
699 }
700
701 /* Release and clear VAR's saved item, if any. */
702
703 static void
704 varobj_clear_saved_item (struct varobj_dynamic *var)
705 {
706 if (var->saved_item != NULL)
707 {
708 value_free (var->saved_item->value);
709 delete var->saved_item;
710 var->saved_item = NULL;
711 }
712 }
713
714 static bool
715 update_dynamic_varobj_children (struct varobj *var,
716 std::vector<varobj *> *changed,
717 std::vector<varobj *> *type_changed,
718 std::vector<varobj *> *newobj,
719 std::vector<varobj *> *unchanged,
720 bool *cchanged,
721 bool update_children,
722 int from,
723 int to)
724 {
725 int i;
726
727 *cchanged = false;
728
729 if (update_children || var->dynamic->child_iter == NULL)
730 {
731 varobj_iter_delete (var->dynamic->child_iter);
732 var->dynamic->child_iter = varobj_get_iterator (var);
733
734 varobj_clear_saved_item (var->dynamic);
735
736 i = 0;
737
738 if (var->dynamic->child_iter == NULL)
739 return false;
740 }
741 else
742 i = var->children.size ();
743
744 /* We ask for one extra child, so that MI can report whether there
745 are more children. */
746 for (; to < 0 || i < to + 1; ++i)
747 {
748 varobj_item *item;
749
750 /* See if there was a leftover from last time. */
751 if (var->dynamic->saved_item != NULL)
752 {
753 item = var->dynamic->saved_item;
754 var->dynamic->saved_item = NULL;
755 }
756 else
757 {
758 item = varobj_iter_next (var->dynamic->child_iter);
759 /* Release vitem->value so its lifetime is not bound to the
760 execution of a command. */
761 if (item != NULL && item->value != NULL)
762 release_value_or_incref (item->value);
763 }
764
765 if (item == NULL)
766 {
767 /* Iteration is done. Remove iterator from VAR. */
768 varobj_iter_delete (var->dynamic->child_iter);
769 var->dynamic->child_iter = NULL;
770 break;
771 }
772 /* We don't want to push the extra child on any report list. */
773 if (to < 0 || i < to)
774 {
775 bool can_mention = from < 0 || i >= from;
776
777 install_dynamic_child (var, can_mention ? changed : NULL,
778 can_mention ? type_changed : NULL,
779 can_mention ? newobj : NULL,
780 can_mention ? unchanged : NULL,
781 can_mention ? cchanged : NULL, i,
782 item);
783
784 delete item;
785 }
786 else
787 {
788 var->dynamic->saved_item = item;
789
790 /* We want to truncate the child list just before this
791 element. */
792 break;
793 }
794 }
795
796 if (i < var->children.size ())
797 {
798 *cchanged = true;
799 for (int j = i; j < var->children.size (); ++j)
800 varobj_delete (var->children[j], 0);
801
802 var->children.resize (i);
803 }
804
805 /* If there are fewer children than requested, note that the list of
806 children changed. */
807 if (to >= 0 && var->children.size () < to)
808 *cchanged = true;
809
810 var->num_children = var->children.size ();
811
812 return true;
813 }
814
815 int
816 varobj_get_num_children (struct varobj *var)
817 {
818 if (var->num_children == -1)
819 {
820 if (varobj_is_dynamic_p (var))
821 {
822 bool dummy;
823
824 /* If we have a dynamic varobj, don't report -1 children.
825 So, try to fetch some children first. */
826 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
827 false, 0, 0);
828 }
829 else
830 var->num_children = number_of_children (var);
831 }
832
833 return var->num_children >= 0 ? var->num_children : 0;
834 }
835
836 /* Creates a list of the immediate children of a variable object;
837 the return code is the number of such children or -1 on error. */
838
839 const std::vector<varobj *> &
840 varobj_list_children (struct varobj *var, int *from, int *to)
841 {
842 var->dynamic->children_requested = true;
843
844 if (varobj_is_dynamic_p (var))
845 {
846 bool children_changed;
847
848 /* This, in theory, can result in the number of children changing without
849 frontend noticing. But well, calling -var-list-children on the same
850 varobj twice is not something a sane frontend would do. */
851 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
852 &children_changed, false, 0, *to);
853 varobj_restrict_range (var->children, from, to);
854 return var->children;
855 }
856
857 if (var->num_children == -1)
858 var->num_children = number_of_children (var);
859
860 /* If that failed, give up. */
861 if (var->num_children == -1)
862 return var->children;
863
864 /* If we're called when the list of children is not yet initialized,
865 allocate enough elements in it. */
866 while (var->children.size () < var->num_children)
867 var->children.push_back (NULL);
868
869 for (int i = 0; i < var->num_children; i++)
870 {
871 if (var->children[i] == NULL)
872 {
873 /* Either it's the first call to varobj_list_children for
874 this variable object, and the child was never created,
875 or it was explicitly deleted by the client. */
876 std::string name = name_of_child (var, i);
877 var->children[i] = create_child (var, i, name);
878 }
879 }
880
881 varobj_restrict_range (var->children, from, to);
882 return var->children;
883 }
884
885 static struct varobj *
886 varobj_add_child (struct varobj *var, struct varobj_item *item)
887 {
888 varobj *v = create_child_with_value (var, var->children.size (), item);
889
890 var->children.push_back (v);
891
892 return v;
893 }
894
895 /* Obtain the type of an object Variable as a string similar to the one gdb
896 prints on the console. The caller is responsible for freeing the string.
897 */
898
899 std::string
900 varobj_get_type (struct varobj *var)
901 {
902 /* For the "fake" variables, do not return a type. (Its type is
903 NULL, too.)
904 Do not return a type for invalid variables as well. */
905 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
906 return std::string ();
907
908 return type_to_string (var->type);
909 }
910
911 /* Obtain the type of an object variable. */
912
913 struct type *
914 varobj_get_gdb_type (const struct varobj *var)
915 {
916 return var->type;
917 }
918
919 /* Is VAR a path expression parent, i.e., can it be used to construct
920 a valid path expression? */
921
922 static bool
923 is_path_expr_parent (const struct varobj *var)
924 {
925 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
926 return var->root->lang_ops->is_path_expr_parent (var);
927 }
928
929 /* Is VAR a path expression parent, i.e., can it be used to construct
930 a valid path expression? By default we assume any VAR can be a path
931 parent. */
932
933 bool
934 varobj_default_is_path_expr_parent (const struct varobj *var)
935 {
936 return true;
937 }
938
939 /* Return the path expression parent for VAR. */
940
941 const struct varobj *
942 varobj_get_path_expr_parent (const struct varobj *var)
943 {
944 const struct varobj *parent = var;
945
946 while (!is_root_p (parent) && !is_path_expr_parent (parent))
947 parent = parent->parent;
948
949 return parent;
950 }
951
952 /* Return a pointer to the full rooted expression of varobj VAR.
