]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/symtab.cc
xtensa: gas: put .literal_position at section start
[thirdparty/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 this->non_zero_localentry_ = false;
85 }
86
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
89
90 static std::string
91 demangle(const char* name)
92 {
93 if (!parameters->options().do_demangle())
94 return name;
95
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99 if (demangled_name == NULL)
100 return name;
101
102 std::string retval(demangled_name);
103 free(demangled_name);
104 return retval;
105 }
106
107 std::string
108 Symbol::demangled_name() const
109 {
110 return demangle(this->name());
111 }
112
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118 const elfcpp::Sym<size, big_endian>& sym,
119 unsigned int st_shndx, bool is_ordinary)
120 {
121 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122 sym.get_st_visibility(), sym.get_st_nonvis());
123 this->u1_.object = object;
124 this->u2_.shndx = st_shndx;
125 this->is_ordinary_shndx_ = is_ordinary;
126 this->source_ = FROM_OBJECT;
127 this->in_reg_ = !object->is_dynamic();
128 this->in_dyn_ = object->is_dynamic();
129 this->in_real_elf_ = object->pluginobj() == NULL;
130 }
131
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
134
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137 Output_data* od, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, bool offset_is_from_end,
140 bool is_predefined)
141 {
142 this->init_fields(name, version, type, binding, visibility, nonvis);
143 this->u1_.output_data = od;
144 this->u2_.offset_is_from_end = offset_is_from_end;
145 this->source_ = IN_OUTPUT_DATA;
146 this->in_reg_ = true;
147 this->in_real_elf_ = true;
148 this->is_predefined_ = is_predefined;
149 }
150
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
153
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156 Output_segment* os, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis,
159 Segment_offset_base offset_base,
160 bool is_predefined)
161 {
162 this->init_fields(name, version, type, binding, visibility, nonvis);
163 this->u1_.output_segment = os;
164 this->u2_.offset_base = offset_base;
165 this->source_ = IN_OUTPUT_SEGMENT;
166 this->in_reg_ = true;
167 this->in_real_elf_ = true;
168 this->is_predefined_ = is_predefined;
169 }
170
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
173
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176 elfcpp::STT type, elfcpp::STB binding,
177 elfcpp::STV visibility, unsigned char nonvis,
178 bool is_predefined)
179 {
180 this->init_fields(name, version, type, binding, visibility, nonvis);
181 this->source_ = IS_CONSTANT;
182 this->in_reg_ = true;
183 this->in_real_elf_ = true;
184 this->is_predefined_ = is_predefined;
185 }
186
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
189
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis)
194 {
195 this->init_fields(name, version, type, binding, visibility, nonvis);
196 this->dynsym_index_ = -1U;
197 this->source_ = IS_UNDEFINED;
198 this->in_reg_ = true;
199 this->in_real_elf_ = true;
200 }
201
202 // Allocate a common symbol in the base.
203
204 void
205 Symbol::allocate_base_common(Output_data* od)
206 {
207 gold_assert(this->is_common());
208 this->source_ = IN_OUTPUT_DATA;
209 this->u1_.output_data = od;
210 this->u2_.offset_is_from_end = false;
211 }
212
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219 Object* object,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary)
222 {
223 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224 this->value_ = sym.get_st_value();
225 this->symsize_ = sym.get_st_size();
226 }
227
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
230
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234 Output_data* od, Value_type value,
235 Size_type symsize, elfcpp::STT type,
236 elfcpp::STB binding,
237 elfcpp::STV visibility,
238 unsigned char nonvis,
239 bool offset_is_from_end,
240 bool is_predefined)
241 {
242 this->init_base_output_data(name, version, od, type, binding, visibility,
243 nonvis, offset_is_from_end, is_predefined);
244 this->value_ = value;
245 this->symsize_ = symsize;
246 }
247
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
250
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254 Output_segment* os, Value_type value,
255 Size_type symsize, elfcpp::STT type,
256 elfcpp::STB binding,
257 elfcpp::STV visibility,
258 unsigned char nonvis,
259 Segment_offset_base offset_base,
260 bool is_predefined)
261 {
262 this->init_base_output_segment(name, version, os, type, binding, visibility,
263 nonvis, offset_base, is_predefined);
264 this->value_ = value;
265 this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274 Value_type value, Size_type symsize,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis,
277 bool is_predefined)
278 {
279 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 is_predefined);
281 this->value_ = value;
282 this->symsize_ = symsize;
283 }
284
285 // Initialize the fields in Sized_symbol for an undefined symbol.
286
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290 Value_type value, elfcpp::STT type,
291 elfcpp::STB binding, elfcpp::STV visibility,
292 unsigned char nonvis)
293 {
294 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295 this->value_ = value;
296 this->symsize_ = 0;
297 }
298
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
301
302 std::string
303 Symbol::versioned_name() const
304 {
305 gold_assert(this->version_ != NULL);
306 std::string ret = this->name_;
307 ret.push_back('@');
308 if (this->is_def_)
309 ret.push_back('@');
310 ret += this->version_;
311 return ret;
312 }
313
314 // Return true if SHNDX represents a common symbol.
315
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
318 {
319 return (shndx == elfcpp::SHN_COMMON
320 || shndx == parameters->target().small_common_shndx()
321 || shndx == parameters->target().large_common_shndx());
322 }
323
324 // Allocate a common symbol.
325
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 {
330 this->allocate_base_common(od);
331 this->value_ = value;
332 }
333
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
336
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
339
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 {
343 // If the symbol is only present on plugin files, the plugin decided we
344 // don't need it.
345 if (!this->in_real_elf())
346 return false;
347
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
350 return true;
351
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters->options().gc_sections()
356 && !parameters->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
359 {
360 Relobj* relobj = static_cast<Relobj*>(this->object());
361 bool is_ordinary;
362 unsigned int shndx = this->shndx(&is_ordinary);
363 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364 && !relobj->is_section_included(shndx)
365 && !symtab->is_section_folded(relobj, shndx))
366 return false;
367 }
368
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters->options().in_dynamic_list(this->name())
373 || parameters->options().is_export_dynamic_symbol(this->name())))
374 {
375 if (!this->is_forced_local())
376 return true;
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
379 return false;
380 }
381
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
384 return false;
385
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT)
390 return true;
391
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters->options().dynamic_list_cpp_new()
395 || parameters->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
397 {
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name = cplus_demangle(this->name(),
401 DMGL_ANSI | DMGL_PARAMS);
402 if (demangled_name == NULL)
403 {
404 // Not a C++ symbol, so it can't satisfy these flags
405 }
406 else if (parameters->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name, "operator new")
408 || strprefix(demangled_name, "operator delete")))
409 {
410 free(demangled_name);
411 return true;
412 }
413 else if (parameters->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name, "typeinfo name for")
415 || strprefix(demangled_name, "typeinfo for")))
416 {
417 free(demangled_name);
418 return true;
419 }
420 else
421 free(demangled_name);
422 }
423
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters->options().export_dynamic()
429 || parameters->options().shared()
430 || (parameters->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
435 return true;
436
437 return false;
438 }
439
440 // Return true if the final value of this symbol is known at link
441 // time.
442
443 bool
444 Symbol::final_value_is_known() const
445 {
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters->options().output_is_position_independent()
450 || parameters->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters->options().pie()))
453 return false;
454
455 // If the symbol is not from an object file, and is not undefined,
456 // then it is defined, and known.
457 if (this->source_ != FROM_OBJECT)
458 {
459 if (this->source_ != IS_UNDEFINED)
460 return true;
461 }
462 else
463 {
464 // If the symbol is from a dynamic object, then the final value
465 // is not known.
466 if (this->object()->is_dynamic())
467 return false;
468
469 // If the symbol is not undefined (it is defined or common),
470 // then the final value is known.
471 if (!this->is_undefined())
472 return true;
473 }
474
475 // If the symbol is undefined, then whether the final value is known
476 // depends on whether we are doing a static link. If we are doing a
477 // dynamic link, then the final value could be filled in at runtime.
478 // This could reasonably be the case for a weak undefined symbol.
479 return parameters->doing_static_link();
480 }
481
482 // Return the output section where this symbol is defined.
483
484 Output_section*
485 Symbol::output_section() const
486 {
487 switch (this->source_)
488 {
489 case FROM_OBJECT:
490 {
491 unsigned int shndx = this->u2_.shndx;
492 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493 {
494 gold_assert(!this->u1_.object->is_dynamic());
495 gold_assert(this->u1_.object->pluginobj() == NULL);
496 Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497 return relobj->output_section(shndx);
498 }
499 return NULL;
500 }
501
502 case IN_OUTPUT_DATA:
503 return this->u1_.output_data->output_section();
504
505 case IN_OUTPUT_SEGMENT:
506 case IS_CONSTANT:
507 case IS_UNDEFINED:
508 return NULL;
509
510 default:
511 gold_unreachable();
512 }
513 }
514
515 // Set the symbol's output section. This is used for symbols defined
516 // in scripts. This should only be called after the symbol table has
517 // been finalized.
518
519 void
520 Symbol::set_output_section(Output_section* os)
521 {
522 switch (this->source_)
523 {
524 case FROM_OBJECT:
525 case IN_OUTPUT_DATA:
526 gold_assert(this->output_section() == os);
527 break;
528 case IS_CONSTANT:
529 this->source_ = IN_OUTPUT_DATA;
530 this->u1_.output_data = os;
531 this->u2_.offset_is_from_end = false;
532 break;
533 case IN_OUTPUT_SEGMENT:
534 case IS_UNDEFINED:
535 default:
536 gold_unreachable();
537 }
538 }
539
540 // Set the symbol's output segment. This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
543
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 {
547 gold_assert(this->is_predefined_);
548 this->source_ = IN_OUTPUT_SEGMENT;
549 this->u1_.output_segment = os;
550 this->u2_.offset_base = base;
551 }
552
553 // Set the symbol to undefined. This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
556
557 void
558 Symbol::set_undefined()
559 {
560 this->source_ = IS_UNDEFINED;
561 this->is_predefined_ = false;
562 }
563
564 // Class Symbol_table.
565
566 Symbol_table::Symbol_table(unsigned int count,
567 const Version_script_info& version_script)
568 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
569 forwarders_(), commons_(), tls_commons_(), small_commons_(),
570 large_commons_(), forced_locals_(), warnings_(),
571 version_script_(version_script), gc_(NULL), icf_(NULL),
572 target_symbols_()
573 {
574 namepool_.reserve(count);
575 }
576
577 Symbol_table::~Symbol_table()
578 {
579 }
580
581 // The symbol table key equality function. This is called with
582 // Stringpool keys.
583
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586 const Symbol_table_key& k2) const
587 {
588 return k1.first == k2.first && k1.second == k2.second;
589 }
590
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 {
594 return (parameters->options().icf_enabled()
595 && this->icf_->is_section_folded(obj, shndx));
596 }
597
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
600
601 void
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 {
604 for (options::String_set::const_iterator p =
605 parameters->options().undefined_begin();
606 p != parameters->options().undefined_end();
607 ++p)
608 {
609 const char* name = p->c_str();
610 Symbol* sym = this->lookup(name);
611 gold_assert(sym != NULL);
612 if (sym->source() == Symbol::FROM_OBJECT
613 && !sym->object()->is_dynamic())
614 {
615 this->gc_mark_symbol(sym);
616 }
617 }
618
619 for (options::String_set::const_iterator p =
620 parameters->options().export_dynamic_symbol_begin();
621 p != parameters->options().export_dynamic_symbol_end();
622 ++p)
623 {
624 const char* name = p->c_str();
625 Symbol* sym = this->lookup(name);
626 // It's not an error if a symbol named by --export-dynamic-symbol
627 // is undefined.
628 if (sym != NULL
629 && sym->source() == Symbol::FROM_OBJECT
630 && !sym->object()->is_dynamic())
631 {
632 this->gc_mark_symbol(sym);
633 }
634 }
635
636 for (Script_options::referenced_const_iterator p =
637 layout->script_options()->referenced_begin();
638 p != layout->script_options()->referenced_end();
639 ++p)
640 {
641 Symbol* sym = this->lookup(p->c_str());
642 gold_assert(sym != NULL);
643 if (sym->source() == Symbol::FROM_OBJECT
644 && !sym->object()->is_dynamic())
645 {
646 this->gc_mark_symbol(sym);
647 }
648 }
649 }
650
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
653 {
654 // Add the object and section to the work list.
655 bool is_ordinary;
656 unsigned int shndx = sym->shndx(&is_ordinary);
657 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658 {
659 gold_assert(this->gc_!= NULL);
660 Relobj* relobj = static_cast<Relobj*>(sym->object());
661 this->gc_->worklist().push_back(Section_id(relobj, shndx));
662 }
663 parameters->target().gc_mark_symbol(this, sym);
664 }
665
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 {
671 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672 && !sym->object()->is_dynamic())
673 this->gc_mark_symbol(sym);
674 }
675
676 // Make TO a symbol which forwards to FROM.
677
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 {
681 gold_assert(from != to);
682 gold_assert(!from->is_forwarder() && !to->is_forwarder());
683 this->forwarders_[from] = to;
684 from->set_forwarder();
685 }
686
687 // Resolve the forwards from FROM, returning the real symbol.
688
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
691 {
692 gold_assert(from->is_forwarder());
693 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694 this->forwarders_.find(from);
695 gold_assert(p != this->forwarders_.end());
696 return p->second;
697 }
698
699 // Look up a symbol by name.
700
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
703 {
704 Stringpool::Key name_key;
705 name = this->namepool_.find(name, &name_key);
706 if (name == NULL)
707 return NULL;
708
709 Stringpool::Key version_key = 0;
710 if (version != NULL)
711 {
712 version = this->namepool_.find(version, &version_key);
713 if (version == NULL)
714 return NULL;
715 }
716
717 Symbol_table_key key(name_key, version_key);
718 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719 if (p == this->table_.end())
720 return NULL;
721 return p->second;
722 }
723
724 // Resolve a Symbol with another Symbol. This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version. Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
729
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 {
734 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735 elfcpp::Sym_write<size, big_endian> esym(buf);
736 // We don't bother to set the st_name or the st_shndx field.
