]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - ld/ldlang.c
Add padding with an expression rather than a hard-address
[thirdparty/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2020 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bfd_boolean map_head_is_link_order = FALSE;
67 static lang_output_section_statement_type *default_common_section;
68 static bfd_boolean map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 /* Header for list of statements corresponding to any files involved in the
73 link, either specified from the command-line or added implicitely (eg.
74 archive member used to resolved undefined symbol, wildcard statement from
75 linker script, etc.). Next pointer is in next field of a
76 lang_statement_header_type (reached via header field in a
77 lang_statement_union). */
78 static lang_statement_list_type statement_list;
79 static lang_statement_list_type *stat_save[10];
80 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
81 static struct unique_sections *unique_section_list;
82 static struct asneeded_minfo *asneeded_list_head;
83 static unsigned int opb_shift = 0;
84
85 /* Forward declarations. */
86 static void exp_init_os (etree_type *);
87 static lang_input_statement_type *lookup_name (const char *);
88 static void insert_undefined (const char *);
89 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
90 static void print_statement (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statement_list (lang_statement_union_type *,
93 lang_output_section_statement_type *);
94 static void print_statements (void);
95 static void print_input_section (asection *, bfd_boolean);
96 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
97 static void lang_record_phdrs (void);
98 static void lang_do_version_exports_section (void);
99 static void lang_finalize_version_expr_head
100 (struct bfd_elf_version_expr_head *);
101 static void lang_do_memory_regions (bfd_boolean);
102
103 /* Exported variables. */
104 const char *output_target;
105 lang_output_section_statement_type *abs_output_section;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bfd_boolean entry_from_cmdline;
126 bfd_boolean lang_has_input_file = FALSE;
127 bfd_boolean had_output_filename = FALSE;
128 bfd_boolean lang_float_flag = FALSE;
129 bfd_boolean delete_output_file_on_failure = FALSE;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 #ifdef ENABLE_LIBCTF
134 static ctf_file_t *ctf_output;
135 #endif
136
137 /* Functions that traverse the linker script and might evaluate
138 DEFINED() need to increment this at the start of the traversal. */
139 int lang_statement_iteration = 0;
140
141 /* Count times through one_lang_size_sections_pass after mark phase. */
142 static int lang_sizing_iteration = 0;
143
144 /* Return TRUE if the PATTERN argument is a wildcard pattern.
145 Although backslashes are treated specially if a pattern contains
146 wildcards, we do not consider the mere presence of a backslash to
147 be enough to cause the pattern to be treated as a wildcard.
148 That lets us handle DOS filenames more naturally. */
149 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
150
151 #define new_stat(x, y) \
152 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
153
154 #define outside_section_address(q) \
155 ((q)->output_offset + (q)->output_section->vma)
156
157 #define outside_symbol_address(q) \
158 ((q)->value + outside_section_address (q->section))
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bfd_boolean
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bfd_boolean match = FALSE;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = TRUE;
234
235 if (sep != file_spec)
236 {
237 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bfd_boolean
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return TRUE;
263
264 return FALSE;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bfd_boolean
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return TRUE;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return TRUE;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 bfd_get_filename (file->the_bfd->my_archive)) == 0)
300 return TRUE;
301 }
302
303 return FALSE;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
343
344 while (sec != NULL)
345 {
346 bfd_boolean skip = FALSE;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bfd_boolean multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bfd_boolean
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = TRUE;
380 return TRUE;
381 }
382
383 d->found_section = s;
384 return FALSE;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bfd_boolean *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, FALSE };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bfd_boolean
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bfd_boolean
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return FALSE;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return FALSE;
427
428 return TRUE;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
570 lang_input_statement_type *file,
571 void *output)
572 {
573 lang_section_bst_type *node;
574 lang_section_bst_type **tree;
575 lang_output_section_statement_type *os;
576
577 os = (lang_output_section_statement_type *) output;
578
579 if (unique_section_p (section, os))
580 return;
581
582 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
583 node->left = 0;
584 node->right = 0;
585 node->section = section;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bfd_boolean multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bfd_boolean multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bfd_boolean multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bfd_boolean multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
772 sname);
773
774 if (!skip)
775 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
776 data);
777 else
778 {
779 skip = !match_simple_wild (wildsec3->spec.name, sname);
780 if (!skip)
781 walk_wild_consider_section (ptr, file, s, wildsec3,
782 callback, data);
783 }
784 }
785 }
786 }
787
788 static void
789 walk_wild_section (lang_wild_statement_type *ptr,
790 lang_input_statement_type *file,
791 callback_t callback,
792 void *data)
793 {
794 if (file->flags.just_syms)
795 return;
796
797 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
798 }
799
800 /* Returns TRUE when name1 is a wildcard spec that might match
801 something name2 can match. We're conservative: we return FALSE
802 only if the prefixes of name1 and name2 are different up to the
803 first wildcard character. */
804
805 static bfd_boolean
806 wild_spec_can_overlap (const char *name1, const char *name2)
807 {
808 size_t prefix1_len = strcspn (name1, "?*[");
809 size_t prefix2_len = strcspn (name2, "?*[");
810 size_t min_prefix_len;
811
812 /* Note that if there is no wildcard character, then we treat the
813 terminating 0 as part of the prefix. Thus ".text" won't match
814 ".text." or ".text.*", for example. */
815 if (name1[prefix1_len] == '\0')
816 prefix1_len++;
817 if (name2[prefix2_len] == '\0')
818 prefix2_len++;
819
820 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
821
822 return memcmp (name1, name2, min_prefix_len) == 0;
823 }
824
825 /* Select specialized code to handle various kinds of wildcard
826 statements. */
827
828 static void
829 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
830 {
831 int sec_count = 0;
832 int wild_name_count = 0;
833 struct wildcard_list *sec;
834 int signature;
835 int data_counter;
836
837 ptr->walk_wild_section_handler = walk_wild_section_general;
838 ptr->handler_data[0] = NULL;
839 ptr->handler_data[1] = NULL;
840 ptr->handler_data[2] = NULL;
841 ptr->handler_data[3] = NULL;
842 ptr->tree = NULL;
843
844 /* Count how many wildcard_specs there are, and how many of those
845 actually use wildcards in the name. Also, bail out if any of the
846 wildcard names are NULL. (Can this actually happen?
847 walk_wild_section used to test for it.) And bail out if any
848 of the wildcards are more complex than a simple string
849 ending in a single '*'. */
850 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
851 {
852 ++sec_count;
853 if (sec->spec.name == NULL)
854 return;
855 if (wildcardp (sec->spec.name))
856 {
857 ++wild_name_count;
858 if (!is_simple_wild (sec->spec.name))
859 return;
860 }
861 }
862
863 /* The zero-spec case would be easy to optimize but it doesn't
864 happen in practice. Likewise, more than 4 specs doesn't
865 happen in practice. */
866 if (sec_count == 0 || sec_count > 4)
867 return;
868
869 /* Check that no two specs can match the same section. */
870 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
871 {
872 struct wildcard_list *sec2;
873 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
874 {
875 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
876 return;
877 }
878 }
879
880 signature = (sec_count << 8) + wild_name_count;
881 switch (signature)
882 {
883 case 0x0100:
884 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
885 break;
886 case 0x0101:
887 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
888 break;
889 case 0x0201:
890 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
891 break;
892 case 0x0302:
893 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
894 break;
895 case 0x0402:
896 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
897 break;
898 default:
899 return;
900 }
901
902 /* Now fill the data array with pointers to the specs, first the
903 specs with non-wildcard names, then the specs with wildcard
904 names. It's OK to process the specs in different order from the
905 given order, because we've already determined that no section
906 will match more than one spec. */
907 data_counter = 0;
908 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
909 if (!wildcardp (sec->spec.name))
910 ptr->handler_data[data_counter++] = sec;
911 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
912 if (wildcardp (sec->spec.name))
913 ptr->handler_data[data_counter++] = sec;
914 }
915
916 /* Handle a wild statement for a single file F. */
917
918 static void
919 walk_wild_file (lang_wild_statement_type *s,
920 lang_input_statement_type *f,
921 callback_t callback,
922 void *data)
923 {
924 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
925 return;
926
927 if (f->the_bfd == NULL
928 || !bfd_check_format (f->the_bfd, bfd_archive))
929 walk_wild_section (s, f, callback, data);
930 else
931 {
932 bfd *member;
933
934 /* This is an archive file. We must map each member of the
935 archive separately. */
936 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
937 while (member != NULL)
938 {
939 /* When lookup_name is called, it will call the add_symbols
940 entry point for the archive. For each element of the
941 archive which is included, BFD will call ldlang_add_file,
942 which will set the usrdata field of the member to the
943 lang_input_statement. */
944 if (bfd_usrdata (member) != NULL)
945 walk_wild_section (s, bfd_usrdata (member), callback, data);
946
947 member = bfd_openr_next_archived_file (f->the_bfd, member);
948 }
949 }
950 }
951
952 static void
953 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
954 {
955 const char *file_spec = s->filename;
956 char *p;
957
958 if (file_spec == NULL)
959 {
960 /* Perform the iteration over all files in the list. */
961 LANG_FOR_EACH_INPUT_STATEMENT (f)
962 {
963 walk_wild_file (s, f, callback, data);
964 }
965 }
966 else if ((p = archive_path (file_spec)) != NULL)
967 {
968 LANG_FOR_EACH_INPUT_STATEMENT (f)
969 {
970 if (input_statement_is_archive_path (file_spec, p, f))
971 walk_wild_file (s, f, callback, data);
972 }
973 }
974 else if (wildcardp (file_spec))
975 {
976 LANG_FOR_EACH_INPUT_STATEMENT (f)
977 {
978 if (fnmatch (file_spec, f->filename, 0) == 0)
979 walk_wild_file (s, f, callback, data);
980 }
981 }
982 else
983 {
984 lang_input_statement_type *f;
985
986 /* Perform the iteration over a single file. */
987 f = lookup_name (file_spec);
988 if (f)
989 walk_wild_file (s, f, callback, data);
990 }
991 }
992
993 /* lang_for_each_statement walks the parse tree and calls the provided
994 function for each node, except those inside output section statements
995 with constraint set to -1. */
996
997 void
998 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
999 lang_statement_union_type *s)
1000 {
1001 for (; s != NULL; s = s->header.next)
1002 {
1003 func (s);
1004
1005 switch (s->header.type)
1006 {
1007 case lang_constructors_statement_enum:
1008 lang_for_each_statement_worker (func, constructor_list.head);
1009 break;
1010 case lang_output_section_statement_enum:
1011 if (s->output_section_statement.constraint != -1)
1012 lang_for_each_statement_worker
1013 (func, s->output_section_statement.children.head);
1014 break;
1015 case lang_wild_statement_enum:
1016 lang_for_each_statement_worker (func,
1017 s->wild_statement.children.head);
1018 break;
1019 case lang_group_statement_enum:
1020 lang_for_each_statement_worker (func,
1021 s->group_statement.children.head);
1022 break;
1023 case lang_data_statement_enum:
1024 case lang_reloc_statement_enum:
1025 case lang_object_symbols_statement_enum:
1026 case lang_output_statement_enum:
1027 case lang_target_statement_enum:
1028 case lang_input_section_enum:
1029 case lang_input_statement_enum:
1030 case lang_assignment_statement_enum:
1031 case lang_padding_statement_enum:
1032 case lang_address_statement_enum:
1033 case lang_fill_statement_enum:
1034 case lang_insert_statement_enum:
1035 break;
1036 default:
1037 FAIL ();
1038 break;
1039 }
1040 }
1041 }
1042
1043 void
1044 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1045 {
1046 lang_for_each_statement_worker (func, statement_list.head);
1047 }
1048
1049 /*----------------------------------------------------------------------*/
1050
1051 void
1052 lang_list_init (lang_statement_list_type *list)
1053 {
1054 list->head = NULL;
1055 list->tail = &list->head;
1056 }
1057
1058 static void
1059 lang_statement_append (lang_statement_list_type *list,
1060 void *element,
1061 void *field)
1062 {
1063 *(list->tail) = element;
1064 list->tail = field;
1065 }
1066
1067 void
1068 push_stat_ptr (lang_statement_list_type *new_ptr)
1069 {
1070 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1071 abort ();
1072 *stat_save_ptr++ = stat_ptr;
1073 stat_ptr = new_ptr;
1074 }
1075
1076 void
1077 pop_stat_ptr (void)
1078 {
1079 if (stat_save_ptr <= stat_save)
1080 abort ();
1081 stat_ptr = *--stat_save_ptr;
1082 }
1083
1084 /* Build a new statement node for the parse tree. */
1085
1086 static lang_statement_union_type *
1087 new_statement (enum statement_enum type,
1088 size_t size,
1089 lang_statement_list_type *list)
1090 {
1091 lang_statement_union_type *new_stmt;
1092
1093 new_stmt = stat_alloc (size);
1094 new_stmt->header.type = type;
1095 new_stmt->header.next = NULL;
1096 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1097 return new_stmt;
1098 }
1099
1100 /* Build a new input file node for the language. There are several
1101 ways in which we treat an input file, eg, we only look at symbols,
1102 or prefix it with a -l etc.
1103
1104 We can be supplied with requests for input files more than once;
1105 they may, for example be split over several lines like foo.o(.text)
1106 foo.o(.data) etc, so when asked for a file we check that we haven't
1107 got it already so we don't duplicate the bfd. */
1108
1109 static lang_input_statement_type *
1110 new_afile (const char *name,
1111 lang_input_file_enum_type file_type,
1112 const char *target,
1113 const char *from_filename)
1114 {
1115 lang_input_statement_type *p;
1116
1117 lang_has_input_file = TRUE;
1118
1119 p = new_stat (lang_input_statement, stat_ptr);
1120 memset (&p->the_bfd, 0,
1121 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1122 p->extra_search_path = NULL;
1123 p->target = target;
1124 p->flags.dynamic = input_flags.dynamic;
1125 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1126 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1127 p->flags.whole_archive = input_flags.whole_archive;
1128 p->flags.sysrooted = input_flags.sysrooted;
1129
1130 switch (file_type)
1131 {
1132 case lang_input_file_is_symbols_only_enum:
1133 p->filename = name;
1134 p->local_sym_name = name;
1135 p->flags.real = TRUE;
1136 p->flags.just_syms = TRUE;
1137 break;
1138 case lang_input_file_is_fake_enum:
1139 p->filename = name;
1140 p->local_sym_name = name;
1141 break;
1142 case lang_input_file_is_l_enum:
1143 if (name[0] == ':' && name[1] != '\0')
1144 {
1145 p->filename = name + 1;
1146 p->flags.full_name_provided = TRUE;
1147 }
1148 else
1149 p->filename = name;
1150 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1151 p->flags.maybe_archive = TRUE;
1152 p->flags.real = TRUE;
1153 p->flags.search_dirs = TRUE;
1154 break;
1155 case lang_input_file_is_marker_enum:
1156 p->filename = name;
1157 p->local_sym_name = name;
1158 p->flags.search_dirs = TRUE;
1159 break;
1160 case lang_input_file_is_search_file_enum:
1161 p->filename = name;
1162 p->local_sym_name = name;
1163 /* If name is a relative path, search the directory of the current linker
1164 script first. */
1165 if (from_filename && !IS_ABSOLUTE_PATH (name))
1166 p->extra_search_path = ldirname (from_filename);
1167 p->flags.real = TRUE;
1168 p->flags.search_dirs = TRUE;
1169 break;
1170 case lang_input_file_is_file_enum:
1171 p->filename = name;
1172 p->local_sym_name = name;
1173 p->flags.real = TRUE;
1174 break;
1175 default:
1176 FAIL ();
1177 }
1178
1179 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1180 return p;
1181 }
1182
1183 lang_input_statement_type *
1184 lang_add_input_file (const char *name,
1185 lang_input_file_enum_type file_type,
1186 const char *target)
1187 {
1188 if (name != NULL
1189 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1190 {
1191 lang_input_statement_type *ret;
1192 char *sysrooted_name
1193 = concat (ld_sysroot,
1194 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1195 (const char *) NULL);
1196
1197 /* We've now forcibly prepended the sysroot, making the input
1198 file independent of the context. Therefore, temporarily
1199 force a non-sysrooted context for this statement, so it won't
1200 get the sysroot prepended again when opened. (N.B. if it's a
1201 script, any child nodes with input files starting with "/"
1202 will be handled as "sysrooted" as they'll be found to be
1203 within the sysroot subdirectory.) */
1204 unsigned int outer_sysrooted = input_flags.sysrooted;
1205 input_flags.sysrooted = 0;
1206 ret = new_afile (sysrooted_name, file_type, target, NULL);
1207 input_flags.sysrooted = outer_sysrooted;
1208 return ret;
1209 }
1210
1211 return new_afile (name, file_type, target, current_input_file);
1212 }
1213
1214 struct out_section_hash_entry
1215 {
1216 struct bfd_hash_entry root;
1217 lang_statement_union_type s;
1218 };
1219
1220 /* The hash table. */
1221
1222 static struct bfd_hash_table output_section_statement_table;
1223
1224 /* Support routines for the hash table used by lang_output_section_find,
1225 initialize the table, fill in an entry and remove the table. */
1226
1227 static struct bfd_hash_entry *
1228 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1229 struct bfd_hash_table *table,
1230 const char *string)
1231 {
1232 lang_output_section_statement_type **nextp;
1233 struct out_section_hash_entry *ret;
1234
1235 if (entry == NULL)
1236 {
1237 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1238 sizeof (*ret));
1239 if (entry == NULL)
1240 return entry;
1241 }
1242
1243 entry = bfd_hash_newfunc (entry, table, string);
1244 if (entry == NULL)
1245 return entry;
1246
1247 ret = (struct out_section_hash_entry *) entry;
1248 memset (&ret->s, 0, sizeof (ret->s));
1249 ret->s.header.type = lang_output_section_statement_enum;
1250 ret->s.output_section_statement.subsection_alignment = NULL;
1251 ret->s.output_section_statement.section_alignment = NULL;
1252 ret->s.output_section_statement.block_value = 1;
1253 lang_list_init (&ret->s.output_section_statement.children);
1254 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1255
1256 /* For every output section statement added to the list, except the
1257 first one, lang_os_list.tail points to the "next"
1258 field of the last element of the list. */
1259 if (lang_os_list.head != NULL)
1260 ret->s.output_section_statement.prev
1261 = ((lang_output_section_statement_type *)
1262 ((char *) lang_os_list.tail
1263 - offsetof (lang_output_section_statement_type, next)));
1264
1265 /* GCC's strict aliasing rules prevent us from just casting the
1266 address, so we store the pointer in a variable and cast that
1267 instead. */
1268 nextp = &ret->s.output_section_statement.next;
1269 lang_statement_append (&lang_os_list, &ret->s, nextp);
1270 return &ret->root;
1271 }
1272
1273 static void
1274 output_section_statement_table_init (void)
1275 {
1276 if (!bfd_hash_table_init_n (&output_section_statement_table,
1277 output_section_statement_newfunc,
1278 sizeof (struct out_section_hash_entry),
1279 61))
1280 einfo (_("%F%P: can not create hash table: %E\n"));
1281 }
1282
1283 static void
1284 output_section_statement_table_free (void)
1285 {
1286 bfd_hash_table_free (&output_section_statement_table);
1287 }
1288
1289 /* Build enough state so that the parser can build its tree. */
1290
1291 void
1292 lang_init (void)
1293 {
1294 obstack_begin (&stat_obstack, 1000);
1295
1296 stat_ptr = &statement_list;
1297
1298 output_section_statement_table_init ();
1299
1300 lang_list_init (stat_ptr);
1301
1302 lang_list_init (&input_file_chain);
1303 lang_list_init (&lang_os_list);
1304 lang_list_init (&file_chain);
1305 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1306 NULL);
1307 abs_output_section =
1308 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1309
1310 abs_output_section->bfd_section = bfd_abs_section_ptr;
1311
1312 asneeded_list_head = NULL;
1313 asneeded_list_tail = &asneeded_list_head;
1314 }
1315
1316 void
1317 lang_finish (void)
1318 {
1319 output_section_statement_table_free ();
1320 }
1321
1322 /*----------------------------------------------------------------------
1323 A region is an area of memory declared with the
1324 MEMORY { name:org=exp, len=exp ... }
1325 syntax.
1326
1327 We maintain a list of all the regions here.
1328
1329 If no regions are specified in the script, then the default is used
1330 which is created when looked up to be the entire data space.
1331
1332 If create is true we are creating a region inside a MEMORY block.
1333 In this case it is probably an error to create a region that has
1334 already been created. If we are not inside a MEMORY block it is
1335 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1336 and so we issue a warning.
1337
1338 Each region has at least one name. The first name is either
1339 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1340 alias names to an existing region within a script with
1341 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1342 region. */
1343
1344 static lang_memory_region_type *lang_memory_region_list;
1345 static lang_memory_region_type **lang_memory_region_list_tail
1346 = &lang_memory_region_list;
1347
1348 lang_memory_region_type *
1349 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1350 {
1351 lang_memory_region_name *n;
1352 lang_memory_region_type *r;
1353 lang_memory_region_type *new_region;
1354
1355 /* NAME is NULL for LMA memspecs if no region was specified. */
1356 if (name == NULL)
1357 return NULL;
1358
1359 for (r = lang_memory_region_list; r != NULL; r = r->next)
1360 for (n = &r->name_list; n != NULL; n = n->next)
1361 if (strcmp (n->name, name) == 0)
1362 {
1363 if (create)
1364 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1365 NULL, name);
1366 return r;
1367 }
1368
1369 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1370 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1371 NULL, name);
1372
1373 new_region = stat_alloc (sizeof (lang_memory_region_type));
1374
1375 new_region->name_list.name = xstrdup (name);
1376 new_region->name_list.next = NULL;
1377 new_region->next = NULL;
1378 new_region->origin_exp = NULL;
1379 new_region->origin = 0;
1380 new_region->length_exp = NULL;
1381 new_region->length = ~(bfd_size_type) 0;
1382 new_region->current = 0;
1383 new_region->last_os = NULL;
1384 new_region->flags = 0;
1385 new_region->not_flags = 0;
1386 new_region->had_full_message = FALSE;
1387
1388 *lang_memory_region_list_tail = new_region;
1389 lang_memory_region_list_tail = &new_region->next;
1390
1391 return new_region;
1392 }
1393
1394 void
1395 lang_memory_region_alias (const char *alias, const char *region_name)
1396 {
1397 lang_memory_region_name *n;
1398 lang_memory_region_type *r;
1399 lang_memory_region_type *region;
1400
1401 /* The default region must be unique. This ensures that it is not necessary
1402 to iterate through the name list if someone wants the check if a region is
1403 the default memory region. */
1404 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1405 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1406 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1407
1408 /* Look for the target region and check if the alias is not already
1409 in use. */
1410 region = NULL;
1411 for (r = lang_memory_region_list; r != NULL; r = r->next)
1412 for (n = &r->name_list; n != NULL; n = n->next)
1413 {
1414 if (region == NULL && strcmp (n->name, region_name) == 0)
1415 region = r;
1416 if (strcmp (n->name, alias) == 0)
1417 einfo (_("%F%P:%pS: error: redefinition of memory region "
1418 "alias `%s'\n"),
1419 NULL, alias);
1420 }
1421
1422 /* Check if the target region exists. */
1423 if (region == NULL)
1424 einfo (_("%F%P:%pS: error: memory region `%s' "
1425 "for alias `%s' does not exist\n"),
1426 NULL, region_name, alias);
1427
1428 /* Add alias to region name list. */
1429 n = stat_alloc (sizeof (lang_memory_region_name));
1430 n->name = xstrdup (alias);
1431 n->next = region->name_list.next;
1432 region->name_list.next = n;
1433 }
1434
1435 static lang_memory_region_type *
1436 lang_memory_default (asection *section)
1437 {
1438 lang_memory_region_type *p;
1439
1440 flagword sec_flags = section->flags;
1441
1442 /* Override SEC_DATA to mean a writable section. */
1443 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1444 sec_flags |= SEC_DATA;
1445
1446 for (p = lang_memory_region_list; p != NULL; p = p->next)
1447 {
1448 if ((p->flags & sec_flags) != 0
1449 && (p->not_flags & sec_flags) == 0)
1450 {
1451 return p;
1452 }
1453 }
1454 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1455 }
1456
1457 /* Get the output section statement directly from the userdata. */
1458
1459 lang_output_section_statement_type *
1460 lang_output_section_get (const asection *output_section)
1461 {
1462 return bfd_section_userdata (output_section);
1463 }
1464
1465 /* Find or create an output_section_statement with the given NAME.
1466 If CONSTRAINT is non-zero match one with that constraint, otherwise
1467 match any non-negative constraint. If CREATE, always make a
1468 new output_section_statement for SPECIAL CONSTRAINT. */
1469
1470 lang_output_section_statement_type *
1471 lang_output_section_statement_lookup (const char *name,
1472 int constraint,
1473 bfd_boolean create)
1474 {
1475 struct out_section_hash_entry *entry;
1476
1477 entry = ((struct out_section_hash_entry *)
1478 bfd_hash_lookup (&output_section_statement_table, name,
1479 create, FALSE));
1480 if (entry == NULL)
1481 {
1482 if (create)
1483 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1484 return NULL;
1485 }
1486
1487 if (entry->s.output_section_statement.name != NULL)
1488 {
1489 /* We have a section of this name, but it might not have the correct
1490 constraint. */
1491 struct out_section_hash_entry *last_ent;
1492
1493 name = entry->s.output_section_statement.name;
1494 if (create && constraint == SPECIAL)
1495 /* Not traversing to the end reverses the order of the second
1496 and subsequent SPECIAL sections in the hash table chain,
1497 but that shouldn't matter. */
1498 last_ent = entry;
1499 else
1500 do
1501 {
1502 if (constraint == entry->s.output_section_statement.constraint
1503 || (constraint == 0
1504 && entry->s.output_section_statement.constraint >= 0))
1505 return &entry->s.output_section_statement;
1506 last_ent = entry;
1507 entry = (struct out_section_hash_entry *) entry->root.next;
1508 }
1509 while (entry != NULL
1510 && name == entry->s.output_section_statement.name);
1511
1512 if (!create)
1513 return NULL;
1514
1515 entry
1516 = ((struct out_section_hash_entry *)
1517 output_section_statement_newfunc (NULL,
1518 &output_section_statement_table,
1519 name));
1520 if (entry == NULL)
1521 {
1522 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1523 return NULL;
1524 }
1525 entry->root = last_ent->root;
1526 last_ent->root.next = &entry->root;
1527 }
1528
1529 entry->s.output_section_statement.name = name;
1530 entry->s.output_section_statement.constraint = constraint;
1531 return &entry->s.output_section_statement;
1532 }
1533
1534 /* Find the next output_section_statement with the same name as OS.
1535 If CONSTRAINT is non-zero, find one with that constraint otherwise
1536 match any non-negative constraint. */
1537
1538 lang_output_section_statement_type *
1539 next_matching_output_section_statement (lang_output_section_statement_type *os,
1540 int constraint)
1541 {
1542 /* All output_section_statements are actually part of a
1543 struct out_section_hash_entry. */
1544 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1545 ((char *) os
1546 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1547 const char *name = os->name;
1548
1549 ASSERT (name == entry->root.string);
1550 do
1551 {
1552 entry = (struct out_section_hash_entry *) entry->root.next;
1553 if (entry == NULL
1554 || name != entry->s.output_section_statement.name)
1555 return NULL;
1556 }
1557 while (constraint != entry->s.output_section_statement.constraint
1558 && (constraint != 0
1559 || entry->s.output_section_statement.constraint < 0));
1560
1561 return &entry->s.output_section_statement;
1562 }
1563
1564 /* A variant of lang_output_section_find used by place_orphan.
1565 Returns the output statement that should precede a new output
1566 statement for SEC. If an exact match is found on certain flags,
1567 sets *EXACT too. */
1568
1569 lang_output_section_statement_type *
1570 lang_output_section_find_by_flags (const asection *sec,
1571 flagword sec_flags,
1572 lang_output_section_statement_type **exact,
1573 lang_match_sec_type_func match_type)
1574 {
1575 lang_output_section_statement_type *first, *look, *found;
1576 flagword look_flags, differ;
1577
1578 /* We know the first statement on this list is *ABS*. May as well
1579 skip it. */
1580 first = (void *) lang_os_list.head;
1581 first = first->next;
1582
1583 /* First try for an exact match. */
1584 found = NULL;
1585 for (look = first; look; look = look->next)
1586 {
1587 look_flags = look->flags;
1588 if (look->bfd_section != NULL)
1589 {
1590 look_flags = look->bfd_section->flags;
1591 if (match_type && !match_type (link_info.output_bfd,
1592 look->bfd_section,
1593 sec->owner, sec))
1594 continue;
1595 }
1596 differ = look_flags ^ sec_flags;
1597 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1598 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1599 found = look;
1600 }
1601 if (found != NULL)
1602 {
1603 if (exact != NULL)
1604 *exact = found;
1605 return found;
1606 }
1607
1608 if ((sec_flags & SEC_CODE) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* Try for a rw code section. */
1612 for (look = first; look; look = look->next)
1613 {
1614 look_flags = look->flags;
1615 if (look->bfd_section != NULL)
1616 {
1617 look_flags = look->bfd_section->flags;
1618 if (match_type && !match_type (link_info.output_bfd,
1619 look->bfd_section,
1620 sec->owner, sec))
1621 continue;
1622 }
1623 differ = look_flags ^ sec_flags;
1624 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1625 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1626 found = look;
1627 }
1628 }
1629 else if ((sec_flags & SEC_READONLY) != 0
1630 && (sec_flags & SEC_ALLOC) != 0)
1631 {
1632 /* .rodata can go after .text, .sdata2 after .rodata. */
1633 for (look = first; look; look = look->next)
1634 {
1635 look_flags = look->flags;
1636 if (look->bfd_section != NULL)
1637 {
1638 look_flags = look->bfd_section->flags;
1639 if (match_type && !match_type (link_info.output_bfd,
1640 look->bfd_section,
1641 sec->owner, sec))
1642 continue;
1643 }
1644 differ = look_flags ^ sec_flags;
1645 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1646 | SEC_READONLY | SEC_SMALL_DATA))
1647 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1648 | SEC_READONLY))
1649 && !(look_flags & SEC_SMALL_DATA)))
1650 found = look;
1651 }
1652 }
1653 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1654 && (sec_flags & SEC_ALLOC) != 0)
1655 {
1656 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1657 as if it were a loaded section, and don't use match_type. */
1658 bfd_boolean seen_thread_local = FALSE;
1659
1660 match_type = NULL;
1661 for (look = first; look; look = look->next)
1662 {
1663 look_flags = look->flags;
1664 if (look->bfd_section != NULL)
1665 look_flags = look->bfd_section->flags;
1666
1667 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1668 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1669 {
1670 /* .tdata and .tbss must be adjacent and in that order. */
1671 if (!(look_flags & SEC_LOAD)
1672 && (sec_flags & SEC_LOAD))
1673 /* ..so if we're at a .tbss section and we're placing
1674 a .tdata section stop looking and return the
1675 previous section. */
1676 break;
1677 found = look;
1678 seen_thread_local = TRUE;
1679 }
1680 else if (seen_thread_local)
1681 break;
1682 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1683 found = look;
1684 }
1685 }
1686 else if ((sec_flags & SEC_SMALL_DATA) != 0
1687 && (sec_flags & SEC_ALLOC) != 0)
1688 {
1689 /* .sdata goes after .data, .sbss after .sdata. */
1690 for (look = first; look; look = look->next)
1691 {
1692 look_flags = look->flags;
1693 if (look->bfd_section != NULL)
1694 {
1695 look_flags = look->bfd_section->flags;
1696 if (match_type && !match_type (link_info.output_bfd,
1697 look->bfd_section,
1698 sec->owner, sec))
1699 continue;
1700 }
1701 differ = look_flags ^ sec_flags;
1702 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1703 | SEC_THREAD_LOCAL))
1704 || ((look_flags & SEC_SMALL_DATA)
1705 && !(sec_flags & SEC_HAS_CONTENTS)))
1706 found = look;
1707 }
1708 }
1709 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1710 && (sec_flags & SEC_ALLOC) != 0)
1711 {
1712 /* .data goes after .rodata. */
1713 for (look = first; look; look = look->next)
1714 {
1715 look_flags = look->flags;
1716 if (look->bfd_section != NULL)
1717 {
1718 look_flags = look->bfd_section->flags;
1719 if (match_type && !match_type (link_info.output_bfd,
1720 look->bfd_section,
1721 sec->owner, sec))
1722 continue;
1723 }
1724 differ = look_flags ^ sec_flags;
1725 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1726 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1727 found = look;
1728 }
1729 }
1730 else if ((sec_flags & SEC_ALLOC) != 0)
1731 {
1732 /* .bss goes after any other alloc section. */
1733 for (look = first; look; look = look->next)
1734 {
1735 look_flags = look->flags;
1736 if (look->bfd_section != NULL)
1737 {
1738 look_flags = look->bfd_section->flags;
1739 if (match_type && !match_type (link_info.output_bfd,
1740 look->bfd_section,
1741 sec->owner, sec))
1742 continue;
1743 }
1744 differ = look_flags ^ sec_flags;
1745 if (!(differ & SEC_ALLOC))
1746 found = look;
1747 }
1748 }
1749 else
1750 {
1751 /* non-alloc go last. */
1752 for (look = first; look; look = look->next)
1753 {
1754 look_flags = look->flags;
1755 if (look->bfd_section != NULL)
1756 look_flags = look->bfd_section->flags;
1757 differ = look_flags ^ sec_flags;
1758 if (!(differ & SEC_DEBUGGING))
1759 found = look;
1760 }
1761 return found;
1762 }
1763
1764 if (found || !match_type)
1765 return found;
1766
1767 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1768 }
1769
1770 /* Find the last output section before given output statement.