953 If it has not been computed yet, compute it. */
954
955 const char *
956 varobj_get_path_expr (const struct varobj *var)
957 {
958 if (var->path_expr.empty ())
959 {
960 /* For root varobjs, we initialize path_expr
961 when creating varobj, so here it should be
962 child varobj. */
963 struct varobj *mutable_var = (struct varobj *) var;
964 gdb_assert (!is_root_p (var));
965
966 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
967 }
968
969 return var->path_expr.c_str ();
970 }
971
972 const struct language_defn *
973 varobj_get_language (const struct varobj *var)
974 {
975 return var->root->exp->language_defn;
976 }
977
978 int
979 varobj_get_attributes (const struct varobj *var)
980 {
981 int attributes = 0;
982
983 if (varobj_editable_p (var))
984 /* FIXME: define masks for attributes. */
985 attributes |= 0x00000001; /* Editable */
986
987 return attributes;
988 }
989
990 /* Return true if VAR is a dynamic varobj. */
991
992 bool
993 varobj_is_dynamic_p (const struct varobj *var)
994 {
995 return var->dynamic->pretty_printer != NULL;
996 }
997
998 std::string
999 varobj_get_formatted_value (struct varobj *var,
1000 enum varobj_display_formats format)
1001 {
1002 return my_value_of_variable (var, format);
1003 }
1004
1005 std::string
1006 varobj_get_value (struct varobj *var)
1007 {
1008 return my_value_of_variable (var, var->format);
1009 }
1010
1011 /* Set the value of an object variable (if it is editable) to the
1012 value of the given expression. */
1013 /* Note: Invokes functions that can call error(). */
1014
1015 bool
1016 varobj_set_value (struct varobj *var, const char *expression)
1017 {
1018 struct value *val = NULL; /* Initialize to keep gcc happy. */
1019 /* The argument "expression" contains the variable's new value.
1020 We need to first construct a legal expression for this -- ugh! */
1021 /* Does this cover all the bases? */
1022 struct value *value = NULL; /* Initialize to keep gcc happy. */
1023 int saved_input_radix = input_radix;
1024 const char *s = expression;
1025
1026 gdb_assert (varobj_editable_p (var));
1027
1028 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1029 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1030 TRY
1031 {
1032 value = evaluate_expression (exp.get ());
1033 }
1034
1035 CATCH (except, RETURN_MASK_ERROR)
1036 {
1037 /* We cannot proceed without a valid expression. */
1038 return false;
1039 }
1040 END_CATCH
1041
1042 /* All types that are editable must also be changeable. */
1043 gdb_assert (varobj_value_is_changeable_p (var));
1044
1045 /* The value of a changeable variable object must not be lazy. */
1046 gdb_assert (!value_lazy (var->value));
1047
1048 /* Need to coerce the input. We want to check if the
1049 value of the variable object will be different
1050 after assignment, and the first thing value_assign
1051 does is coerce the input.
1052 For example, if we are assigning an array to a pointer variable we
1053 should compare the pointer with the array's address, not with the
1054 array's content. */
1055 value = coerce_array (value);
1056
1057 /* The new value may be lazy. value_assign, or
1058 rather value_contents, will take care of this. */
1059 TRY
1060 {
1061 val = value_assign (var->value, value);
1062 }
1063
1064 CATCH (except, RETURN_MASK_ERROR)
1065 {
1066 return false;
1067 }
1068 END_CATCH
1069
1070 /* If the value has changed, record it, so that next -var-update can
1071 report this change. If a variable had a value of '1', we've set it
1072 to '333' and then set again to '1', when -var-update will report this
1073 variable as changed -- because the first assignment has set the
1074 'updated' flag. There's no need to optimize that, because return value
1075 of -var-update should be considered an approximation. */
1076 var->updated = install_new_value (var, val, false /* Compare values. */);
1077 input_radix = saved_input_radix;
1078 return true;
1079 }
1080
1081 #if HAVE_PYTHON
1082
1083 /* A helper function to install a constructor function and visualizer
1084 in a varobj_dynamic. */
1085
1086 static void
1087 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1088 PyObject *visualizer)
1089 {
1090 Py_XDECREF (var->constructor);
1091 var->constructor = constructor;
1092
1093 Py_XDECREF (var->pretty_printer);
1094 var->pretty_printer = visualizer;
1095
1096 varobj_iter_delete (var->child_iter);
1097 var->child_iter = NULL;
1098 }
1099
1100 /* Install the default visualizer for VAR. */
1101
1102 static void
1103 install_default_visualizer (struct varobj *var)
1104 {
1105 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1106 if (CPLUS_FAKE_CHILD (var))
1107 return;
1108
1109 if (pretty_printing)
1110 {
1111 PyObject *pretty_printer = NULL;
1112
1113 if (var->value)
1114 {
1115 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1116 if (! pretty_printer)
1117 {
1118 gdbpy_print_stack ();
1119 error (_("Cannot instantiate printer for default visualizer"));
1120 }
1121 }
1122
1123 if (pretty_printer == Py_None)
1124 {
1125 Py_DECREF (pretty_printer);
1126 pretty_printer = NULL;
1127 }
1128
1129 install_visualizer (var->dynamic, NULL, pretty_printer);
1130 }
1131 }
1132
1133 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1134 make a new object. */
1135
1136 static void
1137 construct_visualizer (struct varobj *var, PyObject *constructor)
1138 {
1139 PyObject *pretty_printer;
1140
1141 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1142 if (CPLUS_FAKE_CHILD (var))
1143 return;
1144
1145 Py_INCREF (constructor);
1146 if (constructor == Py_None)
1147 pretty_printer = NULL;
1148 else
1149 {
1150 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1151 if (! pretty_printer)
1152 {
1153 gdbpy_print_stack ();
1154 Py_DECREF (constructor);
1155 constructor = Py_None;
1156 Py_INCREF (constructor);
1157 }
1158
1159 if (pretty_printer == Py_None)
1160 {
1161 Py_DECREF (pretty_printer);
1162 pretty_printer = NULL;
1163 }
1164 }
1165
1166 install_visualizer (var->dynamic, constructor, pretty_printer);
1167 }
1168
1169 #endif /* HAVE_PYTHON */
1170
1171 /* A helper function for install_new_value. This creates and installs
1172 a visualizer for VAR, if appropriate. */
1173
1174 static void
1175 install_new_value_visualizer (struct varobj *var)
1176 {
1177 #if HAVE_PYTHON
1178 /* If the constructor is None, then we want the raw value. If VAR
1179 does not have a value, just skip this. */
1180 if (!gdb_python_initialized)
1181 return;
1182
1183 if (var->dynamic->constructor != Py_None && var->value != NULL)
1184 {
1185 gdbpy_enter_varobj enter_py (var);
1186
1187 if (var->dynamic->constructor == NULL)
1188 install_default_visualizer (var);
1189 else
1190 construct_visualizer (var, var->dynamic->constructor);
1191 }
1192 #else
1193 /* Do nothing. */
1194 #endif
1195 }
1196
1197 /* When using RTTI to determine variable type it may be changed in runtime when
1198 the variable value is changed. This function checks whether type of varobj
1199 VAR will change when a new value NEW_VALUE is assigned and if it is so
1200 updates the type of VAR. */
1201
1202 static bool
1203 update_type_if_necessary (struct varobj *var, struct value *new_value)
1204 {
1205 if (new_value)
1206 {
1207 struct value_print_options opts;
1208
1209 get_user_print_options (&opts);
1210 if (opts.objectprint)
1211 {
1212 struct type *new_type = value_actual_type (new_value, 0, 0);
1213 std::string new_type_str = type_to_string (new_type);
1214 std::string curr_type_str = varobj_get_type (var);
1215
1216 /* Did the type name change? */
1217 if (curr_type_str != new_type_str)
1218 {
1219 var->type = new_type;
1220
1221 /* This information may be not valid for a new type. */
1222 varobj_delete (var, 1);
1223 var->children.clear ();
1224 var->num_children = -1;
1225 return true;
1226 }
1227 }
1228 }
1229
1230 return false;
1231 }
1232
1233 /* Assign a new value to a variable object. If INITIAL is true,
1234 this is the first assignment after the variable object was just
1235 created, or changed type. In that case, just assign the value
1236 and return false.
