]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/object.cc
2.41 Release sources
[thirdparty/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2023 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 osabi_(ehdr.get_ei_osabi()),
468 e_type_(ehdr.get_e_type()),
469 symtab_shndx_(-1U),
470 local_symbol_count_(0),
471 output_local_symbol_count_(0),
472 output_local_dynsym_count_(0),
473 symbols_(),
474 defined_count_(0),
475 local_symbol_offset_(0),
476 local_dynsym_offset_(0),
477 local_values_(),
478 local_plt_offsets_(),
479 kept_comdat_sections_(),
480 has_eh_frame_(false),
481 is_deferred_layout_(false),
482 deferred_layout_(),
483 deferred_layout_relocs_(),
484 output_views_(NULL)
485 {
486 }
487
488 template<int size, bool big_endian>
489 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
490 {
491 }
492
493 // Set up an object file based on the file header. This sets up the
494 // section information.
495
496 template<int size, bool big_endian>
497 void
498 Sized_relobj_file<size, big_endian>::do_setup()
499 {
500 const unsigned int shnum = this->elf_file_.shnum();
501 this->set_shnum(shnum);
502 }
503
504 // Find the SHT_SYMTAB section, given the section headers. The ELF
505 // standard says that maybe in the future there can be more than one
506 // SHT_SYMTAB section. Until somebody figures out how that could
507 // work, we assume there is only one.
508
509 template<int size, bool big_endian>
510 void
511 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
512 {
513 const unsigned int shnum = this->shnum();
514 this->symtab_shndx_ = 0;
515 if (shnum > 0)
516 {
517 // Look through the sections in reverse order, since gas tends
518 // to put the symbol table at the end.
519 const unsigned char* p = pshdrs + shnum * This::shdr_size;
520 unsigned int i = shnum;
521 unsigned int xindex_shndx = 0;
522 unsigned int xindex_link = 0;
523 while (i > 0)
524 {
525 --i;
526 p -= This::shdr_size;
527 typename This::Shdr shdr(p);
528 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
529 {
530 this->symtab_shndx_ = i;
531 if (xindex_shndx > 0 && xindex_link == i)
532 {
533 Xindex* xindex =
534 new Xindex(this->elf_file_.large_shndx_offset());
535 xindex->read_symtab_xindex<size, big_endian>(this,
536 xindex_shndx,
537 pshdrs);
538 this->set_xindex(xindex);
539 }
540 break;
541 }
542
543 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
544 // one. This will work if it follows the SHT_SYMTAB
545 // section.
546 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
547 {
548 xindex_shndx = i;
549 xindex_link = this->adjust_shndx(shdr.get_sh_link());
550 }
551 }
552 }
553 }
554
555 // Return the Xindex structure to use for object with lots of
556 // sections.
557
558 template<int size, bool big_endian>
559 Xindex*
560 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
561 {
562 gold_assert(this->symtab_shndx_ != -1U);
563 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
564 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
565 return xindex;
566 }
567
568 // Return whether SHDR has the right type and flags to be a GNU
569 // .eh_frame section.
570
571 template<int size, bool big_endian>
572 bool
573 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
574 const elfcpp::Shdr<size, big_endian>* shdr) const
575 {
576 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
577 return ((sh_type == elfcpp::SHT_PROGBITS
578 || sh_type == parameters->target().unwind_section_type())
579 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
580 }
581
582 // Find the section header with the given name.
583
584 template<int size, bool big_endian>
585 const unsigned char*
586 Object::find_shdr(
587 const unsigned char* pshdrs,
588 const char* name,
589 const char* names,
590 section_size_type names_size,
591 const unsigned char* hdr) const
592 {
593 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
594 const unsigned int shnum = this->shnum();
595 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
596 size_t sh_name = 0;
597
598 while (1)
599 {
600 if (hdr)
601 {
602 // We found HDR last time we were called, continue looking.
603 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
604 sh_name = shdr.get_sh_name();
605 }
606 else
607 {
608 // Look for the next occurrence of NAME in NAMES.
609 // The fact that .shstrtab produced by current GNU tools is
610 // string merged means we shouldn't have both .not.foo and
611 // .foo in .shstrtab, and multiple .foo sections should all
612 // have the same sh_name. However, this is not guaranteed
613 // by the ELF spec and not all ELF object file producers may
614 // be so clever.
615 size_t len = strlen(name) + 1;
616 const char *p = sh_name ? names + sh_name + len : names;
617 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
618 name, len));
619 if (p == NULL)
620 return NULL;
621 sh_name = p - names;
622 hdr = pshdrs;
623 if (sh_name == 0)
624 return hdr;
625 }
626
627 hdr += shdr_size;
628 while (hdr < hdr_end)
629 {
630 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
631 if (shdr.get_sh_name() == sh_name)
632 return hdr;
633 hdr += shdr_size;
634 }
635 hdr = NULL;
636 if (sh_name == 0)
637 return hdr;
638 }
639 }
640
641 // Return whether there is a GNU .eh_frame section, given the section
642 // headers and the section names.
643
644 template<int size, bool big_endian>
645 bool
646 Sized_relobj_file<size, big_endian>::find_eh_frame(
647 const unsigned char* pshdrs,
648 const char* names,
649 section_size_type names_size) const
650 {
651 const unsigned char* s = NULL;
652
653 while (1)
654 {
655 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
656 names, names_size, s);
657 if (s == NULL)
658 return false;
659
660 typename This::Shdr shdr(s);
661 if (this->check_eh_frame_flags(&shdr))
662 return true;
663 }
664 }
665
666 // Return TRUE if this is a section whose contents will be needed in the
667 // Add_symbols task. This function is only called for sections that have
668 // already passed the test in is_compressed_debug_section() and the debug
669 // section name prefix, ".debug"/".zdebug", has been skipped.
670
671 static bool
672 need_decompressed_section(const char* name)
673 {
674 if (*name++ != '_')
675 return false;
676
677 #ifdef ENABLE_THREADS
678 // Decompressing these sections now will help only if we're
679 // multithreaded.
680 if (parameters->options().threads())
681 {
682 // We will need .zdebug_str if this is not an incremental link
683 // (i.e., we are processing string merge sections) or if we need
684 // to build a gdb index.
685 if ((!parameters->incremental() || parameters->options().gdb_index())
686 && strcmp(name, "str") == 0)
687 return true;
688
689 // We will need these other sections when building a gdb index.
690 if (parameters->options().gdb_index()
691 && (strcmp(name, "info") == 0
692 || strcmp(name, "types") == 0
693 || strcmp(name, "pubnames") == 0
694 || strcmp(name, "pubtypes") == 0
695 || strcmp(name, "ranges") == 0
696 || strcmp(name, "abbrev") == 0))
697 return true;
698 }
699 #endif
700
701 // Even when single-threaded, we will need .zdebug_str if this is
702 // not an incremental link and we are building a gdb index.
703 // Otherwise, we would decompress the section twice: once for
704 // string merge processing, and once for building the gdb index.
705 if (!parameters->incremental()
706 && parameters->options().gdb_index()
707 && strcmp(name, "str") == 0)
708 return true;
709
710 return false;
711 }
712
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
715
716 template<int size, bool big_endian>
717 Compressed_section_map*
718 build_compressed_section_map(
719 const unsigned char* pshdrs,
720 unsigned int shnum,
721 const char* names,
722 section_size_type names_size,
723 Object* obj,
724 bool decompress_if_needed)
725 {
726 Compressed_section_map* uncompressed_map = new Compressed_section_map();
727 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
728 const unsigned char* p = pshdrs + shdr_size;
729
730 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
731 {
732 typename elfcpp::Shdr<size, big_endian> shdr(p);
733 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
734 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735 {
736 if (shdr.get_sh_name() >= names_size)
737 {
738 obj->error(_("bad section name offset for section %u: %lu"),
739 i, static_cast<unsigned long>(shdr.get_sh_name()));
740 continue;
741 }
742
743 const char* name = names + shdr.get_sh_name();
744 bool is_compressed = ((shdr.get_sh_flags()
745 & elfcpp::SHF_COMPRESSED) != 0);
746 bool is_zcompressed = (!is_compressed
747 && is_compressed_debug_section(name));
748
749 if (is_zcompressed || is_compressed)
750 {
751 section_size_type len;
752 const unsigned char* contents =
753 obj->section_contents(i, &len, false);
754 uint64_t uncompressed_size;
755 Compressed_section_info info;
756 if (is_zcompressed)
757 {
758 // Skip over the ".zdebug" prefix.
759 name += 7;
760 uncompressed_size = get_uncompressed_size(contents, len);
761 info.addralign = shdr.get_sh_addralign();
762 }
763 else
764 {
765 // Skip over the ".debug" prefix.
766 name += 6;
767 elfcpp::Chdr<size, big_endian> chdr(contents);
768 uncompressed_size = chdr.get_ch_size();
769 info.addralign = chdr.get_ch_addralign();
770 }
771 info.size = convert_to_section_size_type(uncompressed_size);
772 info.flag = shdr.get_sh_flags();
773 info.contents = NULL;
774 if (uncompressed_size != -1ULL)
775 {
776 unsigned char* uncompressed_data = NULL;
777 if (decompress_if_needed && need_decompressed_section(name))
778 {
779 uncompressed_data = new unsigned char[uncompressed_size];
780 if (decompress_input_section(contents, len,
781 uncompressed_data,
782 uncompressed_size,
783 size, big_endian,
784 shdr.get_sh_flags()))
785 info.contents = uncompressed_data;
786 else
787 delete[] uncompressed_data;
788 }
789 (*uncompressed_map)[i] = info;
790 }
791 }
792 }
793 }
794 return uncompressed_map;
795 }
796
797 // Stash away info for a number of special sections.
798 // Return true if any of the sections found require local symbols to be read.
799
800 template<int size, bool big_endian>
801 bool
802 Sized_relobj_file<size, big_endian>::do_find_special_sections(
803 Read_symbols_data* sd)
804 {
805 const unsigned char* const pshdrs = sd->section_headers->data();
806 const unsigned char* namesu = sd->section_names->data();
807 const char* names = reinterpret_cast<const char*>(namesu);
808
809 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
810 this->has_eh_frame_ = true;
811
812 Compressed_section_map* compressed_sections =
813 build_compressed_section_map<size, big_endian>(
814 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
815 if (compressed_sections != NULL)
816 this->set_compressed_sections(compressed_sections);
817
818 return (this->has_eh_frame_
819 || (!parameters->options().relocatable()
820 && parameters->options().gdb_index()
821 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
822 || memmem(names, sd->section_names_size,
823 "debug_types", 12) != NULL)));
824 }
825
826 // Read the sections and symbols from an object file.
827
828 template<int size, bool big_endian>
829 void
830 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
831 {
832 this->base_read_symbols(sd);
833 }
834
835 // Read the sections and symbols from an object file. This is common
836 // code for all target-specific overrides of do_read_symbols().
837
838 template<int size, bool big_endian>
839 void
840 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
841 {
842 this->read_section_data(&this->elf_file_, sd);
843
844 const unsigned char* const pshdrs = sd->section_headers->data();
845
846 this->find_symtab(pshdrs);
847
848 bool need_local_symbols = this->do_find_special_sections(sd);
849
850 sd->symbols = NULL;
851 sd->symbols_size = 0;
852 sd->external_symbols_offset = 0;
853 sd->symbol_names = NULL;
854 sd->symbol_names_size = 0;
855
856 if (this->symtab_shndx_ == 0)
857 {
858 // No symbol table. Weird but legal.
859 return;
860 }
861
862 // Get the symbol table section header.
863 typename This::Shdr symtabshdr(pshdrs
864 + this->symtab_shndx_ * This::shdr_size);
865 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
866
867 // If this object has a .eh_frame section, or if building a .gdb_index
868 // section and there is debug info, we need all the symbols.
869 // Otherwise we only need the external symbols. While it would be
870 // simpler to just always read all the symbols, I've seen object
871 // files with well over 2000 local symbols, which for a 64-bit
872 // object file format is over 5 pages that we don't need to read
873 // now.
874
875 const int sym_size = This::sym_size;
876 const unsigned int loccount = symtabshdr.get_sh_info();
877 this->local_symbol_count_ = loccount;
878 this->local_values_.resize(loccount);
879 section_offset_type locsize = loccount * sym_size;
880 off_t dataoff = symtabshdr.get_sh_offset();
881 section_size_type datasize =
882 convert_to_section_size_type(symtabshdr.get_sh_size());
883 off_t extoff = dataoff + locsize;
884 section_size_type extsize = datasize - locsize;
885
886 off_t readoff = need_local_symbols ? dataoff : extoff;
887 section_size_type readsize = need_local_symbols ? datasize : extsize;
888
889 if (readsize == 0)
890 {
891 // No external symbols. Also weird but also legal.