737 esym.put_st_value(from->value());
738 esym.put_st_size(from->symsize());
739 esym.put_st_info(from->binding(), from->type());
740 esym.put_st_other(from->visibility(), from->nonvis());
741 bool is_ordinary;
742 unsigned int shndx = from->shndx(&is_ordinary);
743 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744 from->version(), true);
745 if (from->in_reg())
746 to->set_in_reg();
747 if (from->in_dyn())
748 to->set_in_dyn();
749 if (parameters->options().gc_sections())
750 this->gc_mark_dyn_syms(to);
751 }
752
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
755
756 void
757 Symbol_table::force_local(Symbol* sym)
758 {
759 if (!sym->is_defined() && !sym->is_common())
760 return;
761 if (sym->is_forced_local())
762 {
763 // We already got this one.
764 return;
765 }
766 sym->set_is_forced_local();
767 this->forced_locals_.push_back(sym);
768 }
769
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
773
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 {
777 // For some targets, we need to ignore a specific character when
778 // wrapping, and add it back later.
779 char prefix = '\0';
780 if (name[0] == parameters->target().wrap_char())
781 {
782 prefix = name[0];
783 ++name;
784 }
785
786 if (parameters->options().is_wrap(name))
787 {
788 // Turn NAME into __wrap_NAME.
789 std::string s;
790 if (prefix != '\0')
791 s += prefix;
792 s += "__wrap_";
793 s += name;
794
795 // This will give us both the old and new name in NAMEPOOL_, but
796 // that is OK. Only the versions we need will wind up in the
797 // real string table in the output file.
798 return this->namepool_.add(s.c_str(), true, name_key);
799 }
800
801 const char* const real_prefix = "__real_";
802 const size_t real_prefix_length = strlen(real_prefix);
803 if (strncmp(name, real_prefix, real_prefix_length) == 0
804 && parameters->options().is_wrap(name + real_prefix_length))
805 {
806 // Turn __real_NAME into NAME.
807 std::string s;
808 if (prefix != '\0')
809 s += prefix;
810 s += name + real_prefix_length;
811 return this->namepool_.add(s.c_str(), true, name_key);
812 }
813
814 return name;
815 }
816
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version. SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
822
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826 bool default_is_new,
827 Symbol_table_type::iterator pdef)
828 {
829 if (default_is_new)
830 {
831 // This is the first time we have seen NAME/NULL. Make
832 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833 // version.
834 pdef->second = sym;
835 sym->set_is_default();
836 }
837 else if (pdef->second == sym)
838 {
839 // NAME/NULL already points to NAME/VERSION. Don't mark the
840 // symbol as the default if it is not already the default.
841 }
842 else
843 {
844 // This is the unfortunate case where we already have entries
845 // for both NAME/VERSION and NAME/NULL. We now see a symbol
846 // NAME/VERSION where VERSION is the default version. We have
847 // already resolved this new symbol with the existing
848 // NAME/VERSION symbol.
849
850 // It's possible that NAME/NULL and NAME/VERSION are both
851 // defined in regular objects. This can only happen if one
852 // object file defines foo and another defines foo@@ver. This
853 // is somewhat obscure, but we call it a multiple definition
854 // error.
855
856 // It's possible that NAME/NULL actually has a version, in which
857 // case it won't be the same as VERSION. This happens with
858 // ver_test_7.so in the testsuite for the symbol t2_2. We see
859 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
860 // then see an unadorned t2_2 in an object file and give it
861 // version VER1 from the version script. This looks like a
862 // default definition for VER1, so it looks like we should merge
863 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
864 // not obvious that this is an error, either. So we just punt.
865
866 // If one of the symbols has non-default visibility, and the
867 // other is defined in a shared object, then they are different
868 // symbols.
869
870 // If the two symbols are from different shared objects,
871 // they are different symbols.
872
873 // Otherwise, we just resolve the symbols as though they were
874 // the same.
875
876 if (pdef->second->version() != NULL)
877 gold_assert(pdef->second->version() != sym->version());
878 else if (sym->visibility() != elfcpp::STV_DEFAULT
879 && pdef->second->is_from_dynobj())
880 ;
881 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882 && sym->is_from_dynobj())
883 ;
884 else if (pdef->second->is_from_dynobj()
885 && sym->is_from_dynobj()
886 && pdef->second->is_defined()
887 && pdef->second->object() != sym->object())
888 ;
889 else
890 {
891 const Sized_symbol<size>* symdef;
892 symdef = this->get_sized_symbol<size>(pdef->second);
893 Symbol_table::resolve<size, big_endian>(sym, symdef);
894 this->make_forwarder(pdef->second, sym);
895 pdef->second = sym;
896 sym->set_is_default();
897 }
898 }
899 }
900
901 // Add one symbol from OBJECT to the symbol table. NAME is symbol
902 // name and VERSION is the version; both are canonicalized. DEF is
903 // whether this is the default version. ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
906
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol. That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol. This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION. If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
914
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure. That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table. We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files. So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
925 //
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code. ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
930
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934 const char* name,
935 Stringpool::Key name_key,
936 const char* version,
937 Stringpool::Key version_key,
938 bool is_default_version,
939 const elfcpp::Sym<size, big_endian>& sym,
940 unsigned int st_shndx,
941 bool is_ordinary,
942 unsigned int orig_st_shndx)
943 {
944 // Print a message if this symbol is being traced.
945 if (parameters->options().is_trace_symbol(name))
946 {
947 if (orig_st_shndx == elfcpp::SHN_UNDEF)
948 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949 else
950 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
951 }
952
953 // For an undefined symbol, we may need to adjust the name using
954 // --wrap.
955 if (orig_st_shndx == elfcpp::SHN_UNDEF
956 && parameters->options().any_wrap())
957 {
958 const char* wrap_name = this->wrap_symbol(name, &name_key);
959 if (wrap_name != name)
960 {
961 // If we see a reference to malloc with version GLIBC_2.0,
962 // and we turn it into a reference to __wrap_malloc, then we
963 // discard the version number. Otherwise the user would be
964 // required to specify the correct version for
965 // __wrap_malloc.
966 version = NULL;
967 version_key = 0;
968 name = wrap_name;
969 }
970 }
971
972 Symbol* const snull = NULL;
973 std::pair<typename Symbol_table_type::iterator, bool> ins =
974 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975 snull));
976
977 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978 std::make_pair(this->table_.end(), false);
979 if (is_default_version)
980 {
981 const Stringpool::Key vnull_key = 0;
982 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983 vnull_key),
984 snull));
985 }
986
987 // ins.first: an iterator, which is a pointer to a pair.
988 // ins.first->first: the key (a pair of name and version).
989 // ins.first->second: the value (Symbol*).
990 // ins.second: true if new entry was inserted, false if not.
991
992 Sized_symbol<size>* ret = NULL;
993 bool was_undefined_in_reg;
994 bool was_common;
995 if (!ins.second)
996 {
997 // We already have an entry for NAME/VERSION.
998 ret = this->get_sized_symbol<size>(ins.first->second);
999 gold_assert(ret != NULL);
1000
1001 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1002 // Commons from plugins are just placeholders.
1003 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004
1005 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006 version, is_default_version);
1007 if (parameters->options().gc_sections())
1008 this->gc_mark_dyn_syms(ret);
1009
1010 if (is_default_version)
1011 this->define_default_version<size, big_endian>(ret, insdefault.second,
1012 insdefault.first);
1013 else
1014 {
1015 bool dummy;
1016 if (version != NULL
1017 && ret->source() == Symbol::FROM_OBJECT
1018 && ret->object() == object
1019 && is_ordinary
1020 && ret->shndx(&dummy) == st_shndx
1021 && ret->is_default())
1022 {
1023 // We have seen NAME/VERSION already, and marked it as the
1024 // default version, but now we see a definition for
1025 // NAME/VERSION that is not the default version. This can
1026 // happen when the assembler generates two symbols for
1027 // a symbol as a result of a ".symver foo,foo@VER"
1028 // directive. We see the first unversioned symbol and
1029 // we may mark it as the default version (from a
1030 // version script); then we see the second versioned
1031 // symbol and we need to override the first.
1032 // In any other case, the two symbols should have generated
1033 // a multiple definition error.
1034 // (See PR gold/18703.)
1035 ret->set_is_not_default();
1036 const Stringpool::Key vnull_key = 0;
1037 this->table_.erase(std::make_pair(name_key, vnull_key));
1038 }
1039 }
1040 }
1041 else
1042 {
1043 // This is the first time we have seen NAME/VERSION.
1044 gold_assert(ins.first->second == NULL);
1045
1046 if (is_default_version && !insdefault.second)
1047 {
1048 // We already have an entry for NAME/NULL. If we override
1049 // it, then change it to NAME/VERSION.
1050 ret = this->get_sized_symbol<size>(insdefault.first->second);
1051
1052 // If the existing symbol already has a version,
1053 // don't override it with the new symbol.
1054 // This should only happen when the new symbol
1055 // is from a shared library.
1056 if (ret->version() != NULL)
1057 {
1058 if (!object->is_dynamic())
1059 {
1060 gold_warning(_("%s: conflicting default version definition"
1061 " for %s@@%s"),
1062 object->name().c_str(), name, version);
1063 if (ret->source() == Symbol::FROM_OBJECT)
1064 gold_info(_("%s: %s: previous definition of %s@@%s here"),
1065 program_name,
1066 ret->object()->name().c_str(),
1067 name, ret->version());
1068 }
1069 ret = NULL;
1070 is_default_version = false;
1071 }
1072 else
1073 {
1074 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1075 // Commons from plugins are just placeholders.
1076 was_common = (ret->is_common()
1077 && ret->object()->pluginobj() == NULL);
1078
1079 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx,
1080 object, version, is_default_version);
1081 if (parameters->options().gc_sections())
1082 this->gc_mark_dyn_syms(ret);
1083 ins.first->second = ret;
1084 }
1085 }
1086
1087 if (ret == NULL)
1088 {
1089 was_undefined_in_reg = false;
1090 was_common = false;
1091
1092 Sized_target<size, big_endian>* target =
1093 parameters->sized_target<size, big_endian>();
1094 if (!target->has_make_symbol())
1095 ret = new Sized_symbol<size>();
1096 else
1097 {
1098 ret = target->make_symbol(name, sym.get_st_type(), object,
1099 st_shndx, sym.get_st_value());
1100 if (ret == NULL)
1101 {
1102 // This means that we don't want a symbol table
1103 // entry after all.
1104 if (!is_default_version)
1105 this->table_.erase(ins.first);
1106 else
1107 {
1108 this->table_.erase(insdefault.first);
1109 // Inserting INSDEFAULT invalidated INS.
1110 this->table_.erase(std::make_pair(name_key,
1111 version_key));
1112 }
1113 return NULL;
1114 }
1115 }
1116
1117 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1118
1119 ins.first->second = ret;
1120 if (is_default_version)
1121 {
1122 // This is the first time we have seen NAME/NULL. Point
1123 // it at the new entry for NAME/VERSION.
1124 gold_assert(insdefault.second);
1125 insdefault.first->second = ret;
1126 }
1127 }
1128
1129 if (is_default_version)
1130 ret->set_is_default();
1131 }
1132
1133 // Record every time we see a new undefined symbol, to speed up archive
1134 // groups. We only care about symbols undefined in regular objects here
1135 // because undefined symbols only in dynamic objects should't trigger rescans.
1136 if (!was_undefined_in_reg && ret->is_undefined() && ret->in_reg())
1137 {
1138 ++this->saw_undefined_;
1139 if (parameters->options().has_plugins())
1140 parameters->options().plugins()->new_undefined_symbol(ret);
1141 }
1142
1143 // Keep track of common symbols, to speed up common symbol
1144 // allocation. Don't record commons from plugin objects;
1145 // we need to wait until we see the real symbol in the
1146 // replacement file.
1147 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1148 {
1149 if (ret->type() == elfcpp::STT_TLS)
1150 this->tls_commons_.push_back(ret);
1151 else if (!is_ordinary
1152 && st_shndx == parameters->target().small_common_shndx())
1153 this->small_commons_.push_back(ret);
1154 else if (!is_ordinary
1155 && st_shndx == parameters->target().large_common_shndx())
1156 this->large_commons_.push_back(ret);
1157 else
1158 this->commons_.push_back(ret);
1159 }
1160
1161 // If we're not doing a relocatable link, then any symbol with
1162 // hidden or internal visibility is local.
1163 if ((ret->visibility() == elfcpp::STV_HIDDEN
1164 || ret->visibility() == elfcpp::STV_INTERNAL)
1165 && (ret->binding() == elfcpp::STB_GLOBAL
1166 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1167 || ret->binding() == elfcpp::STB_WEAK)
1168 && !parameters->options().relocatable())
1169 this->force_local(ret);
1170
1171 return ret;
1172 }
1173
1174 // Add all the symbols in a relocatable object to the hash table.
1175
1176 template<int size, bool big_endian>
1177 void
1178 Symbol_table::add_from_relobj(
1179 Sized_relobj_file<size, big_endian>* relobj,
1180 const unsigned char* syms,
1181 size_t count,
1182 size_t symndx_offset,
1183 const char* sym_names,
1184 size_t sym_name_size,
1185 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1186 size_t* defined)
1187 {
1188 *defined = 0;
1189
1190 gold_assert(size == parameters->target().get_size());
1191
1192 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1193
1194 const bool just_symbols = relobj->just_symbols();
1195
1196 const unsigned char* p = syms;
1197 for (size_t i = 0; i < count; ++i, p += sym_size)
1198 {
1199 (*sympointers)[i] = NULL;
1200
1201 elfcpp::Sym<size, big_endian> sym(p);
1202
1203 unsigned int st_name = sym.get_st_name();
1204 if (st_name >= sym_name_size)
1205 {
1206 relobj->error(_("bad global symbol name offset %u at %zu"),
1207 st_name, i);
1208 continue;
1209 }
1210
1211 const char* name = sym_names + st_name;
1212
1213 if (!parameters->options().relocatable()
1214 && name[0] == '_'
1215 && name[1] == '_'
1216 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1217 gold_info(_("%s: plugin needed to handle lto object"),
1218 relobj->name().c_str());
1219
1220 bool is_ordinary;
1221 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1222 sym.get_st_shndx(),
1223 &is_ordinary);
1224 unsigned int orig_st_shndx = st_shndx;
1225 if (!is_ordinary)
1226 orig_st_shndx = elfcpp::SHN_UNDEF;
1227
1228 if (st_shndx != elfcpp::SHN_UNDEF)
1229 ++*defined;
1230
1231 // A symbol defined in a section which we are not including must
1232 // be treated as an undefined symbol.