1771 Used by place_orphan. */
1772
1773 static asection *
1774 output_prev_sec_find (lang_output_section_statement_type *os)
1775 {
1776 lang_output_section_statement_type *lookup;
1777
1778 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1779 {
1780 if (lookup->constraint < 0)
1781 continue;
1782
1783 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1784 return lookup->bfd_section;
1785 }
1786
1787 return NULL;
1788 }
1789
1790 /* Look for a suitable place for a new output section statement. The
1791 idea is to skip over anything that might be inside a SECTIONS {}
1792 statement in a script, before we find another output section
1793 statement. Assignments to "dot" before an output section statement
1794 are assumed to belong to it, except in two cases; The first
1795 assignment to dot, and assignments before non-alloc sections.
1796 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1797 similar assignments that set the initial address, or we might
1798 insert non-alloc note sections among assignments setting end of
1799 image symbols. */
1800
1801 static lang_statement_union_type **
1802 insert_os_after (lang_output_section_statement_type *after)
1803 {
1804 lang_statement_union_type **where;
1805 lang_statement_union_type **assign = NULL;
1806 bfd_boolean ignore_first;
1807
1808 ignore_first = after == (void *) lang_os_list.head;
1809
1810 for (where = &after->header.next;
1811 *where != NULL;
1812 where = &(*where)->header.next)
1813 {
1814 switch ((*where)->header.type)
1815 {
1816 case lang_assignment_statement_enum:
1817 if (assign == NULL)
1818 {
1819 lang_assignment_statement_type *ass;
1820
1821 ass = &(*where)->assignment_statement;
1822 if (ass->exp->type.node_class != etree_assert
1823 && ass->exp->assign.dst[0] == '.'
1824 && ass->exp->assign.dst[1] == 0)
1825 {
1826 if (!ignore_first)
1827 assign = where;
1828 ignore_first = FALSE;
1829 }
1830 }
1831 continue;
1832 case lang_wild_statement_enum:
1833 case lang_input_section_enum:
1834 case lang_object_symbols_statement_enum:
1835 case lang_fill_statement_enum:
1836 case lang_data_statement_enum:
1837 case lang_reloc_statement_enum:
1838 case lang_padding_statement_enum:
1839 case lang_constructors_statement_enum:
1840 assign = NULL;
1841 ignore_first = FALSE;
1842 continue;
1843 case lang_output_section_statement_enum:
1844 if (assign != NULL)
1845 {
1846 asection *s = (*where)->output_section_statement.bfd_section;
1847
1848 if (s == NULL
1849 || s->map_head.s == NULL
1850 || (s->flags & SEC_ALLOC) != 0)
1851 where = assign;
1852 }
1853 break;
1854 case lang_input_statement_enum:
1855 case lang_address_statement_enum:
1856 case lang_target_statement_enum:
1857 case lang_output_statement_enum:
1858 case lang_group_statement_enum:
1859 case lang_insert_statement_enum:
1860 continue;
1861 }
1862 break;
1863 }
1864
1865 return where;
1866 }
1867
1868 lang_output_section_statement_type *
1869 lang_insert_orphan (asection *s,
1870 const char *secname,
1871 int constraint,
1872 lang_output_section_statement_type *after,
1873 struct orphan_save *place,
1874 etree_type *address,
1875 lang_statement_list_type *add_child)
1876 {
1877 lang_statement_list_type add;
1878 lang_output_section_statement_type *os;
1879 lang_output_section_statement_type **os_tail;
1880
1881 /* If we have found an appropriate place for the output section
1882 statements for this orphan, add them to our own private list,
1883 inserting them later into the global statement list. */
1884 if (after != NULL)
1885 {
1886 lang_list_init (&add);
1887 push_stat_ptr (&add);
1888 }
1889
1890 if (bfd_link_relocatable (&link_info)
1891 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1892 address = exp_intop (0);
1893
1894 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1895 os = lang_enter_output_section_statement (secname, address, normal_section,
1896 NULL, NULL, NULL, constraint, 0);
1897
1898 if (add_child == NULL)
1899 add_child = &os->children;
1900 lang_add_section (add_child, s, NULL, os);
1901
1902 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1903 {
1904 const char *region = (after->region
1905 ? after->region->name_list.name
1906 : DEFAULT_MEMORY_REGION);
1907 const char *lma_region = (after->lma_region
1908 ? after->lma_region->name_list.name
1909 : NULL);
1910 lang_leave_output_section_statement (NULL, region, after->phdrs,
1911 lma_region);
1912 }
1913 else
1914 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1915 NULL);
1916
1917 /* Restore the global list pointer. */
1918 if (after != NULL)
1919 pop_stat_ptr ();
1920
1921 if (after != NULL && os->bfd_section != NULL)
1922 {
1923 asection *snew, *as;
1924 bfd_boolean place_after = place->stmt == NULL;
1925 bfd_boolean insert_after = TRUE;
1926
1927 snew = os->bfd_section;
1928
1929 /* Shuffle the bfd section list to make the output file look
1930 neater. This is really only cosmetic. */
1931 if (place->section == NULL
1932 && after != (void *) lang_os_list.head)
1933 {
1934 asection *bfd_section = after->bfd_section;
1935
1936 /* If the output statement hasn't been used to place any input
1937 sections (and thus doesn't have an output bfd_section),
1938 look for the closest prior output statement having an
1939 output section. */
1940 if (bfd_section == NULL)
1941 bfd_section = output_prev_sec_find (after);
1942
1943 if (bfd_section != NULL && bfd_section != snew)
1944 place->section = &bfd_section->next;
1945 }
1946
1947 if (place->section == NULL)
1948 place->section = &link_info.output_bfd->sections;
1949
1950 as = *place->section;
1951
1952 if (!as)
1953 {
1954 /* Put the section at the end of the list. */
1955
1956 /* Unlink the section. */
1957 bfd_section_list_remove (link_info.output_bfd, snew);
1958
1959 /* Now tack it back on in the right place. */
1960 bfd_section_list_append (link_info.output_bfd, snew);
1961 }
1962 else if ((bfd_get_flavour (link_info.output_bfd)
1963 == bfd_target_elf_flavour)
1964 && (bfd_get_flavour (s->owner)
1965 == bfd_target_elf_flavour)
1966 && ((elf_section_type (s) == SHT_NOTE
1967 && (s->flags & SEC_LOAD) != 0)
1968 || (elf_section_type (as) == SHT_NOTE
1969 && (as->flags & SEC_LOAD) != 0)))
1970 {
1971 /* Make sure that output note sections are grouped and sorted
1972 by alignments when inserting a note section or insert a
1973 section after a note section, */
1974 asection *sec;
1975 /* A specific section after which the output note section
1976 should be placed. */
1977 asection *after_sec;
1978 /* True if we need to insert the orphan section after a
1979 specific section to maintain output note section order. */
1980 bfd_boolean after_sec_note = FALSE;
1981
1982 static asection *first_orphan_note = NULL;
1983
1984 /* Group and sort output note section by alignments in
1985 ascending order. */
1986 after_sec = NULL;
1987 if (elf_section_type (s) == SHT_NOTE
1988 && (s->flags & SEC_LOAD) != 0)
1989 {
1990 /* Search from the beginning for the last output note
1991 section with equal or larger alignments. NB: Don't
1992 place orphan note section after non-note sections. */
1993
1994 first_orphan_note = NULL;
1995 for (sec = link_info.output_bfd->sections;
1996 (sec != NULL
1997 && !bfd_is_abs_section (sec));
1998 sec = sec->next)
1999 if (sec != snew
2000 && elf_section_type (sec) == SHT_NOTE
2001 && (sec->flags & SEC_LOAD) != 0)
2002 {
2003 if (!first_orphan_note)
2004 first_orphan_note = sec;
2005 if (sec->alignment_power >= s->alignment_power)
2006 after_sec = sec;
2007 }
2008 else if (first_orphan_note)
2009 {
2010 /* Stop if there is non-note section after the first
2011 orphan note section. */
2012 break;
2013 }
2014
2015 /* If this will be the first orphan note section, it can
2016 be placed at the default location. */
2017 after_sec_note = first_orphan_note != NULL;
2018 if (after_sec == NULL && after_sec_note)
2019 {
2020 /* If all output note sections have smaller
2021 alignments, place the section before all
2022 output orphan note sections. */
2023 after_sec = first_orphan_note;
2024 insert_after = FALSE;
2025 }
2026 }
2027 else if (first_orphan_note)
2028 {
2029 /* Don't place non-note sections in the middle of orphan
2030 note sections. */
2031 after_sec_note = TRUE;
2032 after_sec = as;
2033 for (sec = as->next;
2034 (sec != NULL
2035 && !bfd_is_abs_section (sec));
2036 sec = sec->next)
2037 if (elf_section_type (sec) == SHT_NOTE
2038 && (sec->flags & SEC_LOAD) != 0)
2039 after_sec = sec;
2040 }
2041
2042 if (after_sec_note)
2043 {
2044 if (after_sec)
2045 {
2046 /* Search forward to insert OS after AFTER_SEC output
2047 statement. */
2048 lang_output_section_statement_type *stmt, *next;
2049 bfd_boolean found = FALSE;
2050 for (stmt = after; stmt != NULL; stmt = next)
2051 {
2052 next = stmt->next;
2053 if (insert_after)
2054 {
2055 if (stmt->bfd_section == after_sec)
2056 {
2057 place_after = TRUE;
2058 found = TRUE;
2059 after = stmt;
2060 break;
2061 }
2062 }
2063 else
2064 {
2065 /* If INSERT_AFTER is FALSE, place OS before
2066 AFTER_SEC output statement. */
2067 if (next && next->bfd_section == after_sec)
2068 {
2069 place_after = TRUE;
2070 found = TRUE;
2071 after = stmt;
2072 break;
2073 }
2074 }
2075 }
2076
2077 /* Search backward to insert OS after AFTER_SEC output
2078 statement. */
2079 if (!found)
2080 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2081 {
2082 if (insert_after)
2083 {
2084 if (stmt->bfd_section == after_sec)
2085 {
2086 place_after = TRUE;
2087 after = stmt;
2088 break;
2089 }
2090 }
2091 else
2092 {
2093 /* If INSERT_AFTER is FALSE, place OS before
2094 AFTER_SEC output statement. */
2095 if (stmt->next->bfd_section == after_sec)
2096 {
2097 place_after = TRUE;
2098 after = stmt;
2099 break;
2100 }
2101 }
2102 }
2103 }
2104
2105 if (after_sec == NULL
2106 || (insert_after && after_sec->next != snew)
2107 || (!insert_after && after_sec->prev != snew))
2108 {
2109 /* Unlink the section. */
2110 bfd_section_list_remove (link_info.output_bfd, snew);
2111
2112 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2113 prepend SNEW. */
2114 if (after_sec)
2115 {
2116 if (insert_after)
2117 bfd_section_list_insert_after (link_info.output_bfd,
2118 after_sec, snew);
2119 else
2120 bfd_section_list_insert_before (link_info.output_bfd,
2121 after_sec, snew);
2122 }
2123 else
2124 bfd_section_list_prepend (link_info.output_bfd, snew);
2125 }
2126 }
2127 else if (as != snew && as->prev != snew)
2128 {
2129 /* Unlink the section. */
2130 bfd_section_list_remove (link_info.output_bfd, snew);
2131
2132 /* Now tack it back on in the right place. */
2133 bfd_section_list_insert_before (link_info.output_bfd,
2134 as, snew);
2135 }
2136 }
2137 else if (as != snew && as->prev != snew)
2138 {
2139 /* Unlink the section. */
2140 bfd_section_list_remove (link_info.output_bfd, snew);
2141
2142 /* Now tack it back on in the right place. */
2143 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2144 }
2145
2146 /* Save the end of this list. Further ophans of this type will
2147 follow the one we've just added. */
2148 place->section = &snew->next;
2149
2150 /* The following is non-cosmetic. We try to put the output
2151 statements in some sort of reasonable order here, because they
2152 determine the final load addresses of the orphan sections.
2153 In addition, placing output statements in the wrong order may
2154 require extra segments. For instance, given a typical
2155 situation of all read-only sections placed in one segment and
2156 following that a segment containing all the read-write
2157 sections, we wouldn't want to place an orphan read/write
2158 section before or amongst the read-only ones. */
2159 if (add.head != NULL)
2160 {
2161 lang_output_section_statement_type *newly_added_os;
2162
2163 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2164 if (place_after)
2165 {
2166 lang_statement_union_type **where = insert_os_after (after);
2167
2168 *add.tail = *where;
2169 *where = add.head;
2170
2171 place->os_tail = &after->next;
2172 }
2173 else
2174 {
2175 /* Put it after the last orphan statement we added. */
2176 *add.tail = *place->stmt;
2177 *place->stmt = add.head;
2178 }
2179
2180 /* Fix the global list pointer if we happened to tack our
2181 new list at the tail. */
2182 if (*stat_ptr->tail == add.head)
2183 stat_ptr->tail = add.tail;
2184
2185 /* Save the end of this list. */
2186 place->stmt = add.tail;
2187
2188 /* Do the same for the list of output section statements. */
2189 newly_added_os = *os_tail;
2190 *os_tail = NULL;
2191 newly_added_os->prev = (lang_output_section_statement_type *)
2192 ((char *) place->os_tail
2193 - offsetof (lang_output_section_statement_type, next));
2194 newly_added_os->next = *place->os_tail;
2195 if (newly_added_os->next != NULL)
2196 newly_added_os->next->prev = newly_added_os;
2197 *place->os_tail = newly_added_os;
2198 place->os_tail = &newly_added_os->next;
2199
2200 /* Fixing the global list pointer here is a little different.
2201 We added to the list in lang_enter_output_section_statement,
2202 trimmed off the new output_section_statment above when
2203 assigning *os_tail = NULL, but possibly added it back in
2204 the same place when assigning *place->os_tail. */
2205 if (*os_tail == NULL)
2206 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2207 }
2208 }
2209 return os;
2210 }
2211
2212 static void
2213 lang_print_asneeded (void)
2214 {
2215 struct asneeded_minfo *m;
2216
2217 if (asneeded_list_head == NULL)
2218 return;
2219
2220 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2221
2222 for (m = asneeded_list_head; m != NULL; m = m->next)
2223 {
2224 size_t len;
2225
2226 minfo ("%s", m->soname);
2227 len = strlen (m->soname);
2228
2229 if (len >= 29)
2230 {
2231 print_nl ();
2232 len = 0;
2233 }
2234 while (len < 30)
2235 {
2236 print_space ();
2237 ++len;
2238 }
2239
2240 if (m->ref != NULL)
2241 minfo ("%pB ", m->ref);
2242 minfo ("(%pT)\n", m->name);
2243 }
2244 }
2245
2246 static void
2247 lang_map_flags (flagword flag)
2248 {
2249 if (flag & SEC_ALLOC)
2250 minfo ("a");
2251
2252 if (flag & SEC_CODE)
2253 minfo ("x");
2254
2255 if (flag & SEC_READONLY)
2256 minfo ("r");
2257
2258 if (flag & SEC_DATA)
2259 minfo ("w");
2260
2261 if (flag & SEC_LOAD)
2262 minfo ("l");
2263 }
2264
2265 void
2266 lang_map (void)
2267 {
2268 lang_memory_region_type *m;
2269 bfd_boolean dis_header_printed = FALSE;
2270
2271 LANG_FOR_EACH_INPUT_STATEMENT (file)
2272 {
2273 asection *s;
2274
2275 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2276 || file->flags.just_syms)
2277 continue;
2278
2279 if (config.print_map_discarded)
2280 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2281 if ((s->output_section == NULL
2282 || s->output_section->owner != link_info.output_bfd)
2283 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2284 {
2285 if (! dis_header_printed)
2286 {
2287 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2288 dis_header_printed = TRUE;
2289 }
2290
2291 print_input_section (s, TRUE);
2292 }
2293 }
2294
2295 minfo (_("\nMemory Configuration\n\n"));
2296 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2297 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2298
2299 for (m = lang_memory_region_list; m != NULL; m = m->next)
2300 {
2301 char buf[100];
2302 int len;
2303
2304 fprintf (config.map_file, "%-16s ", m->name_list.name);
2305
2306 sprintf_vma (buf, m->origin);
2307 minfo ("0x%s ", buf);
2308 len = strlen (buf);
2309 while (len < 16)
2310 {
2311 print_space ();
2312 ++len;
2313 }
2314
2315 minfo ("0x%V", m->length);
2316 if (m->flags || m->not_flags)
2317 {
2318 #ifndef BFD64
2319 minfo (" ");
2320 #endif
2321 if (m->flags)
2322 {
2323 print_space ();
2324 lang_map_flags (m->flags);
2325 }
2326
2327 if (m->not_flags)
2328 {
2329 minfo (" !");
2330 lang_map_flags (m->not_flags);
2331 }
2332 }
2333
2334 print_nl ();
2335 }
2336
2337 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2338
2339 if (!link_info.reduce_memory_overheads)
2340 {
2341 obstack_begin (&map_obstack, 1000);
2342 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2343 }
2344 expld.phase = lang_fixed_phase_enum;
2345 lang_statement_iteration++;
2346 print_statements ();
2347
2348 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2349 config.map_file);
2350 }
2351
2352 static bfd_boolean
2353 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2354 void *info ATTRIBUTE_UNUSED)
2355 {
2356 if ((hash_entry->type == bfd_link_hash_defined
2357 || hash_entry->type == bfd_link_hash_defweak)
2358 && hash_entry->u.def.section->owner != link_info.output_bfd
2359 && hash_entry->u.def.section->owner != NULL)
2360 {
2361 input_section_userdata_type *ud;
2362 struct map_symbol_def *def;
2363
2364 ud = bfd_section_userdata (hash_entry->u.def.section);
2365 if (!ud)
2366 {
2367 ud = stat_alloc (sizeof (*ud));
2368 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2369 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2370 ud->map_symbol_def_count = 0;
2371 }
2372 else if (!ud->map_symbol_def_tail)
2373 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2374
2375 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2376 def->entry = hash_entry;
2377 *(ud->map_symbol_def_tail) = def;
2378 ud->map_symbol_def_tail = &def->next;
2379 ud->map_symbol_def_count++;
2380 }
2381 return TRUE;
2382 }
2383
2384 /* Initialize an output section. */
2385
2386 static void
2387 init_os (lang_output_section_statement_type *s, flagword flags)
2388 {
2389 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2390 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2391
2392 if (s->constraint != SPECIAL)
2393 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2394 if (s->bfd_section == NULL)
2395 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2396 s->name, flags);
2397 if (s->bfd_section == NULL)
2398 {
2399 einfo (_("%F%P: output format %s cannot represent section"
2400 " called %s: %E\n"),
2401 link_info.output_bfd->xvec->name, s->name);
2402 }
2403 s->bfd_section->output_section = s->bfd_section;
2404 s->bfd_section->output_offset = 0;
2405
2406 /* Set the userdata of the output section to the output section
2407 statement to avoid lookup. */
2408 bfd_set_section_userdata (s->bfd_section, s);
2409
2410 /* If there is a base address, make sure that any sections it might
2411 mention are initialized. */
2412 if (s->addr_tree != NULL)
2413 exp_init_os (s->addr_tree);
2414
2415 if (s->load_base != NULL)
2416 exp_init_os (s->load_base);
2417
2418 /* If supplied an alignment, set it. */
2419 if (s->section_alignment != NULL)
2420 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2421 "section alignment");
2422 }
2423
2424 /* Make sure that all output sections mentioned in an expression are
2425 initialized. */
2426
2427 static void
2428 exp_init_os (etree_type *exp)
2429 {
2430 switch (exp->type.node_class)
2431 {
2432 case etree_assign:
2433 case etree_provide:
2434 case etree_provided:
2435 exp_init_os (exp->assign.src);
2436 break;
2437
2438 case etree_binary:
2439 exp_init_os (exp->binary.lhs);
2440 exp_init_os (exp->binary.rhs);
2441 break;
2442
2443 case etree_trinary:
2444 exp_init_os (exp->trinary.cond);
2445 exp_init_os (exp->trinary.lhs);
2446 exp_init_os (exp->trinary.rhs);
2447 break;
2448
2449 case etree_assert:
2450 exp_init_os (exp->assert_s.child);
2451 break;
2452
2453 case etree_unary:
2454 exp_init_os (exp->unary.child);
2455 break;
2456
2457 case etree_name:
2458 switch (exp->type.node_code)
2459 {
2460 case ADDR:
2461 case LOADADDR:
2462 case SIZEOF:
2463 {
2464 lang_output_section_statement_type *os;
2465
2466 os = lang_output_section_find (exp->name.name);
2467 if (os != NULL && os->bfd_section == NULL)
2468 init_os (os, 0);
2469 }
2470 }
2471 break;
2472
2473 default:
2474 break;
2475 }
2476 }
2477 \f
2478 static void
2479 section_already_linked (bfd *abfd, asection *sec, void *data)
2480 {
2481 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2482
2483 /* If we are only reading symbols from this object, then we want to
2484 discard all sections. */
2485 if (entry->flags.just_syms)
2486 {
2487 bfd_link_just_syms (abfd, sec, &link_info);
2488 return;
2489 }
2490
2491 /* Deal with SHF_EXCLUDE ELF sections. */
2492 if (!bfd_link_relocatable (&link_info)
2493 && (abfd->flags & BFD_PLUGIN) == 0
2494 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2495 sec->output_section = bfd_abs_section_ptr;
2496
2497 if (!(abfd->flags & DYNAMIC))
2498 bfd_section_already_linked (abfd, sec, &link_info);
2499 }
2500 \f
2501
2502 /* Returns true if SECTION is one we know will be discarded based on its
2503 section flags, otherwise returns false. */
2504
2505 static bfd_boolean
2506 lang_discard_section_p (asection *section)
2507 {
2508 bfd_boolean discard;
2509 flagword flags = section->flags;
2510
2511 /* Discard sections marked with SEC_EXCLUDE. */
2512 discard = (flags & SEC_EXCLUDE) != 0;
2513
2514 /* Discard the group descriptor sections when we're finally placing the
2515 sections from within the group. */
2516 if ((flags & SEC_GROUP) != 0
2517 && link_info.resolve_section_groups)
2518 discard = TRUE;
2519
2520 /* Discard debugging sections if we are stripping debugging
2521 information. */
2522 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2523 && (flags & SEC_DEBUGGING) != 0)
2524 discard = TRUE;
2525
2526 return discard;
2527 }
2528
2529 /* The wild routines.
2530
2531 These expand statements like *(.text) and foo.o to a list of
2532 explicit actions, like foo.o(.text), bar.o(.text) and
2533 foo.o(.text, .data). */
2534
2535 /* Add SECTION to the output section OUTPUT. Do this by creating a
2536 lang_input_section statement which is placed at PTR. */
2537
2538 void
2539 lang_add_section (lang_statement_list_type *ptr,
2540 asection *section,
2541 struct flag_info *sflag_info,
2542 lang_output_section_statement_type *output)
2543 {
2544 flagword flags = section->flags;
2545
2546 bfd_boolean discard;
2547 lang_input_section_type *new_section;
2548 bfd *abfd = link_info.output_bfd;
2549
2550 /* Is this section one we know should be discarded? */
2551 discard = lang_discard_section_p (section);
2552
2553 /* Discard input sections which are assigned to a section named
2554 DISCARD_SECTION_NAME. */
2555 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2556 discard = TRUE;
2557
2558 if (discard)
2559 {
2560 if (section->output_section == NULL)
2561 {
2562 /* This prevents future calls from assigning this section. */
2563 section->output_section = bfd_abs_section_ptr;
2564 }
2565 else if (link_info.non_contiguous_regions_warnings)
2566 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2567 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2568 NULL, section, section->owner);
2569
2570 return;
2571 }
2572
2573 if (sflag_info)
2574 {
2575 bfd_boolean keep;
2576
2577 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2578 if (!keep)
2579 return;
2580 }
2581
2582 if (section->output_section != NULL)
2583 {
2584 if (!link_info.non_contiguous_regions)
2585 return;
2586
2587 /* SECTION has already been handled in a special way
2588 (eg. LINK_ONCE): skip it. */
2589 if (bfd_is_abs_section (section->output_section))
2590 return;
2591
2592 /* Already assigned to the same output section, do not process
2593 it again, to avoid creating loops between duplicate sections
2594 later. */
2595 if (section->output_section == output->bfd_section)
2596 return;
2597
2598 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2599 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2600 "change behaviour for section `%pA' from '%pB' (assigned to "
2601 "%pA, but additional match: %pA)\n"),
2602 NULL, section, section->owner, section->output_section,
2603 output->bfd_section);
2604
2605 /* SECTION has already been assigned to an output section, but
2606 the user allows it to be mapped to another one in case it
2607 overflows. We'll later update the actual output section in
2608 size_input_section as appropriate. */
2609 }
2610
2611 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2612 to an output section, because we want to be able to include a
2613 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2614 section (I don't know why we want to do this, but we do).
2615 build_link_order in ldwrite.c handles this case by turning
2616 the embedded SEC_NEVER_LOAD section into a fill. */
2617 flags &= ~ SEC_NEVER_LOAD;
2618
2619 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2620 already been processed. One reason to do this is that on pe
2621 format targets, .text$foo sections go into .text and it's odd
2622 to see .text with SEC_LINK_ONCE set. */
2623 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2624 {
2625 if (link_info.resolve_section_groups)
2626 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2627 else
2628 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2629 }
2630 else if (!bfd_link_relocatable (&link_info))
2631 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2632
2633 switch (output->sectype)
2634 {
2635 case normal_section:
2636 case overlay_section:
2637 case first_overlay_section:
2638 break;
2639 case noalloc_section:
2640 flags &= ~SEC_ALLOC;
2641 break;
2642 case noload_section:
2643 flags &= ~SEC_LOAD;
2644 flags |= SEC_NEVER_LOAD;
2645 /* Unfortunately GNU ld has managed to evolve two different
2646 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2647 alloc, no contents section. All others get a noload, noalloc
2648 section. */
2649 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2650 flags &= ~SEC_HAS_CONTENTS;
2651 else
2652 flags &= ~SEC_ALLOC;
2653 break;
2654 }
2655
2656 if (output->bfd_section == NULL)
2657 init_os (output, flags);
2658
2659 /* If SEC_READONLY is not set in the input section, then clear
2660 it from the output section. */
2661 output->bfd_section->flags &= flags | ~SEC_READONLY;
2662
2663 if (output->bfd_section->linker_has_input)
2664 {
2665 /* Only set SEC_READONLY flag on the first input section. */
2666 flags &= ~ SEC_READONLY;
2667
2668 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2669 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2670 != (flags & (SEC_MERGE | SEC_STRINGS))
2671 || ((flags & SEC_MERGE) != 0
2672 && output->bfd_section->entsize != section->entsize))
2673 {
2674 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2675 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2676 }
2677 }
2678 output->bfd_section->flags |= flags;
2679
2680 if (!output->bfd_section->linker_has_input)
2681 {
2682 output->bfd_section->linker_has_input = 1;
2683 /* This must happen after flags have been updated. The output
2684 section may have been created before we saw its first input
2685 section, eg. for a data statement. */
2686 bfd_init_private_section_data (section->owner, section,
2687 link_info.output_bfd,
2688 output->bfd_section,
2689 &link_info);
2690 if ((flags & SEC_MERGE) != 0)
2691 output->bfd_section->entsize = section->entsize;
2692 }
2693
2694 if ((flags & SEC_TIC54X_BLOCK) != 0
2695 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2696 {
2697 /* FIXME: This value should really be obtained from the bfd... */
2698 output->block_value = 128;
2699 }
2700
2701 if (section->alignment_power > output->bfd_section->alignment_power)
2702 output->bfd_section->alignment_power = section->alignment_power;
2703
2704 section->output_section = output->bfd_section;
2705
2706 if (!map_head_is_link_order)
2707 {
2708 asection *s = output->bfd_section->map_tail.s;
2709 output->bfd_section->map_tail.s = section;
2710 section->map_head.s = NULL;
2711 section->map_tail.s = s;
2712 if (s != NULL)
2713 s->map_head.s = section;
2714 else
2715 output->bfd_section->map_head.s = section;
2716 }
2717
2718 /* Add a section reference to the list. */
2719 new_section = new_stat (lang_input_section, ptr);
2720 new_section->section = section;
2721 }
2722
2723 /* Handle wildcard sorting. This returns the lang_input_section which
2724 should follow the one we are going to create for SECTION and FILE,
2725 based on the sorting requirements of WILD. It returns NULL if the
2726 new section should just go at the end of the current list. */
2727
2728 static lang_statement_union_type *
2729 wild_sort (lang_wild_statement_type *wild,
2730 struct wildcard_list *sec,
2731 lang_input_statement_type *file,
2732 asection *section)
2733 {
2734 lang_statement_union_type *l;
2735
2736 if (!wild->filenames_sorted
2737 && (sec == NULL || sec->spec.sorted == none))
2738 return NULL;
2739
2740 for (l = wild->children.head; l != NULL; l = l->header.next)
2741 {
2742 lang_input_section_type *ls;
2743
2744 if (l->header.type != lang_input_section_enum)
2745 continue;
2746 ls = &l->input_section;
2747
2748 /* Sorting by filename takes precedence over sorting by section
2749 name. */
2750
2751 if (wild->filenames_sorted)
2752 {
2753 const char *fn, *ln;
2754 bfd_boolean fa, la;
2755 int i;
2756
2757 /* The PE support for the .idata section as generated by
2758 dlltool assumes that files will be sorted by the name of
2759 the archive and then the name of the file within the
2760 archive. */
2761
2762 if (file->the_bfd != NULL
2763 && file->the_bfd->my_archive != NULL)
2764 {
2765 fn = bfd_get_filename (file->the_bfd->my_archive);
2766 fa = TRUE;
2767 }
2768 else
2769 {
2770 fn = file->filename;
2771 fa = FALSE;
2772 }
2773
2774 if (ls->section->owner->my_archive != NULL)
2775 {
2776 ln = bfd_get_filename (ls->section->owner->my_archive);
2777 la = TRUE;
2778 }
2779 else
2780 {
2781 ln = bfd_get_filename (ls->section->owner);
2782 la = FALSE;
2783 }
2784
2785 i = filename_cmp (fn, ln);
2786 if (i > 0)
2787 continue;
2788 else if (i < 0)
2789 break;
2790
2791 if (fa || la)
2792 {
2793 if (fa)
2794 fn = file->filename;
2795 if (la)
2796 ln = bfd_get_filename (ls->section->owner);
2797
2798 i = filename_cmp (fn, ln);
2799 if (i > 0)
2800 continue;
2801 else if (i < 0)
2802 break;
2803 }
2804 }
2805
2806 /* Here either the files are not sorted by name, or we are
2807 looking at the sections for this file. */
2808
2809 if (sec != NULL
2810 && sec->spec.sorted != none
2811 && sec->spec.sorted != by_none)
2812 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2813 break;
2814 }
2815
2816 return l;
2817 }
2818
2819 /* Expand a wild statement for a particular FILE. SECTION may be
2820 NULL, in which case it is a wild card. */
2821
2822 static void
2823 output_section_callback (lang_wild_statement_type *ptr,
2824 struct wildcard_list *sec,
2825 asection *section,
2826 struct flag_info *sflag_info,
2827 lang_input_statement_type *file,
2828 void *output)
2829 {
2830 lang_statement_union_type *before;
2831 lang_output_section_statement_type *os;
2832
2833 os = (lang_output_section_statement_type *) output;
2834
2835 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2836 if (unique_section_p (section, os))
2837 return;
2838
2839 before = wild_sort (ptr, sec, file, section);
2840
2841 /* Here BEFORE points to the lang_input_section which
2842 should follow the one we are about to add. If BEFORE
2843 is NULL, then the section should just go at the end
2844 of the current list. */
2845
2846 if (before == NULL)
2847 lang_add_section (&ptr->children, section, sflag_info, os);
2848 else
2849 {
2850 lang_statement_list_type list;
2851 lang_statement_union_type **pp;
2852
2853 lang_list_init (&list);
2854 lang_add_section (&list, section, sflag_info, os);
2855
2856 /* If we are discarding the section, LIST.HEAD will
2857 be NULL. */
2858 if (list.head != NULL)
2859 {
2860 ASSERT (list.head->header.next == NULL);
2861
2862 for (pp = &ptr->children.head;
2863 *pp != before;
2864 pp = &(*pp)->header.next)
2865 ASSERT (*pp != NULL);
2866
2867 list.head->header.next = *pp;
2868 *pp = list.head;
2869 }
2870 }
2871 }
2872
2873 /* Check if all sections in a wild statement for a particular FILE
2874 are readonly. */
2875
2876 static void
2877 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2878 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2879 asection *section,
2880 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2881 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2882 void *output)
2883 {
2884 lang_output_section_statement_type *os;
2885
2886 os = (lang_output_section_statement_type *) output;
2887
2888 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2889 if (unique_section_p (section, os))
2890 return;
2891
2892 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2893 os->all_input_readonly = FALSE;
2894 }
2895
2896 /* This is passed a file name which must have been seen already and
2897 added to the statement tree. We will see if it has been opened
2898 already and had its symbols read. If not then we'll read it. */
2899
2900 static lang_input_statement_type *
2901 lookup_name (const char *name)
2902 {
2903 lang_input_statement_type *search;
2904
2905 for (search = (void *) input_file_chain.head;
2906 search != NULL;
2907 search = search->next_real_file)
2908 {
2909 /* Use the local_sym_name as the name of the file that has
2910 already been loaded as filename might have been transformed
2911 via the search directory lookup mechanism. */
2912 const char *filename = search->local_sym_name;
2913
2914 if (filename != NULL
2915 && filename_cmp (filename, name) == 0)
2916 break;
2917 }
2918
2919 if (search == NULL)
2920 {
2921 /* Arrange to splice the input statement added by new_afile into
2922 statement_list after the current input_file_chain tail.