1237 Otherwise, assign the new value, and return true if the value is
1238 different from the current one, false otherwise. The comparison is
1239 done on textual representation of value. Therefore, some types
1240 need not be compared. E.g. for structures the reported value is
1241 always "{...}", so no comparison is necessary here. If the old
1242 value was NULL and new one is not, or vice versa, we always return true.
1243
1244 The VALUE parameter should not be released -- the function will
1245 take care of releasing it when needed. */
1246 static bool
1247 install_new_value (struct varobj *var, struct value *value, bool initial)
1248 {
1249 bool changeable;
1250 bool need_to_fetch;
1251 bool changed = false;
1252 bool intentionally_not_fetched = false;
1253
1254 /* We need to know the varobj's type to decide if the value should
1255 be fetched or not. C++ fake children (public/protected/private)
1256 don't have a type. */
1257 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1258 changeable = varobj_value_is_changeable_p (var);
1259
1260 /* If the type has custom visualizer, we consider it to be always
1261 changeable. FIXME: need to make sure this behaviour will not
1262 mess up read-sensitive values. */
1263 if (var->dynamic->pretty_printer != NULL)
1264 changeable = true;
1265
1266 need_to_fetch = changeable;
1267
1268 /* We are not interested in the address of references, and given
1269 that in C++ a reference is not rebindable, it cannot
1270 meaningfully change. So, get hold of the real value. */
1271 if (value)
1272 value = coerce_ref (value);
1273
1274 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1275 /* For unions, we need to fetch the value implicitly because
1276 of implementation of union member fetch. When gdb
1277 creates a value for a field and the value of the enclosing
1278 structure is not lazy, it immediately copies the necessary
1279 bytes from the enclosing values. If the enclosing value is
1280 lazy, the call to value_fetch_lazy on the field will read
1281 the data from memory. For unions, that means we'll read the
1282 same memory more than once, which is not desirable. So
1283 fetch now. */
1284 need_to_fetch = true;
1285
1286 /* The new value might be lazy. If the type is changeable,
1287 that is we'll be comparing values of this type, fetch the
1288 value now. Otherwise, on the next update the old value
1289 will be lazy, which means we've lost that old value. */
1290 if (need_to_fetch && value && value_lazy (value))
1291 {
1292 const struct varobj *parent = var->parent;
1293 bool frozen = var->frozen;
1294
1295 for (; !frozen && parent; parent = parent->parent)
1296 frozen |= parent->frozen;
1297
1298 if (frozen && initial)
1299 {
1300 /* For variables that are frozen, or are children of frozen
1301 variables, we don't do fetch on initial assignment.
1302 For non-initial assignemnt we do the fetch, since it means we're
1303 explicitly asked to compare the new value with the old one. */
1304 intentionally_not_fetched = true;
1305 }
1306 else
1307 {
1308
1309 TRY
1310 {
1311 value_fetch_lazy (value);
1312 }
1313
1314 CATCH (except, RETURN_MASK_ERROR)
1315 {
1316 /* Set the value to NULL, so that for the next -var-update,
1317 we don't try to compare the new value with this value,
1318 that we couldn't even read. */
1319 value = NULL;
1320 }
1321 END_CATCH
1322 }
1323 }
1324
1325 /* Get a reference now, before possibly passing it to any Python
1326 code that might release it. */
1327 if (value != NULL)
1328 value_incref (value);
1329
1330 /* Below, we'll be comparing string rendering of old and new
1331 values. Don't get string rendering if the value is
1332 lazy -- if it is, the code above has decided that the value
1333 should not be fetched. */
1334 std::string print_value;
1335 if (value != NULL && !value_lazy (value)
1336 && var->dynamic->pretty_printer == NULL)
1337 print_value = varobj_value_get_print_value (value, var->format, var);
1338
1339 /* If the type is changeable, compare the old and the new values.
1340 If this is the initial assignment, we don't have any old value
1341 to compare with. */
1342 if (!initial && changeable)
1343 {
1344 /* If the value of the varobj was changed by -var-set-value,
1345 then the value in the varobj and in the target is the same.
1346 However, that value is different from the value that the
1347 varobj had after the previous -var-update. So need to the
1348 varobj as changed. */
1349 if (var->updated)
1350 changed = true;
1351 else if (var->dynamic->pretty_printer == NULL)
1352 {
1353 /* Try to compare the values. That requires that both
1354 values are non-lazy. */
1355 if (var->not_fetched && value_lazy (var->value))
1356 {
1357 /* This is a frozen varobj and the value was never read.
1358 Presumably, UI shows some "never read" indicator.
1359 Now that we've fetched the real value, we need to report
1360 this varobj as changed so that UI can show the real
1361 value. */
1362 changed = true;
1363 }
1364 else if (var->value == NULL && value == NULL)
1365 /* Equal. */
1366 ;
1367 else if (var->value == NULL || value == NULL)
1368 {
1369 changed = true;
1370 }
1371 else
1372 {
1373 gdb_assert (!value_lazy (var->value));
1374 gdb_assert (!value_lazy (value));
1375
1376 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1377 if (var->print_value != print_value)
1378 changed = true;
1379 }
1380 }
1381 }
1382
1383 if (!initial && !changeable)
1384 {
1385 /* For values that are not changeable, we don't compare the values.