1233 bool is_defined_in_discarded_section = false;
1234 if (st_shndx != elfcpp::SHN_UNDEF
1235 && is_ordinary
1236 && !relobj->is_section_included(st_shndx)
1237 && !this->is_section_folded(relobj, st_shndx))
1238 {
1239 st_shndx = elfcpp::SHN_UNDEF;
1240 is_defined_in_discarded_section = true;
1241 }
1242
1243 // In an object file, an '@' in the name separates the symbol
1244 // name from the version name. If there are two '@' characters,
1245 // this is the default version.
1246 const char* ver = strchr(name, '@');
1247 Stringpool::Key ver_key = 0;
1248 int namelen = 0;
1249 // IS_DEFAULT_VERSION: is the version default?
1250 // IS_FORCED_LOCAL: is the symbol forced local?
1251 bool is_default_version = false;
1252 bool is_forced_local = false;
1253
1254 // FIXME: For incremental links, we don't store version information,
1255 // so we need to ignore version symbols for now.
1256 if (parameters->incremental_update() && ver != NULL)
1257 {
1258 namelen = ver - name;
1259 ver = NULL;
1260 }
1261
1262 if (ver != NULL)
1263 {
1264 // The symbol name is of the form foo@VERSION or foo@@VERSION
1265 namelen = ver - name;
1266 ++ver;
1267 if (*ver == '@')
1268 {
1269 is_default_version = true;
1270 ++ver;
1271 }
1272 ver = this->namepool_.add(ver, true, &ver_key);
1273 }
1274 // We don't want to assign a version to an undefined symbol,
1275 // even if it is listed in the version script. FIXME: What
1276 // about a common symbol?
1277 else
1278 {
1279 namelen = strlen(name);
1280 if (!this->version_script_.empty()
1281 && st_shndx != elfcpp::SHN_UNDEF)
1282 {
1283 // The symbol name did not have a version, but the
1284 // version script may assign a version anyway.
1285 std::string version;
1286 bool is_global;
1287 if (this->version_script_.get_symbol_version(name, &version,
1288 &is_global))
1289 {
1290 if (!is_global)
1291 is_forced_local = true;
1292 else if (!version.empty())
1293 {
1294 ver = this->namepool_.add_with_length(version.c_str(),
1295 version.length(),
1296 true,
1297 &ver_key);
1298 is_default_version = true;
1299 }
1300 }
1301 }
1302 }
1303
1304 elfcpp::Sym<size, big_endian>* psym = &sym;
1305 unsigned char symbuf[sym_size];
1306 elfcpp::Sym<size, big_endian> sym2(symbuf);
1307 if (just_symbols)
1308 {
1309 memcpy(symbuf, p, sym_size);
1310 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1311 if (orig_st_shndx != elfcpp::SHN_UNDEF
1312 && is_ordinary
1313 && relobj->e_type() == elfcpp::ET_REL)
1314 {
1315 // Symbol values in relocatable object files are section
1316 // relative. This is normally what we want, but since here
1317 // we are converting the symbol to absolute we need to add
1318 // the section address. The section address in an object
1319 // file is normally zero, but people can use a linker
1320 // script to change it.
1321 sw.put_st_value(sym.get_st_value()
1322 + relobj->section_address(orig_st_shndx));
1323 }
1324 st_shndx = elfcpp::SHN_ABS;
1325 is_ordinary = false;
1326 psym = &sym2;
1327 }
1328
1329 // Fix up visibility if object has no-export set.
1330 if (relobj->no_export()
1331 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1332 {
1333 // We may have copied symbol already above.
1334 if (psym != &sym2)
1335 {
1336 memcpy(symbuf, p, sym_size);
1337 psym = &sym2;
1338 }
1339
1340 elfcpp::STV visibility = sym2.get_st_visibility();
1341 if (visibility == elfcpp::STV_DEFAULT
1342 || visibility == elfcpp::STV_PROTECTED)
1343 {
1344 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1345 unsigned char nonvis = sym2.get_st_nonvis();
1346 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1347 }
1348 }
1349
1350 Stringpool::Key name_key;
1351 name = this->namepool_.add_with_length(name, namelen, true,
1352 &name_key);
1353
1354 Sized_symbol<size>* res;
1355 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1356 is_default_version, *psym, st_shndx,
1357 is_ordinary, orig_st_shndx);
1358
1359 if (res == NULL)
1360 continue;
1361
1362 if (is_forced_local)
1363 this->force_local(res);
1364
1365 // Do not treat this symbol as garbage if this symbol will be
1366 // exported to the dynamic symbol table. This is true when
1367 // building a shared library or using --export-dynamic and
1368 // the symbol is externally visible.
1369 if (parameters->options().gc_sections()
1370 && res->is_externally_visible()
1371 && !res->is_from_dynobj()
1372 && (parameters->options().shared()
1373 || parameters->options().export_dynamic()
1374 || parameters->options().in_dynamic_list(res->name())))
1375 this->gc_mark_symbol(res);
1376
1377 if (is_defined_in_discarded_section)
1378 res->set_is_defined_in_discarded_section();
1379
1380 (*sympointers)[i] = res;
1381 }
1382 }
1383
1384 // Add a symbol from a plugin-claimed file.
1385
1386 template<int size, bool big_endian>
1387 Symbol*
1388 Symbol_table::add_from_pluginobj(
1389 Sized_pluginobj<size, big_endian>* obj,
1390 const char* name,
1391 const char* ver,
1392 elfcpp::Sym<size, big_endian>* sym)
1393 {
1394 unsigned int st_shndx = sym->get_st_shndx();
1395 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1396
1397 Stringpool::Key ver_key = 0;
1398 bool is_default_version = false;
1399 bool is_forced_local = false;
1400
1401 if (ver != NULL)
1402 {
1403 ver = this->namepool_.add(ver, true, &ver_key);
1404 }
1405 // We don't want to assign a version to an undefined symbol,
1406 // even if it is listed in the version script. FIXME: What
1407 // about a common symbol?
1408 else
1409 {
1410 if (!this->version_script_.empty()
1411 && st_shndx != elfcpp::SHN_UNDEF)
1412 {
1413 // The symbol name did not have a version, but the
1414 // version script may assign a version anyway.
1415 std::string version;
1416 bool is_global;
1417 if (this->version_script_.get_symbol_version(name, &version,
1418 &is_global))
1419 {
1420 if (!is_global)
1421 is_forced_local = true;
1422 else if (!version.empty())
1423 {
1424 ver = this->namepool_.add_with_length(version.c_str(),
1425 version.length(),
1426 true,
1427 &ver_key);
1428 is_default_version = true;
1429 }
1430 }
1431 }
1432 }
1433
1434 Stringpool::Key name_key;
1435 name = this->namepool_.add(name, true, &name_key);
1436
1437 Sized_symbol<size>* res;
1438 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1439 is_default_version, *sym, st_shndx,
1440 is_ordinary, st_shndx);
1441
1442 if (res == NULL)
1443 return NULL;
1444
1445 if (is_forced_local)
1446 this->force_local(res);
1447
1448 return res;
1449 }
1450
1451 // Add all the symbols in a dynamic object to the hash table.
1452
1453 template<int size, bool big_endian>
1454 void
1455 Symbol_table::add_from_dynobj(
1456 Sized_dynobj<size, big_endian>* dynobj,
1457 const unsigned char* syms,
1458 size_t count,
1459 const char* sym_names,
1460 size_t sym_name_size,
1461 const unsigned char* versym,
1462 size_t versym_size,
1463 const std::vector<const char*>* version_map,
1464 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1465 size_t* defined)
1466 {
1467 *defined = 0;
1468
1469 gold_assert(size == parameters->target().get_size());
1470
1471 if (dynobj->just_symbols())
1472 {
1473 gold_error(_("--just-symbols does not make sense with a shared object"));
1474 return;
1475 }
1476
1477 // FIXME: For incremental links, we don't store version information,
1478 // so we need to ignore version symbols for now.
1479 if (parameters->incremental_update())
1480 versym = NULL;
1481
1482 if (versym != NULL && versym_size / 2 < count)
1483 {
1484 dynobj->error(_("too few symbol versions"));
1485 return;
1486 }
1487
1488 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1489
1490 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1491 // weak aliases. This is necessary because if the dynamic object
1492 // provides the same variable under two names, one of which is a
1493 // weak definition, and the regular object refers to the weak
1494 // definition, we have to put both the weak definition and the
1495 // strong definition into the dynamic symbol table. Given a weak
1496 // definition, the only way that we can find the corresponding
1497 // strong definition, if any, is to search the symbol table.
1498 std::vector<Sized_symbol<size>*> object_symbols;
1499
1500 const unsigned char* p = syms;
1501 const unsigned char* vs = versym;
1502 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1503 {
1504 elfcpp::Sym<size, big_endian> sym(p);
1505
1506 if (sympointers != NULL)
1507 (*sympointers)[i] = NULL;
1508
1509 // Ignore symbols with local binding or that have
1510 // internal or hidden visibility.
1511 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1512 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1513 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1514 continue;
1515
1516 // A protected symbol in a shared library must be treated as a
1517 // normal symbol when viewed from outside the shared library.
1518 // Implement this by overriding the visibility here.
1519 // Likewise, an IFUNC symbol in a shared library must be treated
1520 // as a normal FUNC symbol.
1521 elfcpp::Sym<size, big_endian>* psym = &sym;
1522 unsigned char symbuf[sym_size];
1523 elfcpp::Sym<size, big_endian> sym2(symbuf);
1524 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1525 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1526 {
1527 memcpy(symbuf, p, sym_size);
1528 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1529 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1530 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1531 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1532 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1533 psym = &sym2;
1534 }
1535
1536 unsigned int st_name = psym->get_st_name();
1537 if (st_name >= sym_name_size)
1538 {
1539 dynobj->error(_("bad symbol name offset %u at %zu"),
1540 st_name, i);
1541 continue;
1542 }
1543
1544 const char* name = sym_names + st_name;
1545
1546 bool is_ordinary;
1547 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1548 &is_ordinary);
1549
1550 if (st_shndx != elfcpp::SHN_UNDEF)
1551 ++*defined;
1552
1553 Sized_symbol<size>* res;
1554
1555 if (versym == NULL)
1556 {
1557 Stringpool::Key name_key;
1558 name = this->namepool_.add(name, true, &name_key);
1559 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1560 false, *psym, st_shndx, is_ordinary,
1561 st_shndx);
1562 }
1563 else
1564 {
1565 // Read the version information.
1566
1567 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1568
1569 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1570 v &= elfcpp::VERSYM_VERSION;
1571
1572 // The Sun documentation says that V can be VER_NDX_LOCAL,
1573 // or VER_NDX_GLOBAL, or a version index. The meaning of
1574 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1575 // The old GNU linker will happily generate VER_NDX_LOCAL
1576 // for an undefined symbol. I don't know what the Sun
1577 // linker will generate.
1578
1579 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1580 && st_shndx != elfcpp::SHN_UNDEF)
1581 {
1582 // This symbol should not be visible outside the object.
1583 continue;
1584 }
1585
1586 // At this point we are definitely going to add this symbol.
1587 Stringpool::Key name_key;
1588 name = this->namepool_.add(name, true, &name_key);
1589
1590 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1591 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1592 {
1593 // This symbol does not have a version.
1594 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1595 false, *psym, st_shndx, is_ordinary,
1596 st_shndx);
1597 }
1598 else
1599 {
1600 if (v >= version_map->size())
1601 {
1602 dynobj->error(_("versym for symbol %zu out of range: %u"),
1603 i, v);
1604 continue;
1605 }
1606
1607 const char* version = (*version_map)[v];
1608 if (version == NULL)
1609 {
1610 dynobj->error(_("versym for symbol %zu has no name: %u"),
1611 i, v);
1612 continue;
1613 }
1614
1615 Stringpool::Key version_key;
1616 version = this->namepool_.add(version, true, &version_key);
1617
1618 // If this is an absolute symbol, and the version name
1619 // and symbol name are the same, then this is the
1620 // version definition symbol. These symbols exist to
1621 // support using -u to pull in particular versions. We
1622 // do not want to record a version for them.
1623 if (st_shndx == elfcpp::SHN_ABS
1624 && !is_ordinary
1625 && name_key == version_key)
1626 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1627 false, *psym, st_shndx, is_ordinary,
1628 st_shndx);
1629 else
1630 {
1631 const bool is_default_version =
1632 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1633 res = this->add_from_object(dynobj, name, name_key, version,
1634 version_key, is_default_version,
1635 *psym, st_shndx,
1636 is_ordinary, st_shndx);
1637 }
1638 }
1639 }
1640
1641 if (res == NULL)
1642 continue;
1643
1644 // Note that it is possible that RES was overridden by an
1645 // earlier object, in which case it can't be aliased here.
1646 if (st_shndx != elfcpp::SHN_UNDEF
1647 && is_ordinary
1648 && psym->get_st_type() == elfcpp::STT_OBJECT
1649 && res->source() == Symbol::FROM_OBJECT
1650 && res->object() == dynobj)
1651 object_symbols.push_back(res);
1652
1653 // If the symbol has protected visibility in the dynobj,
1654 // mark it as such if it was not overridden.
1655 if (res->source() == Symbol::FROM_OBJECT
1656 && res->object() == dynobj
1657 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1658 res->set_is_protected();
1659
1660 if (sympointers != NULL)
1661 (*sympointers)[i] = res;
1662 }
1663
1664 this->record_weak_aliases(&object_symbols);
1665 }
1666
1667 // Add a symbol from a incremental object file.
1668
1669 template<int size, bool big_endian>
1670 Sized_symbol<size>*
1671 Symbol_table::add_from_incrobj(
1672 Object* obj,
1673 const char* name,
1674 const char* ver,
1675 elfcpp::Sym<size, big_endian>* sym)
1676 {
1677 unsigned int st_shndx = sym->get_st_shndx();
1678 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1679
1680 Stringpool::Key ver_key = 0;
1681 bool is_default_version = false;
1682
1683 Stringpool::Key name_key;
1684 name = this->namepool_.add(name, true, &name_key);
1685
1686 Sized_symbol<size>* res;
1687 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1688 is_default_version, *sym, st_shndx,
1689 is_ordinary, st_shndx);
1690
1691 return res;
1692 }
1693
1694 // This is used to sort weak aliases. We sort them first by section
1695 // index, then by offset, then by weak ahead of strong.