2923 We know input_file_chain is not an empty list, and that
2924 lookup_name was called via open_input_bfds. Later calls to
2925 lookup_name should always match an existing input_statement. */
2926 lang_statement_union_type **tail = stat_ptr->tail;
2927 lang_statement_union_type **after
2928 = (void *) ((char *) input_file_chain.tail
2929 - offsetof (lang_input_statement_type, next_real_file)
2930 + offsetof (lang_input_statement_type, header.next));
2931 lang_statement_union_type *rest = *after;
2932 stat_ptr->tail = after;
2933 search = new_afile (name, lang_input_file_is_search_file_enum,
2934 default_target, NULL);
2935 *stat_ptr->tail = rest;
2936 if (*tail == NULL)
2937 stat_ptr->tail = tail;
2938 }
2939
2940 /* If we have already added this file, or this file is not real
2941 don't add this file. */
2942 if (search->flags.loaded || !search->flags.real)
2943 return search;
2944
2945 if (!load_symbols (search, NULL))
2946 return NULL;
2947
2948 return search;
2949 }
2950
2951 /* Save LIST as a list of libraries whose symbols should not be exported. */
2952
2953 struct excluded_lib
2954 {
2955 char *name;
2956 struct excluded_lib *next;
2957 };
2958 static struct excluded_lib *excluded_libs;
2959
2960 void
2961 add_excluded_libs (const char *list)
2962 {
2963 const char *p = list, *end;
2964
2965 while (*p != '\0')
2966 {
2967 struct excluded_lib *entry;
2968 end = strpbrk (p, ",:");
2969 if (end == NULL)
2970 end = p + strlen (p);
2971 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2972 entry->next = excluded_libs;
2973 entry->name = (char *) xmalloc (end - p + 1);
2974 memcpy (entry->name, p, end - p);
2975 entry->name[end - p] = '\0';
2976 excluded_libs = entry;
2977 if (*end == '\0')
2978 break;
2979 p = end + 1;
2980 }
2981 }
2982
2983 static void
2984 check_excluded_libs (bfd *abfd)
2985 {
2986 struct excluded_lib *lib = excluded_libs;
2987
2988 while (lib)
2989 {
2990 int len = strlen (lib->name);
2991 const char *filename = lbasename (bfd_get_filename (abfd));
2992
2993 if (strcmp (lib->name, "ALL") == 0)
2994 {
2995 abfd->no_export = TRUE;
2996 return;
2997 }
2998
2999 if (filename_ncmp (lib->name, filename, len) == 0
3000 && (filename[len] == '\0'
3001 || (filename[len] == '.' && filename[len + 1] == 'a'
3002 && filename[len + 2] == '\0')))
3003 {
3004 abfd->no_export = TRUE;
3005 return;
3006 }
3007
3008 lib = lib->next;
3009 }
3010 }
3011
3012 /* Get the symbols for an input file. */
3013
3014 bfd_boolean
3015 load_symbols (lang_input_statement_type *entry,
3016 lang_statement_list_type *place)
3017 {
3018 char **matching;
3019
3020 if (entry->flags.loaded)
3021 return TRUE;
3022
3023 ldfile_open_file (entry);
3024
3025 /* Do not process further if the file was missing. */
3026 if (entry->flags.missing_file)
3027 return TRUE;
3028
3029 if (trace_files || verbose)
3030 info_msg ("%pI\n", entry);
3031
3032 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3033 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3034 {
3035 bfd_error_type err;
3036 struct lang_input_statement_flags save_flags;
3037 extern FILE *yyin;
3038
3039 err = bfd_get_error ();
3040
3041 /* See if the emulation has some special knowledge. */
3042 if (ldemul_unrecognized_file (entry))
3043 return TRUE;
3044
3045 if (err == bfd_error_file_ambiguously_recognized)
3046 {
3047 char **p;
3048
3049 einfo (_("%P: %pB: file not recognized: %E;"
3050 " matching formats:"), entry->the_bfd);
3051 for (p = matching; *p != NULL; p++)
3052 einfo (" %s", *p);
3053 einfo ("%F\n");
3054 }
3055 else if (err != bfd_error_file_not_recognized
3056 || place == NULL)
3057 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3058
3059 bfd_close (entry->the_bfd);
3060 entry->the_bfd = NULL;
3061
3062 /* Try to interpret the file as a linker script. */
3063 save_flags = input_flags;
3064 ldfile_open_command_file (entry->filename);
3065
3066 push_stat_ptr (place);
3067 input_flags.add_DT_NEEDED_for_regular
3068 = entry->flags.add_DT_NEEDED_for_regular;
3069 input_flags.add_DT_NEEDED_for_dynamic
3070 = entry->flags.add_DT_NEEDED_for_dynamic;
3071 input_flags.whole_archive = entry->flags.whole_archive;
3072 input_flags.dynamic = entry->flags.dynamic;
3073
3074 ldfile_assumed_script = TRUE;
3075 parser_input = input_script;
3076 current_input_file = entry->filename;
3077 yyparse ();
3078 current_input_file = NULL;
3079 ldfile_assumed_script = FALSE;
3080
3081 /* missing_file is sticky. sysrooted will already have been
3082 restored when seeing EOF in yyparse, but no harm to restore
3083 again. */
3084 save_flags.missing_file |= input_flags.missing_file;
3085 input_flags = save_flags;
3086 pop_stat_ptr ();
3087 fclose (yyin);
3088 yyin = NULL;
3089 entry->flags.loaded = TRUE;
3090
3091 return TRUE;
3092 }
3093
3094 if (ldemul_recognized_file (entry))
3095 return TRUE;
3096
3097 /* We don't call ldlang_add_file for an archive. Instead, the
3098 add_symbols entry point will call ldlang_add_file, via the
3099 add_archive_element callback, for each element of the archive
3100 which is used. */
3101 switch (bfd_get_format (entry->the_bfd))
3102 {
3103 default:
3104 break;
3105
3106 case bfd_object:
3107 if (!entry->flags.reload)
3108 ldlang_add_file (entry);
3109 break;
3110
3111 case bfd_archive:
3112 check_excluded_libs (entry->the_bfd);
3113
3114 bfd_set_usrdata (entry->the_bfd, entry);
3115 if (entry->flags.whole_archive)
3116 {
3117 bfd *member = NULL;
3118 bfd_boolean loaded = TRUE;
3119
3120 for (;;)
3121 {
3122 bfd *subsbfd;
3123 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3124
3125 if (member == NULL)
3126 break;
3127
3128 if (!bfd_check_format (member, bfd_object))
3129 {
3130 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3131 entry->the_bfd, member);
3132 loaded = FALSE;
3133 }
3134
3135 subsbfd = member;
3136 if (!(*link_info.callbacks
3137 ->add_archive_element) (&link_info, member,
3138 "--whole-archive", &subsbfd))
3139 abort ();
3140
3141 /* Potentially, the add_archive_element hook may have set a
3142 substitute BFD for us. */
3143 if (!bfd_link_add_symbols (subsbfd, &link_info))
3144 {
3145 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3146 loaded = FALSE;
3147 }
3148 }
3149
3150 entry->flags.loaded = loaded;
3151 return loaded;
3152 }
3153 break;
3154 }
3155
3156 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3157 entry->flags.loaded = TRUE;
3158 else
3159 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3160
3161 return entry->flags.loaded;
3162 }
3163
3164 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3165 may be NULL, indicating that it is a wildcard. Separate
3166 lang_input_section statements are created for each part of the
3167 expansion; they are added after the wild statement S. OUTPUT is
3168 the output section. */
3169
3170 static void
3171 wild (lang_wild_statement_type *s,
3172 const char *target ATTRIBUTE_UNUSED,
3173 lang_output_section_statement_type *output)
3174 {
3175 struct wildcard_list *sec;
3176
3177 if (s->handler_data[0]
3178 && s->handler_data[0]->spec.sorted == by_name
3179 && !s->filenames_sorted)
3180 {
3181 lang_section_bst_type *tree;
3182
3183 walk_wild (s, output_section_callback_fast, output);
3184
3185 tree = s->tree;
3186 if (tree)
3187 {
3188 output_section_callback_tree_to_list (s, tree, output);
3189 s->tree = NULL;
3190 }
3191 }
3192 else
3193 walk_wild (s, output_section_callback, output);
3194
3195 if (default_common_section == NULL)
3196 for (sec = s->section_list; sec != NULL; sec = sec->next)
3197 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3198 {
3199 /* Remember the section that common is going to in case we
3200 later get something which doesn't know where to put it. */
3201 default_common_section = output;
3202 break;
3203 }
3204 }
3205
3206 /* Return TRUE iff target is the sought target. */
3207
3208 static int
3209 get_target (const bfd_target *target, void *data)
3210 {
3211 const char *sought = (const char *) data;
3212
3213 return strcmp (target->name, sought) == 0;
3214 }
3215
3216 /* Like strcpy() but convert to lower case as well. */
3217
3218 static void
3219 stricpy (char *dest, const char *src)
3220 {
3221 char c;
3222
3223 while ((c = *src++) != 0)
3224 *dest++ = TOLOWER (c);
3225
3226 *dest = 0;
3227 }
3228
3229 /* Remove the first occurrence of needle (if any) in haystack
3230 from haystack. */
3231
3232 static void
3233 strcut (char *haystack, const char *needle)
3234 {
3235 haystack = strstr (haystack, needle);
3236
3237 if (haystack)
3238 {
3239 char *src;
3240
3241 for (src = haystack + strlen (needle); *src;)
3242 *haystack++ = *src++;
3243
3244 *haystack = 0;
3245 }
3246 }
3247
3248 /* Compare two target format name strings.
3249 Return a value indicating how "similar" they are. */
3250
3251 static int
3252 name_compare (const char *first, const char *second)
3253 {
3254 char *copy1;
3255 char *copy2;
3256 int result;
3257
3258 copy1 = (char *) xmalloc (strlen (first) + 1);
3259 copy2 = (char *) xmalloc (strlen (second) + 1);
3260
3261 /* Convert the names to lower case. */
3262 stricpy (copy1, first);
3263 stricpy (copy2, second);
3264
3265 /* Remove size and endian strings from the name. */
3266 strcut (copy1, "big");
3267 strcut (copy1, "little");
3268 strcut (copy2, "big");
3269 strcut (copy2, "little");
3270
3271 /* Return a value based on how many characters match,
3272 starting from the beginning. If both strings are
3273 the same then return 10 * their length. */
3274 for (result = 0; copy1[result] == copy2[result]; result++)
3275 if (copy1[result] == 0)
3276 {
3277 result *= 10;
3278 break;
3279 }
3280
3281 free (copy1);
3282 free (copy2);
3283
3284 return result;
3285 }
3286
3287 /* Set by closest_target_match() below. */
3288 static const bfd_target *winner;
3289
3290 /* Scan all the valid bfd targets looking for one that has the endianness
3291 requirement that was specified on the command line, and is the nearest
3292 match to the original output target. */
3293
3294 static int
3295 closest_target_match (const bfd_target *target, void *data)
3296 {
3297 const bfd_target *original = (const bfd_target *) data;
3298
3299 if (command_line.endian == ENDIAN_BIG
3300 && target->byteorder != BFD_ENDIAN_BIG)
3301 return 0;
3302
3303 if (command_line.endian == ENDIAN_LITTLE
3304 && target->byteorder != BFD_ENDIAN_LITTLE)
3305 return 0;
3306
3307 /* Must be the same flavour. */
3308 if (target->flavour != original->flavour)
3309 return 0;
3310
3311 /* Ignore generic big and little endian elf vectors. */
3312 if (strcmp (target->name, "elf32-big") == 0
3313 || strcmp (target->name, "elf64-big") == 0
3314 || strcmp (target->name, "elf32-little") == 0
3315 || strcmp (target->name, "elf64-little") == 0)
3316 return 0;
3317
3318 /* If we have not found a potential winner yet, then record this one. */
3319 if (winner == NULL)
3320 {
3321 winner = target;
3322 return 0;
3323 }
3324
3325 /* Oh dear, we now have two potential candidates for a successful match.
3326 Compare their names and choose the better one. */
3327 if (name_compare (target->name, original->name)
3328 > name_compare (winner->name, original->name))
3329 winner = target;
3330
3331 /* Keep on searching until wqe have checked them all. */
3332 return 0;
3333 }
3334
3335 /* Return the BFD target format of the first input file. */
3336
3337 static const char *
3338 get_first_input_target (void)
3339 {
3340 const char *target = NULL;
3341
3342 LANG_FOR_EACH_INPUT_STATEMENT (s)
3343 {
3344 if (s->header.type == lang_input_statement_enum
3345 && s->flags.real)
3346 {
3347 ldfile_open_file (s);
3348
3349 if (s->the_bfd != NULL
3350 && bfd_check_format (s->the_bfd, bfd_object))
3351 {
3352 target = bfd_get_target (s->the_bfd);
3353
3354 if (target != NULL)
3355 break;
3356 }
3357 }
3358 }
3359
3360 return target;
3361 }
3362
3363 const char *
3364 lang_get_output_target (void)
3365 {
3366 const char *target;
3367
3368 /* Has the user told us which output format to use? */
3369 if (output_target != NULL)
3370 return output_target;
3371
3372 /* No - has the current target been set to something other than
3373 the default? */
3374 if (current_target != default_target && current_target != NULL)
3375 return current_target;
3376
3377 /* No - can we determine the format of the first input file? */
3378 target = get_first_input_target ();
3379 if (target != NULL)
3380 return target;
3381
3382 /* Failed - use the default output target. */
3383 return default_target;
3384 }
3385
3386 /* Open the output file. */
3387
3388 static void
3389 open_output (const char *name)
3390 {
3391 output_target = lang_get_output_target ();
3392
3393 /* Has the user requested a particular endianness on the command
3394 line? */
3395 if (command_line.endian != ENDIAN_UNSET)
3396 {
3397 /* Get the chosen target. */
3398 const bfd_target *target
3399 = bfd_iterate_over_targets (get_target, (void *) output_target);
3400
3401 /* If the target is not supported, we cannot do anything. */
3402 if (target != NULL)
3403 {
3404 enum bfd_endian desired_endian;
3405
3406 if (command_line.endian == ENDIAN_BIG)
3407 desired_endian = BFD_ENDIAN_BIG;
3408 else
3409 desired_endian = BFD_ENDIAN_LITTLE;
3410
3411 /* See if the target has the wrong endianness. This should
3412 not happen if the linker script has provided big and
3413 little endian alternatives, but some scrips don't do
3414 this. */
3415 if (target->byteorder != desired_endian)
3416 {
3417 /* If it does, then see if the target provides
3418 an alternative with the correct endianness. */
3419 if (target->alternative_target != NULL
3420 && (target->alternative_target->byteorder == desired_endian))
3421 output_target = target->alternative_target->name;
3422 else
3423 {
3424 /* Try to find a target as similar as possible to
3425 the default target, but which has the desired
3426 endian characteristic. */
3427 bfd_iterate_over_targets (closest_target_match,
3428 (void *) target);
3429
3430 /* Oh dear - we could not find any targets that
3431 satisfy our requirements. */
3432 if (winner == NULL)
3433 einfo (_("%P: warning: could not find any targets"
3434 " that match endianness requirement\n"));
3435 else
3436 output_target = winner->name;
3437 }
3438 }
3439 }
3440 }
3441
3442 link_info.output_bfd = bfd_openw (name, output_target);
3443
3444 if (link_info.output_bfd == NULL)
3445 {
3446 if (bfd_get_error () == bfd_error_invalid_target)
3447 einfo (_("%F%P: target %s not found\n"), output_target);
3448
3449 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3450 }
3451
3452 delete_output_file_on_failure = TRUE;
3453
3454 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3455 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3456 if (!bfd_set_arch_mach (link_info.output_bfd,
3457 ldfile_output_architecture,
3458 ldfile_output_machine))
3459 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3460
3461 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3462 if (link_info.hash == NULL)
3463 einfo (_("%F%P: can not create hash table: %E\n"));
3464
3465 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3466 }
3467
3468 static void
3469 ldlang_open_output (lang_statement_union_type *statement)
3470 {
3471 switch (statement->header.type)
3472 {
3473 case lang_output_statement_enum:
3474 ASSERT (link_info.output_bfd == NULL);
3475 open_output (statement->output_statement.name);
3476 ldemul_set_output_arch ();
3477 if (config.magic_demand_paged
3478 && !bfd_link_relocatable (&link_info))
3479 link_info.output_bfd->flags |= D_PAGED;
3480 else
3481 link_info.output_bfd->flags &= ~D_PAGED;
3482 if (config.text_read_only)
3483 link_info.output_bfd->flags |= WP_TEXT;
3484 else
3485 link_info.output_bfd->flags &= ~WP_TEXT;
3486 if (link_info.traditional_format)
3487 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3488 else
3489 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3490 break;
3491
3492 case lang_target_statement_enum:
3493 current_target = statement->target_statement.target;
3494 break;
3495 default:
3496 break;
3497 }
3498 }
3499
3500 static void
3501 init_opb (asection *s)
3502 {
3503 unsigned int x;
3504
3505 opb_shift = 0;
3506 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3507 && s != NULL
3508 && (s->flags & SEC_ELF_OCTETS) != 0)
3509 return;
3510
3511 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3512 ldfile_output_machine);
3513 if (x > 1)
3514 while ((x & 1) == 0)
3515 {
3516 x >>= 1;
3517 ++opb_shift;
3518 }
3519 ASSERT (x == 1);
3520 }
3521
3522 /* Open all the input files. */
3523
3524 enum open_bfd_mode
3525 {
3526 OPEN_BFD_NORMAL = 0,
3527 OPEN_BFD_FORCE = 1,
3528 OPEN_BFD_RESCAN = 2
3529 };
3530 #if BFD_SUPPORTS_PLUGINS
3531 static lang_input_statement_type *plugin_insert = NULL;
3532 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3533 #endif
3534
3535 static void
3536 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3537 {
3538 for (; s != NULL; s = s->header.next)
3539 {
3540 switch (s->header.type)
3541 {
3542 case lang_constructors_statement_enum:
3543 open_input_bfds (constructor_list.head, mode);
3544 break;
3545 case lang_output_section_statement_enum:
3546 open_input_bfds (s->output_section_statement.children.head, mode);
3547 break;
3548 case lang_wild_statement_enum:
3549 /* Maybe we should load the file's symbols. */
3550 if ((mode & OPEN_BFD_RESCAN) == 0
3551 && s->wild_statement.filename
3552 && !wildcardp (s->wild_statement.filename)
3553 && !archive_path (s->wild_statement.filename))
3554 lookup_name (s->wild_statement.filename);
3555 open_input_bfds (s->wild_statement.children.head, mode);
3556 break;
3557 case lang_group_statement_enum:
3558 {
3559 struct bfd_link_hash_entry *undefs;
3560 #if BFD_SUPPORTS_PLUGINS
3561 lang_input_statement_type *plugin_insert_save;
3562 #endif
3563
3564 /* We must continually search the entries in the group
3565 until no new symbols are added to the list of undefined
3566 symbols. */
3567
3568 do
3569 {
3570 #if BFD_SUPPORTS_PLUGINS
3571 plugin_insert_save = plugin_insert;
3572 #endif
3573 undefs = link_info.hash->undefs_tail;
3574 open_input_bfds (s->group_statement.children.head,
3575 mode | OPEN_BFD_FORCE);
3576 }
3577 while (undefs != link_info.hash->undefs_tail
3578 #if BFD_SUPPORTS_PLUGINS
3579 /* Objects inserted by a plugin, which are loaded
3580 before we hit this loop, may have added new
3581 undefs. */
3582 || (plugin_insert != plugin_insert_save && plugin_undefs)
3583 #endif
3584 );
3585 }
3586 break;
3587 case lang_target_statement_enum:
3588 current_target = s->target_statement.target;
3589 break;
3590 case lang_input_statement_enum:
3591 if (s->input_statement.flags.real)
3592 {
3593 lang_statement_union_type **os_tail;
3594 lang_statement_list_type add;
3595 bfd *abfd;
3596
3597 s->input_statement.target = current_target;
3598
3599 /* If we are being called from within a group, and this
3600 is an archive which has already been searched, then
3601 force it to be researched unless the whole archive
3602 has been loaded already. Do the same for a rescan.
3603 Likewise reload --as-needed shared libs. */
3604 if (mode != OPEN_BFD_NORMAL
3605 #if BFD_SUPPORTS_PLUGINS
3606 && ((mode & OPEN_BFD_RESCAN) == 0
3607 || plugin_insert == NULL)
3608 #endif
3609 && s->input_statement.flags.loaded
3610 && (abfd = s->input_statement.the_bfd) != NULL
3611 && ((bfd_get_format (abfd) == bfd_archive
3612 && !s->input_statement.flags.whole_archive)
3613 || (bfd_get_format (abfd) == bfd_object
3614 && ((abfd->flags) & DYNAMIC) != 0
3615 && s->input_statement.flags.add_DT_NEEDED_for_regular
3616 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3617 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3618 {
3619 s->input_statement.flags.loaded = FALSE;
3620 s->input_statement.flags.reload = TRUE;
3621 }
3622
3623 os_tail = lang_os_list.tail;
3624 lang_list_init (&add);
3625
3626 if (!load_symbols (&s->input_statement, &add))
3627 config.make_executable = FALSE;
3628
3629 if (add.head != NULL)
3630 {
3631 /* If this was a script with output sections then
3632 tack any added statements on to the end of the
3633 list. This avoids having to reorder the output
3634 section statement list. Very likely the user
3635 forgot -T, and whatever we do here will not meet
3636 naive user expectations. */
3637 if (os_tail != lang_os_list.tail)
3638 {
3639 einfo (_("%P: warning: %s contains output sections;"
3640 " did you forget -T?\n"),
3641 s->input_statement.filename);
3642 *stat_ptr->tail = add.head;
3643 stat_ptr->tail = add.tail;
3644 }
3645 else
3646 {
3647 *add.tail = s->header.next;
3648 s->header.next = add.head;
3649 }
3650 }
3651 }
3652 #if BFD_SUPPORTS_PLUGINS
3653 /* If we have found the point at which a plugin added new
3654 files, clear plugin_insert to enable archive rescan. */
3655 if (&s->input_statement == plugin_insert)
3656 plugin_insert = NULL;
3657 #endif
3658 break;
3659 case lang_assignment_statement_enum:
3660 if (s->assignment_statement.exp->type.node_class != etree_assert)
3661 exp_fold_tree_no_dot (s->assignment_statement.exp);
3662 break;
3663 default:
3664 break;
3665 }
3666 }
3667
3668 /* Exit if any of the files were missing. */
3669 if (input_flags.missing_file)
3670 einfo ("%F");
3671 }
3672
3673 #ifdef ENABLE_LIBCTF
3674 /* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
3675 that happened specifically at CTF open time. */
3676 static void
3677 lang_ctf_errs_warnings (ctf_file_t *fp)
3678 {
3679 ctf_next_t *i = NULL;
3680 char *text;
3681 int is_warning;
3682 int err;
3683
3684 while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
3685 {
3686 einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
3687 text);
3688 free (text);
3689 }
3690 if (err != ECTF_NEXT_END)
3691 {
3692 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3693 ctf_errmsg (err));
3694 }
3695
3696 /* `err' returns errors from the error/warning iterator in particular.
3697 These never assert. But if we have an fp, that could have recorded
3698 an assertion failure: assert if it has done so. */
3699 ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
3700 }
3701
3702 /* Open the CTF sections in the input files with libctf: if any were opened,
3703 create a fake input file that we'll write the merged CTF data to later
3704 on. */
3705
3706 static void
3707 ldlang_open_ctf (void)
3708 {
3709 int any_ctf = 0;
3710 int err;
3711
3712 LANG_FOR_EACH_INPUT_STATEMENT (file)
3713 {
3714 asection *sect;
3715
3716 /* Incoming files from the compiler have a single ctf_file_t in them
3717 (which is presented to us by the libctf API in a ctf_archive_t
3718 wrapper): files derived from a previous relocatable link have a CTF
3719 archive containing possibly many CTF files. */
3720
3721 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3722 {
3723 if (err != ECTF_NOCTFDATA)
3724 {
3725 lang_ctf_errs_warnings (NULL);
3726 einfo (_("%P: warning: CTF section in %pB not loaded; "
3727 "its types will be discarded: %s\n"), file->the_bfd,
3728 ctf_errmsg (err));
3729 }
3730 continue;
3731 }
3732
3733 /* Prevent the contents of this section from being written, while
3734 requiring the section itself to be duplicated in the output, but only
3735 once. */
3736 /* This section must exist if ctf_bfdopen() succeeded. */
3737 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3738 sect->size = 0;
3739 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3740
3741 if (any_ctf)
3742 sect->flags |= SEC_EXCLUDE;
3743 any_ctf = 1;
3744 }
3745
3746 if (!any_ctf)
3747 {
3748 ctf_output = NULL;
3749 return;
3750 }
3751
3752 if ((ctf_output = ctf_create (&err)) != NULL)
3753 return;
3754
3755 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3756 ctf_errmsg (err));
3757
3758 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3759 ctf_close (errfile->the_ctf);
3760 }
3761
3762 /* Merge together CTF sections. After this, only the symtab-dependent
3763 function and data object sections need adjustment. */
3764
3765 static void
3766 lang_merge_ctf (void)
3767 {
3768 asection *output_sect;
3769 int flags = 0;
3770
3771 if (!ctf_output)
3772 return;
3773
3774 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3775
3776 /* If the section was discarded, don't waste time merging. */
3777 if (output_sect == NULL)
3778 {
3779 ctf_file_close (ctf_output);
3780 ctf_output = NULL;
3781
3782 LANG_FOR_EACH_INPUT_STATEMENT (file)
3783 {
3784 ctf_close (file->the_ctf);
3785 file->the_ctf = NULL;
3786 }
3787 return;
3788 }
3789
3790 LANG_FOR_EACH_INPUT_STATEMENT (file)
3791 {
3792 if (!file->the_ctf)
3793 continue;
3794
3795 /* Takes ownership of file->the_ctf. */
3796 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3797 {
3798 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3799 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3800 ctf_close (file->the_ctf);
3801 file->the_ctf = NULL;
3802 continue;
3803 }
3804 }
3805
3806 if (!config.ctf_share_duplicated)
3807 flags = CTF_LINK_SHARE_UNCONFLICTED;
3808 else
3809 flags = CTF_LINK_SHARE_DUPLICATED;
3810 if (!config.ctf_variables)
3811 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3812
3813 if (ctf_link (ctf_output, flags) < 0)
3814 {
3815 lang_ctf_errs_warnings (ctf_output);
3816 einfo (_("%P: warning: CTF linking failed; "
3817 "output will have no CTF section: %s\n"),
3818 ctf_errmsg (ctf_errno (ctf_output)));
3819 if (output_sect)
3820 {
3821 output_sect->size = 0;
3822 output_sect->flags |= SEC_EXCLUDE;
3823 }
3824 }
3825 /* Output any lingering errors that didn't come from ctf_link. */
3826 lang_ctf_errs_warnings (ctf_output);
3827 }
3828
3829 /* Let the emulation examine the symbol table and strtab to help it optimize the
3830 CTF, if supported. */
3831
3832 void
3833 ldlang_ctf_apply_strsym (struct elf_sym_strtab *syms, bfd_size_type symcount,
3834 struct elf_strtab_hash *symstrtab)
3835 {
3836 ldemul_examine_strtab_for_ctf (ctf_output, syms, symcount, symstrtab);
3837 }
3838
3839 /* Write out the CTF section. Called early, if the emulation isn't going to
3840 need to dedup against the strtab and symtab, then possibly called from the
3841 target linker code if the dedup has happened. */
3842 static void
3843 lang_write_ctf (int late)
3844 {
3845 size_t output_size;
3846 asection *output_sect;
3847
3848 if (!ctf_output)
3849 return;
3850
3851 if (late)
3852 {
3853 /* Emit CTF late if this emulation says it can do so. */
3854 if (ldemul_emit_ctf_early ())
3855 return;
3856 }
3857 else
3858 {
3859 if (!ldemul_emit_ctf_early ())
3860 return;
3861 }
3862
3863 /* Emit CTF. */
3864
3865 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3866 if (output_sect)
3867 {
3868 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3869 CTF_COMPRESSION_THRESHOLD);
3870 output_sect->size = output_size;
3871 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3872
3873 lang_ctf_errs_warnings (ctf_output);
3874 if (!output_sect->contents)
3875 {
3876 einfo (_("%P: warning: CTF section emission failed; "
3877 "output will have no CTF section: %s\n"),
3878 ctf_errmsg (ctf_errno (ctf_output)));
3879 output_sect->size = 0;
3880 output_sect->flags |= SEC_EXCLUDE;
3881 }
3882 }
3883
3884 /* This also closes every CTF input file used in the link. */
3885 ctf_file_close (ctf_output);
3886 ctf_output = NULL;
3887
3888 LANG_FOR_EACH_INPUT_STATEMENT (file)
3889 file->the_ctf = NULL;
3890 }
3891
3892 /* Write out the CTF section late, if the emulation needs that. */
3893
3894 void
3895 ldlang_write_ctf_late (void)
3896 {
3897 /* Trigger a "late call", if the emulation needs one. */
3898
3899 lang_write_ctf (1);
3900 }
3901 #else
3902 static void
3903 ldlang_open_ctf (void)
3904 {
3905 LANG_FOR_EACH_INPUT_STATEMENT (file)
3906 {
3907 asection *sect;
3908
3909 /* If built without CTF, warn and delete all CTF sections from the output.
3910 (The alternative would be to simply concatenate them, which does not
3911 yield a valid CTF section.) */
3912
3913 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3914 {
3915 einfo (_("%P: warning: CTF section in %pB not linkable: "
3916 "%P was built without support for CTF\n"), file->the_bfd);
3917 sect->size = 0;
3918 sect->flags |= SEC_EXCLUDE;
3919 }
3920 }
3921 }
3922
3923 static void lang_merge_ctf (void) {}
3924 void
3925 ldlang_ctf_apply_strsym (struct elf_sym_strtab *syms ATTRIBUTE_UNUSED,
3926 bfd_size_type symcount ATTRIBUTE_UNUSED,
3927 struct elf_strtab_hash *symstrtab ATTRIBUTE_UNUSED)
3928 {
3929 }
3930 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3931 void ldlang_write_ctf_late (void) {}
3932 #endif
3933
3934 /* Add the supplied name to the symbol table as an undefined reference.