1386 However, we want to notice if a value was not NULL and now is NULL,
1387 or vise versa, so that we report when top-level varobjs come in scope
1388 and leave the scope. */
1389 changed = (var->value != NULL) != (value != NULL);
1390 }
1391
1392 /* We must always keep the new value, since children depend on it. */
1393 if (var->value != NULL && var->value != value)
1394 value_free (var->value);
1395 var->value = value;
1396 if (value && value_lazy (value) && intentionally_not_fetched)
1397 var->not_fetched = true;
1398 else
1399 var->not_fetched = false;
1400 var->updated = false;
1401
1402 install_new_value_visualizer (var);
1403
1404 /* If we installed a pretty-printer, re-compare the printed version
1405 to see if the variable changed. */
1406 if (var->dynamic->pretty_printer != NULL)
1407 {
1408 print_value = varobj_value_get_print_value (var->value, var->format,
1409 var);
1410 if ((var->print_value.empty () && !print_value.empty ())
1411 || (!var->print_value.empty () && print_value.empty ())
1412 || (!var->print_value.empty () && !print_value.empty ()
1413 && var->print_value != print_value))
1414 changed = true;
1415 }
1416 var->print_value = print_value;
1417
1418 gdb_assert (!var->value || value_type (var->value));
1419
1420 return changed;
1421 }
1422
1423 /* Return the requested range for a varobj. VAR is the varobj. FROM
1424 and TO are out parameters; *FROM and *TO will be set to the
1425 selected sub-range of VAR. If no range was selected using
1426 -var-set-update-range, then both will be -1. */
1427 void
1428 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1429 {
1430 *from = var->from;
1431 *to = var->to;
1432 }
1433
1434 /* Set the selected sub-range of children of VAR to start at index
1435 FROM and end at index TO. If either FROM or TO is less than zero,
1436 this is interpreted as a request for all children. */
1437 void
1438 varobj_set_child_range (struct varobj *var, int from, int to)
1439 {
1440 var->from = from;
1441 var->to = to;
1442 }
1443
1444 void
1445 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1446 {
1447 #if HAVE_PYTHON
1448 PyObject *mainmod;
1449
1450 if (!gdb_python_initialized)
1451 return;
1452
1453 gdbpy_enter_varobj enter_py (var);
1454
1455 mainmod = PyImport_AddModule ("__main__");
1456 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
1457 Py_INCREF (globals.get ());
1458
1459 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1460 globals.get (), globals.get ()));
1461
1462 if (constructor == NULL)
1463 {
1464 gdbpy_print_stack ();
1465 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1466 }
1467
1468 construct_visualizer (var, constructor.get ());
1469
1470 /* If there are any children now, wipe them. */
1471 varobj_delete (var, 1 /* children only */);
1472 var->num_children = -1;
1473 #else
1474 error (_("Python support required"));
1475 #endif
1476 }
1477
1478 /* If NEW_VALUE is the new value of the given varobj (var), return
1479 true if var has mutated. In other words, if the type of
1480 the new value is different from the type of the varobj's old
1481 value.
1482
1483 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1484
1485 static bool
1486 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1487 struct type *new_type)
1488 {
1489 /* If we haven't previously computed the number of children in var,
1490 it does not matter from the front-end's perspective whether
1491 the type has mutated or not. For all intents and purposes,
1492 it has not mutated. */
1493 if (var->num_children < 0)
1494 return false;
1495
1496 if (var->root->lang_ops->value_has_mutated != NULL)
1497 {
1498 /* The varobj module, when installing new values, explicitly strips
1499 references, saying that we're not interested in those addresses.
1500 But detection of mutation happens before installing the new
1501 value, so our value may be a reference that we need to strip
1502 in order to remain consistent. */
1503 if (new_value != NULL)
1504 new_value = coerce_ref (new_value);
1505 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1506 }
1507 else
1508 return false;
1509 }
1510
1511 /* Update the values for a variable and its children. This is a
1512 two-pronged attack. First, re-parse the value for the root's
1513 expression to see if it's changed. Then go all the way
1514 through its children, reconstructing them and noting if they've
1515 changed.
1516
1517 The IS_EXPLICIT parameter specifies if this call is result
1518 of MI request to update this specific variable, or
1519 result of implicit -var-update *. For implicit request, we don't
1520 update frozen variables.
1521
1522 NOTE: This function may delete the caller's varobj. If it
1523 returns TYPE_CHANGED, then it has done this and VARP will be modified
1524 to point to the new varobj. */
1525
1526 std::vector<varobj_update_result>
1527 varobj_update (struct varobj **varp, bool is_explicit)
1528 {
1529 bool type_changed = false;
1530 struct value *newobj;
1531 std::vector<varobj_update_result> stack;
1532 std::vector<varobj_update_result> result;
1533
1534 /* Frozen means frozen -- we don't check for any change in
1535 this varobj, including its going out of scope, or
1536 changing type. One use case for frozen varobjs is
1537 retaining previously evaluated expressions, and we don't
1538 want them to be reevaluated at all. */
1539 if (!is_explicit && (*varp)->frozen)
1540 return result;
1541
1542 if (!(*varp)->root->is_valid)
1543 {
1544 result.emplace_back (*varp, VAROBJ_INVALID);
1545 return result;
1546 }
1547
1548 if ((*varp)->root->rootvar == *varp)
1549 {
1550 varobj_update_result r (*varp);
1551
1552 /* Update the root variable. value_of_root can return NULL
1553 if the variable is no longer around, i.e. we stepped out of
1554 the frame in which a local existed. We are letting the
1555 value_of_root variable dispose of the varobj if the type
1556 has changed. */
1557 newobj = value_of_root (varp, &type_changed);
1558 if (update_type_if_necessary (*varp, newobj))
1559 type_changed = true;
1560 r.varobj = *varp;
1561 r.type_changed = type_changed;
1562 if (install_new_value ((*varp), newobj, type_changed))
1563 r.changed = true;
1564
1565 if (newobj == NULL)
1566 r.status = VAROBJ_NOT_IN_SCOPE;
1567 r.value_installed = true;
1568
1569 if (r.status == VAROBJ_NOT_IN_SCOPE)
1570 {
1571 if (r.type_changed || r.changed)
1572 result.push_back (std::move (r));
1573
1574 return result;
1575 }
1576
1577 stack.push_back (std::move (r));
1578 }
1579 else
1580 stack.emplace_back (*varp);
1581
1582 /* Walk through the children, reconstructing them all. */
1583 while (!stack.empty ())
1584 {
1585 varobj_update_result r = std::move (stack.back ());
1586 stack.pop_back ();
1587 struct varobj *v = r.varobj;
1588
1589 /* Update this variable, unless it's a root, which is already
1590 updated. */
1591 if (!r.value_installed)
1592 {
1593 struct type *new_type;
1594
1595 newobj = value_of_child (v->parent, v->index);
1596 if (update_type_if_necessary (v, newobj))
1597 r.type_changed = true;
1598 if (newobj)
1599 new_type = value_type (newobj);
1600 else
1601 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1602
1603 if (varobj_value_has_mutated (v, newobj, new_type))
1604 {
1605 /* The children are no longer valid; delete them now.
