]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/vax-tdep.c
Bump GDB version number to 8.1.1.DATE-git.
[thirdparty/binutils-gdb.git] / gdb / vax-tdep.c
1 /* Target-dependent code for the VAX.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbcore.h"
27 #include "gdbtypes.h"
28 #include "osabi.h"
29 #include "regcache.h"
30 #include "regset.h"
31 #include "trad-frame.h"
32 #include "value.h"
33
34 #include "vax-tdep.h"
35
36 /* Return the name of register REGNUM. */
37
38 static const char *
39 vax_register_name (struct gdbarch *gdbarch, int regnum)
40 {
41 static const char *register_names[] =
42 {
43 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
44 "r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc",
45 "ps",
46 };
47
48 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
49 return register_names[regnum];
50
51 return NULL;
52 }
53
54 /* Return the GDB type object for the "standard" data type of data in
55 register REGNUM. */
56
57 static struct type *
58 vax_register_type (struct gdbarch *gdbarch, int regnum)
59 {
60 return builtin_type (gdbarch)->builtin_int;
61 }
62 \f
63 /* Core file support. */
64
65 /* Supply register REGNUM from the buffer specified by GREGS and LEN
66 in the general-purpose register set REGSET to register cache
67 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
68
69 static void
70 vax_supply_gregset (const struct regset *regset, struct regcache *regcache,
71 int regnum, const void *gregs, size_t len)
72 {
73 const gdb_byte *regs = (const gdb_byte *) gregs;
74 int i;
75
76 for (i = 0; i < VAX_NUM_REGS; i++)
77 {
78 if (regnum == i || regnum == -1)
79 regcache_raw_supply (regcache, i, regs + i * 4);
80 }
81 }
82
83 /* VAX register set. */
84
85 static const struct regset vax_gregset =
86 {
87 NULL,
88 vax_supply_gregset
89 };
90
91 /* Iterate over core file register note sections. */
92
93 static void
94 vax_iterate_over_regset_sections (struct gdbarch *gdbarch,
95 iterate_over_regset_sections_cb *cb,
96 void *cb_data,
97 const struct regcache *regcache)
98 {
99 cb (".reg", VAX_NUM_REGS * 4, &vax_gregset, NULL, cb_data);
100 }
101 \f
102 /* The VAX UNIX calling convention uses R1 to pass a structure return
103 value address instead of passing it as a first (hidden) argument as
104 the VMS calling convention suggests. */
105
106 static CORE_ADDR
107 vax_store_arguments (struct regcache *regcache, int nargs,
108 struct value **args, CORE_ADDR sp)
109 {
110 struct gdbarch *gdbarch = regcache->arch ();
111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
112 gdb_byte buf[4];
113 int count = 0;
114 int i;
115
116 /* We create an argument list on the stack, and make the argument
117 pointer to it. */
118
119 /* Push arguments in reverse order. */
120 for (i = nargs - 1; i >= 0; i--)
121 {
122 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
123
124 sp -= (len + 3) & ~3;
125 count += (len + 3) / 4;
126 write_memory (sp, value_contents_all (args[i]), len);
127 }
128
129 /* Push argument count. */
130 sp -= 4;
131 store_unsigned_integer (buf, 4, byte_order, count);
132 write_memory (sp, buf, 4);
133
134 /* Update the argument pointer. */
135 store_unsigned_integer (buf, 4, byte_order, sp);
136 regcache_cooked_write (regcache, VAX_AP_REGNUM, buf);
137
138 return sp;
139 }
140
141 static CORE_ADDR
142 vax_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
143 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
144 struct value **args, CORE_ADDR sp, int struct_return,
145 CORE_ADDR struct_addr)
146 {
147 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
148 CORE_ADDR fp = sp;
149 gdb_byte buf[4];
150
151 /* Set up the function arguments. */
152 sp = vax_store_arguments (regcache, nargs, args, sp);
153
154 /* Store return value address. */
155 if (struct_return)
156 regcache_cooked_write_unsigned (regcache, VAX_R1_REGNUM, struct_addr);
157
158 /* Store return address in the PC slot. */
159 sp -= 4;
160 store_unsigned_integer (buf, 4, byte_order, bp_addr);
161 write_memory (sp, buf, 4);
162
163 /* Store the (fake) frame pointer in the FP slot. */
164 sp -= 4;
165 store_unsigned_integer (buf, 4, byte_order, fp);
166 write_memory (sp, buf, 4);
167
168 /* Skip the AP slot. */
169 sp -= 4;
170
171 /* Store register save mask and control bits. */
172 sp -= 4;