1696
1697 template<int size>
1698 class Weak_alias_sorter
1699 {
1700 public:
1701 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1702 };
1703
1704 template<int size>
1705 bool
1706 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1707 const Sized_symbol<size>* s2) const
1708 {
1709 bool is_ordinary;
1710 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1711 gold_assert(is_ordinary);
1712 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1713 gold_assert(is_ordinary);
1714 if (s1_shndx != s2_shndx)
1715 return s1_shndx < s2_shndx;
1716
1717 if (s1->value() != s2->value())
1718 return s1->value() < s2->value();
1719 if (s1->binding() != s2->binding())
1720 {
1721 if (s1->binding() == elfcpp::STB_WEAK)
1722 return true;
1723 if (s2->binding() == elfcpp::STB_WEAK)
1724 return false;
1725 }
1726 return std::string(s1->name()) < std::string(s2->name());
1727 }
1728
1729 // SYMBOLS is a list of object symbols from a dynamic object. Look
1730 // for any weak aliases, and record them so that if we add the weak
1731 // alias to the dynamic symbol table, we also add the corresponding
1732 // strong symbol.
1733
1734 template<int size>
1735 void
1736 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1737 {
1738 // Sort the vector by section index, then by offset, then by weak
1739 // ahead of strong.
1740 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1741
1742 // Walk through the vector. For each weak definition, record
1743 // aliases.
1744 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1745 symbols->begin();
1746 p != symbols->end();
1747 ++p)
1748 {
1749 if ((*p)->binding() != elfcpp::STB_WEAK)
1750 continue;
1751
1752 // Build a circular list of weak aliases. Each symbol points to
1753 // the next one in the circular list.
1754
1755 Sized_symbol<size>* from_sym = *p;
1756 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1757 for (q = p + 1; q != symbols->end(); ++q)
1758 {
1759 bool dummy;
1760 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1761 || (*q)->value() != from_sym->value())
1762 break;
1763
1764 this->weak_aliases_[from_sym] = *q;
1765 from_sym->set_has_alias();
1766 from_sym = *q;
1767 }
1768
1769 if (from_sym != *p)
1770 {
1771 this->weak_aliases_[from_sym] = *p;
1772 from_sym->set_has_alias();
1773 }
1774
1775 p = q - 1;
1776 }
1777 }
1778
1779 // Create and return a specially defined symbol. If ONLY_IF_REF is
1780 // true, then only create the symbol if there is a reference to it.
1781 // If this does not return NULL, it sets *POLDSYM to the existing
1782 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1783 // resolve the newly created symbol to the old one. This
1784 // canonicalizes *PNAME and *PVERSION.
1785
1786 template<int size, bool big_endian>
1787 Sized_symbol<size>*
1788 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1789 bool only_if_ref,
1790 elfcpp::STV visibility,
1791 Sized_symbol<size>** poldsym,
1792 bool* resolve_oldsym, bool is_forced_local)
1793 {
1794 *resolve_oldsym = false;
1795 *poldsym = NULL;
1796
1797 // If the caller didn't give us a version, see if we get one from
1798 // the version script.
1799 std::string v;
1800 bool is_default_version = false;
1801 if (!is_forced_local && *pversion == NULL)
1802 {
1803 bool is_global;
1804 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1805 {
1806 if (is_global && !v.empty())
1807 {
1808 *pversion = v.c_str();
1809 // If we get the version from a version script, then we
1810 // are also the default version.
1811 is_default_version = true;
1812 }
1813 }
1814 }
1815
1816 Symbol* oldsym;
1817 Sized_symbol<size>* sym;
1818
1819 bool add_to_table = false;
1820 typename Symbol_table_type::iterator add_loc = this->table_.end();
1821 bool add_def_to_table = false;
1822 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1823
1824 if (only_if_ref)
1825 {
1826 oldsym = this->lookup(*pname, *pversion);
1827 if (oldsym == NULL && is_default_version)
1828 oldsym = this->lookup(*pname, NULL);
1829 if (oldsym == NULL)
1830 return NULL;
1831 if (!oldsym->is_undefined())
1832 {
1833 // Skip if the old definition is from a regular object.
1834 if (!oldsym->is_from_dynobj())
1835 return NULL;
1836
1837 // If the symbol has hidden or internal visibility, ignore
1838 // definition and reference from a dynamic object.
1839 if ((visibility == elfcpp::STV_HIDDEN
1840 || visibility == elfcpp::STV_INTERNAL)
1841 && !oldsym->in_reg())
1842 return NULL;
1843 }
1844
1845 *pname = oldsym->name();
1846 if (is_default_version)
1847 *pversion = this->namepool_.add(*pversion, true, NULL);
1848 else
1849 *pversion = oldsym->version();
1850 }
1851 else
1852 {
1853 // Canonicalize NAME and VERSION.
1854 Stringpool::Key name_key;
1855 *pname = this->namepool_.add(*pname, true, &name_key);
1856
1857 Stringpool::Key version_key = 0;
1858 if (*pversion != NULL)
1859 *pversion = this->namepool_.add(*pversion, true, &version_key);
1860
1861 Symbol* const snull = NULL;
1862 std::pair<typename Symbol_table_type::iterator, bool> ins =
1863 this->table_.insert(std::make_pair(std::make_pair(name_key,
1864 version_key),
1865 snull));
1866
1867 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1868 std::make_pair(this->table_.end(), false);
1869 if (is_default_version)
1870 {
1871 const Stringpool::Key vnull = 0;
1872 insdefault =
1873 this->table_.insert(std::make_pair(std::make_pair(name_key,
1874 vnull),
1875 snull));
1876 }
1877
1878 if (!ins.second)
1879 {
1880 // We already have a symbol table entry for NAME/VERSION.
1881 oldsym = ins.first->second;
1882 gold_assert(oldsym != NULL);
1883
1884 if (is_default_version)
1885 {
1886 Sized_symbol<size>* soldsym =
1887 this->get_sized_symbol<size>(oldsym);
1888 this->define_default_version<size, big_endian>(soldsym,
1889 insdefault.second,
1890 insdefault.first);
1891 }
1892 }
1893 else
1894 {
1895 // We haven't seen this symbol before.
1896 gold_assert(ins.first->second == NULL);
1897
1898 add_to_table = true;
1899 add_loc = ins.first;
1900
1901 if (is_default_version
1902 && !insdefault.second
1903 && insdefault.first->second->version() == NULL)
1904 {
1905 // We are adding NAME/VERSION, and it is the default
1906 // version. We already have an entry for NAME/NULL
1907 // that does not already have a version.
1908 oldsym = insdefault.first->second;
1909 *resolve_oldsym = true;
1910 }
1911 else
1912 {
1913 oldsym = NULL;
1914
1915 if (is_default_version)
1916 {
1917 add_def_to_table = true;
1918 add_def_loc = insdefault.first;
1919 }
1920 }
1921 }
1922 }
1923
1924 const Target& target = parameters->target();
1925 if (!target.has_make_symbol())
1926 sym = new Sized_symbol<size>();
1927 else
1928 {
1929 Sized_target<size, big_endian>* sized_target =
1930 parameters->sized_target<size, big_endian>();
1931 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1932 NULL, elfcpp::SHN_UNDEF, 0);
1933 if (sym == NULL)
1934 return NULL;
1935 }
1936
1937 if (add_to_table)
1938 add_loc->second = sym;
1939 else
1940 gold_assert(oldsym != NULL);
1941
1942 if (add_def_to_table)
1943 add_def_loc->second = sym;
1944
1945 *poldsym = this->get_sized_symbol<size>(oldsym);
1946
1947 return sym;
1948 }
1949
1950 // Define a symbol based on an Output_data.
1951
1952 Symbol*
1953 Symbol_table::define_in_output_data(const char* name,
1954 const char* version,
1955 Defined defined,
1956 Output_data* od,
1957 uint64_t value,
1958 uint64_t symsize,
1959 elfcpp::STT type,
1960 elfcpp::STB binding,
1961 elfcpp::STV visibility,
1962 unsigned char nonvis,
1963 bool offset_is_from_end,
1964 bool only_if_ref)
1965 {
1966 if (parameters->target().get_size() == 32)
1967 {
1968 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1969 return this->do_define_in_output_data<32>(name, version, defined, od,
1970 value, symsize, type, binding,
1971 visibility, nonvis,
1972 offset_is_from_end,
1973 only_if_ref);
1974 #else
1975 gold_unreachable();
1976 #endif
1977 }
1978 else if (parameters->target().get_size() == 64)
1979 {
1980 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1981 return this->do_define_in_output_data<64>(name, version, defined, od,
1982 value, symsize, type, binding,
1983 visibility, nonvis,
1984 offset_is_from_end,
1985 only_if_ref);
1986 #else
1987 gold_unreachable();
1988 #endif
1989 }
1990 else
1991 gold_unreachable();
1992 }
1993
1994 // Define a symbol in an Output_data, sized version.
1995
1996 template<int size>
1997 Sized_symbol<size>*
1998 Symbol_table::do_define_in_output_data(
1999 const char* name,
2000 const char* version,
2001 Defined defined,
2002 Output_data* od,
2003 typename elfcpp::Elf_types<size>::Elf_Addr value,
2004 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2005 elfcpp::STT type,
2006 elfcpp::STB binding,
2007 elfcpp::STV visibility,
2008 unsigned char nonvis,
2009 bool offset_is_from_end,
2010 bool only_if_ref)
2011 {
2012 Sized_symbol<size>* sym;
2013 Sized_symbol<size>* oldsym;
2014 bool resolve_oldsym;
2015 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2016
2017 if (parameters->target().is_big_endian())
2018 {
2019 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2020 sym = this->define_special_symbol<size, true>(&name, &version,
2021 only_if_ref,
2022 visibility,
2023 &oldsym,
2024 &resolve_oldsym,
2025 is_forced_local);
2026 #else
2027 gold_unreachable();
2028 #endif
2029 }
2030 else
2031 {
2032 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2033 sym = this->define_special_symbol<size, false>(&name, &version,
2034 only_if_ref,
2035 visibility,
2036 &oldsym,
2037 &resolve_oldsym,
2038 is_forced_local);
2039 #else
2040 gold_unreachable();
2041 #endif
2042 }
2043
2044 if (sym == NULL)
2045 return NULL;
2046
2047 sym->init_output_data(name, version, od, value, symsize, type, binding,
2048 visibility, nonvis, offset_is_from_end,
2049 defined == PREDEFINED);
2050
2051 if (oldsym == NULL)
2052 {
2053 if (is_forced_local || this->version_script_.symbol_is_local(name))
2054 this->force_local(sym);
2055 else if (version != NULL)
2056 sym->set_is_default();
2057 return sym;
2058 }
2059
2060 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2061 this->override_with_special(oldsym, sym);
2062
2063 if (resolve_oldsym)
2064 return sym;
2065 else
2066 {
2067 if (defined == PREDEFINED
2068 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2069 this->force_local(oldsym);
2070 delete sym;
2071 return oldsym;
2072 }
2073 }
2074
2075 // Define a symbol based on an Output_segment.
2076
2077 Symbol*
2078 Symbol_table::define_in_output_segment(const char* name,
2079 const char* version,
2080 Defined defined,
2081 Output_segment* os,
2082 uint64_t value,
2083 uint64_t symsize,
2084 elfcpp::STT type,
2085 elfcpp::STB binding,
2086 elfcpp::STV visibility,
2087 unsigned char nonvis,
2088 Symbol::Segment_offset_base offset_base,
2089 bool only_if_ref)
2090 {
2091 if (parameters->target().get_size() == 32)
2092 {
2093 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2094 return this->do_define_in_output_segment<32>(name, version, defined, os,
2095 value, symsize, type,
2096 binding, visibility, nonvis,
2097 offset_base, only_if_ref);
2098 #else
2099 gold_unreachable();
2100 #endif
2101 }
2102 else if (parameters->target().get_size() == 64)
2103 {
2104 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2105 return this->do_define_in_output_segment<64>(name, version, defined, os,
2106 value, symsize, type,
2107 binding, visibility, nonvis,
2108 offset_base, only_if_ref);
2109 #else
2110 gold_unreachable();
2111 #endif
2112 }
2113 else
2114 gold_unreachable();
2115 }
2116
2117 // Define a symbol in an Output_segment, sized version.
2118
2119 template<int size>
2120 Sized_symbol<size>*
2121 Symbol_table::do_define_in_output_segment(
2122 const char* name,
2123 const char* version,
2124 Defined defined,
2125 Output_segment* os,
2126 typename elfcpp::Elf_types<size>::Elf_Addr value,
2127 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2128 elfcpp::STT type,
2129 elfcpp::STB binding,
2130 elfcpp::STV visibility,
2131 unsigned char nonvis,
2132 Symbol::Segment_offset_base offset_base,
2133 bool only_if_ref)
2134 {
2135 Sized_symbol<size>* sym;
2136 Sized_symbol<size>* oldsym;
2137 bool resolve_oldsym;
2138 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2139
2140 if (parameters->target().is_big_endian())
2141 {
2142 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2143 sym = this->define_special_symbol<size, true>(&name, &version,
2144 only_if_ref,
2145 visibility,
2146 &oldsym,
2147 &resolve_oldsym,
2148 is_forced_local);
2149 #else
2150 gold_unreachable();
2151 #endif
2152 }
2153 else
2154 {
2155 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2156 sym = this->define_special_symbol<size, false>(&name, &version,
2157 only_if_ref,
2158 visibility,
2159 &oldsym,
2160 &resolve_oldsym,
2161 is_forced_local);
2162 #else
2163 gold_unreachable();
2164 #endif
2165 }
2166
2167 if (sym == NULL)
2168 return NULL;
2169
2170 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2171 visibility, nonvis, offset_base,
2172 defined == PREDEFINED);
2173
2174 if (oldsym == NULL)
2175 {
2176 if (is_forced_local || this->version_script_.symbol_is_local(name))
2177 this->force_local(sym);
2178 else if (version != NULL)
2179 sym->set_is_default();
2180 return sym;
2181 }
2182
2183 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2184 this->override_with_special(oldsym, sym);
2185
2186 if (resolve_oldsym)
2187 return sym;
2188 else
2189 {
2190 if (is_forced_local || this->version_script_.symbol_is_local(name))
2191 this->force_local(oldsym);
2192 delete sym;
2193 return oldsym;
2194 }
2195 }
2196
2197 // Define a special symbol with a constant value. It is a multiple
2198 // definition error if this symbol is already defined.