1606 Report the fact that its type changed as well. */
1607 varobj_delete (v, 1 /* only_children */);
1608 v->num_children = -1;
1609 v->to = -1;
1610 v->from = -1;
1611 v->type = new_type;
1612 r.type_changed = true;
1613 }
1614
1615 if (install_new_value (v, newobj, r.type_changed))
1616 {
1617 r.changed = true;
1618 v->updated = false;
1619 }
1620 }
1621
1622 /* We probably should not get children of a dynamic varobj, but
1623 for which -var-list-children was never invoked. */
1624 if (varobj_is_dynamic_p (v))
1625 {
1626 std::vector<varobj *> changed, type_changed, unchanged, newobj;
1627 bool children_changed = false;
1628
1629 if (v->frozen)
1630 continue;
1631
1632 if (!v->dynamic->children_requested)
1633 {
1634 bool dummy;
1635
1636 /* If we initially did not have potential children, but
1637 now we do, consider the varobj as changed.
1638 Otherwise, if children were never requested, consider
1639 it as unchanged -- presumably, such varobj is not yet
1640 expanded in the UI, so we need not bother getting
1641 it. */
1642 if (!varobj_has_more (v, 0))
1643 {
1644 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1645 &dummy, false, 0, 0);
1646 if (varobj_has_more (v, 0))
1647 r.changed = true;
1648 }
1649
1650 if (r.changed)
1651 result.push_back (std::move (r));
1652
1653 continue;
1654 }
1655
1656 /* If update_dynamic_varobj_children returns false, then we have
1657 a non-conforming pretty-printer, so we skip it. */
1658 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1659 &unchanged, &children_changed, true,
1660 v->from, v->to))
1661 {
1662 if (children_changed || !newobj.empty ())
1663 {
1664 r.children_changed = true;
1665 r.newobj = std::move (newobj);
1666 }
1667 /* Push in reverse order so that the first child is
1668 popped from the work stack first, and so will be
1669 added to result first. This does not affect
1670 correctness, just "nicer". */
1671 for (int i = type_changed.size () - 1; i >= 0; --i)
1672 {
1673 varobj_update_result r (type_changed[i]);
1674
1675 /* Type may change only if value was changed. */
1676 r.changed = true;
1677 r.type_changed = true;
1678 r.value_installed = true;
1679
1680 stack.push_back (std::move (r));
1681 }
1682 for (int i = changed.size () - 1; i >= 0; --i)
1683 {
1684 varobj_update_result r (changed[i]);
1685
1686 r.changed = true;
1687 r.value_installed = true;
1688
1689 stack.push_back (std::move (r));
1690 }
1691 for (int i = unchanged.size () - 1; i >= 0; --i)
1692 {
1693 if (!unchanged[i]->frozen)
1694 {
1695 varobj_update_result r (unchanged[i]);
1696
1697 r.value_installed = true;
1698
1699 stack.push_back (std::move (r));
1700 }
1701 }
1702 if (r.changed || r.children_changed)
1703 result.push_back (std::move (r));
1704
1705 continue;
1706 }
1707 }
1708
1709 /* Push any children. Use reverse order so that the first
1710 child is popped from the work stack first, and so
1711 will be added to result first. This does not
1712 affect correctness, just "nicer". */
1713 for (int i = v->children.size () - 1; i >= 0; --i)
1714 {
1715 varobj *c = v->children[i];
1716
1717 /* Child may be NULL if explicitly deleted by -var-delete. */
1718 if (c != NULL && !c->frozen)
1719 stack.emplace_back (c);
1720 }
1721
1722 if (r.changed || r.type_changed)
1723 result.push_back (std::move (r));
1724 }
1725
1726 return result;
1727 }
1728
1729 /* Helper functions */
1730
1731 /*
1732 * Variable object construction/destruction
1733 */
1734
1735 static int
1736 delete_variable (struct varobj *var, bool only_children_p)
1737 {
1738 int delcount = 0;
1739
1740 delete_variable_1 (&delcount, var, only_children_p,
1741 true /* remove_from_parent_p */ );
1742
1743 return delcount;
1744 }
1745
1746 /* Delete the variable object VAR and its children. */
1747 /* IMPORTANT NOTE: If we delete a variable which is a child
1748 and the parent is not removed we dump core. It must be always
1749 initially called with remove_from_parent_p set. */
1750 static void
1751 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1752 bool remove_from_parent_p)
1753 {
1754 /* Delete any children of this variable, too. */
1755 for (varobj *child : var->children)
1756 {
1757 if (!child)
1758 continue;
1759
1760 if (!remove_from_parent_p)
1761 child->parent = NULL;
1762
1763 delete_variable_1 (delcountp, child, false, only_children_p);
1764 }
1765 var->children.clear ();
1766
1767 /* if we were called to delete only the children we are done here. */
1768 if (only_children_p)
1769 return;
1770
1771 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1772 /* If the name is empty, this is a temporary variable, that has not
1773 yet been installed, don't report it, it belongs to the caller... */
1774 if (!var->obj_name.empty ())
1775 {
1776 *delcountp = *delcountp + 1;
1777 }
1778
1779 /* If this variable has a parent, remove it from its parent's list. */
1780 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1781 (as indicated by remove_from_parent_p) we don't bother doing an
1782 expensive list search to find the element to remove when we are
1783 discarding the list afterwards. */
1784 if ((remove_from_parent_p) && (var->parent != NULL))
1785 var->parent->children[var->index] = NULL;
1786
1787 if (!var->obj_name.empty ())
1788 uninstall_variable (var);
1789
1790 /* Free memory associated with this variable. */
1791 delete var;
1792 }
1793
1794 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1795 static bool
1796 install_variable (struct varobj *var)
1797 {
1798 struct vlist *cv;
1799 struct vlist *newvl;
1800 const char *chp;
1801 unsigned int index = 0;
1802 unsigned int i = 1;
1803
1804 for (chp = var->obj_name.c_str (); *chp; chp++)
1805 {
1806 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1807 }
1808
1809 cv = *(varobj_table + index);
1810 while (cv != NULL && cv->var->obj_name != var->obj_name)
1811 cv = cv->next;
1812
1813 if (cv != NULL)