3935 This is a two step process as the symbol table doesn't even exist at
3936 the time the ld command line is processed. First we put the name
3937 on a list, then, once the output file has been opened, transfer the
3938 name to the symbol table. */
3939
3940 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3941
3942 #define ldlang_undef_chain_list_head entry_symbol.next
3943
3944 void
3945 ldlang_add_undef (const char *const name, bfd_boolean cmdline ATTRIBUTE_UNUSED)
3946 {
3947 ldlang_undef_chain_list_type *new_undef;
3948
3949 new_undef = stat_alloc (sizeof (*new_undef));
3950 new_undef->next = ldlang_undef_chain_list_head;
3951 ldlang_undef_chain_list_head = new_undef;
3952
3953 new_undef->name = xstrdup (name);
3954
3955 if (link_info.output_bfd != NULL)
3956 insert_undefined (new_undef->name);
3957 }
3958
3959 /* Insert NAME as undefined in the symbol table. */
3960
3961 static void
3962 insert_undefined (const char *name)
3963 {
3964 struct bfd_link_hash_entry *h;
3965
3966 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3967 if (h == NULL)
3968 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3969 if (h->type == bfd_link_hash_new)
3970 {
3971 h->type = bfd_link_hash_undefined;
3972 h->u.undef.abfd = NULL;
3973 h->non_ir_ref_regular = TRUE;
3974 if (is_elf_hash_table (link_info.hash))
3975 ((struct elf_link_hash_entry *) h)->mark = 1;
3976 bfd_link_add_undef (link_info.hash, h);
3977 }
3978 }
3979
3980 /* Run through the list of undefineds created above and place them
3981 into the linker hash table as undefined symbols belonging to the
3982 script file. */
3983
3984 static void
3985 lang_place_undefineds (void)
3986 {
3987 ldlang_undef_chain_list_type *ptr;
3988
3989 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3990 insert_undefined (ptr->name);
3991 }
3992
3993 /* Structure used to build the list of symbols that the user has required
3994 be defined. */
3995
3996 struct require_defined_symbol
3997 {
3998 const char *name;
3999 struct require_defined_symbol *next;
4000 };
4001
4002 /* The list of symbols that the user has required be defined. */
4003
4004 static struct require_defined_symbol *require_defined_symbol_list;
4005
4006 /* Add a new symbol NAME to the list of symbols that are required to be
4007 defined. */
4008
4009 void
4010 ldlang_add_require_defined (const char *const name)
4011 {
4012 struct require_defined_symbol *ptr;
4013
4014 ldlang_add_undef (name, TRUE);
4015 ptr = stat_alloc (sizeof (*ptr));
4016 ptr->next = require_defined_symbol_list;
4017 ptr->name = strdup (name);
4018 require_defined_symbol_list = ptr;
4019 }
4020
4021 /* Check that all symbols the user required to be defined, are defined,
4022 raise an error if we find a symbol that is not defined. */
4023
4024 static void
4025 ldlang_check_require_defined_symbols (void)
4026 {
4027 struct require_defined_symbol *ptr;
4028
4029 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4030 {
4031 struct bfd_link_hash_entry *h;
4032
4033 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4034 FALSE, FALSE, TRUE);
4035 if (h == NULL
4036 || (h->type != bfd_link_hash_defined
4037 && h->type != bfd_link_hash_defweak))
4038 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4039 }
4040 }
4041
4042 /* Check for all readonly or some readwrite sections. */
4043
4044 static void
4045 check_input_sections
4046 (lang_statement_union_type *s,
4047 lang_output_section_statement_type *output_section_statement)
4048 {
4049 for (; s != NULL; s = s->header.next)
4050 {
4051 switch (s->header.type)
4052 {
4053 case lang_wild_statement_enum:
4054 walk_wild (&s->wild_statement, check_section_callback,
4055 output_section_statement);
4056 if (!output_section_statement->all_input_readonly)
4057 return;
4058 break;
4059 case lang_constructors_statement_enum:
4060 check_input_sections (constructor_list.head,
4061 output_section_statement);
4062 if (!output_section_statement->all_input_readonly)
4063 return;
4064 break;
4065 case lang_group_statement_enum:
4066 check_input_sections (s->group_statement.children.head,
4067 output_section_statement);
4068 if (!output_section_statement->all_input_readonly)
4069 return;
4070 break;
4071 default:
4072 break;
4073 }
4074 }
4075 }
4076
4077 /* Update wildcard statements if needed. */
4078
4079 static void
4080 update_wild_statements (lang_statement_union_type *s)
4081 {
4082 struct wildcard_list *sec;
4083
4084 switch (sort_section)
4085 {
4086 default:
4087 FAIL ();
4088
4089 case none:
4090 break;
4091
4092 case by_name:
4093 case by_alignment:
4094 for (; s != NULL; s = s->header.next)
4095 {
4096 switch (s->header.type)
4097 {
4098 default:
4099 break;
4100
4101 case lang_wild_statement_enum:
4102 for (sec = s->wild_statement.section_list; sec != NULL;
4103 sec = sec->next)
4104 /* Don't sort .init/.fini sections. */
4105 if (strcmp (sec->spec.name, ".init") != 0
4106 && strcmp (sec->spec.name, ".fini") != 0)
4107 switch (sec->spec.sorted)
4108 {
4109 case none:
4110 sec->spec.sorted = sort_section;
4111 break;
4112 case by_name:
4113 if (sort_section == by_alignment)
4114 sec->spec.sorted = by_name_alignment;
4115 break;
4116 case by_alignment:
4117 if (sort_section == by_name)
4118 sec->spec.sorted = by_alignment_name;
4119 break;
4120 default:
4121 break;
4122 }
4123 break;
4124
4125 case lang_constructors_statement_enum:
4126 update_wild_statements (constructor_list.head);
4127 break;
4128
4129 case lang_output_section_statement_enum:
4130 update_wild_statements
4131 (s->output_section_statement.children.head);
4132 break;
4133
4134 case lang_group_statement_enum:
4135 update_wild_statements (s->group_statement.children.head);
4136 break;
4137 }
4138 }
4139 break;
4140 }
4141 }
4142
4143 /* Open input files and attach to output sections. */
4144
4145 static void
4146 map_input_to_output_sections
4147 (lang_statement_union_type *s, const char *target,
4148 lang_output_section_statement_type *os)
4149 {
4150 for (; s != NULL; s = s->header.next)
4151 {
4152 lang_output_section_statement_type *tos;
4153 flagword flags;
4154
4155 switch (s->header.type)
4156 {
4157 case lang_wild_statement_enum:
4158 wild (&s->wild_statement, target, os);
4159 break;
4160 case lang_constructors_statement_enum:
4161 map_input_to_output_sections (constructor_list.head,
4162 target,
4163 os);
4164 break;
4165 case lang_output_section_statement_enum:
4166 tos = &s->output_section_statement;
4167 if (tos->constraint != 0)
4168 {
4169 if (tos->constraint != ONLY_IF_RW
4170 && tos->constraint != ONLY_IF_RO)
4171 break;
4172 tos->all_input_readonly = TRUE;
4173 check_input_sections (tos->children.head, tos);
4174 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4175 {
4176 tos->constraint = -1;
4177 break;
4178 }
4179 }
4180 map_input_to_output_sections (tos->children.head,
4181 target,
4182 tos);
4183 break;
4184 case lang_output_statement_enum:
4185 break;
4186 case lang_target_statement_enum:
4187 target = s->target_statement.target;
4188 break;
4189 case lang_group_statement_enum:
4190 map_input_to_output_sections (s->group_statement.children.head,
4191 target,
4192 os);
4193 break;
4194 case lang_data_statement_enum:
4195 /* Make sure that any sections mentioned in the expression
4196 are initialized. */
4197 exp_init_os (s->data_statement.exp);
4198 /* The output section gets CONTENTS, ALLOC and LOAD, but
4199 these may be overridden by the script. */
4200 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4201 switch (os->sectype)
4202 {
4203 case normal_section:
4204 case overlay_section:
4205 case first_overlay_section:
4206 break;
4207 case noalloc_section:
4208 flags = SEC_HAS_CONTENTS;
4209 break;
4210 case noload_section:
4211 if (bfd_get_flavour (link_info.output_bfd)
4212 == bfd_target_elf_flavour)
4213 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4214 else
4215 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4216 break;
4217 }
4218 if (os->bfd_section == NULL)
4219 init_os (os, flags);
4220 else
4221 os->bfd_section->flags |= flags;
4222 break;
4223 case lang_input_section_enum:
4224 break;
4225 case lang_fill_statement_enum:
4226 case lang_object_symbols_statement_enum:
4227 case lang_reloc_statement_enum:
4228 case lang_padding_statement_enum:
4229 case lang_input_statement_enum:
4230 if (os != NULL && os->bfd_section == NULL)
4231 init_os (os, 0);
4232 break;
4233 case lang_assignment_statement_enum:
4234 if (os != NULL && os->bfd_section == NULL)
4235 init_os (os, 0);
4236
4237 /* Make sure that any sections mentioned in the assignment
4238 are initialized. */
4239 exp_init_os (s->assignment_statement.exp);
4240 break;
4241 case lang_address_statement_enum:
4242 /* Mark the specified section with the supplied address.
4243 If this section was actually a segment marker, then the
4244 directive is ignored if the linker script explicitly
4245 processed the segment marker. Originally, the linker
4246 treated segment directives (like -Ttext on the
4247 command-line) as section directives. We honor the
4248 section directive semantics for backwards compatibility;
4249 linker scripts that do not specifically check for
4250 SEGMENT_START automatically get the old semantics. */
4251 if (!s->address_statement.segment
4252 || !s->address_statement.segment->used)
4253 {
4254 const char *name = s->address_statement.section_name;
4255
4256 /* Create the output section statement here so that
4257 orphans with a set address will be placed after other
4258 script sections. If we let the orphan placement code
4259 place them in amongst other sections then the address
4260 will affect following script sections, which is
4261 likely to surprise naive users. */
4262 tos = lang_output_section_statement_lookup (name, 0, TRUE);
4263 tos->addr_tree = s->address_statement.address;
4264 if (tos->bfd_section == NULL)
4265 init_os (tos, 0);
4266 }
4267 break;
4268 case lang_insert_statement_enum:
4269 break;
4270 }
4271 }
4272 }
4273
4274 /* An insert statement snips out all the linker statements from the
4275 start of the list and places them after the output section
4276 statement specified by the insert. This operation is complicated
4277 by the fact that we keep a doubly linked list of output section
4278 statements as well as the singly linked list of all statements.
4279 FIXME someday: Twiddling with the list not only moves statements
4280 from the user's script but also input and group statements that are
4281 built from command line object files and --start-group. We only
4282 get away with this because the list pointers used by file_chain
4283 and input_file_chain are not reordered, and processing via
4284 statement_list after this point mostly ignores input statements.
4285 One exception is the map file, where LOAD and START GROUP/END GROUP
4286 can end up looking odd. */
4287
4288 static void
4289 process_insert_statements (lang_statement_union_type **start)
4290 {
4291 lang_statement_union_type **s;
4292 lang_output_section_statement_type *first_os = NULL;
4293 lang_output_section_statement_type *last_os = NULL;
4294 lang_output_section_statement_type *os;
4295
4296 s = start;
4297 while (*s != NULL)
4298 {
4299 if ((*s)->header.type == lang_output_section_statement_enum)
4300 {
4301 /* Keep pointers to the first and last output section
4302 statement in the sequence we may be about to move. */
4303 os = &(*s)->output_section_statement;
4304
4305 ASSERT (last_os == NULL || last_os->next == os);
4306 last_os = os;
4307
4308 /* Set constraint negative so that lang_output_section_find
4309 won't match this output section statement. At this
4310 stage in linking constraint has values in the range
4311 [-1, ONLY_IN_RW]. */
4312 last_os->constraint = -2 - last_os->constraint;
4313 if (first_os == NULL)
4314 first_os = last_os;
4315 }
4316 else if ((*s)->header.type == lang_group_statement_enum)
4317 {
4318 /* A user might put -T between --start-group and
4319 --end-group. One way this odd construct might arise is
4320 from a wrapper around ld to change library search
4321 behaviour. For example:
4322 #! /bin/sh
4323 exec real_ld --start-group "$@" --end-group
4324 This isn't completely unreasonable so go looking inside a
4325 group statement for insert statements. */
4326 process_insert_statements (&(*s)->group_statement.children.head);
4327 }
4328 else if ((*s)->header.type == lang_insert_statement_enum)
4329 {
4330 lang_insert_statement_type *i = &(*s)->insert_statement;
4331 lang_output_section_statement_type *where;
4332 lang_statement_union_type **ptr;
4333 lang_statement_union_type *first;
4334
4335 if (link_info.non_contiguous_regions)
4336 {
4337 einfo (_("warning: INSERT statement in linker script is "
4338 "incompatible with --enable-non-contiguous-regions.\n"));
4339 }
4340
4341 where = lang_output_section_find (i->where);
4342 if (where != NULL && i->is_before)
4343 {
4344 do
4345 where = where->prev;
4346 while (where != NULL && where->constraint < 0);
4347 }
4348 if (where == NULL)
4349 {
4350 einfo (_("%F%P: %s not found for insert\n"), i->where);
4351 return;
4352 }
4353
4354 /* Deal with reordering the output section statement list. */
4355 if (last_os != NULL)
4356 {
4357 asection *first_sec, *last_sec;
4358 struct lang_output_section_statement_struct **next;
4359
4360 /* Snip out the output sections we are moving. */
4361 first_os->prev->next = last_os->next;
4362 if (last_os->next == NULL)
4363 {
4364 next = &first_os->prev->next;
4365 lang_os_list.tail = (lang_statement_union_type **) next;
4366 }
4367 else
4368 last_os->next->prev = first_os->prev;
4369 /* Add them in at the new position. */
4370 last_os->next = where->next;
4371 if (where->next == NULL)
4372 {
4373 next = &last_os->next;
4374 lang_os_list.tail = (lang_statement_union_type **) next;
4375 }
4376 else
4377 where->next->prev = last_os;
4378 first_os->prev = where;
4379 where->next = first_os;
4380
4381 /* Move the bfd sections in the same way. */
4382 first_sec = NULL;
4383 last_sec = NULL;
4384 for (os = first_os; os != NULL; os = os->next)
4385 {
4386 os->constraint = -2 - os->constraint;
4387 if (os->bfd_section != NULL
4388 && os->bfd_section->owner != NULL)
4389 {
4390 last_sec = os->bfd_section;
4391 if (first_sec == NULL)
4392 first_sec = last_sec;
4393 }
4394 if (os == last_os)
4395 break;
4396 }
4397 if (last_sec != NULL)
4398 {
4399 asection *sec = where->bfd_section;
4400 if (sec == NULL)
4401 sec = output_prev_sec_find (where);
4402
4403 /* The place we want to insert must come after the
4404 sections we are moving. So if we find no
4405 section or if the section is the same as our
4406 last section, then no move is needed. */
4407 if (sec != NULL && sec != last_sec)
4408 {
4409 /* Trim them off. */
4410 if (first_sec->prev != NULL)
4411 first_sec->prev->next = last_sec->next;
4412 else
4413 link_info.output_bfd->sections = last_sec->next;
4414 if (last_sec->next != NULL)
4415 last_sec->next->prev = first_sec->prev;
4416 else
4417 link_info.output_bfd->section_last = first_sec->prev;
4418 /* Add back. */
4419 last_sec->next = sec->next;
4420 if (sec->next != NULL)
4421 sec->next->prev = last_sec;
4422 else
4423 link_info.output_bfd->section_last = last_sec;
4424 first_sec->prev = sec;
4425 sec->next = first_sec;
4426 }
4427 }
4428
4429 first_os = NULL;
4430 last_os = NULL;
4431 }
4432
4433 ptr = insert_os_after (where);
4434 /* Snip everything from the start of the list, up to and
4435 including the insert statement we are currently processing. */
4436 first = *start;
4437 *start = (*s)->header.next;
4438 /* Add them back where they belong, minus the insert. */
4439 *s = *ptr;
4440 if (*s == NULL)
4441 statement_list.tail = s;
4442 *ptr = first;
4443 s = start;
4444 continue;
4445 }
4446 s = &(*s)->header.next;
4447 }
4448
4449 /* Undo constraint twiddling. */
4450 for (os = first_os; os != NULL; os = os->next)
4451 {
4452 os->constraint = -2 - os->constraint;
4453 if (os == last_os)
4454 break;
4455 }
4456 }
4457
4458 /* An output section might have been removed after its statement was
4459 added. For example, ldemul_before_allocation can remove dynamic
4460 sections if they turn out to be not needed. Clean them up here. */
4461
4462 void
4463 strip_excluded_output_sections (void)
4464 {
4465 lang_output_section_statement_type *os;
4466
4467 /* Run lang_size_sections (if not already done). */
4468 if (expld.phase != lang_mark_phase_enum)
4469 {
4470 expld.phase = lang_mark_phase_enum;
4471 expld.dataseg.phase = exp_seg_none;
4472 one_lang_size_sections_pass (NULL, FALSE);
4473 lang_reset_memory_regions ();
4474 }
4475
4476 for (os = (void *) lang_os_list.head;
4477 os != NULL;
4478 os = os->next)
4479 {
4480 asection *output_section;
4481 bfd_boolean exclude;
4482
4483 if (os->constraint < 0)
4484 continue;
4485
4486 output_section = os->bfd_section;
4487 if (output_section == NULL)
4488 continue;
4489
4490 exclude = (output_section->rawsize == 0
4491 && (output_section->flags & SEC_KEEP) == 0
4492 && !bfd_section_removed_from_list (link_info.output_bfd,
4493 output_section));
4494
4495 /* Some sections have not yet been sized, notably .gnu.version,
4496 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4497 input sections, so don't drop output sections that have such
4498 input sections unless they are also marked SEC_EXCLUDE. */
4499 if (exclude && output_section->map_head.s != NULL)
4500 {
4501 asection *s;
4502
4503 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4504 if ((s->flags & SEC_EXCLUDE) == 0
4505 && ((s->flags & SEC_LINKER_CREATED) != 0
4506 || link_info.emitrelocations))
4507 {
4508 exclude = FALSE;
4509 break;
4510 }
4511 }
4512
4513 if (exclude)
4514 {
4515 /* We don't set bfd_section to NULL since bfd_section of the
4516 removed output section statement may still be used. */
4517 if (!os->update_dot)
4518 os->ignored = TRUE;
4519 output_section->flags |= SEC_EXCLUDE;
4520 bfd_section_list_remove (link_info.output_bfd, output_section);
4521 link_info.output_bfd->section_count--;
4522 }
4523 }
4524 }
4525
4526 /* Called from ldwrite to clear out asection.map_head and
4527 asection.map_tail for use as link_orders in ldwrite. */
4528
4529 void
4530 lang_clear_os_map (void)
4531 {
4532 lang_output_section_statement_type *os;
4533
4534 if (map_head_is_link_order)
4535 return;
4536
4537 for (os = (void *) lang_os_list.head;
4538 os != NULL;
4539 os = os->next)
4540 {
4541 asection *output_section;
4542
4543 if (os->constraint < 0)
4544 continue;
4545
4546 output_section = os->bfd_section;
4547 if (output_section == NULL)
4548 continue;
4549
4550 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4551 output_section->map_head.link_order = NULL;
4552 output_section->map_tail.link_order = NULL;
4553 }
4554
4555 /* Stop future calls to lang_add_section from messing with map_head
4556 and map_tail link_order fields. */
4557 map_head_is_link_order = TRUE;
4558 }
4559
4560 static void
4561 print_output_section_statement
4562 (lang_output_section_statement_type *output_section_statement)
4563 {
4564 asection *section = output_section_statement->bfd_section;
4565 int len;
4566
4567 if (output_section_statement != abs_output_section)
4568 {
4569 minfo ("\n%s", output_section_statement->name);
4570
4571 if (section != NULL)
4572 {
4573 print_dot = section->vma;
4574
4575 len = strlen (output_section_statement->name);
4576 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4577 {
4578 print_nl ();
4579 len = 0;
4580 }
4581 while (len < SECTION_NAME_MAP_LENGTH)
4582 {
4583 print_space ();
4584 ++len;
4585 }
4586
4587 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4588
4589 if (section->vma != section->lma)
4590 minfo (_(" load address 0x%V"), section->lma);
4591
4592 if (output_section_statement->update_dot_tree != NULL)
4593 exp_fold_tree (output_section_statement->update_dot_tree,
4594 bfd_abs_section_ptr, &print_dot);
4595 }
4596
4597 print_nl ();
4598 }
4599
4600 print_statement_list (output_section_statement->children.head,
4601 output_section_statement);
4602 }
4603
4604 static void
4605 print_assignment (lang_assignment_statement_type *assignment,
4606 lang_output_section_statement_type *output_section)
4607 {
4608 unsigned int i;
4609 bfd_boolean is_dot;
4610 etree_type *tree;
4611 asection *osec;
4612
4613 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4614 print_space ();
4615
4616 if (assignment->exp->type.node_class == etree_assert)
4617 {
4618 is_dot = FALSE;
4619 tree = assignment->exp->assert_s.child;
4620 }
4621 else
4622 {
4623 const char *dst = assignment->exp->assign.dst;
4624
4625 is_dot = (dst[0] == '.' && dst[1] == 0);
4626 tree = assignment->exp;
4627 }
4628
4629 osec = output_section->bfd_section;
4630 if (osec == NULL)
4631 osec = bfd_abs_section_ptr;
4632
4633 if (assignment->exp->type.node_class != etree_provide)
4634 exp_fold_tree (tree, osec, &print_dot);
4635 else
4636 expld.result.valid_p = FALSE;
4637
4638 if (expld.result.valid_p)
4639 {
4640 bfd_vma value;
4641
4642 if (assignment->exp->type.node_class == etree_assert
4643 || is_dot
4644 || expld.assign_name != NULL)
4645 {
4646 value = expld.result.value;
4647
4648 if (expld.result.section != NULL)
4649 value += expld.result.section->vma;
4650
4651 minfo ("0x%V", value);
4652 if (is_dot)
4653 print_dot = value;
4654 }
4655 else
4656 {
4657 struct bfd_link_hash_entry *h;
4658
4659 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4660 FALSE, FALSE, TRUE);
4661 if (h != NULL
4662 && (h->type == bfd_link_hash_defined
4663 || h->type == bfd_link_hash_defweak))
4664 {
4665 value = h->u.def.value;
4666 value += h->u.def.section->output_section->vma;
4667 value += h->u.def.section->output_offset;
4668
4669 minfo ("[0x%V]", value);
4670 }
4671 else
4672 minfo ("[unresolved]");
4673 }
4674 }
4675 else
4676 {
4677 if (assignment->exp->type.node_class == etree_provide)
4678 minfo ("[!provide]");
4679 else
4680 minfo ("*undef* ");
4681 #ifdef BFD64
4682 minfo (" ");
4683 #endif
4684 }
4685 expld.assign_name = NULL;
4686
4687 minfo (" ");
4688 exp_print_tree (assignment->exp);
4689 print_nl ();
4690 }
4691
4692 static void
4693 print_input_statement (lang_input_statement_type *statm)
4694 {
4695 if (statm->filename != NULL)
4696 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4697 }
4698
4699 /* Print all symbols defined in a particular section. This is called
4700 via bfd_link_hash_traverse, or by print_all_symbols. */
4701
4702 bfd_boolean
4703 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4704 {
4705 asection *sec = (asection *) ptr;
4706
4707 if ((hash_entry->type == bfd_link_hash_defined
4708 || hash_entry->type == bfd_link_hash_defweak)
4709 && sec == hash_entry->u.def.section)
4710 {
4711 int i;
4712
4713 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4714 print_space ();
4715 minfo ("0x%V ",
4716 (hash_entry->u.def.value
4717 + hash_entry->u.def.section->output_offset
4718 + hash_entry->u.def.section->output_section->vma));
4719
4720 minfo (" %pT\n", hash_entry->root.string);
4721 }
4722
4723 return TRUE;
4724 }
4725
4726 static int
4727 hash_entry_addr_cmp (const void *a, const void *b)
4728 {
4729 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4730 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4731
4732 if (l->u.def.value < r->u.def.value)
4733 return -1;
4734 else if (l->u.def.value > r->u.def.value)
4735 return 1;
4736 else
4737 return 0;
4738 }
4739
4740 static void
4741 print_all_symbols (asection *sec)
4742 {
4743 input_section_userdata_type *ud = bfd_section_userdata (sec);
4744 struct map_symbol_def *def;
4745 struct bfd_link_hash_entry **entries;
4746 unsigned int i;
4747
4748 if (!ud)
4749 return;
4750
4751 *ud->map_symbol_def_tail = 0;
4752
4753 /* Sort the symbols by address. */
4754 entries = (struct bfd_link_hash_entry **)
4755 obstack_alloc (&map_obstack,
4756 ud->map_symbol_def_count * sizeof (*entries));
4757
4758 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4759 entries[i] = def->entry;
4760
4761 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4762 hash_entry_addr_cmp);
4763
4764 /* Print the symbols. */
4765 for (i = 0; i < ud->map_symbol_def_count; i++)
4766 ldemul_print_symbol (entries[i], sec);
4767
4768 obstack_free (&map_obstack, entries);
4769 }
4770
4771 /* Print information about an input section to the map file. */
4772
4773 static void
4774 print_input_section (asection *i, bfd_boolean is_discarded)
4775 {
4776 bfd_size_type size = i->size;
4777 int len;
4778 bfd_vma addr;
4779
4780 init_opb (i);
4781
4782 print_space ();
4783 minfo ("%s", i->name);
4784
4785 len = 1 + strlen (i->name);
4786 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4787 {
4788 print_nl ();
4789 len = 0;
4790 }
4791 while (len < SECTION_NAME_MAP_LENGTH)
4792 {
4793 print_space ();
4794 ++len;
4795 }
4796
4797 if (i->output_section != NULL
4798 && i->output_section->owner == link_info.output_bfd)
4799 addr = i->output_section->vma + i->output_offset;
4800 else
4801 {
4802 addr = print_dot;
4803 if (!is_discarded)
4804 size = 0;
4805 }
4806
4807 minfo ("0x%V %W %pB\n", addr, TO_ADDR (size), i->owner);
4808
4809 if (size != i->rawsize && i->rawsize != 0)
4810 {
4811 len = SECTION_NAME_MAP_LENGTH + 3;
4812 #ifdef BFD64
4813 len += 16;
4814 #else
4815 len += 8;
4816 #endif
4817 while (len > 0)
4818 {
4819 print_space ();
4820 --len;
4821 }
4822
4823 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4824 }
4825
4826 if (i->output_section != NULL
4827 && i->output_section->owner == link_info.output_bfd)
4828 {
4829 if (link_info.reduce_memory_overheads)
4830 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4831 else
4832 print_all_symbols (i);
4833
4834 /* Update print_dot, but make sure that we do not move it
4835 backwards - this could happen if we have overlays and a
4836 later overlay is shorter than an earier one. */
4837 if (addr + TO_ADDR (size) > print_dot)
4838 print_dot = addr + TO_ADDR (size);
4839 }
4840 }
4841
4842 static void
4843 print_fill_statement (lang_fill_statement_type *fill)
4844 {
4845 size_t size;
4846 unsigned char *p;
4847 fputs (" FILL mask 0x", config.map_file);
4848 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4849 fprintf (config.map_file, "%02x", *p);
4850 fputs ("\n", config.map_file);
4851 }
4852
4853 static void
4854 print_data_statement (lang_data_statement_type *data)
4855 {
4856 int i;
4857 bfd_vma addr;
4858 bfd_size_type size;
4859 const char *name;
4860
4861 init_opb (data->output_section);
4862 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4863 print_space ();
4864
4865 addr = data->output_offset;
4866 if (data->output_section != NULL)
4867 addr += data->output_section->vma;
4868
4869 switch (data->type)
4870 {
4871 default:
4872 abort ();
4873 case BYTE:
4874 size = BYTE_SIZE;
4875 name = "BYTE";
4876 break;
4877 case SHORT:
4878 size = SHORT_SIZE;
4879 name = "SHORT";
4880 break;
4881 case LONG:
4882 size = LONG_SIZE;
4883 name = "LONG";
4884 break;
4885 case QUAD:
4886 size = QUAD_SIZE;
4887 name = "QUAD";
4888 break;
4889 case SQUAD:
4890 size = QUAD_SIZE;
4891 name = "SQUAD";
4892 break;
4893 }
4894
4895 if (size < TO_SIZE ((unsigned) 1))
4896 size = TO_SIZE ((unsigned) 1);
4897 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4898
4899 if (data->exp->type.node_class != etree_value)
4900 {
4901 print_space ();
4902 exp_print_tree (data->exp);
4903 }
4904
4905 print_nl ();
4906
4907 print_dot = addr + TO_ADDR (size);
4908 }
4909
4910 /* Print an address statement. These are generated by options like
4911 -Ttext. */
4912
4913 static void
4914 print_address_statement (lang_address_statement_type *address)
4915 {
4916 minfo (_("Address of section %s set to "), address->section_name);
4917 exp_print_tree (address->address);
4918 print_nl ();
4919 }
4920
4921 /* Print a reloc statement. */
4922
4923 static void
4924 print_reloc_statement (lang_reloc_statement_type *reloc)
4925 {
4926 int i;
4927 bfd_vma addr;
4928 bfd_size_type size;
4929
4930 init_opb (reloc->output_section);
4931 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4932 print_space ();
4933
4934 addr = reloc->output_offset;
4935 if (reloc->output_section != NULL)
4936 addr += reloc->output_section->vma;
4937
4938 size = bfd_get_reloc_size (reloc->howto);
4939
4940 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4941
4942 if (reloc->name != NULL)
4943 minfo ("%s+", reloc->name);
4944 else
4945 minfo ("%s+", reloc->section->name);
4946
4947 exp_print_tree (reloc->addend_exp);
4948
4949 print_nl ();
4950
4951 print_dot = addr + TO_ADDR (size);
4952 }
4953
4954 static void
4955 print_padding_statement (lang_padding_statement_type *s)
4956 {
4957 int len;
4958 bfd_vma addr;
4959
4960 init_opb (s->output_section);
4961 minfo (" *fill*");
4962
4963 len = sizeof " *fill*" - 1;
4964 while (len < SECTION_NAME_MAP_LENGTH)
4965 {
4966 print_space ();
4967 ++len;
4968 }
4969
4970 addr = s->output_offset;
4971 if (s->output_section != NULL)
4972 addr += s->output_section->vma;
4973 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4974
4975 if (s->fill->size != 0)
4976 {
4977 size_t size;
4978 unsigned char *p;
4979 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4980 fprintf (config.map_file, "%02x", *p);
4981 }
4982
4983 print_nl ();
4984
4985 print_dot = addr + TO_ADDR (s->size);
4986 }
4987
4988 static void
4989 print_wild_statement (lang_wild_statement_type *w,
4990 lang_output_section_statement_type *os)
4991 {
4992 struct wildcard_list *sec;
4993
4994 print_space ();
4995
4996 if (w->exclude_name_list)
4997 {
4998 name_list *tmp;
4999 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
5000 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
5001 minfo (" %s", tmp->name);
5002 minfo (") ");
5003 }
5004
5005 if (w->filenames_sorted)
5006 minfo ("SORT_BY_NAME(");
5007 if (w->filename != NULL)
5008 minfo ("%s", w->filename);
5009 else
5010 minfo ("*");
5011 if (w->filenames_sorted)
5012 minfo (")");
5013
5014 minfo ("(");
5015 for (sec = w->section_list; sec; sec = sec->next)
5016 {
5017 int closing_paren = 0;
5018
5019 switch (sec->spec.sorted)
5020 {
5021 case none:
5022 break;
5023
5024 case by_name:
5025 minfo ("SORT_BY_NAME(");
5026 closing_paren = 1;
5027 break;
5028
5029 case by_alignment:
5030 minfo ("SORT_BY_ALIGNMENT(");
5031 closing_paren = 1;
5032 break;
5033
5034 case by_name_alignment:
5035 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5036 closing_paren = 2;
5037 break;
5038
5039 case by_alignment_name:
5040 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5041 closing_paren = 2;
5042 break;
5043
5044 case by_none:
5045 minfo ("SORT_NONE(");
5046 closing_paren = 1;
5047 break;
5048
5049 case by_init_priority:
5050 minfo ("SORT_BY_INIT_PRIORITY(");
5051 closing_paren = 1;
5052 break;
5053 }
5054
5055 if (sec->spec.exclude_name_list != NULL)
5056 {
5057 name_list *tmp;
5058 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5059 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5060 minfo (" %s", tmp->name);
5061 minfo (") ");
5062 }
5063 if (sec->spec.name != NULL)
5064 minfo ("%s", sec->spec.name);
5065 else
5066 minfo ("*");
5067 for (;closing_paren > 0; closing_paren--)
5068 minfo (")");
5069 if (sec->next)
5070 minfo (" ");
5071 }
5072 minfo (")");
5073
5074 print_nl ();
5075
5076 print_statement_list (w->children.head, os);
5077 }
5078
5079 /* Print a group statement. */
5080
5081 static void
5082 print_group (lang_group_statement_type *s,
5083 lang_output_section_statement_type *os)
5084 {
5085 fprintf (config.map_file, "START GROUP\n");
5086 print_statement_list (s->children.head, os);
5087 fprintf (config.map_file, "END GROUP\n");
5088 }
5089
5090 /* Print the list of statements in S.
5091 This can be called for any statement type. */
5092
5093 static void
5094 print_statement_list (lang_statement_union_type *s,
5095 lang_output_section_statement_type *os)
5096 {
5097 while (s != NULL)
5098 {
5099 print_statement (s, os);
5100 s = s->header.next;
5101 }
5102 }
5103
5104 /* Print the first statement in statement list S.
5105 This can be called for any statement type. */
5106
5107 static void
5108 print_statement (lang_statement_union_type *s,
5109 lang_output_section_statement_type *os)
5110 {
5111 switch (s->header.type)
5112 {
5113 default:
5114 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5115 FAIL ();
5116 break;
5117 case lang_constructors_statement_enum:
5118 if (constructor_list.head != NULL)
5119 {
5120 if (constructors_sorted)
5121 minfo (" SORT (CONSTRUCTORS)\n");
5122 else
5123 minfo (" CONSTRUCTORS\n");
5124 print_statement_list (constructor_list.head, os);
5125 }
5126 break;
5127 case lang_wild_statement_enum:
5128 print_wild_statement (&s->wild_statement, os);
5129 break;
5130 case lang_address_statement_enum:
5131 print_address_statement (&s->address_statement);
5132 break;
5133 case lang_object_symbols_statement_enum:
5134 minfo (" CREATE_OBJECT_SYMBOLS\n");
5135 break;
5136 case lang_fill_statement_enum:
5137 print_fill_statement (&s->fill_statement);
5138 break;
5139 case lang_data_statement_enum:
5140 print_data_statement (&s->data_statement);
5141 break;
5142 case lang_reloc_statement_enum:
5143 print_reloc_statement (&s->reloc_statement);
5144 break;
5145 case lang_input_section_enum:
5146 print_input_section (s->input_section.section, FALSE);
5147 break;
5148 case lang_padding_statement_enum:
5149 print_padding_statement (&s->padding_statement);
5150 break;
5151 case lang_output_section_statement_enum:
5152 print_output_section_statement (&s->output_section_statement);
5153 break;
5154 case lang_assignment_statement_enum:
5155 print_assignment (&s->assignment_statement, os);
5156 break;
5157 case lang_target_statement_enum:
5158 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5159 break;
5160 case lang_output_statement_enum:
5161 minfo ("OUTPUT(%s", s->output_statement.name);
5162 if (output_target != NULL)
5163 minfo (" %s", output_target);
5164 minfo (")\n");
5165 break;
5166 case lang_input_statement_enum:
5167 print_input_statement (&s->input_statement);
5168 break;
5169 case lang_group_statement_enum:
5170 print_group (&s->group_statement, os);
5171 break;
5172 case lang_insert_statement_enum:
5173 minfo ("INSERT %s %s\n",
5174 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5175 s->insert_statement.where);
5176 break;
5177 }
5178 }
5179
5180 static void
5181 print_statements (void)
5182 {
5183 print_statement_list (statement_list.head, abs_output_section);
5184 }
5185
5186 /* Print the first N statements in statement list S to STDERR.