2199
2200 Symbol*
2201 Symbol_table::define_as_constant(const char* name,
2202 const char* version,
2203 Defined defined,
2204 uint64_t value,
2205 uint64_t symsize,
2206 elfcpp::STT type,
2207 elfcpp::STB binding,
2208 elfcpp::STV visibility,
2209 unsigned char nonvis,
2210 bool only_if_ref,
2211 bool force_override)
2212 {
2213 if (parameters->target().get_size() == 32)
2214 {
2215 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2216 return this->do_define_as_constant<32>(name, version, defined, value,
2217 symsize, type, binding,
2218 visibility, nonvis, only_if_ref,
2219 force_override);
2220 #else
2221 gold_unreachable();
2222 #endif
2223 }
2224 else if (parameters->target().get_size() == 64)
2225 {
2226 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2227 return this->do_define_as_constant<64>(name, version, defined, value,
2228 symsize, type, binding,
2229 visibility, nonvis, only_if_ref,
2230 force_override);
2231 #else
2232 gold_unreachable();
2233 #endif
2234 }
2235 else
2236 gold_unreachable();
2237 }
2238
2239 // Define a symbol as a constant, sized version.
2240
2241 template<int size>
2242 Sized_symbol<size>*
2243 Symbol_table::do_define_as_constant(
2244 const char* name,
2245 const char* version,
2246 Defined defined,
2247 typename elfcpp::Elf_types<size>::Elf_Addr value,
2248 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2249 elfcpp::STT type,
2250 elfcpp::STB binding,
2251 elfcpp::STV visibility,
2252 unsigned char nonvis,
2253 bool only_if_ref,
2254 bool force_override)
2255 {
2256 Sized_symbol<size>* sym;
2257 Sized_symbol<size>* oldsym;
2258 bool resolve_oldsym;
2259 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2260
2261 if (parameters->target().is_big_endian())
2262 {
2263 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2264 sym = this->define_special_symbol<size, true>(&name, &version,
2265 only_if_ref,
2266 visibility,
2267 &oldsym,
2268 &resolve_oldsym,
2269 is_forced_local);
2270 #else
2271 gold_unreachable();
2272 #endif
2273 }
2274 else
2275 {
2276 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2277 sym = this->define_special_symbol<size, false>(&name, &version,
2278 only_if_ref,
2279 visibility,
2280 &oldsym,
2281 &resolve_oldsym,
2282 is_forced_local);
2283 #else
2284 gold_unreachable();
2285 #endif
2286 }
2287
2288 if (sym == NULL)
2289 return NULL;
2290
2291 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2292 nonvis, defined == PREDEFINED);
2293
2294 if (oldsym == NULL)
2295 {
2296 // Version symbols are absolute symbols with name == version.
2297 // We don't want to force them to be local.
2298 if ((version == NULL
2299 || name != version
2300 || value != 0)
2301 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2302 this->force_local(sym);
2303 else if (version != NULL
2304 && (name != version || value != 0))
2305 sym->set_is_default();
2306 return sym;
2307 }
2308
2309 if (force_override
2310 || Symbol_table::should_override_with_special(oldsym, type, defined))
2311 this->override_with_special(oldsym, sym);
2312
2313 if (resolve_oldsym)
2314 return sym;
2315 else
2316 {
2317 if (is_forced_local || this->version_script_.symbol_is_local(name))
2318 this->force_local(oldsym);
2319 delete sym;
2320 return oldsym;
2321 }
2322 }
2323
2324 // Define a set of symbols in output sections.
2325
2326 void
2327 Symbol_table::define_symbols(const Layout* layout, int count,
2328 const Define_symbol_in_section* p,
2329 bool only_if_ref)
2330 {
2331 for (int i = 0; i < count; ++i, ++p)
2332 {
2333 Output_section* os = layout->find_output_section(p->output_section);
2334 if (os != NULL)
2335 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2336 p->size, p->type, p->binding,
2337 p->visibility, p->nonvis,
2338 p->offset_is_from_end,
2339 only_if_ref || p->only_if_ref);
2340 else
2341 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2342 p->type, p->binding, p->visibility, p->nonvis,
2343 only_if_ref || p->only_if_ref,
2344 false);
2345 }
2346 }
2347
2348 // Define a set of symbols in output segments.
2349
2350 void
2351 Symbol_table::define_symbols(const Layout* layout, int count,
2352 const Define_symbol_in_segment* p,
2353 bool only_if_ref)
2354 {
2355 for (int i = 0; i < count; ++i, ++p)
2356 {
2357 Output_segment* os = layout->find_output_segment(p->segment_type,
2358 p->segment_flags_set,
2359 p->segment_flags_clear);
2360 if (os != NULL)
2361 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2362 p->size, p->type, p->binding,
2363 p->visibility, p->nonvis,
2364 p->offset_base,
2365 only_if_ref || p->only_if_ref);
2366 else
2367 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2368 p->type, p->binding, p->visibility, p->nonvis,
2369 only_if_ref || p->only_if_ref,
2370 false);
2371 }
2372 }
2373
2374 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2375 // symbol should be defined--typically a .dyn.bss section. VALUE is
2376 // the offset within POSD.
2377
2378 template<int size>
2379 void
2380 Symbol_table::define_with_copy_reloc(
2381 Sized_symbol<size>* csym,
2382 Output_data* posd,
2383 typename elfcpp::Elf_types<size>::Elf_Addr value)
2384 {
2385 gold_assert(csym->is_from_dynobj());
2386 gold_assert(!csym->is_copied_from_dynobj());
2387 Object* object = csym->object();
2388 gold_assert(object->is_dynamic());
2389 Dynobj* dynobj = static_cast<Dynobj*>(object);
2390
2391 // Our copied variable has to override any variable in a shared
2392 // library.
2393 elfcpp::STB binding = csym->binding();
2394 if (binding == elfcpp::STB_WEAK)
2395 binding = elfcpp::STB_GLOBAL;
2396
2397 this->define_in_output_data(csym->name(), csym->version(), COPY,
2398 posd, value, csym->symsize(),
2399 csym->type(), binding,
2400 csym->visibility(), csym->nonvis(),
2401 false, false);
2402
2403 csym->set_is_copied_from_dynobj();
2404 csym->set_needs_dynsym_entry();
2405
2406 this->copied_symbol_dynobjs_[csym] = dynobj;
2407
2408 // We have now defined all aliases, but we have not entered them all
2409 // in the copied_symbol_dynobjs_ map.
2410 if (csym->has_alias())
2411 {
2412 Symbol* sym = csym;
2413 while (true)
2414 {
2415 sym = this->weak_aliases_[sym];
2416 if (sym == csym)
2417 break;
2418 gold_assert(sym->output_data() == posd);
2419
2420 sym->set_is_copied_from_dynobj();
2421 this->copied_symbol_dynobjs_[sym] = dynobj;
2422 }
2423 }
2424 }
2425
2426 // SYM is defined using a COPY reloc. Return the dynamic object where
2427 // the original definition was found.
2428
2429 Dynobj*
2430 Symbol_table::get_copy_source(const Symbol* sym) const
2431 {
2432 gold_assert(sym->is_copied_from_dynobj());
2433 Copied_symbol_dynobjs::const_iterator p =
2434 this->copied_symbol_dynobjs_.find(sym);
2435 gold_assert(p != this->copied_symbol_dynobjs_.end());
2436 return p->second;
2437 }
2438
2439 // Add any undefined symbols named on the command line.
2440
2441 void
2442 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2443 {
2444 if (parameters->options().any_undefined()
2445 || layout->script_options()->any_unreferenced())
2446 {
2447 if (parameters->target().get_size() == 32)
2448 {
2449 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2450 this->do_add_undefined_symbols_from_command_line<32>(layout);
2451 #else
2452 gold_unreachable();
2453 #endif
2454 }
2455 else if (parameters->target().get_size() == 64)
2456 {
2457 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2458 this->do_add_undefined_symbols_from_command_line<64>(layout);
2459 #else
2460 gold_unreachable();
2461 #endif
2462 }
2463 else
2464 gold_unreachable();
2465 }
2466 }
2467
2468 template<int size>
2469 void
2470 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2471 {
2472 for (options::String_set::const_iterator p =
2473 parameters->options().undefined_begin();
2474 p != parameters->options().undefined_end();
2475 ++p)
2476 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2477
2478 for (options::String_set::const_iterator p =
2479 parameters->options().export_dynamic_symbol_begin();
2480 p != parameters->options().export_dynamic_symbol_end();
2481 ++p)
2482 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2483
2484 for (Script_options::referenced_const_iterator p =
2485 layout->script_options()->referenced_begin();
2486 p != layout->script_options()->referenced_end();
2487 ++p)
2488 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2489 }
2490
2491 template<int size>
2492 void
2493 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2494 {
2495 if (this->lookup(name) != NULL)
2496 return;
2497
2498 const char* version = NULL;
2499
2500 Sized_symbol<size>* sym;
2501 Sized_symbol<size>* oldsym;
2502 bool resolve_oldsym;
2503 if (parameters->target().is_big_endian())
2504 {
2505 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2506 sym = this->define_special_symbol<size, true>(&name, &version,
2507 false,
2508 elfcpp::STV_DEFAULT,
2509 &oldsym,
2510 &resolve_oldsym,
2511 false);
2512 #else
2513 gold_unreachable();
2514 #endif
2515 }
2516 else
2517 {
2518 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2519 sym = this->define_special_symbol<size, false>(&name, &version,
2520 false,
2521 elfcpp::STV_DEFAULT,
2522 &oldsym,
2523 &resolve_oldsym,
2524 false);
2525 #else
2526 gold_unreachable();
2527 #endif
2528 }
2529
2530 gold_assert(oldsym == NULL);
2531
2532 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2533 elfcpp::STV_DEFAULT, 0);
2534 ++this->saw_undefined_;
2535 }
2536
2537 // Set the dynamic symbol indexes. INDEX is the index of the first
2538 // global dynamic symbol. Pointers to the global symbols are stored
2539 // into the vector SYMS. The names are added to DYNPOOL.
2540 // This returns an updated dynamic symbol index.
2541
2542 unsigned int
2543 Symbol_table::set_dynsym_indexes(unsigned int index,
2544 unsigned int* pforced_local_count,
2545 std::vector<Symbol*>* syms,
2546 Stringpool* dynpool,
2547 Versions* versions)
2548 {
2549 // First process all the symbols which have been forced to be local,
2550 // as they must appear before all global symbols.
2551 unsigned int forced_local_count = 0;
2552 for (Forced_locals::iterator p = this->forced_locals_.begin();
2553 p != this->forced_locals_.end();
2554 ++p)
2555 {
2556 Symbol* sym = *p;
2557 gold_assert(sym->is_forced_local());
2558 if (sym->has_dynsym_index())
2559 continue;
2560 if (!sym->should_add_dynsym_entry(this))
2561 sym->set_dynsym_index(-1U);
2562 else
2563 {
2564 sym->set_dynsym_index(index);
2565 ++index;
2566 ++forced_local_count;
2567 dynpool->add(sym->name(), false, NULL);
2568 }
2569 }
2570 *pforced_local_count = forced_local_count;
2571
2572 // Allow a target to set dynsym indexes.
2573 if (parameters->target().has_custom_set_dynsym_indexes())
2574 {
2575 std::vector<Symbol*> dyn_symbols;
2576 for (Symbol_table_type::iterator p = this->table_.begin();
2577 p != this->table_.end();
2578 ++p)
2579 {
2580 Symbol* sym = p->second;
2581 if (sym->is_forced_local())
2582 continue;
2583 if (!sym->should_add_dynsym_entry(this))
2584 sym->set_dynsym_index(-1U);
2585 else
2586 dyn_symbols.push_back(sym);
2587 }
2588
2589 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2590 dynpool, versions, this);
2591 }
2592
2593 for (Symbol_table_type::iterator p = this->table_.begin();
2594 p != this->table_.end();
2595 ++p)
2596 {
2597 Symbol* sym = p->second;
2598
2599 if (sym->is_forced_local())
2600 continue;
2601
2602 // Note that SYM may already have a dynamic symbol index, since
2603 // some symbols appear more than once in the symbol table, with
2604 // and without a version.
2605
2606 if (!sym->should_add_dynsym_entry(this))
2607 sym->set_dynsym_index(-1U);
2608 else if (!sym->has_dynsym_index())
2609 {
2610 sym->set_dynsym_index(index);
2611 ++index;
2612 syms->push_back(sym);
2613 dynpool->add(sym->name(), false, NULL);
2614
2615 // Record any version information, except those from
2616 // as-needed libraries not seen to be needed. Note that the
2617 // is_needed state for such libraries can change in this loop.
2618 if (sym->version() != NULL)
2619 {
2620 if (!sym->is_from_dynobj()
2621 || !sym->object()->as_needed()
2622 || sym->object()->is_needed())
2623 versions->record_version(this, dynpool, sym);
2624 else
2625 {
2626 if (parameters->options().warn_drop_version())
2627 gold_warning(_("discarding version information for "
2628 "%s@%s, defined in unused shared library %s "
2629 "(linked with --as-needed)"),
2630 sym->name(), sym->version(),
2631 sym->object()->name().c_str());
2632 sym->clear_version();
2633 }
2634 }
2635 }
2636 }
2637
2638 // Finish up the versions. In some cases this may add new dynamic
2639 // symbols.
2640 index = versions->finalize(this, index, syms);
2641
2642 // Process target-specific symbols.
2643 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2644 p != this->target_symbols_.end();
2645 ++p)
2646 {
2647 (*p)->set_dynsym_index(index);
2648 ++index;
2649 syms->push_back(*p);
2650 dynpool->add((*p)->name(), false, NULL);
2651 }
2652
2653 return index;
2654 }
2655
2656 // Set the final values for all the symbols. The index of the first
2657 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2658 // file offset OFF. Add their names to POOL. Return the new file
2659 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2660 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2661 // written from the global symbol table in Symtab::write_globals(),
2662 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2663 // not necessarily the same as the sh_info field for the .dynsym
2664 // section, which will point to the first real global symbol.