892 return;
893 }
894
895 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
896
897 // Read the section header for the symbol names.
898 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
899 if (strtab_shndx >= this->shnum())
900 {
901 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
902 return;
903 }
904 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
905 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
906 {
907 this->error(_("symbol table name section has wrong type: %u"),
908 static_cast<unsigned int>(strtabshdr.get_sh_type()));
909 return;
910 }
911
912 // Read the symbol names.
913 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
914 strtabshdr.get_sh_size(),
915 false, true);
916
917 sd->symbols = fvsymtab;
918 sd->symbols_size = readsize;
919 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
920 sd->symbol_names = fvstrtab;
921 sd->symbol_names_size =
922 convert_to_section_size_type(strtabshdr.get_sh_size());
923 }
924
925 // Return the section index of symbol SYM. Set *VALUE to its value in
926 // the object file. Set *IS_ORDINARY if this is an ordinary section
927 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
928 // Note that for a symbol which is not defined in this object file,
929 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
930 // the final value of the symbol in the link.
931
932 template<int size, bool big_endian>
933 unsigned int
934 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
935 Address* value,
936 bool* is_ordinary)
937 {
938 section_size_type symbols_size;
939 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
940 &symbols_size,
941 false);
942
943 const size_t count = symbols_size / This::sym_size;
944 gold_assert(sym < count);
945
946 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
947 *value = elfsym.get_st_value();
948
949 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
950 }
951
952 // Return whether to include a section group in the link. LAYOUT is
953 // used to keep track of which section groups we have already seen.
954 // INDEX is the index of the section group and SHDR is the section
955 // header. If we do not want to include this group, we set bits in
956 // OMIT for each section which should be discarded.
957
958 template<int size, bool big_endian>
959 bool
960 Sized_relobj_file<size, big_endian>::include_section_group(
961 Symbol_table* symtab,
962 Layout* layout,
963 unsigned int index,
964 const char* name,
965 const unsigned char* shdrs,
966 const char* section_names,
967 section_size_type section_names_size,
968 std::vector<bool>* omit)
969 {
970 // Read the section contents.
971 typename This::Shdr shdr(shdrs + index * This::shdr_size);
972 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
973 shdr.get_sh_size(), true, false);
974 const elfcpp::Elf_Word* pword =
975 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
976
977 // The first word contains flags. We only care about COMDAT section
978 // groups. Other section groups are always included in the link
979 // just like ordinary sections.
980 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
981
982 // Look up the group signature, which is the name of a symbol. ELF
983 // uses a symbol name because some group signatures are long, and
984 // the name is generally already in the symbol table, so it makes
985 // sense to put the long string just once in .strtab rather than in
986 // both .strtab and .shstrtab.
987
988 // Get the appropriate symbol table header (this will normally be
989 // the single SHT_SYMTAB section, but in principle it need not be).
990 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
991 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
992
993 // Read the symbol table entry.
994 unsigned int symndx = shdr.get_sh_info();
995 if (symndx >= symshdr.get_sh_size() / This::sym_size)
996 {
997 this->error(_("section group %u info %u out of range"),
998 index, symndx);
999 return false;
1000 }
1001 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1002 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1003 false);
1004 elfcpp::Sym<size, big_endian> sym(psym);
1005
1006 // Read the symbol table names.
1007 section_size_type symnamelen;
1008 const unsigned char* psymnamesu;
1009 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1010 &symnamelen, true);
1011 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1012
1013 // Get the section group signature.
1014 if (sym.get_st_name() >= symnamelen)
1015 {
1016 this->error(_("symbol %u name offset %u out of range"),
1017 symndx, sym.get_st_name());
1018 return false;
1019 }
1020
1021 std::string signature(psymnames + sym.get_st_name());
1022
1023 // It seems that some versions of gas will create a section group
1024 // associated with a section symbol, and then fail to give a name to
1025 // the section symbol. In such a case, use the name of the section.
1026 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1027 {
1028 bool is_ordinary;
1029 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1030 sym.get_st_shndx(),
1031 &is_ordinary);
1032 if (!is_ordinary || sym_shndx >= this->shnum())
1033 {
1034 this->error(_("symbol %u invalid section index %u"),
1035 symndx, sym_shndx);
1036 return false;
1037 }
1038 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1039 if (member_shdr.get_sh_name() < section_names_size)
1040 signature = section_names + member_shdr.get_sh_name();
1041 }
1042
1043 // Record this section group in the layout, and see whether we've already
1044 // seen one with the same signature.
1045 bool include_group;
1046 bool is_comdat;
1047 Kept_section* kept_section = NULL;
1048
1049 if ((flags & elfcpp::GRP_COMDAT) == 0)
1050 {
1051 include_group = true;
1052 is_comdat = false;
1053 }
1054 else
1055 {
1056 include_group = layout->find_or_add_kept_section(signature,
1057 this, index, true,
1058 true, &kept_section);
1059 is_comdat = true;
1060 }
1061
1062 if (is_comdat && include_group)
1063 {
1064 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1065 if (incremental_inputs != NULL)
1066 incremental_inputs->report_comdat_group(this, signature.c_str());
1067 }
1068
1069 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1070
1071 std::vector<unsigned int> shndxes;
1072 bool relocate_group = include_group && parameters->options().relocatable();
1073 if (relocate_group)
1074 shndxes.reserve(count - 1);
1075
1076 for (size_t i = 1; i < count; ++i)
1077 {
1078 elfcpp::Elf_Word shndx =
1079 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1080
1081 if (relocate_group)
1082 shndxes.push_back(shndx);
1083
1084 if (shndx >= this->shnum())
1085 {
1086 this->error(_("section %u in section group %u out of range"),
1087 shndx, index);
1088 continue;
1089 }
1090
1091 // Check for an earlier section number, since we're going to get
1092 // it wrong--we may have already decided to include the section.
1093 if (shndx < index)
1094 this->error(_("invalid section group %u refers to earlier section %u"),
1095 index, shndx);
1096
1097 // Get the name of the member section.
1098 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1099 if (member_shdr.get_sh_name() >= section_names_size)
1100 {
1101 // This is an error, but it will be diagnosed eventually
1102 // in do_layout, so we don't need to do anything here but
1103 // ignore it.
1104 continue;
1105 }
1106 std::string mname(section_names + member_shdr.get_sh_name());
1107
1108 if (include_group)
1109 {
1110 if (is_comdat)
1111 kept_section->add_comdat_section(mname, shndx,
1112 member_shdr.get_sh_size());
1113 }
1114 else
1115 {
1116 (*omit)[shndx] = true;
1117
1118 // Store a mapping from this section to the Kept_section
1119 // information for the group. This mapping is used for
1120 // relocation processing and diagnostics.
1121 // If the kept section is a linkonce section, we don't
1122 // bother with it unless the comdat group contains just
1123 // a single section, making it easy to match up.
1124 if (is_comdat
1125 && (kept_section->is_comdat() || count == 2))
1126 this->set_kept_comdat_section(shndx, true, symndx,
1127 member_shdr.get_sh_size(),
1128 kept_section);
1129 }
1130 }
1131
1132 if (relocate_group)
1133 layout->layout_group(symtab, this, index, name, signature.c_str(),
1134 shdr, flags, &shndxes);
1135
1136 return include_group;
1137 }
1138
1139 // Whether to include a linkonce section in the link. NAME is the
1140 // name of the section and SHDR is the section header.
1141
1142 // Linkonce sections are a GNU extension implemented in the original
1143 // GNU linker before section groups were defined. The semantics are
1144 // that we only include one linkonce section with a given name. The
1145 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1146 // where T is the type of section and SYMNAME is the name of a symbol.
1147 // In an attempt to make linkonce sections interact well with section
1148 // groups, we try to identify SYMNAME and use it like a section group
1149 // signature. We want to block section groups with that signature,
1150 // but not other linkonce sections with that signature. We also use
1151 // the full name of the linkonce section as a normal section group
1152 // signature.
1153
1154 template<int size, bool big_endian>
1155 bool
1156 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1157 Layout* layout,
1158 unsigned int index,
1159 const char* name,
1160 const elfcpp::Shdr<size, big_endian>& shdr)
1161 {
1162 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1163 // In general the symbol name we want will be the string following
1164 // the last '.'. However, we have to handle the case of
1165 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1166 // some versions of gcc. So we use a heuristic: if the name starts
1167 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1168 // we look for the last '.'. We can't always simply skip
1169 // ".gnu.linkonce.X", because we have to deal with cases like
1170 // ".gnu.linkonce.d.rel.ro.local".
1171 const char* const linkonce_t = ".gnu.linkonce.t.";
1172 const char* symname;
1173 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1174 symname = name + strlen(linkonce_t);
1175 else
1176 symname = strrchr(name, '.') + 1;
1177 std::string sig1(symname);
1178 std::string sig2(name);
1179 Kept_section* kept1;
1180 Kept_section* kept2;
1181 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1182 false, &kept1);
1183 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1184 true, &kept2);
1185
1186 if (!include2)
1187 {
1188 // We are not including this section because we already saw the
1189 // name of the section as a signature. This normally implies
1190 // that the kept section is another linkonce section. If it is
1191 // the same size, record it as the section which corresponds to
1192 // this one.
1193 if (kept2->object() != NULL && !kept2->is_comdat())
1194 this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1195 }
1196 else if (!include1)
1197 {
1198 // The section is being discarded on the basis of its symbol
1199 // name. This means that the corresponding kept section was
1200 // part of a comdat group, and it will be difficult to identify
1201 // the specific section within that group that corresponds to
1202 // this linkonce section. We'll handle the simple case where
1203 // the group has only one member section. Otherwise, it's not
1204 // worth the effort.
1205 if (kept1->object() != NULL && kept1->is_comdat())
1206 this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1207 }
1208 else
1209 {
1210 kept1->set_linkonce_size(sh_size);
1211 kept2->set_linkonce_size(sh_size);
1212 }
1213
1214 return include1 && include2;
1215 }
1216
1217 // Layout an input section.
1218
1219 template<int size, bool big_endian>
1220 inline void
1221 Sized_relobj_file<size, big_endian>::layout_section(
1222 Layout* layout,
1223 unsigned int shndx,
1224 const char* name,
1225 const typename This::Shdr& shdr,
1226 unsigned int sh_type,
1227 unsigned int reloc_shndx,
1228 unsigned int reloc_type)
1229 {
1230 off_t offset;
1231 Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1232 reloc_shndx, reloc_type, &offset);
1233
1234 this->output_sections()[shndx] = os;
1235 if (offset == -1)
1236 this->section_offsets()[shndx] = invalid_address;
1237 else
1238 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1239
1240 // If this section requires special handling, and if there are
1241 // relocs that apply to it, then we must do the special handling
1242 // before we apply the relocs.
1243 if (offset == -1 && reloc_shndx != 0)
1244 this->set_relocs_must_follow_section_writes();
1245 }
1246
1247 // Layout an input .eh_frame section.
1248
1249 template<int size, bool big_endian>
1250 void
1251 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1252 Layout* layout,
1253 const unsigned char* symbols_data,
1254 section_size_type symbols_size,
1255 const unsigned char* symbol_names_data,
1256 section_size_type symbol_names_size,
1257 unsigned int shndx,
1258 const typename This::Shdr& shdr,
1259 unsigned int reloc_shndx,
1260 unsigned int reloc_type)
1261 {
1262 gold_assert(this->has_eh_frame_);
1263
1264 off_t offset;
1265 Output_section* os = layout->layout_eh_frame(this,
1266 symbols_data,
1267 symbols_size,
1268 symbol_names_data,
1269 symbol_names_size,
1270 shndx,
1271 shdr,
1272 reloc_shndx,
1273 reloc_type,
1274 &offset);
1275 this->output_sections()[shndx] = os;
1276 if (os == NULL || offset == -1)
1277 this->section_offsets()[shndx] = invalid_address;
1278 else
1279 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1280
1281 // If this section requires special handling, and if there are
1282 // relocs that aply to it, then we must do the special handling
1283 // before we apply the relocs.
1284 if (os != NULL && offset == -1 && reloc_shndx != 0)
1285 this->set_relocs_must_follow_section_writes();
1286 }
1287
1288 // Layout an input .note.gnu.property section.
1289
1290 // This note section has an *extremely* non-standard layout.