5187 If N == 0, nothing is printed.
5188 If N < 0, the entire list is printed.
5189 Intended to be called from GDB. */
5190
5191 void
5192 dprint_statement (lang_statement_union_type *s, int n)
5193 {
5194 FILE *map_save = config.map_file;
5195
5196 config.map_file = stderr;
5197
5198 if (n < 0)
5199 print_statement_list (s, abs_output_section);
5200 else
5201 {
5202 while (s && --n >= 0)
5203 {
5204 print_statement (s, abs_output_section);
5205 s = s->header.next;
5206 }
5207 }
5208
5209 config.map_file = map_save;
5210 }
5211
5212 static void
5213 insert_pad (lang_statement_union_type **ptr,
5214 fill_type *fill,
5215 bfd_size_type alignment_needed,
5216 asection *output_section,
5217 bfd_vma dot)
5218 {
5219 static fill_type zero_fill;
5220 lang_statement_union_type *pad = NULL;
5221
5222 if (ptr != &statement_list.head)
5223 pad = ((lang_statement_union_type *)
5224 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5225 if (pad != NULL
5226 && pad->header.type == lang_padding_statement_enum
5227 && pad->padding_statement.output_section == output_section)
5228 {
5229 /* Use the existing pad statement. */
5230 }
5231 else if ((pad = *ptr) != NULL
5232 && pad->header.type == lang_padding_statement_enum
5233 && pad->padding_statement.output_section == output_section)
5234 {
5235 /* Use the existing pad statement. */
5236 }
5237 else
5238 {
5239 /* Make a new padding statement, linked into existing chain. */
5240 pad = stat_alloc (sizeof (lang_padding_statement_type));
5241 pad->header.next = *ptr;
5242 *ptr = pad;
5243 pad->header.type = lang_padding_statement_enum;
5244 pad->padding_statement.output_section = output_section;
5245 if (fill == NULL)
5246 fill = &zero_fill;
5247 pad->padding_statement.fill = fill;
5248 }
5249 pad->padding_statement.output_offset = dot - output_section->vma;
5250 pad->padding_statement.size = alignment_needed;
5251 if (!(output_section->flags & SEC_FIXED_SIZE))
5252 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5253 - output_section->vma);
5254 }
5255
5256 /* Work out how much this section will move the dot point. */
5257
5258 static bfd_vma
5259 size_input_section
5260 (lang_statement_union_type **this_ptr,
5261 lang_output_section_statement_type *output_section_statement,
5262 fill_type *fill,
5263 bfd_boolean *removed,
5264 bfd_vma dot)
5265 {
5266 lang_input_section_type *is = &((*this_ptr)->input_section);
5267 asection *i = is->section;
5268 asection *o = output_section_statement->bfd_section;
5269 *removed = 0;
5270
5271 if (link_info.non_contiguous_regions)
5272 {
5273 /* If the input section I has already been successfully assigned
5274 to an output section other than O, don't bother with it and
5275 let the caller remove it from the list. Keep processing in
5276 case we have already handled O, because the repeated passes
5277 have reinitialized its size. */
5278 if (i->already_assigned && i->already_assigned != o)
5279 {
5280 *removed = 1;
5281 return dot;
5282 }
5283 }
5284
5285 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5286 i->output_offset = i->vma - o->vma;
5287 else if (((i->flags & SEC_EXCLUDE) != 0)
5288 || output_section_statement->ignored)
5289 i->output_offset = dot - o->vma;
5290 else
5291 {
5292 bfd_size_type alignment_needed;
5293
5294 /* Align this section first to the input sections requirement,
5295 then to the output section's requirement. If this alignment
5296 is greater than any seen before, then record it too. Perform
5297 the alignment by inserting a magic 'padding' statement. */
5298
5299 if (output_section_statement->subsection_alignment != NULL)
5300 i->alignment_power
5301 = exp_get_power (output_section_statement->subsection_alignment,
5302 "subsection alignment");
5303
5304 if (o->alignment_power < i->alignment_power)
5305 o->alignment_power = i->alignment_power;
5306
5307 alignment_needed = align_power (dot, i->alignment_power) - dot;
5308
5309 if (alignment_needed != 0)
5310 {
5311 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5312 dot += alignment_needed;
5313 }
5314
5315 if (link_info.non_contiguous_regions)
5316 {
5317 /* If I would overflow O, let the caller remove I from the
5318 list. */
5319 if (output_section_statement->region)
5320 {
5321 bfd_vma end = output_section_statement->region->origin
5322 + output_section_statement->region->length;
5323
5324 if (dot + TO_ADDR (i->size) > end)
5325 {
5326 if (i->flags & SEC_LINKER_CREATED)
5327 einfo (_("%F%P: Output section '%s' not large enough for the "
5328 "linker-created stubs section '%s'.\n"),
5329 i->output_section->name, i->name);
5330
5331 if (i->rawsize && i->rawsize != i->size)
5332 einfo (_("%F%P: Relaxation not supported with "
5333 "--enable-non-contiguous-regions (section '%s' "
5334 "would overflow '%s' after it changed size).\n"),
5335 i->name, i->output_section->name);
5336
5337 *removed = 1;
5338 dot = end;
5339 i->output_section = NULL;
5340 return dot;
5341 }
5342 }
5343 }
5344
5345 /* Remember where in the output section this input section goes. */
5346 i->output_offset = dot - o->vma;
5347
5348 /* Mark how big the output section must be to contain this now. */
5349 dot += TO_ADDR (i->size);
5350 if (!(o->flags & SEC_FIXED_SIZE))
5351 o->size = TO_SIZE (dot - o->vma);
5352
5353 if (link_info.non_contiguous_regions)
5354 {
5355 /* Record that I was successfully assigned to O, and update
5356 its actual output section too. */
5357 i->already_assigned = o;
5358 i->output_section = o;
5359 }
5360 }
5361
5362 return dot;
5363 }
5364
5365 struct check_sec
5366 {
5367 asection *sec;
5368 bfd_boolean warned;
5369 };
5370
5371 static int
5372 sort_sections_by_lma (const void *arg1, const void *arg2)
5373 {
5374 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5375 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5376
5377 if (sec1->lma < sec2->lma)
5378 return -1;
5379 else if (sec1->lma > sec2->lma)
5380 return 1;
5381 else if (sec1->id < sec2->id)
5382 return -1;
5383 else if (sec1->id > sec2->id)
5384 return 1;
5385
5386 return 0;
5387 }
5388
5389 static int
5390 sort_sections_by_vma (const void *arg1, const void *arg2)
5391 {
5392 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5393 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5394
5395 if (sec1->vma < sec2->vma)
5396 return -1;
5397 else if (sec1->vma > sec2->vma)
5398 return 1;
5399 else if (sec1->id < sec2->id)
5400 return -1;
5401 else if (sec1->id > sec2->id)
5402 return 1;
5403
5404 return 0;
5405 }
5406
5407 #define IS_TBSS(s) \
5408 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5409
5410 #define IGNORE_SECTION(s) \
5411 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5412
5413 /* Check to see if any allocated sections overlap with other allocated
5414 sections. This can happen if a linker script specifies the output
5415 section addresses of the two sections. Also check whether any memory
5416 region has overflowed. */
5417
5418 static void
5419 lang_check_section_addresses (void)
5420 {
5421 asection *s, *p;
5422 struct check_sec *sections;
5423 size_t i, count;
5424 bfd_vma addr_mask;
5425 bfd_vma s_start;
5426 bfd_vma s_end;
5427 bfd_vma p_start = 0;
5428 bfd_vma p_end = 0;
5429 lang_memory_region_type *m;
5430 bfd_boolean overlays;
5431
5432 /* Detect address space overflow on allocated sections. */
5433 addr_mask = ((bfd_vma) 1 <<
5434 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5435 addr_mask = (addr_mask << 1) + 1;
5436 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5437 if ((s->flags & SEC_ALLOC) != 0)
5438 {
5439 s_end = (s->vma + s->size) & addr_mask;
5440 if (s_end != 0 && s_end < (s->vma & addr_mask))
5441 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5442 s->name);
5443 else
5444 {
5445 s_end = (s->lma + s->size) & addr_mask;
5446 if (s_end != 0 && s_end < (s->lma & addr_mask))
5447 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5448 s->name);
5449 }
5450 }
5451
5452 if (bfd_count_sections (link_info.output_bfd) <= 1)
5453 return;
5454
5455 count = bfd_count_sections (link_info.output_bfd);
5456 sections = XNEWVEC (struct check_sec, count);
5457
5458 /* Scan all sections in the output list. */
5459 count = 0;
5460 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5461 {
5462 if (IGNORE_SECTION (s)
5463 || s->size == 0)
5464 continue;
5465
5466 sections[count].sec = s;
5467 sections[count].warned = FALSE;
5468 count++;
5469 }
5470
5471 if (count <= 1)
5472 {
5473 free (sections);
5474 return;
5475 }
5476
5477 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5478
5479 /* First check section LMAs. There should be no overlap of LMAs on
5480 loadable sections, even with overlays. */
5481 for (p = NULL, i = 0; i < count; i++)
5482 {
5483 s = sections[i].sec;
5484 init_opb (s);
5485 if ((s->flags & SEC_LOAD) != 0)
5486 {
5487 s_start = s->lma;
5488 s_end = s_start + TO_ADDR (s->size) - 1;
5489
5490 /* Look for an overlap. We have sorted sections by lma, so
5491 we know that s_start >= p_start. Besides the obvious
5492 case of overlap when the current section starts before
5493 the previous one ends, we also must have overlap if the
5494 previous section wraps around the address space. */
5495 if (p != NULL
5496 && (s_start <= p_end
5497 || p_end < p_start))
5498 {
5499 einfo (_("%X%P: section %s LMA [%V,%V]"
5500 " overlaps section %s LMA [%V,%V]\n"),
5501 s->name, s_start, s_end, p->name, p_start, p_end);
5502 sections[i].warned = TRUE;
5503 }
5504 p = s;
5505 p_start = s_start;
5506 p_end = s_end;
5507 }
5508 }
5509
5510 /* If any non-zero size allocated section (excluding tbss) starts at
5511 exactly the same VMA as another such section, then we have
5512 overlays. Overlays generated by the OVERLAY keyword will have
5513 this property. It is possible to intentionally generate overlays
5514 that fail this test, but it would be unusual. */
5515 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5516 overlays = FALSE;
5517 p_start = sections[0].sec->vma;
5518 for (i = 1; i < count; i++)
5519 {
5520 s_start = sections[i].sec->vma;
5521 if (p_start == s_start)
5522 {
5523 overlays = TRUE;
5524 break;
5525 }
5526 p_start = s_start;
5527 }
5528
5529 /* Now check section VMAs if no overlays were detected. */
5530 if (!overlays)
5531 {
5532 for (p = NULL, i = 0; i < count; i++)
5533 {
5534 s = sections[i].sec;
5535 init_opb (s);
5536 s_start = s->vma;
5537 s_end = s_start + TO_ADDR (s->size) - 1;
5538
5539 if (p != NULL
5540 && !sections[i].warned
5541 && (s_start <= p_end
5542 || p_end < p_start))
5543 einfo (_("%X%P: section %s VMA [%V,%V]"
5544 " overlaps section %s VMA [%V,%V]\n"),
5545 s->name, s_start, s_end, p->name, p_start, p_end);
5546 p = s;
5547 p_start = s_start;
5548 p_end = s_end;
5549 }
5550 }
5551
5552 free (sections);
5553
5554 /* If any memory region has overflowed, report by how much.
5555 We do not issue this diagnostic for regions that had sections
5556 explicitly placed outside their bounds; os_region_check's
5557 diagnostics are adequate for that case.
5558
5559 FIXME: It is conceivable that m->current - (m->origin + m->length)
5560 might overflow a 32-bit integer. There is, alas, no way to print
5561 a bfd_vma quantity in decimal. */
5562 for (m = lang_memory_region_list; m; m = m->next)
5563 if (m->had_full_message)
5564 {
5565 unsigned long over = m->current - (m->origin + m->length);
5566 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5567 "%X%P: region `%s' overflowed by %lu bytes\n",
5568 over),
5569 m->name_list.name, over);
5570 }
5571 }
5572
5573 /* Make sure the new address is within the region. We explicitly permit the
5574 current address to be at the exact end of the region when the address is
5575 non-zero, in case the region is at the end of addressable memory and the
5576 calculation wraps around. */
5577
5578 static void
5579 os_region_check (lang_output_section_statement_type *os,
5580 lang_memory_region_type *region,
5581 etree_type *tree,
5582 bfd_vma rbase)
5583 {
5584 if ((region->current < region->origin
5585 || (region->current - region->origin > region->length))
5586 && ((region->current != region->origin + region->length)
5587 || rbase == 0))
5588 {
5589 if (tree != NULL)
5590 {
5591 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5592 " is not within region `%s'\n"),
5593 region->current,
5594 os->bfd_section->owner,
5595 os->bfd_section->name,
5596 region->name_list.name);
5597 }
5598 else if (!region->had_full_message)
5599 {
5600 region->had_full_message = TRUE;
5601
5602 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5603 os->bfd_section->owner,
5604 os->bfd_section->name,
5605 region->name_list.name);
5606 }
5607 }
5608 }
5609
5610 static void
5611 ldlang_check_relro_region (lang_statement_union_type *s,
5612 seg_align_type *seg)
5613 {
5614 if (seg->relro == exp_seg_relro_start)
5615 {
5616 if (!seg->relro_start_stat)
5617 seg->relro_start_stat = s;
5618 else
5619 {
5620 ASSERT (seg->relro_start_stat == s);
5621 }
5622 }
5623 else if (seg->relro == exp_seg_relro_end)
5624 {
5625 if (!seg->relro_end_stat)
5626 seg->relro_end_stat = s;
5627 else
5628 {
5629 ASSERT (seg->relro_end_stat == s);
5630 }
5631 }
5632 }
5633
5634 /* Set the sizes for all the output sections. */
5635
5636 static bfd_vma
5637 lang_size_sections_1
5638 (lang_statement_union_type **prev,
5639 lang_output_section_statement_type *output_section_statement,
5640 fill_type *fill,
5641 bfd_vma dot,
5642 bfd_boolean *relax,
5643 bfd_boolean check_regions)
5644 {
5645 lang_statement_union_type *s;
5646 lang_statement_union_type *prev_s = NULL;
5647 bfd_boolean removed_prev_s = FALSE;
5648
5649 /* Size up the sections from their constituent parts. */
5650 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5651 {
5652 bfd_boolean removed=FALSE;
5653
5654 switch (s->header.type)
5655 {
5656 case lang_output_section_statement_enum:
5657 {
5658 bfd_vma newdot, after, dotdelta;
5659 lang_output_section_statement_type *os;
5660 lang_memory_region_type *r;
5661 int section_alignment = 0;
5662
5663 os = &s->output_section_statement;
5664 init_opb (os->bfd_section);
5665 if (os->constraint == -1)
5666 break;
5667
5668 /* FIXME: We shouldn't need to zero section vmas for ld -r
5669 here, in lang_insert_orphan, or in the default linker scripts.
5670 This is covering for coff backend linker bugs. See PR6945. */
5671 if (os->addr_tree == NULL
5672 && bfd_link_relocatable (&link_info)
5673 && (bfd_get_flavour (link_info.output_bfd)
5674 == bfd_target_coff_flavour))
5675 os->addr_tree = exp_intop (0);
5676 if (os->addr_tree != NULL)
5677 {
5678 os->processed_vma = FALSE;
5679 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5680
5681 if (expld.result.valid_p)
5682 {
5683 dot = expld.result.value;
5684 if (expld.result.section != NULL)
5685 dot += expld.result.section->vma;
5686 }
5687 else if (expld.phase != lang_mark_phase_enum)
5688 einfo (_("%F%P:%pS: non constant or forward reference"
5689 " address expression for section %s\n"),
5690 os->addr_tree, os->name);
5691 }
5692
5693 if (os->bfd_section == NULL)
5694 /* This section was removed or never actually created. */
5695 break;
5696
5697 /* If this is a COFF shared library section, use the size and
5698 address from the input section. FIXME: This is COFF
5699 specific; it would be cleaner if there were some other way
5700 to do this, but nothing simple comes to mind. */
5701 if (((bfd_get_flavour (link_info.output_bfd)
5702 == bfd_target_ecoff_flavour)
5703 || (bfd_get_flavour (link_info.output_bfd)
5704 == bfd_target_coff_flavour))
5705 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5706 {
5707 asection *input;
5708
5709 if (os->children.head == NULL
5710 || os->children.head->header.next != NULL
5711 || (os->children.head->header.type
5712 != lang_input_section_enum))
5713 einfo (_("%X%P: internal error on COFF shared library"
5714 " section %s\n"), os->name);
5715
5716 input = os->children.head->input_section.section;
5717 bfd_set_section_vma (os->bfd_section,
5718 bfd_section_vma (input));
5719 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5720 os->bfd_section->size = input->size;
5721 break;
5722 }
5723
5724 newdot = dot;
5725 dotdelta = 0;
5726 if (bfd_is_abs_section (os->bfd_section))
5727 {
5728 /* No matter what happens, an abs section starts at zero. */
5729 ASSERT (os->bfd_section->vma == 0);
5730 }
5731 else
5732 {
5733 if (os->addr_tree == NULL)
5734 {
5735 /* No address specified for this section, get one
5736 from the region specification. */
5737 if (os->region == NULL
5738 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5739 && os->region->name_list.name[0] == '*'
5740 && strcmp (os->region->name_list.name,
5741 DEFAULT_MEMORY_REGION) == 0))
5742 {
5743 os->region = lang_memory_default (os->bfd_section);
5744 }
5745
5746 /* If a loadable section is using the default memory
5747 region, and some non default memory regions were
5748 defined, issue an error message. */
5749 if (!os->ignored
5750 && !IGNORE_SECTION (os->bfd_section)
5751 && !bfd_link_relocatable (&link_info)
5752 && check_regions
5753 && strcmp (os->region->name_list.name,
5754 DEFAULT_MEMORY_REGION) == 0
5755 && lang_memory_region_list != NULL
5756 && (strcmp (lang_memory_region_list->name_list.name,
5757 DEFAULT_MEMORY_REGION) != 0
5758 || lang_memory_region_list->next != NULL)
5759 && lang_sizing_iteration == 1)
5760 {
5761 /* By default this is an error rather than just a
5762 warning because if we allocate the section to the
5763 default memory region we can end up creating an
5764 excessively large binary, or even seg faulting when
5765 attempting to perform a negative seek. See
5766 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5767 for an example of this. This behaviour can be
5768 overridden by the using the --no-check-sections
5769 switch. */
5770 if (command_line.check_section_addresses)
5771 einfo (_("%F%P: error: no memory region specified"
5772 " for loadable section `%s'\n"),
5773 bfd_section_name (os->bfd_section));
5774 else
5775 einfo (_("%P: warning: no memory region specified"
5776 " for loadable section `%s'\n"),
5777 bfd_section_name (os->bfd_section));
5778 }
5779
5780 newdot = os->region->current;
5781 section_alignment = os->bfd_section->alignment_power;
5782 }
5783 else
5784 section_alignment = exp_get_power (os->section_alignment,
5785 "section alignment");
5786
5787 /* Align to what the section needs. */
5788 if (section_alignment > 0)
5789 {
5790 bfd_vma savedot = newdot;
5791 bfd_vma diff = 0;
5792
5793 newdot = align_power (newdot, section_alignment);
5794 dotdelta = newdot - savedot;
5795
5796 if (lang_sizing_iteration == 1)
5797 diff = dotdelta;
5798 else if (lang_sizing_iteration > 1)
5799 {
5800 /* Only report adjustments that would change
5801 alignment from what we have already reported. */
5802 diff = newdot - os->bfd_section->vma;
5803 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5804 diff = 0;
5805 }
5806 if (diff != 0
5807 && (config.warn_section_align
5808 || os->addr_tree != NULL))
5809 einfo (_("%P: warning: "
5810 "start of section %s changed by %ld\n"),
5811 os->name, (long) diff);
5812 }
5813
5814 bfd_set_section_vma (os->bfd_section, newdot);
5815
5816 os->bfd_section->output_offset = 0;
5817 }
5818
5819 lang_size_sections_1 (&os->children.head, os,
5820 os->fill, newdot, relax, check_regions);
5821
5822 os->processed_vma = TRUE;
5823
5824 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5825 /* Except for some special linker created sections,
5826 no output section should change from zero size
5827 after strip_excluded_output_sections. A non-zero
5828 size on an ignored section indicates that some
5829 input section was not sized early enough. */
5830 ASSERT (os->bfd_section->size == 0);
5831 else
5832 {
5833 dot = os->bfd_section->vma;
5834
5835 /* Put the section within the requested block size, or
5836 align at the block boundary. */
5837 after = ((dot
5838 + TO_ADDR (os->bfd_section->size)
5839 + os->block_value - 1)
5840 & - (bfd_vma) os->block_value);
5841
5842 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5843 os->bfd_section->size = TO_SIZE (after
5844 - os->bfd_section->vma);
5845 }
5846
5847 /* Set section lma. */
5848 r = os->region;
5849 if (r == NULL)
5850 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5851
5852 if (os->load_base)
5853 {
5854 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5855 os->bfd_section->lma = lma;
5856 }
5857 else if (os->lma_region != NULL)
5858 {
5859 bfd_vma lma = os->lma_region->current;
5860
5861 if (os->align_lma_with_input)
5862 lma += dotdelta;
5863 else
5864 {
5865 /* When LMA_REGION is the same as REGION, align the LMA
5866 as we did for the VMA, possibly including alignment
5867 from the bfd section. If a different region, then
5868 only align according to the value in the output
5869 statement. */
5870 if (os->lma_region != os->region)
5871 section_alignment = exp_get_power (os->section_alignment,
5872 "section alignment");
5873 if (section_alignment > 0)
5874 lma = align_power (lma, section_alignment);
5875 }
5876 os->bfd_section->lma = lma;
5877 }
5878 else if (r->last_os != NULL
5879 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5880 {
5881 bfd_vma lma;
5882 asection *last;
5883
5884 last = r->last_os->output_section_statement.bfd_section;
5885
5886 /* A backwards move of dot should be accompanied by
5887 an explicit assignment to the section LMA (ie.
5888 os->load_base set) because backwards moves can
5889 create overlapping LMAs. */
5890 if (dot < last->vma
5891 && os->bfd_section->size != 0
5892 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5893 {
5894 /* If dot moved backwards then leave lma equal to
5895 vma. This is the old default lma, which might
5896 just happen to work when the backwards move is
5897 sufficiently large. Nag if this changes anything,
5898 so people can fix their linker scripts. */
5899
5900 if (last->vma != last->lma)
5901 einfo (_("%P: warning: dot moved backwards "
5902 "before `%s'\n"), os->name);
5903 }
5904 else
5905 {
5906 /* If this is an overlay, set the current lma to that
5907 at the end of the previous section. */
5908 if (os->sectype == overlay_section)
5909 lma = last->lma + TO_ADDR (last->size);
5910
5911 /* Otherwise, keep the same lma to vma relationship
5912 as the previous section. */
5913 else
5914 lma = os->bfd_section->vma + last->lma - last->vma;
5915
5916 if (section_alignment > 0)
5917 lma = align_power (lma, section_alignment);
5918 os->bfd_section->lma = lma;
5919 }
5920 }
5921 os->processed_lma = TRUE;
5922
5923 /* Keep track of normal sections using the default
5924 lma region. We use this to set the lma for
5925 following sections. Overlays or other linker
5926 script assignment to lma might mean that the
5927 default lma == vma is incorrect.
5928 To avoid warnings about dot moving backwards when using
5929 -Ttext, don't start tracking sections until we find one
5930 of non-zero size or with lma set differently to vma.
5931 Do this tracking before we short-cut the loop so that we
5932 track changes for the case where the section size is zero,
5933 but the lma is set differently to the vma. This is
5934 important, if an orphan section is placed after an
5935 otherwise empty output section that has an explicit lma
5936 set, we want that lma reflected in the orphans lma. */
5937 if (((!IGNORE_SECTION (os->bfd_section)
5938 && (os->bfd_section->size != 0
5939 || (r->last_os == NULL
5940 && os->bfd_section->vma != os->bfd_section->lma)
5941 || (r->last_os != NULL
5942 && dot >= (r->last_os->output_section_statement
5943 .bfd_section->vma))))
5944 || os->sectype == first_overlay_section)
5945 && os->lma_region == NULL
5946 && !bfd_link_relocatable (&link_info))
5947 r->last_os = s;
5948
5949 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5950 break;
5951
5952 /* .tbss sections effectively have zero size. */
5953 if (!IS_TBSS (os->bfd_section)
5954 || bfd_link_relocatable (&link_info))
5955 dotdelta = TO_ADDR (os->bfd_section->size);
5956 else
5957 dotdelta = 0;
5958 dot += dotdelta;
5959
5960 if (os->update_dot_tree != 0)
5961 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5962
5963 /* Update dot in the region ?
5964 We only do this if the section is going to be allocated,
5965 since unallocated sections do not contribute to the region's
5966 overall size in memory. */
5967 if (os->region != NULL
5968 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5969 {
5970 os->region->current = dot;
5971
5972 if (check_regions)
5973 /* Make sure the new address is within the region. */
5974 os_region_check (os, os->region, os->addr_tree,
5975 os->bfd_section->vma);
5976
5977 if (os->lma_region != NULL && os->lma_region != os->region
5978 && ((os->bfd_section->flags & SEC_LOAD)
5979 || os->align_lma_with_input))
5980 {
5981 os->lma_region->current = os->bfd_section->lma + dotdelta;
5982
5983 if (check_regions)
5984 os_region_check (os, os->lma_region, NULL,
5985 os->bfd_section->lma);
5986 }
5987 }
5988 }
5989 break;
5990
5991 case lang_constructors_statement_enum:
5992 dot = lang_size_sections_1 (&constructor_list.head,
5993 output_section_statement,
5994 fill, dot, relax, check_regions);
5995 break;
5996
5997 case lang_data_statement_enum:
5998 {
5999 unsigned int size = 0;
6000
6001 s->data_statement.output_offset =
6002 dot - output_section_statement->bfd_section->vma;
6003 s->data_statement.output_section =
6004 output_section_statement->bfd_section;
6005
6006 /* We might refer to provided symbols in the expression, and
6007 need to mark them as needed. */
6008 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6009
6010 switch (s->data_statement.type)
6011 {
6012 default:
6013 abort ();
6014 case QUAD:
6015 case SQUAD:
6016 size = QUAD_SIZE;
6017 break;
6018 case LONG:
6019 size = LONG_SIZE;
6020 break;
6021 case SHORT:
6022 size = SHORT_SIZE;
6023 break;
6024 case BYTE:
6025 size = BYTE_SIZE;
6026 break;
6027 }
6028 if (size < TO_SIZE ((unsigned) 1))
6029 size = TO_SIZE ((unsigned) 1);
6030 dot += TO_ADDR (size);
6031 if (!(output_section_statement->bfd_section->flags
6032 & SEC_FIXED_SIZE))
6033 output_section_statement->bfd_section->size
6034 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6035
6036 }
6037 break;
6038
6039 case lang_reloc_statement_enum:
6040 {
6041 int size;
6042
6043 s->reloc_statement.output_offset =
6044 dot - output_section_statement->bfd_section->vma;
6045 s->reloc_statement.output_section =
6046 output_section_statement->bfd_section;
6047 size = bfd_get_reloc_size (s->reloc_statement.howto);
6048 dot += TO_ADDR (size);
6049 if (!(output_section_statement->bfd_section->flags
6050 & SEC_FIXED_SIZE))
6051 output_section_statement->bfd_section->size
6052 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6053 }
6054 break;
6055
6056 case lang_wild_statement_enum:
6057 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6058 output_section_statement,
6059 fill, dot, relax, check_regions);
6060 break;
6061
6062 case lang_object_symbols_statement_enum:
6063 link_info.create_object_symbols_section
6064 = output_section_statement->bfd_section;
6065 output_section_statement->bfd_section->flags |= SEC_KEEP;
6066 break;
6067
6068 case lang_output_statement_enum:
6069 case lang_target_statement_enum:
6070 break;
6071
6072 case lang_input_section_enum:
6073 {
6074 asection *i;
6075
6076 i = s->input_section.section;
6077 if (relax)
6078 {
6079 bfd_boolean again;
6080
6081 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6082 einfo (_("%F%P: can't relax section: %E\n"));
6083 if (again)
6084 *relax = TRUE;
6085 }
6086 dot = size_input_section (prev, output_section_statement,
6087 fill, &removed, dot);
6088 }
6089 break;
6090
6091 case lang_input_statement_enum:
6092 break;
6093
6094 case lang_fill_statement_enum:
6095 s->fill_statement.output_section =
6096 output_section_statement->bfd_section;
6097
6098 fill = s->fill_statement.fill;
6099 break;
6100
6101 case lang_assignment_statement_enum:
6102 {
6103 bfd_vma newdot = dot;
6104 etree_type *tree = s->assignment_statement.exp;
6105
6106 expld.dataseg.relro = exp_seg_relro_none;
6107
6108 exp_fold_tree (tree,
6109 output_section_statement->bfd_section,
6110 &newdot);
6111
6112 ldlang_check_relro_region (s, &expld.dataseg);
6113
6114 expld.dataseg.relro = exp_seg_relro_none;
6115
6116 /* This symbol may be relative to this section. */
6117 if ((tree->type.node_class == etree_provided
6118 || tree->type.node_class == etree_assign)
6119 && (tree->assign.dst [0] != '.'
6120 || tree->assign.dst [1] != '\0'))
6121 output_section_statement->update_dot = 1;
6122
6123 if (!output_section_statement->ignored)
6124 {
6125 if (output_section_statement == abs_output_section)
6126 {
6127 /* If we don't have an output section, then just adjust
6128 the default memory address. */
6129 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6130 FALSE)->current = newdot;
6131 }
6132 else if (newdot != dot)
6133 {
6134 /* Insert a pad after this statement. We can't
6135 put the pad before when relaxing, in case the
6136 assignment references dot. */
6137 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6138 output_section_statement->bfd_section, dot);
6139
6140 /* Don't neuter the pad below when relaxing. */
6141 s = s->header.next;
6142
6143 /* If dot is advanced, this implies that the section
6144 should have space allocated to it, unless the
6145 user has explicitly stated that the section
6146 should not be allocated. */
6147 if (output_section_statement->sectype != noalloc_section
6148 && (output_section_statement->sectype != noload_section
6149 || (bfd_get_flavour (link_info.output_bfd)
6150 == bfd_target_elf_flavour)))
6151 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6152 }
6153 dot = newdot;
6154 }
6155 }
6156 break;
6157
6158 case lang_padding_statement_enum:
6159 /* If this is the first time lang_size_sections is called,
6160 we won't have any padding statements. If this is the
6161 second or later passes when relaxing, we should allow
6162 padding to shrink. If padding is needed on this pass, it
6163 will be added back in. */
6164 s->padding_statement.size = 0;
6165
6166 /* Make sure output_offset is valid. If relaxation shrinks
6167 the section and this pad isn't needed, it's possible to
6168 have output_offset larger than the final size of the
6169 section. bfd_set_section_contents will complain even for
6170 a pad size of zero. */
6171 s->padding_statement.output_offset
6172 = dot - output_section_statement->bfd_section->vma;
6173 break;
6174
6175 case lang_group_statement_enum:
6176 dot = lang_size_sections_1 (&s->group_statement.children.head,
6177 output_section_statement,
6178 fill, dot, relax, check_regions);
6179 break;
6180
6181 case lang_insert_statement_enum:
6182 break;
6183
6184 /* We can only get here when relaxing is turned on. */
6185 case lang_address_statement_enum:
6186 break;
6187
6188 default:
6189 FAIL ();
6190 break;
6191 }
6192
6193 /* If an input section doesn't fit in the current output
6194 section, remove it from the list. Handle the case where we
6195 have to remove an input_section statement here: there is a
6196 special case to remove the first element of the list. */
6197 if (link_info.non_contiguous_regions && removed)
6198 {
6199 /* If we removed the first element during the previous
6200 iteration, override the loop assignment of prev_s. */
6201 if (removed_prev_s)
6202 prev_s = NULL;
6203
6204 if (prev_s)
6205 {
6206 /* If there was a real previous input section, just skip
6207 the current one. */
6208 prev_s->header.next=s->header.next;
6209 s = prev_s;
6210 removed_prev_s = FALSE;
6211 }
6212 else
6213 {
6214 /* Remove the first input section of the list. */
6215 *prev = s->header.next;
6216 removed_prev_s = TRUE;
6217 }
6218
6219 /* Move to next element, unless we removed the head of the
6220 list. */
6221 if (!removed_prev_s)
6222 prev = &s->header.next;
6223 }
6224 else
6225 {
6226 prev = &s->header.next;
6227 removed_prev_s = FALSE;
6228 }
6229 }
6230 return dot;
6231 }
6232
6233 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6234 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6235 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6236 segments. We are allowed an opportunity to override this decision. */
6237
6238 bfd_boolean
6239 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6240 bfd *abfd ATTRIBUTE_UNUSED,
6241 asection *current_section,
6242 asection *previous_section,
6243 bfd_boolean new_segment)
6244 {
6245 lang_output_section_statement_type *cur;
6246 lang_output_section_statement_type *prev;
6247
6248 /* The checks below are only necessary when the BFD library has decided
6249 that the two sections ought to be placed into the same segment. */
6250 if (new_segment)
6251 return TRUE;
6252
6253 /* Paranoia checks. */
6254 if (current_section == NULL || previous_section == NULL)
6255 return new_segment;
6256
6257 /* If this flag is set, the target never wants code and non-code
6258 sections comingled in the same segment. */
6259 if (config.separate_code
6260 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6261 return TRUE;
6262
6263 /* Find the memory regions associated with the two sections.