2665
2666 off_t
2667 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2668 size_t dyncount, Stringpool* pool,
2669 unsigned int* plocal_symcount)
2670 {
2671 off_t ret;
2672
2673 gold_assert(*plocal_symcount != 0);
2674 this->first_global_index_ = *plocal_symcount;
2675
2676 this->dynamic_offset_ = dynoff;
2677 this->first_dynamic_global_index_ = dyn_global_index;
2678 this->dynamic_count_ = dyncount;
2679
2680 if (parameters->target().get_size() == 32)
2681 {
2682 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2683 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2684 #else
2685 gold_unreachable();
2686 #endif
2687 }
2688 else if (parameters->target().get_size() == 64)
2689 {
2690 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2691 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2692 #else
2693 gold_unreachable();
2694 #endif
2695 }
2696 else
2697 gold_unreachable();
2698
2699 // Now that we have the final symbol table, we can reliably note
2700 // which symbols should get warnings.
2701 this->warnings_.note_warnings(this);
2702
2703 return ret;
2704 }
2705
2706 // SYM is going into the symbol table at *PINDEX. Add the name to
2707 // POOL, update *PINDEX and *POFF.
2708
2709 template<int size>
2710 void
2711 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2712 unsigned int* pindex, off_t* poff)
2713 {
2714 sym->set_symtab_index(*pindex);
2715 if (sym->version() == NULL || !parameters->options().relocatable())
2716 pool->add(sym->name(), false, NULL);
2717 else
2718 pool->add(sym->versioned_name(), true, NULL);
2719 ++*pindex;
2720 *poff += elfcpp::Elf_sizes<size>::sym_size;
2721 }
2722
2723 // Set the final value for all the symbols. This is called after
2724 // Layout::finalize, so all the output sections have their final
2725 // address.
2726
2727 template<int size>
2728 off_t
2729 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2730 unsigned int* plocal_symcount)
2731 {
2732 off = align_address(off, size >> 3);
2733 this->offset_ = off;
2734
2735 unsigned int index = *plocal_symcount;
2736 const unsigned int orig_index = index;
2737
2738 // First do all the symbols which have been forced to be local, as
2739 // they must appear before all global symbols.
2740 for (Forced_locals::iterator p = this->forced_locals_.begin();
2741 p != this->forced_locals_.end();
2742 ++p)
2743 {
2744 Symbol* sym = *p;
2745 gold_assert(sym->is_forced_local());
2746 if (this->sized_finalize_symbol<size>(sym))
2747 {
2748 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2749 ++*plocal_symcount;
2750 }
2751 }
2752
2753 // Now do all the remaining symbols.
2754 for (Symbol_table_type::iterator p = this->table_.begin();
2755 p != this->table_.end();
2756 ++p)
2757 {
2758 Symbol* sym = p->second;
2759 if (this->sized_finalize_symbol<size>(sym))
2760 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2761 }
2762
2763 // Now do target-specific symbols.
2764 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2765 p != this->target_symbols_.end();
2766 ++p)
2767 {
2768 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2769 }
2770
2771 this->output_count_ = index - orig_index;
2772
2773 return off;
2774 }
2775
2776 // Compute the final value of SYM and store status in location PSTATUS.
2777 // During relaxation, this may be called multiple times for a symbol to
2778 // compute its would-be final value in each relaxation pass.
2779
2780 template<int size>
2781 typename Sized_symbol<size>::Value_type
2782 Symbol_table::compute_final_value(
2783 const Sized_symbol<size>* sym,
2784 Compute_final_value_status* pstatus) const
2785 {
2786 typedef typename Sized_symbol<size>::Value_type Value_type;
2787 Value_type value;
2788
2789 switch (sym->source())
2790 {
2791 case Symbol::FROM_OBJECT:
2792 {
2793 bool is_ordinary;
2794 unsigned int shndx = sym->shndx(&is_ordinary);
2795
2796 if (!is_ordinary
2797 && shndx != elfcpp::SHN_ABS
2798 && !Symbol::is_common_shndx(shndx))
2799 {
2800 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2801 return 0;
2802 }
2803
2804 Object* symobj = sym->object();
2805 if (symobj->is_dynamic())
2806 {
2807 value = 0;
2808 shndx = elfcpp::SHN_UNDEF;
2809 }
2810 else if (symobj->pluginobj() != NULL)
2811 {
2812 value = 0;
2813 shndx = elfcpp::SHN_UNDEF;
2814 }
2815 else if (shndx == elfcpp::SHN_UNDEF)
2816 value = 0;
2817 else if (!is_ordinary
2818 && (shndx == elfcpp::SHN_ABS
2819 || Symbol::is_common_shndx(shndx)))
2820 value = sym->value();
2821 else
2822 {
2823 Relobj* relobj = static_cast<Relobj*>(symobj);
2824 Output_section* os = relobj->output_section(shndx);
2825
2826 if (this->is_section_folded(relobj, shndx))
2827 {
2828 gold_assert(os == NULL);
2829 // Get the os of the section it is folded onto.
2830 Section_id folded = this->icf_->get_folded_section(relobj,
2831 shndx);
2832 gold_assert(folded.first != NULL);
2833 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2834 unsigned folded_shndx = folded.second;
2835
2836 os = folded_obj->output_section(folded_shndx);
2837 gold_assert(os != NULL);
2838
2839 // Replace (relobj, shndx) with canonical ICF input section.
2840 shndx = folded_shndx;
2841 relobj = folded_obj;
2842 }
2843
2844 uint64_t secoff64 = relobj->output_section_offset(shndx);
2845 if (os == NULL)
2846 {
2847 bool static_or_reloc = (parameters->doing_static_link() ||
2848 parameters->options().relocatable());
2849 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2850
2851 *pstatus = CFVS_NO_OUTPUT_SECTION;
2852 return 0;
2853 }
2854
2855 if (secoff64 == -1ULL)
2856 {
2857 // The section needs special handling (e.g., a merge section).
2858
2859 value = os->output_address(relobj, shndx, sym->value());
2860 }
2861 else
2862 {
2863 Value_type secoff =
2864 convert_types<Value_type, uint64_t>(secoff64);
2865 if (sym->type() == elfcpp::STT_TLS)
2866 value = sym->value() + os->tls_offset() + secoff;
2867 else
2868 value = sym->value() + os->address() + secoff;
2869 }
2870 }
2871 }
2872 break;
2873
2874 case Symbol::IN_OUTPUT_DATA:
2875 {
2876 Output_data* od = sym->output_data();
2877 value = sym->value();
2878 if (sym->type() != elfcpp::STT_TLS)
2879 value += od->address();
2880 else
2881 {
2882 Output_section* os = od->output_section();
2883 gold_assert(os != NULL);
2884 value += os->tls_offset() + (od->address() - os->address());
2885 }
2886 if (sym->offset_is_from_end())
2887 value += od->data_size();
2888 }
2889 break;
2890
2891 case Symbol::IN_OUTPUT_SEGMENT:
2892 {
2893 Output_segment* os = sym->output_segment();
2894 value = sym->value();
2895 if (sym->type() != elfcpp::STT_TLS)
2896 value += os->vaddr();
2897 switch (sym->offset_base())
2898 {
2899 case Symbol::SEGMENT_START:
2900 break;
2901 case Symbol::SEGMENT_END:
2902 value += os->memsz();
2903 break;
2904 case Symbol::SEGMENT_BSS:
2905 value += os->filesz();
2906 break;
2907 default:
2908 gold_unreachable();
2909 }
2910 }
2911 break;
2912
2913 case Symbol::IS_CONSTANT:
2914 value = sym->value();
2915 break;
2916
2917 case Symbol::IS_UNDEFINED:
2918 value = 0;
2919 break;
2920
2921 default:
2922 gold_unreachable();
2923 }
2924
2925 *pstatus = CFVS_OK;
2926 return value;
2927 }
2928
2929 // Finalize the symbol SYM. This returns true if the symbol should be
2930 // added to the symbol table, false otherwise.
2931
2932 template<int size>
2933 bool
2934 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2935 {
2936 typedef typename Sized_symbol<size>::Value_type Value_type;
2937
2938 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2939
2940 // The default version of a symbol may appear twice in the symbol
2941 // table. We only need to finalize it once.
2942 if (sym->has_symtab_index())
2943 return false;
2944
2945 if (!sym->in_reg())
2946 {
2947 gold_assert(!sym->has_symtab_index());
2948 sym->set_symtab_index(-1U);
2949 gold_assert(sym->dynsym_index() == -1U);
2950 return false;
2951 }
2952
2953 // If the symbol is only present on plugin files, the plugin decided we
2954 // don't need it.
2955 if (!sym->in_real_elf())
2956 {
2957 gold_assert(!sym->has_symtab_index());
2958 sym->set_symtab_index(-1U);
2959 return false;
2960 }
2961
2962 // Compute final symbol value.
2963 Compute_final_value_status status;
2964 Value_type value = this->compute_final_value(sym, &status);
2965
2966 switch (status)
2967 {
2968 case CFVS_OK:
2969 break;
2970 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2971 {
2972 bool is_ordinary;
2973 unsigned int shndx = sym->shndx(&is_ordinary);
2974 gold_error(_("%s: unsupported symbol section 0x%x"),
2975 sym->demangled_name().c_str(), shndx);
2976 }
2977 break;
2978 case CFVS_NO_OUTPUT_SECTION:
2979 sym->set_symtab_index(-1U);
2980 return false;
2981 default:
2982 gold_unreachable();
2983 }
2984
2985 sym->set_value(value);
2986
2987 if (parameters->options().strip_all()
2988 || !parameters->options().should_retain_symbol(sym->name()))
2989 {
2990 sym->set_symtab_index(-1U);
2991 return false;
2992 }
2993
2994 return true;
2995 }
2996
2997 // Write out the global symbols.
2998
2999 void
3000 Symbol_table::write_globals(const Stringpool* sympool,
3001 const Stringpool* dynpool,
3002 Output_symtab_xindex* symtab_xindex,
3003 Output_symtab_xindex* dynsym_xindex,
3004 Output_file* of) const
3005 {
3006 switch (parameters->size_and_endianness())
3007 {
3008 #ifdef HAVE_TARGET_32_LITTLE
3009 case Parameters::TARGET_32_LITTLE:
3010 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
3011 dynsym_xindex, of);
3012 break;
3013 #endif
3014 #ifdef HAVE_TARGET_32_BIG
3015 case Parameters::TARGET_32_BIG:
3016 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
3017 dynsym_xindex, of);
3018 break;
3019 #endif
3020 #ifdef HAVE_TARGET_64_LITTLE
3021 case Parameters::TARGET_64_LITTLE:
3022 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
3023 dynsym_xindex, of);
3024 break;
3025 #endif
3026 #ifdef HAVE_TARGET_64_BIG
3027 case Parameters::TARGET_64_BIG:
3028 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
3029 dynsym_xindex, of);
3030 break;
3031 #endif
3032 default:
3033 gold_unreachable();
3034 }
3035 }
3036
3037 // Write out the global symbols.
3038
3039 template<int size, bool big_endian>
3040 void
3041 Symbol_table::sized_write_globals(const Stringpool* sympool,
3042 const Stringpool* dynpool,
3043 Output_symtab_xindex* symtab_xindex,
3044 Output_symtab_xindex* dynsym_xindex,
3045 Output_file* of) const
3046 {
3047 const Target& target = parameters->target();
3048
3049 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3050
3051 const unsigned int output_count = this->output_count_;
3052 const section_size_type oview_size = output_count * sym_size;
3053 const unsigned int first_global_index = this->first_global_index_;
3054 unsigned char* psyms;
3055 if (this->offset_ == 0 || output_count == 0)
3056 psyms = NULL;
3057 else
3058 psyms = of->get_output_view(this->offset_, oview_size);
3059
3060 const unsigned int dynamic_count = this->dynamic_count_;
3061 const section_size_type dynamic_size = dynamic_count * sym_size;
3062 const unsigned int first_dynamic_global_index =
3063 this->first_dynamic_global_index_;
3064 unsigned char* dynamic_view;
3065 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3066 dynamic_view = NULL;
3067 else
3068 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3069
3070 for (Symbol_table_type::const_iterator p = this->table_.begin();
3071 p != this->table_.end();
3072 ++p)
3073 {
3074 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3075
3076 // Possibly warn about unresolved symbols in shared libraries.
3077 this->warn_about_undefined_dynobj_symbol(sym);
3078
3079 unsigned int sym_index = sym->symtab_index();
3080 unsigned int dynsym_index;
3081 if (dynamic_view == NULL)
3082 dynsym_index = -1U;
3083 else
3084 dynsym_index = sym->dynsym_index();
3085
3086 if (sym_index == -1U && dynsym_index == -1U)
3087 {
3088 // This symbol is not included in the output file.
3089 continue;
3090 }
3091
3092 unsigned int shndx;
3093 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3094 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3095 elfcpp::STB binding = sym->binding();
3096
3097 // If --weak-unresolved-symbols is set, change binding of unresolved
3098 // global symbols to STB_WEAK.
3099 if (parameters->options().weak_unresolved_symbols()
3100 && binding == elfcpp::STB_GLOBAL
3101 && sym->is_undefined())
3102 binding = elfcpp::STB_WEAK;
3103
3104 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3105 if (binding == elfcpp::STB_GNU_UNIQUE
3106 && !parameters->options().gnu_unique())
3107 binding = elfcpp::STB_GLOBAL;
3108
3109 switch (sym->source())
3110 {
3111 case Symbol::FROM_OBJECT:
3112 {
3113 bool is_ordinary;
3114 unsigned int in_shndx = sym->shndx(&is_ordinary);
3115
3116 if (!is_ordinary
3117 && in_shndx != elfcpp::SHN_ABS
3118 && !Symbol::is_common_shndx(in_shndx))
3119 {
3120 gold_error(_("%s: unsupported symbol section 0x%x"),
3121 sym->demangled_name().c_str(), in_shndx);
3122 shndx = in_shndx;
3123 }
3124 else
3125 {
3126 Object* symobj = sym->object();
3127 if (symobj->is_dynamic())
3128 {
3129 if (sym->needs_dynsym_value())
3130 dynsym_value = target.dynsym_value(sym);
3131 shndx = elfcpp::SHN_UNDEF;
3132 if (sym->is_undef_binding_weak())
3133 binding = elfcpp::STB_WEAK;
3134 else
3135 binding = elfcpp::STB_GLOBAL;
3136 }
3137 else if (symobj->pluginobj() != NULL)
3138 shndx = elfcpp::SHN_UNDEF;
3139 else if (in_shndx == elfcpp::SHN_UNDEF
3140 || (!is_ordinary
3141 && (in_shndx == elfcpp::SHN_ABS
3142 || Symbol::is_common_shndx(in_shndx))))
3143 shndx = in_shndx;
3144 else
3145 {
3146 Relobj* relobj = static_cast<Relobj*>(symobj);
3147 Output_section* os = relobj->output_section(in_shndx);
3148 if (this->is_section_folded(relobj, in_shndx))
3149 {
3150 // This global symbol must be written out even though
3151 // it is folded.