1814 error (_("Duplicate variable object name"));
1815
1816 /* Add varobj to hash table. */
1817 newvl = XNEW (struct vlist);
1818 newvl->next = *(varobj_table + index);
1819 newvl->var = var;
1820 *(varobj_table + index) = newvl;
1821
1822 /* If root, add varobj to root list. */
1823 if (is_root_p (var))
1824 {
1825 /* Add to list of root variables. */
1826 if (rootlist == NULL)
1827 var->root->next = NULL;
1828 else
1829 var->root->next = rootlist;
1830 rootlist = var->root;
1831 }
1832
1833 return true; /* OK */
1834 }
1835
1836 /* Unistall the object VAR. */
1837 static void
1838 uninstall_variable (struct varobj *var)
1839 {
1840 struct vlist *cv;
1841 struct vlist *prev;
1842 struct varobj_root *cr;
1843 struct varobj_root *prer;
1844 const char *chp;
1845 unsigned int index = 0;
1846 unsigned int i = 1;
1847
1848 /* Remove varobj from hash table. */
1849 for (chp = var->obj_name.c_str (); *chp; chp++)
1850 {
1851 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1852 }
1853
1854 cv = *(varobj_table + index);
1855 prev = NULL;
1856 while (cv != NULL && cv->var->obj_name != var->obj_name)
1857 {
1858 prev = cv;
1859 cv = cv->next;
1860 }
1861
1862 if (varobjdebug)
1863 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1864
1865 if (cv == NULL)
1866 {
1867 warning
1868 ("Assertion failed: Could not find variable object \"%s\" to delete",
1869 var->obj_name.c_str ());
1870 return;
1871 }
1872
1873 if (prev == NULL)
1874 *(varobj_table + index) = cv->next;
1875 else
1876 prev->next = cv->next;
1877
1878 xfree (cv);
1879
1880 /* If root, remove varobj from root list. */
1881 if (is_root_p (var))
1882 {
1883 /* Remove from list of root variables. */
1884 if (rootlist == var->root)
1885 rootlist = var->root->next;
1886 else
1887 {
1888 prer = NULL;
1889 cr = rootlist;
1890 while ((cr != NULL) && (cr->rootvar != var))
1891 {
1892 prer = cr;
1893 cr = cr->next;
1894 }
1895 if (cr == NULL)
1896 {
1897 warning (_("Assertion failed: Could not find "
1898 "varobj \"%s\" in root list"),
1899 var->obj_name.c_str ());
1900 return;
1901 }
1902 if (prer == NULL)
1903 rootlist = NULL;
1904 else
1905 prer->next = cr->next;
1906 }
1907 }
1908
1909 }
1910
1911 /* Create and install a child of the parent of the given name.
1912
1913 The created VAROBJ takes ownership of the allocated NAME. */
1914
1915 static struct varobj *
1916 create_child (struct varobj *parent, int index, std::string &name)
1917 {
1918 struct varobj_item item;
1919
1920 std::swap (item.name, name);
1921 item.value = value_of_child (parent, index);
1922
1923 return create_child_with_value (parent, index, &item);
1924 }
1925
1926 static struct varobj *
1927 create_child_with_value (struct varobj *parent, int index,
1928 struct varobj_item *item)
1929 {
1930 varobj *child = new varobj (parent->root);
1931
1932 /* NAME is allocated by caller. */
1933 std::swap (child->name, item->name);
1934 child->index = index;
1935 child->parent = parent;
1936
1937 if (varobj_is_anonymous_child (child))
1938 child->obj_name = string_printf ("%s.%d_anonymous",
1939 parent->obj_name.c_str (), index);
1940 else
1941 child->obj_name = string_printf ("%s.%s",
1942 parent->obj_name.c_str (),
1943 child->name.c_str ());
1944
1945 install_variable (child);
1946
1947 /* Compute the type of the child. Must do this before
1948 calling install_new_value. */
1949 if (item->value != NULL)
1950 /* If the child had no evaluation errors, var->value
1951 will be non-NULL and contain a valid type. */
1952 child->type = value_actual_type (item->value, 0, NULL);
1953 else
1954 /* Otherwise, we must compute the type. */
1955 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1956 child->index);
1957 install_new_value (child, item->value, 1);
1958
1959 return child;
1960 }
1961 \f
1962
1963 /*
1964 * Miscellaneous utility functions.
1965 */
1966
1967 /* Allocate memory and initialize a new variable. */
1968 varobj::varobj (varobj_root *root_)
1969 : root (root_), dynamic (new varobj_dynamic)
1970 {
1971 }
1972
1973 /* Free any allocated memory associated with VAR. */
1974
1975 varobj::~varobj ()
1976 {
1977 varobj *var = this;
1978
1979 #if HAVE_PYTHON
1980 if (var->dynamic->pretty_printer != NULL)
1981 {
1982 gdbpy_enter_varobj enter_py (var);
1983
1984 Py_XDECREF (var->dynamic->constructor);
1985 Py_XDECREF (var->dynamic->pretty_printer);
1986 }
1987 #endif
1988
1989 varobj_iter_delete (var->dynamic->child_iter);
1990 varobj_clear_saved_item (var->dynamic);
1991 value_free (var->value);
1992
1993 if (is_root_p (var))
1994 delete var->root;
1995
1996 delete var->dynamic;
1997 }
1998
1999 /* Return the type of the value that's stored in VAR,
2000 or that would have being stored there if the
2001 value were accessible.
2002
2003 This differs from VAR->type in that VAR->type is always
2004 the true type of the expession in the source language.
2005 The return value of this function is the type we're
2006 actually storing in varobj, and using for displaying
2007 the values and for comparing previous and new values.
2008
2009 For example, top-level references are always stripped. */
2010 struct type *
2011 varobj_get_value_type (const struct varobj *var)
2012 {
2013 struct type *type;
2014
2015 if (var->value)
2016 type = value_type (var->value);
2017 else
2018 type = var->type;
2019
2020 type = check_typedef (type);
2021
2022 if (TYPE_IS_REFERENCE (type))
2023 type = get_target_type (type);
2024
2025 type = check_typedef (type);
2026
2027 return type;
2028 }
2029
2030 /* What is the default display for this variable? We assume that
2031 everything is "natural". Any exceptions? */
2032 static enum varobj_display_formats
2033 variable_default_display (struct varobj *var)
2034 {
2035 return FORMAT_NATURAL;
2036 }
2037
2038 /*
2039 * Language-dependencies
2040 */
2041
2042 /* Common entry points */
2043
2044 /* Return the number of children for a given variable.