1291 // The gABI spec says that ELF-64 files should have 8-byte fields and
1292 // 8-byte alignment in the note section, but the Gnu tools generally
1293 // use 4-byte fields and 4-byte alignment (see the comment for
1294 // Layout::create_note). This section uses 4-byte fields (i.e.,
1295 // namesz, descsz, and type are always 4 bytes), the name field is
1296 // padded to a multiple of 4 bytes, but the desc field is padded
1297 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1298 // The individual properties within the desc field always use
1299 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1300 // a multiple of 4 or 8 bytes, depending on the ELF class.
1301
1302 template<int size, bool big_endian>
1303 void
1304 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1305 Layout* layout,
1306 unsigned int shndx)
1307 {
1308 // We ignore Gnu property sections on incremental links.
1309 if (parameters->incremental())
1310 return;
1311
1312 section_size_type contents_len;
1313 const unsigned char* pcontents = this->section_contents(shndx,
1314 &contents_len,
1315 false);
1316 const unsigned char* pcontents_end = pcontents + contents_len;
1317
1318 // Loop over all the notes in this section.
1319 while (pcontents < pcontents_end)
1320 {
1321 if (pcontents + 16 > pcontents_end)
1322 {
1323 gold_warning(_("%s: corrupt .note.gnu.property section "
1324 "(note too short)"),
1325 this->name().c_str());
1326 return;
1327 }
1328
1329 size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1330 size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1331 unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1332 const unsigned char* pname = pcontents + 12;
1333
1334 if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1335 {
1336 gold_warning(_("%s: corrupt .note.gnu.property section "
1337 "(name is not 'GNU')"),
1338 this->name().c_str());
1339 return;
1340 }
1341
1342 if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1343 {
1344 gold_warning(_("%s: unsupported note type %d "
1345 "in .note.gnu.property section"),
1346 this->name().c_str(), ntype);
1347 return;
1348 }
1349
1350 size_t aligned_namesz = align_address(namesz, 4);
1351 const unsigned char* pdesc = pname + aligned_namesz;
1352
1353 if (pdesc + descsz > pcontents + contents_len)
1354 {
1355 gold_warning(_("%s: corrupt .note.gnu.property section"),
1356 this->name().c_str());
1357 return;
1358 }
1359
1360 const unsigned char* pprop = pdesc;
1361
1362 // Loop over the program properties in this note.
1363 while (pprop < pdesc + descsz)
1364 {
1365 if (pprop + 8 > pdesc + descsz)
1366 {
1367 gold_warning(_("%s: corrupt .note.gnu.property section"),
1368 this->name().c_str());
1369 return;
1370 }
1371 unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1372 size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1373 pprop += 8;
1374 if (pprop + pr_datasz > pdesc + descsz)
1375 {
1376 gold_warning(_("%s: corrupt .note.gnu.property section"),
1377 this->name().c_str());
1378 return;
1379 }
1380 layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1381 pprop += align_address(pr_datasz, size / 8);
1382 }
1383
1384 pcontents = pdesc + align_address(descsz, size / 8);
1385 }
1386 }
1387
1388 // This a copy of lto_section defined in GCC (lto-streamer.h)
1389
1390 struct lto_section
1391 {
1392 int16_t major_version;
1393 int16_t minor_version;
1394 unsigned char slim_object;
1395
1396 /* Flags is a private field that is not defined publicly. */
1397 uint16_t flags;
1398 };
1399
1400 // Lay out the input sections. We walk through the sections and check
1401 // whether they should be included in the link. If they should, we
1402 // pass them to the Layout object, which will return an output section
1403 // and an offset.
1404 // This function is called twice sometimes, two passes, when mapping
1405 // of input sections to output sections must be delayed.
1406 // This is true for the following :
1407 // * Garbage collection (--gc-sections): Some input sections will be
1408 // discarded and hence the assignment must wait until the second pass.
1409 // In the first pass, it is for setting up some sections as roots to
1410 // a work-list for --gc-sections and to do comdat processing.
1411 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1412 // will be folded and hence the assignment must wait.
1413 // * Using plugins to map some sections to unique segments: Mapping
1414 // some sections to unique segments requires mapping them to unique
1415 // output sections too. This can be done via plugins now and this
1416 // information is not available in the first pass.
1417
1418 template<int size, bool big_endian>
1419 void
1420 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1421 Layout* layout,
1422 Read_symbols_data* sd)
1423 {
1424 const unsigned int unwind_section_type =
1425 parameters->target().unwind_section_type();
1426 const unsigned int shnum = this->shnum();
1427
1428 /* Should this function be called twice? */
1429 bool is_two_pass = (parameters->options().gc_sections()
1430 || parameters->options().icf_enabled()
1431 || layout->is_unique_segment_for_sections_specified());
1432
1433 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1434 a two-pass approach is not needed. */
1435 bool is_pass_one = false;
1436 bool is_pass_two = false;
1437
1438 Symbols_data* gc_sd = NULL;
1439
1440 /* Check if do_layout needs to be two-pass. If so, find out which pass
1441 should happen. In the first pass, the data in sd is saved to be used
1442 later in the second pass. */
1443 if (is_two_pass)
1444 {
1445 gc_sd = this->get_symbols_data();
1446 if (gc_sd == NULL)
1447 {
1448 gold_assert(sd != NULL);
1449 is_pass_one = true;
1450 }
1451 else
1452 {
1453 if (parameters->options().gc_sections())
1454 gold_assert(symtab->gc()->is_worklist_ready());
1455 if (parameters->options().icf_enabled())
1456 gold_assert(symtab->icf()->is_icf_ready());
1457 is_pass_two = true;
1458 }
1459 }
1460
1461 if (shnum == 0)
1462 return;
1463
1464 if (is_pass_one)
1465 {
1466 // During garbage collection save the symbols data to use it when
1467 // re-entering this function.
1468 gc_sd = new Symbols_data;
1469 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1470 this->set_symbols_data(gc_sd);
1471 }
1472
1473 const unsigned char* section_headers_data = NULL;
1474 section_size_type section_names_size;
1475 const unsigned char* symbols_data = NULL;
1476 section_size_type symbols_size;
1477 const unsigned char* symbol_names_data = NULL;
1478 section_size_type symbol_names_size;
1479
1480 if (is_two_pass)
1481 {
1482 section_headers_data = gc_sd->section_headers_data;
1483 section_names_size = gc_sd->section_names_size;
1484 symbols_data = gc_sd->symbols_data;
1485 symbols_size = gc_sd->symbols_size;
1486 symbol_names_data = gc_sd->symbol_names_data;
1487 symbol_names_size = gc_sd->symbol_names_size;
1488 }
1489 else
1490 {
1491 section_headers_data = sd->section_headers->data();
1492 section_names_size = sd->section_names_size;
1493 if (sd->symbols != NULL)
1494 symbols_data = sd->symbols->data();
1495 symbols_size = sd->symbols_size;
1496 if (sd->symbol_names != NULL)
1497 symbol_names_data = sd->symbol_names->data();
1498 symbol_names_size = sd->symbol_names_size;
1499 }
1500
1501 // Get the section headers.
1502 const unsigned char* shdrs = section_headers_data;
1503 const unsigned char* pshdrs;
1504
1505 // Get the section names.
1506 const unsigned char* pnamesu = (is_two_pass
1507 ? gc_sd->section_names_data
1508 : sd->section_names->data());
1509
1510 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1511
1512 // If any input files have been claimed by plugins, we need to defer
1513 // actual layout until the replacement files have arrived.
1514 const bool should_defer_layout =
1515 (parameters->options().has_plugins()
1516 && parameters->options().plugins()->should_defer_layout());
1517 unsigned int num_sections_to_defer = 0;
1518
1519 // For each section, record the index of the reloc section if any.
1520 // Use 0 to mean that there is no reloc section, -1U to mean that
1521 // there is more than one.
1522 std::vector<unsigned int> reloc_shndx(shnum, 0);
1523 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1524 // Skip the first, dummy, section.
1525 pshdrs = shdrs + This::shdr_size;
1526 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1527 {
1528 typename This::Shdr shdr(pshdrs);
1529
1530 // Count the number of sections whose layout will be deferred.
1531 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1532 ++num_sections_to_defer;
1533
1534 unsigned int sh_type = shdr.get_sh_type();
1535 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1536 {
1537 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1538 if (target_shndx == 0 || target_shndx >= shnum)
1539 {
1540 this->error(_("relocation section %u has bad info %u"),
1541 i, target_shndx);
1542 continue;
1543 }
1544
1545 if (reloc_shndx[target_shndx] != 0)
1546 reloc_shndx[target_shndx] = -1U;
1547 else
1548 {
1549 reloc_shndx[target_shndx] = i;
1550 reloc_type[target_shndx] = sh_type;
1551 }
1552 }
1553 }
1554
1555 Output_sections& out_sections(this->output_sections());
1556 std::vector<Address>& out_section_offsets(this->section_offsets());
1557
1558 if (!is_pass_two)
1559 {
1560 out_sections.resize(shnum);
1561 out_section_offsets.resize(shnum);
1562 }
1563
1564 // If we are only linking for symbols, then there is nothing else to
1565 // do here.
1566 if (this->input_file()->just_symbols())
1567 {
1568 if (!is_pass_two)
1569 {
1570 delete sd->section_headers;
1571 sd->section_headers = NULL;
1572 delete sd->section_names;
1573 sd->section_names = NULL;
1574 }
1575 return;
1576 }
1577
1578 if (num_sections_to_defer > 0)
1579 {
1580 parameters->options().plugins()->add_deferred_layout_object(this);
1581 this->deferred_layout_.reserve(num_sections_to_defer);
1582 this->is_deferred_layout_ = true;
1583 }
1584
1585 // Whether we've seen a .note.GNU-stack section.
1586 bool seen_gnu_stack = false;
1587 // The flags of a .note.GNU-stack section.
1588 uint64_t gnu_stack_flags = 0;
1589
1590 // Keep track of which sections to omit.
1591 std::vector<bool> omit(shnum, false);
1592
1593 // Keep track of reloc sections when emitting relocations.
1594 const bool relocatable = parameters->options().relocatable();
1595 const bool emit_relocs = (relocatable
1596 || parameters->options().emit_relocs());
1597 std::vector<unsigned int> reloc_sections;
1598
1599 // Keep track of .eh_frame sections.
1600 std::vector<unsigned int> eh_frame_sections;
1601
1602 // Keep track of .debug_info and .debug_types sections.
1603 std::vector<unsigned int> debug_info_sections;
1604 std::vector<unsigned int> debug_types_sections;
1605
1606 // Skip the first, dummy, section.
1607 pshdrs = shdrs + This::shdr_size;
1608 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1609 {
1610 typename This::Shdr shdr(pshdrs);
1611 const unsigned int sh_name = shdr.get_sh_name();
1612 unsigned int sh_type = shdr.get_sh_type();
1613
1614 if (sh_name >= section_names_size)
1615 {
1616 this->error(_("bad section name offset for section %u: %lu"),
1617 i, static_cast<unsigned long>(sh_name));
1618 return;
1619 }
1620
1621 const char* name = pnames + sh_name;
1622
1623 if (!is_pass_two)
1624 {
1625 if (this->handle_gnu_warning_section(name, i, symtab))
1626 {
1627 if (!relocatable && !parameters->options().shared())
1628 omit[i] = true;
1629 }
1630
1631 // The .note.GNU-stack section is special. It gives the
1632 // protection flags that this object file requires for the stack
1633 // in memory.
1634 if (strcmp(name, ".note.GNU-stack") == 0)
1635 {
1636 seen_gnu_stack = true;
1637 gnu_stack_flags |= shdr.get_sh_flags();
1638 omit[i] = true;
1639 }
1640
1641 // The .note.GNU-split-stack section is also special. It
1642 // indicates that the object was compiled with
1643 // -fsplit-stack.
1644 if (this->handle_split_stack_section(name))
1645 {
1646 if (!relocatable && !parameters->options().shared())
1647 omit[i] = true;
1648 }
1649
1650 // Skip attributes section.
1651 if (parameters->target().is_attributes_section(name))
1652 {
1653 omit[i] = true;
1654 }
1655
1656 // Handle .note.gnu.property sections.
1657 if (sh_type == elfcpp::SHT_NOTE
1658 && strcmp(name, ".note.gnu.property") == 0)
1659 {
1660 this->layout_gnu_property_section(layout, i);
1661 omit[i] = true;
1662 }
1663
1664 bool discard = omit[i];
1665 if (!discard)
1666 {
1667 if (sh_type == elfcpp::SHT_GROUP)
1668 {
1669 if (!this->include_section_group(symtab, layout, i, name,
1670 shdrs, pnames,
1671 section_names_size,
1672 &omit))
1673 discard = true;
1674 }
1675 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1676 && Layout::is_linkonce(name))
1677 {
1678 if (!this->include_linkonce_section(layout, i, name, shdr))
1679 discard = true;
1680 }
1681 }
1682
1683 // Add the section to the incremental inputs layout.