6264 We call lang_output_section_find() here rather than scanning the list
6265 of output sections looking for a matching section pointer because if
6266 we have a large number of sections then a hash lookup is faster. */
6267 cur = lang_output_section_find (current_section->name);
6268 prev = lang_output_section_find (previous_section->name);
6269
6270 /* More paranoia. */
6271 if (cur == NULL || prev == NULL)
6272 return new_segment;
6273
6274 /* If the regions are different then force the sections to live in
6275 different segments. See the email thread starting at the following
6276 URL for the reasons why this is necessary:
6277 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6278 return cur->region != prev->region;
6279 }
6280
6281 void
6282 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
6283 {
6284 lang_statement_iteration++;
6285 if (expld.phase != lang_mark_phase_enum)
6286 lang_sizing_iteration++;
6287 lang_size_sections_1 (&statement_list.head, abs_output_section,
6288 0, 0, relax, check_regions);
6289 }
6290
6291 static bfd_boolean
6292 lang_size_segment (seg_align_type *seg)
6293 {
6294 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6295 a page could be saved in the data segment. */
6296 bfd_vma first, last;
6297
6298 first = -seg->base & (seg->pagesize - 1);
6299 last = seg->end & (seg->pagesize - 1);
6300 if (first && last
6301 && ((seg->base & ~(seg->pagesize - 1))
6302 != (seg->end & ~(seg->pagesize - 1)))
6303 && first + last <= seg->pagesize)
6304 {
6305 seg->phase = exp_seg_adjust;
6306 return TRUE;
6307 }
6308
6309 seg->phase = exp_seg_done;
6310 return FALSE;
6311 }
6312
6313 static bfd_vma
6314 lang_size_relro_segment_1 (seg_align_type *seg)
6315 {
6316 bfd_vma relro_end, desired_end;
6317 asection *sec;
6318
6319 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6320 relro_end = ((seg->relro_end + seg->pagesize - 1)
6321 & ~(seg->pagesize - 1));
6322
6323 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6324 desired_end = relro_end - seg->relro_offset;
6325
6326 /* For sections in the relro segment.. */
6327 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6328 if ((sec->flags & SEC_ALLOC) != 0
6329 && sec->vma >= seg->base
6330 && sec->vma < seg->relro_end - seg->relro_offset)
6331 {
6332 /* Where do we want to put this section so that it ends as
6333 desired? */
6334 bfd_vma start, end, bump;
6335
6336 end = start = sec->vma;
6337 if (!IS_TBSS (sec))
6338 end += TO_ADDR (sec->size);
6339 bump = desired_end - end;
6340 /* We'd like to increase START by BUMP, but we must heed
6341 alignment so the increase might be less than optimum. */
6342 start += bump;
6343 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6344 /* This is now the desired end for the previous section. */
6345 desired_end = start;
6346 }
6347
6348 seg->phase = exp_seg_relro_adjust;
6349 ASSERT (desired_end >= seg->base);
6350 seg->base = desired_end;
6351 return relro_end;
6352 }
6353
6354 static bfd_boolean
6355 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
6356 {
6357 bfd_boolean do_reset = FALSE;
6358 bfd_boolean do_data_relro;
6359 bfd_vma data_initial_base, data_relro_end;
6360
6361 if (link_info.relro && expld.dataseg.relro_end)
6362 {
6363 do_data_relro = TRUE;
6364 data_initial_base = expld.dataseg.base;
6365 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
6366 }
6367 else
6368 {
6369 do_data_relro = FALSE;
6370 data_initial_base = data_relro_end = 0;
6371 }
6372
6373 if (do_data_relro)
6374 {
6375 lang_reset_memory_regions ();
6376 one_lang_size_sections_pass (relax, check_regions);
6377
6378 /* Assignments to dot, or to output section address in a user
6379 script have increased padding over the original. Revert. */
6380 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
6381 {
6382 expld.dataseg.base = data_initial_base;;
6383 do_reset = TRUE;
6384 }
6385 }
6386
6387 if (!do_data_relro && lang_size_segment (&expld.dataseg))
6388 do_reset = TRUE;
6389
6390 return do_reset;
6391 }
6392
6393 void
6394 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
6395 {
6396 expld.phase = lang_allocating_phase_enum;
6397 expld.dataseg.phase = exp_seg_none;
6398
6399 one_lang_size_sections_pass (relax, check_regions);
6400
6401 if (expld.dataseg.phase != exp_seg_end_seen)
6402 expld.dataseg.phase = exp_seg_done;
6403
6404 if (expld.dataseg.phase == exp_seg_end_seen)
6405 {
6406 bfd_boolean do_reset
6407 = lang_size_relro_segment (relax, check_regions);
6408
6409 if (do_reset)
6410 {
6411 lang_reset_memory_regions ();
6412 one_lang_size_sections_pass (relax, check_regions);
6413 }
6414
6415 if (link_info.relro && expld.dataseg.relro_end)
6416 {
6417 link_info.relro_start = expld.dataseg.base;
6418 link_info.relro_end = expld.dataseg.relro_end;
6419 }
6420 }
6421 }
6422
6423 static lang_output_section_statement_type *current_section;
6424 static lang_assignment_statement_type *current_assign;
6425 static bfd_boolean prefer_next_section;
6426
6427 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6428
6429 static bfd_vma
6430 lang_do_assignments_1 (lang_statement_union_type *s,
6431 lang_output_section_statement_type *current_os,
6432 fill_type *fill,
6433 bfd_vma dot,
6434 bfd_boolean *found_end)
6435 {
6436 for (; s != NULL; s = s->header.next)
6437 {
6438 switch (s->header.type)
6439 {
6440 case lang_constructors_statement_enum:
6441 dot = lang_do_assignments_1 (constructor_list.head,
6442 current_os, fill, dot, found_end);
6443 break;
6444
6445 case lang_output_section_statement_enum:
6446 {
6447 lang_output_section_statement_type *os;
6448 bfd_vma newdot;
6449
6450 os = &(s->output_section_statement);
6451 os->after_end = *found_end;
6452 init_opb (os->bfd_section);
6453 if (os->bfd_section != NULL && !os->ignored)
6454 {
6455 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
6456 {
6457 current_section = os;
6458 prefer_next_section = FALSE;
6459 }
6460 dot = os->bfd_section->vma;
6461 }
6462 newdot = lang_do_assignments_1 (os->children.head,
6463 os, os->fill, dot, found_end);
6464 if (!os->ignored)
6465 {
6466 if (os->bfd_section != NULL)
6467 {
6468 /* .tbss sections effectively have zero size. */
6469 if (!IS_TBSS (os->bfd_section)
6470 || bfd_link_relocatable (&link_info))
6471 dot += TO_ADDR (os->bfd_section->size);
6472
6473 if (os->update_dot_tree != NULL)
6474 exp_fold_tree (os->update_dot_tree,
6475 bfd_abs_section_ptr, &dot);
6476 }
6477 else
6478 dot = newdot;
6479 }
6480 }
6481 break;
6482
6483 case lang_wild_statement_enum:
6484
6485 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6486 current_os, fill, dot, found_end);
6487 break;
6488
6489 case lang_object_symbols_statement_enum:
6490 case lang_output_statement_enum:
6491 case lang_target_statement_enum:
6492 break;
6493
6494 case lang_data_statement_enum:
6495 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6496 if (expld.result.valid_p)
6497 {
6498 s->data_statement.value = expld.result.value;
6499 if (expld.result.section != NULL)
6500 s->data_statement.value += expld.result.section->vma;
6501 }
6502 else if (expld.phase == lang_final_phase_enum)
6503 einfo (_("%F%P: invalid data statement\n"));
6504 {
6505 unsigned int size;
6506 switch (s->data_statement.type)
6507 {
6508 default:
6509 abort ();
6510 case QUAD:
6511 case SQUAD:
6512 size = QUAD_SIZE;
6513 break;
6514 case LONG:
6515 size = LONG_SIZE;
6516 break;
6517 case SHORT:
6518 size = SHORT_SIZE;
6519 break;
6520 case BYTE:
6521 size = BYTE_SIZE;
6522 break;
6523 }
6524 if (size < TO_SIZE ((unsigned) 1))
6525 size = TO_SIZE ((unsigned) 1);
6526 dot += TO_ADDR (size);
6527 }
6528 break;
6529
6530 case lang_reloc_statement_enum:
6531 exp_fold_tree (s->reloc_statement.addend_exp,
6532 bfd_abs_section_ptr, &dot);
6533 if (expld.result.valid_p)
6534 s->reloc_statement.addend_value = expld.result.value;
6535 else if (expld.phase == lang_final_phase_enum)
6536 einfo (_("%F%P: invalid reloc statement\n"));
6537 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6538 break;
6539
6540 case lang_input_section_enum:
6541 {
6542 asection *in = s->input_section.section;
6543
6544 if ((in->flags & SEC_EXCLUDE) == 0)
6545 dot += TO_ADDR (in->size);
6546 }
6547 break;
6548
6549 case lang_input_statement_enum:
6550 break;
6551
6552 case lang_fill_statement_enum:
6553 fill = s->fill_statement.fill;
6554 break;
6555
6556 case lang_assignment_statement_enum:
6557 current_assign = &s->assignment_statement;
6558 if (current_assign->exp->type.node_class != etree_assert)
6559 {
6560 const char *p = current_assign->exp->assign.dst;
6561
6562 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6563 prefer_next_section = TRUE;
6564
6565 while (*p == '_')
6566 ++p;
6567 if (strcmp (p, "end") == 0)
6568 *found_end = TRUE;
6569 }
6570 exp_fold_tree (s->assignment_statement.exp,
6571 (current_os->bfd_section != NULL
6572 ? current_os->bfd_section : bfd_und_section_ptr),
6573 &dot);
6574 break;
6575
6576 case lang_padding_statement_enum:
6577 dot += TO_ADDR (s->padding_statement.size);
6578 break;
6579
6580 case lang_group_statement_enum:
6581 dot = lang_do_assignments_1 (s->group_statement.children.head,
6582 current_os, fill, dot, found_end);
6583 break;
6584
6585 case lang_insert_statement_enum:
6586 break;
6587
6588 case lang_address_statement_enum:
6589 break;
6590
6591 default:
6592 FAIL ();
6593 break;
6594 }
6595 }
6596 return dot;
6597 }
6598
6599 void
6600 lang_do_assignments (lang_phase_type phase)
6601 {
6602 bfd_boolean found_end = FALSE;
6603
6604 current_section = NULL;
6605 prefer_next_section = FALSE;
6606 expld.phase = phase;
6607 lang_statement_iteration++;
6608 lang_do_assignments_1 (statement_list.head,
6609 abs_output_section, NULL, 0, &found_end);
6610 }
6611
6612 /* For an assignment statement outside of an output section statement,
6613 choose the best of neighbouring output sections to use for values
6614 of "dot". */
6615
6616 asection *
6617 section_for_dot (void)
6618 {
6619 asection *s;
6620
6621 /* Assignments belong to the previous output section, unless there
6622 has been an assignment to "dot", in which case following
6623 assignments belong to the next output section. (The assumption
6624 is that an assignment to "dot" is setting up the address for the
6625 next output section.) Except that past the assignment to "_end"
6626 we always associate with the previous section. This exception is
6627 for targets like SH that define an alloc .stack or other
6628 weirdness after non-alloc sections. */
6629 if (current_section == NULL || prefer_next_section)
6630 {
6631 lang_statement_union_type *stmt;
6632 lang_output_section_statement_type *os;
6633
6634 for (stmt = (lang_statement_union_type *) current_assign;
6635 stmt != NULL;
6636 stmt = stmt->header.next)
6637 if (stmt->header.type == lang_output_section_statement_enum)
6638 break;
6639
6640 os = &stmt->output_section_statement;
6641 while (os != NULL
6642 && !os->after_end
6643 && (os->bfd_section == NULL
6644 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6645 || bfd_section_removed_from_list (link_info.output_bfd,
6646 os->bfd_section)))
6647 os = os->next;
6648
6649 if (current_section == NULL || os == NULL || !os->after_end)
6650 {
6651 if (os != NULL)
6652 s = os->bfd_section;
6653 else
6654 s = link_info.output_bfd->section_last;
6655 while (s != NULL
6656 && ((s->flags & SEC_ALLOC) == 0
6657 || (s->flags & SEC_THREAD_LOCAL) != 0))
6658 s = s->prev;
6659 if (s != NULL)
6660 return s;
6661
6662 return bfd_abs_section_ptr;
6663 }
6664 }
6665
6666 s = current_section->bfd_section;
6667
6668 /* The section may have been stripped. */
6669 while (s != NULL
6670 && ((s->flags & SEC_EXCLUDE) != 0
6671 || (s->flags & SEC_ALLOC) == 0
6672 || (s->flags & SEC_THREAD_LOCAL) != 0
6673 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6674 s = s->prev;
6675 if (s == NULL)
6676 s = link_info.output_bfd->sections;
6677 while (s != NULL
6678 && ((s->flags & SEC_ALLOC) == 0
6679 || (s->flags & SEC_THREAD_LOCAL) != 0))
6680 s = s->next;
6681 if (s != NULL)
6682 return s;
6683
6684 return bfd_abs_section_ptr;
6685 }
6686
6687 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6688
6689 static struct bfd_link_hash_entry **start_stop_syms;
6690 static size_t start_stop_count = 0;
6691 static size_t start_stop_alloc = 0;
6692
6693 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6694 to start_stop_syms. */
6695
6696 static void
6697 lang_define_start_stop (const char *symbol, asection *sec)
6698 {
6699 struct bfd_link_hash_entry *h;
6700
6701 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6702 if (h != NULL)
6703 {
6704 if (start_stop_count == start_stop_alloc)
6705 {
6706 start_stop_alloc = 2 * start_stop_alloc + 10;
6707 start_stop_syms
6708 = xrealloc (start_stop_syms,
6709 start_stop_alloc * sizeof (*start_stop_syms));
6710 }
6711 start_stop_syms[start_stop_count++] = h;
6712 }
6713 }
6714
6715 /* Check for input sections whose names match references to
6716 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6717 preliminary definitions. */
6718
6719 static void
6720 lang_init_start_stop (void)
6721 {
6722 bfd *abfd;
6723 asection *s;
6724 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6725
6726 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6727 for (s = abfd->sections; s != NULL; s = s->next)
6728 {
6729 const char *ps;
6730 const char *secname = s->name;
6731
6732 for (ps = secname; *ps != '\0'; ps++)
6733 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6734 break;
6735 if (*ps == '\0')
6736 {
6737 char *symbol = (char *) xmalloc (10 + strlen (secname));
6738
6739 symbol[0] = leading_char;
6740 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6741 lang_define_start_stop (symbol, s);
6742
6743 symbol[1] = leading_char;
6744 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6745 lang_define_start_stop (symbol + 1, s);
6746
6747 free (symbol);
6748 }
6749 }
6750 }
6751
6752 /* Iterate over start_stop_syms. */
6753
6754 static void
6755 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6756 {
6757 size_t i;
6758
6759 for (i = 0; i < start_stop_count; ++i)
6760 func (start_stop_syms[i]);
6761 }
6762
6763 /* __start and __stop symbols are only supposed to be defined by the
6764 linker for orphan sections, but we now extend that to sections that
6765 map to an output section of the same name. The symbols were
6766 defined early for --gc-sections, before we mapped input to output
6767 sections, so undo those that don't satisfy this rule. */
6768
6769 static void
6770 undef_start_stop (struct bfd_link_hash_entry *h)
6771 {
6772 if (h->ldscript_def)
6773 return;
6774
6775 if (h->u.def.section->output_section == NULL
6776 || h->u.def.section->output_section->owner != link_info.output_bfd
6777 || strcmp (h->u.def.section->name,
6778 h->u.def.section->output_section->name) != 0)
6779 {
6780 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6781 h->u.def.section->name);
6782 if (sec != NULL)
6783 {
6784 /* When there are more than one input sections with the same
6785 section name, SECNAME, linker picks the first one to define
6786 __start_SECNAME and __stop_SECNAME symbols. When the first
6787 input section is removed by comdat group, we need to check
6788 if there is still an output section with section name
6789 SECNAME. */
6790 asection *i;
6791 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6792 if (strcmp (h->u.def.section->name, i->name) == 0)
6793 {
6794 h->u.def.section = i;
6795 return;
6796 }
6797 }
6798 h->type = bfd_link_hash_undefined;
6799 h->u.undef.abfd = NULL;
6800 }
6801 }
6802
6803 static void
6804 lang_undef_start_stop (void)
6805 {
6806 foreach_start_stop (undef_start_stop);
6807 }
6808
6809 /* Check for output sections whose names match references to
6810 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6811 preliminary definitions. */
6812
6813 static void
6814 lang_init_startof_sizeof (void)
6815 {
6816 asection *s;
6817
6818 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6819 {
6820 const char *secname = s->name;
6821 char *symbol = (char *) xmalloc (10 + strlen (secname));
6822
6823 sprintf (symbol, ".startof.%s", secname);
6824 lang_define_start_stop (symbol, s);
6825
6826 memcpy (symbol + 1, ".size", 5);
6827 lang_define_start_stop (symbol + 1, s);
6828 free (symbol);
6829 }
6830 }
6831
6832 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6833
6834 static void
6835 set_start_stop (struct bfd_link_hash_entry *h)
6836 {
6837 if (h->ldscript_def
6838 || h->type != bfd_link_hash_defined)
6839 return;
6840
6841 if (h->root.string[0] == '.')
6842 {
6843 /* .startof. or .sizeof. symbol.
6844 .startof. already has final value. */
6845 if (h->root.string[2] == 'i')
6846 {
6847 /* .sizeof. */
6848 h->u.def.value = TO_ADDR (h->u.def.section->size);
6849 h->u.def.section = bfd_abs_section_ptr;
6850 }
6851 }
6852 else
6853 {
6854 /* __start or __stop symbol. */
6855 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6856
6857 h->u.def.section = h->u.def.section->output_section;
6858 if (h->root.string[4 + has_lead] == 'o')
6859 {
6860 /* __stop_ */
6861 h->u.def.value = TO_ADDR (h->u.def.section->size);
6862 }
6863 }
6864 }
6865
6866 static void
6867 lang_finalize_start_stop (void)
6868 {
6869 foreach_start_stop (set_start_stop);
6870 }
6871
6872 static void
6873 lang_end (void)
6874 {
6875 struct bfd_link_hash_entry *h;
6876 bfd_boolean warn;
6877
6878 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6879 || bfd_link_dll (&link_info))
6880 warn = entry_from_cmdline;
6881 else
6882 warn = TRUE;
6883
6884 /* Force the user to specify a root when generating a relocatable with
6885 --gc-sections, unless --gc-keep-exported was also given. */
6886 if (bfd_link_relocatable (&link_info)
6887 && link_info.gc_sections
6888 && !link_info.gc_keep_exported)
6889 {
6890 struct bfd_sym_chain *sym;
6891
6892 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
6893 {
6894 h = bfd_link_hash_lookup (link_info.hash, sym->name,
6895 FALSE, FALSE, FALSE);
6896 if (h != NULL
6897 && (h->type == bfd_link_hash_defined
6898 || h->type == bfd_link_hash_defweak)
6899 && !bfd_is_const_section (h->u.def.section))
6900 break;
6901 }
6902 if (!sym)
6903 einfo (_("%F%P: --gc-sections requires a defined symbol root "
6904 "specified by -e or -u\n"));
6905 }
6906
6907 if (entry_symbol.name == NULL)
6908 {
6909 /* No entry has been specified. Look for the default entry, but
6910 don't warn if we don't find it. */
6911 entry_symbol.name = entry_symbol_default;
6912 warn = FALSE;
6913 }
6914
6915 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6916 FALSE, FALSE, TRUE);
6917 if (h != NULL
6918 && (h->type == bfd_link_hash_defined
6919 || h->type == bfd_link_hash_defweak)
6920 && h->u.def.section->output_section != NULL)
6921 {
6922 bfd_vma val;
6923
6924 val = (h->u.def.value
6925 + bfd_section_vma (h->u.def.section->output_section)
6926 + h->u.def.section->output_offset);
6927 if (!bfd_set_start_address (link_info.output_bfd, val))
6928 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6929 }
6930 else
6931 {
6932 bfd_vma val;
6933 const char *send;
6934
6935 /* We couldn't find the entry symbol. Try parsing it as a
6936 number. */
6937 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6938 if (*send == '\0')
6939 {
6940 if (!bfd_set_start_address (link_info.output_bfd, val))
6941 einfo (_("%F%P: can't set start address\n"));
6942 }
6943 else
6944 {
6945 asection *ts;
6946
6947 /* Can't find the entry symbol, and it's not a number. Use
6948 the first address in the text section. */
6949 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6950 if (ts != NULL)
6951 {
6952 if (warn)
6953 einfo (_("%P: warning: cannot find entry symbol %s;"
6954 " defaulting to %V\n"),
6955 entry_symbol.name,
6956 bfd_section_vma (ts));
6957 if (!bfd_set_start_address (link_info.output_bfd,
6958 bfd_section_vma (ts)))
6959 einfo (_("%F%P: can't set start address\n"));
6960 }
6961 else
6962 {
6963 if (warn)
6964 einfo (_("%P: warning: cannot find entry symbol %s;"
6965 " not setting start address\n"),
6966 entry_symbol.name);
6967 }
6968 }
6969 }
6970 }
6971
6972 /* This is a small function used when we want to ignore errors from
6973 BFD. */
6974
6975 static void
6976 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6977 va_list ap ATTRIBUTE_UNUSED)
6978 {
6979 /* Don't do anything. */
6980 }
6981
6982 /* Check that the architecture of all the input files is compatible
6983 with the output file. Also call the backend to let it do any
6984 other checking that is needed. */
6985
6986 static void
6987 lang_check (void)
6988 {
6989 lang_input_statement_type *file;
6990 bfd *input_bfd;
6991 const bfd_arch_info_type *compatible;
6992
6993 for (file = (void *) file_chain.head;
6994 file != NULL;
6995 file = file->next)
6996 {
6997 #if BFD_SUPPORTS_PLUGINS
6998 /* Don't check format of files claimed by plugin. */
6999 if (file->flags.claimed)
7000 continue;
7001 #endif /* BFD_SUPPORTS_PLUGINS */
7002 input_bfd = file->the_bfd;
7003 compatible
7004 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
7005 command_line.accept_unknown_input_arch);
7006
7007 /* In general it is not possible to perform a relocatable
7008 link between differing object formats when the input
7009 file has relocations, because the relocations in the
7010 input format may not have equivalent representations in
7011 the output format (and besides BFD does not translate
7012 relocs for other link purposes than a final link). */
7013 if (!file->flags.just_syms
7014 && (bfd_link_relocatable (&link_info)
7015 || link_info.emitrelocations)
7016 && (compatible == NULL
7017 || (bfd_get_flavour (input_bfd)
7018 != bfd_get_flavour (link_info.output_bfd)))
7019 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7020 {
7021 einfo (_("%F%P: relocatable linking with relocations from"
7022 " format %s (%pB) to format %s (%pB) is not supported\n"),
7023 bfd_get_target (input_bfd), input_bfd,
7024 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7025 /* einfo with %F exits. */
7026 }
7027
7028 if (compatible == NULL)
7029 {
7030 if (command_line.warn_mismatch)
7031 einfo (_("%X%P: %s architecture of input file `%pB'"
7032 " is incompatible with %s output\n"),
7033 bfd_printable_name (input_bfd), input_bfd,
7034 bfd_printable_name (link_info.output_bfd));
7035 }
7036
7037 /* If the input bfd has no contents, it shouldn't set the
7038 private data of the output bfd. */
7039 else if (!file->flags.just_syms
7040 && ((input_bfd->flags & DYNAMIC) != 0
7041 || bfd_count_sections (input_bfd) != 0))
7042 {
7043 bfd_error_handler_type pfn = NULL;
7044
7045 /* If we aren't supposed to warn about mismatched input
7046 files, temporarily set the BFD error handler to a
7047 function which will do nothing. We still want to call
7048 bfd_merge_private_bfd_data, since it may set up
7049 information which is needed in the output file. */
7050 if (!command_line.warn_mismatch)
7051 pfn = bfd_set_error_handler (ignore_bfd_errors);
7052 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7053 {
7054 if (command_line.warn_mismatch)
7055 einfo (_("%X%P: failed to merge target specific data"
7056 " of file %pB\n"), input_bfd);
7057 }
7058 if (!command_line.warn_mismatch)
7059 bfd_set_error_handler (pfn);
7060 }
7061 }
7062 }
7063
7064 /* Look through all the global common symbols and attach them to the
7065 correct section. The -sort-common command line switch may be used
7066 to roughly sort the entries by alignment. */
7067
7068 static void
7069 lang_common (void)
7070 {
7071 if (link_info.inhibit_common_definition)
7072 return;
7073 if (bfd_link_relocatable (&link_info)
7074 && !command_line.force_common_definition)
7075 return;
7076
7077 if (!config.sort_common)
7078 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7079 else
7080 {
7081 unsigned int power;
7082
7083 if (config.sort_common == sort_descending)
7084 {
7085 for (power = 4; power > 0; power--)
7086 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7087
7088 power = 0;
7089 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7090 }
7091 else
7092 {
7093 for (power = 0; power <= 4; power++)
7094 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7095
7096 power = (unsigned int) -1;
7097 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7098 }
7099 }
7100 }
7101
7102 /* Place one common symbol in the correct section. */
7103
7104 static bfd_boolean
7105 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7106 {
7107 unsigned int power_of_two;
7108 bfd_vma size;
7109 asection *section;
7110
7111 if (h->type != bfd_link_hash_common)
7112 return TRUE;
7113
7114 size = h->u.c.size;
7115 power_of_two = h->u.c.p->alignment_power;
7116
7117 if (config.sort_common == sort_descending
7118 && power_of_two < *(unsigned int *) info)
7119 return TRUE;
7120 else if (config.sort_common == sort_ascending
7121 && power_of_two > *(unsigned int *) info)
7122 return TRUE;
7123
7124 section = h->u.c.p->section;
7125 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7126 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7127 h->root.string);
7128
7129 if (config.map_file != NULL)
7130 {
7131 static bfd_boolean header_printed;
7132 int len;
7133 char *name;
7134 char buf[50];
7135
7136 if (!header_printed)
7137 {
7138 minfo (_("\nAllocating common symbols\n"));
7139 minfo (_("Common symbol size file\n\n"));
7140 header_printed = TRUE;
7141 }
7142
7143 name = bfd_demangle (link_info.output_bfd, h->root.string,
7144 DMGL_ANSI | DMGL_PARAMS);
7145 if (name == NULL)
7146 {
7147 minfo ("%s", h->root.string);
7148 len = strlen (h->root.string);
7149 }
7150 else
7151 {
7152 minfo ("%s", name);
7153 len = strlen (name);
7154 free (name);
7155 }
7156
7157 if (len >= 19)
7158 {
7159 print_nl ();
7160 len = 0;
7161 }
7162 while (len < 20)
7163 {
7164 print_space ();
7165 ++len;
7166 }
7167
7168 minfo ("0x");
7169 if (size <= 0xffffffff)
7170 sprintf (buf, "%lx", (unsigned long) size);
7171 else
7172 sprintf_vma (buf, size);
7173 minfo ("%s", buf);
7174 len = strlen (buf);
7175
7176 while (len < 16)
7177 {
7178 print_space ();
7179 ++len;
7180 }
7181
7182 minfo ("%pB\n", section->owner);
7183 }
7184
7185 return TRUE;
7186 }
7187
7188 /* Handle a single orphan section S, placing the orphan into an appropriate
7189 output section. The effects of the --orphan-handling command line
7190 option are handled here. */
7191
7192 static void
7193 ldlang_place_orphan (asection *s)
7194 {
7195 if (config.orphan_handling == orphan_handling_discard)
7196 {
7197 lang_output_section_statement_type *os;
7198 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
7199 TRUE);
7200 if (os->addr_tree == NULL
7201 && (bfd_link_relocatable (&link_info)
7202 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7203 os->addr_tree = exp_intop (0);
7204 lang_add_section (&os->children, s, NULL, os);
7205 }
7206 else
7207 {
7208 lang_output_section_statement_type *os;
7209 const char *name = s->name;
7210 int constraint = 0;
7211
7212 if (config.orphan_handling == orphan_handling_error)
7213 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7214 s, s->owner);
7215
7216 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7217 constraint = SPECIAL;
7218
7219 os = ldemul_place_orphan (s, name, constraint);
7220 if (os == NULL)
7221 {
7222 os = lang_output_section_statement_lookup (name, constraint, TRUE);
7223 if (os->addr_tree == NULL
7224 && (bfd_link_relocatable (&link_info)
7225 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7226 os->addr_tree = exp_intop (0);
7227 lang_add_section (&os->children, s, NULL, os);
7228 }
7229
7230 if (config.orphan_handling == orphan_handling_warn)
7231 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7232 "placed in section `%s'\n"),
7233 s, s->owner, os->name);
7234 }
7235 }
7236
7237 /* Run through the input files and ensure that every input section has
7238 somewhere to go. If one is found without a destination then create
7239 an input request and place it into the statement tree. */
7240
7241 static void
7242 lang_place_orphans (void)
7243 {
7244 LANG_FOR_EACH_INPUT_STATEMENT (file)
7245 {
7246 asection *s;
7247
7248 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7249 {
7250 if (s->output_section == NULL)
7251 {
7252 /* This section of the file is not attached, root
7253 around for a sensible place for it to go. */
7254
7255 if (file->flags.just_syms)
7256 bfd_link_just_syms (file->the_bfd, s, &link_info);
7257 else if (lang_discard_section_p (s))
7258 s->output_section = bfd_abs_section_ptr;
7259 else if (strcmp (s->name, "COMMON") == 0)
7260 {
7261 /* This is a lonely common section which must have
7262 come from an archive. We attach to the section
7263 with the wildcard. */
7264 if (!bfd_link_relocatable (&link_info)
7265 || command_line.force_common_definition)
7266 {
7267 if (default_common_section == NULL)
7268 default_common_section
7269 = lang_output_section_statement_lookup (".bss", 0,
7270 TRUE);
7271 lang_add_section (&default_common_section->children, s,
7272 NULL, default_common_section);
7273 }
7274 }
7275 else
7276 ldlang_place_orphan (s);
7277 }
7278 }
7279 }
7280 }
7281
7282 void
7283 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7284 {
7285 flagword *ptr_flags;
7286
7287 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7288
7289 while (*flags)
7290 {
7291 switch (*flags)
7292 {
7293 /* PR 17900: An exclamation mark in the attributes reverses
7294 the sense of any of the attributes that follow. */
7295 case '!':
7296 invert = !invert;
7297 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7298 break;
7299
7300 case 'A': case 'a':
7301 *ptr_flags |= SEC_ALLOC;
7302 break;
7303
7304 case 'R': case 'r':
7305 *ptr_flags |= SEC_READONLY;
7306 break;
7307
7308 case 'W': case 'w':
7309 *ptr_flags |= SEC_DATA;
7310 break;
7311
7312 case 'X': case 'x':
7313 *ptr_flags |= SEC_CODE;
7314 break;
7315
7316 case 'L': case 'l':
7317 case 'I': case 'i':
7318 *ptr_flags |= SEC_LOAD;
7319 break;
7320
7321 default:
7322 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7323 *flags, *flags);
7324 break;
7325 }
7326 flags++;
7327 }
7328 }
7329
7330 /* Call a function on each real input file. This function will be
7331 called on an archive, but not on the elements. */
7332
7333 void
7334 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7335 {
7336 lang_input_statement_type *f;
7337
7338 for (f = (void *) input_file_chain.head;
7339 f != NULL;
7340 f = f->next_real_file)
7341 if (f->flags.real)
7342 func (f);
7343 }
7344
7345 /* Call a function on each real file. The function will be called on
7346 all the elements of an archive which are included in the link, but
7347 will not be called on the archive file itself. */
7348
7349 void
7350 lang_for_each_file (void (*func) (lang_input_statement_type *))
7351 {
7352 LANG_FOR_EACH_INPUT_STATEMENT (f)
7353 {
7354 if (f->flags.real)
7355 func (f);
7356 }
7357 }
7358
7359 void
7360 ldlang_add_file (lang_input_statement_type *entry)
7361 {
7362 lang_statement_append (&file_chain, entry, &entry->next);
7363
7364 /* The BFD linker needs to have a list of all input BFDs involved in
7365 a link. */
7366 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7367 && entry->the_bfd->link.next == NULL);
7368 ASSERT (entry->the_bfd != link_info.output_bfd);
7369
7370 *link_info.input_bfds_tail = entry->the_bfd;
7371 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7372 bfd_set_usrdata (entry->the_bfd, entry);
7373 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7374
7375 /* Look through the sections and check for any which should not be
7376 included in the link. We need to do this now, so that we can
7377 notice when the backend linker tries to report multiple
7378 definition errors for symbols which are in sections we aren't
7379 going to link. FIXME: It might be better to entirely ignore
7380 symbols which are defined in sections which are going to be
7381 discarded. This would require modifying the backend linker for
7382 each backend which might set the SEC_LINK_ONCE flag. If we do
7383 this, we should probably handle SEC_EXCLUDE in the same way. */
7384
7385 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7386 }
7387
7388 void