3152 // Get the os of the section it is folded onto.
3153 Section_id folded =
3154 this->icf_->get_folded_section(relobj, in_shndx);
3155 gold_assert(folded.first !=NULL);
3156 Relobj* folded_obj =
3157 reinterpret_cast<Relobj*>(folded.first);
3158 os = folded_obj->output_section(folded.second);
3159 gold_assert(os != NULL);
3160 }
3161 gold_assert(os != NULL);
3162 shndx = os->out_shndx();
3163
3164 if (shndx >= elfcpp::SHN_LORESERVE)
3165 {
3166 if (sym_index != -1U)
3167 symtab_xindex->add(sym_index, shndx);
3168 if (dynsym_index != -1U)
3169 dynsym_xindex->add(dynsym_index, shndx);
3170 shndx = elfcpp::SHN_XINDEX;
3171 }
3172
3173 // In object files symbol values are section
3174 // relative.
3175 if (parameters->options().relocatable())
3176 sym_value -= os->address();
3177 }
3178 }
3179 }
3180 break;
3181
3182 case Symbol::IN_OUTPUT_DATA:
3183 {
3184 Output_data* od = sym->output_data();
3185
3186 shndx = od->out_shndx();
3187 if (shndx >= elfcpp::SHN_LORESERVE)
3188 {
3189 if (sym_index != -1U)
3190 symtab_xindex->add(sym_index, shndx);
3191 if (dynsym_index != -1U)
3192 dynsym_xindex->add(dynsym_index, shndx);
3193 shndx = elfcpp::SHN_XINDEX;
3194 }
3195
3196 // In object files symbol values are section
3197 // relative.
3198 if (parameters->options().relocatable())
3199 {
3200 Output_section* os = od->output_section();
3201 gold_assert(os != NULL);
3202 sym_value -= os->address();
3203 }
3204 }
3205 break;
3206
3207 case Symbol::IN_OUTPUT_SEGMENT:
3208 {
3209 Output_segment* oseg = sym->output_segment();
3210 Output_section* osect = oseg->first_section();
3211 if (osect == NULL)
3212 shndx = elfcpp::SHN_ABS;
3213 else
3214 shndx = osect->out_shndx();
3215 }
3216 break;
3217
3218 case Symbol::IS_CONSTANT:
3219 shndx = elfcpp::SHN_ABS;
3220 break;
3221
3222 case Symbol::IS_UNDEFINED:
3223 shndx = elfcpp::SHN_UNDEF;
3224 break;
3225
3226 default:
3227 gold_unreachable();
3228 }
3229
3230 if (sym_index != -1U)
3231 {
3232 sym_index -= first_global_index;
3233 gold_assert(sym_index < output_count);
3234 unsigned char* ps = psyms + (sym_index * sym_size);
3235 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3236 binding, sympool, ps);
3237 }
3238
3239 if (dynsym_index != -1U)
3240 {
3241 dynsym_index -= first_dynamic_global_index;
3242 gold_assert(dynsym_index < dynamic_count);
3243 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3244 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3245 binding, dynpool, pd);
3246 // Allow a target to adjust dynamic symbol value.
3247 parameters->target().adjust_dyn_symbol(sym, pd);
3248 }
3249 }
3250
3251 // Write the target-specific symbols.
3252 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3253 p != this->target_symbols_.end();
3254 ++p)
3255 {
3256 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3257
3258 unsigned int sym_index = sym->symtab_index();
3259 unsigned int dynsym_index;
3260 if (dynamic_view == NULL)
3261 dynsym_index = -1U;
3262 else
3263 dynsym_index = sym->dynsym_index();
3264
3265 unsigned int shndx;
3266 switch (sym->source())
3267 {
3268 case Symbol::IS_CONSTANT:
3269 shndx = elfcpp::SHN_ABS;
3270 break;
3271 case Symbol::IS_UNDEFINED:
3272 shndx = elfcpp::SHN_UNDEF;
3273 break;
3274 default:
3275 gold_unreachable();
3276 }
3277
3278 if (sym_index != -1U)
3279 {
3280 sym_index -= first_global_index;
3281 gold_assert(sym_index < output_count);
3282 unsigned char* ps = psyms + (sym_index * sym_size);
3283 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3284 sym->binding(), sympool,
3285 ps);
3286 }
3287
3288 if (dynsym_index != -1U)
3289 {
3290 dynsym_index -= first_dynamic_global_index;
3291 gold_assert(dynsym_index < dynamic_count);
3292 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3293 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3294 sym->binding(), dynpool,
3295 pd);
3296 }
3297 }
3298
3299 of->write_output_view(this->offset_, oview_size, psyms);
3300 if (dynamic_view != NULL)
3301 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3302 }
3303
3304 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3305 // strtab holding the name.
3306
3307 template<int size, bool big_endian>
3308 void
3309 Symbol_table::sized_write_symbol(
3310 Sized_symbol<size>* sym,
3311 typename elfcpp::Elf_types<size>::Elf_Addr value,
3312 unsigned int shndx,
3313 elfcpp::STB binding,
3314 const Stringpool* pool,
3315 unsigned char* p) const
3316 {
3317 elfcpp::Sym_write<size, big_endian> osym(p);
3318 if (sym->version() == NULL || !parameters->options().relocatable())
3319 osym.put_st_name(pool->get_offset(sym->name()));
3320 else
3321 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3322 osym.put_st_value(value);
3323 // Use a symbol size of zero for undefined symbols from shared libraries.
3324 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3325 osym.put_st_size(0);
3326 else
3327 osym.put_st_size(sym->symsize());
3328 elfcpp::STT type = sym->type();
3329 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3330 // A version script may have overridden the default binding.
3331 if (sym->is_forced_local())
3332 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3333 else
3334 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3335 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3336 osym.put_st_shndx(shndx);
3337 }
3338
3339 // Check for unresolved symbols in shared libraries. This is
3340 // controlled by the --allow-shlib-undefined option.
3341
3342 // We only warn about libraries for which we have seen all the
3343 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3344 // which were not seen in this link. If we didn't see a DT_NEEDED
3345 // entry, we aren't going to be able to reliably report whether the
3346 // symbol is undefined.
3347
3348 // We also don't warn about libraries found in a system library
3349 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3350 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3351 // can have undefined references satisfied by ld-linux.so.
3352
3353 inline void
3354 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3355 {
3356 bool dummy;
3357 if (sym->source() == Symbol::FROM_OBJECT
3358 && sym->object()->is_dynamic()
3359 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3360 && sym->binding() != elfcpp::STB_WEAK
3361 && !parameters->options().allow_shlib_undefined()
3362 && !parameters->target().is_defined_by_abi(sym)
3363 && !sym->object()->is_in_system_directory())
3364 {
3365 // A very ugly cast.
3366 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3367 if (!dynobj->has_unknown_needed_entries())
3368 gold_undefined_symbol(sym);
3369 }
3370 }
3371
3372 // Write out a section symbol. Return the update offset.
3373
3374 void
3375 Symbol_table::write_section_symbol(const Output_section* os,
3376 Output_symtab_xindex* symtab_xindex,
3377 Output_file* of,
3378 off_t offset) const
3379 {
3380 switch (parameters->size_and_endianness())
3381 {
3382 #ifdef HAVE_TARGET_32_LITTLE
3383 case Parameters::TARGET_32_LITTLE:
3384 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3385 offset);
3386 break;
3387 #endif
3388 #ifdef HAVE_TARGET_32_BIG
3389 case Parameters::TARGET_32_BIG:
3390 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3391 offset);
3392 break;
3393 #endif
3394 #ifdef HAVE_TARGET_64_LITTLE
3395 case Parameters::TARGET_64_LITTLE:
3396 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3397 offset);
3398 break;
3399 #endif
3400 #ifdef HAVE_TARGET_64_BIG
3401 case Parameters::TARGET_64_BIG:
3402 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3403 offset);
3404 break;
3405 #endif
3406 default:
3407 gold_unreachable();
3408 }
3409 }
3410
3411 // Write out a section symbol, specialized for size and endianness.
3412
3413 template<int size, bool big_endian>
3414 void
3415 Symbol_table::sized_write_section_symbol(const Output_section* os,
3416 Output_symtab_xindex* symtab_xindex,
3417 Output_file* of,
3418 off_t offset) const
3419 {
3420 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3421
3422 unsigned char* pov = of->get_output_view(offset, sym_size);
3423
3424 elfcpp::Sym_write<size, big_endian> osym(pov);
3425 osym.put_st_name(0);
3426 if (parameters->options().relocatable())
3427 osym.put_st_value(0);
3428 else
3429 osym.put_st_value(os->address());
3430 osym.put_st_size(0);
3431 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3432 elfcpp::STT_SECTION));
3433 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3434
3435 unsigned int shndx = os->out_shndx();
3436 if (shndx >= elfcpp::SHN_LORESERVE)
3437 {
3438 symtab_xindex->add(os->symtab_index(), shndx);
3439 shndx = elfcpp::SHN_XINDEX;
3440 }
3441 osym.put_st_shndx(shndx);
3442
3443 of->write_output_view(offset, sym_size, pov);
3444 }
3445
3446 // Print statistical information to stderr. This is used for --stats.
3447
3448 void
3449 Symbol_table::print_stats() const
3450 {
3451 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3452 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3453 program_name, this->table_.size(), this->table_.bucket_count());
3454 #else
3455 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3456 program_name, this->table_.size());
3457 #endif
3458 this->namepool_.print_stats("symbol table stringpool");
3459 }
3460
3461 // We check for ODR violations by looking for symbols with the same
3462 // name for which the debugging information reports that they were
3463 // defined in disjoint source locations. When comparing the source
3464 // location, we consider instances with the same base filename to be
3465 // the same. This is because different object files/shared libraries
3466 // can include the same header file using different paths, and
3467 // different optimization settings can make the line number appear to
3468 // be a couple lines off, and we don't want to report an ODR violation
3469 // in those cases.
3470
3471 // This struct is used to compare line information, as returned by
3472 // Dwarf_line_info::one_addr2line. It implements a < comparison
3473 // operator used with std::sort.
3474
3475 struct Odr_violation_compare
3476 {
3477 bool
3478 operator()(const std::string& s1, const std::string& s2) const
3479 {
3480 // Inputs should be of the form "dirname/filename:linenum" where
3481 // "dirname/" is optional. We want to compare just the filename:linenum.
3482
3483 // Find the last '/' in each string.
3484 std::string::size_type s1begin = s1.rfind('/');
3485 std::string::size_type s2begin = s2.rfind('/');
3486 // If there was no '/' in a string, start at the beginning.
3487 if (s1begin == std::string::npos)
3488 s1begin = 0;
3489 if (s2begin == std::string::npos)
3490 s2begin = 0;
3491 return s1.compare(s1begin, std::string::npos,
3492 s2, s2begin, std::string::npos) < 0;
3493 }
3494 };
3495
3496 // Returns all of the lines attached to LOC, not just the one the
3497 // instruction actually came from.
3498 std::vector<std::string>
3499 Symbol_table::linenos_from_loc(const Task* task,
3500 const Symbol_location& loc)
3501 {
3502 // We need to lock the object in order to read it. This
3503 // means that we have to run in a singleton Task. If we
3504 // want to run this in a general Task for better
3505 // performance, we will need one Task for object, plus
3506 // appropriate locking to ensure that we don't conflict with
3507 // other uses of the object. Also note, one_addr2line is not
3508 // currently thread-safe.
3509 Task_lock_obj<Object> tl(task, loc.object);
3510
3511 std::vector<std::string> result;
3512 Symbol_location code_loc = loc;
3513 parameters->target().function_location(&code_loc);
3514 // 16 is the size of the object-cache that one_addr2line should use.
3515 std::string canonical_result = Dwarf_line_info::one_addr2line(
3516 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3517 if (!canonical_result.empty())
3518 result.push_back(canonical_result);
3519 return result;
3520 }
3521
3522 // OutputIterator that records if it was ever assigned to. This
3523 // allows it to be used with std::set_intersection() to check for
3524 // intersection rather than computing the intersection.
3525 struct Check_intersection
3526 {
3527 Check_intersection()
3528 : value_(false)
3529 {}
3530
3531 bool had_intersection() const
3532 { return this->value_; }
3533
3534 Check_intersection& operator++()
3535 { return *this; }
3536
3537 Check_intersection& operator*()
3538 { return *this; }
3539
3540 template<typename T>
3541 Check_intersection& operator=(const T&)
3542 {
3543 this->value_ = true;
3544 return *this;
3545 }
3546
3547 private:
3548 bool value_;
3549 };
3550
3551 // Check candidate_odr_violations_ to find symbols with the same name
3552 // but apparently different definitions (different source-file/line-no
3553 // for each line assigned to the first instruction).
3554
3555 void
3556 Symbol_table::detect_odr_violations(const Task* task,
3557 const char* output_file_name) const
3558 {
3559 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3560 it != candidate_odr_violations_.end();
3561 ++it)
3562 {
3563 const char* const symbol_name = it->first;
3564
3565 std::string first_object_name;
3566 std::vector<std::string> first_object_linenos;
3567
3568 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3569 locs = it->second.begin();
3570 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3571 locs_end = it->second.end();
3572 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3573 {
3574 // Save the line numbers from the first definition to
3575 // compare to the other definitions. Ideally, we'd compare
3576 // every definition to every other, but we don't want to
3577 // take O(N^2) time to do this. This shortcut may cause
3578 // false negatives that appear or disappear depending on the
3579 // link order, but it won't cause false positives.
