]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gprof/hist.c
19990502 sourceware import
[thirdparty/binutils-gdb.git] / gprof / hist.c
1 /*
2 * Histogram related operations.
3 */
4 #include <stdio.h>
5 #include "libiberty.h"
6 #include "gprof.h"
7 #include "corefile.h"
8 #include "gmon_io.h"
9 #include "gmon_out.h"
10 #include "hist.h"
11 #include "symtab.h"
12 #include "sym_ids.h"
13 #include "utils.h"
14
15 #define UNITS_TO_CODE (offset_to_code / sizeof(UNIT))
16
17 static void scale_and_align_entries PARAMS ((void));
18
19 /* declarations of automatically generated functions to output blurbs: */
20 extern void flat_blurb PARAMS ((FILE * fp));
21
22 bfd_vma s_lowpc; /* lowest address in .text */
23 bfd_vma s_highpc = 0; /* highest address in .text */
24 bfd_vma lowpc, highpc; /* same, but expressed in UNITs */
25 int hist_num_bins = 0; /* number of histogram samples */
26 int *hist_sample = 0; /* histogram samples (shorts in the file!) */
27 double hist_scale;
28 char hist_dimension[sizeof (((struct gmon_hist_hdr *) 0)->dimen) + 1] =
29 "seconds";
30 char hist_dimension_abbrev = 's';
31
32 static double accum_time; /* accumulated time so far for print_line() */
33 static double total_time; /* total time for all routines */
34 /*
35 * Table of SI prefixes for powers of 10 (used to automatically
36 * scale some of the values in the flat profile).
37 */
38 const struct
39 {
40 char prefix;
41 double scale;
42 }
43 SItab[] =
44 {
45 {
46 'T', 1e-12
47 }
48 , /* tera */
49 {
50 'G', 1e-09
51 }
52 , /* giga */
53 {
54 'M', 1e-06
55 }
56 , /* mega */
57 {
58 'K', 1e-03
59 }
60 , /* kilo */
61 {
62 ' ', 1e-00
63 }
64 ,
65 {
66 'm', 1e+03
67 }
68 , /* milli */
69 {
70 'u', 1e+06
71 }
72 , /* micro */
73 {
74 'n', 1e+09
75 }
76 , /* nano */
77 {
78 'p', 1e+12
79 }
80 , /* pico */
81 {
82 'f', 1e+15
83 }
84 , /* femto */
85 {
86 'a', 1e+18
87 }
88 , /* ato */
89 };
90
91 /*
92 * Read the histogram from file IFP. FILENAME is the name of IFP and
93 * is provided for formatting error messages only.
94 */
95 void
96 DEFUN (hist_read_rec, (ifp, filename), FILE * ifp AND const char *filename)
97 {
98 struct gmon_hist_hdr hdr;
99 bfd_vma n_lowpc, n_highpc;
100 int i, ncnt, profrate;
101 UNIT count;
102
103 if (fread (&hdr, sizeof (hdr), 1, ifp) != 1)
104 {
105 fprintf (stderr, _("%s: %s: unexpected end of file\n"),
106 whoami, filename);
107 done (1);
108 }
109
110 n_lowpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.low_pc);
111 n_highpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.high_pc);
112 ncnt = bfd_get_32 (core_bfd, (bfd_byte *) hdr.hist_size);
113 profrate = bfd_get_32 (core_bfd, (bfd_byte *) hdr.prof_rate);
114 strncpy (hist_dimension, hdr.dimen, sizeof (hdr.dimen));
115 hist_dimension[sizeof (hdr.dimen)] = '\0';
116 hist_dimension_abbrev = hdr.dimen_abbrev;
117
118 if (!s_highpc)
119 {
120
121 /* this is the first histogram record: */
122
123 s_lowpc = n_lowpc;
124 s_highpc = n_highpc;
125 lowpc = (bfd_vma) n_lowpc / sizeof (UNIT);
126 highpc = (bfd_vma) n_highpc / sizeof (UNIT);
127 hist_num_bins = ncnt;
128 hz = profrate;
129 }
130
131 DBG (SAMPLEDEBUG,
132 printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %d\n",
133 n_lowpc, n_highpc, ncnt);
134 printf ("[hist_read_rec] s_lowpc 0x%lx s_highpc 0x%lx nsamples %d\n",
135 s_lowpc, s_highpc, hist_num_bins);
136 printf ("[hist_read_rec] lowpc 0x%lx highpc 0x%lx\n",
137 lowpc, highpc));
138
139 if (n_lowpc != s_lowpc || n_highpc != s_highpc
140 || ncnt != hist_num_bins || hz != profrate)
141 {
142 fprintf (stderr, _("%s: `%s' is incompatible with first gmon file\n"),
143 whoami, filename);
144 done (1);
145 }
146
147 if (!hist_sample)
148 {
149 hist_sample = (int *) xmalloc (hist_num_bins * sizeof (hist_sample[0]));
150 memset (hist_sample, 0, hist_num_bins * sizeof (hist_sample[0]));
151 }
152
153 for (i = 0; i < hist_num_bins; ++i)
154 {
155 if (fread (&count[0], sizeof (count), 1, ifp) != 1)
156 {
157 fprintf (stderr,
158 _("%s: %s: unexpected EOF after reading %d of %d samples\n"),
159 whoami, filename, i, hist_num_bins);
160 done (1);
161 }
162 hist_sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]);
163 }
164 }
165
166
167 /*
168 * Write execution histogram to file OFP. FILENAME is the name
169 * of OFP and is provided for formatting error-messages only.