1684 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1685 if (incremental_inputs != NULL
1686 && !discard
1687 && can_incremental_update(sh_type))
1688 {
1689 off_t sh_size = shdr.get_sh_size();
1690 section_size_type uncompressed_size;
1691 if (this->section_is_compressed(i, &uncompressed_size))
1692 sh_size = uncompressed_size;
1693 incremental_inputs->report_input_section(this, i, name, sh_size);
1694 }
1695
1696 if (discard)
1697 {
1698 // Do not include this section in the link.
1699 out_sections[i] = NULL;
1700 out_section_offsets[i] = invalid_address;
1701 continue;
1702 }
1703 }
1704
1705 if (is_pass_one && parameters->options().gc_sections())
1706 {
1707 if (this->is_section_name_included(name)
1708 || layout->keep_input_section (this, name)
1709 || sh_type == elfcpp::SHT_INIT_ARRAY
1710 || sh_type == elfcpp::SHT_FINI_ARRAY
1711 || this->osabi().has_shf_retain(shdr.get_sh_flags()))
1712 {
1713 symtab->gc()->worklist().push_back(Section_id(this, i));
1714 }
1715 // If the section name XXX can be represented as a C identifier
1716 // it cannot be discarded if there are references to
1717 // __start_XXX and __stop_XXX symbols. These need to be
1718 // specially handled.
1719 if (is_cident(name))
1720 {
1721 symtab->gc()->add_cident_section(name, Section_id(this, i));
1722 }
1723 }
1724
1725 // When doing a relocatable link we are going to copy input
1726 // reloc sections into the output. We only want to copy the
1727 // ones associated with sections which are not being discarded.
1728 // However, we don't know that yet for all sections. So save
1729 // reloc sections and process them later. Garbage collection is
1730 // not triggered when relocatable code is desired.
1731 if (emit_relocs
1732 && (sh_type == elfcpp::SHT_REL
1733 || sh_type == elfcpp::SHT_RELA))
1734 {
1735 reloc_sections.push_back(i);
1736 continue;
1737 }
1738
1739 if (relocatable && sh_type == elfcpp::SHT_GROUP)
1740 continue;
1741
1742 // The .eh_frame section is special. It holds exception frame
1743 // information that we need to read in order to generate the
1744 // exception frame header. We process these after all the other
1745 // sections so that the exception frame reader can reliably
1746 // determine which sections are being discarded, and discard the
1747 // corresponding information.
1748 if (this->check_eh_frame_flags(&shdr)
1749 && strcmp(name, ".eh_frame") == 0)
1750 {
1751 // If the target has a special unwind section type, let's
1752 // canonicalize it here.
1753 sh_type = unwind_section_type;
1754 if (!relocatable)
1755 {
1756 if (is_pass_one)
1757 {
1758 if (this->is_deferred_layout())
1759 out_sections[i] = reinterpret_cast<Output_section*>(2);
1760 else
1761 out_sections[i] = reinterpret_cast<Output_section*>(1);
1762 out_section_offsets[i] = invalid_address;
1763 }
1764 else if (this->is_deferred_layout())
1765 {
1766 out_sections[i] = reinterpret_cast<Output_section*>(2);
1767 out_section_offsets[i] = invalid_address;
1768 this->deferred_layout_.push_back(
1769 Deferred_layout(i, name, sh_type, pshdrs,
1770 reloc_shndx[i], reloc_type[i]));
1771 }
1772 else
1773 eh_frame_sections.push_back(i);
1774 continue;
1775 }
1776 }
1777
1778 if (is_pass_two && parameters->options().gc_sections())
1779 {
1780 // This is executed during the second pass of garbage
1781 // collection. do_layout has been called before and some
1782 // sections have been already discarded. Simply ignore
1783 // such sections this time around.
1784 if (out_sections[i] == NULL)
1785 {
1786 gold_assert(out_section_offsets[i] == invalid_address);
1787 continue;
1788 }
1789 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1790 && symtab->gc()->is_section_garbage(this, i))
1791 {
1792 if (parameters->options().print_gc_sections())
1793 gold_info(_("%s: removing unused section from '%s'"
1794 " in file '%s'"),
1795 program_name, this->section_name(i).c_str(),
1796 this->name().c_str());
1797 out_sections[i] = NULL;
1798 out_section_offsets[i] = invalid_address;
1799 continue;
1800 }
1801 }
1802
1803 if (is_pass_two && parameters->options().icf_enabled())
1804 {
1805 if (out_sections[i] == NULL)
1806 {
1807 gold_assert(out_section_offsets[i] == invalid_address);
1808 continue;
1809 }
1810 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1811 && symtab->icf()->is_section_folded(this, i))
1812 {
1813 if (parameters->options().print_icf_sections())
1814 {
1815 Section_id folded =
1816 symtab->icf()->get_folded_section(this, i);
1817 Relobj* folded_obj =
1818 reinterpret_cast<Relobj*>(folded.first);
1819 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1820 "into '%s' in file '%s'"),
1821 program_name, this->section_name(i).c_str(),
1822 this->name().c_str(),
1823 folded_obj->section_name(folded.second).c_str(),
1824 folded_obj->name().c_str());
1825 }
1826 out_sections[i] = NULL;
1827 out_section_offsets[i] = invalid_address;
1828 continue;
1829 }
1830 }
1831
1832 // Defer layout here if input files are claimed by plugins. When gc
1833 // is turned on this function is called twice; we only want to do this
1834 // on the first pass.
1835 if (!is_pass_two
1836 && this->is_deferred_layout()
1837 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1838 {
1839 this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1840 pshdrs,
1841 reloc_shndx[i],
1842 reloc_type[i]));
1843 // Put dummy values here; real values will be supplied by
1844 // do_layout_deferred_sections.
1845 out_sections[i] = reinterpret_cast<Output_section*>(2);
1846 out_section_offsets[i] = invalid_address;
1847 continue;
1848 }
1849
1850 // During gc_pass_two if a section that was previously deferred is
1851 // found, do not layout the section as layout_deferred_sections will
1852 // do it later from gold.cc.
1853 if (is_pass_two
1854 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1855 continue;
1856
1857 if (is_pass_one)
1858 {
1859 // This is during garbage collection. The out_sections are
1860 // assigned in the second call to this function.
1861 out_sections[i] = reinterpret_cast<Output_section*>(1);
1862 out_section_offsets[i] = invalid_address;
1863 }
1864 else
1865 {
1866 // When garbage collection is switched on the actual layout
1867 // only happens in the second call.
1868 this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1869 reloc_type[i]);
1870
1871 // When generating a .gdb_index section, we do additional
1872 // processing of .debug_info and .debug_types sections after all
1873 // the other sections for the same reason as above.
1874 if (!relocatable
1875 && parameters->options().gdb_index()
1876 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1877 {
1878 if (strcmp(name, ".debug_info") == 0
1879 || strcmp(name, ".zdebug_info") == 0)
1880 debug_info_sections.push_back(i);
1881 else if (strcmp(name, ".debug_types") == 0
1882 || strcmp(name, ".zdebug_types") == 0)
1883 debug_types_sections.push_back(i);
1884 }
1885 }
1886
1887 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1888 section. */
1889 const char *lto_section_name = ".gnu.lto_.lto.";
1890 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1891 {
1892 section_size_type contents_len;
1893 const unsigned char* pcontents
1894 = this->section_contents(i, &contents_len, false);
1895 if (contents_len >= sizeof(lto_section))
1896 {
1897 const lto_section* lsection
1898 = reinterpret_cast<const lto_section*>(pcontents);
1899 if (lsection->slim_object)
1900 layout->set_lto_slim_object();
1901 }
1902 }
1903 }
1904
1905 if (!is_pass_two)
1906 {
1907 layout->merge_gnu_properties(this);
1908 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1909 }
1910
1911 // Handle the .eh_frame sections after the other sections.
1912 gold_assert(!is_pass_one || eh_frame_sections.empty());
1913 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1914 p != eh_frame_sections.end();
1915 ++p)
1916 {
1917 unsigned int i = *p;
1918 const unsigned char* pshdr;
1919 pshdr = section_headers_data + i * This::shdr_size;
1920 typename This::Shdr shdr(pshdr);
1921
1922 this->layout_eh_frame_section(layout,
1923 symbols_data,
1924 symbols_size,
1925 symbol_names_data,
1926 symbol_names_size,
1927 i,
1928 shdr,
1929 reloc_shndx[i],
1930 reloc_type[i]);
1931 }
1932
1933 // When doing a relocatable link handle the reloc sections at the
1934 // end. Garbage collection and Identical Code Folding is not
1935 // turned on for relocatable code.
1936 if (emit_relocs)
1937 this->size_relocatable_relocs();
1938
1939 gold_assert(!is_two_pass || reloc_sections.empty());
1940
1941 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1942 p != reloc_sections.end();
1943 ++p)
1944 {
1945 unsigned int i = *p;
1946 const unsigned char* pshdr;
1947 pshdr = section_headers_data + i * This::shdr_size;
1948 typename This::Shdr shdr(pshdr);
1949
1950 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1951 if (data_shndx >= shnum)
1952 {
1953 // We already warned about this above.
1954 continue;
1955 }
1956
1957 Output_section* data_section = out_sections[data_shndx];
1958 if (data_section == reinterpret_cast<Output_section*>(2))
1959 {
1960 if (is_pass_two)
1961 continue;
1962 // The layout for the data section was deferred, so we need
1963 // to defer the relocation section, too.
1964 const char* name = pnames + shdr.get_sh_name();
1965 this->deferred_layout_relocs_.push_back(
1966 Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1967 elfcpp::SHT_NULL));
1968 out_sections[i] = reinterpret_cast<Output_section*>(2);
1969 out_section_offsets[i] = invalid_address;
1970 continue;
1971 }
1972 if (data_section == NULL)
1973 {
1974 out_sections[i] = NULL;
1975 out_section_offsets[i] = invalid_address;
1976 continue;
1977 }
1978
1979 Relocatable_relocs* rr = new Relocatable_relocs();
1980 this->set_relocatable_relocs(i, rr);
1981
1982 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1983 rr);
1984 out_sections[i] = os;
1985 out_section_offsets[i] = invalid_address;
1986 }
1987
1988 // When building a .gdb_index section, scan the .debug_info and
1989 // .debug_types sections.
1990 gold_assert(!is_pass_one
1991 || (debug_info_sections.empty() && debug_types_sections.empty()));
1992 for (std::vector<unsigned int>::const_iterator p
1993 = debug_info_sections.begin();
1994 p != debug_info_sections.end();
1995 ++p)
1996 {
1997 unsigned int i = *p;
1998 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1999 i, reloc_shndx[i], reloc_type[i]);
2000 }
2001 for (std::vector<unsigned int>::const_iterator p
2002 = debug_types_sections.begin();
2003 p != debug_types_sections.end();
2004 ++p)
2005 {
2006 unsigned int i = *p;
2007 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
2008 i, reloc_shndx[i], reloc_type[i]);
2009 }
2010
2011 if (is_pass_two)
2012 {
2013 delete[] gc_sd->section_headers_data;
2014 delete[] gc_sd->section_names_data;
2015 delete[] gc_sd->symbols_data;
2016 delete[] gc_sd->symbol_names_data;
2017 this->set_symbols_data(NULL);
2018 }
2019 else
2020 {
2021 delete sd->section_headers;
2022 sd->section_headers = NULL;
2023 delete sd->section_names;
2024 sd->section_names = NULL;
2025 }
2026 }
2027
2028 // Layout sections whose layout was deferred while waiting for
2029 // input files from a plugin.
2030
2031 template<int size, bool big_endian>
2032 void
2033 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
2034 {
2035 typename std::vector<Deferred_layout>::iterator deferred;
2036
2037 for (deferred = this->deferred_layout_.begin();
2038 deferred != this->deferred_layout_.end();
2039 ++deferred)
2040 {
2041 typename This::Shdr shdr(deferred->shdr_data_);
2042
2043 if (!parameters->options().relocatable()
2044 && deferred->name_ == ".eh_frame"
2045 && this->check_eh_frame_flags(&shdr))
2046 {
2047 // Checking is_section_included is not reliable for
2048 // .eh_frame sections, because they do not have an output
2049 // section. This is not a problem normally because we call
2050 // layout_eh_frame_section unconditionally, but when
2051 // deferring sections that is not true. We don't want to
2052 // keep all .eh_frame sections because that will cause us to
2053 // keep all sections that they refer to, which is the wrong
2054 // way around. Instead, the eh_frame code will discard
2055 // .eh_frame sections that refer to discarded sections.