2045 The result of this function is defined by the language
2046 implementation. The number of children returned by this function
2047 is the number of children that the user will see in the variable
2048 display. */
2049 static int
2050 number_of_children (const struct varobj *var)
2051 {
2052 return (*var->root->lang_ops->number_of_children) (var);
2053 }
2054
2055 /* What is the expression for the root varobj VAR? */
2056
2057 static std::string
2058 name_of_variable (const struct varobj *var)
2059 {
2060 return (*var->root->lang_ops->name_of_variable) (var);
2061 }
2062
2063 /* What is the name of the INDEX'th child of VAR? */
2064
2065 static std::string
2066 name_of_child (struct varobj *var, int index)
2067 {
2068 return (*var->root->lang_ops->name_of_child) (var, index);
2069 }
2070
2071 /* If frame associated with VAR can be found, switch
2072 to it and return true. Otherwise, return false. */
2073
2074 static bool
2075 check_scope (const struct varobj *var)
2076 {
2077 struct frame_info *fi;
2078 bool scope;
2079
2080 fi = frame_find_by_id (var->root->frame);
2081 scope = fi != NULL;
2082
2083 if (fi)
2084 {
2085 CORE_ADDR pc = get_frame_pc (fi);
2086
2087 if (pc < BLOCK_START (var->root->valid_block) ||
2088 pc >= BLOCK_END (var->root->valid_block))
2089 scope = false;
2090 else
2091 select_frame (fi);
2092 }
2093 return scope;
2094 }
2095
2096 /* Helper function to value_of_root. */
2097
2098 static struct value *
2099 value_of_root_1 (struct varobj **var_handle)
2100 {
2101 struct value *new_val = NULL;
2102 struct varobj *var = *var_handle;
2103 bool within_scope = false;
2104
2105 /* Only root variables can be updated... */
2106 if (!is_root_p (var))
2107 /* Not a root var. */
2108 return NULL;
2109
2110 scoped_restore_current_thread restore_thread;
2111
2112 /* Determine whether the variable is still around. */
2113 if (var->root->valid_block == NULL || var->root->floating)
2114 within_scope = true;
2115 else if (var->root->thread_id == 0)
2116 {
2117 /* The program was single-threaded when the variable object was
2118 created. Technically, it's possible that the program became
2119 multi-threaded since then, but we don't support such
2120 scenario yet. */
2121 within_scope = check_scope (var);
2122 }
2123 else
2124 {
2125 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2126
2127 if (!ptid_equal (minus_one_ptid, ptid))
2128 {
2129 switch_to_thread (ptid);
2130 within_scope = check_scope (var);
2131 }
2132 }
2133
2134 if (within_scope)
2135 {
2136
2137 /* We need to catch errors here, because if evaluate
2138 expression fails we want to just return NULL. */
2139 TRY
2140 {
2141 new_val = evaluate_expression (var->root->exp.get ());
2142 }
2143 CATCH (except, RETURN_MASK_ERROR)
2144 {
2145 }
2146 END_CATCH
2147 }
2148
2149 return new_val;
2150 }
2151
2152 /* What is the ``struct value *'' of the root variable VAR?
2153 For floating variable object, evaluation can get us a value
2154 of different type from what is stored in varobj already. In
2155 that case:
2156 - *type_changed will be set to 1
2157 - old varobj will be freed, and new one will be
2158 created, with the same name.
2159 - *var_handle will be set to the new varobj
2160 Otherwise, *type_changed will be set to 0. */
2161 static struct value *
2162 value_of_root (struct varobj **var_handle, bool *type_changed)
2163 {
2164 struct varobj *var;
2165
2166 if (var_handle == NULL)
2167 return NULL;
2168
2169 var = *var_handle;
2170
2171 /* This should really be an exception, since this should
2172 only get called with a root variable. */
2173
2174 if (!is_root_p (var))
2175 return NULL;
2176
2177 if (var->root->floating)
2178 {
2179 struct varobj *tmp_var;
2180
2181 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2182 USE_SELECTED_FRAME);
2183 if (tmp_var == NULL)
2184 {
2185 return NULL;
2186 }
2187 std::string old_type = varobj_get_type (var);
2188 std::string new_type = varobj_get_type (tmp_var);
2189 if (old_type == new_type)
2190 {
2191 /* The expression presently stored inside var->root->exp
2192 remembers the locations of local variables relatively to
2193 the frame where the expression was created (in DWARF location
2194 button, for example). Naturally, those locations are not
2195 correct in other frames, so update the expression. */
2196
2197 std::swap (var->root->exp, tmp_var->root->exp);
2198
2199 varobj_delete (tmp_var, 0);
2200 *type_changed = 0;
2201 }
2202 else
2203 {
2204 tmp_var->obj_name = var->obj_name;
2205 tmp_var->from = var->from;
2206 tmp_var->to = var->to;
2207 varobj_delete (var, 0);
2208
2209 install_variable (tmp_var);
2210 *var_handle = tmp_var;
2211 var = *var_handle;
2212 *type_changed = true;
2213 }
2214 }
2215 else
2216 {
2217 *type_changed = 0;
2218 }
2219
2220 {
2221 struct value *value;
2222
2223 value = value_of_root_1 (var_handle);
2224 if (var->value == NULL || value == NULL)
2225 {
2226 /* For root varobj-s, a NULL value indicates a scoping issue.
2227 So, nothing to do in terms of checking for mutations. */
2228 }
2229 else if (varobj_value_has_mutated (var, value, value_type (value)))
2230 {
2231 /* The type has mutated, so the children are no longer valid.