3580 first_object_name = locs->object->name();
3581 first_object_linenos = this->linenos_from_loc(task, *locs);
3582 }
3583 if (first_object_linenos.empty())
3584 continue;
3585
3586 // Sort by Odr_violation_compare to make std::set_intersection work.
3587 std::string first_object_canonical_result = first_object_linenos.back();
3588 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3589 Odr_violation_compare());
3590
3591 for (; locs != locs_end; ++locs)
3592 {
3593 std::vector<std::string> linenos =
3594 this->linenos_from_loc(task, *locs);
3595 // linenos will be empty if we couldn't parse the debug info.
3596 if (linenos.empty())
3597 continue;
3598 // Sort by Odr_violation_compare to make std::set_intersection work.
3599 gold_assert(!linenos.empty());
3600 std::string second_object_canonical_result = linenos.back();
3601 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3602
3603 Check_intersection intersection_result =
3604 std::set_intersection(first_object_linenos.begin(),
3605 first_object_linenos.end(),
3606 linenos.begin(),
3607 linenos.end(),
3608 Check_intersection(),
3609 Odr_violation_compare());
3610 if (!intersection_result.had_intersection())
3611 {
3612 gold_warning(_("while linking %s: symbol '%s' defined in "
3613 "multiple places (possible ODR violation):"),
3614 output_file_name, demangle(symbol_name).c_str());
3615 // This only prints one location from each definition,
3616 // which may not be the location we expect to intersect
3617 // with another definition. We could print the whole
3618 // set of locations, but that seems too verbose.
3619 fprintf(stderr, _(" %s from %s\n"),
3620 first_object_canonical_result.c_str(),
3621 first_object_name.c_str());
3622 fprintf(stderr, _(" %s from %s\n"),
3623 second_object_canonical_result.c_str(),
3624 locs->object->name().c_str());
3625 // Only print one broken pair, to avoid needing to
3626 // compare against a list of the disjoint definition
3627 // locations we've found so far. (If we kept comparing
3628 // against just the first one, we'd get a lot of
3629 // redundant complaints about the second definition
3630 // location.)
3631 break;
3632 }
3633 }
3634 }
3635 // We only call one_addr2line() in this function, so we can clear its cache.
3636 Dwarf_line_info::clear_addr2line_cache();
3637 }
3638
3639 // Warnings functions.
3640
3641 // Add a new warning.
3642
3643 void
3644 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3645 const std::string& warning)
3646 {
3647 name = symtab->canonicalize_name(name);
3648 this->warnings_[name].set(obj, warning);
3649 }
3650
3651 // Look through the warnings and mark the symbols for which we should
3652 // warn. This is called during Layout::finalize when we know the
3653 // sources for all the symbols.
3654
3655 void
3656 Warnings::note_warnings(Symbol_table* symtab)
3657 {
3658 for (Warning_table::iterator p = this->warnings_.begin();
3659 p != this->warnings_.end();
3660 ++p)
3661 {
3662 Symbol* sym = symtab->lookup(p->first, NULL);
3663 if (sym != NULL
3664 && sym->source() == Symbol::FROM_OBJECT
3665 && sym->object() == p->second.object)
3666 sym->set_has_warning();
3667 }
3668 }
3669
3670 // Issue a warning. This is called when we see a relocation against a
3671 // symbol for which has a warning.
3672
3673 template<int size, bool big_endian>
3674 void
3675 Warnings::issue_warning(const Symbol* sym,
3676 const Relocate_info<size, big_endian>* relinfo,
3677 size_t relnum, off_t reloffset) const
3678 {
3679 gold_assert(sym->has_warning());
3680
3681 // We don't want to issue a warning for a relocation against the
3682 // symbol in the same object file in which the symbol is defined.
3683 if (sym->object() == relinfo->object)
3684 return;
3685
3686 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3687 gold_assert(p != this->warnings_.end());
3688 gold_warning_at_location(relinfo, relnum, reloffset,
3689 "%s", p->second.text.c_str());
3690 }
3691
3692 // Instantiate the templates we need. We could use the configure
3693 // script to restrict this to only the ones needed for implemented
3694 // targets.
3695
3696 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3697 template
3698 void
3699 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3700 #endif
3701
3702 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3703 template
3704 void
3705 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3706 #endif
3707
3708 #ifdef HAVE_TARGET_32_LITTLE
3709 template
3710 void
3711 Symbol_table::add_from_relobj<32, false>(
3712 Sized_relobj_file<32, false>* relobj,
3713 const unsigned char* syms,
3714 size_t count,
3715 size_t symndx_offset,
3716 const char* sym_names,
3717 size_t sym_name_size,
3718 Sized_relobj_file<32, false>::Symbols* sympointers,
3719 size_t* defined);
3720 #endif
3721
3722 #ifdef HAVE_TARGET_32_BIG
3723 template
3724 void
3725 Symbol_table::add_from_relobj<32, true>(
3726 Sized_relobj_file<32, true>* relobj,
3727 const unsigned char* syms,
3728 size_t count,
3729 size_t symndx_offset,
3730 const char* sym_names,
3731 size_t sym_name_size,
3732 Sized_relobj_file<32, true>::Symbols* sympointers,
3733 size_t* defined);
3734 #endif
3735
3736 #ifdef HAVE_TARGET_64_LITTLE
3737 template
3738 void
3739 Symbol_table::add_from_relobj<64, false>(
3740 Sized_relobj_file<64, false>* relobj,
3741 const unsigned char* syms,
3742 size_t count,
3743 size_t symndx_offset,
3744 const char* sym_names,
3745 size_t sym_name_size,
3746 Sized_relobj_file<64, false>::Symbols* sympointers,
3747 size_t* defined);
3748 #endif
3749
3750 #ifdef HAVE_TARGET_64_BIG
3751 template
3752 void
3753 Symbol_table::add_from_relobj<64, true>(
3754 Sized_relobj_file<64, true>* relobj,
3755 const unsigned char* syms,
3756 size_t count,
3757 size_t symndx_offset,
3758 const char* sym_names,
3759 size_t sym_name_size,
3760 Sized_relobj_file<64, true>::Symbols* sympointers,
3761 size_t* defined);
3762 #endif
3763
3764 #ifdef HAVE_TARGET_32_LITTLE
3765 template
3766 Symbol*
3767 Symbol_table::add_from_pluginobj<32, false>(
3768 Sized_pluginobj<32, false>* obj,
3769 const char* name,
3770 const char* ver,
3771 elfcpp::Sym<32, false>* sym);
3772 #endif
3773
3774 #ifdef HAVE_TARGET_32_BIG
3775 template
3776 Symbol*
3777 Symbol_table::add_from_pluginobj<32, true>(
3778 Sized_pluginobj<32, true>* obj,
3779 const char* name,
3780 const char* ver,
3781 elfcpp::Sym<32, true>* sym);
3782 #endif
3783
3784 #ifdef HAVE_TARGET_64_LITTLE
3785 template
3786 Symbol*
3787 Symbol_table::add_from_pluginobj<64, false>(
3788 Sized_pluginobj<64, false>* obj,
3789 const char* name,
3790 const char* ver,
3791 elfcpp::Sym<64, false>* sym);
3792 #endif
3793
3794 #ifdef HAVE_TARGET_64_BIG
3795 template
3796 Symbol*
3797 Symbol_table::add_from_pluginobj<64, true>(
3798 Sized_pluginobj<64, true>* obj,
3799 const char* name,
3800 const char* ver,
3801 elfcpp::Sym<64, true>* sym);
3802 #endif
3803
3804 #ifdef HAVE_TARGET_32_LITTLE
3805 template
3806 void
3807 Symbol_table::add_from_dynobj<32, false>(
3808 Sized_dynobj<32, false>* dynobj,
3809 const unsigned char* syms,
3810 size_t count,
3811 const char* sym_names,
3812 size_t sym_name_size,
3813 const unsigned char* versym,
3814 size_t versym_size,
3815 const std::vector<const char*>* version_map,
3816 Sized_relobj_file<32, false>::Symbols* sympointers,
3817 size_t* defined);
3818 #endif
3819
3820 #ifdef HAVE_TARGET_32_BIG
3821 template
3822 void
3823 Symbol_table::add_from_dynobj<32, true>(
3824 Sized_dynobj<32, true>* dynobj,
3825 const unsigned char* syms,
3826 size_t count,
3827 const char* sym_names,
3828 size_t sym_name_size,
3829 const unsigned char* versym,
3830 size_t versym_size,
3831 const std::vector<const char*>* version_map,
3832 Sized_relobj_file<32, true>::Symbols* sympointers,
3833 size_t* defined);
3834 #endif
3835
3836 #ifdef HAVE_TARGET_64_LITTLE
3837 template
3838 void
3839 Symbol_table::add_from_dynobj<64, false>(
3840 Sized_dynobj<64, false>* dynobj,
3841 const unsigned char* syms,
3842 size_t count,
3843 const char* sym_names,
3844 size_t sym_name_size,
3845 const unsigned char* versym,
3846 size_t versym_size,
3847 const std::vector<const char*>* version_map,
3848 Sized_relobj_file<64, false>::Symbols* sympointers,
3849 size_t* defined);
3850 #endif
3851
3852 #ifdef HAVE_TARGET_64_BIG
3853 template
3854 void
3855 Symbol_table::add_from_dynobj<64, true>(
3856 Sized_dynobj<64, true>* dynobj,
3857 const unsigned char* syms,
3858 size_t count,
3859 const char* sym_names,
3860 size_t sym_name_size,
3861 const unsigned char* versym,
3862 size_t versym_size,
3863 const std::vector<const char*>* version_map,
3864 Sized_relobj_file<64, true>::Symbols* sympointers,
3865 size_t* defined);
3866 #endif
3867
3868 #ifdef HAVE_TARGET_32_LITTLE
3869 template
3870 Sized_symbol<32>*
3871 Symbol_table::add_from_incrobj(
3872 Object* obj,
3873 const char* name,
3874 const char* ver,
3875 elfcpp::Sym<32, false>* sym);
3876 #endif
3877
3878 #ifdef HAVE_TARGET_32_BIG
3879 template
3880 Sized_symbol<32>*
3881 Symbol_table::add_from_incrobj(
3882 Object* obj,
3883 const char* name,
3884 const char* ver,
3885 elfcpp::Sym<32, true>* sym);
3886 #endif
3887
3888 #ifdef HAVE_TARGET_64_LITTLE
3889 template
3890 Sized_symbol<64>*
3891 Symbol_table::add_from_incrobj(
3892 Object* obj,
3893 const char* name,
3894 const char* ver,
3895 elfcpp::Sym<64, false>* sym);
3896 #endif
3897
3898 #ifdef HAVE_TARGET_64_BIG
3899 template
3900 Sized_symbol<64>*
3901 Symbol_table::add_from_incrobj(
3902 Object* obj,
3903 const char* name,
3904 const char* ver,
3905 elfcpp::Sym<64, true>* sym);
3906 #endif
3907
3908 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3909 template
3910 void
3911 Symbol_table::define_with_copy_reloc<32>(
3912 Sized_symbol<32>* sym,
3913 Output_data* posd,
3914 elfcpp::Elf_types<32>::Elf_Addr value);
3915 #endif
3916
3917 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3918 template
3919 void
3920 Symbol_table::define_with_copy_reloc<64>(
3921 Sized_symbol<64>* sym,
3922 Output_data* posd,
3923 elfcpp::Elf_types<64>::Elf_Addr value);
3924 #endif
3925
3926 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3927 template
3928 void
3929 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3930 Output_data* od, Value_type value,
3931 Size_type symsize, elfcpp::STT type,
3932 elfcpp::STB binding,
3933 elfcpp::STV visibility,
3934 unsigned char nonvis,
3935 bool offset_is_from_end,
3936 bool is_predefined);
3937
3938 template
3939 void
3940 Sized_symbol<32>::init_constant(const char* name, const char* version,
3941 Value_type value, Size_type symsize,
3942 elfcpp::STT type, elfcpp::STB binding,
3943 elfcpp::STV visibility, unsigned char nonvis,
3944 bool is_predefined);
3945
3946 template
3947 void
3948 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3949 Value_type value, elfcpp::STT type,
3950 elfcpp::STB binding, elfcpp::STV visibility,
3951 unsigned char nonvis);
3952 #endif
3953
3954 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3955 template
3956 void
3957 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3958 Output_data* od, Value_type value,
3959 Size_type symsize, elfcpp::STT type,
3960 elfcpp::STB binding,
3961 elfcpp::STV visibility,
3962 unsigned char nonvis,
3963 bool offset_is_from_end,
3964 bool is_predefined);
3965
3966 template
3967 void
3968 Sized_symbol<64>::init_constant(const char* name, const char* version,
3969 Value_type value, Size_type symsize,
3970 elfcpp::STT type, elfcpp::STB binding,
3971 elfcpp::STV visibility, unsigned char nonvis,
3972 bool is_predefined);
3973
3974 template
3975 void
3976 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3977 Value_type value, elfcpp::STT type,
3978 elfcpp::STB binding, elfcpp::STV visibility,
3979 unsigned char nonvis);
3980 #endif
3981
3982 #ifdef HAVE_TARGET_32_LITTLE
3983 template
3984 void
3985 Warnings::issue_warning<32, false>(const Symbol* sym,
3986 const Relocate_info<32, false>* relinfo,
3987 size_t relnum, off_t reloffset) const;
3988 #endif
3989
3990 #ifdef HAVE_TARGET_32_BIG
3991 template
3992 void
3993 Warnings::issue_warning<32, true>(const Symbol* sym,
3994 const Relocate_info<32, true>* relinfo,
3995 size_t relnum, off_t reloffset) const;
3996 #endif
3997
3998 #ifdef HAVE_TARGET_64_LITTLE
3999 template
4000 void
4001 Warnings::issue_warning<64, false>(const Symbol* sym,
4002 const Relocate_info<64, false>* relinfo,
4003 size_t relnum, off_t reloffset) const;
4004 #endif
4005
4006 #ifdef HAVE_TARGET_64_BIG
4007 template
4008 void
4009 Warnings::issue_warning<64, true>(const Symbol* sym,
4010 const Relocate_info<64, true>* relinfo,
4011 size_t relnum, off_t reloffset) const;
4012 #endif
4013
4014 } // End namespace gold.