2056
2057 // Reading the symbols again here may be slow.
2058 Read_symbols_data sd;
2059 this->base_read_symbols(&sd);
2060 this->layout_eh_frame_section(layout,
2061 sd.symbols->data(),
2062 sd.symbols_size,
2063 sd.symbol_names->data(),
2064 sd.symbol_names_size,
2065 deferred->shndx_,
2066 shdr,
2067 deferred->reloc_shndx_,
2068 deferred->reloc_type_);
2069 continue;
2070 }
2071
2072 // If the section is not included, it is because the garbage collector
2073 // decided it is not needed. Avoid reverting that decision.
2074 if (!this->is_section_included(deferred->shndx_))
2075 continue;
2076
2077 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2078 shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2079 deferred->reloc_type_);
2080 }
2081
2082 this->deferred_layout_.clear();
2083
2084 // Now handle the deferred relocation sections.
2085
2086 Output_sections& out_sections(this->output_sections());
2087 std::vector<Address>& out_section_offsets(this->section_offsets());
2088
2089 for (deferred = this->deferred_layout_relocs_.begin();
2090 deferred != this->deferred_layout_relocs_.end();
2091 ++deferred)
2092 {
2093 unsigned int shndx = deferred->shndx_;
2094 typename This::Shdr shdr(deferred->shdr_data_);
2095 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2096
2097 Output_section* data_section = out_sections[data_shndx];
2098 if (data_section == NULL)
2099 {
2100 out_sections[shndx] = NULL;
2101 out_section_offsets[shndx] = invalid_address;
2102 continue;
2103 }
2104
2105 Relocatable_relocs* rr = new Relocatable_relocs();
2106 this->set_relocatable_relocs(shndx, rr);
2107
2108 Output_section* os = layout->layout_reloc(this, shndx, shdr,
2109 data_section, rr);
2110 out_sections[shndx] = os;
2111 out_section_offsets[shndx] = invalid_address;
2112 }
2113 }
2114
2115 // Add the symbols to the symbol table.
2116
2117 template<int size, bool big_endian>
2118 void
2119 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2120 Read_symbols_data* sd,
2121 Layout* layout)
2122 {
2123 if (sd->symbols == NULL)
2124 {
2125 gold_assert(sd->symbol_names == NULL);
2126 return;
2127 }
2128
2129 const int sym_size = This::sym_size;
2130 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2131 / sym_size);
2132 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2133 {
2134 this->error(_("size of symbols is not multiple of symbol size"));
2135 return;
2136 }
2137
2138 this->symbols_.resize(symcount);
2139
2140 if (!parameters->options().relocatable()
2141 && layout->is_lto_slim_object ())
2142 gold_info(_("%s: plugin needed to handle lto object"),
2143 this->name().c_str());
2144
2145 const char* sym_names =
2146 reinterpret_cast<const char*>(sd->symbol_names->data());
2147 symtab->add_from_relobj(this,
2148 sd->symbols->data() + sd->external_symbols_offset,
2149 symcount, this->local_symbol_count_,
2150 sym_names, sd->symbol_names_size,
2151 &this->symbols_,
2152 &this->defined_count_);
2153
2154 delete sd->symbols;
2155 sd->symbols = NULL;
2156 delete sd->symbol_names;
2157 sd->symbol_names = NULL;
2158 }
2159
2160 // Find out if this object, that is a member of a lib group, should be included
2161 // in the link. We check every symbol defined by this object. If the symbol
2162 // table has a strong undefined reference to that symbol, we have to include
2163 // the object.
2164
2165 template<int size, bool big_endian>
2166 Archive::Should_include
2167 Sized_relobj_file<size, big_endian>::do_should_include_member(
2168 Symbol_table* symtab,
2169 Layout* layout,
2170 Read_symbols_data* sd,
2171 std::string* why)
2172 {
2173 char* tmpbuf = NULL;
2174 size_t tmpbuflen = 0;
2175 const char* sym_names =
2176 reinterpret_cast<const char*>(sd->symbol_names->data());
2177 const unsigned char* syms =
2178 sd->symbols->data() + sd->external_symbols_offset;
2179 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2180 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2181 / sym_size);
2182
2183 const unsigned char* p = syms;
2184
2185 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2186 {
2187 elfcpp::Sym<size, big_endian> sym(p);
2188 unsigned int st_shndx = sym.get_st_shndx();
2189 if (st_shndx == elfcpp::SHN_UNDEF)
2190 continue;
2191
2192 unsigned int st_name = sym.get_st_name();
2193 const char* name = sym_names + st_name;
2194 Symbol* symbol;
2195 Archive::Should_include t = Archive::should_include_member(symtab,
2196 layout,
2197 name,
2198 &symbol, why,
2199 &tmpbuf,
2200 &tmpbuflen);
2201 if (t == Archive::SHOULD_INCLUDE_YES)
2202 {
2203 if (tmpbuf != NULL)
2204 free(tmpbuf);
2205 return t;
2206 }
2207 }
2208 if (tmpbuf != NULL)
2209 free(tmpbuf);
2210 return Archive::SHOULD_INCLUDE_UNKNOWN;
2211 }
2212
2213 // Iterate over global defined symbols, calling a visitor class V for each.
2214
2215 template<int size, bool big_endian>
2216 void
2217 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2218 Read_symbols_data* sd,
2219 Library_base::Symbol_visitor_base* v)
2220 {
2221 const char* sym_names =
2222 reinterpret_cast<const char*>(sd->symbol_names->data());
2223 const unsigned char* syms =
2224 sd->symbols->data() + sd->external_symbols_offset;
2225 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2226 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2227 / sym_size);
2228 const unsigned char* p = syms;
2229
2230 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2231 {
2232 elfcpp::Sym<size, big_endian> sym(p);
2233 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2234 v->visit(sym_names + sym.get_st_name());
2235 }
2236 }
2237
2238 // Return whether the local symbol SYMNDX has a PLT offset.
2239
2240 template<int size, bool big_endian>
2241 bool
2242 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2243 unsigned int symndx) const
2244 {
2245 typename Local_plt_offsets::const_iterator p =
2246 this->local_plt_offsets_.find(symndx);
2247 return p != this->local_plt_offsets_.end();
2248 }
2249
2250 // Get the PLT offset of a local symbol.
2251
2252 template<int size, bool big_endian>
2253 unsigned int
2254 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2255 unsigned int symndx) const
2256 {
2257 typename Local_plt_offsets::const_iterator p =
2258 this->local_plt_offsets_.find(symndx);
2259 gold_assert(p != this->local_plt_offsets_.end());
2260 return p->second;
2261 }
2262
2263 // Set the PLT offset of a local symbol.
2264
2265 template<int size, bool big_endian>
2266 void
2267 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2268 unsigned int symndx, unsigned int plt_offset)
2269 {
2270 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2271 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2272 gold_assert(ins.second);
2273 }
2274
2275 // First pass over the local symbols. Here we add their names to
2276 // *POOL and *DYNPOOL, and we store the symbol value in
2277 // THIS->LOCAL_VALUES_. This function is always called from a
2278 // singleton thread. This is followed by a call to
2279 // finalize_local_symbols.
2280
2281 template<int size, bool big_endian>
2282 void
2283 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2284 Stringpool* dynpool)
2285 {
2286 gold_assert(this->symtab_shndx_ != -1U);
2287 if (this->symtab_shndx_ == 0)
2288 {
2289 // This object has no symbols. Weird but legal.
2290 return;
2291 }
2292
2293 // Read the symbol table section header.
2294 const unsigned int symtab_shndx = this->symtab_shndx_;
2295 typename This::Shdr symtabshdr(this,
2296 this->elf_file_.section_header(symtab_shndx));
2297 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2298
2299 // Read the local symbols.
2300 const int sym_size = This::sym_size;
2301 const unsigned int loccount = this->local_symbol_count_;
2302 gold_assert(loccount == symtabshdr.get_sh_info());
2303 off_t locsize = loccount * sym_size;
2304 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2305 locsize, true, true);
2306
2307 // Read the symbol names.
2308 const unsigned int strtab_shndx =
2309 this->adjust_shndx(symtabshdr.get_sh_link());
2310 section_size_type strtab_size;
2311 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2312 &strtab_size,
2313 true);
2314 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2315
2316 // Loop over the local symbols.
2317
2318 const Output_sections& out_sections(this->output_sections());
2319 std::vector<Address>& out_section_offsets(this->section_offsets());
2320 unsigned int shnum = this->shnum();
2321 unsigned int count = 0;
2322 unsigned int dyncount = 0;
2323 // Skip the first, dummy, symbol.
2324 psyms += sym_size;
2325 bool strip_all = parameters->options().strip_all();
2326 bool discard_all = parameters->options().discard_all();
2327 bool discard_locals = parameters->options().discard_locals();
2328 bool discard_sec_merge = parameters->options().discard_sec_merge();
2329 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2330 {
2331 elfcpp::Sym<size, big_endian> sym(psyms);
2332
2333 Symbol_value<size>& lv(this->local_values_[i]);
2334
2335 bool is_ordinary;
2336 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2337 &is_ordinary);
2338 lv.set_input_shndx(shndx, is_ordinary);
2339
2340 if (sym.get_st_type() == elfcpp::STT_SECTION)
2341 lv.set_is_section_symbol();
2342 else if (sym.get_st_type() == elfcpp::STT_TLS)
2343 lv.set_is_tls_symbol();
2344 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2345 lv.set_is_ifunc_symbol();
2346
2347 // Save the input symbol value for use in do_finalize_local_symbols().
2348 lv.set_input_value(sym.get_st_value());
2349
2350 // Decide whether this symbol should go into the output file.
2351
2352 if (is_ordinary
2353 && shndx < shnum
2354 && (out_sections[shndx] == NULL
2355 || (out_sections[shndx]->order() == ORDER_EHFRAME
2356 && out_section_offsets[shndx] == invalid_address)))
2357 {
2358 // This is either a discarded section or an optimized .eh_frame
2359 // section.
2360 lv.set_no_output_symtab_entry();
2361 gold_assert(!lv.needs_output_dynsym_entry());
2362 continue;
2363 }
2364
2365 if (sym.get_st_type() == elfcpp::STT_SECTION
2366 || !this->adjust_local_symbol(&lv))
2367 {
2368 lv.set_no_output_symtab_entry();
2369 gold_assert(!lv.needs_output_dynsym_entry());
2370 continue;
2371 }
2372
2373 if (sym.get_st_name() >= strtab_size)
2374 {
2375 this->error(_("local symbol %u section name out of range: %u >= %u"),
2376 i, sym.get_st_name(),
2377 static_cast<unsigned int>(strtab_size));
2378 lv.set_no_output_symtab_entry();
2379 continue;
2380 }
2381
2382 const char* name = pnames + sym.get_st_name();
2383
2384 // If needed, add the symbol to the dynamic symbol table string pool.
2385 if (lv.needs_output_dynsym_entry())
2386 {
2387 dynpool->add(name, true, NULL);
2388 ++dyncount;
2389 }
2390
2391 if (strip_all
2392 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2393 {
2394 lv.set_no_output_symtab_entry();
2395 continue;
2396 }
2397
2398 // By default, discard temporary local symbols in merge sections.
2399 // If --discard-locals option is used, discard all temporary local
2400 // symbols. These symbols start with system-specific local label
2401 // prefixes, typically .L for ELF system. We want to be compatible
2402 // with GNU ld so here we essentially use the same check in
2403 // bfd_is_local_label(). The code is different because we already
2404 // know that:
2405 //
2406 // - the symbol is local and thus cannot have global or weak binding.
2407 // - the symbol is not a section symbol.
2408 // - the symbol has a name.
2409 //
2410 // We do not discard a symbol if it needs a dynamic symbol entry.
2411 if ((discard_locals
2412 || (discard_sec_merge
2413 && is_ordinary
2414 && out_section_offsets[shndx] == invalid_address))
2415 && sym.get_st_type() != elfcpp::STT_FILE
2416 && !lv.needs_output_dynsym_entry()
2417 && lv.may_be_discarded_from_output_symtab()
2418 && parameters->target().is_local_label_name(name))
2419 {
2420 lv.set_no_output_symtab_entry();
2421 continue;
2422 }
2423
2424 // Discard the local symbol if -retain_symbols_file is specified
2425 // and the local symbol is not in that file.