7389 lang_add_output (const char *name, int from_script)
7390 {
7391 /* Make -o on command line override OUTPUT in script. */
7392 if (!had_output_filename || !from_script)
7393 {
7394 output_filename = name;
7395 had_output_filename = TRUE;
7396 }
7397 }
7398
7399 lang_output_section_statement_type *
7400 lang_enter_output_section_statement (const char *output_section_statement_name,
7401 etree_type *address_exp,
7402 enum section_type sectype,
7403 etree_type *align,
7404 etree_type *subalign,
7405 etree_type *ebase,
7406 int constraint,
7407 int align_with_input)
7408 {
7409 lang_output_section_statement_type *os;
7410
7411 os = lang_output_section_statement_lookup (output_section_statement_name,
7412 constraint, TRUE);
7413 current_section = os;
7414
7415 if (os->addr_tree == NULL)
7416 {
7417 os->addr_tree = address_exp;
7418 }
7419 os->sectype = sectype;
7420 if (sectype != noload_section)
7421 os->flags = SEC_NO_FLAGS;
7422 else
7423 os->flags = SEC_NEVER_LOAD;
7424 os->block_value = 1;
7425
7426 /* Make next things chain into subchain of this. */
7427 push_stat_ptr (&os->children);
7428
7429 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7430 if (os->align_lma_with_input && align != NULL)
7431 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7432 NULL);
7433
7434 os->subsection_alignment = subalign;
7435 os->section_alignment = align;
7436
7437 os->load_base = ebase;
7438 return os;
7439 }
7440
7441 void
7442 lang_final (void)
7443 {
7444 lang_output_statement_type *new_stmt;
7445
7446 new_stmt = new_stat (lang_output_statement, stat_ptr);
7447 new_stmt->name = output_filename;
7448 }
7449
7450 /* Reset the current counters in the regions. */
7451
7452 void
7453 lang_reset_memory_regions (void)
7454 {
7455 lang_memory_region_type *p = lang_memory_region_list;
7456 asection *o;
7457 lang_output_section_statement_type *os;
7458
7459 for (p = lang_memory_region_list; p != NULL; p = p->next)
7460 {
7461 p->current = p->origin;
7462 p->last_os = NULL;
7463 }
7464
7465 for (os = (void *) lang_os_list.head;
7466 os != NULL;
7467 os = os->next)
7468 {
7469 os->processed_vma = FALSE;
7470 os->processed_lma = FALSE;
7471 }
7472
7473 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7474 {
7475 /* Save the last size for possible use by bfd_relax_section. */
7476 o->rawsize = o->size;
7477 if (!(o->flags & SEC_FIXED_SIZE))
7478 o->size = 0;
7479 }
7480 }
7481
7482 /* Worker for lang_gc_sections_1. */
7483
7484 static void
7485 gc_section_callback (lang_wild_statement_type *ptr,
7486 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7487 asection *section,
7488 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7489 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7490 void *data ATTRIBUTE_UNUSED)
7491 {
7492 /* If the wild pattern was marked KEEP, the member sections
7493 should be as well. */
7494 if (ptr->keep_sections)
7495 section->flags |= SEC_KEEP;
7496 }
7497
7498 /* Iterate over sections marking them against GC. */
7499
7500 static void
7501 lang_gc_sections_1 (lang_statement_union_type *s)
7502 {
7503 for (; s != NULL; s = s->header.next)
7504 {
7505 switch (s->header.type)
7506 {
7507 case lang_wild_statement_enum:
7508 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7509 break;
7510 case lang_constructors_statement_enum:
7511 lang_gc_sections_1 (constructor_list.head);
7512 break;
7513 case lang_output_section_statement_enum:
7514 lang_gc_sections_1 (s->output_section_statement.children.head);
7515 break;
7516 case lang_group_statement_enum:
7517 lang_gc_sections_1 (s->group_statement.children.head);
7518 break;
7519 default:
7520 break;
7521 }
7522 }
7523 }
7524
7525 static void
7526 lang_gc_sections (void)
7527 {
7528 /* Keep all sections so marked in the link script. */
7529 lang_gc_sections_1 (statement_list.head);
7530
7531 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7532 the special case of debug info. (See bfd/stabs.c)
7533 Twiddle the flag here, to simplify later linker code. */
7534 if (bfd_link_relocatable (&link_info))
7535 {
7536 LANG_FOR_EACH_INPUT_STATEMENT (f)
7537 {
7538 asection *sec;
7539 #if BFD_SUPPORTS_PLUGINS
7540 if (f->flags.claimed)
7541 continue;
7542 #endif
7543 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7544 if ((sec->flags & SEC_DEBUGGING) == 0)
7545 sec->flags &= ~SEC_EXCLUDE;
7546 }
7547 }
7548
7549 if (link_info.gc_sections)
7550 bfd_gc_sections (link_info.output_bfd, &link_info);
7551 }
7552
7553 /* Worker for lang_find_relro_sections_1. */
7554
7555 static void
7556 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7557 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7558 asection *section,
7559 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7560 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7561 void *data)
7562 {
7563 /* Discarded, excluded and ignored sections effectively have zero
7564 size. */
7565 if (section->output_section != NULL
7566 && section->output_section->owner == link_info.output_bfd
7567 && (section->output_section->flags & SEC_EXCLUDE) == 0
7568 && !IGNORE_SECTION (section)
7569 && section->size != 0)
7570 {
7571 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7572 *has_relro_section = TRUE;
7573 }
7574 }
7575
7576 /* Iterate over sections for relro sections. */
7577
7578 static void
7579 lang_find_relro_sections_1 (lang_statement_union_type *s,
7580 seg_align_type *seg,
7581 bfd_boolean *has_relro_section)
7582 {
7583 if (*has_relro_section)
7584 return;
7585
7586 for (; s != NULL; s = s->header.next)
7587 {
7588 if (s == seg->relro_end_stat)
7589 break;
7590
7591 switch (s->header.type)
7592 {
7593 case lang_wild_statement_enum:
7594 walk_wild (&s->wild_statement,
7595 find_relro_section_callback,
7596 has_relro_section);
7597 break;
7598 case lang_constructors_statement_enum:
7599 lang_find_relro_sections_1 (constructor_list.head,
7600 seg, has_relro_section);
7601 break;
7602 case lang_output_section_statement_enum:
7603 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7604 seg, has_relro_section);
7605 break;
7606 case lang_group_statement_enum:
7607 lang_find_relro_sections_1 (s->group_statement.children.head,
7608 seg, has_relro_section);
7609 break;
7610 default:
7611 break;
7612 }
7613 }
7614 }
7615
7616 static void
7617 lang_find_relro_sections (void)
7618 {
7619 bfd_boolean has_relro_section = FALSE;
7620
7621 /* Check all sections in the link script. */
7622
7623 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7624 &expld.dataseg, &has_relro_section);
7625
7626 if (!has_relro_section)
7627 link_info.relro = FALSE;
7628 }
7629
7630 /* Relax all sections until bfd_relax_section gives up. */
7631
7632 void
7633 lang_relax_sections (bfd_boolean need_layout)
7634 {
7635 if (RELAXATION_ENABLED)
7636 {
7637 /* We may need more than one relaxation pass. */
7638 int i = link_info.relax_pass;
7639
7640 /* The backend can use it to determine the current pass. */
7641 link_info.relax_pass = 0;
7642
7643 while (i--)
7644 {
7645 /* Keep relaxing until bfd_relax_section gives up. */
7646 bfd_boolean relax_again;
7647
7648 link_info.relax_trip = -1;
7649 do
7650 {
7651 link_info.relax_trip++;
7652
7653 /* Note: pe-dll.c does something like this also. If you find
7654 you need to change this code, you probably need to change
7655 pe-dll.c also. DJ */
7656
7657 /* Do all the assignments with our current guesses as to
7658 section sizes. */
7659 lang_do_assignments (lang_assigning_phase_enum);
7660
7661 /* We must do this after lang_do_assignments, because it uses
7662 size. */
7663 lang_reset_memory_regions ();
7664
7665 /* Perform another relax pass - this time we know where the
7666 globals are, so can make a better guess. */
7667 relax_again = FALSE;
7668 lang_size_sections (&relax_again, FALSE);
7669 }
7670 while (relax_again);
7671
7672 link_info.relax_pass++;
7673 }
7674 need_layout = TRUE;
7675 }
7676
7677 if (need_layout)
7678 {
7679 /* Final extra sizing to report errors. */
7680 lang_do_assignments (lang_assigning_phase_enum);
7681 lang_reset_memory_regions ();
7682 lang_size_sections (NULL, TRUE);
7683 }
7684 }
7685
7686 #if BFD_SUPPORTS_PLUGINS
7687 /* Find the insert point for the plugin's replacement files. We
7688 place them after the first claimed real object file, or if the
7689 first claimed object is an archive member, after the last real
7690 object file immediately preceding the archive. In the event
7691 no objects have been claimed at all, we return the first dummy
7692 object file on the list as the insert point; that works, but
7693 the callee must be careful when relinking the file_chain as it
7694 is not actually on that chain, only the statement_list and the
7695 input_file list; in that case, the replacement files must be
7696 inserted at the head of the file_chain. */
7697
7698 static lang_input_statement_type *
7699 find_replacements_insert_point (bfd_boolean *before)
7700 {
7701 lang_input_statement_type *claim1, *lastobject;
7702 lastobject = (void *) input_file_chain.head;
7703 for (claim1 = (void *) file_chain.head;
7704 claim1 != NULL;
7705 claim1 = claim1->next)
7706 {
7707 if (claim1->flags.claimed)
7708 {
7709 *before = claim1->flags.claim_archive;
7710 return claim1->flags.claim_archive ? lastobject : claim1;
7711 }
7712 /* Update lastobject if this is a real object file. */
7713 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7714 lastobject = claim1;
7715 }
7716 /* No files were claimed by the plugin. Choose the last object
7717 file found on the list (maybe the first, dummy entry) as the
7718 insert point. */
7719 *before = FALSE;
7720 return lastobject;
7721 }
7722
7723 /* Find where to insert ADD, an archive element or shared library
7724 added during a rescan. */
7725
7726 static lang_input_statement_type **
7727 find_rescan_insertion (lang_input_statement_type *add)
7728 {
7729 bfd *add_bfd = add->the_bfd;
7730 lang_input_statement_type *f;
7731 lang_input_statement_type *last_loaded = NULL;
7732 lang_input_statement_type *before = NULL;
7733 lang_input_statement_type **iter = NULL;
7734
7735 if (add_bfd->my_archive != NULL)
7736 add_bfd = add_bfd->my_archive;
7737
7738 /* First look through the input file chain, to find an object file
7739 before the one we've rescanned. Normal object files always
7740 appear on both the input file chain and the file chain, so this
7741 lets us get quickly to somewhere near the correct place on the
7742 file chain if it is full of archive elements. Archives don't
7743 appear on the file chain, but if an element has been extracted
7744 then their input_statement->next points at it. */
7745 for (f = (void *) input_file_chain.head;
7746 f != NULL;
7747 f = f->next_real_file)
7748 {
7749 if (f->the_bfd == add_bfd)
7750 {
7751 before = last_loaded;
7752 if (f->next != NULL)
7753 return &f->next->next;
7754 }
7755 if (f->the_bfd != NULL && f->next != NULL)
7756 last_loaded = f;
7757 }
7758
7759 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7760 *iter != NULL;
7761 iter = &(*iter)->next)
7762 if (!(*iter)->flags.claim_archive
7763 && (*iter)->the_bfd->my_archive == NULL)
7764 break;
7765
7766 return iter;
7767 }
7768
7769 /* Insert SRCLIST into DESTLIST after given element by chaining
7770 on FIELD as the next-pointer. (Counterintuitively does not need
7771 a pointer to the actual after-node itself, just its chain field.) */
7772
7773 static void
7774 lang_list_insert_after (lang_statement_list_type *destlist,
7775 lang_statement_list_type *srclist,
7776 lang_statement_union_type **field)
7777 {
7778 *(srclist->tail) = *field;
7779 *field = srclist->head;
7780 if (destlist->tail == field)
7781 destlist->tail = srclist->tail;
7782 }
7783
7784 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7785 was taken as a copy of it and leave them in ORIGLIST. */
7786
7787 static void
7788 lang_list_remove_tail (lang_statement_list_type *destlist,
7789 lang_statement_list_type *origlist)
7790 {
7791 union lang_statement_union **savetail;
7792 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7793 ASSERT (origlist->head == destlist->head);
7794 savetail = origlist->tail;
7795 origlist->head = *(savetail);
7796 origlist->tail = destlist->tail;
7797 destlist->tail = savetail;
7798 *savetail = NULL;
7799 }
7800
7801 static lang_statement_union_type **
7802 find_next_input_statement (lang_statement_union_type **s)
7803 {
7804 for ( ; *s; s = &(*s)->header.next)
7805 {
7806 lang_statement_union_type **t;
7807 switch ((*s)->header.type)
7808 {
7809 case lang_input_statement_enum:
7810 return s;
7811 case lang_wild_statement_enum:
7812 t = &(*s)->wild_statement.children.head;
7813 break;
7814 case lang_group_statement_enum:
7815 t = &(*s)->group_statement.children.head;
7816 break;
7817 case lang_output_section_statement_enum:
7818 t = &(*s)->output_section_statement.children.head;
7819 break;
7820 default:
7821 continue;
7822 }
7823 t = find_next_input_statement (t);
7824 if (*t)
7825 return t;
7826 }
7827 return s;
7828 }
7829 #endif /* BFD_SUPPORTS_PLUGINS */
7830
7831 /* Add NAME to the list of garbage collection entry points. */
7832
7833 void
7834 lang_add_gc_name (const char *name)
7835 {
7836 struct bfd_sym_chain *sym;
7837
7838 if (name == NULL)
7839 return;
7840
7841 sym = stat_alloc (sizeof (*sym));
7842
7843 sym->next = link_info.gc_sym_list;
7844 sym->name = name;
7845 link_info.gc_sym_list = sym;
7846 }
7847
7848 /* Check relocations. */
7849
7850 static void
7851 lang_check_relocs (void)
7852 {
7853 if (link_info.check_relocs_after_open_input)
7854 {
7855 bfd *abfd;
7856
7857 for (abfd = link_info.input_bfds;
7858 abfd != (bfd *) NULL; abfd = abfd->link.next)
7859 if (!bfd_link_check_relocs (abfd, &link_info))
7860 {
7861 /* No object output, fail return. */
7862 config.make_executable = FALSE;
7863 /* Note: we do not abort the loop, but rather
7864 continue the scan in case there are other
7865 bad relocations to report. */
7866 }
7867 }
7868 }
7869
7870 /* Look through all output sections looking for places where we can
7871 propagate forward the lma region. */
7872
7873 static void
7874 lang_propagate_lma_regions (void)
7875 {
7876 lang_output_section_statement_type *os;
7877
7878 for (os = (void *) lang_os_list.head;
7879 os != NULL;
7880 os = os->next)
7881 {
7882 if (os->prev != NULL
7883 && os->lma_region == NULL
7884 && os->load_base == NULL
7885 && os->addr_tree == NULL
7886 && os->region == os->prev->region)
7887 os->lma_region = os->prev->lma_region;
7888 }
7889 }
7890
7891 void
7892 lang_process (void)
7893 {
7894 /* Finalize dynamic list. */
7895 if (link_info.dynamic_list)
7896 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7897
7898 current_target = default_target;
7899
7900 /* Open the output file. */
7901 lang_for_each_statement (ldlang_open_output);
7902 init_opb (NULL);
7903
7904 ldemul_create_output_section_statements ();
7905
7906 /* Add to the hash table all undefineds on the command line. */
7907 lang_place_undefineds ();
7908
7909 if (!bfd_section_already_linked_table_init ())
7910 einfo (_("%F%P: can not create hash table: %E\n"));
7911
7912 /* A first pass through the memory regions ensures that if any region
7913 references a symbol for its origin or length then this symbol will be
7914 added to the symbol table. Having these symbols in the symbol table
7915 means that when we call open_input_bfds PROVIDE statements will
7916 trigger to provide any needed symbols. The regions origins and
7917 lengths are not assigned as a result of this call. */
7918 lang_do_memory_regions (FALSE);
7919
7920 /* Create a bfd for each input file. */
7921 current_target = default_target;
7922 lang_statement_iteration++;
7923 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7924
7925 /* Now that open_input_bfds has processed assignments and provide
7926 statements we can give values to symbolic origin/length now. */
7927 lang_do_memory_regions (TRUE);
7928
7929 #if BFD_SUPPORTS_PLUGINS
7930 if (link_info.lto_plugin_active)
7931 {
7932 lang_statement_list_type added;
7933 lang_statement_list_type files, inputfiles;
7934
7935 /* Now all files are read, let the plugin(s) decide if there
7936 are any more to be added to the link before we call the
7937 emulation's after_open hook. We create a private list of
7938 input statements for this purpose, which we will eventually
7939 insert into the global statement list after the first claimed
7940 file. */
7941 added = *stat_ptr;
7942 /* We need to manipulate all three chains in synchrony. */
7943 files = file_chain;
7944 inputfiles = input_file_chain;
7945 if (plugin_call_all_symbols_read ())
7946 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7947 plugin_error_plugin ());
7948 link_info.lto_all_symbols_read = TRUE;
7949 /* Open any newly added files, updating the file chains. */
7950 plugin_undefs = link_info.hash->undefs_tail;
7951 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7952 if (plugin_undefs == link_info.hash->undefs_tail)
7953 plugin_undefs = NULL;
7954 /* Restore the global list pointer now they have all been added. */
7955 lang_list_remove_tail (stat_ptr, &added);
7956 /* And detach the fresh ends of the file lists. */
7957 lang_list_remove_tail (&file_chain, &files);
7958 lang_list_remove_tail (&input_file_chain, &inputfiles);
7959 /* Were any new files added? */
7960 if (added.head != NULL)
7961 {
7962 /* If so, we will insert them into the statement list immediately
7963 after the first input file that was claimed by the plugin,
7964 unless that file was an archive in which case it is inserted
7965 immediately before. */
7966 bfd_boolean before;
7967 lang_statement_union_type **prev;
7968 plugin_insert = find_replacements_insert_point (&before);
7969 /* If a plugin adds input files without having claimed any, we
7970 don't really have a good idea where to place them. Just putting
7971 them at the start or end of the list is liable to leave them
7972 outside the crtbegin...crtend range. */
7973 ASSERT (plugin_insert != NULL);
7974 /* Splice the new statement list into the old one. */
7975 prev = &plugin_insert->header.next;
7976 if (before)
7977 {
7978 prev = find_next_input_statement (prev);
7979 if (*prev != (void *) plugin_insert->next_real_file)
7980 {
7981 /* We didn't find the expected input statement.
7982 Fall back to adding after plugin_insert. */
7983 prev = &plugin_insert->header.next;
7984 }
7985 }
7986 lang_list_insert_after (stat_ptr, &added, prev);
7987 /* Likewise for the file chains. */
7988 lang_list_insert_after (&input_file_chain, &inputfiles,
7989 (void *) &plugin_insert->next_real_file);
7990 /* We must be careful when relinking file_chain; we may need to
7991 insert the new files at the head of the list if the insert
7992 point chosen is the dummy first input file. */
7993 if (plugin_insert->filename)
7994 lang_list_insert_after (&file_chain, &files,
7995 (void *) &plugin_insert->next);
7996 else
7997 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7998
7999 /* Rescan archives in case new undefined symbols have appeared. */
8000 files = file_chain;
8001 lang_statement_iteration++;
8002 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
8003 lang_list_remove_tail (&file_chain, &files);
8004 while (files.head != NULL)
8005 {
8006 lang_input_statement_type **insert;
8007 lang_input_statement_type **iter, *temp;
8008 bfd *my_arch;
8009
8010 insert = find_rescan_insertion (&files.head->input_statement);
8011 /* All elements from an archive can be added at once. */
8012 iter = &files.head->input_statement.next;
8013 my_arch = files.head->input_statement.the_bfd->my_archive;
8014 if (my_arch != NULL)
8015 for (; *iter != NULL; iter = &(*iter)->next)
8016 if ((*iter)->the_bfd->my_archive != my_arch)
8017 break;
8018 temp = *insert;
8019 *insert = &files.head->input_statement;
8020 files.head = (lang_statement_union_type *) *iter;
8021 *iter = temp;
8022 if (my_arch != NULL)
8023 {
8024 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8025 if (parent != NULL)
8026 parent->next = (lang_input_statement_type *)
8027 ((char *) iter
8028 - offsetof (lang_input_statement_type, next));
8029 }
8030 }
8031 }
8032 }
8033 #endif /* BFD_SUPPORTS_PLUGINS */
8034
8035 /* Make sure that nobody has tried to add a symbol to this list
8036 before now. */
8037 ASSERT (link_info.gc_sym_list == NULL);
8038
8039 link_info.gc_sym_list = &entry_symbol;
8040
8041 if (entry_symbol.name == NULL)
8042 {
8043 link_info.gc_sym_list = ldlang_undef_chain_list_head;
8044
8045 /* entry_symbol is normally initialied by a ENTRY definition in the
8046 linker script or the -e command line option. But if neither of
8047 these have been used, the target specific backend may still have
8048 provided an entry symbol via a call to lang_default_entry().
8049 Unfortunately this value will not be processed until lang_end()
8050 is called, long after this function has finished. So detect this
8051 case here and add the target's entry symbol to the list of starting
8052 points for garbage collection resolution. */
8053 lang_add_gc_name (entry_symbol_default);
8054 }
8055
8056 lang_add_gc_name (link_info.init_function);
8057 lang_add_gc_name (link_info.fini_function);
8058
8059 ldemul_after_open ();
8060 if (config.map_file != NULL)
8061 lang_print_asneeded ();
8062
8063 ldlang_open_ctf ();
8064
8065 bfd_section_already_linked_table_free ();
8066
8067 /* Make sure that we're not mixing architectures. We call this
8068 after all the input files have been opened, but before we do any
8069 other processing, so that any operations merge_private_bfd_data
8070 does on the output file will be known during the rest of the
8071 link. */
8072 lang_check ();
8073
8074 /* Handle .exports instead of a version script if we're told to do so. */
8075 if (command_line.version_exports_section)
8076 lang_do_version_exports_section ();
8077
8078 /* Build all sets based on the information gathered from the input
8079 files. */
8080 ldctor_build_sets ();
8081
8082 /* Give initial values for __start and __stop symbols, so that ELF
8083 gc_sections will keep sections referenced by these symbols. Must
8084 be done before lang_do_assignments below. */
8085 if (config.build_constructors)
8086 lang_init_start_stop ();
8087
8088 /* PR 13683: We must rerun the assignments prior to running garbage
8089 collection in order to make sure that all symbol aliases are resolved. */
8090 lang_do_assignments (lang_mark_phase_enum);
8091 expld.phase = lang_first_phase_enum;
8092
8093 /* Size up the common data. */
8094 lang_common ();
8095
8096 /* Remove unreferenced sections if asked to. */
8097 lang_gc_sections ();
8098
8099 /* Check relocations. */
8100 lang_check_relocs ();
8101
8102 ldemul_after_check_relocs ();
8103
8104 /* Update wild statements. */
8105 update_wild_statements (statement_list.head);
8106
8107 /* Run through the contours of the script and attach input sections
8108 to the correct output sections. */
8109 lang_statement_iteration++;
8110 map_input_to_output_sections (statement_list.head, NULL, NULL);
8111
8112 /* Start at the statement immediately after the special abs_section
8113 output statement, so that it isn't reordered. */
8114 process_insert_statements (&lang_os_list.head->header.next);
8115
8116 ldemul_before_place_orphans ();
8117
8118 /* Find any sections not attached explicitly and handle them. */
8119 lang_place_orphans ();
8120
8121 if (!bfd_link_relocatable (&link_info))
8122 {
8123 asection *found;
8124
8125 /* Merge SEC_MERGE sections. This has to be done after GC of
8126 sections, so that GCed sections are not merged, but before
8127 assigning dynamic symbols, since removing whole input sections
8128 is hard then. */
8129 bfd_merge_sections (link_info.output_bfd, &link_info);
8130
8131 /* Look for a text section and set the readonly attribute in it. */
8132 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8133
8134 if (found != NULL)
8135 {
8136 if (config.text_read_only)
8137 found->flags |= SEC_READONLY;
8138 else
8139 found->flags &= ~SEC_READONLY;
8140 }
8141 }
8142
8143 /* Merge together CTF sections. After this, only the symtab-dependent
8144 function and data object sections need adjustment. */
8145 lang_merge_ctf ();
8146
8147 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8148 examining things laid out late, like the strtab. */
8149 lang_write_ctf (0);
8150
8151 /* Copy forward lma regions for output sections in same lma region. */
8152 lang_propagate_lma_regions ();
8153
8154 /* Defining __start/__stop symbols early for --gc-sections to work
8155 around a glibc build problem can result in these symbols being
8156 defined when they should not be. Fix them now. */
8157 if (config.build_constructors)
8158 lang_undef_start_stop ();
8159
8160 /* Define .startof./.sizeof. symbols with preliminary values before
8161 dynamic symbols are created. */
8162 if (!bfd_link_relocatable (&link_info))
8163 lang_init_startof_sizeof ();
8164
8165 /* Do anything special before sizing sections. This is where ELF
8166 and other back-ends size dynamic sections. */
8167 ldemul_before_allocation ();
8168
8169 /* We must record the program headers before we try to fix the
8170 section positions, since they will affect SIZEOF_HEADERS. */
8171 lang_record_phdrs ();
8172
8173 /* Check relro sections. */
8174 if (link_info.relro && !bfd_link_relocatable (&link_info))
8175 lang_find_relro_sections ();
8176
8177 /* Size up the sections. */
8178 lang_size_sections (NULL, !RELAXATION_ENABLED);
8179
8180 /* See if anything special should be done now we know how big
8181 everything is. This is where relaxation is done. */
8182 ldemul_after_allocation ();
8183
8184 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8185 lang_finalize_start_stop ();
8186
8187 /* Do all the assignments again, to report errors. Assignment
8188 statements are processed multiple times, updating symbols; In
8189 open_input_bfds, lang_do_assignments, and lang_size_sections.
8190 Since lang_relax_sections calls lang_do_assignments, symbols are
8191 also updated in ldemul_after_allocation. */
8192 lang_do_assignments (lang_final_phase_enum);
8193
8194 ldemul_finish ();
8195
8196 /* Convert absolute symbols to section relative. */
8197 ldexp_finalize_syms ();
8198
8199 /* Make sure that the section addresses make sense. */
8200 if (command_line.check_section_addresses)
8201 lang_check_section_addresses ();
8202
8203 /* Check any required symbols are known. */
8204 ldlang_check_require_defined_symbols ();
8205
8206 lang_end ();
8207 }
8208
8209 /* EXPORTED TO YACC */
8210
8211 void
8212 lang_add_wild (struct wildcard_spec *filespec,
8213 struct wildcard_list *section_list,
8214 bfd_boolean keep_sections)
8215 {
8216 struct wildcard_list *curr, *next;
8217 lang_wild_statement_type *new_stmt;
8218
8219 /* Reverse the list as the parser puts it back to front. */
8220 for (curr = section_list, section_list = NULL;
8221 curr != NULL;
8222 section_list = curr, curr = next)
8223 {
8224 next = curr->next;
8225 curr->next = section_list;
8226 }
8227
8228 if (filespec != NULL && filespec->name != NULL)
8229 {
8230 if (strcmp (filespec->name, "*") == 0)
8231 filespec->name = NULL;
8232 else if (!wildcardp (filespec->name))
8233 lang_has_input_file = TRUE;
8234 }
8235
8236 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8237 new_stmt->filename = NULL;
8238 new_stmt->filenames_sorted = FALSE;
8239 new_stmt->section_flag_list = NULL;
8240 new_stmt->exclude_name_list = NULL;
8241 if (filespec != NULL)
8242 {
8243 new_stmt->filename = filespec->name;
8244 new_stmt->filenames_sorted = filespec->sorted == by_name;
8245 new_stmt->section_flag_list = filespec->section_flag_list;
8246 new_stmt->exclude_name_list = filespec->exclude_name_list;
8247 }
8248 new_stmt->section_list = section_list;
8249 new_stmt->keep_sections = keep_sections;
8250 lang_list_init (&new_stmt->children);
8251 analyze_walk_wild_section_handler (new_stmt);
8252 }
8253
8254 void
8255 lang_section_start (const char *name, etree_type *address,
8256 const segment_type *segment)
8257 {
8258 lang_address_statement_type *ad;
8259
8260 ad = new_stat (lang_address_statement, stat_ptr);
8261 ad->section_name = name;
8262 ad->address = address;
8263 ad->segment = segment;
8264 }
8265
8266 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8267 because of a -e argument on the command line, or zero if this is
8268 called by ENTRY in a linker script. Command line arguments take
8269 precedence. */
8270
8271 void
8272 lang_add_entry (const char *name, bfd_boolean cmdline)
8273 {
8274 if (entry_symbol.name == NULL
8275 || cmdline
8276 || !entry_from_cmdline)
8277 {
8278 entry_symbol.name = name;
8279 entry_from_cmdline = cmdline;
8280 }
8281 }
8282
8283 /* Set the default start symbol to NAME. .em files should use this,
8284 not lang_add_entry, to override the use of "start" if neither the
8285 linker script nor the command line specifies an entry point. NAME
8286 must be permanently allocated. */
8287 void
8288 lang_default_entry (const char *name)
8289 {
8290 entry_symbol_default = name;
8291 }
8292
8293 void
8294 lang_add_target (const char *name)
8295 {
8296 lang_target_statement_type *new_stmt;
8297
8298 new_stmt = new_stat (lang_target_statement, stat_ptr);
8299 new_stmt->target = name;
8300 }
8301
8302 void
8303 lang_add_map (const char *name)
8304 {
8305 while (*name)
8306 {
8307 switch (*name)
8308 {
8309 case 'F':
8310 map_option_f = TRUE;
8311 break;
8312 }
8313 name++;
8314 }
8315 }
8316
8317 void
8318 lang_add_fill (fill_type *fill)
8319 {
8320 lang_fill_statement_type *new_stmt;
8321
8322 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8323 new_stmt->fill = fill;
8324 }
8325
8326 void
8327 lang_add_data (int type, union etree_union *exp)
8328 {
8329 lang_data_statement_type *new_stmt;
8330
8331 new_stmt = new_stat (lang_data_statement, stat_ptr);
8332 new_stmt->exp = exp;
8333 new_stmt->type = type;
8334 }
8335
8336 /* Create a new reloc statement. RELOC is the BFD relocation type to
8337 generate. HOWTO is the corresponding howto structure (we could
8338 look this up, but the caller has already done so). SECTION is the
8339 section to generate a reloc against, or NAME is the name of the
8340 symbol to generate a reloc against. Exactly one of SECTION and
8341 NAME must be NULL. ADDEND is an expression for the addend. */
8342
8343 void
8344 lang_add_reloc (bfd_reloc_code_real_type reloc,
8345 reloc_howto_type *howto,
8346 asection *section,
8347 const char *name,
8348 union etree_union *addend)
8349 {
8350 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8351
8352 p->reloc = reloc;
8353 p->howto = howto;
8354 p->section = section;
8355 p->name = name;
8356 p->addend_exp = addend;
8357
8358 p->addend_value = 0;
8359 p->output_section = NULL;
8360 p->output_offset = 0;
8361 }
8362
8363 lang_assignment_statement_type *
8364 lang_add_assignment (etree_type *exp)
8365 {
8366 lang_assignment_statement_type *new_stmt;
8367
8368 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8369 new_stmt->exp = exp;
8370 return new_stmt;
8371 }
8372
8373 void
8374 lang_add_assignment_internal (lang_statement_list_type *ptr, etree_type *exp)
8375 {
8376 lang_assignment_statement_type *new_stmt;
8377
8378 new_stmt = new_stat (lang_assignment_statement, ptr);
8379 new_stmt->exp = exp;
8380 }
8381
8382 void
8383 lang_add_newdot (lang_statement_list_type *ptr, bfd_vma newdot)
8384 {
8385 lang_assignment_statement_type *new_stmt;
8386 etree_type *exp = exp_assign (".", exp_intop (newdot), FALSE);
8387
8388 new_stmt = new_stat (lang_assignment_statement, ptr);
8389 new_stmt->exp = exp;
8390 }
8391
8392 void
8393 lang_add_attribute (enum statement_enum attribute)
8394 {
8395 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8396 }
8397
8398 void
8399 lang_startup (const char *name)
8400 {
8401 if (first_file->filename != NULL)
8402 {
8403 einfo (_("%F%P: multiple STARTUP files\n"));
8404 }
8405 first_file->filename = name;
8406 first_file->local_sym_name = name;
8407 first_file->flags.real = TRUE;
8408 }
8409
8410 void
8411 lang_float (bfd_boolean maybe)
8412 {
8413 lang_float_flag = maybe;
8414 }
8415
8416
8417 /* Work out the load- and run-time regions from a script statement, and
8418 store them in *LMA_REGION and *REGION respectively.