173 store_unsigned_integer (buf, 4, byte_order, 0);
174 write_memory (sp, buf, 4);
175
176 /* Store condition handler. */
177 sp -= 4;
178 store_unsigned_integer (buf, 4, byte_order, 0);
179 write_memory (sp, buf, 4);
180
181 /* Update the stack pointer and frame pointer. */
182 store_unsigned_integer (buf, 4, byte_order, sp);
183 regcache_cooked_write (regcache, VAX_SP_REGNUM, buf);
184 regcache_cooked_write (regcache, VAX_FP_REGNUM, buf);
185
186 /* Return the saved (fake) frame pointer. */
187 return fp;
188 }
189
190 static struct frame_id
191 vax_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
192 {
193 CORE_ADDR fp;
194
195 fp = get_frame_register_unsigned (this_frame, VAX_FP_REGNUM);
196 return frame_id_build (fp, get_frame_pc (this_frame));
197 }
198 \f
199
200 static enum return_value_convention
201 vax_return_value (struct gdbarch *gdbarch, struct value *function,
202 struct type *type, struct regcache *regcache,
203 gdb_byte *readbuf, const gdb_byte *writebuf)
204 {
205 int len = TYPE_LENGTH (type);
206 gdb_byte buf[8];
207
208 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
209 || TYPE_CODE (type) == TYPE_CODE_UNION
210 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
211 {
212 /* The default on VAX is to return structures in static memory.
213 Consequently a function must return the address where we can
214 find the return value. */
215
216 if (readbuf)
217 {
218 ULONGEST addr;
219
220 regcache_raw_read_unsigned (regcache, VAX_R0_REGNUM, &addr);
221 read_memory (addr, readbuf, len);
222 }
223
224 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
225 }
226
227 if (readbuf)
228 {
229 /* Read the contents of R0 and (if necessary) R1. */
230 regcache_cooked_read (regcache, VAX_R0_REGNUM, buf);
231 if (len > 4)
232 regcache_cooked_read (regcache, VAX_R1_REGNUM, buf + 4);
233 memcpy (readbuf, buf, len);
234 }
235 if (writebuf)
236 {
237 /* Read the contents to R0 and (if necessary) R1. */
238 memcpy (buf, writebuf, len);
239 regcache_cooked_write (regcache, VAX_R0_REGNUM, buf);
240 if (len > 4)
241 regcache_cooked_write (regcache, VAX_R1_REGNUM, buf + 4);
242 }
243
244 return RETURN_VALUE_REGISTER_CONVENTION;
245 }
246 \f
247
248 /* Use the program counter to determine the contents and size of a
249 breakpoint instruction. Return a pointer to a string of bytes that
250 encode a breakpoint instruction, store the length of the string in
251 *LEN and optionally adjust *PC to point to the correct memory
252 location for inserting the breakpoint. */
253
254 constexpr gdb_byte vax_break_insn[] = { 3 };
255
256 typedef BP_MANIPULATION (vax_break_insn) vax_breakpoint;
257 \f
258 /* Advance PC across any function entry prologue instructions
259 to reach some "real" code. */
260
261 static CORE_ADDR
262 vax_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
263 {
264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
265 gdb_byte op = read_memory_unsigned_integer (pc, 1, byte_order);
266
267 if (op == 0x11)
268 pc += 2; /* skip brb */
269 if (op == 0x31)
270 pc += 3; /* skip brw */
271 if (op == 0xC2
272 && read_memory_unsigned_integer (pc + 2, 1, byte_order) == 0x5E)
273 pc += 3; /* skip subl2 */
274 if (op == 0x9E
275 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xAE
276 && read_memory_unsigned_integer (pc + 3, 1, byte_order) == 0x5E)
277 pc += 4; /* skip movab */
278 if (op == 0x9E
279 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xCE
280 && read_memory_unsigned_integer (pc + 4, 1, byte_order) == 0x5E)
281 pc += 5; /* skip movab */
282 if (op == 0x9E
283 && read_memory_unsigned_integer (pc + 1, 1, byte_order) == 0xEE
284 && read_memory_unsigned_integer (pc + 6, 1, byte_order) == 0x5E)
285 pc += 7; /* skip movab */
286
287 return pc;
288 }
289 \f
290
291 /* Unwinding the stack is relatively easy since the VAX has a
292 dedicated frame pointer, and frames are set up automatically as the
293 result of a function call. Most of the relevant information can be
294 inferred from the documentation of the Procedure Call Instructions
295 in the VAX MACRO and Instruction Set Reference Manual. */
296
297 struct vax_frame_cache
298 {
299 /* Base address. */
300 CORE_ADDR base;
301
302 /* Table of saved registers. */
303 struct trad_frame_saved_reg *saved_regs;
304 };
305