2426 if (!parameters->options().should_retain_symbol(name))
2427 {
2428 lv.set_no_output_symtab_entry();
2429 continue;
2430 }
2431
2432 // Add the symbol to the symbol table string pool.
2433 pool->add(name, true, NULL);
2434 ++count;
2435 }
2436
2437 this->output_local_symbol_count_ = count;
2438 this->output_local_dynsym_count_ = dyncount;
2439 }
2440
2441 // Compute the final value of a local symbol.
2442
2443 template<int size, bool big_endian>
2444 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2445 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2446 unsigned int r_sym,
2447 const Symbol_value<size>* lv_in,
2448 Symbol_value<size>* lv_out,
2449 bool relocatable,
2450 const Output_sections& out_sections,
2451 const std::vector<Address>& out_offsets,
2452 const Symbol_table* symtab)
2453 {
2454 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2455 // we may have a memory leak.
2456 gold_assert(lv_out->has_output_value());
2457
2458 bool is_ordinary;
2459 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2460
2461 // Set the output symbol value.
2462
2463 if (!is_ordinary)
2464 {
2465 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2466 lv_out->set_output_value(lv_in->input_value());
2467 else
2468 {
2469 this->error(_("unknown section index %u for local symbol %u"),
2470 shndx, r_sym);
2471 lv_out->set_output_value(0);
2472 return This::CFLV_ERROR;
2473 }
2474 }
2475 else
2476 {
2477 if (shndx >= this->shnum())
2478 {
2479 this->error(_("local symbol %u section index %u out of range"),
2480 r_sym, shndx);
2481 lv_out->set_output_value(0);
2482 return This::CFLV_ERROR;
2483 }
2484
2485 Output_section* os = out_sections[shndx];
2486 Address secoffset = out_offsets[shndx];
2487 if (symtab->is_section_folded(this, shndx))
2488 {
2489 gold_assert(os == NULL && secoffset == invalid_address);
2490 // Get the os of the section it is folded onto.
2491 Section_id folded = symtab->icf()->get_folded_section(this,
2492 shndx);
2493 gold_assert(folded.first != NULL);
2494 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2495 <Sized_relobj_file<size, big_endian>*>(folded.first);
2496 os = folded_obj->output_section(folded.second);
2497 gold_assert(os != NULL);
2498 secoffset = folded_obj->get_output_section_offset(folded.second);
2499
2500 // This could be a relaxed input section.
2501 if (secoffset == invalid_address)
2502 {
2503 const Output_relaxed_input_section* relaxed_section =
2504 os->find_relaxed_input_section(folded_obj, folded.second);
2505 gold_assert(relaxed_section != NULL);
2506 secoffset = relaxed_section->address() - os->address();
2507 }
2508 }
2509
2510 if (os == NULL)
2511 {
2512 // This local symbol belongs to a section we are discarding.
2513 // In some cases when applying relocations later, we will
2514 // attempt to match it to the corresponding kept section,
2515 // so we leave the input value unchanged here.
2516 return This::CFLV_DISCARDED;
2517 }
2518 else if (secoffset == invalid_address)
2519 {
2520 uint64_t start;
2521
2522 // This is a SHF_MERGE section or one which otherwise
2523 // requires special handling.
2524 if (os->order() == ORDER_EHFRAME)
2525 {
2526 // This local symbol belongs to a discarded or optimized
2527 // .eh_frame section. Just treat it like the case in which
2528 // os == NULL above.
2529 gold_assert(this->has_eh_frame_);
2530 return This::CFLV_DISCARDED;
2531 }
2532 else if (!lv_in->is_section_symbol())
2533 {
2534 // This is not a section symbol. We can determine
2535 // the final value now.
2536 uint64_t value =
2537 os->output_address(this, shndx, lv_in->input_value());
2538 if (relocatable)
2539 value -= os->address();
2540 lv_out->set_output_value(value);
2541 }
2542 else if (!os->find_starting_output_address(this, shndx, &start))
2543 {
2544 // This is a section symbol, but apparently not one in a
2545 // merged section. First check to see if this is a relaxed
2546 // input section. If so, use its address. Otherwise just
2547 // use the start of the output section. This happens with
2548 // relocatable links when the input object has section
2549 // symbols for arbitrary non-merge sections.
2550 const Output_section_data* posd =
2551 os->find_relaxed_input_section(this, shndx);
2552 if (posd != NULL)
2553 {
2554 uint64_t value = posd->address();
2555 if (relocatable)
2556 value -= os->address();
2557 lv_out->set_output_value(value);
2558 }
2559 else
2560 lv_out->set_output_value(os->address());
2561 }
2562 else
2563 {
2564 // We have to consider the addend to determine the
2565 // value to use in a relocation. START is the start
2566 // of this input section. If we are doing a relocatable
2567 // link, use offset from start output section instead of
2568 // address.
2569 Address adjusted_start =
2570 relocatable ? start - os->address() : start;
2571 Merged_symbol_value<size>* msv =
2572 new Merged_symbol_value<size>(lv_in->input_value(),
2573 adjusted_start);
2574 lv_out->set_merged_symbol_value(msv);
2575 }
2576 }
2577 else if (lv_in->is_tls_symbol()
2578 || (lv_in->is_section_symbol()
2579 && (os->flags() & elfcpp::SHF_TLS)))
2580 lv_out->set_output_value(os->tls_offset()
2581 + secoffset
2582 + lv_in->input_value());
2583 else
2584 lv_out->set_output_value((relocatable ? 0 : os->address())
2585 + secoffset
2586 + lv_in->input_value());
2587 }
2588 return This::CFLV_OK;
2589 }
2590
2591 // Compute final local symbol value. R_SYM is the index of a local
2592 // symbol in symbol table. LV points to a symbol value, which is
2593 // expected to hold the input value and to be over-written by the
2594 // final value. SYMTAB points to a symbol table. Some targets may want
2595 // to know would-be-finalized local symbol values in relaxation.
2596 // Hence we provide this method. Since this method updates *LV, a
2597 // callee should make a copy of the original local symbol value and
2598 // use the copy instead of modifying an object's local symbols before
2599 // everything is finalized. The caller should also free up any allocated
2600 // memory in the return value in *LV.
2601 template<int size, bool big_endian>
2602 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2603 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2604 unsigned int r_sym,
2605 const Symbol_value<size>* lv_in,
2606 Symbol_value<size>* lv_out,
2607 const Symbol_table* symtab)
2608 {
2609 // This is just a wrapper of compute_final_local_value_internal.
2610 const bool relocatable = parameters->options().relocatable();
2611 const Output_sections& out_sections(this->output_sections());
2612 const std::vector<Address>& out_offsets(this->section_offsets());
2613 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2614 relocatable, out_sections,
2615 out_offsets, symtab);
2616 }
2617
2618 // Finalize the local symbols. Here we set the final value in
2619 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2620 // This function is always called from a singleton thread. The actual
2621 // output of the local symbols will occur in a separate task.
2622
2623 template<int size, bool big_endian>
2624 unsigned int
2625 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2626 unsigned int index,
2627 off_t off,
2628 Symbol_table* symtab)
2629 {
2630 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2631
2632 const unsigned int loccount = this->local_symbol_count_;
2633 this->local_symbol_offset_ = off;
2634
2635 const bool relocatable = parameters->options().relocatable();
2636 const Output_sections& out_sections(this->output_sections());
2637 const std::vector<Address>& out_offsets(this->section_offsets());
2638
2639 for (unsigned int i = 1; i < loccount; ++i)
2640 {
2641 Symbol_value<size>* lv = &this->local_values_[i];
2642
2643 Compute_final_local_value_status cflv_status =
2644 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2645 out_sections, out_offsets,
2646 symtab);
2647 switch (cflv_status)
2648 {
2649 case CFLV_OK:
2650 if (!lv->is_output_symtab_index_set())
2651 {
2652 lv->set_output_symtab_index(index);
2653 ++index;
2654 }
2655 if (lv->is_ifunc_symbol()
2656 && (lv->has_output_symtab_entry()
2657 || lv->needs_output_dynsym_entry()))
2658 symtab->set_has_gnu_output();
2659 break;
2660 case CFLV_DISCARDED:
2661 case CFLV_ERROR:
2662 // Do nothing.
2663 break;
2664 default:
2665 gold_unreachable();
2666 }
2667 }
2668 return index;
2669 }
2670
2671 // Set the output dynamic symbol table indexes for the local variables.
2672
2673 template<int size, bool big_endian>
2674 unsigned int
2675 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2676 unsigned int index)
2677 {
2678 const unsigned int loccount = this->local_symbol_count_;
2679 for (unsigned int i = 1; i < loccount; ++i)
2680 {
2681 Symbol_value<size>& lv(this->local_values_[i]);
2682 if (lv.needs_output_dynsym_entry())
2683 {
2684 lv.set_output_dynsym_index(index);
2685 ++index;
2686 }
2687 }
2688 return index;
2689 }
2690
2691 // Set the offset where local dynamic symbol information will be stored.
2692 // Returns the count of local symbols contributed to the symbol table by
2693 // this object.
2694
2695 template<int size, bool big_endian>
2696 unsigned int
2697 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2698 {
2699 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2700 this->local_dynsym_offset_ = off;
2701 return this->output_local_dynsym_count_;
2702 }
2703
2704 // If Symbols_data is not NULL get the section flags from here otherwise
2705 // get it from the file.
2706
2707 template<int size, bool big_endian>
2708 uint64_t
2709 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2710 {
2711 Symbols_data* sd = this->get_symbols_data();
2712 if (sd != NULL)
2713 {
2714 const unsigned char* pshdrs = sd->section_headers_data
2715 + This::shdr_size * shndx;
2716 typename This::Shdr shdr(pshdrs);
2717 return shdr.get_sh_flags();
2718 }
2719 // If sd is NULL, read the section header from the file.
2720 return this->elf_file_.section_flags(shndx);
2721 }
2722
2723 // Get the section's ent size from Symbols_data. Called by get_section_contents
2724 // in icf.cc
2725
2726 template<int size, bool big_endian>
2727 uint64_t
2728 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2729 {
2730 Symbols_data* sd = this->get_symbols_data();
2731 gold_assert(sd != NULL);
2732
2733 const unsigned char* pshdrs = sd->section_headers_data
2734 + This::shdr_size * shndx;
2735 typename This::Shdr shdr(pshdrs);
2736 return shdr.get_sh_entsize();
2737 }
2738
2739 // Write out the local symbols.
2740
2741 template<int size, bool big_endian>
2742 void
2743 Sized_relobj_file<size, big_endian>::write_local_symbols(
2744 Output_file* of,
2745 const Stringpool* sympool,
2746 const Stringpool* dynpool,
2747 Output_symtab_xindex* symtab_xindex,
2748 Output_symtab_xindex* dynsym_xindex,
2749 off_t symtab_off)
2750 {
2751 const bool strip_all = parameters->options().strip_all();
2752 if (strip_all)
2753 {
2754 if (this->output_local_dynsym_count_ == 0)
2755 return;
2756 this->output_local_symbol_count_ = 0;
2757 }
2758
2759 gold_assert(this->symtab_shndx_ != -1U);
2760 if (this->symtab_shndx_ == 0)
2761 {
2762 // This object has no symbols. Weird but legal.
2763 return;
2764 }
2765
2766 // Read the symbol table section header.
2767 const unsigned int symtab_shndx = this->symtab_shndx_;
2768 typename This::Shdr symtabshdr(this,
2769 this->elf_file_.section_header(symtab_shndx));
2770 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2771 const unsigned int loccount = this->local_symbol_count_;
2772 gold_assert(loccount == symtabshdr.get_sh_info());
2773
2774 // Read the local symbols.
2775 const int sym_size = This::sym_size;
2776 off_t locsize = loccount * sym_size;
2777 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2778 locsize, true, false);
2779
2780 // Read the symbol names.
2781 const unsigned int strtab_shndx =
2782 this->adjust_shndx(symtabshdr.get_sh_link());
2783 section_size_type strtab_size;
2784 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2785 &strtab_size,
2786 false);
2787 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2788
2789 // Get views into the output file for the portions of the symbol table
2790 // and the dynamic symbol table that we will be writing.