2232 Just delete them, and tell our caller that the type has
2233 changed. */
2234 varobj_delete (var, 1 /* only_children */);
2235 var->num_children = -1;
2236 var->to = -1;
2237 var->from = -1;
2238 *type_changed = true;
2239 }
2240 return value;
2241 }
2242 }
2243
2244 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2245 static struct value *
2246 value_of_child (const struct varobj *parent, int index)
2247 {
2248 struct value *value;
2249
2250 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2251
2252 return value;
2253 }
2254
2255 /* GDB already has a command called "value_of_variable". Sigh. */
2256 static std::string
2257 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2258 {
2259 if (var->root->is_valid)
2260 {
2261 if (var->dynamic->pretty_printer != NULL)
2262 return varobj_value_get_print_value (var->value, var->format, var);
2263 return (*var->root->lang_ops->value_of_variable) (var, format);
2264 }
2265 else
2266 return std::string ();
2267 }
2268
2269 void
2270 varobj_formatted_print_options (struct value_print_options *opts,
2271 enum varobj_display_formats format)
2272 {
2273 get_formatted_print_options (opts, format_code[(int) format]);
2274 opts->deref_ref = 0;
2275 opts->raw = 1;
2276 }
2277
2278 std::string
2279 varobj_value_get_print_value (struct value *value,
2280 enum varobj_display_formats format,
2281 const struct varobj *var)
2282 {
2283 struct value_print_options opts;
2284 struct type *type = NULL;
2285 long len = 0;
2286 gdb::unique_xmalloc_ptr<char> encoding;
2287 /* Initialize it just to avoid a GCC false warning. */
2288 CORE_ADDR str_addr = 0;
2289 bool string_print = false;
2290
2291 if (value == NULL)
2292 return std::string ();
2293
2294 string_file stb;
2295 std::string thevalue;
2296
2297 #if HAVE_PYTHON
2298 if (gdb_python_initialized)
2299 {
2300 PyObject *value_formatter = var->dynamic->pretty_printer;
2301
2302 gdbpy_enter_varobj enter_py (var);
2303
2304 if (value_formatter)
2305 {
2306 /* First check to see if we have any children at all. If so,
2307 we simply return {...}. */
2308 if (dynamic_varobj_has_child_method (var))
2309 return "{...}";
2310
2311 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2312 {
2313 struct value *replacement;
2314
2315 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2316 &replacement,
2317 &stb));
2318
2319 /* If we have string like output ... */
2320 if (output != NULL)
2321 {
2322 /* If this is a lazy string, extract it. For lazy
2323 strings we always print as a string, so set
2324 string_print. */
2325 if (gdbpy_is_lazy_string (output.get ()))
2326 {
2327 gdbpy_extract_lazy_string (output.get (), &str_addr,
2328 &type, &len, &encoding);
2329 string_print = true;
2330 }
2331 else
2332 {
2333 /* If it is a regular (non-lazy) string, extract
2334 it and copy the contents into THEVALUE. If the
2335 hint says to print it as a string, set
2336 string_print. Otherwise just return the extracted
2337 string as a value. */
2338
2339 gdb::unique_xmalloc_ptr<char> s
2340 = python_string_to_target_string (output.get ());
2341
2342 if (s)
2343 {
2344 struct gdbarch *gdbarch;
2345
2346 gdb::unique_xmalloc_ptr<char> hint
2347 = gdbpy_get_display_hint (value_formatter);
2348 if (hint)
2349 {
2350 if (!strcmp (hint.get (), "string"))
2351 string_print = true;
2352 }
2353
2354 thevalue = std::string (s.get ());
2355 len = thevalue.size ();
2356 gdbarch = get_type_arch (value_type (value));
2357 type = builtin_type (gdbarch)->builtin_char;
2358
2359 if (!string_print)
2360 return thevalue;
2361 }
2362 else
2363 gdbpy_print_stack ();
2364 }
2365 }
2366 /* If the printer returned a replacement value, set VALUE
2367 to REPLACEMENT. If there is not a replacement value,
2368 just use the value passed to this function. */
2369 if (replacement)
2370 value = replacement;
2371 }
2372 }
2373 }
2374 #endif
2375
2376 varobj_formatted_print_options (&opts, format);
2377
2378 /* If the THEVALUE has contents, it is a regular string. */
2379 if (!thevalue.empty ())
2380 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
2381 len, encoding.get (), 0, &opts);
2382 else if (string_print)
2383 /* Otherwise, if string_print is set, and it is not a regular
2384 string, it is a lazy string. */
2385 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2386 else
2387 /* All other cases. */
2388 common_val_print (value, &stb, 0, &opts, current_language);
2389
2390 return std::move (stb.string ());
2391 }
2392
2393 bool
2394 varobj_editable_p (const struct varobj *var)
2395 {
2396 struct type *type;
2397
2398 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2399 return false;
2400
2401 type = varobj_get_value_type (var);
2402
2403 switch (TYPE_CODE (type))
2404 {
2405 case TYPE_CODE_STRUCT:
2406 case TYPE_CODE_UNION:
2407 case TYPE_CODE_ARRAY:
2408 case TYPE_CODE_FUNC:
2409 case TYPE_CODE_METHOD:
2410 return false;
2411 break;
2412
2413 default:
2414 return true;
2415 break;
2416 }
2417 }
2418
2419 /* Call VAR's value_is_changeable_p language-specific callback. */
2420
2421 bool
2422 varobj_value_is_changeable_p (const struct varobj *var)
2423 {
2424 return var->root->lang_ops->value_is_changeable_p (var);
2425 }
2426
2427 /* Return true if that varobj is floating, that is is always evaluated in the
2428 selected frame, and not bound to thread/frame. Such variable objects
2429 are created using '@' as frame specifier to -var-create. */
2430 bool
2431 varobj_floating_p (const struct varobj *var)
2432 {
2433 return var->root->floating;
2434 }
2435
2436 /* Implement the "value_is_changeable_p" varobj callback for most
2437 languages. */
2438
2439 bool
2440 varobj_default_value_is_changeable_p (const struct varobj *var)
2441 {
2442 bool r;
2443 struct type *type;
2444
2445 if (CPLUS_FAKE_CHILD (var))
2446 return false;
2447
2448 type = varobj_get_value_type (var);
2449
2450 switch (TYPE_CODE (type))
2451 {
2452 case TYPE_CODE_STRUCT:
2453 case TYPE_CODE_UNION:
2454 case TYPE_CODE_ARRAY:
2455 r = false;
2456 break;
2457
2458 default:
2459 r = true;
2460 }
2461
2462 return r;
2463 }
2464
2465 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2466 with an arbitrary caller supplied DATA pointer. */
2467
2468 void
2469 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2470 {
2471 struct varobj_root *var_root, *var_root_next;
2472
2473 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2474
2475 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2476 {
2477 var_root_next = var_root->next;
2478
2479 (*func) (var_root->rootvar, data);
2480 }
2481 }
2482
2483 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2484 defined on globals. It is a helper for varobj_invalidate.
2485
2486 This function is called after changing the symbol file, in this case the
2487 pointers to "struct type" stored by the varobj are no longer valid. All
2488 varobj must be either re-evaluated, or marked as invalid here. */
2489
2490 static void
2491 varobj_invalidate_iter (struct varobj *var, void *unused)
2492 {
2493 /* global and floating var must be re-evaluated. */
2494 if (var->root->floating || var->root->valid_block == NULL)
2495 {
2496 struct varobj *tmp_var;
2497
2498 /* Try to create a varobj with same expression. If we succeed
2499 replace the old varobj, otherwise invalidate it. */
2500 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2501 USE_CURRENT_FRAME);
2502 if (tmp_var != NULL)
2503 {
2504 tmp_var->obj_name = var->obj_name;
2505 varobj_delete (var, 0);
2506 install_variable (tmp_var);
2507 }
2508 else
2509 var->root->is_valid = false;
2510 }
2511 else /* locals must be invalidated. */
2512 var->root->is_valid = false;
2513 }
2514
2515 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2516 are defined on globals.
2517 Invalidated varobjs will be always printed in_scope="invalid". */
2518
2519 void
2520 varobj_invalidate (void)
2521 {
2522 all_root_varobjs (varobj_invalidate_iter, NULL);
2523 }
2524
2525 void
2526 _initialize_varobj (void)
2527 {
2528 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2529
2530 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2531 &varobjdebug,
2532 _("Set varobj debugging."),
2533 _("Show varobj debugging."),
2534 _("When non-zero, varobj debugging is enabled."),
2535 NULL, show_varobjdebug,
2536 &setdebuglist, &showdebuglist);
2537 }