170 */
171 void
172 DEFUN (hist_write_hist, (ofp, filename), FILE * ofp AND const char *filename)
173 {
174 struct gmon_hist_hdr hdr;
175 unsigned char tag;
176 UNIT count;
177 int i;
178
179 /* write header: */
180
181 tag = GMON_TAG_TIME_HIST;
182 put_vma (core_bfd, s_lowpc, (bfd_byte *) hdr.low_pc);
183 put_vma (core_bfd, s_highpc, (bfd_byte *) hdr.high_pc);
184 bfd_put_32 (core_bfd, hist_num_bins, (bfd_byte *) hdr.hist_size);
185 bfd_put_32 (core_bfd, hz, (bfd_byte *) hdr.prof_rate);
186 strncpy (hdr.dimen, hist_dimension, sizeof (hdr.dimen));
187 hdr.dimen_abbrev = hist_dimension_abbrev;
188
189 if (fwrite (&tag, sizeof (tag), 1, ofp) != 1
190 || fwrite (&hdr, sizeof (hdr), 1, ofp) != 1)
191 {
192 perror (filename);
193 done (1);
194 }
195
196 for (i = 0; i < hist_num_bins; ++i)
197 {
198 bfd_put_16 (core_bfd, hist_sample[i], (bfd_byte *) & count[0]);
199 if (fwrite (&count[0], sizeof (count), 1, ofp) != 1)
200 {
201 perror (filename);
202 done (1);
203 }
204 }
205 }
206
207
208 /*
209 * Calculate scaled entry point addresses (to save time in
210 * hist_assign_samples), and, on architectures that have procedure
211 * entry masks at the start of a function, possibly push the scaled
212 * entry points over the procedure entry mask, if it turns out that
213 * the entry point is in one bin and the code for a routine is in the
214 * next bin.
215 */
216 static void
217 scale_and_align_entries ()
218 {
219 Sym *sym;
220 bfd_vma bin_of_entry;
221 bfd_vma bin_of_code;
222
223 for (sym = symtab.base; sym < symtab.limit; sym++)
224 {
225 sym->hist.scaled_addr = sym->addr / sizeof (UNIT);
226 bin_of_entry = (sym->hist.scaled_addr - lowpc) / hist_scale;
227 bin_of_code = (sym->hist.scaled_addr + UNITS_TO_CODE - lowpc) / hist_scale;
228 if (bin_of_entry < bin_of_code)
229 {
230 DBG (SAMPLEDEBUG,
231 printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n",
232 sym->hist.scaled_addr,
233 sym->hist.scaled_addr + UNITS_TO_CODE));
234 sym->hist.scaled_addr += UNITS_TO_CODE;
235 }
236 }
237 }
238
239
240 /*
241 * Assign samples to the symbol to which they belong.
242 *
243 * Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC)
244 * which may overlap one more symbol address ranges. If a symbol
245 * overlaps with the bin's address range by O percent, then O percent
246 * of the bin's count is credited to that symbol.
247 *
248 * There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be
249 * with respect to the symbol's address range [SYM_LOW_PC,
250 * SYM_HIGH_PC) as shown in the following diagram. OVERLAP computes
251 * the distance (in UNITs) between the arrows, the fraction of the
252 * sample that is to be credited to the symbol which starts at
253 * SYM_LOW_PC.
254 *
255 * sym_low_pc sym_high_pc
256 * | |
257 * v v
258 *
259 * +-----------------------------------------------+
260 * | |
261 * | ->| |<- ->| |<- ->| |<- |
262 * | | | | | |
263 * +---------+ +---------+ +---------+
264 *
265 * ^ ^ ^ ^ ^ ^
266 * | | | | | |
267 * bin_low_pc bin_high_pc bin_low_pc bin_high_pc bin_low_pc bin_high_pc
268 *
269 * For the VAX we assert that samples will never fall in the first two
270 * bytes of any routine, since that is the entry mask, thus we call
271 * scale_and_align_entries() to adjust the entry points if the entry
272 * mask falls in one bin but the code for the routine doesn't start
273 * until the next bin. In conjunction with the alignment of routine
274 * addresses, this should allow us to have only one sample for every
275 * four bytes of text space and never have any overlap (the two end
276 * cases, above).