2791 off_t output_size = this->output_local_symbol_count_ * sym_size;
2792 unsigned char* oview = NULL;
2793 if (output_size > 0)
2794 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2795 output_size);
2796
2797 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2798 unsigned char* dyn_oview = NULL;
2799 if (dyn_output_size > 0)
2800 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2801 dyn_output_size);
2802
2803 const Output_sections& out_sections(this->output_sections());
2804
2805 gold_assert(this->local_values_.size() == loccount);
2806
2807 unsigned char* ov = oview;
2808 unsigned char* dyn_ov = dyn_oview;
2809 psyms += sym_size;
2810 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2811 {
2812 elfcpp::Sym<size, big_endian> isym(psyms);
2813
2814 Symbol_value<size>& lv(this->local_values_[i]);
2815
2816 bool is_ordinary;
2817 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2818 &is_ordinary);
2819 if (is_ordinary)
2820 {
2821 gold_assert(st_shndx < out_sections.size());
2822 if (out_sections[st_shndx] == NULL)
2823 continue;
2824 st_shndx = out_sections[st_shndx]->out_shndx();
2825 if (st_shndx >= elfcpp::SHN_LORESERVE)
2826 {
2827 if (lv.has_output_symtab_entry())
2828 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2829 if (lv.has_output_dynsym_entry())
2830 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2831 st_shndx = elfcpp::SHN_XINDEX;
2832 }
2833 }
2834
2835 // Write the symbol to the output symbol table.
2836 if (lv.has_output_symtab_entry())
2837 {
2838 elfcpp::Sym_write<size, big_endian> osym(ov);
2839
2840 gold_assert(isym.get_st_name() < strtab_size);
2841 const char* name = pnames + isym.get_st_name();
2842 osym.put_st_name(sympool->get_offset(name));
2843 osym.put_st_value(lv.value(this, 0));
2844 osym.put_st_size(isym.get_st_size());
2845 osym.put_st_info(isym.get_st_info());
2846 osym.put_st_other(isym.get_st_other());
2847 osym.put_st_shndx(st_shndx);
2848
2849 ov += sym_size;
2850 }
2851
2852 // Write the symbol to the output dynamic symbol table.
2853 if (lv.has_output_dynsym_entry())
2854 {
2855 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2856 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2857
2858 gold_assert(isym.get_st_name() < strtab_size);
2859 const char* name = pnames + isym.get_st_name();
2860 osym.put_st_name(dynpool->get_offset(name));
2861 osym.put_st_value(lv.value(this, 0));
2862 osym.put_st_size(isym.get_st_size());
2863 osym.put_st_info(isym.get_st_info());
2864 osym.put_st_other(isym.get_st_other());
2865 osym.put_st_shndx(st_shndx);
2866
2867 dyn_ov += sym_size;
2868 }
2869 }
2870
2871
2872 if (output_size > 0)
2873 {
2874 gold_assert(ov - oview == output_size);
2875 of->write_output_view(symtab_off + this->local_symbol_offset_,
2876 output_size, oview);
2877 }
2878
2879 if (dyn_output_size > 0)
2880 {
2881 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2882 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2883 dyn_oview);
2884 }
2885 }
2886
2887 // Set *INFO to symbolic information about the offset OFFSET in the
2888 // section SHNDX. Return true if we found something, false if we
2889 // found nothing.
2890
2891 template<int size, bool big_endian>
2892 bool
2893 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2894 unsigned int shndx,
2895 off_t offset,
2896 Symbol_location_info* info)
2897 {
2898 if (this->symtab_shndx_ == 0)
2899 return false;
2900
2901 section_size_type symbols_size;
2902 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2903 &symbols_size,
2904 false);
2905
2906 unsigned int symbol_names_shndx =
2907 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2908 section_size_type names_size;
2909 const unsigned char* symbol_names_u =
2910 this->section_contents(symbol_names_shndx, &names_size, false);
2911 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2912
2913 const int sym_size = This::sym_size;
2914 const size_t count = symbols_size / sym_size;
2915
2916 const unsigned char* p = symbols;
2917 for (size_t i = 0; i < count; ++i, p += sym_size)
2918 {
2919 elfcpp::Sym<size, big_endian> sym(p);
2920
2921 if (sym.get_st_type() == elfcpp::STT_FILE)
2922 {
2923 if (sym.get_st_name() >= names_size)
2924 info->source_file = "(invalid)";
2925 else
2926 info->source_file = symbol_names + sym.get_st_name();
2927 continue;
2928 }
2929
2930 bool is_ordinary;
2931 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2932 &is_ordinary);
2933 if (is_ordinary
2934 && st_shndx == shndx
2935 && static_cast<off_t>(sym.get_st_value()) <= offset
2936 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2937 > offset))
2938 {
2939 info->enclosing_symbol_type = sym.get_st_type();
2940 if (sym.get_st_name() > names_size)
2941 info->enclosing_symbol_name = "(invalid)";
2942 else
2943 {
2944 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2945 if (parameters->options().do_demangle())
2946 {
2947 char* demangled_name = cplus_demangle(
2948 info->enclosing_symbol_name.c_str(),
2949 DMGL_ANSI | DMGL_PARAMS);
2950 if (demangled_name != NULL)
2951 {
2952 info->enclosing_symbol_name.assign(demangled_name);
2953 free(demangled_name);
2954 }
2955 }
2956 }
2957 return true;
2958 }
2959 }
2960
2961 return false;
2962 }
2963
2964 // Look for a kept section corresponding to the given discarded section,
2965 // and return its output address. This is used only for relocations in
2966 // debugging sections. If we can't find the kept section, return 0.
2967
2968 template<int size, bool big_endian>
2969 typename Sized_relobj_file<size, big_endian>::Address
2970 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2971 unsigned int shndx,
2972 std::string& section_name,
2973 bool* pfound) const
2974 {
2975 Kept_section* kept_section;
2976 bool is_comdat;
2977 uint64_t sh_size;
2978 unsigned int symndx;
2979 bool found = false;
2980
2981 if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2982 &kept_section))
2983 {
2984 Relobj* kept_object = kept_section->object();
2985 unsigned int kept_shndx = 0;
2986 if (!kept_section->is_comdat())
2987 {
2988 // The kept section is a linkonce section.
2989 if (sh_size == kept_section->linkonce_size())
2990 {
2991 kept_shndx = kept_section->shndx();
2992 found = true;
2993 }
2994 }
2995 else
2996 {
2997 uint64_t kept_size = 0;
2998 if (is_comdat)
2999 {
3000 // Find the corresponding kept section.
3001 // Since we're using this mapping for relocation processing,
3002 // we don't want to match sections unless they have the same
3003 // size.
3004 if (kept_section->find_comdat_section(section_name, &kept_shndx,
3005 &kept_size))
3006 {
3007 if (sh_size == kept_size)
3008 found = true;
3009 }
3010 }
3011 if (!found)
3012 {
3013 if (kept_section->find_single_comdat_section(&kept_shndx,
3014 &kept_size)
3015 && sh_size == kept_size)
3016 found = true;
3017 }
3018 }
3019
3020 if (found)
3021 {
3022 Sized_relobj_file<size, big_endian>* kept_relobj =
3023 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
3024 Output_section* os = kept_relobj->output_section(kept_shndx);
3025 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
3026 if (os != NULL && offset != invalid_address)
3027 {
3028 *pfound = true;
3029 return os->address() + offset;
3030 }
3031 }
3032 }
3033 *pfound = false;
3034 return 0;
3035 }
3036
3037 // Look for a kept section corresponding to the given discarded section,
3038 // and return its object file.
3039
3040 template<int size, bool big_endian>
3041 Relobj*
3042 Sized_relobj_file<size, big_endian>::find_kept_section_object(
3043 unsigned int shndx, unsigned int *symndx_p) const
3044 {
3045 Kept_section* kept_section;
3046 bool is_comdat;
3047 uint64_t sh_size;
3048 if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
3049 &kept_section))
3050 return kept_section->object();
3051 return NULL;
3052 }
3053
3054 // Return the name of symbol SYMNDX.
3055
3056 template<int size, bool big_endian>
3057 const char*
3058 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3059 {
3060 if (this->symtab_shndx_ == 0)
3061 return NULL;
3062
3063 section_size_type symbols_size;
3064 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3065 &symbols_size,
3066 false);
3067
3068 unsigned int symbol_names_shndx =
3069 this->adjust_shndx(this->section_link(this->symtab_shndx_));
3070 section_size_type names_size;
3071 const unsigned char* symbol_names_u =
3072 this->section_contents(symbol_names_shndx, &names_size, false);
3073 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3074
3075 const unsigned char* p = symbols + symndx * This::sym_size;
3076
3077 if (p >= symbols + symbols_size)
3078 return NULL;
3079
3080 elfcpp::Sym<size, big_endian> sym(p);
3081
3082 return symbol_names + sym.get_st_name();
3083 }
3084
3085 // Get symbol counts.
3086
3087 template<int size, bool big_endian>
3088 void
3089 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3090 const Symbol_table*,
3091 size_t* defined,
3092 size_t* used) const
3093 {
3094 *defined = this->defined_count_;
3095 size_t count = 0;
3096 for (typename Symbols::const_iterator p = this->symbols_.begin();
3097 p != this->symbols_.end();
3098 ++p)
3099 if (*p != NULL
3100 && (*p)->source() == Symbol::FROM_OBJECT
3101 && (*p)->object() == this
3102 && (*p)->is_defined())
3103 ++count;
3104 *used = count;
3105 }
3106
3107 // Return a view of the decompressed contents of a section. Set *PLEN
3108 // to the size. Set *IS_NEW to true if the contents need to be freed
3109 // by the caller.
3110
3111 const unsigned char*
3112 Object::decompressed_section_contents(
3113 unsigned int shndx,
3114 section_size_type* plen,
3115 bool* is_new,
3116 uint64_t* palign)
3117 {
3118 section_size_type buffer_size;
3119 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3120 false);
3121
3122 if (this->compressed_sections_ == NULL)
3123 {
3124 *plen = buffer_size;
3125 *is_new = false;
3126 return buffer;
3127 }
3128
3129 Compressed_section_map::const_iterator p =
3130 this->compressed_sections_->find(shndx);
3131 if (p == this->compressed_sections_->end())
3132 {
3133 *plen = buffer_size;
3134 *is_new = false;
3135 return buffer;
3136 }
3137
3138 section_size_type uncompressed_size = p->second.size;
3139 if (p->second.contents != NULL)
3140 {
3141 *plen = uncompressed_size;
3142 *is_new = false;
3143 if (palign != NULL)
3144 *palign = p->second.addralign;
3145 return p->second.contents;
3146 }
3147
3148 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3149 if (!decompress_input_section(buffer,
3150 buffer_size,
3151 uncompressed_data,
3152 uncompressed_size,
3153 elfsize(),
3154 is_big_endian(),
3155 p->second.flag))
3156 this->error(_("could not decompress section %s"),
3157 this->do_section_name(shndx).c_str());
3158
3159 // We could cache the results in p->second.contents and store
3160 // false in *IS_NEW, but build_compressed_section_map() would
3161 // have done so if it had expected it to be profitable. If
3162 // we reach this point, we expect to need the contents only
3163 // once in this pass.
3164 *plen = uncompressed_size;
3165 *is_new = true;
3166 if (palign != NULL)
3167 *palign = p->second.addralign;
3168 return uncompressed_data;
3169 }
3170
3171 // Discard any buffers of uncompressed sections. This is done
3172 // at the end of the Add_symbols task.
3173
3174 void
3175 Object::discard_decompressed_sections()
3176 {
3177 if (this->compressed_sections_ == NULL)
3178 return;
3179
3180 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3181 p != this->compressed_sections_->end();
3182 ++p)
3183 {
3184 if (p->second.contents != NULL)
3185 {
3186 delete[] p->second.contents;
3187 p->second.contents = NULL;
3188 }
3189 }
3190 }
3191
3192 // Input_objects methods.
3193
3194 // Add a regular relocatable object to the list. Return false if this
3195 // object should be ignored.
3196
3197 bool
3198 Input_objects::add_object(Object* obj)
3199 {
3200 // Print the filename if the -t/--trace option is selected.
3201 if (parameters->options().trace())
3202 gold_trace("%s", obj->name().c_str());
3203
3204 if (!obj->is_dynamic())
3205 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3206 else
3207 {
3208 // See if this is a duplicate SONAME.
3209 Dynobj* dynobj = static_cast<Dynobj*>(obj);
3210 const char* soname = dynobj->soname();
3211
3212 Unordered_map<std::string, Object*>::value_type val(soname, obj);
3213 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3214 this->sonames_.insert(val);
3215 if (!ins.second)
3216 {
3217 // We have already seen a dynamic object with this soname.
3218 // If any instances of this object on the command line have
3219 // the --no-as-needed flag, make sure the one we keep is
3220 // marked so.
3221 if (!obj->as_needed())
3222 {
3223 gold_assert(ins.first->second != NULL);
3224 ins.first->second->clear_as_needed();
3225 }
3226 return false;
3227 }
3228
3229 this->dynobj_list_.push_back(dynobj);
3230 }
3231
3232 // Add this object to the cross-referencer if requested.