306 static struct vax_frame_cache *
307 vax_frame_cache (struct frame_info *this_frame, void **this_cache)
308 {
309 struct vax_frame_cache *cache;
310 CORE_ADDR addr;
311 ULONGEST mask;
312 int regnum;
313
314 if (*this_cache)
315 return (struct vax_frame_cache *) *this_cache;
316
317 /* Allocate a new cache. */
318 cache = FRAME_OBSTACK_ZALLOC (struct vax_frame_cache);
319 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
320
321 /* The frame pointer is used as the base for the frame. */
322 cache->base = get_frame_register_unsigned (this_frame, VAX_FP_REGNUM);
323 if (cache->base == 0)
324 return cache;
325
326 /* The register save mask and control bits determine the layout of
327 the stack frame. */
328 mask = get_frame_memory_unsigned (this_frame, cache->base + 4, 4) >> 16;
329
330 /* These are always saved. */
331 cache->saved_regs[VAX_PC_REGNUM].addr = cache->base + 16;
332 cache->saved_regs[VAX_FP_REGNUM].addr = cache->base + 12;
333 cache->saved_regs[VAX_AP_REGNUM].addr = cache->base + 8;
334 cache->saved_regs[VAX_PS_REGNUM].addr = cache->base + 4;
335
336 /* Scan the register save mask and record the location of the saved
337 registers. */
338 addr = cache->base + 20;
339 for (regnum = 0; regnum < VAX_AP_REGNUM; regnum++)
340 {
341 if (mask & (1 << regnum))
342 {
343 cache->saved_regs[regnum].addr = addr;
344 addr += 4;
345 }
346 }
347
348 /* The CALLS/CALLG flag determines whether this frame has a General
349 Argument List or a Stack Argument List. */
350 if (mask & (1 << 13))
351 {
352 ULONGEST numarg;
353
354 /* This is a procedure with Stack Argument List. Adjust the
355 stack address for the arguments that were pushed onto the
356 stack. The return instruction will automatically pop the
357 arguments from the stack. */
358 numarg = get_frame_memory_unsigned (this_frame, addr, 1);
359 addr += 4 + numarg * 4;
360 }
361
362 /* Bits 1:0 of the stack pointer were saved in the control bits. */
363 trad_frame_set_value (cache->saved_regs, VAX_SP_REGNUM, addr + (mask >> 14));
364
365 return cache;
366 }
367
368 static void
369 vax_frame_this_id (struct frame_info *this_frame, void **this_cache,
370 struct frame_id *this_id)
371 {
372 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
373
374 /* This marks the outermost frame. */
375 if (cache->base == 0)
376 return;
377
378 (*this_id) = frame_id_build (cache->base, get_frame_func (this_frame));
379 }
380
381 static struct value *
382 vax_frame_prev_register (struct frame_info *this_frame,
383 void **this_cache, int regnum)
384 {
385 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
386
387 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
388 }
389
390 static const struct frame_unwind vax_frame_unwind =
391 {
392 NORMAL_FRAME,
393 default_frame_unwind_stop_reason,
394 vax_frame_this_id,
395 vax_frame_prev_register,
396 NULL,
397 default_frame_sniffer
398 };
399 \f
400
401 static CORE_ADDR
402 vax_frame_base_address (struct frame_info *this_frame, void **this_cache)
403 {
404 struct vax_frame_cache *cache = vax_frame_cache (this_frame, this_cache);
405
406 return cache->base;
407 }
408
409 static CORE_ADDR
410 vax_frame_args_address (struct frame_info *this_frame, void **this_cache)
411 {
412 return get_frame_register_unsigned (this_frame, VAX_AP_REGNUM);
413 }
414
415 static const struct frame_base vax_frame_base =
416 {
417 &vax_frame_unwind,
418 vax_frame_base_address,
419 vax_frame_base_address,
420 vax_frame_args_address
421 };
422
423 /* Return number of arguments for FRAME. */
424
425 static int
426 vax_frame_num_args (struct frame_info *frame)
427 {
428 CORE_ADDR args;
429
430 /* Assume that the argument pointer for the outermost frame is
431 hosed, as is the case on NetBSD/vax ELF. */
432 if (get_frame_base_address (frame) == 0)
433 return 0;
434
435 args = get_frame_register_unsigned (frame, VAX_AP_REGNUM);
436 return get_frame_memory_unsigned (frame, args, 1);
437 }
438
439 static CORE_ADDR
440 vax_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
441 {
442 return frame_unwind_register_unsigned (next_frame, VAX_PC_REGNUM);
443 }
444 \f
445
446 /* Initialize the current architecture based on INFO. If possible, re-use an
447 architecture from ARCHES, which is a list of architectures already created
448 during this debugging session.