277 */
278 void
279 DEFUN_VOID (hist_assign_samples)
280 {
281 bfd_vma bin_low_pc, bin_high_pc;
282 bfd_vma sym_low_pc, sym_high_pc;
283 bfd_vma overlap, addr;
284 int bin_count, i;
285 unsigned int j;
286 double time, credit;
287
288 /* read samples and assign to symbols: */
289 hist_scale = highpc - lowpc;
290 hist_scale /= hist_num_bins;
291 scale_and_align_entries ();
292
293 /* iterate over all sample bins: */
294
295 for (i = 0, j = 1; i < hist_num_bins; ++i)
296 {
297 bin_count = hist_sample[i];
298 if (!bin_count)
299 {
300 continue;
301 }
302 bin_low_pc = lowpc + (bfd_vma) (hist_scale * i);
303 bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1));
304 time = bin_count;
305 DBG (SAMPLEDEBUG,
306 printf (
307 "[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%d\n",
308 sizeof (UNIT) * bin_low_pc, sizeof (UNIT) * bin_high_pc,
309 bin_count));
310 total_time += time;
311
312 /* credit all symbols that are covered by bin I: */
313
314 for (j = j - 1; j < symtab.len; ++j)
315 {
316 sym_low_pc = symtab.base[j].hist.scaled_addr;
317 sym_high_pc = symtab.base[j + 1].hist.scaled_addr;
318 /*
319 * If high end of bin is below entry address, go for next
320 * bin:
321 */
322 if (bin_high_pc < sym_low_pc)
323 {
324 break;
325 }
326 /*
327 * If low end of bin is above high end of symbol, go for
328 * next symbol.
329 */
330 if (bin_low_pc >= sym_high_pc)
331 {
332 continue;
333 }
334 overlap =
335 MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc);
336 if (overlap > 0)
337 {
338 DBG (SAMPLEDEBUG,
339 printf (
340 "[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n",
341 symtab.base[j].addr, sizeof (UNIT) * sym_high_pc,
342 symtab.base[j].name, overlap * time / hist_scale,
343 overlap));
344 addr = symtab.base[j].addr;
345 credit = overlap * time / hist_scale;
346 /*
347 * Credit symbol if it appears in INCL_FLAT or that
348 * table is empty and it does not appear it in
349 * EXCL_FLAT.
350 */
351 if (sym_lookup (&syms[INCL_FLAT], addr)
352 || (syms[INCL_FLAT].len == 0
353 && !sym_lookup (&syms[EXCL_FLAT], addr)))
354 {
355 symtab.base[j].hist.time += credit;
356 }
357 else
358 {
359 total_time -= credit;
360 }
361 }
362 }
363 }
364 DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n",
365 total_time));
366 }
367
368
369 /*
370 * Print header for flag histogram profile:
371 */
372 static void
373 DEFUN (print_header, (prefix), const char prefix)
374 {
375 char unit[64];
376
377 sprintf (unit, _("%c%c/call"), prefix, hist_dimension_abbrev);
378
379 if (bsd_style_output)
380 {
381 printf (_("\ngranularity: each sample hit covers %ld byte(s)"),
382 (long) hist_scale * sizeof (UNIT));
383 if (total_time > 0.0)
384 {
385 printf (_(" for %.2f%% of %.2f %s\n\n"),
386 100.0 / total_time, total_time / hz, hist_dimension);
387 }
388 }
389 else
390 {
391 printf (_("\nEach sample counts as %g %s.\n"), 1.0 / hz, hist_dimension);
392 }
393
394 if (total_time <= 0.0)
395 {
396 printf (_(" no time accumulated\n\n"));
397 /* this doesn't hurt since all the numerators will be zero: */
398 total_time = 1.0;
399 }
400
401 printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s %-8.8s\n",
402 "% ", _("cumulative"), _("self "), "", _("self "), _("total "), "");
403 printf ("%5.5s %9.9s %8.8s %8.8s %8.8s %8.8s %-8.8s\n",
404 _("time"), hist_dimension, hist_dimension, _("calls"), unit, unit,
405 _("name"));
406 }
407
408
409 static void
410 DEFUN (print_line, (sym, scale), Sym * sym AND double scale)
411 {
412 if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0)
413 {
414 return;
415 }
416
417 accum_time += sym->hist.time;
418 if (bsd_style_output)
419 {
420 printf ("%5.1f %10.2f %8.2f",
421 total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
422 accum_time / hz, sym->hist.time / hz);
423 }
424 else
425 {
426 printf ("%6.2f %9.2f %8.2f",
427 total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
428 accum_time / hz, sym->hist.time / hz);
429 }
430 if (sym->ncalls != 0)
431 {
432 printf (" %8lu %8.2f %8.2f ",
433 sym->ncalls, scale * sym->hist.time / hz / sym->ncalls,
434 scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls);
435 }
436 else
437 {
438 printf (" %8.8s %8.8s %8.8s ", "", "", "");
439 }
440 if (bsd_style_output)
441 {
442 print_name (sym);
443 }
444 else
445 {
446 print_name_only (sym);
447 }
448 printf ("\n");
449 }
450
451
452 /*
453 * Compare LP and RP. The primary comparison key is execution time,
454 * the secondary is number of invocation, and the tertiary is the
455 * lexicographic order of the function names.