3233 if (parameters->options().user_set_print_symbol_counts()
3234 || parameters->options().cref())
3235 {
3236 if (this->cref_ == NULL)
3237 this->cref_ = new Cref();
3238 this->cref_->add_object(obj);
3239 }
3240
3241 return true;
3242 }
3243
3244 // For each dynamic object, record whether we've seen all of its
3245 // explicit dependencies.
3246
3247 void
3248 Input_objects::check_dynamic_dependencies() const
3249 {
3250 bool issued_copy_dt_needed_error = false;
3251 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3252 p != this->dynobj_list_.end();
3253 ++p)
3254 {
3255 const Dynobj::Needed& needed((*p)->needed());
3256 bool found_all = true;
3257 Dynobj::Needed::const_iterator pneeded;
3258 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3259 {
3260 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3261 {
3262 found_all = false;
3263 break;
3264 }
3265 }
3266 (*p)->set_has_unknown_needed_entries(!found_all);
3267
3268 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3269 // that gold does not support. However, they cause no trouble
3270 // unless there is a DT_NEEDED entry that we don't know about;
3271 // warn only in that case.
3272 if (!found_all
3273 && !issued_copy_dt_needed_error
3274 && (parameters->options().copy_dt_needed_entries()
3275 || parameters->options().add_needed()))
3276 {
3277 const char* optname;
3278 if (parameters->options().copy_dt_needed_entries())
3279 optname = "--copy-dt-needed-entries";
3280 else
3281 optname = "--add-needed";
3282 gold_error(_("%s is not supported but is required for %s in %s"),
3283 optname, (*pneeded).c_str(), (*p)->name().c_str());
3284 issued_copy_dt_needed_error = true;
3285 }
3286 }
3287 }
3288
3289 // Start processing an archive.
3290
3291 void
3292 Input_objects::archive_start(Archive* archive)
3293 {
3294 if (parameters->options().user_set_print_symbol_counts()
3295 || parameters->options().cref())
3296 {
3297 if (this->cref_ == NULL)
3298 this->cref_ = new Cref();
3299 this->cref_->add_archive_start(archive);
3300 }
3301 }
3302
3303 // Stop processing an archive.
3304
3305 void
3306 Input_objects::archive_stop(Archive* archive)
3307 {
3308 if (parameters->options().user_set_print_symbol_counts()
3309 || parameters->options().cref())
3310 this->cref_->add_archive_stop(archive);
3311 }
3312
3313 // Print symbol counts
3314
3315 void
3316 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3317 {
3318 if (parameters->options().user_set_print_symbol_counts()
3319 && this->cref_ != NULL)
3320 this->cref_->print_symbol_counts(symtab);
3321 }
3322
3323 // Print a cross reference table.
3324
3325 void
3326 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3327 {
3328 if (parameters->options().cref() && this->cref_ != NULL)
3329 this->cref_->print_cref(symtab, f);
3330 }
3331
3332 // Relocate_info methods.
3333
3334 // Return a string describing the location of a relocation when file
3335 // and lineno information is not available. This is only used in
3336 // error messages.
3337
3338 template<int size, bool big_endian>
3339 std::string
3340 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3341 {
3342 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3343 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3344 if (!ret.empty())
3345 return ret;
3346
3347 ret = this->object->name();
3348
3349 Symbol_location_info info;
3350 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3351 {
3352 if (!info.source_file.empty())
3353 {
3354 ret += ":";
3355 ret += info.source_file;
3356 }
3357 ret += ":";
3358 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3359 ret += _("function ");
3360 ret += info.enclosing_symbol_name;
3361 ret += ":";
3362 }
3363
3364 ret += "(";
3365 ret += this->object->section_name(this->data_shndx);
3366 char buf[100];
3367 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3368 ret += buf;
3369 return ret;
3370 }
3371
3372 } // End namespace gold.
3373
3374 namespace
3375 {
3376
3377 using namespace gold;
3378
3379 // Read an ELF file with the header and return the appropriate
3380 // instance of Object.
3381
3382 template<int size, bool big_endian>
3383 Object*
3384 make_elf_sized_object(const std::string& name, Input_file* input_file,
3385 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3386 bool* punconfigured)
3387 {
3388 Target* target = select_target(input_file, offset,
3389 ehdr.get_e_machine(), size, big_endian,
3390 ehdr.get_ei_osabi(),
3391 ehdr.get_ei_abiversion());
3392 if (target == NULL)
3393 gold_fatal(_("%s: unsupported ELF machine number %d"),
3394 name.c_str(), ehdr.get_e_machine());
3395
3396 if (!parameters->target_valid())
3397 set_parameters_target(target);
3398 else if (target != &parameters->target())
3399 {
3400 if (punconfigured != NULL)
3401 *punconfigured = true;
3402 else
3403 gold_error(_("%s: incompatible target"), name.c_str());
3404 return NULL;
3405 }
3406
3407 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3408 ehdr);
3409 }
3410
3411 } // End anonymous namespace.
3412
3413 namespace gold
3414 {
3415
3416 // Return whether INPUT_FILE is an ELF object.
3417
3418 bool
3419 is_elf_object(Input_file* input_file, off_t offset,
3420 const unsigned char** start, int* read_size)
3421 {
3422 off_t filesize = input_file->file().filesize();
3423 int want = elfcpp::Elf_recognizer::max_header_size;
3424 if (filesize - offset < want)
3425 want = filesize - offset;
3426
3427 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3428 true, false);
3429 *start = p;
3430 *read_size = want;
3431
3432 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3433 }
3434
3435 // Read an ELF file and return the appropriate instance of Object.
3436
3437 Object*
3438 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3439 const unsigned char* p, section_offset_type bytes,
3440 bool* punconfigured)
3441 {
3442 if (punconfigured != NULL)
3443 *punconfigured = false;
3444
3445 std::string error;
3446 bool big_endian = false;
3447 int size = 0;
3448 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3449 &big_endian, &error))
3450 {
3451 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3452 return NULL;
3453 }
3454
3455 if (size == 32)
3456 {
3457 if (big_endian)
3458 {
3459 #ifdef HAVE_TARGET_32_BIG
3460 elfcpp::Ehdr<32, true> ehdr(p);
3461 return make_elf_sized_object<32, true>(name, input_file,
3462 offset, ehdr, punconfigured);
3463 #else
3464 if (punconfigured != NULL)
3465 *punconfigured = true;
3466 else
3467 gold_error(_("%s: not configured to support "
3468 "32-bit big-endian object"),
3469 name.c_str());
3470 return NULL;
3471 #endif
3472 }
3473 else
3474 {
3475 #ifdef HAVE_TARGET_32_LITTLE
3476 elfcpp::Ehdr<32, false> ehdr(p);
3477 return make_elf_sized_object<32, false>(name, input_file,
3478 offset, ehdr, punconfigured);
3479 #else
3480 if (punconfigured != NULL)
3481 *punconfigured = true;
3482 else
3483 gold_error(_("%s: not configured to support "
3484 "32-bit little-endian object"),
3485 name.c_str());
3486 return NULL;
3487 #endif
3488 }
3489 }
3490 else if (size == 64)
3491 {
3492 if (big_endian)
3493 {
3494 #ifdef HAVE_TARGET_64_BIG
3495 elfcpp::Ehdr<64, true> ehdr(p);
3496 return make_elf_sized_object<64, true>(name, input_file,
3497 offset, ehdr, punconfigured);
3498 #else
3499 if (punconfigured != NULL)
3500 *punconfigured = true;
3501 else
3502 gold_error(_("%s: not configured to support "
3503 "64-bit big-endian object"),
3504 name.c_str());
3505 return NULL;
3506 #endif
3507 }
3508 else
3509 {
3510 #ifdef HAVE_TARGET_64_LITTLE
3511 elfcpp::Ehdr<64, false> ehdr(p);
3512 return make_elf_sized_object<64, false>(name, input_file,
3513 offset, ehdr, punconfigured);
3514 #else
3515 if (punconfigured != NULL)
3516 *punconfigured = true;
3517 else
3518 gold_error(_("%s: not configured to support "
3519 "64-bit little-endian object"),
3520 name.c_str());
3521 return NULL;
3522 #endif
3523 }
3524 }
3525 else
3526 gold_unreachable();
3527 }
3528
3529 // Instantiate the templates we need.
3530
3531 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3532 template
3533 void
3534 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3535 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3536 Unordered_map<section_offset_type,
3537 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3538 #endif
3539
3540 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3541 template
3542 void
3543 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3544 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3545 Unordered_map<section_offset_type,
3546 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3547 #endif
3548
3549 #ifdef HAVE_TARGET_32_LITTLE
3550 template
3551 void
3552 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3553 Read_symbols_data*);
3554 template
3555 const unsigned char*
3556 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3557 section_size_type, const unsigned char*) const;
3558 #endif
3559
3560 #ifdef HAVE_TARGET_32_BIG
3561 template
3562 void
3563 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3564 Read_symbols_data*);
3565 template
3566 const unsigned char*
3567 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3568 section_size_type, const unsigned char*) const;
3569 #endif
3570
3571 #ifdef HAVE_TARGET_64_LITTLE
3572 template
3573 void
3574 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3575 Read_symbols_data*);
3576 template
3577 const unsigned char*
3578 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3579 section_size_type, const unsigned char*) const;
3580 #endif
3581
3582 #ifdef HAVE_TARGET_64_BIG
3583 template
3584 void
3585 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3586 Read_symbols_data*);
3587 template
3588 const unsigned char*
3589 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3590 section_size_type, const unsigned char*) const;
3591 #endif
3592
3593 #ifdef HAVE_TARGET_32_LITTLE
3594 template
3595 class Sized_relobj<32, false>;
3596
3597 template
3598 class Sized_relobj_file<32, false>;
3599 #endif
3600
3601 #ifdef HAVE_TARGET_32_BIG
3602 template
3603 class Sized_relobj<32, true>;
3604
3605 template
3606 class Sized_relobj_file<32, true>;
3607 #endif
3608
3609 #ifdef HAVE_TARGET_64_LITTLE
3610 template
3611 class Sized_relobj<64, false>;
3612
3613 template
3614 class Sized_relobj_file<64, false>;
3615 #endif
3616
3617 #ifdef HAVE_TARGET_64_BIG
3618 template
3619 class Sized_relobj<64, true>;
3620
3621 template
3622 class Sized_relobj_file<64, true>;
3623 #endif
3624
3625 #ifdef HAVE_TARGET_32_LITTLE
3626 template
3627 struct Relocate_info<32, false>;
3628 #endif
3629
3630 #ifdef HAVE_TARGET_32_BIG
3631 template
3632 struct Relocate_info<32, true>;
3633 #endif
3634
3635 #ifdef HAVE_TARGET_64_LITTLE
3636 template
3637 struct Relocate_info<64, false>;
3638 #endif
3639
3640 #ifdef HAVE_TARGET_64_BIG
3641 template
3642 struct Relocate_info<64, true>;
3643 #endif
3644
3645 #ifdef HAVE_TARGET_32_LITTLE
3646 template
3647 void
3648 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3649
3650 template
3651 void
3652 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3653 const unsigned char*);
3654 #endif
3655
3656 #ifdef HAVE_TARGET_32_BIG
3657 template
3658 void
3659 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3660
3661 template
3662 void
3663 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3664 const unsigned char*);
3665 #endif
3666
3667 #ifdef HAVE_TARGET_64_LITTLE
3668 template
3669 void
3670 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3671
3672 template
3673 void
3674 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3675 const unsigned char*);
3676 #endif
3677
3678 #ifdef HAVE_TARGET_64_BIG
3679 template
3680 void
3681 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3682
3683 template
3684 void
3685 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3686 const unsigned char*);
3687 #endif
3688
3689 #ifdef HAVE_TARGET_32_LITTLE
3690 template
3691 Compressed_section_map*
3692 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3693 const char*, section_size_type,
3694 Object*, bool);
3695 #endif
3696
3697 #ifdef HAVE_TARGET_32_BIG
3698 template
3699 Compressed_section_map*
3700 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3701 const char*, section_size_type,
3702 Object*, bool);
3703 #endif
3704
3705 #ifdef HAVE_TARGET_64_LITTLE
3706 template
3707 Compressed_section_map*
3708 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3709 const char*, section_size_type,
3710 Object*, bool);
3711 #endif
3712
3713 #ifdef HAVE_TARGET_64_BIG
3714 template
3715 Compressed_section_map*
3716 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3717 const char*, section_size_type,
3718 Object*, bool);
3719 #endif
3720
3721 } // End namespace gold.