449
450 Called e.g. at program startup, when reading a core file, and when reading
451 a binary file. */
452
453 static struct gdbarch *
454 vax_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
455 {
456 struct gdbarch *gdbarch;
457
458 /* If there is already a candidate, use it. */
459 arches = gdbarch_list_lookup_by_info (arches, &info);
460 if (arches != NULL)
461 return arches->gdbarch;
462
463 gdbarch = gdbarch_alloc (&info, NULL);
464
465 set_gdbarch_float_format (gdbarch, floatformats_vax_f);
466 set_gdbarch_double_format (gdbarch, floatformats_vax_d);
467 set_gdbarch_long_double_format (gdbarch, floatformats_vax_d);
468 set_gdbarch_long_double_bit (gdbarch, 64);
469
470 /* Register info */
471 set_gdbarch_num_regs (gdbarch, VAX_NUM_REGS);
472 set_gdbarch_register_name (gdbarch, vax_register_name);
473 set_gdbarch_register_type (gdbarch, vax_register_type);
474 set_gdbarch_sp_regnum (gdbarch, VAX_SP_REGNUM);
475 set_gdbarch_pc_regnum (gdbarch, VAX_PC_REGNUM);
476 set_gdbarch_ps_regnum (gdbarch, VAX_PS_REGNUM);
477
478 set_gdbarch_iterate_over_regset_sections
479 (gdbarch, vax_iterate_over_regset_sections);
480
481 /* Frame and stack info */
482 set_gdbarch_skip_prologue (gdbarch, vax_skip_prologue);
483 set_gdbarch_frame_num_args (gdbarch, vax_frame_num_args);
484 set_gdbarch_frame_args_skip (gdbarch, 4);
485
486 /* Stack grows downward. */
487 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
488
489 /* Return value info */
490 set_gdbarch_return_value (gdbarch, vax_return_value);
491
492 /* Call dummy code. */
493 set_gdbarch_push_dummy_call (gdbarch, vax_push_dummy_call);
494 set_gdbarch_dummy_id (gdbarch, vax_dummy_id);
495
496 /* Breakpoint info */
497 set_gdbarch_breakpoint_kind_from_pc (gdbarch, vax_breakpoint::kind_from_pc);
498 set_gdbarch_sw_breakpoint_from_kind (gdbarch, vax_breakpoint::bp_from_kind);
499
500 /* Misc info */
501 set_gdbarch_deprecated_function_start_offset (gdbarch, 2);
502 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
503
504 set_gdbarch_unwind_pc (gdbarch, vax_unwind_pc);
505
506 frame_base_set_default (gdbarch, &vax_frame_base);
507
508 /* Hook in ABI-specific overrides, if they have been registered. */
509 gdbarch_init_osabi (info, gdbarch);
510
511 frame_unwind_append_unwinder (gdbarch, &vax_frame_unwind);
512
513 return (gdbarch);
514 }
515
516 void
517 _initialize_vax_tdep (void)
518 {
519 gdbarch_register (bfd_arch_vax, vax_gdbarch_init, NULL);
520 }