8419
8420 MEMSPEC is the name of the run-time region, or the value of
8421 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8422 LMA_MEMSPEC is the name of the load-time region, or null if the
8423 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8424 had an explicit load address.
8425
8426 It is an error to specify both a load region and a load address. */
8427
8428 static void
8429 lang_get_regions (lang_memory_region_type **region,
8430 lang_memory_region_type **lma_region,
8431 const char *memspec,
8432 const char *lma_memspec,
8433 bfd_boolean have_lma,
8434 bfd_boolean have_vma)
8435 {
8436 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
8437
8438 /* If no runtime region or VMA has been specified, but the load region
8439 has been specified, then use the load region for the runtime region
8440 as well. */
8441 if (lma_memspec != NULL
8442 && !have_vma
8443 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8444 *region = *lma_region;
8445 else
8446 *region = lang_memory_region_lookup (memspec, FALSE);
8447
8448 if (have_lma && lma_memspec != 0)
8449 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8450 NULL);
8451 }
8452
8453 void
8454 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8455 lang_output_section_phdr_list *phdrs,
8456 const char *lma_memspec)
8457 {
8458 lang_get_regions (&current_section->region,
8459 &current_section->lma_region,
8460 memspec, lma_memspec,
8461 current_section->load_base != NULL,
8462 current_section->addr_tree != NULL);
8463
8464 current_section->fill = fill;
8465 current_section->phdrs = phdrs;
8466 pop_stat_ptr ();
8467 }
8468
8469 /* Set the output format type. -oformat overrides scripts. */
8470
8471 void
8472 lang_add_output_format (const char *format,
8473 const char *big,
8474 const char *little,
8475 int from_script)
8476 {
8477 if (output_target == NULL || !from_script)
8478 {
8479 if (command_line.endian == ENDIAN_BIG
8480 && big != NULL)
8481 format = big;
8482 else if (command_line.endian == ENDIAN_LITTLE
8483 && little != NULL)
8484 format = little;
8485
8486 output_target = format;
8487 }
8488 }
8489
8490 void
8491 lang_add_insert (const char *where, int is_before)
8492 {
8493 lang_insert_statement_type *new_stmt;
8494
8495 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8496 new_stmt->where = where;
8497 new_stmt->is_before = is_before;
8498 saved_script_handle = previous_script_handle;
8499 }
8500
8501 /* Enter a group. This creates a new lang_group_statement, and sets
8502 stat_ptr to build new statements within the group. */
8503
8504 void
8505 lang_enter_group (void)
8506 {
8507 lang_group_statement_type *g;
8508
8509 g = new_stat (lang_group_statement, stat_ptr);
8510 lang_list_init (&g->children);
8511 push_stat_ptr (&g->children);
8512 }
8513
8514 /* Leave a group. This just resets stat_ptr to start writing to the
8515 regular list of statements again. Note that this will not work if
8516 groups can occur inside anything else which can adjust stat_ptr,
8517 but currently they can't. */
8518
8519 void
8520 lang_leave_group (void)
8521 {
8522 pop_stat_ptr ();
8523 }
8524
8525 /* Add a new program header. This is called for each entry in a PHDRS
8526 command in a linker script. */
8527
8528 void
8529 lang_new_phdr (const char *name,
8530 etree_type *type,
8531 bfd_boolean filehdr,
8532 bfd_boolean phdrs,
8533 etree_type *at,
8534 etree_type *flags)
8535 {
8536 struct lang_phdr *n, **pp;
8537 bfd_boolean hdrs;
8538
8539 n = stat_alloc (sizeof (struct lang_phdr));
8540 n->next = NULL;
8541 n->name = name;
8542 n->type = exp_get_vma (type, 0, "program header type");
8543 n->filehdr = filehdr;
8544 n->phdrs = phdrs;
8545 n->at = at;
8546 n->flags = flags;
8547
8548 hdrs = n->type == 1 && (phdrs || filehdr);
8549
8550 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8551 if (hdrs
8552 && (*pp)->type == 1
8553 && !((*pp)->filehdr || (*pp)->phdrs))
8554 {
8555 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8556 " when prior PT_LOAD headers lack them\n"), NULL);
8557 hdrs = FALSE;
8558 }
8559
8560 *pp = n;
8561 }
8562
8563 /* Record the program header information in the output BFD. FIXME: We
8564 should not be calling an ELF specific function here. */
8565
8566 static void
8567 lang_record_phdrs (void)
8568 {
8569 unsigned int alc;
8570 asection **secs;
8571 lang_output_section_phdr_list *last;
8572 struct lang_phdr *l;
8573 lang_output_section_statement_type *os;
8574
8575 alc = 10;
8576 secs = (asection **) xmalloc (alc * sizeof (asection *));
8577 last = NULL;
8578
8579 for (l = lang_phdr_list; l != NULL; l = l->next)
8580 {
8581 unsigned int c;
8582 flagword flags;
8583 bfd_vma at;
8584
8585 c = 0;
8586 for (os = (void *) lang_os_list.head;
8587 os != NULL;
8588 os = os->next)
8589 {
8590 lang_output_section_phdr_list *pl;
8591
8592 if (os->constraint < 0)
8593 continue;
8594
8595 pl = os->phdrs;
8596 if (pl != NULL)
8597 last = pl;
8598 else
8599 {
8600 if (os->sectype == noload_section
8601 || os->bfd_section == NULL
8602 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8603 continue;
8604
8605 /* Don't add orphans to PT_INTERP header. */
8606 if (l->type == 3)
8607 continue;
8608
8609 if (last == NULL)
8610 {
8611 lang_output_section_statement_type *tmp_os;
8612
8613 /* If we have not run across a section with a program
8614 header assigned to it yet, then scan forwards to find
8615 one. This prevents inconsistencies in the linker's
8616 behaviour when a script has specified just a single
8617 header and there are sections in that script which are
8618 not assigned to it, and which occur before the first
8619 use of that header. See here for more details:
8620 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8621 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8622 if (tmp_os->phdrs)
8623 {
8624 last = tmp_os->phdrs;
8625 break;
8626 }
8627 if (last == NULL)
8628 einfo (_("%F%P: no sections assigned to phdrs\n"));
8629 }
8630 pl = last;
8631 }
8632
8633 if (os->bfd_section == NULL)
8634 continue;
8635
8636 for (; pl != NULL; pl = pl->next)
8637 {
8638 if (strcmp (pl->name, l->name) == 0)
8639 {
8640 if (c >= alc)
8641 {
8642 alc *= 2;
8643 secs = (asection **) xrealloc (secs,
8644 alc * sizeof (asection *));
8645 }
8646 secs[c] = os->bfd_section;
8647 ++c;
8648 pl->used = TRUE;
8649 }
8650 }
8651 }
8652
8653 if (l->flags == NULL)
8654 flags = 0;
8655 else
8656 flags = exp_get_vma (l->flags, 0, "phdr flags");
8657
8658 if (l->at == NULL)
8659 at = 0;
8660 else
8661 at = exp_get_vma (l->at, 0, "phdr load address");
8662
8663 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8664 l->flags != NULL, flags, l->at != NULL,
8665 at, l->filehdr, l->phdrs, c, secs))
8666 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8667 }
8668
8669 free (secs);
8670
8671 /* Make sure all the phdr assignments succeeded. */
8672 for (os = (void *) lang_os_list.head;
8673 os != NULL;
8674 os = os->next)
8675 {
8676 lang_output_section_phdr_list *pl;
8677
8678 if (os->constraint < 0
8679 || os->bfd_section == NULL)
8680 continue;
8681
8682 for (pl = os->phdrs;
8683 pl != NULL;
8684 pl = pl->next)
8685 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8686 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8687 os->name, pl->name);
8688 }
8689 }
8690
8691 /* Record a list of sections which may not be cross referenced. */
8692
8693 void
8694 lang_add_nocrossref (lang_nocrossref_type *l)
8695 {
8696 struct lang_nocrossrefs *n;
8697
8698 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8699 n->next = nocrossref_list;
8700 n->list = l;
8701 n->onlyfirst = FALSE;
8702 nocrossref_list = n;
8703
8704 /* Set notice_all so that we get informed about all symbols. */
8705 link_info.notice_all = TRUE;
8706 }
8707
8708 /* Record a section that cannot be referenced from a list of sections. */
8709
8710 void
8711 lang_add_nocrossref_to (lang_nocrossref_type *l)
8712 {
8713 lang_add_nocrossref (l);
8714 nocrossref_list->onlyfirst = TRUE;
8715 }
8716 \f
8717 /* Overlay handling. We handle overlays with some static variables. */
8718
8719 /* The overlay virtual address. */
8720 static etree_type *overlay_vma;
8721 /* And subsection alignment. */
8722 static etree_type *overlay_subalign;
8723
8724 /* An expression for the maximum section size seen so far. */
8725 static etree_type *overlay_max;
8726
8727 /* A list of all the sections in this overlay. */
8728
8729 struct overlay_list {
8730 struct overlay_list *next;
8731 lang_output_section_statement_type *os;
8732 };
8733
8734 static struct overlay_list *overlay_list;
8735
8736 /* Start handling an overlay. */
8737
8738 void
8739 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8740 {
8741 /* The grammar should prevent nested overlays from occurring. */
8742 ASSERT (overlay_vma == NULL
8743 && overlay_subalign == NULL
8744 && overlay_max == NULL);
8745
8746 overlay_vma = vma_expr;
8747 overlay_subalign = subalign;
8748 }
8749
8750 /* Start a section in an overlay. We handle this by calling
8751 lang_enter_output_section_statement with the correct VMA.
8752 lang_leave_overlay sets up the LMA and memory regions. */
8753
8754 void
8755 lang_enter_overlay_section (const char *name)
8756 {
8757 struct overlay_list *n;
8758 etree_type *size;
8759
8760 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8761 0, overlay_subalign, 0, 0, 0);
8762
8763 /* If this is the first section, then base the VMA of future
8764 sections on this one. This will work correctly even if `.' is
8765 used in the addresses. */
8766 if (overlay_list == NULL)
8767 overlay_vma = exp_nameop (ADDR, name);
8768
8769 /* Remember the section. */
8770 n = (struct overlay_list *) xmalloc (sizeof *n);
8771 n->os = current_section;
8772 n->next = overlay_list;
8773 overlay_list = n;
8774
8775 size = exp_nameop (SIZEOF, name);
8776
8777 /* Arrange to work out the maximum section end address. */
8778 if (overlay_max == NULL)
8779 overlay_max = size;
8780 else
8781 overlay_max = exp_binop (MAX_K, overlay_max, size);
8782 }
8783
8784 /* Finish a section in an overlay. There isn't any special to do
8785 here. */
8786
8787 void
8788 lang_leave_overlay_section (fill_type *fill,
8789 lang_output_section_phdr_list *phdrs)
8790 {
8791 const char *name;
8792 char *clean, *s2;
8793 const char *s1;
8794 char *buf;
8795
8796 name = current_section->name;
8797
8798 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8799 region and that no load-time region has been specified. It doesn't
8800 really matter what we say here, since lang_leave_overlay will
8801 override it. */
8802 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8803
8804 /* Define the magic symbols. */
8805
8806 clean = (char *) xmalloc (strlen (name) + 1);
8807 s2 = clean;
8808 for (s1 = name; *s1 != '\0'; s1++)
8809 if (ISALNUM (*s1) || *s1 == '_')
8810 *s2++ = *s1;
8811 *s2 = '\0';
8812
8813 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8814 sprintf (buf, "__load_start_%s", clean);
8815 lang_add_assignment (exp_provide (buf,
8816 exp_nameop (LOADADDR, name),
8817 FALSE));
8818
8819 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8820 sprintf (buf, "__load_stop_%s", clean);
8821 lang_add_assignment (exp_provide (buf,
8822 exp_binop ('+',
8823 exp_nameop (LOADADDR, name),
8824 exp_nameop (SIZEOF, name)),
8825 FALSE));
8826
8827 free (clean);
8828 }
8829
8830 /* Finish an overlay. If there are any overlay wide settings, this
8831 looks through all the sections in the overlay and sets them. */
8832
8833 void
8834 lang_leave_overlay (etree_type *lma_expr,
8835 int nocrossrefs,
8836 fill_type *fill,
8837 const char *memspec,
8838 lang_output_section_phdr_list *phdrs,
8839 const char *lma_memspec)
8840 {
8841 lang_memory_region_type *region;
8842 lang_memory_region_type *lma_region;
8843 struct overlay_list *l;
8844 lang_nocrossref_type *nocrossref;
8845
8846 lang_get_regions (&region, &lma_region,
8847 memspec, lma_memspec,
8848 lma_expr != NULL, FALSE);
8849
8850 nocrossref = NULL;
8851
8852 /* After setting the size of the last section, set '.' to end of the
8853 overlay region. */
8854 if (overlay_list != NULL)
8855 {
8856 overlay_list->os->update_dot = 1;
8857 overlay_list->os->update_dot_tree
8858 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8859 }
8860
8861 l = overlay_list;
8862 while (l != NULL)
8863 {
8864 struct overlay_list *next;
8865
8866 if (fill != NULL && l->os->fill == NULL)
8867 l->os->fill = fill;
8868
8869 l->os->region = region;
8870 l->os->lma_region = lma_region;
8871
8872 /* The first section has the load address specified in the
8873 OVERLAY statement. The rest are worked out from that.
8874 The base address is not needed (and should be null) if
8875 an LMA region was specified. */
8876 if (l->next == 0)
8877 {
8878 l->os->load_base = lma_expr;
8879 l->os->sectype = first_overlay_section;
8880 }
8881 if (phdrs != NULL && l->os->phdrs == NULL)
8882 l->os->phdrs = phdrs;
8883
8884 if (nocrossrefs)
8885 {
8886 lang_nocrossref_type *nc;
8887
8888 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8889 nc->name = l->os->name;
8890 nc->next = nocrossref;
8891 nocrossref = nc;
8892 }
8893
8894 next = l->next;
8895 free (l);
8896 l = next;
8897 }
8898
8899 if (nocrossref != NULL)
8900 lang_add_nocrossref (nocrossref);
8901
8902 overlay_vma = NULL;
8903 overlay_list = NULL;
8904 overlay_max = NULL;
8905 overlay_subalign = NULL;
8906 }
8907 \f
8908 /* Version handling. This is only useful for ELF. */
8909
8910 /* If PREV is NULL, return first version pattern matching particular symbol.
8911 If PREV is non-NULL, return first version pattern matching particular
8912 symbol after PREV (previously returned by lang_vers_match). */
8913
8914 static struct bfd_elf_version_expr *
8915 lang_vers_match (struct bfd_elf_version_expr_head *head,
8916 struct bfd_elf_version_expr *prev,
8917 const char *sym)
8918 {
8919 const char *c_sym;
8920 const char *cxx_sym = sym;
8921 const char *java_sym = sym;
8922 struct bfd_elf_version_expr *expr = NULL;
8923 enum demangling_styles curr_style;
8924
8925 curr_style = CURRENT_DEMANGLING_STYLE;
8926 cplus_demangle_set_style (no_demangling);
8927 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8928 if (!c_sym)
8929 c_sym = sym;
8930 cplus_demangle_set_style (curr_style);
8931
8932 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8933 {
8934 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8935 DMGL_PARAMS | DMGL_ANSI);
8936 if (!cxx_sym)
8937 cxx_sym = sym;
8938 }
8939 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8940 {
8941 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8942 if (!java_sym)
8943 java_sym = sym;
8944 }
8945
8946 if (head->htab && (prev == NULL || prev->literal))
8947 {
8948 struct bfd_elf_version_expr e;
8949
8950 switch (prev ? prev->mask : 0)
8951 {
8952 case 0:
8953 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8954 {
8955 e.pattern = c_sym;
8956 expr = (struct bfd_elf_version_expr *)
8957 htab_find ((htab_t) head->htab, &e);
8958 while (expr && strcmp (expr->pattern, c_sym) == 0)
8959 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8960 goto out_ret;
8961 else
8962 expr = expr->next;
8963 }
8964 /* Fallthrough */
8965 case BFD_ELF_VERSION_C_TYPE:
8966 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8967 {
8968 e.pattern = cxx_sym;
8969 expr = (struct bfd_elf_version_expr *)
8970 htab_find ((htab_t) head->htab, &e);
8971 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8972 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8973 goto out_ret;
8974 else
8975 expr = expr->next;
8976 }
8977 /* Fallthrough */
8978 case BFD_ELF_VERSION_CXX_TYPE:
8979 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8980 {
8981 e.pattern = java_sym;
8982 expr = (struct bfd_elf_version_expr *)
8983 htab_find ((htab_t) head->htab, &e);
8984 while (expr && strcmp (expr->pattern, java_sym) == 0)
8985 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8986 goto out_ret;
8987 else
8988 expr = expr->next;
8989 }
8990 /* Fallthrough */
8991 default:
8992 break;
8993 }
8994 }
8995
8996 /* Finally, try the wildcards. */
8997 if (prev == NULL || prev->literal)
8998 expr = head->remaining;
8999 else
9000 expr = prev->next;
9001 for (; expr; expr = expr->next)
9002 {
9003 const char *s;
9004
9005 if (!expr->pattern)
9006 continue;
9007
9008 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
9009 break;
9010
9011 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9012 s = java_sym;
9013 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9014 s = cxx_sym;
9015 else
9016 s = c_sym;
9017 if (fnmatch (expr->pattern, s, 0) == 0)
9018 break;
9019 }
9020
9021 out_ret:
9022 if (c_sym != sym)
9023 free ((char *) c_sym);
9024 if (cxx_sym != sym)
9025 free ((char *) cxx_sym);
9026 if (java_sym != sym)
9027 free ((char *) java_sym);
9028 return expr;
9029 }
9030
9031 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
9032 return a pointer to the symbol name with any backslash quotes removed. */
9033
9034 static const char *
9035 realsymbol (const char *pattern)
9036 {
9037 const char *p;
9038 bfd_boolean changed = FALSE, backslash = FALSE;
9039 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9040
9041 for (p = pattern, s = symbol; *p != '\0'; ++p)
9042 {
9043 /* It is a glob pattern only if there is no preceding
9044 backslash. */
9045 if (backslash)
9046 {
9047 /* Remove the preceding backslash. */
9048 *(s - 1) = *p;
9049 backslash = FALSE;
9050 changed = TRUE;
9051 }
9052 else
9053 {
9054 if (*p == '?' || *p == '*' || *p == '[')
9055 {
9056 free (symbol);
9057 return NULL;
9058 }
9059
9060 *s++ = *p;
9061 backslash = *p == '\\';
9062 }
9063 }
9064
9065 if (changed)
9066 {
9067 *s = '\0';
9068 return symbol;
9069 }
9070 else
9071 {
9072 free (symbol);
9073 return pattern;
9074 }
9075 }
9076
9077 /* This is called for each variable name or match expression. NEW_NAME is
9078 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9079 pattern to be matched against symbol names. */
9080
9081 struct bfd_elf_version_expr *
9082 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9083 const char *new_name,
9084 const char *lang,
9085 bfd_boolean literal_p)
9086 {
9087 struct bfd_elf_version_expr *ret;
9088
9089 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9090 ret->next = orig;
9091 ret->symver = 0;
9092 ret->script = 0;
9093 ret->literal = TRUE;
9094 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9095 if (ret->pattern == NULL)
9096 {
9097 ret->pattern = new_name;
9098 ret->literal = FALSE;
9099 }
9100
9101 if (lang == NULL || strcasecmp (lang, "C") == 0)
9102 ret->mask = BFD_ELF_VERSION_C_TYPE;
9103 else if (strcasecmp (lang, "C++") == 0)
9104 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9105 else if (strcasecmp (lang, "Java") == 0)
9106 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9107 else
9108 {
9109 einfo (_("%X%P: unknown language `%s' in version information\n"),
9110 lang);
9111 ret->mask = BFD_ELF_VERSION_C_TYPE;
9112 }
9113
9114 return ldemul_new_vers_pattern (ret);
9115 }
9116
9117 /* This is called for each set of variable names and match
9118 expressions. */
9119
9120 struct bfd_elf_version_tree *
9121 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9122 struct bfd_elf_version_expr *locals)
9123 {
9124 struct bfd_elf_version_tree *ret;
9125
9126 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9127 ret->globals.list = globals;
9128 ret->locals.list = locals;
9129 ret->match = lang_vers_match;
9130 ret->name_indx = (unsigned int) -1;
9131 return ret;
9132 }
9133
9134 /* This static variable keeps track of version indices. */
9135
9136 static int version_index;
9137
9138 static hashval_t
9139 version_expr_head_hash (const void *p)
9140 {
9141 const struct bfd_elf_version_expr *e =
9142 (const struct bfd_elf_version_expr *) p;
9143
9144 return htab_hash_string (e->pattern);
9145 }
9146
9147 static int
9148 version_expr_head_eq (const void *p1, const void *p2)
9149 {
9150 const struct bfd_elf_version_expr *e1 =
9151 (const struct bfd_elf_version_expr *) p1;
9152 const struct bfd_elf_version_expr *e2 =
9153 (const struct bfd_elf_version_expr *) p2;
9154
9155 return strcmp (e1->pattern, e2->pattern) == 0;
9156 }
9157
9158 static void
9159 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9160 {
9161 size_t count = 0;
9162 struct bfd_elf_version_expr *e, *next;
9163 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9164
9165 for (e = head->list; e; e = e->next)
9166 {
9167 if (e->literal)
9168 count++;
9169 head->mask |= e->mask;
9170 }
9171
9172 if (count)
9173 {
9174 head->htab = htab_create (count * 2, version_expr_head_hash,
9175 version_expr_head_eq, NULL);
9176 list_loc = &head->list;
9177 remaining_loc = &head->remaining;
9178 for (e = head->list; e; e = next)
9179 {
9180 next = e->next;
9181 if (!e->literal)
9182 {
9183 *remaining_loc = e;
9184 remaining_loc = &e->next;
9185 }
9186 else
9187 {
9188 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9189
9190 if (*loc)
9191 {
9192 struct bfd_elf_version_expr *e1, *last;
9193
9194 e1 = (struct bfd_elf_version_expr *) *loc;
9195 last = NULL;
9196 do
9197 {
9198 if (e1->mask == e->mask)
9199 {
9200 last = NULL;
9201 break;
9202 }
9203 last = e1;
9204 e1 = e1->next;
9205 }
9206 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9207
9208 if (last == NULL)
9209 {
9210 /* This is a duplicate. */
9211 /* FIXME: Memory leak. Sometimes pattern is not
9212 xmalloced alone, but in larger chunk of memory. */
9213 /* free (e->pattern); */
9214 free (e);
9215 }
9216 else
9217 {
9218 e->next = last->next;
9219 last->next = e;
9220 }
9221 }
9222 else
9223 {
9224 *loc = e;
9225 *list_loc = e;
9226 list_loc = &e->next;
9227 }
9228 }
9229 }
9230 *remaining_loc = NULL;
9231 *list_loc = head->remaining;
9232 }
9233 else
9234 head->remaining = head->list;
9235 }
9236
9237 /* This is called when we know the name and dependencies of the
9238 version. */
9239
9240 void
9241 lang_register_vers_node (const char *name,
9242 struct bfd_elf_version_tree *version,
9243 struct bfd_elf_version_deps *deps)
9244 {
9245 struct bfd_elf_version_tree *t, **pp;
9246 struct bfd_elf_version_expr *e1;
9247
9248 if (name == NULL)
9249 name = "";
9250
9251 if (link_info.version_info != NULL
9252 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9253 {
9254 einfo (_("%X%P: anonymous version tag cannot be combined"
9255 " with other version tags\n"));
9256 free (version);
9257 return;
9258 }
9259
9260 /* Make sure this node has a unique name. */
9261 for (t = link_info.version_info; t != NULL; t = t->next)
9262 if (strcmp (t->name, name) == 0)
9263 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9264
9265 lang_finalize_version_expr_head (&version->globals);
9266 lang_finalize_version_expr_head (&version->locals);
9267
9268 /* Check the global and local match names, and make sure there
9269 aren't any duplicates. */
9270
9271 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9272 {
9273 for (t = link_info.version_info; t != NULL; t = t->next)
9274 {
9275 struct bfd_elf_version_expr *e2;
9276
9277 if (t->locals.htab && e1->literal)
9278 {
9279 e2 = (struct bfd_elf_version_expr *)
9280 htab_find ((htab_t) t->locals.htab, e1);
9281 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9282 {
9283 if (e1->mask == e2->mask)
9284 einfo (_("%X%P: duplicate expression `%s'"
9285 " in version information\n"), e1->pattern);
9286 e2 = e2->next;
9287 }
9288 }
9289 else if (!e1->literal)
9290 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9291 if (strcmp (e1->pattern, e2->pattern) == 0
9292 && e1->mask == e2->mask)
9293 einfo (_("%X%P: duplicate expression `%s'"
9294 " in version information\n"), e1->pattern);
9295 }
9296 }
9297
9298 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9299 {
9300 for (t = link_info.version_info; t != NULL; t = t->next)
9301 {
9302 struct bfd_elf_version_expr *e2;
9303
9304 if (t->globals.htab && e1->literal)
9305 {
9306 e2 = (struct bfd_elf_version_expr *)
9307 htab_find ((htab_t) t->globals.htab, e1);
9308 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9309 {
9310 if (e1->mask == e2->mask)
9311 einfo (_("%X%P: duplicate expression `%s'"
9312 " in version information\n"),
9313 e1->pattern);
9314 e2 = e2->next;
9315 }
9316 }
9317 else if (!e1->literal)
9318 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9319 if (strcmp (e1->pattern, e2->pattern) == 0
9320 && e1->mask == e2->mask)
9321 einfo (_("%X%P: duplicate expression `%s'"
9322 " in version information\n"), e1->pattern);
9323 }
9324 }
9325
9326 version->deps = deps;
9327 version->name = name;
9328 if (name[0] != '\0')
9329 {
9330 ++version_index;
9331 version->vernum = version_index;
9332 }
9333 else
9334 version->vernum = 0;
9335
9336 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9337 ;
9338 *pp = version;
9339 }
9340
9341 /* This is called when we see a version dependency. */
9342
9343 struct bfd_elf_version_deps *
9344 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9345 {
9346 struct bfd_elf_version_deps *ret;
9347 struct bfd_elf_version_tree *t;
9348
9349 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9350 ret->next = list;
9351
9352 for (t = link_info.version_info; t != NULL; t = t->next)
9353 {
9354 if (strcmp (t->name, name) == 0)
9355 {
9356 ret->version_needed = t;
9357 return ret;
9358 }
9359 }
9360
9361 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9362
9363 ret->version_needed = NULL;
9364 return ret;
9365 }
9366
9367 static void
9368 lang_do_version_exports_section (void)
9369 {
9370 struct bfd_elf_version_expr *greg = NULL, *lreg;
9371
9372 LANG_FOR_EACH_INPUT_STATEMENT (is)
9373 {
9374 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9375 char *contents, *p;
9376 bfd_size_type len;
9377
9378 if (sec == NULL)
9379 continue;
9380
9381 len = sec->size;
9382 contents = (char *) xmalloc (len);
9383 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9384 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9385
9386 p = contents;
9387 while (p < contents + len)
9388 {
9389 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
9390 p = strchr (p, '\0') + 1;
9391 }
9392
9393 /* Do not free the contents, as we used them creating the regex. */
9394
9395 /* Do not include this section in the link. */
9396 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9397 }
9398
9399 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
9400 lang_register_vers_node (command_line.version_exports_section,
9401 lang_new_vers_node (greg, lreg), NULL);
9402 }
9403
9404 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
9405 called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
9406 thrown, however, references to symbols in the origin and length fields
9407 will be pushed into the symbol table, this allows PROVIDE statements to
9408 then provide these symbols. This function is called a second time with
9409 UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
9410 data structures, and throw errors if missing symbols are encountered. */
9411
9412 static void
9413 lang_do_memory_regions (bfd_boolean update_regions_p)
9414 {
9415 lang_memory_region_type *r = lang_memory_region_list;
9416
9417 for (; r != NULL; r = r->next)
9418 {
9419 if (r->origin_exp)
9420 {
9421 exp_fold_tree_no_dot (r->origin_exp);
9422 if (update_regions_p)
9423 {
9424 if (expld.result.valid_p)
9425 {
9426 r->origin = expld.result.value;
9427 r->current = r->origin;
9428 }
9429 else
9430 einfo (_("%P: invalid origin for memory region %s\n"),
9431 r->name_list.name);
9432 }
9433 }
9434 if (r->length_exp)
9435 {
9436 exp_fold_tree_no_dot (r->length_exp);
9437 if (update_regions_p)
9438 {
9439 if (expld.result.valid_p)
9440 r->length = expld.result.value;
9441 else
9442 einfo (_("%P: invalid length for memory region %s\n"),
9443 r->name_list.name);
9444 }
9445 }
9446 }
9447 }
9448
9449 void
9450 lang_add_unique (const char *name)
9451 {
9452 struct unique_sections *ent;
9453
9454 for (ent = unique_section_list; ent; ent = ent->next)
9455 if (strcmp (ent->name, name) == 0)
9456 return;
9457
9458 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9459 ent->name = xstrdup (name);
9460 ent->next = unique_section_list;
9461 unique_section_list = ent;
9462 }
9463
9464 /* Append the list of dynamic symbols to the existing one. */
9465
9466 void
9467 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9468 struct bfd_elf_version_expr *dynamic)
9469 {
9470 if (*list_p)
9471 {
9472 struct bfd_elf_version_expr *tail;
9473 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9474 ;
9475 tail->next = (*list_p)->head.list;
9476 (*list_p)->head.list = dynamic;
9477 }
9478 else
9479 {
9480 struct bfd_elf_dynamic_list *d;
9481
9482 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9483 d->head.list = dynamic;
9484 d->match = lang_vers_match;
9485 *list_p = d;
9486 }
9487 }
9488
9489 /* Append the list of C++ typeinfo dynamic symbols to the existing
9490 one. */
9491
9492 void
9493 lang_append_dynamic_list_cpp_typeinfo (void)
9494 {
9495 const char *symbols[] =
9496 {
9497 "typeinfo name for*",
9498 "typeinfo for*"
9499 };
9500 struct bfd_elf_version_expr *dynamic = NULL;
9501 unsigned int i;
9502
9503 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9504 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9505 FALSE);
9506
9507 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9508 }
9509
9510 /* Append the list of C++ operator new and delete dynamic symbols to the
9511 existing one. */
9512
9513 void
9514 lang_append_dynamic_list_cpp_new (void)
9515 {
9516 const char *symbols[] =
9517 {
9518 "operator new*",
9519 "operator delete*"
9520 };
9521 struct bfd_elf_version_expr *dynamic = NULL;
9522 unsigned int i;
9523
9524 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9525 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9526 FALSE);
9527
9528 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9529 }
9530
9531 /* Scan a space and/or comma separated string of features. */
9532
9533 void
9534 lang_ld_feature (char *str)
9535 {
9536 char *p, *q;
9537
9538 p = str;
9539 while (*p)
9540 {
9541 char sep;
9542 while (*p == ',' || ISSPACE (*p))
9543 ++p;
9544 if (!*p)
9545 break;
9546 q = p + 1;
9547 while (*q && *q != ',' && !ISSPACE (*q))
9548 ++q;
9549 sep = *q;
9550 *q = 0;
9551 if (strcasecmp (p, "SANE_EXPR") == 0)
9552 config.sane_expr = TRUE;
9553 else
9554 einfo (_("%X%P: unknown feature `%s'\n"), p);
9555 *q = sep;
9556 p = q;
9557 }
9558 }
9559
9560 /* Pretty print memory amount. */
9561
9562 static void
9563 lang_print_memory_size (bfd_vma sz)
9564 {
9565 if ((sz & 0x3fffffff) == 0)
9566 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
9567 else if ((sz & 0xfffff) == 0)
9568 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
9569 else if ((sz & 0x3ff) == 0)
9570 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
9571 else
9572 printf (" %10" BFD_VMA_FMT "u B", sz);
9573 }
9574
9575 /* Implement --print-memory-usage: disply per region memory usage. */
9576
9577 void
9578 lang_print_memory_usage (void)
9579 {
9580 lang_memory_region_type *r;
9581
9582 printf ("Memory region Used Size Region Size %%age Used\n");
9583 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9584 {
9585 bfd_vma used_length = r->current - r->origin;
9586
9587 printf ("%16s: ",r->name_list.name);
9588 lang_print_memory_size (used_length);
9589 lang_print_memory_size ((bfd_vma) r->length);
9590
9591 if (r->length != 0)
9592 {
9593 double percent = used_length * 100.0 / r->length;
9594 printf (" %6.2f%%", percent);
9595 }
9596 printf ("\n");
9597 }
9598 }