456 */
457 static int
458 DEFUN (cmp_time, (lp, rp), const PTR lp AND const PTR rp)
459 {
460 const Sym *left = *(const Sym **) lp;
461 const Sym *right = *(const Sym **) rp;
462 double time_diff;
463
464 time_diff = right->hist.time - left->hist.time;
465 if (time_diff > 0.0)
466 {
467 return 1;
468 }
469 if (time_diff < 0.0)
470 {
471 return -1;
472 }
473
474 if (right->ncalls > left->ncalls)
475 {
476 return 1;
477 }
478 if (right->ncalls < left->ncalls)
479 {
480 return -1;
481 }
482
483 return strcmp (left->name, right->name);
484 }
485
486
487 /*
488 * Print the flat histogram profile.
489 */
490 void
491 DEFUN_VOID (hist_print)
492 {
493 Sym **time_sorted_syms, *top_dog, *sym;
494 unsigned int index;
495 int log_scale;
496 double top_time, time;
497 bfd_vma addr;
498
499 if (first_output)
500 {
501 first_output = FALSE;
502 }
503 else
504 {
505 printf ("\f\n");
506 }
507
508 accum_time = 0.0;
509 if (bsd_style_output)
510 {
511 if (print_descriptions)
512 {
513 printf (_("\n\n\nflat profile:\n"));
514 flat_blurb (stdout);
515 }
516 }
517 else
518 {
519 printf (_("Flat profile:\n"));
520 }
521 /*
522 * Sort the symbol table by time (call-count and name as secondary
523 * and tertiary keys):
524 */
525 time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
526 for (index = 0; index < symtab.len; ++index)
527 {
528 time_sorted_syms[index] = &symtab.base[index];
529 }
530 qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time);
531
532 if (bsd_style_output)
533 {
534 log_scale = 5; /* milli-seconds is BSD-default */
535 }
536 else
537 {
538 /*
539 * Search for symbol with highest per-call execution time and
540 * scale accordingly:
541 */
542 log_scale = 0;
543 top_dog = 0;
544 top_time = 0.0;
545 for (index = 0; index < symtab.len; ++index)
546 {
547 sym = time_sorted_syms[index];
548 if (sym->ncalls != 0)
549 {
550 time = (sym->hist.time + sym->cg.child_time) / sym->ncalls;
551 if (time > top_time)
552 {
553 top_dog = sym;
554 top_time = time;
555 }
556 }
557 }
558 if (top_dog && top_dog->ncalls != 0 && top_time > 0.0)
559 {
560 top_time /= hz;
561 while (SItab[log_scale].scale * top_time < 1000.0
562 && ((size_t) log_scale
563 < sizeof (SItab) / sizeof (SItab[0]) - 1))
564 {
565 ++log_scale;
566 }
567 }
568 }
569
570 /*
571 * For now, the dimension is always seconds. In the future, we
572 * may also want to support other (pseudo-)dimensions (such as
573 * I-cache misses etc.).
574 */
575 print_header (SItab[log_scale].prefix);
576 for (index = 0; index < symtab.len; ++index)
577 {
578 addr = time_sorted_syms[index]->addr;
579 /*
580 * Print symbol if its in INCL_FLAT table or that table
581 * is empty and the symbol is not in EXCL_FLAT.
582 */
583 if (sym_lookup (&syms[INCL_FLAT], addr)
584 || (syms[INCL_FLAT].len == 0
585 && !sym_lookup (&syms[EXCL_FLAT], addr)))
586 {
587 print_line (time_sorted_syms[index], SItab[log_scale].scale);
588 }
589 }
590 free (time_sorted_syms);
591
592 if (print_descriptions && !bsd_style_output)
593 {
594 flat_blurb (stdout);
595 }
596 }